aboutsummaryrefslogtreecommitdiff
path: root/libgo/go/strconv
diff options
context:
space:
mode:
Diffstat (limited to 'libgo/go/strconv')
-rw-r--r--libgo/go/strconv/atof.go2
-rw-r--r--libgo/go/strconv/atof_test.go3
-rw-r--r--libgo/go/strconv/atoi.go13
-rw-r--r--libgo/go/strconv/atoi_test.go10
-rw-r--r--libgo/go/strconv/bytealg.go15
-rw-r--r--libgo/go/strconv/bytealg_bootstrap.go18
-rw-r--r--libgo/go/strconv/eisel_lemire.go16
-rw-r--r--libgo/go/strconv/extfloat.go517
-rw-r--r--libgo/go/strconv/ftoa.go23
-rw-r--r--libgo/go/strconv/ftoa_test.go48
-rw-r--r--libgo/go/strconv/ftoaryu.go567
-rw-r--r--libgo/go/strconv/ftoaryu_test.go31
-rw-r--r--libgo/go/strconv/internal_test.go8
-rw-r--r--libgo/go/strconv/makeisprint.go5
-rw-r--r--libgo/go/strconv/quote.go171
-rw-r--r--libgo/go/strconv/quote_test.go63
16 files changed, 879 insertions, 631 deletions
diff --git a/libgo/go/strconv/atof.go b/libgo/go/strconv/atof.go
index 1c50057..6ecd4f1 100644
--- a/libgo/go/strconv/atof.go
+++ b/libgo/go/strconv/atof.go
@@ -695,7 +695,7 @@ func atof64(s string) (f float64, n int, err error) {
// as their respective special floating point values. It ignores case when matching.
func ParseFloat(s string, bitSize int) (float64, error) {
f, n, err := parseFloatPrefix(s, bitSize)
- if err == nil && n != len(s) {
+ if n != len(s) && (err == nil || err.(*NumError).Err != ErrSyntax) {
return 0, syntaxError(fnParseFloat, s)
}
return f, err
diff --git a/libgo/go/strconv/atof_test.go b/libgo/go/strconv/atof_test.go
index 3c058b9..aa587a4 100644
--- a/libgo/go/strconv/atof_test.go
+++ b/libgo/go/strconv/atof_test.go
@@ -342,6 +342,9 @@ var atoftests = []atofTest{
{"0x12.345p-_12", "0", ErrSyntax},
{"0x12.345p+1__2", "0", ErrSyntax},
{"0x12.345p+12_", "0", ErrSyntax},
+
+ {"1e100x", "0", ErrSyntax},
+ {"1e1000x", "0", ErrSyntax},
}
var atof32tests = []atofTest{
diff --git a/libgo/go/strconv/atoi.go b/libgo/go/strconv/atoi.go
index f6c4efa..631b487 100644
--- a/libgo/go/strconv/atoi.go
+++ b/libgo/go/strconv/atoi.go
@@ -57,6 +57,8 @@ const IntSize = intSize
const maxUint64 = 1<<64 - 1
// ParseUint is like ParseInt but for unsigned numbers.
+//
+// A sign prefix is not permitted.
func ParseUint(s string, base int, bitSize int) (uint64, error) {
const fnParseUint = "ParseUint"
@@ -143,7 +145,7 @@ func ParseUint(s string, base int, bitSize int) (uint64, error) {
n1 := n + uint64(d)
if n1 < n || n1 > maxVal {
- // n+v overflows
+ // n+d overflows
return maxVal, rangeError(fnParseUint, s0)
}
n = n1
@@ -159,10 +161,13 @@ func ParseUint(s string, base int, bitSize int) (uint64, error) {
// ParseInt interprets a string s in the given base (0, 2 to 36) and
// bit size (0 to 64) and returns the corresponding value i.
//
+// The string may begin with a leading sign: "+" or "-".
+//
// If the base argument is 0, the true base is implied by the string's
-// prefix: 2 for "0b", 8 for "0" or "0o", 16 for "0x", and 10 otherwise.
-// Also, for argument base 0 only, underscore characters are permitted
-// as defined by the Go syntax for integer literals.
+// prefix following the sign (if present): 2 for "0b", 8 for "0" or "0o",
+// 16 for "0x", and 10 otherwise. Also, for argument base 0 only,
+// underscore characters are permitted as defined by the Go syntax for
+// integer literals.
//
// The bitSize argument specifies the integer type
// that the result must fit into. Bit sizes 0, 8, 16, 32, and 64
diff --git a/libgo/go/strconv/atoi_test.go b/libgo/go/strconv/atoi_test.go
index 178fb01..867fa66 100644
--- a/libgo/go/strconv/atoi_test.go
+++ b/libgo/go/strconv/atoi_test.go
@@ -33,6 +33,9 @@ var parseUint64Tests = []parseUint64Test{
{"_12345", 0, ErrSyntax},
{"1__2345", 0, ErrSyntax},
{"12345_", 0, ErrSyntax},
+ {"-0", 0, ErrSyntax},
+ {"-1", 0, ErrSyntax},
+ {"+1", 0, ErrSyntax},
}
type parseUint64BaseTest struct {
@@ -140,8 +143,10 @@ var parseInt64Tests = []parseInt64Test{
{"", 0, ErrSyntax},
{"0", 0, nil},
{"-0", 0, nil},
+ {"+0", 0, nil},
{"1", 1, nil},
{"-1", -1, nil},
+ {"+1", 1, nil},
{"12345", 12345, nil},
{"-12345", -12345, nil},
{"012345", 12345, nil},
@@ -236,6 +241,11 @@ var parseInt64BaseTests = []parseInt64BaseTest{
{"0__12345", 0, 0, ErrSyntax},
{"01234__5", 0, 0, ErrSyntax},
{"012345_", 0, 0, ErrSyntax},
+
+ {"+0xf", 0, 0xf, nil},
+ {"-0xf", 0, -0xf, nil},
+ {"0x+f", 0, 0, ErrSyntax},
+ {"0x-f", 0, 0, ErrSyntax},
}
type parseUint32Test struct {
diff --git a/libgo/go/strconv/bytealg.go b/libgo/go/strconv/bytealg.go
new file mode 100644
index 0000000..a2bb12c
--- /dev/null
+++ b/libgo/go/strconv/bytealg.go
@@ -0,0 +1,15 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build !compiler_bootstrap
+// +build !compiler_bootstrap
+
+package strconv
+
+import "internal/bytealg"
+
+// index returns the index of the first instance of c in s, or -1 if missing.
+func index(s string, c byte) int {
+ return bytealg.IndexByteString(s, c)
+}
diff --git a/libgo/go/strconv/bytealg_bootstrap.go b/libgo/go/strconv/bytealg_bootstrap.go
new file mode 100644
index 0000000..0ed79f4
--- /dev/null
+++ b/libgo/go/strconv/bytealg_bootstrap.go
@@ -0,0 +1,18 @@
+// Copyright 2020 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build compiler_bootstrap
+// +build compiler_bootstrap
+
+package strconv
+
+// index returns the index of the first instance of c in s, or -1 if missing.
+func index(s string, c byte) int {
+ for i := 0; i < len(s); i++ {
+ if s[i] == c {
+ return i
+ }
+ }
+ return -1
+}
diff --git a/libgo/go/strconv/eisel_lemire.go b/libgo/go/strconv/eisel_lemire.go
index 6c7f852..fecd1b9 100644
--- a/libgo/go/strconv/eisel_lemire.go
+++ b/libgo/go/strconv/eisel_lemire.go
@@ -29,7 +29,7 @@ func eiselLemire64(man uint64, exp10 int, neg bool) (f float64, ok bool) {
// Exp10 Range.
if man == 0 {
if neg {
- f = math.Float64frombits(0x80000000_00000000) // Negative zero.
+ f = math.Float64frombits(0x8000000000000000) // Negative zero.
}
return f, true
}
@@ -39,7 +39,7 @@ func eiselLemire64(man uint64, exp10 int, neg bool) (f float64, ok bool) {
// Normalization.
clz := bits.LeadingZeros64(man)
- man <<= clz
+ man <<= uint(clz)
const float64ExponentBias = 1023
retExp2 := uint64(217706*exp10>>16+64+float64ExponentBias) - uint64(clz)
@@ -84,9 +84,9 @@ func eiselLemire64(man uint64, exp10 int, neg bool) (f float64, ok bool) {
if retExp2-1 >= 0x7FF-1 {
return 0, false
}
- retBits := retExp2<<52 | retMantissa&0x000FFFFF_FFFFFFFF
+ retBits := retExp2<<52 | retMantissa&0x000FFFFFFFFFFFFF
if neg {
- retBits |= 0x80000000_00000000
+ retBits |= 0x8000000000000000
}
return math.Float64frombits(retBits), true
}
@@ -114,7 +114,7 @@ func eiselLemire32(man uint64, exp10 int, neg bool) (f float32, ok bool) {
// Normalization.
clz := bits.LeadingZeros64(man)
- man <<= clz
+ man <<= uint(clz)
const float32ExponentBias = 127
retExp2 := uint64(217706*exp10>>16+64+float32ExponentBias) - uint64(clz)
@@ -122,13 +122,13 @@ func eiselLemire32(man uint64, exp10 int, neg bool) (f float32, ok bool) {
xHi, xLo := bits.Mul64(man, detailedPowersOfTen[exp10-detailedPowersOfTenMinExp10][1])
// Wider Approximation.
