aboutsummaryrefslogtreecommitdiff
path: root/libjava/java/util/Arrays.java
diff options
context:
space:
mode:
Diffstat (limited to 'libjava/java/util/Arrays.java')
-rw-r--r--libjava/java/util/Arrays.java2510
1 files changed, 0 insertions, 2510 deletions
diff --git a/libjava/java/util/Arrays.java b/libjava/java/util/Arrays.java
deleted file mode 100644
index 15c1a5f..0000000
--- a/libjava/java/util/Arrays.java
+++ /dev/null
@@ -1,2510 +0,0 @@
-/* Arrays.java -- Utility class with methods to operate on arrays
- Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
- Free Software Foundation, Inc.
-
-This file is part of GNU Classpath.
-
-GNU Classpath is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
-
-GNU Classpath is distributed in the hope that it will be useful, but
-WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GNU Classpath; see the file COPYING. If not, write to the
-Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
-02110-1301 USA.
-
-Linking this library statically or dynamically with other modules is
-making a combined work based on this library. Thus, the terms and
-conditions of the GNU General Public License cover the whole
-combination.
-
-As a special exception, the copyright holders of this library give you
-permission to link this library with independent modules to produce an
-executable, regardless of the license terms of these independent
-modules, and to copy and distribute the resulting executable under
-terms of your choice, provided that you also meet, for each linked
-independent module, the terms and conditions of the license of that
-module. An independent module is a module which is not derived from
-or based on this library. If you modify this library, you may extend
-this exception to your version of the library, but you are not
-obligated to do so. If you do not wish to do so, delete this
-exception statement from your version. */
-
-
-package java.util;
-
-import java.io.Serializable;
-import java.lang.reflect.Array;
-
-/**
- * This class contains various static utility methods performing operations on
- * arrays, and a method to provide a List "view" of an array to facilitate
- * using arrays with Collection-based APIs. All methods throw a
- * {@link NullPointerException} if the parameter array is null.
- * <p>
- *
- * Implementations may use their own algorithms, but must obey the general
- * properties; for example, the sort must be stable and n*log(n) complexity.
- * Sun's implementation of sort, and therefore ours, is a tuned quicksort,
- * adapted from Jon L. Bentley and M. Douglas McIlroy's "Engineering a Sort
- * Function", Software-Practice and Experience, Vol. 23(11) P. 1249-1265
- * (November 1993). This algorithm offers n*log(n) performance on many data
- * sets that cause other quicksorts to degrade to quadratic performance.
- *
- * @author Original author unknown
- * @author Bryce McKinlay
- * @author Eric Blake (ebb9@email.byu.edu)
- * @see Comparable
- * @see Comparator
- * @since 1.2
- * @status updated to 1.4
- */
-public class Arrays
-{
- /**
- * This class is non-instantiable.
- */
- private Arrays()
- {
- }
-
-
-// binarySearch
- /**
- * Perform a binary search of a byte array for a key. The array must be
- * sorted (as by the sort() method) - if it is not, the behaviour of this
- * method is undefined, and may be an infinite loop. If the array contains
- * the key more than once, any one of them may be found. Note: although the
- * specification allows for an infinite loop if the array is unsorted, it
- * will not happen in this implementation.
- *
- * @param a the array to search (must be sorted)
- * @param key the value to search for
- * @return the index at which the key was found, or -n-1 if it was not
- * found, where n is the index of the first value higher than key or
- * a.length if there is no such value.
- */
- public static int binarySearch(byte[] a, byte key)
- {
- int low = 0;
- int hi = a.length - 1;
- int mid = 0;
- while (low <= hi)
- {
- mid = (low + hi) >> 1;
- final byte d = a[mid];
- if (d == key)
- return mid;
- else if (d > key)
- hi = mid - 1;
- else
- // This gets the insertion point right on the last loop.
- low = ++mid;
- }
- return -mid - 1;
- }
-
- /**
- * Perform a binary search of a char array for a key. The array must be
- * sorted (as by the sort() method) - if it is not, the behaviour of this
- * method is undefined, and may be an infinite loop. If the array contains
- * the key more than once, any one of them may be found. Note: although the
- * specification allows for an infinite loop if the array is unsorted, it
- * will not happen in this implementation.
- *
- * @param a the array to search (must be sorted)
- * @param key the value to search for
- * @return the index at which the key was found, or -n-1 if it was not
- * found, where n is the index of the first value higher than key or
- * a.length if there is no such value.
- */
- public static int binarySearch(char[] a, char key)
- {
- int low = 0;
- int hi = a.length - 1;
- int mid = 0;
- while (low <= hi)
- {
- mid = (low + hi) >> 1;
- final char d = a[mid];
- if (d == key)
- return mid;
- else if (d > key)
- hi = mid - 1;
- else
- // This gets the insertion point right on the last loop.
- low = ++mid;
- }
- return -mid - 1;
- }
-
- /**
- * Perform a binary search of a short array for a key. The array must be
- * sorted (as by the sort() method) - if it is not, the behaviour of this
- * method is undefined, and may be an infinite loop. If the array contains
- * the key more than once, any one of them may be found. Note: although the
- * specification allows for an infinite loop if the array is unsorted, it
- * will not happen in this implementation.
- *
- * @param a the array to search (must be sorted)
- * @param key the value to search for
- * @return the index at which the key was found, or -n-1 if it was not
- * found, where n is the index of the first value higher than key or
- * a.length if there is no such value.
- */
- public static int binarySearch(short[] a, short key)
- {
- int low = 0;
- int hi = a.length - 1;
- int mid = 0;
- while (low <= hi)
- {
- mid = (low + hi) >> 1;
- final short d = a[mid];
- if (d == key)
- return mid;
- else if (d > key)
- hi = mid - 1;
- else
- // This gets the insertion point right on the last loop.
- low = ++mid;
- }
- return -mid - 1;
- }
-
- /**
- * Perform a binary search of an int array for a key. The array must be
- * sorted (as by the sort() method) - if it is not, the behaviour of this
- * method is undefined, and may be an infinite loop. If the array contains
- * the key more than once, any one of them may be found. Note: although the
- * specification allows for an infinite loop if the array is unsorted, it
- * will not happen in this implementation.
- *
- * @param a the array to search (must be sorted)
- * @param key the value to search for
- * @return the index at which the key was found, or -n-1 if it was not
- * found, where n is the index of the first value higher than key or
- * a.length if there is no such value.
- */
- public static int binarySearch(int[] a, int key)
- {
- int low = 0;
- int hi = a.length - 1;
- int mid = 0;
- while (low <= hi)
- {
- mid = (low + hi) >> 1;
- final int d = a[mid];
- if (d == key)
- return mid;
- else if (d > key)
- hi = mid - 1;
- else
- // This gets the insertion point right on the last loop.
- low = ++mid;
- }
- return -mid - 1;
- }
-
- /**
- * Perform a binary search of a long array for a key. The array must be
- * sorted (as by the sort() method) - if it is not, the behaviour of this
- * method is undefined, and may be an infinite loop. If the array contains
- * the key more than once, any one of them may be found. Note: although the
- * specification allows for an infinite loop if the array is unsorted, it
- * will not happen in this implementation.
- *
- * @param a the array to search (must be sorted)
- * @param key the value to search for
- * @return the index at which the key was found, or -n-1 if it was not
- * found, where n is the index of the first value higher than key or
- * a.length if there is no such value.
- */
- public static int binarySearch(long[] a, long key)
- {
- int low = 0;
- int hi = a.length - 1;
- int mid = 0;
- while (low <= hi)
- {
- mid = (low + hi) >> 1;
- final long d = a[mid];
- if (d == key)
- return mid;
- else if (d > key)
- hi = mid - 1;
- else
- // This gets the insertion point right on the last loop.
- low = ++mid;
- }
- return -mid - 1;
- }
-
- /**
- * Perform a binary search of a float array for a key. The array must be
- * sorted (as by the sort() method) - if it is not, the behaviour of this
- * method is undefined, and may be an infinite loop. If the array contains
- * the key more than once, any one of them may be found. Note: although the
- * specification allows for an infinite loop if the array is unsorted, it
- * will not happen in this implementation.
- *
- * @param a the array to search (must be sorted)
- * @param key the value to search for
- * @return the index at which the key was found, or -n-1 if it was not
- * found, where n is the index of the first value higher than key or
- * a.length if there is no such value.
- */
- public static int binarySearch(float[] a, float key)
- {
- // Must use Float.compare to take into account NaN, +-0.
