aboutsummaryrefslogtreecommitdiff
path: root/libgo/go/runtime/hashmap.go
diff options
context:
space:
mode:
Diffstat (limited to 'libgo/go/runtime/hashmap.go')
-rw-r--r--libgo/go/runtime/hashmap.go695
1 files changed, 344 insertions, 351 deletions
diff --git a/libgo/go/runtime/hashmap.go b/libgo/go/runtime/hashmap.go
index a3e50cd..a1fe49e 100644
--- a/libgo/go/runtime/hashmap.go
+++ b/libgo/go/runtime/hashmap.go
@@ -63,6 +63,8 @@ import (
// themselves, so that the compiler will export them.
//
//go:linkname makemap runtime.makemap
+//go:linkname makemap64 runtime.makemap64
+//go:linkname makemap_small runtime.makemap_small
//go:linkname mapaccess1 runtime.mapaccess1
//go:linkname mapaccess2 runtime.mapaccess2
//go:linkname mapaccess1_fat runtime.mapaccess1_fat
@@ -77,8 +79,10 @@ const (
bucketCntBits = 3
bucketCnt = 1 << bucketCntBits
- // Maximum average load of a bucket that triggers growth.
- loadFactor = 6.5
+ // Maximum average load of a bucket that triggers growth is 6.5.
+ // Represent as loadFactorNum/loadFactDen, to allow integer math.
+ loadFactorNum = 13
+ loadFactorDen = 2
// Maximum key or value size to keep inline (instead of mallocing per element).
// Must fit in a uint8.
@@ -137,12 +141,13 @@ type mapextra struct {
// If both key and value do not contain pointers and are inline, then we mark bucket
// type as containing no pointers. This avoids scanning such maps.
// However, bmap.overflow is a pointer. In order to keep overflow buckets
- // alive, we store pointers to all overflow buckets in hmap.overflow.
- // Overflow is used only if key and value do not contain pointers.
- // overflow[0] contains overflow buckets for hmap.buckets.
- // overflow[1] contains overflow buckets for hmap.oldbuckets.
+ // alive, we store pointers to all overflow buckets in hmap.overflow and h.map.oldoverflow.
+ // overflow and oldoverflow are only used if key and value do not contain pointers.
+ // overflow contains overflow buckets for hmap.buckets.
+ // oldoverflow contains overflow buckets for hmap.oldbuckets.
// The indirection allows to store a pointer to the slice in hiter.
- overflow [2]*[]*bmap
+ overflow *[]*bmap
+ oldoverflow *[]*bmap
// nextOverflow holds a pointer to a free overflow bucket.
nextOverflow *bmap
@@ -171,7 +176,8 @@ type hiter struct {
h *hmap
buckets unsafe.Pointer // bucket ptr at hash_iter initialization time
bptr *bmap // current bucket
- overflow [2]*[]*bmap // keeps overflow buckets alive
+ overflow *[]*bmap // keeps overflow buckets of hmap.buckets alive
+ oldoverflow *[]*bmap // keeps overflow buckets of hmap.oldbuckets alive
startBucket uintptr // bucket iteration started at
offset uint8 // intra-bucket offset to start from during iteration (should be big enough to hold bucketCnt-1)
wrapped bool // already wrapped around from end of bucket array to beginning
@@ -181,6 +187,28 @@ type hiter struct {
checkBucket uintptr
}
+// bucketShift returns 1<<b, optimized for code generation.
+func bucketShift(b uint8) uintptr {
+ if sys.GoarchAmd64|sys.GoarchAmd64p32|sys.Goarch386 != 0 {
+ b &= sys.PtrSize*8 - 1 // help x86 archs remove shift overflow checks
+ }
+ return uintptr(1) << b
+}
+
+// bucketMask returns 1<<b - 1, optimized for code generation.
+func bucketMask(b uint8) uintptr {
+ return bucketShift(b) - 1
+}
+
+// tophash calculates the tophash value for hash.
+func tophash(hash uintptr) uint8 {
+ top := uint8(hash >> (sys.PtrSize*8 - 8))
+ if top < minTopHash {
+ top += minTopHash
+ }
+ return top
+}
+
func evacuated(b *bmap) bool {
h := b.tophash[0]
return h > empty && h < minTopHash
@@ -194,6 +222,10 @@ func (b *bmap) setoverflow(t *maptype, ovf *bmap) {
*(**bmap)(add(unsafe.Pointer(b), uintptr(t.bucketsize)-sys.PtrSize)) = ovf
}
+func (b *bmap) keys() unsafe.Pointer {
+ return add(unsafe.Pointer(b), dataOffset)
+}
+
// incrnoverflow increments h.noverflow.
// noverflow counts the number of overflow buckets.
// This is used to trigger same-size map growth.
@@ -242,7 +274,7 @@ func (h *hmap) newoverflow(t *maptype, b *bmap) *bmap {
h.incrnoverflow()
if t.bucket.kind&kindNoPointers != 0 {
h.createOverflow()
- *h.extra.overflow[0] = append(*h.extra.overflow[0], ovf)
+ *h.extra.overflow = append(*h.extra.overflow, ovf)
}
b.setoverflow(t, ovf)
return ovf
@@ -252,97 +284,69 @@ func (h *hmap) createOverflow() {
if h.extra == nil {
h.extra = new(mapextra)
}
- if h.extra.overflow[0] == nil {
- h.extra.overflow[0] = new([]*bmap)
+ if h.extra.overflow == nil {
+ h.extra.overflow = new([]*bmap)
}
}
-// makemap implements a Go map creation make(map[k]v, hint)
+func makemap64(t *maptype, hint int64, h *hmap) *hmap {
+ if int64(int(hint)) != hint {
+ hint = 0
+ }
+ return makemap(t, int(hint), h)
+}
+
+// makehmap_small implements Go map creation for make(map[k]v) and
+// make(map[k]v, hint) when hint is known to be at most bucketCnt
+// at compile time and the map needs to be allocated on the heap.