- if xHi&0x3F_FFFFFFFF == 0x3F_FFFFFFFF && xLo+man < man {
+ if xHi&0x3FFFFFFFFF == 0x3FFFFFFFFF && xLo+man < man {
yHi, yLo := bits.Mul64(man, detailedPowersOfTen[exp10-detailedPowersOfTenMinExp10][0])
mergedHi, mergedLo := xHi, xLo+yHi
if mergedLo < xLo {
mergedHi++
}
- if mergedHi&0x3F_FFFFFFFF == 0x3F_FFFFFFFF && mergedLo+1 == 0 && yLo+man < man {
+ if mergedHi&0x3FFFFFFFFF == 0x3FFFFFFFFF && mergedLo+1 == 0 && yLo+man < man {
return 0, false
}
xHi, xLo = mergedHi, mergedLo
@@ -140,7 +140,7 @@ func eiselLemire32(man uint64, exp10 int, neg bool) (f float32, ok bool) {
retExp2 -= 1 ^ msb
// Half-way Ambiguity.
- if xLo == 0 && xHi&0x3F_FFFFFFFF == 0 && retMantissa&3 == 1 {
+ if xLo == 0 && xHi&0x3FFFFFFFFF == 0 && retMantissa&3 == 1 {
return 0, false
}
diff --git a/libgo/go/strconv/extfloat.go b/libgo/go/strconv/extfloat.go
deleted file mode 100644
index e7bfe51..0000000
--- a/libgo/go/strconv/extfloat.go
+++ /dev/null
@@ -1,517 +0,0 @@
-// Copyright 2011 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package strconv
-
-import (
- "math/bits"
-)
-
-// An extFloat represents an extended floating-point number, with more
-// precision than a float64. It does not try to save bits: the
-// number represented by the structure is mant*(2^exp), with a negative
-// sign if neg is true.
-type extFloat struct {
- mant uint64
- exp int
- neg bool
-}
-
-// Powers of ten taken from double-conversion library.
-// https://code.google.com/p/double-conversion/
-const (
- firstPowerOfTen = -348
- stepPowerOfTen = 8
-)
-
-var smallPowersOfTen = [...]extFloat{
- {1 << 63, -63, false}, // 1
- {0xa << 60, -60, false}, // 1e1
- {0x64 << 57, -57, false}, // 1e2
- {0x3e8 << 54, -54, false}, // 1e3
- {0x2710 << 50, -50, false}, // 1e4
- {0x186a0 << 47, -47, false}, // 1e5
- {0xf4240 << 44, -44, false}, // 1e6
- {0x989680 << 40, -40, false}, // 1e7
-}
-
-var powersOfTen = [...]extFloat{
- {0xfa8fd5a0081c0288, -1220, false}, // 10^-348
- {0xbaaee17fa23ebf76, -1193, false}, // 10^-340
- {0x8b16fb203055ac76, -1166, false}, // 10^-332
- {0xcf42894a5dce35ea, -1140, false}, // 10^-324
- {0x9a6bb0aa55653b2d, -1113, false}, // 10^-316
- {0xe61acf033d1a45df, -1087, false}, // 10^-308
- {0xab70fe17c79ac6ca, -1060, false}, // 10^-300
- {0xff77b1fcbebcdc4f, -1034, false}, // 10^-292
- {0xbe5691ef416bd60c, -1007, false}, // 10^-284
- {0x8dd01fad907ffc3c, -980, false}, // 10^-276
- {0xd3515c2831559a83, -954, false}, // 10^-268
- {0x9d71ac8fada6c9b5, -927, false}, // 10^-260
- {0xea9c227723ee8bcb, -901, false}, // 10^-252
- {0xaecc49914078536d, -874, false}, // 10^-244
- {0x823c12795db6ce57, -847, false}, // 10^-236
- {0xc21094364dfb5637, -821, false}, // 10^-228
- {0x9096ea6f3848984f, -794, false}, // 10^-220
- {0xd77485cb25823ac7, -768, false}, // 10^-212
- {0xa086cfcd97bf97f4, -741, false}, // 10^-204
- {0xef340a98172aace5, -715, false}, // 10^-196
- {0xb23867fb2a35b28e, -688, false}, // 10^-188
- {0x84c8d4dfd2c63f3b, -661, false}, // 10^-180
- {0xc5dd44271ad3cdba, -635, false}, // 10^-172
- {0x936b9fcebb25c996, -608, false}, // 10^-164
- {0xdbac6c247d62a584, -582, false}, // 10^-156
- {0xa3ab66580d5fdaf6, -555, false}, // 10^-148
- {0xf3e2f893dec3f126, -529, false}, // 10^-140
- {0xb5b5ada8aaff80b8, -502, false}, // 10^-132
- {0x87625f056c7c4a8b, -475, false}, // 10^-124
- {0xc9bcff6034c13053, -449, false}, // 10^-116
- {0x964e858c91ba2655, -422, false}, // 10^-108
- {0xdff9772470297ebd, -396, false}, // 10^-100
- {0xa6dfbd9fb8e5b88f, -369, false}, // 10^-92
- {0xf8a95fcf88747d94, -343, false}, // 10^-84
- {0xb94470938fa89bcf, -316, false}, // 10^-76
- {0x8a08f0f8bf0f156b, -289, false}, // 10^-68
- {0xcdb02555653131b6, -263, false}, // 10^-60
- {0x993fe2c6d07b7fac, -236, false}, // 10^-52
- {0xe45c10c42a2b3b06, -210, false}, // 10^-44
- {0xaa242499697392d3, -183, false}, // 10^-36
- {0xfd87b5f28300ca0e, -157, false}, // 10^-28
- {0xbce5086492111aeb, -130, false}, // 10^-20
- {0x8cbccc096f5088cc, -103, false}, // 10^-12
- {0xd1b71758e219652c, -77, false}, // 10^-4
- {0x9c40000000000000, -50, false}, // 10^4
- {0xe8d4a51000000000, -24, false}, // 10^12
- {0xad78ebc5ac620000, 3, false}, // 10^20
- {0x813f3978f8940984, 30, false}, // 10^28
- {0xc097ce7bc90715b3, 56, false}, // 10^36
- {0x8f7e32ce7bea5c70, 83, false}, // 10^44
- {0xd5d238a4abe98068, 109, false}, // 10^52
- {0x9f4f2726179a2245, 136, false}, // 10^60
- {0xed63a231d4c4fb27, 162, false}, // 10^68
- {0xb0de65388cc8ada8, 189, false}, // 10^76
- {0x83c7088e1aab65db, 216, false}, // 10^84
- {0xc45d1df942711d9a, 242, false}, // 10^92
- {0x924d692ca61be758, 269, false}, // 10^100
- {0xda01ee641a708dea, 295, false}, // 10^108
- {0xa26da3999aef774a, 322, false}, // 10^116
- {0xf209787bb47d6b85, 348, false}, // 10^124
- {0xb454e4a179dd1877, 375, false}, // 10^132
- {0x865b86925b9bc5c2, 402, false}, // 10^140
- {0xc83553c5c8965d3d, 428, false}, // 10^148
- {0x952ab45cfa97a0b3, 455, false}, // 10^156
- {0xde469fbd99a05fe3, 481, false}, // 10^164
- {0xa59bc234db398c25, 508, false}, // 10^172
- {0xf6c69a72a3989f5c, 534, false}, // 10^180
- {0xb7dcbf5354e9bece, 561, false}, // 10^188
- {0x88fcf317f22241e2, 588, false}, // 10^196
- {0xcc20ce9bd35c78a5, 614, false}, // 10^204
- {0x98165af37b2153df, 641, false}, // 10^212
- {0xe2a0b5dc971f303a, 667, false}, // 10^220
- {0xa8d9d1535ce3b396, 694, false}, // 10^228
- {0xfb9b7cd9a4a7443c, 720, false}, // 10^236
- {0xbb764c4ca7a44410, 747, false}, // 10^244
- {0x8bab8eefb6409c1a, 774, false}, // 10^252
- {0xd01fef10a657842c, 800, false}, // 10^260
- {0x9b10a4e5e9913129, 827, false}, // 10^268
- {0xe7109bfba19c0c9d, 853, false}, // 10^276
- {0xac2820d9623bf429, 880, false}, // 10^284
- {0x80444b5e7aa7cf85, 907, false}, // 10^292
- {0xbf21e44003acdd2d, 933, false}, // 10^300
- {0x8e679c2f5e44ff8f, 960, false}, // 10^308
- {0xd433179d9c8cb841, 986, false}, // 10^316
- {0x9e19db92b4e31ba9, 1013, false}, // 10^324
- {0xeb96bf6ebadf77d9, 1039, false}, // 10^332
- {0xaf87023b9bf0ee6b, 1066, false}, // 10^340
-}
-
-// AssignComputeBounds sets f to the floating point value
-// defined by mant, exp and precision given by flt. It returns
-// lower, upper such that any number in the closed interval
-// [lower, upper] is converted back to the same floating point number.