- int low = 0;
- int hi = a.length - 1;
- int mid = 0;
- while (low <= hi)
- {
- mid = (low + hi) >> 1;
- final int r = Float.compare(a[mid], key);
- if (r == 0)
- return mid;
- else if (r > 0)
- hi = mid - 1;
- else
- // This gets the insertion point right on the last loop
- low = ++mid;
- }
- return -mid - 1;
- }
-
- /**
- * Perform a binary search of a double array for a key. The array must be
- * sorted (as by the sort() method) - if it is not, the behaviour of this
- * method is undefined, and may be an infinite loop. If the array contains
- * the key more than once, any one of them may be found. Note: although the
- * specification allows for an infinite loop if the array is unsorted, it
- * will not happen in this implementation.
- *
- * @param a the array to search (must be sorted)
- * @param key the value to search for
- * @return the index at which the key was found, or -n-1 if it was not
- * found, where n is the index of the first value higher than key or
- * a.length if there is no such value.
- */
- public static int binarySearch(double[] a, double key)
- {
- // Must use Double.compare to take into account NaN, +-0.
- int low = 0;
- int hi = a.length - 1;
- int mid = 0;
- while (low <= hi)
- {
- mid = (low + hi) >> 1;
- final int r = Double.compare(a[mid], key);
- if (r == 0)
- return mid;
- else if (r > 0)
- hi = mid - 1;
- else
- // This gets the insertion point right on the last loop
- low = ++mid;
- }
- return -mid - 1;
- }
-
- /**
- * Perform a binary search of an Object array for a key, using the natural
- * ordering of the elements. The array must be sorted (as by the sort()
- * method) - if it is not, the behaviour of this method is undefined, and may
- * be an infinite loop. Further, the key must be comparable with every item
- * in the array. If the array contains the key more than once, any one of
- * them may be found. Note: although the specification allows for an infinite
- * loop if the array is unsorted, it will not happen in this (JCL)
- * implementation.
- *
- * @param a the array to search (must be sorted)
- * @param key the value to search for
- * @return the index at which the key was found, or -n-1 if it was not
- * found, where n is the index of the first value higher than key or
- * a.length if there is no such value.
- * @throws ClassCastException if key could not be compared with one of the
- * elements of a
- * @throws NullPointerException if a null element in a is compared
- */
- public static int binarySearch(Object[] a, Object key)
- {
- return binarySearch(a, key, null);
- }
-
- /**
- * Perform a binary search of an Object array for a key, using a supplied
- * Comparator. The array must be sorted (as by the sort() method with the
- * same Comparator) - if it is not, the behaviour of this method is
- * undefined, and may be an infinite loop. Further, the key must be
- * comparable with every item in the array. If the array contains the key
- * more than once, any one of them may be found. Note: although the
- * specification allows for an infinite loop if the array is unsorted, it
- * will not happen in this (JCL) implementation.
- *
- * @param a the array to search (must be sorted)
- * @param key the value to search for
- * @param c the comparator by which the array is sorted; or null to
- * use the elements' natural order
- * @return the index at which the key was found, or -n-1 if it was not
- * found, where n is the index of the first value higher than key or
- * a.length if there is no such value.
- * @throws ClassCastException if key could not be compared with one of the
- * elements of a
- * @throws NullPointerException if a null element is compared with natural
- * ordering (only possible when c is null)
- */
- public static int binarySearch(Object[] a, Object key, Comparator c)
- {
- int low = 0;
- int hi = a.length - 1;
- int mid = 0;
- while (low <= hi)
- {
- mid = (low + hi) >> 1;
- final int d = Collections.compare(key, a[mid], c);
- if (d == 0)
- return mid;
- else if (d < 0)
- hi = mid - 1;
- else
- // This gets the insertion point right on the last loop
- low = ++mid;
- }
- return -mid - 1;
- }
-
-
-// equals
- /**
- * Compare two boolean arrays for equality.
- *
- * @param a1 the first array to compare
- * @param a2 the second array to compare
- * @return true if a1 and a2 are both null, or if a2 is of the same length
- * as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
- */
- public static boolean equals(boolean[] a1, boolean[] a2)
- {
- // Quick test which saves comparing elements of the same array, and also
- // catches the case that both are null.
- if (a1 == a2)
- return true;
-
- if (null == a1 || null == a2)
- return false;
-
- // If they're the same length, test each element
- if (a1.length == a2.length)
- {
- int i = a1.length;
- while (--i >= 0)
- if (a1[i] != a2[i])
- return false;
- return true;
- }
- return false;
- }
-
- /**
- * Compare two byte arrays for equality.
- *
- * @param a1 the first array to compare
- * @param a2 the second array to compare
- * @return true if a1 and a2 are both null, or if a2 is of the same length
- * as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
- */
- public static boolean equals(byte[] a1, byte[] a2)
- {
- // Quick test which saves comparing elements of the same array, and also
- // catches the case that both are null.
- if (a1 == a2)
- return true;
-
- if (null == a1 || null == a2)
- return false;
-
- // If they're the same length, test each element
- if (a1.length == a2.length)
- {
- int i = a1.length;
- while (--i >= 0)
- if (a1[i] != a2[i])
- return false;
- return true;
- }
- return false;
- }
-
- /**
- * Compare two char arrays for equality.
- *
- * @param a1 the first array to compare
- * @param a2 the second array to compare
- * @return true if a1 and a2 are both null, or if a2 is of the same length
- * as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
- */
- public static boolean equals(char[] a1, char[] a2)
- {
- // Quick test which saves comparing elements of the same array, and also
- // catches the case that both are null.
- if (a1 == a2)
- return true;
-
- if (null == a1 || null == a2)
- return false;
-
- // If they're the same length, test each element
- if (a1.length == a2.length)
- {
- int i = a1.length;
- while (--i >= 0)
- if (a1[i] != a2[i])
- return false;
- return true;
- }
- return false;
- }
-
- /**
- * Compare two short arrays for equality.
- *
- * @param a1 the first array to compare
- * @param a2 the second array to compare
- * @return true if a1 and a2 are both null, or if a2 is of the same length
- * as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
- */
- public static boolean equals(short[] a1, short[] a2)
- {
- // Quick test which saves comparing elements of the same array, and also
- // catches the case that both are null.
- if (a1 == a2)
- return true;
-
- if (null == a1 || null == a2)
- return false;
-
- // If they're the same length, test each element
- if (a1.length == a2.length)
- {
- int i = a1.length;
- while (--i >= 0)
- if (a1[i] != a2[i])
- return false;
- return true;
- }
- return false;
- }
-
- /**
- * Compare two int arrays for equality.
- *
- * @param a1 the first array to compare
- * @param a2 the second array to compare
- * @return true if a1 and a2 are both null, or if a2 is of the same length
- * as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
- */
- public static boolean equals(int[] a1, int[] a2)
- {
- // Quick test which saves comparing elements of the same array, and also
- // catches the case that both are null.
- if (a1 == a2)
- return true;
-
- if (null == a1 || null == a2)
- return false;
-
- // If they're the same length, test each element
- if (a1.length == a2.length)
- {
- int i = a1.length;
- while (--i >= 0)
- if (a1[i] != a2[i])
- return false;
- return true;
- }
- return false;
- }
-
- /**
- * Compare two long arrays for equality.
- *
- * @param a1 the first array to compare
- * @param a2 the second array to compare
- * @return true if a1 and a2 are both null, or if a2 is of the same length
- * as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
- */
- public static boolean equals(long[] a1, long[] a2)
- {
- // Quick test which saves comparing elements of the same array, and also
- // catches the case that both are null.
- if (a1 == a2)
- return true;
-
- if (null == a1 || null == a2)
- return false;
-
- // If they're the same length, test each element
- if (a1.length == a2.length)
- {
- int i = a1.length;
- while (--i >= 0)
- if (a1[i] != a2[i])
- return false;
- return true;
- }
- return false;
- }
-
- /**
- * Compare two float arrays for equality.
- *
- * @param a1 the first array to compare
- * @param a2 the second array to compare
- * @return true if a1 and a2 are both null, or if a2 is of the same length
- * as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
- */
- public static boolean equals(float[] a1, float[] a2)
- {
- // Quick test which saves comparing elements of the same array, and also
- // catches the case that both are null.
- if (a1 == a2)
- return true;
-
- if (null == a1 || null == a2)
- return false;
-
- // Must use Float.compare to take into account NaN, +-0.
- // If they're the same length, test each element
- if (a1.length == a2.length)
- {
- int i = a1.length;
- while (--i >= 0)
- if (Float.compare(a1[i], a2[i]) != 0)
- return false;
- return true;
- }
- return false;
- }
-
- /**
- * Compare two double arrays for equality.
