diff options
Diffstat (limited to 'libgo/go/runtime/lockrank_on.go')
-rw-r--r-- | libgo/go/runtime/lockrank_on.go | 214 |
1 files changed, 214 insertions, 0 deletions
diff --git a/libgo/go/runtime/lockrank_on.go b/libgo/go/runtime/lockrank_on.go new file mode 100644 index 0000000..fbc5ff5 --- /dev/null +++ b/libgo/go/runtime/lockrank_on.go @@ -0,0 +1,214 @@ +// Copyright 2020 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// +build goexperiment.staticlockranking + +package runtime + +import ( + "unsafe" +) + +// lockRankStruct is embedded in mutex +type lockRankStruct struct { + // static lock ranking of the lock + rank lockRank + // pad field to make sure lockRankStruct is a multiple of 8 bytes, even on + // 32-bit systems. + pad int +} + +// init checks that the partial order in lockPartialOrder fits within the total +// order determined by the order of the lockRank constants. +func init() { + for rank, list := range lockPartialOrder { + for _, entry := range list { + if entry > lockRank(rank) { + println("lockPartial order row", lockRank(rank).String(), "entry", entry.String()) + throw("lockPartialOrder table is inconsistent with total lock ranking order") + } + } + } +} + +func lockInit(l *mutex, rank lockRank) { + l.rank = rank +} + +func getLockRank(l *mutex) lockRank { + return l.rank +} + +// The following functions are the entry-points to record lock +// operations. +// All of these are nosplit and switch to the system stack immediately +// to avoid stack growths. Since a stack growth could itself have lock +// operations, this prevents re-entrant calls. + +// lockWithRank is like lock(l), but allows the caller to specify a lock rank +// when acquiring a non-static lock. +//go:nosplit +func lockWithRank(l *mutex, rank lockRank) { + if l == &debuglock || l == &paniclk { + // debuglock is only used for println/printlock(). Don't do lock + // rank recording for it, since print/println are used when + // printing out a lock ordering problem below. + // + // paniclk has an ordering problem, since it can be acquired + // during a panic with any other locks held (especially if the + // panic is because of a directed segv), and yet also allg is + // acquired after paniclk in tracebackothers()). This is a genuine + // problem, so for now we don't do lock rank recording for paniclk + // either. + lock2(l) + return + } + if rank == 0 { + rank = lockRankLeafRank + } + gp := getg() + // Log the new class. + systemstack(func() { + i := gp.m.locksHeldLen + if i >= len(gp.m.locksHeld) { + throw("too many locks held concurrently for rank checking") + } + gp.m.locksHeld[i].rank = rank + gp.m.locksHeld[i].lockAddr = uintptr(unsafe.Pointer(l)) + gp.m.locksHeldLen++ + + // i is the index of the lock being acquired + if i > 0 { + checkRanks(gp, gp.m.locksHeld[i-1].rank, rank) + } + lock2(l) + }) +} + +// acquireLockRank acquires a rank which is not associated with a mutex lock +//go:nosplit +func acquireLockRank(rank lockRank) { + gp := getg() + // Log the new class. + systemstack(func() { + i := gp.m.locksHeldLen + if i >= len(gp.m.locksHeld) { + throw("too many locks held concurrently for rank checking") + } + gp.m.locksHeld[i].rank = rank + gp.m.locksHeld[i].lockAddr = 0 + gp.m.locksHeldLen++ + + // i is the index of the lock being acquired + if i > 0 { + checkRanks(gp, gp.m.locksHeld[i-1].rank, rank) + } + }) +} + +// checkRanks checks if goroutine g, which has mostly recently acquired a lock +// with rank 'prevRank', can now acquire a lock with rank 'rank'. +func checkRanks(gp *g, prevRank, rank lockRank) { + rankOK := false + if rank < prevRank { + // If rank < prevRank, then we definitely have a rank error + rankOK = false + } else if rank == lockRankLeafRank { + // If new lock is a leaf lock, then the preceding lock can + // be anything except another leaf lock. + rankOK = prevRank < lockRankLeafRank + } else { + // We've now verified the total lock ranking, but we + // also enforce the partial ordering specified by + // lockPartialOrder as well. Two locks with the same rank + // can only be acquired at the same time if explicitly + // listed in the lockPartialOrder table. + list := lockPartialOrder[rank] + for _, entry := range list { + if entry == prevRank { + rankOK = true + break + } + } + } + if !rankOK { + printlock() + println(gp.m.procid, " ======") + for j, held := range gp.m.locksHeld[:gp.m.locksHeldLen] { + println(j, ":", held.rank.String(), held.rank, unsafe.Pointer(gp.m.locksHeld[j].lockAddr)) + } + throw("lock ordering problem") + } +} + +//go:nosplit +func unlockWithRank(l *mutex) { + if l == &debuglock || l == &paniclk { + // See comment at beginning of lockWithRank. + unlock2(l) + return + } + gp := getg() + systemstack(func() { + found := false + for i := gp.m.locksHeldLen - 1; i >= 0; i-- { + if gp.m.locksHeld[i].lockAddr == uintptr(unsafe.Pointer(l)) { + found = true + copy(gp.m.locksHeld[i:gp.m.locksHeldLen-1], gp.m.locksHeld[i+1:gp.m.locksHeldLen]) + gp.m.locksHeldLen-- + break + } + } + if !found { + println(gp.m.procid, ":", l.rank.String(), l.rank, l) + throw("unlock without matching lock acquire") + } + unlock2(l) + }) +} + +// releaseLockRank releases a rank which is not associated with a mutex lock +//go:nosplit +func releaseLockRank(rank lockRank) { + gp := getg() + systemstack(func() { + found := false + for i := gp.m.locksHeldLen - 1; i >= 0; i-- { + if gp.m.locksHeld[i].rank == rank && gp.m.locksHeld[i].lockAddr == 0 { + found = true + copy(gp.m.locksHeld[i:gp.m.locksHeldLen-1], gp.m.locksHeld[i+1:gp.m.locksHeldLen]) + gp.m.locksHeldLen-- + break + } + } + if !found { + println(gp.m.procid, ":", rank.String(), rank) + throw("lockRank release without matching lockRank acquire") + } + }) +} + +//go:nosplit +func lockWithRankMayAcquire(l *mutex, rank lockRank) { + gp := getg() + if gp.m.locksHeldLen == 0 { + // No possibilty of lock ordering problem if no other locks held + return + } + + systemstack(func() { + i := gp.m.locksHeldLen + if i >= len(gp.m.locksHeld) { + throw("too many locks held concurrently for rank checking") + } + // Temporarily add this lock to the locksHeld list, so + // checkRanks() will print out list, including this lock, if there + // is a lock ordering problem. + gp.m.locksHeld[i].rank = rank + gp.m.locksHeld[i].lockAddr = uintptr(unsafe.Pointer(l)) + gp.m.locksHeldLen++ + checkRanks(gp, gp.m.locksHeld[i-1].rank, rank) + gp.m.locksHeldLen-- + }) +} |