-func (f *extFloat) AssignComputeBounds(mant uint64, exp int, neg bool, flt *floatInfo) (lower, upper extFloat) {
- f.mant = mant
- f.exp = exp - int(flt.mantbits)
- f.neg = neg
- if f.exp <= 0 && mant == (mant>>uint(-f.exp))<<uint(-f.exp) {
- // An exact integer
- f.mant >>= uint(-f.exp)
- f.exp = 0
- return *f, *f
- }
- expBiased := exp - flt.bias
-
- upper = extFloat{mant: 2*f.mant + 1, exp: f.exp - 1, neg: f.neg}
- if mant != 1<<flt.mantbits || expBiased == 1 {
- lower = extFloat{mant: 2*f.mant - 1, exp: f.exp - 1, neg: f.neg}
- } else {
- lower = extFloat{mant: 4*f.mant - 1, exp: f.exp - 2, neg: f.neg}
- }
- return
-}
-
-// Normalize normalizes f so that the highest bit of the mantissa is
-// set, and returns the number by which the mantissa was left-shifted.
-func (f *extFloat) Normalize() uint {
- // bits.LeadingZeros64 would return 64
- if f.mant == 0 {
- return 0
- }
- shift := bits.LeadingZeros64(f.mant)
- f.mant <<= uint(shift)
- f.exp -= shift
- return uint(shift)
-}
-
-// Multiply sets f to the product f*g: the result is correctly rounded,
-// but not normalized.
-func (f *extFloat) Multiply(g extFloat) {
- hi, lo := bits.Mul64(f.mant, g.mant)
- // Round up.
- f.mant = hi + (lo >> 63)
- f.exp = f.exp + g.exp + 64
-}
-
-var uint64pow10 = [...]uint64{
- 1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
- 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
-}
-
-// Frexp10 is an analogue of math.Frexp for decimal powers. It scales
-// f by an approximate power of ten 10^-exp, and returns exp10, so
-// that f*10^exp10 has the same value as the old f, up to an ulp,
-// as well as the index of 10^-exp in the powersOfTen table.
-func (f *extFloat) frexp10() (exp10, index int) {
- // The constants expMin and expMax constrain the final value of the
- // binary exponent of f. We want a small integral part in the result
- // because finding digits of an integer requires divisions, whereas
- // digits of the fractional part can be found by repeatedly multiplying
- // by 10.
- const expMin = -60
- const expMax = -32
- // Find power of ten such that x * 10^n has a binary exponent
- // between expMin and expMax.
- approxExp10 := ((expMin+expMax)/2 - f.exp) * 28 / 93 // log(10)/log(2) is close to 93/28.
- i := (approxExp10 - firstPowerOfTen) / stepPowerOfTen
-Loop:
- for {
- exp := f.exp + powersOfTen[i].exp + 64
- switch {
- case exp < expMin:
- i++
- case exp > expMax:
- i--
- default:
- break Loop
- }
- }
- // Apply the desired decimal shift on f. It will have exponent
- // in the desired range. This is multiplication by 10^-exp10.
- f.Multiply(powersOfTen[i])
-
- return -(firstPowerOfTen + i*stepPowerOfTen), i
-}
-
-// frexp10Many applies a common shift by a power of ten to a, b, c.
-func frexp10Many(a, b, c *extFloat) (exp10 int) {
- exp10, i := c.frexp10()
- a.Multiply(powersOfTen[i])
- b.Multiply(powersOfTen[i])
- return
-}
-
-// FixedDecimal stores in d the first n significant digits
-// of the decimal representation of f. It returns false
-// if it cannot be sure of the answer.
-func (f *extFloat) FixedDecimal(d *decimalSlice, n int) bool {
- if f.mant == 0 {
- d.nd = 0
- d.dp = 0
- d.neg = f.neg
- return true
- }
- if n == 0 {
- panic("strconv: internal error: extFloat.FixedDecimal called with n == 0")
- }
- // Multiply by an appropriate power of ten to have a reasonable
- // number to process.
- f.Normalize()
- exp10, _ := f.frexp10()
-
- shift := uint(-f.exp)
- integer := uint32(f.mant >> shift)
- fraction := f.mant - (uint64(integer) << shift)
- ε := uint64(1) // ε is the uncertainty we have on the mantissa of f.
-
- // Write exactly n digits to d.
- needed := n // how many digits are left to write.
- integerDigits := 0 // the number of decimal digits of integer.
- pow10 := uint64(1) // the power of ten by which f was scaled.
- for i, pow := 0, uint64(1); i < 20; i++ {
- if pow > uint64(integer) {
- integerDigits = i
- break
- }
- pow *= 10
- }
- rest := integer
- if integerDigits > needed {
- // the integral part is already large, trim the last digits.
- pow10 = uint64pow10[integerDigits-needed]
- integer /= uint32(pow10)
- rest -= integer * uint32(pow10)
- } else {
- rest = 0
- }
-
- // Write the digits of integer: the digits of rest are omitted.
- var buf [32]byte
- pos := len(buf)
- for v := integer; v > 0; {
- v1 := v / 10
- v -= 10 * v1
- pos--
- buf[pos] = byte(v + '0')
- v = v1
- }
- for i := pos; i < len(buf); i++ {
- d.d[i-pos] = buf[i]
- }
- nd := len(buf) - pos
- d.nd = nd
- d.dp = integerDigits + exp10
- needed -= nd
-
- if needed > 0 {
- if rest != 0 || pow10 != 1 {
- panic("strconv: internal error, rest != 0 but needed > 0")
- }
- // Emit digits for the fractional part. Each time, 10*fraction
- // fits in a uint64 without overflow.
- for needed > 0 {
- fraction *= 10
- ε *= 10 // the uncertainty scales as we multiply by ten.
- if 2*ε > 1<<shift {
- // the error is so large it could modify which digit to write, abort.
- return false
- }
- digit := fraction >> shift
- d.d[nd] = byte(digit + '0')
- fraction -= digit << shift
- nd++
- needed--
- }
- d.nd = nd
- }
-
- // We have written a truncation of f (a numerator / 10^d.dp). The remaining part
- // can be interpreted as a small number (< 1) to be added to the last digit of the
- // numerator.
- //
- // If rest > 0, the amount is:
- // (rest<<shift | fraction) / (pow10 << shift)
- // fraction being known with a ±ε uncertainty.
- // The fact that n > 0 guarantees that pow10 << shift does not overflow a uint64.
- //
- // If rest = 0, pow10 == 1 and the amount is
- // fraction / (1 << shift)
- // fraction being known with a ±ε uncertainty.
- //
- // We pass this information to the rounding routine for adjustment.
-
- ok := adjustLastDigitFixed(d, uint64(rest)<<shift|fraction, pow10, shift, ε)
- if !ok {
- return false
- }
- // Trim trailing zeros.
- for i := d.nd - 1; i >= 0; i-- {
- if d.d[i] != '0' {
- d.nd = i + 1
- break
- }
- }
- return true
-}
-
-// adjustLastDigitFixed assumes d contains the representation of the integral part
-// of some number, whose fractional part is num / (den << shift). The numerator
-// num is only known up to an uncertainty of size ε, assumed to be less than
-// (den << shift)/2.
-//
-// It will increase the last digit by one to account for correct rounding, typically
-// when the fractional part is greater than 1/2, and will return false if ε is such
-// that no correct answer can be given.
-func adjustLastDigitFixed(d *decimalSlice, num, den uint64, shift uint, ε uint64) bool {
- if num > den<<shift {
- panic("strconv: num > den<<shift in adjustLastDigitFixed")
- }
- if 2*ε > den<<shift {
- panic("strconv: ε > (den<<shift)/2")
- }
- if 2*(num+ε) < den<<shift {
- return true
- }
- if 2*(num-ε) > den<<shift {
- // increment d by 1.
- i := d.nd - 1
- for ; i >= 0; i-- {
- if d.d[i] == '9' {
- d.nd--
- } else {
- break
- }
- }
- if i < 0 {
- d.d[0] = '1'
- d.nd = 1
- d.dp++
- } else {
- d.d[i]++
- }
- return true
- }
- return false
-}
-
-// ShortestDecimal stores in d the shortest decimal representation of f
-// which belongs to the open interval (lower, upper), where f is supposed
-// to lie. It returns false whenever the result is unsure. The implementation
-// uses the Grisu3 algorithm.
-func (f *extFloat) ShortestDecimal(d *decimalSlice, lower, upper *extFloat) bool {
- if f.mant == 0 {
- d.nd = 0
- d.dp = 0
- d.neg = f.neg
- return true
- }
- if f.exp == 0 && *lower == *f && *lower == *upper {
- // an exact integer.
- var buf [24]byte
- n := len(buf) - 1
- for v := f.mant; v > 0; {
- v1 := v / 10
- v -= 10 * v1
- buf[n] = byte(v + '0')
- n--
- v = v1
- }
- nd := len(buf) - n - 1
- for i := 0; i < nd; i++ {
- d.d[i] = buf[n+1+i]
- }
- d.nd, d.dp = nd, nd
- for d.nd > 0 && d.d[d.nd-1] == '0' {
- d.nd--
- }
- if d.nd == 0 {
- d.dp = 0
- }
- d.neg = f.neg
- return true
- }
- upper.Normalize()
- // Uniformize exponents.
- if f.exp > upper.exp {
- f.mant <<= uint(f.exp - upper.exp)
- f.exp = upper.exp
- }
- if lower.exp > upper.exp {
- lower.mant <<= uint(lower.exp - upper.exp)
- lower.exp = upper.exp
- }
-
- exp10 := frexp10Many(lower, f, upper)
- // Take a safety margin due to rounding in frexp10Many, but we lose precision.