- *
- * @param a1 the first array to compare
- * @param a2 the second array to compare
- * @return true if a1 and a2 are both null, or if a2 is of the same length
- * as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
- */
- public static boolean equals(double[] a1, double[] a2)
- {
- // Quick test which saves comparing elements of the same array, and also
- // catches the case that both are null.
- if (a1 == a2)
- return true;
-
- if (null == a1 || null == a2)
- return false;
-
- // Must use Double.compare to take into account NaN, +-0.
- // If they're the same length, test each element
- if (a1.length == a2.length)
- {
- int i = a1.length;
- while (--i >= 0)
- if (Double.compare(a1[i], a2[i]) != 0)
- return false;
- return true;
- }
- return false;
- }
-
- /**
- * Compare two Object arrays for equality.
- *
- * @param a1 the first array to compare
- * @param a2 the second array to compare
- * @return true if a1 and a2 are both null, or if a1 is of the same length
- * as a2, and for each 0 <= i < a.length, a1[i] == null ?
- * a2[i] == null : a1[i].equals(a2[i]).
- */
- public static boolean equals(Object[] a1, Object[] a2)
- {
- // Quick test which saves comparing elements of the same array, and also
- // catches the case that both are null.
- if (a1 == a2)
- return true;
-
- if (null == a1 || null == a2)
- return false;
-
- // If they're the same length, test each element
- if (a1.length == a2.length)
- {
- int i = a1.length;
- while (--i >= 0)
- if (! AbstractCollection.equals(a1[i], a2[i]))
- return false;
- return true;
- }
- return false;
- }
-
-
-// fill
- /**
- * Fill an array with a boolean value.
- *
- * @param a the array to fill
- * @param val the value to fill it with
- */
- public static void fill(boolean[] a, boolean val)
- {
- fill(a, 0, a.length, val);
- }
-
- /**
- * Fill a range of an array with a boolean value.
- *
- * @param a the array to fill
- * @param fromIndex the index to fill from, inclusive
- * @param toIndex the index to fill to, exclusive
- * @param val the value to fill with
- * @throws IllegalArgumentException if fromIndex &gt; toIndex
- * @throws ArrayIndexOutOfBoundsException if fromIndex &lt; 0
- * || toIndex &gt; a.length
- */
- public static void fill(boolean[] a, int fromIndex, int toIndex, boolean val)
- {
- if (fromIndex > toIndex)
- throw new IllegalArgumentException();
- for (int i = fromIndex; i < toIndex; i++)
- a[i] = val;
- }
-
- /**
- * Fill an array with a byte value.
- *
- * @param a the array to fill
- * @param val the value to fill it with
- */
- public static void fill(byte[] a, byte val)
- {
- fill(a, 0, a.length, val);
- }
-
- /**
- * Fill a range of an array with a byte value.
- *
- * @param a the array to fill
- * @param fromIndex the index to fill from, inclusive
- * @param toIndex the index to fill to, exclusive
- * @param val the value to fill with
- * @throws IllegalArgumentException if fromIndex &gt; toIndex
- * @throws ArrayIndexOutOfBoundsException if fromIndex &lt; 0
- * || toIndex &gt; a.length
- */
- public static void fill(byte[] a, int fromIndex, int toIndex, byte val)
- {
- if (fromIndex > toIndex)
- throw new IllegalArgumentException();
- for (int i = fromIndex; i < toIndex; i++)
- a[i] = val;
- }
-
- /**
- * Fill an array with a char value.
- *
- * @param a the array to fill
- * @param val the value to fill it with
- */
- public static void fill(char[] a, char val)
- {
- fill(a, 0, a.length, val);
- }
-
- /**
- * Fill a range of an array with a char value.
- *
- * @param a the array to fill
- * @param fromIndex the index to fill from, inclusive
- * @param toIndex the index to fill to, exclusive
- * @param val the value to fill with
- * @throws IllegalArgumentException if fromIndex &gt; toIndex
- * @throws ArrayIndexOutOfBoundsException if fromIndex &lt; 0
- * || toIndex &gt; a.length
- */
- public static void fill(char[] a, int fromIndex, int toIndex, char val)
- {
- if (fromIndex > toIndex)
- throw new IllegalArgumentException();
- for (int i = fromIndex; i < toIndex; i++)
- a[i] = val;
- }
-
- /**
- * Fill an array with a short value.
- *
- * @param a the array to fill
- * @param val the value to fill it with
- */
- public static void fill(short[] a, short val)
- {
- fill(a, 0, a.length, val);
- }
-
- /**
- * Fill a range of an array with a short value.
- *
- * @param a the array to fill
- * @param fromIndex the index to fill from, inclusive
- * @param toIndex the index to fill to, exclusive
- * @param val the value to fill with
- * @throws IllegalArgumentException if fromIndex &gt; toIndex
- * @throws ArrayIndexOutOfBoundsException if fromIndex &lt; 0
- * || toIndex &gt; a.length
- */
- public static void fill(short[] a, int fromIndex, int toIndex, short val)
- {
- if (fromIndex > toIndex)
- throw new IllegalArgumentException();
- for (int i = fromIndex; i < toIndex; i++)
- a[i] = val;
- }
-
- /**
- * Fill an array with an int value.
- *
- * @param a the array to fill
- * @param val the value to fill it with
- */
- public static void fill(int[] a, int val)
- {
- fill(a, 0, a.length, val);
- }
-
- /**
- * Fill a range of an array with an int value.
- *
- * @param a the array to fill
- * @param fromIndex the index to fill from, inclusive
- * @param toIndex the index to fill to, exclusive
- * @param val the value to fill with
- * @throws IllegalArgumentException if fromIndex &gt; toIndex
- * @throws ArrayIndexOutOfBoundsException if fromIndex &lt; 0
- * || toIndex &gt; a.length
- */
- public static void fill(int[] a, int fromIndex, int toIndex, int val)
- {
- if (fromIndex > toIndex)
- throw new IllegalArgumentException();
- for (int i = fromIndex; i < toIndex; i++)
- a[i] = val;
- }
-
- /**
- * Fill an array with a long value.
- *
- * @param a the array to fill
- * @param val the value to fill it with
- */
- public static void fill(long[] a, long val)
- {
- fill(a, 0, a.length, val);
- }
-
- /**
- * Fill a range of an array with a long value.
- *
- * @param a the array to fill
- * @param fromIndex the index to fill from, inclusive
- * @param toIndex the index to fill to, exclusive
- * @param val the value to fill with
- * @throws IllegalArgumentException if fromIndex &gt; toIndex
- * @throws ArrayIndexOutOfBoundsException if fromIndex &lt; 0
- * || toIndex &gt; a.length
- */
- public static void fill(long[] a, int fromIndex, int toIndex, long val)
- {
- if (fromIndex > toIndex)
- throw new IllegalArgumentException();
- for (int i = fromIndex; i < toIndex; i++)
- a[i] = val;
- }
-
- /**
- * Fill an array with a float value.
- *
- * @param a the array to fill
- * @param val the value to fill it with
- */
- public static void fill(float[] a, float val)
- {
- fill(a, 0, a.length, val);
- }
-
- /**
- * Fill a range of an array with a float value.
- *
- * @param a the array to fill
- * @param fromIndex the index to fill from, inclusive
- * @param toIndex the index to fill to, exclusive
- * @param val the value to fill with
- * @throws IllegalArgumentException if fromIndex &gt; toIndex
- * @throws ArrayIndexOutOfBoundsException if fromIndex &lt; 0
- * || toIndex &gt; a.length
- */
- public static void fill(float[] a, int fromIndex, int toIndex, float val)
- {
- if (fromIndex > toIndex)
- throw new IllegalArgumentException();
- for (int i = fromIndex; i < toIndex; i++)
- a[i] = val;
- }
-
- /**
- * Fill an array with a double value.
- *
- * @param a the array to fill
- * @param val the value to fill it with
- */
- public static void fill(double[] a, double val)
- {
- fill(a, 0, a.length, val);
- }
-
- /**
- * Fill a range of an array with a double value.
- *
- * @param a the array to fill
- * @param fromIndex the index to fill from, inclusive
- * @param toIndex the index to fill to, exclusive
- * @param val the value to fill with
- * @throws IllegalArgumentException if fromIndex &gt; toIndex
- * @throws ArrayIndexOutOfBoundsException if fromIndex &lt; 0
- * || toIndex &gt; a.length
- */
- public static void fill(double[] a, int fromIndex, int toIndex, double val)
- {
- if (fromIndex > toIndex)
- throw new IllegalArgumentException();
- for (int i = fromIndex; i < toIndex; i++)
- a[i] = val;
- }
-
- /**
- * Fill an array with an Object value.
- *
- * @param a the array to fill
- * @param val the value to fill it with
- * @throws ClassCastException if val is not an instance of the element
- * type of a.
