diff options
Diffstat (limited to 'libjava/java/lang/Math.java')
-rw-r--r-- | libjava/java/lang/Math.java | 176 |
1 files changed, 176 insertions, 0 deletions
diff --git a/libjava/java/lang/Math.java b/libjava/java/lang/Math.java index 08081e2..6f68480 100644 --- a/libjava/java/lang/Math.java +++ b/libjava/java/lang/Math.java @@ -647,4 +647,180 @@ public final class Math { return (rads * 180) / PI; } + + /** + * <p> + * Returns the base 10 logarithm of the supplied value. The returned + * result is within 1 ulp of the exact result, and the results are + * semi-monotonic. + * </p> + * <p> + * Arguments of either <code>NaN</code> or less than zero return + * <code>NaN</code>. An argument of positive infinity returns positive + * infinity. Negative infinity is returned if either positive or negative + * zero is supplied. Where the argument is the result of + * <code>10<sup>n</sup</code>, then <code>n</code> is returned. + * </p> + * + * @param a the numeric argument. + * @return the base 10 logarithm of <code>a</code>. + * @since 1.5 + */ + public static native double log10(double a); + + /** + * <p> + * Returns the sign of the argument as follows: + * </p> + * <ul> + * <li>If <code>a</code> is greater than zero, the result is 1.0.</li> + * <li>If <code>a</code> is less than zero, the result is -1.0.</li> + * <li>If <code>a</code> is <code>NaN</code>, the result is <code>NaN</code>. + * <li>If <code>a</code> is positive or negative zero, the result is the + * same.</li> + * </ul> + * + * @param a the numeric argument. + * @return the sign of the argument. + * @since 1.5. + */ + public static double signum(double a) + { + if (Double.isNaN(a)) + return Double.NaN; + if (a > 0) + return 1.0; + if (a < 0) + return -1.0; + return a; + } + + /** + * <p> + * Returns the sign of the argument as follows: + * </p> + * <ul> + * <li>If <code>a</code> is greater than zero, the result is 1.0f.</li> + * <li>If <code>a</code> is less than zero, the result is -1.0f.</li> + * <li>If <code>a</code> is <code>NaN</code>, the result is <code>NaN</code>. + * <li>If <code>a</code> is positive or negative zero, the result is the + * same.</li> + * </ul> + * + * @param a the numeric argument. + * @return the sign of the argument. + * @since 1.5. + */ + public static float signum(float a) + { + if (Float.isNaN(a)) + return Float.NaN; + if (a > 0) + return 1.0f; + if (a < 0) + return -1.0f; + return a; + } + + /** + * Return the ulp for the given double argument. The ulp is the + * difference between the argument and the next larger double. Note + * that the sign of the double argument is ignored, that is, + * ulp(x) == ulp(-x). If the argument is a NaN, then NaN is returned. + * If the argument is an infinity, then +Inf is returned. If the + * argument is zero (either positive or negative), then + * {@link Double#MIN_VALUE} is returned. + * @param d the double whose ulp should be returned + * @return the difference between the argument and the next larger double + * @since 1.5 + */ + public static double ulp(double d) + { + if (Double.isNaN(d)) + return d; + if (Double.isInfinite(d)) + return Double.POSITIVE_INFINITY; + // This handles both +0.0 and -0.0. + if (d == 0.0) + return Double.MIN_VALUE; + long bits = Double.doubleToLongBits(d); + final int mantissaBits = 52; + final int exponentBits = 11; + final long mantMask = (1L << mantissaBits) - 1; + long mantissa = bits & mantMask; + final long expMask = (1L << exponentBits) - 1; + long exponent = (bits >>> mantissaBits) & expMask; + + // Denormal number, so the answer is easy. + if (exponent == 0) + { + long result = (exponent << mantissaBits) | 1L; + return Double.longBitsToDouble(result); + } + + // Conceptually we want to have '1' as the mantissa. Then we would + // shift the mantissa over to make a normal number. If this underflows + // the exponent, we will make a denormal result. + long newExponent = exponent - mantissaBits; + long newMantissa; + if (newExponent > 0) + newMantissa = 0; + else + { + newMantissa = 1L << -(newExponent - 1); + newExponent = 0; + } + return Double.longBitsToDouble((newExponent << mantissaBits) | newMantissa); + } + + /** + * Return the ulp for the given float argument. The ulp is the + * difference between the argument and the next larger float. Note + * that the sign of the float argument is ignored, that is, + * ulp(x) == ulp(-x). If the argument is a NaN, then NaN is returned. + * If the argument is an infinity, then +Inf is returned. If the + * argument is zero (either positive or negative), then + * {@link Float#MIN_VALUE} is returned. + * @param f the float whose ulp should be returned + * @return the difference between the argument and the next larger float + * @since 1.5 + */ + public static float ulp(float f) + { + if (Float.isNaN(f)) + return f; + if (Float.isInfinite(f)) + return Float.POSITIVE_INFINITY; + // This handles both +0.0 and -0.0. + if (f == 0.0) + return Float.MIN_VALUE; + int bits = Float.floatToIntBits(f); + final int mantissaBits = 23; + final int exponentBits = 8; + final int mantMask = (1 << mantissaBits) - 1; + int mantissa = bits & mantMask; + final int expMask = (1 << exponentBits) - 1; + int exponent = (bits >>> mantissaBits) & expMask; + + // Denormal number, so the answer is easy. + if (exponent == 0) + { + int result = (exponent << mantissaBits) | 1; + return Float.intBitsToFloat(result); + } + + // Conceptually we want to have '1' as the mantissa. Then we would + // shift the mantissa over to make a normal number. If this underflows + // the exponent, we will make a denormal result. + int newExponent = exponent - mantissaBits; + int newMantissa; + if (newExponent > 0) + newMantissa = 0; + else + { + newMantissa = 1 << -(newExponent - 1); + newExponent = 0; + } + return Float.intBitsToFloat((newExponent << mantissaBits) | newMantissa); + } } |