- upper.mant++
- lower.mant--
-
- // The shortest representation of f is either rounded up or down, but
- // in any case, it is a truncation of upper.
- shift := uint(-upper.exp)
- integer := uint32(upper.mant >> shift)
- fraction := upper.mant - (uint64(integer) << shift)
-
- // How far we can go down from upper until the result is wrong.
- allowance := upper.mant - lower.mant
- // How far we should go to get a very precise result.
- targetDiff := upper.mant - f.mant
-
- // Count integral digits: there are at most 10.
- var integerDigits int
- for i, pow := 0, uint64(1); i < 20; i++ {
- if pow > uint64(integer) {
- integerDigits = i
- break
- }
- pow *= 10
- }
- for i := 0; i < integerDigits; i++ {
- pow := uint64pow10[integerDigits-i-1]
- digit := integer / uint32(pow)
- d.d[i] = byte(digit + '0')
- integer -= digit * uint32(pow)
- // evaluate whether we should stop.
- if currentDiff := uint64(integer)<<shift + fraction; currentDiff < allowance {
- d.nd = i + 1
- d.dp = integerDigits + exp10
- d.neg = f.neg
- // Sometimes allowance is so large the last digit might need to be
- // decremented to get closer to f.
- return adjustLastDigit(d, currentDiff, targetDiff, allowance, pow<<shift, 2)
- }
- }
- d.nd = integerDigits
- d.dp = d.nd + exp10
- d.neg = f.neg
-
- // Compute digits of the fractional part. At each step fraction does not
- // overflow. The choice of minExp implies that fraction is less than 2^60.
- var digit int
- multiplier := uint64(1)
- for {
- fraction *= 10
- multiplier *= 10
- digit = int(fraction >> shift)
- d.d[d.nd] = byte(digit + '0')
- d.nd++
- fraction -= uint64(digit) << shift
- if fraction < allowance*multiplier {
- // We are in the admissible range. Note that if allowance is about to
- // overflow, that is, allowance > 2^64/10, the condition is automatically
- // true due to the limited range of fraction.
- return adjustLastDigit(d,
- fraction, targetDiff*multiplier, allowance*multiplier,
- 1<<shift, multiplier*2)
- }
- }
-}
-
-// adjustLastDigit modifies d = x-currentDiff*ε, to get closest to
-// d = x-targetDiff*ε, without becoming smaller than x-maxDiff*ε.
-// It assumes that a decimal digit is worth ulpDecimal*ε, and that
-// all data is known with an error estimate of ulpBinary*ε.
-func adjustLastDigit(d *decimalSlice, currentDiff, targetDiff, maxDiff, ulpDecimal, ulpBinary uint64) bool {
- if ulpDecimal < 2*ulpBinary {
- // Approximation is too wide.
- return false
- }
- for currentDiff+ulpDecimal/2+ulpBinary < targetDiff {
- d.d[d.nd-1]--
- currentDiff += ulpDecimal
- }
- if currentDiff+ulpDecimal <= targetDiff+ulpDecimal/2+ulpBinary {
- // we have two choices, and don't know what to do.
- return false
- }
- if currentDiff < ulpBinary || currentDiff > maxDiff-ulpBinary {
- // we went too far
- return false
- }
- if d.nd == 1 && d.d[0] == '0' {
- // the number has actually reached zero.
- d.nd = 0
- d.dp = 0
- }
- return true
-}
diff --git a/libgo/go/strconv/ftoa.go b/libgo/go/strconv/ftoa.go
index 8ce6ef3..eca04b8 100644
--- a/libgo/go/strconv/ftoa.go
+++ b/libgo/go/strconv/ftoa.go
@@ -113,15 +113,11 @@ func genericFtoa(dst []byte, val float64, fmt byte, prec, bitSize int) []byte {
// Negative precision means "only as much as needed to be exact."
shortest := prec < 0
if shortest {
- // Try Grisu3 algorithm.
- f := new(extFloat)
- lower, upper := f.AssignComputeBounds(mant, exp, neg, flt)
+ // Use Ryu algorithm.
var buf [32]byte
digs.d = buf[:]
- ok = f.ShortestDecimal(&digs, &lower, &upper)
- if !ok {
- return bigFtoa(dst, prec, fmt, neg, mant, exp, flt)
- }
+ ryuFtoaShortest(&digs, mant, exp-int(flt.mantbits), flt)
+ ok = true
// Precision for shortest representation mode.
switch fmt {
case 'e', 'E':
@@ -143,12 +139,15 @@ func genericFtoa(dst []byte, val float64, fmt byte, prec, bitSize int) []byte {
}
digits = prec
}
- if digits <= 15 {
- // try fast algorithm when the number of digits is reasonable.
- var buf [24]byte
+ var buf [24]byte
+ if bitSize == 32 && digits <= 9 {
+ digs.d = buf[:]
+ ryuFtoaFixed32(&digs, uint32(mant), exp-int(flt.mantbits), digits)
+ ok = true
+ } else if digits <= 18 {
digs.d = buf[:]
- f := extFloat{mant, exp - int(flt.mantbits), neg}
- ok = f.FixedDecimal(&digs, digits)
+ ryuFtoaFixed64(&digs, mant, exp-int(flt.mantbits), digits)
+ ok = true
}
}
if !ok {
diff --git a/libgo/go/strconv/ftoa_test.go b/libgo/go/strconv/ftoa_test.go
index 99cca17..73008b1 100644
--- a/libgo/go/strconv/ftoa_test.go
+++ b/libgo/go/strconv/ftoa_test.go
@@ -40,6 +40,7 @@ var ftoatests = []ftoaTest{
{200000, 'x', -1, "0x1.86ap+17"},
{200000, 'X', -1, "0X1.86AP+17"},
{2000000, 'g', -1, "2e+06"},
+ {1e10, 'g', -1, "1e+10"},
// g conversion and zero suppression
{400, 'g', 2, "4e+02"},
@@ -77,6 +78,15 @@ var ftoatests = []ftoaTest{
{1.2345e6, 'f', 5, "1234500.00000"},
{1.2345e6, 'g', 5, "1.2345e+06"},
+ // Round to even
+ {1.2345e6, 'e', 3, "1.234e+06"},
+ {1.2355e6, 'e', 3, "1.236e+06"},
+ {1.2345, 'f', 3, "1.234"},
+ {1.2355, 'f', 3, "1.236"},
+ {1234567890123456.5, 'e', 15, "1.234567890123456e+15"},
+ {1234567890123457.5, 'e', 15, "1.234567890123458e+15"},
+ {108678236358137.625, 'g', -1, "1.0867823635813762e+14"},
+
{1e23, 'e', 17, "9.99999999999999916e+22"},
{1e23, 'f', 17, "99999999999999991611392.00000000000000000"},
{1e23, 'g', 17, "9.9999999999999992e+22"},
@@ -183,6 +193,25 @@ func TestFtoa(t *testing.T) {
}
}
+func TestFtoaPowersOfTwo(t *testing.T) {
+ for exp := -2048; exp <= 2048; exp++ {
+ f := math.Ldexp(1, exp)
+ if !math.IsInf(f, 0) {
+ s := FormatFloat(f, 'e', -1, 64)
+ if x, _ := ParseFloat(s, 64); x != f {
+ t.Errorf("failed roundtrip %v => %s => %v", f, s, x)
+ }
+ }
+ f32 := float32(f)
+ if !math.IsInf(float64(f32), 0) {
+ s := FormatFloat(float64(f32), 'e', -1, 32)
+ if x, _ := ParseFloat(s, 32); float32(x) != f32 {
+ t.Errorf("failed roundtrip %v => %s => %v", f32, s, float32(x))
+ }
+ }
+ }
+}
+
func TestFtoaRandom(t *testing.T) {
N := int(1e4)
if testing.Short() {
@@ -232,6 +261,7 @@ var ftoaBenches = []struct {
{"Float", 339.7784, 'g', -1, 64},
{"Exp", -5.09e75, 'g', -1, 64},
{"NegExp", -5.11e-95, 'g', -1, 64},
+ {"LongExp", 1.234567890123456e-78, 'g', -1, 64},
{"Big", 123456789123456789123456789, 'g', -1, 64},
{"BinaryExp", -1, 'b', -1, 64},
@@ -241,14 +271,30 @@ var ftoaBenches = []struct {
{"32Point", 339.7784, 'g', -1, 32},
{"32Exp", -5.09e25, 'g', -1, 32},
{"32NegExp", -5.11e-25, 'g', -1, 32},
+ {"32Shortest", 1.234567e-8, 'g', -1, 32},
+ {"32Fixed8Hard", math.Ldexp(15961084, -125), 'e', 8, 32},
+ {"32Fixed9Hard", math.Ldexp(14855922, -83), 'e', 9, 32},
{"64Fixed1", 123456, 'e', 3, 64},
{"64Fixed2", 123.456, 'e', 3, 64},
{"64Fixed3", 1.23456e+78, 'e', 3, 64},
{"64Fixed4", 1.23456e-78, 'e', 3, 64},
+ {"64Fixed12", 1.23456e-78, 'e', 12, 64},
+ {"64Fixed16", 1.23456e-78, 'e', 16, 64},
+ // From testdata/testfp.txt
+ {"64Fixed12Hard", math.Ldexp(6965949469487146, -249), 'e', 12, 64},
+ {"64Fixed17Hard", math.Ldexp(8887055249355788, 665), 'e', 17, 64},
+ {"64Fixed18Hard", math.Ldexp(6994187472632449, 690), 'e', 18, 64},
// Trigger slow path (see issue #15672).