- */
- public static void fill(Object[] a, Object val)
- {
- fill(a, 0, a.length, val);
- }
-
- /**
- * Fill a range of an array with an Object value.
- *
- * @param a the array to fill
- * @param fromIndex the index to fill from, inclusive
- * @param toIndex the index to fill to, exclusive
- * @param val the value to fill with
- * @throws ClassCastException if val is not an instance of the element
- * type of a.
- * @throws IllegalArgumentException if fromIndex &gt; toIndex
- * @throws ArrayIndexOutOfBoundsException if fromIndex &lt; 0
- * || toIndex &gt; a.length
- */
- public static void fill(Object[] a, int fromIndex, int toIndex, Object val)
- {
- if (fromIndex > toIndex)
- throw new IllegalArgumentException();
- for (int i = fromIndex; i < toIndex; i++)
- a[i] = val;
- }
-
-
-// sort
- // Thanks to Paul Fisher (rao@gnu.org) for finding this quicksort algorithm
- // as specified by Sun and porting it to Java. The algorithm is an optimised
- // quicksort, as described in Jon L. Bentley and M. Douglas McIlroy's
- // "Engineering a Sort Function", Software-Practice and Experience, Vol.
- // 23(11) P. 1249-1265 (November 1993). This algorithm gives n*log(n)
- // performance on many arrays that would take quadratic time with a standard
- // quicksort.
-
- /**
- * Performs a stable sort on the elements, arranging them according to their
- * natural order.
- *
- * @param a the byte array to sort
- */
- public static void sort(byte[] a)
- {
- qsort(a, 0, a.length);
- }
-
- /**
- * Performs a stable sort on the elements, arranging them according to their
- * natural order.
- *
- * @param a the byte array to sort
- * @param fromIndex the first index to sort (inclusive)
- * @param toIndex the last index to sort (exclusive)
- * @throws IllegalArgumentException if fromIndex &gt; toIndex
- * @throws ArrayIndexOutOfBoundsException if fromIndex &lt; 0
- * || toIndex &gt; a.length
- */
- public static void sort(byte[] a, int fromIndex, int toIndex)
- {
- if (fromIndex > toIndex)
- throw new IllegalArgumentException();
- if (fromIndex < 0)
- throw new ArrayIndexOutOfBoundsException();
- qsort(a, fromIndex, toIndex - fromIndex);
- }
-
- /**
- * Finds the index of the median of three array elements.
- *
- * @param a the first index
- * @param b the second index
- * @param c the third index
- * @param d the array
- * @return the index (a, b, or c) which has the middle value of the three
- */
- private static int med3(int a, int b, int c, byte[] d)
- {
- return (d[a] < d[b]
- ? (d[b] < d[c] ? b : d[a] < d[c] ? c : a)
- : (d[b] > d[c] ? b : d[a] > d[c] ? c : a));
- }
-
- /**
- * Swaps the elements at two locations of an array
- *
- * @param i the first index
- * @param j the second index
- * @param a the array
- */
- private static void swap(int i, int j, byte[] a)
- {
- byte c = a[i];
- a[i] = a[j];
- a[j] = c;
- }
-
- /**
- * Swaps two ranges of an array.
- *
- * @param i the first range start
- * @param j the second range start
- * @param n the element count
- * @param a the array
- */
- private static void vecswap(int i, int j, int n, byte[] a)
- {
- for ( ; n > 0; i++, j++, n--)
- swap(i, j, a);
- }
-
- /**
- * Performs a recursive modified quicksort.
- *
- * @param array the array to sort
- * @param from the start index (inclusive)
- * @param count the number of elements to sort
- */
- private static void qsort(byte[] array, int from, int count)
- {
- // Use an insertion sort on small arrays.
- if (count <= 7)
- {
- for (int i = from + 1; i < from + count; i++)
- for (int j = i; j > from && array[j - 1] > array[j]; j--)
- swap(j, j - 1, array);
- return;
- }
-
- // Determine a good median element.
- int mid = count / 2;
- int lo = from;
- int hi = from + count - 1;
-
- if (count > 40)
- { // big arrays, pseudomedian of 9
- int s = count / 8;
- lo = med3(lo, lo + s, lo + 2 * s, array);
- mid = med3(mid - s, mid, mid + s, array);
- hi = med3(hi - 2 * s, hi - s, hi, array);
- }
- mid = med3(lo, mid, hi, array);
-
- int a, b, c, d;
- int comp;
-
- // Pull the median element out of the fray, and use it as a pivot.
- swap(from, mid, array);
- a = b = from;
- c = d = from + count - 1;
-
- // Repeatedly move b and c to each other, swapping elements so
- // that all elements before index b are less than the pivot, and all
- // elements after index c are greater than the pivot. a and b track
- // the elements equal to the pivot.
- while (true)
- {
- while (b <= c && (comp = array[b] - array[from]) <= 0)
- {
- if (comp == 0)
- {
- swap(a, b, array);
- a++;
- }
- b++;
- }
- while (c >= b && (comp = array[c] - array[from]) >= 0)
- {
- if (comp == 0)
- {
- swap(c, d, array);
- d--;
- }
- c--;
- }
- if (b > c)
- break;
- swap(b, c, array);
- b++;
- c--;
- }
-
- // Swap pivot(s) back in place, the recurse on left and right sections.
- hi = from + count;
- int span;
- span = Math.min(a - from, b - a);
- vecswap(from, b - span, span, array);
-
- span = Math.min(d - c, hi - d - 1);
- vecswap(b, hi - span, span, array);
-
- span = b - a;
- if (span > 1)
- qsort(array, from, span);
-
- span = d - c;
- if (span > 1)
- qsort(array, hi - span, span);
- }
-
- /**
- * Performs a stable sort on the elements, arranging them according to their
- * natural order.
- *
- * @param a the char array to sort
- */
- public static void sort(char[] a)
- {
- qsort(a, 0, a.length);
- }
-
- /**
- * Performs a stable sort on the elements, arranging them according to their
- * natural order.
- *
- * @param a the char array to sort
- * @param fromIndex the first index to sort (inclusive)
- * @param toIndex the last index to sort (exclusive)
- * @throws IllegalArgumentException if fromIndex &gt; toIndex
- * @throws ArrayIndexOutOfBoundsException if fromIndex &lt; 0
- * || toIndex &gt; a.length
- */
- public static void sort(char[] a, int fromIndex, int toIndex)
- {
- if (fromIndex > toIndex)
- throw new IllegalArgumentException();
- if (fromIndex < 0)
- throw new ArrayIndexOutOfBoundsException();
- qsort(a, fromIndex, toIndex - fromIndex);
- }
-
- /**
- * Finds the index of the median of three array elements.
- *
- * @param a the first index
- * @param b the second index
- * @param c the third index
- * @param d the array
- * @return the index (a, b, or c) which has the middle value of the three
- */
- private static int med3(int a, int b, int c, char[] d)
- {
- return (d[a] < d[b]
- ? (d[b] < d[c] ? b : d[a] < d[c] ? c : a)
- : (d[b] > d[c] ? b : d[a] > d[c] ? c : a));
- }
-
- /**
- * Swaps the elements at two locations of an array
- *
- * @param i the first index
- * @param j the second index
- * @param a the array
- */
- private static void swap(int i, int j, char[] a)
- {
- char c = a[i];
- a[i] = a[j];
- a[j] = c;
- }
-
- /**
- * Swaps two ranges of an array.
- *
- * @param i the first range start
- * @param j the second range start
- * @param n the element count
- * @param a the array
- */
- private static void vecswap(int i, int j, int n, char[] a)
- {
- for ( ; n > 0; i++, j++, n--)
- swap(i, j, a);
- }
-
- /**
- * Performs a recursive modified quicksort.
- *
- * @param array the array to sort
- * @param from the start index (inclusive)
- * @param count the number of elements to sort
- */
- private static void qsort(char[] array, int from, int count)
- {
- // Use an insertion sort on small arrays.
- if (count <= 7)
- {
- for (int i = from + 1; i < from + count; i++)
- for (int j = i; j > from && array[j - 1] > array[j]; j--)
- swap(j, j - 1, array);
- return;
- }
-
- // Determine a good median element.
- int mid = count / 2;
- int lo = from;
- int hi = from + count - 1;
-
- if (count > 40)
- { // big arrays, pseudomedian of 9
- int s = count / 8;
- lo = med3(lo, lo + s, lo + 2 * s, array);
- mid = med3(mid - s, mid, mid + s, array);
- hi = med3(hi - 2 * s, hi - s, hi, array);
- }
- mid = med3(lo, mid, hi, array);
-
- int a, b, c, d;
- int comp;
-
- // Pull the median element out of the fray, and use it as a pivot.
