diff options
Diffstat (limited to 'libgo/go/strconv/extfloat.go')
-rw-r--r-- | libgo/go/strconv/extfloat.go | 311 |
1 files changed, 311 insertions, 0 deletions
diff --git a/libgo/go/strconv/extfloat.go b/libgo/go/strconv/extfloat.go new file mode 100644 index 0000000..980052a7 --- /dev/null +++ b/libgo/go/strconv/extfloat.go @@ -0,0 +1,311 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package strconv + +import "math" + +// An extFloat represents an extended floating-point number, with more +// precision than a float64. It does not try to save bits: the +// number represented by the structure is mant*(2^exp), with a negative +// sign if neg is true. +type extFloat struct { + mant uint64 + exp int + neg bool +} + +// Powers of ten taken from double-conversion library. +// http://code.google.com/p/double-conversion/ +const ( + firstPowerOfTen = -348 + stepPowerOfTen = 8 +) + +var smallPowersOfTen = [...]extFloat{ + {1 << 63, -63, false}, // 1 + {0xa << 60, -60, false}, // 1e1 + {0x64 << 57, -57, false}, // 1e2 + {0x3e8 << 54, -54, false}, // 1e3 + {0x2710 << 50, -50, false}, // 1e4 + {0x186a0 << 47, -47, false}, // 1e5 + {0xf4240 << 44, -44, false}, // 1e6 + {0x989680 << 40, -40, false}, // 1e7 +} + +var powersOfTen = [...]extFloat{ + {0xfa8fd5a0081c0288, -1220, false}, // 10^-348 + {0xbaaee17fa23ebf76, -1193, false}, // 10^-340 + {0x8b16fb203055ac76, -1166, false}, // 10^-332 + {0xcf42894a5dce35ea, -1140, false}, // 10^-324 + {0x9a6bb0aa55653b2d, -1113, false}, // 10^-316 + {0xe61acf033d1a45df, -1087, false}, // 10^-308 + {0xab70fe17c79ac6ca, -1060, false}, // 10^-300 + {0xff77b1fcbebcdc4f, -1034, false}, // 10^-292 + {0xbe5691ef416bd60c, -1007, false}, // 10^-284 + {0x8dd01fad907ffc3c, -980, false}, // 10^-276 + {0xd3515c2831559a83, -954, false}, // 10^-268 + {0x9d71ac8fada6c9b5, -927, false}, // 10^-260 + {0xea9c227723ee8bcb, -901, false}, // 10^-252 + {0xaecc49914078536d, -874, false}, // 10^-244 + {0x823c12795db6ce57, -847, false}, // 10^-236 + {0xc21094364dfb5637, -821, false}, // 10^-228 + {0x9096ea6f3848984f, -794, false}, // 10^-220 + {0xd77485cb25823ac7, -768, false}, // 10^-212 + {0xa086cfcd97bf97f4, -741, false}, // 10^-204 + {0xef340a98172aace5, -715, false}, // 10^-196 + {0xb23867fb2a35b28e, -688, false}, // 10^-188 + {0x84c8d4dfd2c63f3b, -661, false}, // 10^-180 + {0xc5dd44271ad3cdba, -635, false}, // 10^-172 + {0x936b9fcebb25c996, -608, false}, // 10^-164 + {0xdbac6c247d62a584, -582, false}, // 10^-156 + {0xa3ab66580d5fdaf6, -555, false}, // 10^-148 + {0xf3e2f893dec3f126, -529, false}, // 10^-140 + {0xb5b5ada8aaff80b8, -502, false}, // 10^-132 + {0x87625f056c7c4a8b, -475, false}, // 10^-124 + {0xc9bcff6034c13053, -449, false}, // 10^-116 + {0x964e858c91ba2655, -422, false}, // 10^-108 + {0xdff9772470297ebd, -396, false}, // 10^-100 + {0xa6dfbd9fb8e5b88f, -369, false}, // 10^-92 + {0xf8a95fcf88747d94, -343, false}, // 10^-84 + {0xb94470938fa89bcf, -316, false}, // 10^-76 + {0x8a08f0f8bf0f156b, -289, false}, // 10^-68 + {0xcdb02555653131b6, -263, false}, // 10^-60 + {0x993fe2c6d07b7fac, -236, false}, // 10^-52 + {0xe45c10c42a2b3b06, -210, false}, // 10^-44 + {0xaa242499697392d3, -183, false}, // 10^-36 + {0xfd87b5f28300ca0e, -157, false}, // 10^-28 + {0xbce5086492111aeb, -130, false}, // 10^-20 + {0x8cbccc096f5088cc, -103, false}, // 10^-12 + {0xd1b71758e219652c, -77, false}, // 