- {"Slowpath64", 622666234635.3213e-320, 'e', -1, 64},
+ // The shortest is: 8.034137530808823e+43
+ {"Slowpath64", 8.03413753080882349e+43, 'e', -1, 64},
+ // This denormal is pathological because the lower/upper
+ // halfways to neighboring floats are:
+ // 622666234635.321003e-320 ~= 622666234635.321e-320
+ // 622666234635.321497e-320 ~= 622666234635.3215e-320
+ // making it hard to find the 3rd digit
+ {"SlowpathDenormal64", 622666234635.3213e-320, 'e', -1, 64},
}
func BenchmarkFormatFloat(b *testing.B) {
diff --git a/libgo/go/strconv/ftoaryu.go b/libgo/go/strconv/ftoaryu.go
new file mode 100644
index 0000000..1c61288
--- /dev/null
+++ b/libgo/go/strconv/ftoaryu.go
@@ -0,0 +1,567 @@
+// Copyright 2021 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package strconv
+
+import (
+ "math/bits"
+)
+
+// binary to decimal conversion using the Ryū algorithm.
+//
+// See Ulf Adams, "Ryū: Fast Float-to-String Conversion" (doi:10.1145/3192366.3192369)
+//
+// Fixed precision formatting is a variant of the original paper's
+// algorithm, where a single multiplication by 10^k is required,
+// sharing the same rounding guarantees.
+
+// ryuFtoaFixed32 formats mant*(2^exp) with prec decimal digits.
+func ryuFtoaFixed32(d *decimalSlice, mant uint32, exp int, prec int) {
+ if prec < 0 {
+ panic("ryuFtoaFixed32 called with negative prec")
+ }
+ if prec > 9 {
+ panic("ryuFtoaFixed32 called with prec > 9")
+ }
+ // Zero input.
+ if mant == 0 {
+ d.nd, d.dp = 0, 0
+ return
+ }
+ // Renormalize to a 25-bit mantissa.
+ e2 := exp
+ if b := bits.Len32(mant); b < 25 {
+ mant <<= uint(25 - b)
+ e2 += int(b) - 25
+ }
+ // Choose an exponent such that rounded mant*(2^e2)*(10^q) has
+ // at least prec decimal digits, i.e
+ // mant*(2^e2)*(10^q) >= 10^(prec-1)
+ // Because mant >= 2^24, it is enough to choose:
+ // 2^(e2+24) >= 10^(-q+prec-1)
+ // or q = -mulByLog2Log10(e2+24) + prec - 1
+ q := -mulByLog2Log10(e2+24) + prec - 1
+
+ // Now compute mant*(2^e2)*(10^q).
+ // Is it an exact computation?
+ // Only small positive powers of 10 are exact (5^28 has 66 bits).
+ exact := q <= 27 && q >= 0
+
+ di, dexp2, d0 := mult64bitPow10(mant, e2, q)
+ if dexp2 >= 0 {
+ panic("not enough significant bits after mult64bitPow10")
+ }
+ // As a special case, computation might still be exact, if exponent
+ // was negative and if it amounts to computing an exact division.
+ // In that case, we ignore all lower bits.
+ // Note that division by 10^11 cannot be exact as 5^11 has 26 bits.
+ if q < 0 && q >= -10 && divisibleByPower5(uint64(mant), -q) {
+ exact = true
+ d0 = true
+ }
+ // Remove extra lower bits and keep rounding info.
+ extra := uint(-dexp2)
+ extraMask := uint32(1<<extra - 1)
+
+ di, dfrac := di>>extra, di&extraMask
+ roundUp := false
+ if exact {
+ // If we computed an exact product, d + 1/2
+ // should round to d+1 if 'd' is odd.
+ roundUp = dfrac > 1<<(extra-1) ||
+ (dfrac == 1<<(extra-1) && !d0) ||
+ (dfrac == 1<<(extra-1) && d0 && di&1 == 1)
+ } else {
+ // otherwise, d+1/2 always rounds up because
+ // we truncated below.
+ roundUp = dfrac>>(extra-1) == 1
+ }
+ if dfrac != 0 {
+ d0 = false
+ }
+ // Proceed to the requested number of digits
+ formatDecimal(d, uint64(di), !d0, roundUp, prec)
+ // Adjust exponent
+ d.dp -= q
+}
+
+// ryuFtoaFixed64 formats mant*(2^exp) with prec decimal digits.
+func ryuFtoaFixed64(d *decimalSlice, mant uint64, exp int, prec int) {
+ if prec > 18 {
+ panic("ryuFtoaFixed64 called with prec > 18")
+ }
+ // Zero input.
+ if mant == 0 {
+ d.nd, d.dp = 0, 0
+ return
+ }
+ // Renormalize to a 55-bit mantissa.
+ e2 := exp
+ if b := bits.Len64(mant); b < 55 {
+ mant = mant << uint(55-b)
+ e2 += int(b) - 55
+ }
+ // Choose an exponent such that rounded mant*(2^e2)*(10^q) has
+ // at least prec decimal digits, i.e
+ // mant*(2^e2)*(10^q) >= 10^(prec-1)
+ // Because mant >= 2^54, it is enough to choose:
+ // 2^(e2+54) >= 10^(-q+prec-1)
+ // or q = -mulByLog2Log10(e2+54) + prec - 1
+ //
+ // The minimal required exponent is -mulByLog2Log10(1025)+18 = -291
+ // The maximal required exponent is mulByLog2Log10(1074)+18 = 342
+ q := -mulByLog2Log10(e2+54) + prec - 1
+
+ // Now compute mant*(2^e2)*(10^q).
+ // Is it an exact computation?
+ // Only small positive powers of 10 are exact (5^55 has 128 bits).
+ exact := q <= 55 && q >= 0
+
+ di, dexp2, d0 := mult128bitPow10(mant, e2, q)
+ if dexp2 >= 0 {
+ panic("not enough significant bits after mult128bitPow10")
+ }
+ // As a special case, computation might still be exact, if exponent
+ // was negative and if it amounts to computing an exact division.
+ // In that case, we ignore all lower bits.
+ // Note that division by 10^23 cannot be exact as 5^23 has 54 bits.
+ if q < 0 && q >= -22 && divisibleByPower5(mant, -q) {
+ exact = true
+ d0 = true
+ }
+ // Remove extra lower bits and keep rounding info.
+ extra := uint(-dexp2)
+ extraMask := uint64(1<<extra - 1)
+
+ di, dfrac := di>>extra, di&extraMask
+ roundUp := false
+ if exact {
+ // If we computed an exact product, d + 1/2
+ // should round to d+1 if 'd' is odd.
+ roundUp = dfrac > 1<<(extra-1) ||
+ (dfrac == 1<<(extra-1) && !d0) ||
+ (dfrac == 1<<(extra-1) && d0 && di&1 == 1)
+ } else {
+ // otherwise, d+1/2 always rounds up because
+ // we truncated below.
+ roundUp = dfrac>>(extra-1) == 1
+ }
+ if dfrac != 0 {
+ d0 = false
+ }
+ // Proceed to the requested number of digits
+ formatDecimal(d, di, !d0, roundUp, prec)
+ // Adjust exponent
+ d.dp -= q
+}
+
+var uint64pow10 = [...]uint64{
+ 1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
+ 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
+}
+
+// formatDecimal fills d with at most prec decimal digits
+// of mantissa m. The boolean trunc indicates whether m
+// is truncated compared to the original number being formatted.
+func formatDecimal(d *decimalSlice, m uint64, trunc bool, roundUp bool, prec int) {
+ max := uint64pow10[prec]
+ trimmed := 0
+ for m >= max {
+ a, b := m/10, m%10
+ m = a
+ trimmed++
+ if b > 5 {
+ roundUp = true
+ } else if b < 5 {
+ roundUp = false
+ } else { // b == 5
+ // round up if there are trailing digits,
+ // or if the new value of m is odd (round-to-even convention)
+ roundUp = trunc || m&1 == 1
+ }
+ if b != 0 {
+ trunc = true
+ }
+ }
+ if roundUp {
+ m++
+ }
+ if m >= max {
+ // Happens if di was originally 99999....xx
+ m /= 10
+ trimmed++
+ }
+ // render digits (similar to formatBits)
+ n := uint(prec)
+ d.nd = int(prec)
+ v := m
+ for v >= 100 {
+ var v1, v2 uint64
+ if v>>32 == 0 {
+ v1, v2 = uint64(uint32(v)/100), uint64(uint32(v)%100)
+ } else {
+ v1, v2 = v/100, v%100
+ }
+ n -= 2
+ d.d[n+1] = smallsString[2*v2+1]
+ d.d[n+0] = smallsString[2*v2+0]
+ v = v1
+ }
+ if v > 0 {
+ n--
+ d.d[n] = smallsString[2*v+1]
+ }
+ if v >= 10 {
+ n--
+ d.d[n] = smallsString[2*v]
+ }
+ for d.d[d.nd-1] == '0' {
+ d.nd--
+ trimmed++
+ }
+ d.dp = d.nd + trimmed
+}
+
+// ryuFtoaShortest formats mant*2^exp with prec decimal digits.