- swap(from, mid, array);
- a = b = from;
- c = d = from + count - 1;
-
- // Repeatedly move b and c to each other, swapping elements so
- // that all elements before index b are less than the pivot, and all
- // elements after index c are greater than the pivot. a and b track
- // the elements equal to the pivot.
- while (true)
- {
- while (b <= c && (comp = array[b] - array[from]) <= 0)
- {
- if (comp == 0)
- {
- swap(a, b, array);
- a++;
- }
- b++;
- }
- while (c >= b && (comp = array[c] - array[from]) >= 0)
- {
- if (comp == 0)
- {
- swap(c, d, array);
- d--;
- }
- c--;
- }
- if (b > c)
- break;
- swap(b, c, array);
- b++;
- c--;
- }
-
- // Swap pivot(s) back in place, the recurse on left and right sections.
- hi = from + count;
- int span;
- span = Math.min(a - from, b - a);
- vecswap(from, b - span, span, array);
-
- span = Math.min(d - c, hi - d - 1);
- vecswap(b, hi - span, span, array);
-
- span = b - a;
- if (span > 1)
- qsort(array, from, span);
-
- span = d - c;
- if (span > 1)
- qsort(array, hi - span, span);
- }
-
- /**
- * Performs a stable sort on the elements, arranging them according to their
- * natural order.
- *
- * @param a the short array to sort
- */
- public static void sort(short[] a)
- {
- qsort(a, 0, a.length);
- }
-
- /**
- * Performs a stable sort on the elements, arranging them according to their
- * natural order.
- *
- * @param a the short array to sort
- * @param fromIndex the first index to sort (inclusive)
- * @param toIndex the last index to sort (exclusive)
- * @throws IllegalArgumentException if fromIndex &gt; toIndex
- * @throws ArrayIndexOutOfBoundsException if fromIndex &lt; 0
- * || toIndex &gt; a.length
- */
- public static void sort(short[] a, int fromIndex, int toIndex)
- {
- if (fromIndex > toIndex)
- throw new IllegalArgumentException();
- if (fromIndex < 0)
- throw new ArrayIndexOutOfBoundsException();
- qsort(a, fromIndex, toIndex - fromIndex);
- }
-
- /**
- * Finds the index of the median of three array elements.
- *
- * @param a the first index
- * @param b the second index
- * @param c the third index
- * @param d the array
- * @return the index (a, b, or c) which has the middle value of the three
- */
- private static int med3(int a, int b, int c, short[] d)
- {
- return (d[a] < d[b]
- ? (d[b] < d[c] ? b : d[a] < d[c] ? c : a)
- : (d[b] > d[c] ? b : d[a] > d[c] ? c : a));
- }
-
- /**
- * Swaps the elements at two locations of an array
- *
- * @param i the first index
- * @param j the second index
- * @param a the array
- */
- private static void swap(int i, int j, short[] a)
- {
- short c = a[i];
- a[i] = a[j];
- a[j] = c;
- }
-
- /**
- * Swaps two ranges of an array.
- *
- * @param i the first range start
- * @param j the second range start
- * @param n the element count
- * @param a the array
- */
- private static void vecswap(int i, int j, int n, short[] a)
- {
- for ( ; n > 0; i++, j++, n--)
- swap(i, j, a);
- }
-
- /**
- * Performs a recursive modified quicksort.
- *
- * @param array the array to sort
- * @param from the start index (inclusive)
- * @param count the number of elements to sort
- */
- private static void qsort(short[] array, int from, int count)
- {
- // Use an insertion sort on small arrays.
- if (count <= 7)
- {
- for (int i = from + 1; i < from + count; i++)
- for (int j = i; j > from && array[j - 1] > array[j]; j--)
- swap(j, j - 1, array);
- return;
- }
-
- // Determine a good median element.
- int mid = count / 2;
- int lo = from;
- int hi = from + count - 1;
-
- if (count > 40)
- { // big arrays, pseudomedian of 9
- int s = count / 8;
- lo = med3(lo, lo + s, lo + 2 * s, array);
- mid = med3(mid - s, mid, mid + s, array);
- hi = med3(hi - 2 * s, hi - s, hi, array);
- }
- mid = med3(lo, mid, hi, array);
-
- int a, b, c, d;
- int comp;
-
- // Pull the median element out of the fray, and use it as a pivot.
- swap(from, mid, array);
- a = b = from;
- c = d = from + count - 1;
-
- // Repeatedly move b and c to each other, swapping elements so
- // that all elements before index b are less than the pivot, and all
- // elements after index c are greater than the pivot. a and b track
- // the elements equal to the pivot.
- while (true)
- {
- while (b <= c && (comp = array[b] - array[from]) <= 0)
- {
- if (comp == 0)
- {
- swap(a, b, array);
- a++;
- }
- b++;
- }
- while (c >= b && (comp = array[c] - array[from]) >= 0)
- {
- if (comp == 0)
- {
- swap(c, d, array);
- d--;
- }
- c--;
- }
- if (b > c)
- break;
- swap(b, c, array);
- b++;
- c--;
- }
-
- // Swap pivot(s) back in place, the recurse on left and right sections.
- hi = from + count;
- int span;
- span = Math.min(a - from, b - a);
- vecswap(from, b - span, span, array);
-
- span = Math.min(d - c, hi - d - 1);
- vecswap(b, hi - span, span, array);
-
- span = b - a;
- if (span > 1)
- qsort(array, from, span);
-
- span = d - c;
- if (span > 1)
- qsort(array, hi - span, span);
- }
-
- /**
- * Performs a stable sort on the elements, arranging them according to their
- * natural order.
- *
- * @param a the int array to sort
- */
- public static void sort(int[] a)
- {
- qsort(a, 0, a.length);
- }
-
- /**
- * Performs a stable sort on the elements, arranging them according to their
- * natural order.
- *
- * @param a the int array to sort
- * @param fromIndex the first index to sort (inclusive)
- * @param toIndex the last index to sort (exclusive)
- * @throws IllegalArgumentException if fromIndex &gt; toIndex
- * @throws ArrayIndexOutOfBoundsException if fromIndex &lt; 0
- * || toIndex &gt; a.length
- */
- public static void sort(int[] a, int fromIndex, int toIndex)
- {
- if (fromIndex > toIndex)
- throw new IllegalArgumentException();
- if (fromIndex < 0)
- throw new ArrayIndexOutOfBoundsException();
- qsort(a, fromIndex, toIndex - fromIndex);
- }
-
- /**
- * Finds the index of the median of three array elements.
- *
- * @param a the first index
- * @param b the second index
- * @param c the third index
- * @param d the array
- * @return the index (a, b, or c) which has the middle value of the three
- */
- private static int med3(int a, int b, int c, int[] d)
- {
- return (d[a] < d[b]
- ? (d[b] < d[c] ? b : d[a] < d[c] ? c : a)
- : (d[b] > d[c] ? b : d[a] > d[c] ? c : a));
- }
-
- /**
- * Swaps the elements at two locations of an array
- *
- * @param i the first index
- * @param j the second index
- * @param a the array
- */
- private static void swap(int i, int j, int[] a)
- {
- int c = a[i];
- a[i] = a[j];
- a[j] = c;
- }
-
- /**
- * Swaps two ranges of an array.
- *
- * @param i the first range start
- * @param j the second range start
- * @param n the element count
- * @param a the array
- */
- private static void vecswap(int i, int j, int n, int[] a)
- {
- for ( ; n > 0; i++, j++, n--)
- swap(i, j, a);
- }
-
- /**
- * Compares two integers in natural order, since a - b is inadequate.
- *
- * @param a the first int
- * @param b the second int
- * @return &lt; 0, 0, or &gt; 0 accorting to the comparison
- */
- private static int compare(int a, int b)
- {
- return a < b ? -1 : a == b ? 0 : 1;
- }
-
- /**
- * Performs a recursive modified quicksort.
- *
- * @param array the array to sort
- * @param from the start index (inclusive)
- * @param count the number of elements to sort
- */
- private static void qsort(int[] array, int from, int count)
- {
- // Use an insertion sort on small arrays.
- if (count <= 7)
- {
- for (int i = from + 1; i < from + count; i++)
- for (int j = i; j > from && array[j - 1] > array[j]; j--)
- swap(j, j - 1, array);
- return;
- }
-
- // Determine a good median element.
- int mid = count / 2;
- int lo = from;
- int hi = from + count - 1;
-
- if (count > 40)
- { // big arrays, pseudomedian of 9
- int s = count / 8;
- lo = med3(lo, lo + s, lo + 2 * s, array);
- mid = med3(mid - s, mid, mid + s, array);
- hi = med3(hi - 2 * s, hi - s, hi, array);
- }
- mid = med3(lo, mid, hi, array);
-
- int a, b, c, d;
- int comp;
-
- // Pull the median element out of the fray, and use it as a pivot.