10^-4 + {0x9c40000000000000, -50, false}, // 10^4 + {0xe8d4a51000000000, -24, false}, // 10^12 + {0xad78ebc5ac620000, 3, false}, // 10^20 + {0x813f3978f8940984, 30, false}, // 10^28 + {0xc097ce7bc90715b3, 56, false}, // 10^36 + {0x8f7e32ce7bea5c70, 83, false}, // 10^44 + {0xd5d238a4abe98068, 109, false}, // 10^52 + {0x9f4f2726179a2245, 136, false}, // 10^60 + {0xed63a231d4c4fb27, 162, false}, // 10^68 + {0xb0de65388cc8ada8, 189, false}, // 10^76 + {0x83c7088e1aab65db, 216, false}, // 10^84 + {0xc45d1df942711d9a, 242, false}, // 10^92 + {0x924d692ca61be758, 269, false}, // 10^100 + {0xda01ee641a708dea, 295, false}, // 10^108 + {0xa26da3999aef774a, 322, false}, // 10^116 + {0xf209787bb47d6b85, 348, false}, // 10^124 + {0xb454e4a179dd1877, 375, false}, // 10^132 + {0x865b86925b9bc5c2, 402, false}, // 10^140 + {0xc83553c5c8965d3d, 428, false}, // 10^148 + {0x952ab45cfa97a0b3, 455, false}, // 10^156 + {0xde469fbd99a05fe3, 481, false}, // 10^164 + {0xa59bc234db398c25, 508, false}, // 10^172 + {0xf6c69a72a3989f5c, 534, false}, // 10^180 + {0xb7dcbf5354e9bece, 561, false}, // 10^188 + {0x88fcf317f22241e2, 588, false}, // 10^196 + {0xcc20ce9bd35c78a5, 614, false}, // 10^204 + {0x98165af37b2153df, 641, false}, // 10^212 + {0xe2a0b5dc971f303a, 667, false}, // 10^220 + {0xa8d9d1535ce3b396, 694, false}, // 10^228 + {0xfb9b7cd9a4a7443c, 720, false}, // 10^236 + {0xbb764c4ca7a44410, 747, false}, // 10^244 + {0x8bab8eefb6409c1a, 774, false}, // 10^252 + {0xd01fef10a657842c, 800, false}, // 10^260 + {0x9b10a4e5e9913129, 827, false}, // 10^268 + {0xe7109bfba19c0c9d, 853, false}, // 10^276 + {0xac2820d9623bf429, 880, false}, // 10^284 + {0x80444b5e7aa7cf85, 907, false}, // 10^292 + {0xbf21e44003acdd2d, 933, false}, // 10^300 + {0x8e679c2f5e44ff8f, 960, false}, // 10^308 + {0xd433179d9c8cb841, 986, false}, // 10^316 + {0x9e19db92b4e31ba9, 1013, false}, // 10^324 + {0xeb96bf6ebadf77d9, 1039, false}, // 10^332 + {0xaf87023b9bf0ee6b, 1066, false}, // 10^340 +} + +// floatBits returns the bits of the float64 that best approximates +// the extFloat passed as receiver. Overflow is set to true if +// the resulting float64 is ±Inf. +func (f *extFloat) floatBits() (bits uint64, overflow bool) { + flt := &float64info + f.Normalize() + + exp := f.exp + 63 + + // Exponent too small. + if exp < flt.bias+1 { + n := flt.bias + 1 - exp + f.mant >>= uint(n) + exp += n + } + + // Extract 1+flt.mantbits bits. + mant := f.mant >> (63 - flt.mantbits) + if f.mant&(1<<(62-flt.mantbits)) != 0 { + // Round up. + mant += 1 + } + + // Rounding might have added a bit; shift down. + if mant == 2<<flt.mantbits { + mant >>= 1 + exp++ + } + + // Infinities. + if exp-flt.bias >= 1<<flt.expbits-1 { + goto overflow + } + + // Denormalized? + if mant&(1<<flt.mantbits) == 0 { + exp = flt.bias + } + goto out + +overflow: + // ±Inf + mant = 0 + exp = 1<<flt.expbits - 1 + flt.bias + overflow = true + +out: + // Assemble bits. + bits = mant & (uint64(1)<<flt.mantbits - 1) + bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits + if f.neg { + bits |= 1 << (flt.mantbits + flt.expbits) + } + return +} + +// Assign sets f to the value of x. +func (f *extFloat) Assign(x float64) { + if x < 0 { + x = -x + f.neg = true + } + x, f.exp = math.Frexp(x) + f.mant = uint64(x * float64(1<<64)) + f.exp -= 64 +} + +// Normalize