+func ryuFtoaShortest(d *decimalSlice, mant uint64, exp int, flt *floatInfo) {
+ if mant == 0 {
+ d.nd, d.dp = 0, 0
+ return
+ }
+ // If input is an exact integer with fewer bits than the mantissa,
+ // the previous and next integer are not admissible representations.
+ if exp <= 0 && bits.TrailingZeros64(mant) >= -exp {
+ mant >>= uint(-exp)
+ ryuDigits(d, mant, mant, mant, true, false)
+ return
+ }
+ ml, mc, mu, e2 := computeBounds(mant, exp, flt)
+ if e2 == 0 {
+ ryuDigits(d, ml, mc, mu, true, false)
+ return
+ }
+ // Find 10^q *larger* than 2^-e2
+ q := mulByLog2Log10(-e2) + 1
+
+ // We are going to multiply by 10^q using 128-bit arithmetic.
+ // The exponent is the same for all 3 numbers.
+ var dl, dc, du uint64
+ var dl0, dc0, du0 bool
+ if flt == &float32info {
+ var dl32, dc32, du32 uint32
+ dl32, _, dl0 = mult64bitPow10(uint32(ml), e2, q)
+ dc32, _, dc0 = mult64bitPow10(uint32(mc), e2, q)
+ du32, e2, du0 = mult64bitPow10(uint32(mu), e2, q)
+ dl, dc, du = uint64(dl32), uint64(dc32), uint64(du32)
+ } else {
+ dl, _, dl0 = mult128bitPow10(ml, e2, q)
+ dc, _, dc0 = mult128bitPow10(mc, e2, q)
+ du, e2, du0 = mult128bitPow10(mu, e2, q)
+ }
+ if e2 >= 0 {
+ panic("not enough significant bits after mult128bitPow10")
+ }
+ // Is it an exact computation?
+ if q > 55 {
+ // Large positive powers of ten are not exact
+ dl0, dc0, du0 = false, false, false
+ }
+ if q < 0 && q >= -24 {
+ // Division by a power of ten may be exact.
+ // (note that 5^25 is a 59-bit number so division by 5^25 is never exact).
+ if divisibleByPower5(ml, -q) {
+ dl0 = true
+ }
+ if divisibleByPower5(mc, -q) {
+ dc0 = true
+ }
+ if divisibleByPower5(mu, -q) {
+ du0 = true
+ }
+ }
+ // Express the results (dl, dc, du)*2^e2 as integers.
+ // Extra bits must be removed and rounding hints computed.
+ extra := uint(-e2)
+ extraMask := uint64(1<<extra - 1)
+ // Now compute the floored, integral base 10 mantissas.
+ dl, fracl := dl>>extra, dl&extraMask
+ dc, fracc := dc>>extra, dc&extraMask
+ du, fracu := du>>extra, du&extraMask
+ // Is it allowed to use 'du' as a result?
+ // It is always allowed when it is truncated, but also
+ // if it is exact and the original binary mantissa is even
+ // When disallowed, we can substract 1.
+ uok := !du0 || fracu > 0
+ if du0 && fracu == 0 {
+ uok = mant&1 == 0
+ }
+ if !uok {
+ du--
+ }
+ // Is 'dc' the correctly rounded base 10 mantissa?
+ // The correct rounding might be dc+1
+ cup := false // don't round up.
+ if dc0 {
+ // If we computed an exact product, the half integer
+ // should round to next (even) integer if 'dc' is odd.
+ cup = fracc > 1<<(extra-1) ||
+ (fracc == 1<<(extra-1) && dc&1 == 1)
+ } else {
+ // otherwise, the result is a lower truncation of the ideal
+ // result.
+ cup = fracc>>(extra-1) == 1
+ }
+ // Is 'dl' an allowed representation?
+ // Only if it is an exact value, and if the original binary mantissa
+ // was even.
+ lok := dl0 && fracl == 0 && (mant&1 == 0)
+ if !lok {
+ dl++
+ }
+ // We need to remember whether the trimmed digits of 'dc' are zero.
+ c0 := dc0 && fracc == 0
+ // render digits
+ ryuDigits(d, dl, dc, du, c0, cup)
+ d.dp -= q
+}
+
+// mulByLog2Log10 returns math.Floor(x * log(2)/log(10)) for an integer x in
+// the range -1600 <= x && x <= +1600.
+//
+// The range restriction lets us work in faster integer arithmetic instead of
+// slower floating point arithmetic. Correctness is verified by unit tests.
+func mulByLog2Log10(x int) int {
+ // log(2)/log(10) ≈ 0.30102999566 ≈ 78913 / 2^18
+ return (x * 78913) >> 18
+}
+
+// mulByLog10Log2 returns math.Floor(x * log(10)/log(2)) for an integer x in
+// the range -500 <= x && x <= +500.
+//
+// The range restriction lets us work in faster integer arithmetic instead of
+// slower floating point arithmetic. Correctness is verified by unit tests.
+func mulByLog10Log2(x int) int {
+ // log(10)/log(2) ≈ 3.32192809489 ≈ 108853 / 2^15
+ return (x * 108853) >> 15
+}
+
+// computeBounds returns a floating-point vector (l, c, u)×2^e2
+// where the mantissas are 55-bit (or 26-bit) integers, describing the interval
+// represented by the input float64 or float32.
+func computeBounds(mant uint64, exp int, flt *floatInfo) (lower, central, upper uint64, e2 int) {
+ if mant != 1<<flt.mantbits || exp == flt.bias+1-int(flt.mantbits) {
+ // regular case (or denormals)
+ lower, central, upper = 2*mant-1, 2*mant, 2*mant+1
+ e2 = exp - 1
+ return
+ } else {
+ // border of an exponent
+ lower, central, upper = 4*mant-1, 4*mant, 4*mant+2
+ e2 = exp - 2
+ return
+ }
+}
+
+func ryuDigits(d *decimalSlice, lower, central, upper uint64,
+ c0, cup bool) {
+ lhi, llo := divmod1e9(lower)
+ chi, clo := divmod1e9(central)
+ uhi, ulo := divmod1e9(upper)
+ if uhi == 0 {
+ // only low digits (for denormals)
+ ryuDigits32(d, llo, clo, ulo, c0, cup, 8)
+ } else if lhi < uhi {
+ // truncate 9 digits at once.
+ if llo != 0 {
+ lhi++
+ }
+ c0 = c0 && clo == 0
+ cup = (clo > 5e8) || (clo == 5e8 && cup)
+ ryuDigits32(d, lhi, chi, uhi, c0, cup, 8)
+ d.dp += 9
+ } else {
+ d.nd = 0
+ // emit high part
+ n := uint(9)
+ for v := chi; v > 0; {
+ v1, v2 := v/10, v%10
+ v = v1
+ n--
+ d.d[n] = byte(v2 + '0')
+ }
+ d.d = d.d[n:]
+ d.nd = int(9 - n)
+ // emit low part
+ ryuDigits32(d, llo, clo, ulo,
+ c0, cup, d.nd+8)
+ }
+ // trim trailing zeros
+ for d.nd > 0 && d.d[d.nd-1] == '0' {
+ d.nd--
+ }
+ // trim initial zeros
+ for d.nd > 0 && d.d[0] == '0' {
+ d.nd--
+ d.dp--
+ d.d = d.d[1:]
+ }
+}
+
+// ryuDigits32 emits decimal digits for a number less than 1e9.
+func ryuDigits32(d *decimalSlice, lower, central, upper uint32,
+ c0, cup bool, endindex int) {
+ if upper == 0 {
+ d.dp = endindex + 1
+ return
+ }
+ trimmed := 0
+ // Remember last trimmed digit to check for round-up.
+ // c0 will be used to remember zeroness of following digits.
+ cNextDigit := 0
+ for upper > 0 {
+ // Repeatedly compute:
+ // l = Ceil(lower / 10^k)
+ // c = Round(central / 10^k)
+ // u = Floor(upper / 10^k)
+ // and stop when c goes out of the (l, u) interval.
+ l := (lower + 9) / 10
+ c, cdigit := central/10, central%10
+ u := upper / 10
+ if l > u {
+ // don't trim the last digit as it is forbidden to go below l
+ // other, trim and exit now.
+ break
+ }
+ // Check that we didn't cross the lower boundary.
+ // The case where l < u but c == l-1 is essentially impossible,
+ // but may happen if:
+ // lower = ..11
+ // central = ..19
+ // upper = ..31
+ // and means that 'central' is very close but less than
+ // an integer ending with many zeros, and usually
+ // the "round-up" logic hides the problem.
+ if l == c+1 && c < u {
+ c++
+ cdigit = 0
+ cup = false
+ }
+ trimmed++
+ // Remember trimmed digits of c
+ c0 = c0 && cNextDigit == 0
+ cNextDigit = int(cdigit)
+ lower, central, upper = l, c, u
+ }
+ // should we round up?