- swap(from, mid, array);
- a = b = from;
- c = d = from + count - 1;
-
- // Repeatedly move b and c to each other, swapping elements so
- // that all elements before index b are less than the pivot, and all
- // elements after index c are greater than the pivot. a and b track
- // the elements equal to the pivot.
- while (true)
- {
- while (b <= c && (comp = compare(array[b], array[from])) <= 0)
- {
- if (comp == 0)
- {
- swap(a, b, array);
- a++;
- }
- b++;
- }
- while (c >= b && (comp = compare(array[c], array[from])) >= 0)
- {
- if (comp == 0)
- {
- swap(c, d, array);
- d--;
- }
- c--;
- }
- if (b > c)
- break;
- swap(b, c, array);
- b++;
- c--;
- }
-
- // Swap pivot(s) back in place, the recurse on left and right sections.
- hi = from + count;
- int span;
- span = Math.min(a - from, b - a);
- vecswap(from, b - span, span, array);
-
- span = Math.min(d - c, hi - d - 1);
- vecswap(b, hi - span, span, array);
-
- span = b - a;
- if (span > 1)
- qsort(array, from, span);
-
- span = d - c;
- if (span > 1)
- qsort(array, hi - span, span);
- }
-
- /**
- * Performs a stable sort on the elements, arranging them according to their
- * natural order.
- *
- * @param a the long array to sort
- */
- public static void sort(long[] a)
- {
- qsort(a, 0, a.length);
- }
-
- /**
- * Performs a stable sort on the elements, arranging them according to their
- * natural order.
- *
- * @param a the long array to sort
- * @param fromIndex the first index to sort (inclusive)
- * @param toIndex the last index to sort (exclusive)
- * @throws IllegalArgumentException if fromIndex &gt; toIndex
- * @throws ArrayIndexOutOfBoundsException if fromIndex &lt; 0
- * || toIndex &gt; a.length
- */
- public static void sort(long[] a, int fromIndex, int toIndex)
- {
- if (fromIndex > toIndex)
- throw new IllegalArgumentException();
- if (fromIndex < 0)
- throw new ArrayIndexOutOfBoundsException();
- qsort(a, fromIndex, toIndex - fromIndex);
- }
-
- /**
- * Finds the index of the median of three array elements.
- *
- * @param a the first index
- * @param b the second index
- * @param c the third index
- * @param d the array
- * @return the index (a, b, or c) which has the middle value of the three
- */
- private static int med3(int a, int b, int c, long[] d)
- {
- return (d[a] < d[b]
- ? (d[b] < d[c] ? b : d[a] < d[c] ? c : a)
- : (d[b] > d[c] ? b : d[a] > d[c] ? c : a));
- }
-
- /**
- * Swaps the elements at two locations of an array
- *
- * @param i the first index
- * @param j the second index
- * @param a the array
- */
- private static void swap(int i, int j, long[] a)
- {
- long c = a[i];
- a[i] = a[j];
- a[j] = c;
- }
-
- /**
- * Swaps two ranges of an array.
- *
- * @param i the first range start
- * @param j the second range start
- * @param n the element count
- * @param a the array
- */
- private static void vecswap(int i, int j, int n, long[] a)
- {
- for ( ; n > 0; i++, j++, n--)
- swap(i, j, a);
- }
-
- /**
- * Compares two longs in natural order, since a - b is inadequate.
- *
- * @param a the first long
- * @param b the second long
- * @return &lt; 0, 0, or &gt; 0 accorting to the comparison
- */
- private static int compare(long a, long b)
- {
- return a < b ? -1 : a == b ? 0 : 1;
- }
-
- /**
- * Performs a recursive modified quicksort.
- *
- * @param array the array to sort
- * @param from the start index (inclusive)
- * @param count the number of elements to sort
- */
- private static void qsort(long[] array, int from, int count)
- {
- // Use an insertion sort on small arrays.
- if (count <= 7)
- {
- for (int i = from + 1; i < from + count; i++)
- for (int j = i; j > from && array[j - 1] > array[j]; j--)
- swap(j, j - 1, array);
- return;
- }
-
- // Determine a good median element.
- int mid = count / 2;
- int lo = from;
- int hi = from + count - 1;
-
- if (count > 40)
- { // big arrays, pseudomedian of 9
- int s = count / 8;
- lo = med3(lo, lo + s, lo + 2 * s, array);
- mid = med3(mid - s, mid, mid + s, array);
- hi = med3(hi - 2 * s, hi - s, hi, array);
- }
- mid = med3(lo, mid, hi, array);
-
- int a, b, c, d;
- int comp;
-
- // Pull the median element out of the fray, and use it as a pivot.
- swap(from, mid, array);
- a = b = from;
- c = d = from + count - 1;
-
- // Repeatedly move b and c to each other, swapping elements so
- // that all elements before index b are less than the pivot, and all
- // elements after index c are greater than the pivot. a and b track
- // the elements equal to the pivot.
- while (true)
- {
- while (b <= c && (comp = compare(array[b], array[from])) <= 0)
- {
- if (comp == 0)
- {
- swap(a, b, array);
- a++;
- }
- b++;
- }
- while (c >= b && (comp = compare(array[c], array[from])) >= 0)
- {
- if (comp == 0)
- {
- swap(c, d, array);
- d--;
- }
- c--;
- }
- if (b > c)
- break;
- swap(b, c, array);
- b++;
- c--;
- }
-
- // Swap pivot(s) back in place, the recurse on left and right sections.
- hi = from + count;
- int span;
- span = Math.min(a - from, b - a);
- vecswap(from, b - span, span, array);
-
- span = Math.min(d - c, hi - d - 1);
- vecswap(b, hi - span, span, array);
-
- span = b - a;
- if (span > 1)
- qsort(array, from, span);
-
- span = d - c;
- if (span > 1)
- qsort(array, hi - span, span);
- }
-
- /**
- * Performs a stable sort on the elements, arranging them according to their
- * natural order.
- *
- * @param a the float array to sort
- */
- public static void sort(float[] a)
- {
- qsort(a, 0, a.length);
- }
-
- /**
- * Performs a stable sort on the elements, arranging them according to their
- * natural order.
- *
- * @param a the float array to sort
- * @param fromIndex the first index to sort (inclusive)
- * @param toIndex the last index to sort (exclusive)
- * @throws IllegalArgumentException if fromIndex &gt; toIndex
- * @throws ArrayIndexOutOfBoundsException if fromIndex &lt; 0
- * || toIndex &gt; a.length
- */
- public static void sort(float[] a, int fromIndex, int toIndex)
- {
- if (fromIndex > toIndex)
- throw new IllegalArgumentException();
- if (fromIndex < 0)
- throw new ArrayIndexOutOfBoundsException();
- qsort(a, fromIndex, toIndex - fromIndex);
- }
-
- /**
- * Finds the index of the median of three array elements.
- *
- * @param a the first index
- * @param b the second index
- * @param c the third index
- * @param d the array
- * @return the index (a, b, or c) which has the middle value of the three
- */
- private static int med3(int a, int b, int c, float[] d)
- {
- return (Float.compare(d[a], d[b]) < 0
- ? (Float.compare(d[b], d[c]) < 0 ? b
- : Float.compare(d[a], d[c]) < 0 ? c : a)
- : (Float.compare(d[b], d[c]) > 0 ? b
- : Float.compare(d[a], d[c]) > 0 ? c : a));
- }
-
- /**
- * Swaps the elements at two locations of an array
- *
- * @param i the first index
- * @param j the second index
- * @param a the array
- */
- private static void swap(int i, int j, float[] a)
- {
- float c = a[i];
- a[i] = a[j];
- a[j] = c;
- }
-
- /**
- * Swaps two ranges of an array.
- *
- * @param i the first range start
- * @param j the second range start
- * @param n the element count
- * @param a the array
- */
- private static void vecswap(int i, int j, int n, float[] a)
- {
- for ( ; n > 0; i++, j++, n--)
- swap(i, j, a);
- }
-
- /**
- * Performs a recursive modified quicksort.
- *
- * @param array the array to sort
- * @param from the start index (inclusive)
- * @param count the number of elements to sort
- */
- private static void qsort(float[] array, int from, int count)
- {
- // Use an insertion sort on small arrays.
- if (count <= 7)
- {
- for (int i = from + 1; i < from + count; i++)
- for (int j = i;
- j > from && Float.compare(array[j - 1], array[j]) > 0;
- j--)
- {
- swap(j, j - 1, array);
- }
- return;
- }
-
- // Determine a good median element.