normalizes f so that the highest bit of the mantissa is +// set, and returns the number by which the mantissa was left-shifted. +func (f *extFloat) Normalize() uint { + if f.mant == 0 { + return 0 + } + exp_before := f.exp + for f.mant < (1 << 55) { + f.mant <<= 8 + f.exp -= 8 + } + for f.mant < (1 << 63) { + f.mant <<= 1 + f.exp -= 1 + } + return uint(exp_before - f.exp) +} + +// Multiply sets f to the product f*g: the result is correctly rounded, +// but not normalized. +func (f *extFloat) Multiply(g extFloat) { + fhi, flo := f.mant>>32, uint64(uint32(f.mant)) + ghi, glo := g.mant>>32, uint64(uint32(g.mant)) + + // Cross products. + cross1 := fhi * glo + cross2 := flo * ghi + + // f.mant*g.mant is fhi*ghi << 64 + (cross1+cross2) << 32 + flo*glo + f.mant = fhi*ghi + (cross1 >> 32) + (cross2 >> 32) + rem := uint64(uint32(cross1)) + uint64(uint32(cross2)) + ((flo * glo) >> 32) + // Round up. + rem += (1 << 31) + + f.mant += (rem >> 32) + f.exp = f.exp + g.exp + 64 +} + +var uint64pow10 = [...]uint64{ + 1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, + 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, +} + +// AssignDecimal sets f to an approximate value of the decimal d. It +// returns true if the value represented by f is guaranteed to be the +// best approximation of d after being rounded to a float64. +func (f *extFloat) AssignDecimal(d *decimal) (ok bool) { + const uint64digits = 19 + const errorscale = 8 + mant10, digits := d.atou64() + exp10 := d.dp - digits + errors := 0 // An upper bound for error, computed in errorscale*ulp. + + if digits < d.nd { + // the decimal number was truncated. + errors += errorscale / 2 + } + + f.mant = mant10 + f.exp = 0 + f.neg = d.neg + + // Multiply by powers of ten. + i := (exp10 - firstPowerOfTen) / stepPowerOfTen + if exp10 < firstPowerOfTen || i >= len(powersOfTen) { + return false + } + adjExp := (exp10 - firstPowerOfTen) % stepPowerOfTen + + // We multiply by exp%step + if digits+adjExp <= uint64digits { + // We can multiply the mantissa + f.mant *= uint64(float64pow10[adjExp]) + f.Normalize() + } else { + f.Normalize() + f.Multiply(smallPowersOfTen[adjExp]) + errors += errorscale / 2 + } + + // We multiply by 10 to the exp - exp%step. + f.Multiply(powersOfTen[i]) + if errors > 0 { + errors += 1 + } + errors += errorscale / 2 + + // Normalize + shift := f.Normalize() + errors <<= shift + + // Now f is a good approximation of the decimal. + // Check whether the error is too large: that is, if the mantissa + // is perturbated by the error, the resulting float64 will change. + // The 64 bits mantissa is 1 + 52 bits for float64 + 11 extra bits. + // + // In many cases the approximation will be good enough. + const denormalExp = -1023 - 63 + flt := &float64info + var extrabits uint + if f.exp <= denormalExp { + extrabits = uint(63 - flt.mantbits + 1 + uint(denormalExp-f.exp)) + } else { + extrabits = uint(63 - flt.mantbits) + } + + halfway := uint64(1) << (extrabits - 1) + mant_extra := f.mant & (1<<extrabits - 1) + + // Do a signed comparison here! If the error estimate could make + // the mantissa round differently for the conversion to double, + // then we can't give a definite answer. + if int64(halfway)-int64(errors) < int64(mant_extra) && + int64(mant_extra) < int64(halfway)+int64(errors) { + return false + } + return true +} |