+ if trimmed > 0 {
+ cup = cNextDigit > 5 ||
+ (cNextDigit == 5 && !c0) ||
+ (cNextDigit == 5 && c0 && central&1 == 1)
+ }
+ if central < upper && cup {
+ central++
+ }
+ // We know where the number ends, fill directly
+ endindex -= trimmed
+ v := central
+ n := endindex
+ for n > d.nd {
+ v1, v2 := v/100, v%100
+ d.d[n] = smallsString[2*v2+1]
+ d.d[n-1] = smallsString[2*v2+0]
+ n -= 2
+ v = v1
+ }
+ if n == d.nd {
+ d.d[n] = byte(v + '0')
+ }
+ d.nd = endindex + 1
+ d.dp = d.nd + trimmed
+}
+
+// mult64bitPow10 takes a floating-point input with a 25-bit
+// mantissa and multiplies it with 10^q. The resulting mantissa
+// is m*P >> 57 where P is a 64-bit element of the detailedPowersOfTen tables.
+// It is typically 31 or 32-bit wide.
+// The returned boolean is true if all trimmed bits were zero.
+//
+// That is:
+// m*2^e2 * round(10^q) = resM * 2^resE + ε
+// exact = ε == 0
+func mult64bitPow10(m uint32, e2, q int) (resM uint32, resE int, exact bool) {
+ if q == 0 {
+ // P == 1<<63
+ return m << 6, e2 - 6, true
+ }
+ if q < detailedPowersOfTenMinExp10 || detailedPowersOfTenMaxExp10 < q {
+ // This never happens due to the range of float32/float64 exponent
+ panic("mult64bitPow10: power of 10 is out of range")
+ }
+ pow := detailedPowersOfTen[q-detailedPowersOfTenMinExp10][1]
+ if q < 0 {
+ // Inverse powers of ten must be rounded up.
+ pow += 1
+ }
+ hi, lo := bits.Mul64(uint64(m), pow)
+ e2 += mulByLog10Log2(q) - 63 + 57
+ return uint32(hi<<7 | lo>>57), e2, lo<<7 == 0
+}
+
+// mult128bitPow10 takes a floating-point input with a 55-bit
+// mantissa and multiplies it with 10^q. The resulting mantissa
+// is m*P >> 119 where P is a 128-bit element of the detailedPowersOfTen tables.
+// It is typically 63 or 64-bit wide.
+// The returned boolean is true is all trimmed bits were zero.
+//
+// That is:
+// m*2^e2 * round(10^q) = resM * 2^resE + ε
+// exact = ε == 0
+func mult128bitPow10(m uint64, e2, q int) (resM uint64, resE int, exact bool) {
+ if q == 0 {
+ // P == 1<<127
+ return m << 8, e2 - 8, true
+ }
+ if q < detailedPowersOfTenMinExp10 || detailedPowersOfTenMaxExp10 < q {
+ // This never happens due to the range of float32/float64 exponent
+ panic("mult128bitPow10: power of 10 is out of range")
+ }
+ pow := detailedPowersOfTen[q-detailedPowersOfTenMinExp10]
+ if q < 0 {
+ // Inverse powers of ten must be rounded up.
+ pow[0] += 1
+ }
+ e2 += mulByLog10Log2(q) - 127 + 119
+
+ // long multiplication
+ l1, l0 := bits.Mul64(m, pow[0])
+ h1, h0 := bits.Mul64(m, pow[1])
+ mid, carry := bits.Add64(l1, h0, 0)
+ h1 += carry
+ return h1<<9 | mid>>55, e2, mid<<9 == 0 && l0 == 0
+}
+
+func divisibleByPower5(m uint64, k int) bool {
+ if m == 0 {
+ return true
+ }
+ for i := 0; i < k; i++ {
+ if m%5 != 0 {
+ return false
+ }
+ m /= 5
+ }
+ return true
+}
+
+// divmod1e9 computes quotient and remainder of division by 1e9,
+// avoiding runtime uint64 division on 32-bit platforms.
+func divmod1e9(x uint64) (uint32, uint32) {
+ if !host32bit {
+ return uint32(x / 1e9), uint32(x % 1e9)
+ }
+ // Use the same sequence of operations as the amd64 compiler.
+ hi, _ := bits.Mul64(x>>1, 0x89705f4136b4a598) // binary digits of 1e-9
+ q := hi >> 28
+ return uint32(q), uint32(x - q*1e9)
+}
diff --git a/libgo/go/strconv/ftoaryu_test.go b/libgo/go/strconv/ftoaryu_test.go
new file mode 100644
index 0000000..9758619
--- /dev/null
+++ b/libgo/go/strconv/ftoaryu_test.go
@@ -0,0 +1,31 @@
+// Copyright 2021 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package strconv_test
+
+import (
+ "math"
+ . "strconv"
+ "testing"
+)
+
+func TestMulByLog2Log10(t *testing.T) {
+ for x := -1600; x <= +1600; x++ {
+ iMath := MulByLog2Log10(x)
+ fMath := int(math.Floor(float64(x) * math.Ln2 / math.Ln10))
+ if iMath != fMath {
+ t.Errorf("mulByLog2Log10(%d) failed: %d vs %d\n", x, iMath, fMath)
+ }
+ }
+}
+
+func TestMulByLog10Log2(t *testing.T) {
+ for x := -500; x <= +500; x++ {
+ iMath := MulByLog10Log2(x)
+ fMath := int(math.Floor(float64(x) * math.Ln10 / math.Ln2))
+ if iMath != fMath {
+ t.Errorf("mulByLog10Log2(%d) failed: %d vs %d\n", x, iMath, fMath)
+ }
+ }
+}
diff --git a/libgo/go/strconv/internal_test.go b/libgo/go/strconv/internal_test.go
index bb4a418..f2cceff 100644
--- a/libgo/go/strconv/internal_test.go
+++ b/libgo/go/strconv/internal_test.go
@@ -21,3 +21,11 @@ func SetOptimize(b bool) bool {
func ParseFloatPrefix(s string, bitSize int) (float64, int, error) {
return parseFloatPrefix(s, bitSize)
}
+
+func MulByLog2Log10(x int) int {
+ return mulByLog2Log10(x)
+}
+
+func MulByLog10Log2(x int) int {
+ return mulByLog10Log2(x)
+}
diff --git a/libgo/go/strconv/makeisprint.go b/libgo/go/strconv/makeisprint.go
index 0e6e90a..909f9e4 100644
--- a/libgo/go/strconv/makeisprint.go
+++ b/libgo/go/strconv/makeisprint.go
@@ -2,6 +2,7 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
+//go:build ignore
// +build ignore
//
@@ -36,7 +37,7 @@ var (
func bsearch16(a []uint16, x uint16) int {
i, j := 0, len(a)
for i < j {
- h := i + (j-i)/2
+ h := i + (j-i)>>1
if a[h] < x {
i = h + 1
} else {
@@ -51,7 +52,7 @@ func bsearch16(a []uint16, x uint16) int {
func bsearch32(a []uint32, x uint32) int {
i, j := 0, len(a)
for i < j {
- h := i + (j-i)/2
+ h := i + (j-i)>>1
if a[h] < x {
i = h + 1
} else {
diff --git a/libgo/go/strconv/quote.go b/libgo/go/strconv/quote.go
index bcbdbc5..b3bbb16 100644
--- a/libgo/go/strconv/quote.go
+++ b/libgo/go/strconv/quote.go
@@ -7,7 +7,6 @@
package strconv
import (
- "internal/bytealg"
"unicode/utf8"
)
@@ -16,6 +15,11 @@ const (
upperhex = "0123456789ABCDEF"
)
+// contains reports whether the string contains the byte c.
+func contains(s string, c byte) bool {
+ return index(s, c) != -1
+}
+
func quoteWith(s string, quote byte, ASCIIonly, graphicOnly bool) string {
return string(appendQuotedWith(make([]byte, 0, 3*len(s)/2), s, quote, ASCIIonly, graphicOnly))
}
@@ -360,85 +364,132 @@ func UnquoteChar(s string, quote byte) (value rune, multibyte bool, tail string,
return
}
+// QuotedPrefix returns the quoted string (as understood by Unquote) at the prefix of s.
+// If s does not start with a valid quoted string, QuotedPrefix returns an error.
+func QuotedPrefix(s string) (string, error) {
+ out, _, err := unquote(s, false)
+ return out, err
+}
+
// Unquote interprets s as a single-quoted, double-quoted,
// or backquoted Go string literal, returning the string value
// that s quotes. (If s is single-quoted, it would be a Go
// character literal; Unquote returns the corresponding
// one-character string.)
func Unquote(s string) (string, error) {
- n := len(s)
- if n < 2 {
+ out, rem, err := unquote(s, true)
+ if len(rem) > 0 {
return "", ErrSyntax
}
- quote := s[0]
- if quote != s[n-1] {
- return "", ErrSyntax
+ return out, err
+}
+
+// unquote parses a quoted string at the start of the input,
+// returning the parsed prefix, the remaining suffix, and any parse errors.
+// If unescape is true, the parsed prefix is unescaped,
+// otherwise the input prefix is provided verbatim.
+func unquote(in string, unescape bool) (out, rem string, err error) {
+ // Determine the quote form and optimistically find the terminating quote.