- int mid = count / 2;
- int lo = from;
- int hi = from + count - 1;
-
- if (count > 40)
- { // big arrays, pseudomedian of 9
- int s = count / 8;
- lo = med3(lo, lo + s, lo + 2 * s, array);
- mid = med3(mid - s, mid, mid + s, array);
- hi = med3(hi - 2 * s, hi - s, hi, array);
- }
- mid = med3(lo, mid, hi, array);
-
- int a, b, c, d;
- int comp;
-
- // Pull the median element out of the fray, and use it as a pivot.
- swap(from, mid, array);
- a = b = from;
- c = d = from + count - 1;
-
- // Repeatedly move b and c to each other, swapping elements so
- // that all elements before index b are less than the pivot, and all
- // elements after index c are greater than the pivot. a and b track
- // the elements equal to the pivot.
- while (true)
- {
- while (b <= c && (comp = Float.compare(array[b], array[from])) <= 0)
- {
- if (comp == 0)
- {
- swap(a, b, array);
- a++;
- }
- b++;
- }
- while (c >= b && (comp = Float.compare(array[c], array[from])) >= 0)
- {
- if (comp == 0)
- {
- swap(c, d, array);
- d--;
- }
- c--;
- }
- if (b > c)
- break;
- swap(b, c, array);
- b++;
- c--;
- }
-
- // Swap pivot(s) back in place, the recurse on left and right sections.
- hi = from + count;
- int span;
- span = Math.min(a - from, b - a);
- vecswap(from, b - span, span, array);
-
- span = Math.min(d - c, hi - d - 1);
- vecswap(b, hi - span, span, array);
-
- span = b - a;
- if (span > 1)
- qsort(array, from, span);
-
- span = d - c;
- if (span > 1)
- qsort(array, hi - span, span);
- }
-
- /**
- * Performs a stable sort on the elements, arranging them according to their
- * natural order.
- *
- * @param a the double array to sort
- */
- public static void sort(double[] a)
- {
- qsort(a, 0, a.length);
- }
-
- /**
- * Performs a stable sort on the elements, arranging them according to their
- * natural order.
- *
- * @param a the double array to sort
- * @param fromIndex the first index to sort (inclusive)
- * @param toIndex the last index to sort (exclusive)
- * @throws IllegalArgumentException if fromIndex &gt; toIndex
- * @throws ArrayIndexOutOfBoundsException if fromIndex &lt; 0
- * || toIndex &gt; a.length
- */
- public static void sort(double[] a, int fromIndex, int toIndex)
- {
- if (fromIndex > toIndex)
- throw new IllegalArgumentException();
- if (fromIndex < 0)
- throw new ArrayIndexOutOfBoundsException();
- qsort(a, fromIndex, toIndex - fromIndex);
- }
-
- /**
- * Finds the index of the median of three array elements.
- *
- * @param a the first index
- * @param b the second index
- * @param c the third index
- * @param d the array
- * @return the index (a, b, or c) which has the middle value of the three
- */
- private static int med3(int a, int b, int c, double[] d)
- {
- return (Double.compare(d[a], d[b]) < 0
- ? (Double.compare(d[b], d[c]) < 0 ? b
- : Double.compare(d[a], d[c]) < 0 ? c : a)
- : (Double.compare(d[b], d[c]) > 0 ? b
- : Double.compare(d[a], d[c]) > 0 ? c : a));
- }
-
- /**
- * Swaps the elements at two locations of an array
- *
- * @param i the first index
- * @param j the second index
- * @param a the array
- */
- private static void swap(int i, int j, double[] a)
- {
- double c = a[i];
- a[i] = a[j];
- a[j] = c;
- }
-
- /**
- * Swaps two ranges of an array.
- *
- * @param i the first range start
- * @param j the second range start
- * @param n the element count
- * @param a the array
- */
- private static void vecswap(int i, int j, int n, double[] a)
- {
- for ( ; n > 0; i++, j++, n--)
- swap(i, j, a);
- }
-
- /**
- * Performs a recursive modified quicksort.
- *
- * @param array the array to sort
- * @param from the start index (inclusive)
- * @param count the number of elements to sort
- */
- private static void qsort(double[] array, int from, int count)
- {
- // Use an insertion sort on small arrays.
- if (count <= 7)
- {
- for (int i = from + 1; i < from + count; i++)
- for (int j = i;
- j > from && Double.compare(array[j - 1], array[j]) > 0;
- j--)
- {
- swap(j, j - 1, array);
- }
- return;
- }
-
- // Determine a good median element.
- int mid = count / 2;
- int lo = from;
- int hi = from + count - 1;
-
- if (count > 40)
- { // big arrays, pseudomedian of 9
- int s = count / 8;
- lo = med3(lo, lo + s, lo + 2 * s, array);
- mid = med3(mid - s, mid, mid + s, array);
- hi = med3(hi - 2 * s, hi - s, hi, array);
- }
- mid = med3(lo, mid, hi, array);
-
- int a, b, c, d;
- int comp;
-
- // Pull the median element out of the fray, and use it as a pivot.
- swap(from, mid, array);
- a = b = from;
- c = d = from + count - 1;
-
- // Repeatedly move b and c to each other, swapping elements so
- // that all elements before index b are less than the pivot, and all
- // elements after index c are greater than the pivot. a and b track
- // the elements equal to the pivot.
- while (true)
- {
- while (b <= c && (comp = Double.compare(array[b], array[from])) <= 0)
- {
- if (comp == 0)
- {
- swap(a, b, array);
- a++;
- }
- b++;
- }
- while (c >= b && (comp = Double.compare(array[c], array[from])) >= 0)
- {
- if (comp == 0)
- {
- swap(c, d, array);
- d--;
- }
- c--;
- }
- if (b > c)
- break;
- swap(b, c, array);
- b++;
- c--;
- }
-
- // Swap pivot(s) back in place, the recurse on left and right sections.
- hi = from + count;
- int span;
- span = Math.min(a - from, b - a);
- vecswap(from, b - span, span, array);
-
- span = Math.min(d - c, hi - d - 1);
- vecswap(b, hi - span, span, array);
-
- span = b - a;
- if (span > 1)
- qsort(array, from, span);
-
- span = d - c;
- if (span > 1)
- qsort(array, hi - span, span);
- }
-
- /**
- * Sort an array of Objects according to their natural ordering. The sort is
- * guaranteed to be stable, that is, equal elements will not be reordered.
- * The sort algorithm is a mergesort with the merge omitted if the last
- * element of one half comes before the first element of the other half. This
- * algorithm gives guaranteed O(n*log(n)) time, at the expense of making a
- * copy of the array.
- *
- * @param a the array to be sorted
- * @throws ClassCastException if any two elements are not mutually
- * comparable
- * @throws NullPointerException if an element is null (since
- * null.compareTo cannot work)
- * @see Comparable
- */
- public static void sort(Object[] a)
- {
- sort(a, 0, a.length, null);
- }
-
- /**
- * Sort an array of Objects according to a Comparator. The sort is
- * guaranteed to be stable, that is, equal elements will not be reordered.
- * The sort algorithm is a mergesort with the merge omitted if the last
- * element of one half comes before the first element of the other half. This
- * algorithm gives guaranteed O(n*log(n)) time, at the expense of making a
- * copy of the array.
- *
- * @param a the array to be sorted
- * @param c a Comparator to use in sorting the array; or null to indicate
- * the elements' natural order
- * @throws ClassCastException if any two elements are not mutually
- * comparable by the Comparator provided
- * @throws NullPointerException if a null element is compared with natural
- * ordering (only possible when c is null)
- */
- public static void sort(Object[] a, Comparator c)
- {
- sort(a, 0, a.length, c);
- }
-
- /**
- * Sort an array of Objects according to their natural ordering. The sort is
- * guaranteed to be stable, that is, equal elements will not be reordered.
- * The sort algorithm is a mergesort with the merge omitted if the last
- * element of one half comes before the first element of the other half. This
- * algorithm gives guaranteed O(n*log(n)) time, at the expense of making a
- * copy of the array.
- *
- * @param a the array to be sorted
- * @param fromIndex the index of the first element to be sorted
- * @param toIndex the index of the last element to be sorted plus one
- * @throws ClassCastException if any two elements are not mutually
- * comparable
- * @throws NullPointerException if an element is null (since
- * null.compareTo cannot work)
- * @throws ArrayIndexOutOfBoundsException if fromIndex and toIndex
- * are not in range.
- * @throws IllegalArgumentException if fromIndex &gt; toIndex
- */
- public static void sort(Object[] a, int fromIndex, int toIndex)
- {
- sort(a, fromIndex, toIndex, null);
- }
-
- /**
- * Sort an array of Objects according to a Comparator. The sort is
- * guaranteed to be stable, that is, equal elements will not be reordered.
- * The sort algorithm is a mergesort with the merge omitted if the last
- * element of one half comes before the first element of the other half. This
- * algorithm gives guaranteed O(n*log(n)) time, at the expense of making a
- * copy of the array.
- *
- * @param a the array to be sorted
- * @param fromIndex the index of the first element to be sorted
- * @param toIndex the index of the last element to be sorted plus one
- * @param c a Comparator to use in sorting the array; or null to indicate
- * the elements' natural order
- * @throws ClassCastException if any two elements are not mutually
- * comparable by the Comparator provided
- * @throws ArrayIndexOutOfBoundsException if fromIndex and toIndex
- * are not in range.
- * @throws IllegalArgumentException if fromIndex &gt; toIndex
- * @throws NullPointerException if a null element is compared with natural
- * ordering (only possible when c is null)
- */
- public static void sort(Object[] a, int fromIndex, int toIndex, Comparator c)
- {
- if (fromIndex > toIndex)
- throw new IllegalArgumentException("fromIndex " + fromIndex
- + " > toIndex " + toIndex);
- if (fromIndex < 0)
- throw new ArrayIndexOutOfBoundsException();
-
- // In general, the code attempts to be simple rather than fast, the
- // idea being that a good optimising JIT will be able to optimise it
- // better than I can, and if I try it will make it more confusing for
- // the JIT. First presort the array in chunks of length 6 with insertion
- // sort. A mergesort would give too much overhead for this length.
- for (int chunk = fromIndex; chunk < toIndex; chunk += 6)
- {
- int end = Math.min(chunk + 6, toIndex);
- for (int i = chunk + 1; i < end; i++)
- {
- if (Collections.compare(a[i - 1], a[i], c) > 0)
- {
- // not already sorted
- int j = i;
- Object elem = a[j];
- do
- {
- a[j] = a[j - 1];
- j--;
- }
- while (j > chunk
- && Collections.compare(a[j - 1], elem, c) > 0);
- a[j] = elem;
- }
- }
- }
-
- int len = toIndex - fromIndex;
- // If length is smaller or equal 6 we are done.
- if (len <= 6)
- return;
-
- Object[] src = a;
- Object[] dest = new Object[len];
- Object[] t = null; // t is used for swapping src and dest
-
- // The difference of the fromIndex of the src and dest array.
- int srcDestDiff = -fromIndex;
-
- // The merges are done in this loop
- for (int size = 6; size < len; size <<= 1)
- {
- for (int start = fromIndex; start < toIndex; start += size << 1)
- {
- // mid is the start of the second sublist;
- // end the start of the next sublist (or end of array).
- int mid = start + size;
- int end = Math.min(toIndex, mid + size);
-
- // The second list is empty or the elements are already in
- // order - no need to merge
- if (mid >= end
- || Collections.compare(src[mid - 1], src[mid], c) <= 0)
- {
- System.arraycopy(src, start,
- dest, start + srcDestDiff, end - start);
-
- // The two halves just need swapping - no need to merge
- }
- else if (Collections.compare(src[start], src[end - 1], c) > 0)
- {
- System.arraycopy(src, start,
- dest, end - size + srcDestDiff, size);
- System.arraycopy(src, mid,
- dest, start + srcDestDiff, end - mid);
-
- }
- else
- {
- // Declare a lot of variables to save repeating
- // calculations. Hopefully a decent JIT will put these
- // in registers and make this fast
- int p1 = start;
- int p2 = mid;
- int i = start + srcDestDiff;
-
- // The main merge loop; terminates as soon as either
- // half is ended
- while (p1 < mid && p2 < end)
- {
- dest[i++] =
- src[(Collections.compare(src[p1], src[p2], c) <= 0
- ? p1++ : p2++)];
- }
-
- // Finish up by copying the remainder of whichever half
- // wasn't finished.
- if (p1 < mid)
- System.arraycopy(src, p1, dest, i, mid - p1);
- else
- System.arraycopy(src, p2, dest, i, end - p2);
- }
- }
- // swap src and dest ready for the next merge
- t = src;
- src = dest;
- dest = t;
- fromIndex += srcDestDiff;
- toIndex += srcDestDiff;
- srcDestDiff = -srcDestDiff;
- }
-
- // make sure the result ends up back in the right place. Note
- // that src and dest may have been swapped above, so src
- // contains the sorted array.
- if (src != a)
- {
- // Note that fromIndex == 0.
- System.arraycopy(src, 0, a, srcDestDiff, toIndex);
- }
- }
-
- /**
- * Returns a list "view" of the specified array. This method is intended to
- * make it easy to use the Collections API with existing array-based APIs and
- * programs. Changes in the list or the array show up in both places. The
- * list does not support element addition or removal, but does permit
- * value modification. The returned list implements both Serializable and
- * RandomAccess.
- *
- * @param a the array to return a view of
- * @return a fixed-size list, changes to which "write through" to the array
- * @see Serializable
- * @see RandomAccess
- * @see Arrays.ArrayList
- */
- public static List asList(final Object[] a)
- {
- return new Arrays.ArrayList(a);
- }
-
- /**
- * Inner class used by {@link #asList(Object[])} to provide a list interface
- * to an array. The name, though it clashes with java.util.ArrayList, is
- * Sun's choice for Serialization purposes. Element addition and removal
- * is prohibited, but values can be modified.
- *
- * @author Eric Blake (ebb9@email.byu.edu)
- * @status updated to 1.4
- */
- private static final class ArrayList extends AbstractList
- implements Serializable, RandomAccess
- {
- // We override the necessary methods, plus others which will be much
- // more efficient with direct iteration rather than relying on iterator().
-
- /**
- * Compatible with JDK 1.4.
- */
- private static final long serialVersionUID = -2764017481108945198L;
-
- /**
- * The array we are viewing.
- * @serial the array
- */
- private final Object[] a;
-
- /**
- * Construct a list view of the array.
- * @param a the array to view
- * @throws NullPointerException if a is null
- */
- ArrayList(Object[] a)
- {
- // We have to explicitly check.
- if (a == null)
- throw new NullPointerException();
- this.a = a;
- }
-
- /**
- * Returns the object at the specified index in
- * the array.
- *
- * @param index The index to retrieve an object from.
- * @return The object at the array index specified.
- */
- public Object get(int index)
- {
- return a[index];
- }
-
- /**
- * Returns the size of the array.
- *
- * @return The size.
- */
- public int size()
- {
- return a.length;
- }
-
- /**
- * Replaces the object at the specified index
- * with the supplied element.
- *
- * @param index The index at which to place the new object.
- * @param element The new object.
- * @return The object replaced by this operation.
- */
- public Object set(int index, Object element)
- {
- Object old = a[index];
- a[index] = element;
- return old;
- }
-
- /**
- * Returns true if the array contains the
- * supplied object.
- *
- * @param o The object to look for.
- * @return True if the object was found.
- */
- public boolean contains(Object o)
- {
- return lastIndexOf(o) >= 0;
- }
-
- /**
- * Returns the first index at which the
- * object, o, occurs in the array.
- *
- * @param o The object to search for.
- * @return The first relevant index.
- */
- public int indexOf(Object o)
- {
- int size = a.length;
- for (int i = 0; i < size; i++)
- if (ArrayList.equals(o, a[i]))
- return i;
- return -1;
- }
-
- /**
- * Returns the last index at which the
- * object, o, occurs in the array.
- *
- * @param o The object to search for.
- * @return The last relevant index.
- */
- public int lastIndexOf(Object o)
- {
- int i = a.length;
- while (--i >= 0)
- if (ArrayList.equals(o, a[i]))
- return i;
- return -1;
- }
-
- /**
- * Transforms the list into an array of
- * objects, by simplying cloning the array
- * wrapped by this list.
- *
- * @return A clone of the internal array.
- */
- public Object[] toArray()
- {
- return (Object[]) a.clone();
- }
-
- /**
- * Copies the objects from this list into
- * the supplied array. The supplied array
- * is shrunk or enlarged to the size of the
- * internal array, and filled with its objects.
- *
- * @param array The array to fill with the objects in this list.
- * @return The array containing the objects in this list,
- * which may or may not be == to array.
- */
- public Object[] toArray(Object[] array)
- {
- int size = a.length;
- if (array.length < size)
- array = (Object[])
- Array.newInstance(array.getClass().getComponentType(), size);
- else if (array.length > size)
- array[size] = null;
-
- System.arraycopy(a, 0, array, 0, size);
- return array;
- }
- }
-}