+ if len(in) < 2 {
+ return "", in, ErrSyntax
}
- s = s[1 : n-1]
+ quote := in[0]
+ end := index(in[1:], quote)
+ if end < 0 {
+ return "", in, ErrSyntax
+ }
+ end += 2 // position after terminating quote; may be wrong if escape sequences are present
- if quote == '`' {
- if contains(s, '`') {
- return "", ErrSyntax
+ switch quote {
+ case '`':
+ switch {
+ case !unescape:
+ out = in[:end] // include quotes
+ case !contains(in[:end], '\r'):
+ out = in[len("`") : end-len("`")] // exclude quotes
+ default:
+ // Carriage return characters ('\r') inside raw string literals
+ // are discarded from the raw string value.
+ buf := make([]byte, 0, end-len("`")-len("\r")-len("`"))
+ for i := len("`"); i < end-len("`"); i++ {
+ if in[i] != '\r' {
+ buf = append(buf, in[i])
+ }
+ }
+ out = string(buf)
}
- if contains(s, '\r') {
- // -1 because we know there is at least one \r to remove.
- buf := make([]byte, 0, len(s)-1)
- for i := 0; i < len(s); i++ {
- if s[i] != '\r' {
- buf = append(buf, s[i])
+ // NOTE: Prior implementations did not verify that raw strings consist
+ // of valid UTF-8 characters and we continue to not verify it as such.
+ // The Go specification does not explicitly require valid UTF-8,
+ // but only mention that it is implicitly valid for Go source code
+ // (which must be valid UTF-8).
+ return out, in[end:], nil
+ case '"', '\'':
+ // Handle quoted strings without any escape sequences.
+ if !contains(in[:end], '\\') && !contains(in[:end], '\n') {
+ var valid bool
+ switch quote {
+ case '"':
+ valid = utf8.ValidString(in[len(`"`) : end-len(`"`)])
+ case '\'':
+ r, n := utf8.DecodeRuneInString(in[len("'") : end-len("'")])
+ valid = len("'")+n+len("'") == end && (r != utf8.RuneError || n != 1)
+ }
+ if valid {
+ out = in[:end]
+ if unescape {
+ out = out[1 : end-1] // exclude quotes
}
+ return out, in[end:], nil
}
- return string(buf), nil
}
- return s, nil
- }
- if quote != '"' && quote != '\'' {
- return "", ErrSyntax
- }
- if contains(s, '\n') {
- return "", ErrSyntax
- }
- // Is it trivial? Avoid allocation.
- if !contains(s, '\\') && !contains(s, quote) {
- switch quote {
- case '"':
- if utf8.ValidString(s) {
- return s, nil
+ // Handle quoted strings with escape sequences.
+ var buf []byte
+ in0 := in
+ in = in[1:] // skip starting quote
+ if unescape {
+ buf = make([]byte, 0, 3*end/2) // try to avoid more allocations
+ }
+ for len(in) > 0 && in[0] != quote {
+ // Process the next character,
+ // rejecting any unescaped newline characters which are invalid.
+ r, multibyte, rem, err := UnquoteChar(in, quote)
+ if in[0] == '\n' || err != nil {
+ return "", in0, ErrSyntax
}
- case '\'':
- r, size := utf8.DecodeRuneInString(s)
- if size == len(s) && (r != utf8.RuneError || size != 1) {
- return s, nil
+ in = rem
+
+ // Append the character if unescaping the input.
+ if unescape {
+ if r < utf8.RuneSelf || !multibyte {
+ buf = append(buf, byte(r))
+ } else {
+ var arr [utf8.UTFMax]byte
+ n := utf8.EncodeRune(arr[:], r)
+ buf = append(buf, arr[:n]...)
+ }
}
- }
- }
- var runeTmp [utf8.UTFMax]byte
- buf := make([]byte, 0, 3*len(s)/2) // Try to avoid more allocations.
- for len(s) > 0 {
- c, multibyte, ss, err := UnquoteChar(s, quote)
- if err != nil {
- return "", err
+ // Single quoted strings must be a single character.
+ if quote == '\'' {
+ break
+ }
}
- s = ss
- if c < utf8.RuneSelf || !multibyte {
- buf = append(buf, byte(c))
- } else {
- n := utf8.EncodeRune(runeTmp[:], c)
- buf = append(buf, runeTmp[:n]...)
+
+ // Verify that the string ends with a terminating quote.
+ if !(len(in) > 0 && in[0] == quote) {
+ return "", in0, ErrSyntax
}
- if quote == '\'' && len(s) != 0 {
- // single-quoted must be single character
- return "", ErrSyntax
+ in = in[1:] // skip terminating quote
+
+ if unescape {
+ return string(buf), in, nil
}
+ return in0[:len(in0)-len(in)], in, nil
+ default:
+ return "", in, ErrSyntax
}
- return string(buf), nil
-}
-
-// contains reports whether the string contains the byte c.
-func contains(s string, c byte) bool {
- return bytealg.IndexByteString(s, c) != -1
}
// bsearch16 returns the smallest i such that a[i] >= x.
@@ -446,7 +497,7 @@ func contains(s string, c byte) bool {
func bsearch16(a []uint16, x uint16) int {
i, j := 0, len(a)
for i < j {
- h := i + (j-i)/2
+ h := i + (j-i)>>1
if a[h] < x {
i = h + 1
} else {
@@ -461,7 +512,7 @@ func bsearch16(a []uint16, x uint16) int {
func bsearch32(a []uint32, x uint32) int {
i, j := 0, len(a)
for i < j {
- h := i + (j-i)/2
+ h := i + (j-i)>>1
if a[h] < x {
i = h + 1
} else {
diff --git a/libgo/go/strconv/quote_test.go b/libgo/go/strconv/quote_test.go
index f1faf13..4750be2 100644
--- a/libgo/go/strconv/quote_test.go
+++ b/libgo/go/strconv/quote_test.go
@@ -6,6 +6,7 @@ package strconv_test
import (
. "strconv"
+ "strings"
"testing"
"unicode"
)
@@ -297,6 +298,7 @@ var misquoted = []string{
`"\z"`,
"`",
"`xxx",
+ "``x\r",
"`\"",
`"\'"`,
`'\"'`,
@@ -307,22 +309,13 @@ var misquoted = []string{
func TestUnquote(t *testing.T) {
for _, tt := range unquotetests {
- if out, err := Unquote(tt.in); err != nil || out != tt.out {
- t.Errorf("Unquote(%#q) = %q, %v want %q, nil", tt.in, out, err, tt.out)
- }
+ testUnquote(t, tt.in, tt.out, nil)
}
-
- // run the quote tests too, backward
for _, tt := range quotetests {
- if in, err := Unquote(tt.out); in != tt.in {
- t.Errorf("Unquote(%#q) = %q, %v, want %q, nil", tt.out, in, err, tt.in)
- }
+ testUnquote(t, tt.out, tt.in, nil)
}
-
for _, s := range misquoted {
- if out, err := Unquote(s); out != "" || err != ErrSyntax {
- t.Errorf("Unquote(%#q) = %q, %v want %q, %v", s, out, err, "", ErrSyntax)
- }
+ testUnquote(t, s, "", ErrSyntax)
}
}
@@ -333,26 +326,44 @@ func TestUnquoteInvalidUTF8(t *testing.T) {
// one of:
want string
- wantErr string
+ wantErr error
}{
{in: `"foo"`, want: "foo"},
- {in: `"foo`, wantErr: "invalid syntax"},
+ {in: `"foo`, wantErr: ErrSyntax},
{in: `"` + "\xc0" + `"`, want: "\xef\xbf\xbd"},
{in: `"a` + "\xc0" + `"`, want: "a\xef\xbf\xbd"},
{in: `"\t` + "\xc0" + `"`, want: "\t\xef\xbf\xbd"},
}
- for i, tt := range tests {
- got, err := Unquote(tt.in)
- var gotErr string
- if err != nil {
- gotErr = err.Error()
- }
- if gotErr != tt.wantErr {
- t.Errorf("%d. Unquote(%q) = err %v; want %q", i, tt.in, err, tt.wantErr)
- }
- if tt.wantErr == "" && err == nil && got != tt.want {
- t.Errorf("%d. Unquote(%q) = %02x; want %02x", i, tt.in, []byte(got), []byte(tt.want))
- }
+ for _, tt := range tests {
+ testUnquote(t, tt.in, tt.want, tt.wantErr)
+ }
+}
+
+func testUnquote(t *testing.T, in, want string, wantErr error) {
+ // Test Unquote.
+ got, gotErr := Unquote(in)
+ if got != want || gotErr != wantErr {
+ t.Errorf("Unquote(%q) = (%q, %v), want (%q, %v)", in, got, gotErr, want, wantErr)
+ }
+
+ // Test QuotedPrefix.
+ // Adding an arbitrary suffix should not change the result of QuotedPrefix
+ // assume that the suffix doesn't accidentally terminate a truncated input.
+ if gotErr == nil {
+ want = in
+ }
+ suffix := "\n\r\\\"`'" // special characters for quoted strings
+ if len(in) > 0 {
+ suffix = strings.ReplaceAll(suffix, in[:1], "")
+ }
+ in += suffix
+ got, gotErr = QuotedPrefix(in)
+ if gotErr == nil && wantErr != nil {
+ _, wantErr = Unquote(got) // original input had trailing junk, reparse with only valid prefix
+ want = got
+ }
+ if got != want || gotErr != wantErr {
+ t.Errorf("QuotedPrefix(%q) = (%q, %v), want (%q, %v)", in, got, gotErr, want, wantErr)
}
}