+func makemap_small() *hmap {
+ h := new(hmap)
+ h.hash0 = fastrand()
+ return h
+}
+
+// makemap implements Go map creation for make(map[k]v, hint).
// If the compiler has determined that the map or the first bucket
// can be created on the stack, h and/or bucket may be non-nil.
// If h != nil, the map can be created directly in h.
-// If bucket != nil, bucket can be used as the first bucket.
-func makemap(t *maptype, hint int64, h *hmap, bucket unsafe.Pointer) *hmap {
- if sz := unsafe.Sizeof(hmap{}); sz > 48 || sz != t.hmap.size {
+// If h.buckets != nil, bucket pointed to can be used as the first bucket.
+func makemap(t *maptype, hint int, h *hmap) *hmap {
+ // The size of hmap should be 48 bytes on 64 bit
+ // and 28 bytes on 32 bit platforms.
+ if sz := unsafe.Sizeof(hmap{}); sz != 8+5*sys.PtrSize {
println("runtime: sizeof(hmap) =", sz, ", t.hmap.size =", t.hmap.size)
throw("bad hmap size")
}
- if hint < 0 || hint > int64(maxSliceCap(t.bucket.size)) {
+ if hint < 0 || hint > int(maxSliceCap(t.bucket.size)) {
hint = 0
}
- if !ismapkey(t.key) {
- throw("runtime.makemap: unsupported map key type")
- }
-
- // check compiler's and reflect's math
- if t.key.size > maxKeySize && (!t.indirectkey || t.keysize != uint8(sys.PtrSize)) ||
- t.key.size <= maxKeySize && (t.indirectkey || t.keysize != uint8(t.key.size)) {
- throw("key size wrong")
- }
- if t.elem.size > maxValueSize && (!t.indirectvalue || t.valuesize != uint8(sys.PtrSize)) ||
- t.elem.size <= maxValueSize && (t.indirectvalue || t.valuesize != uint8(t.elem.size)) {
- throw("value size wrong")
- }
-
- // invariants we depend on. We should probably check these at compile time
- // somewhere, but for now we'll do it here.
- if t.key.align > bucketCnt {
- throw("key align too big")
- }
- if t.elem.align > bucketCnt {
- throw("value align too big")
- }
- if t.key.size%uintptr(t.key.align) != 0 {
- throw("key size not a multiple of key align")
- }
- if t.elem.size%uintptr(t.elem.align) != 0 {
- throw("value size not a multiple of value align")
- }
- if bucketCnt < 8 {
- throw("bucketsize too small for proper alignment")
- }
- if dataOffset%uintptr(t.key.align) != 0 {
- throw("need padding in bucket (key)")
- }
- if dataOffset%uintptr(t.elem.align) != 0 {
- throw("need padding in bucket (value)")
+ // initialize Hmap
+ if h == nil {
+ h = (*hmap)(newobject(t.hmap))
}
+ h.hash0 = fastrand()
// find size parameter which will hold the requested # of elements
B := uint8(0)
- for ; overLoadFactor(hint, B); B++ {
+ for overLoadFactor(hint, B) {
+ B++
}
+ h.B = B
// allocate initial hash table
// if B == 0, the buckets field is allocated lazily later (in mapassign)
// If hint is large zeroing this memory could take a while.
- buckets := bucket
- var extra *mapextra
- if B != 0 {
+ if h.B != 0 {
var nextOverflow *bmap
- buckets, nextOverflow = makeBucketArray(t, B)
+ h.buckets, nextOverflow = makeBucketArray(t, h.B)
if nextOverflow != nil {
- extra = new(mapextra)
- extra.nextOverflow = nextOverflow
+ h.extra = new(mapextra)
+ h.extra.nextOverflow = nextOverflow
}
}
- // initialize Hmap
- if h == nil {
- h = (*hmap)(newobject(t.hmap))
- }
- h.count = 0
- h.B = B
- h.extra = extra
- h.flags = 0
- h.hash0 = fastrand()
- h.buckets = buckets
- h.oldbuckets = nil
- h.nevacuate = 0
- h.noverflow = 0
-
return h
}
@@ -353,7 +357,7 @@ func makemap(t *maptype, hint int64, h *hmap, bucket unsafe.Pointer) *hmap {
// hold onto it for very long.
func mapaccess1(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
if raceenabled && h != nil {
- callerpc := getcallerpc(unsafe.Pointer( /* &t */ nil))
+ callerpc := getcallerpc()
pc := funcPC(mapaccess1)
racereadpc(unsafe.Pointer(h), callerpc, pc)
raceReadObjectPC(t.key, key, callerpc, pc)
@@ -370,7 +374,7 @@ func mapaccess1(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
hashfn := t.key.hashfn
equalfn := t.key.equalfn
hash := hashfn(key, uintptr(h.hash0))
- m := uintptr(1)<<h.B - 1
+ m := bucketMask(h.B)
b := (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize)))
if c := h.oldbuckets; c != nil {
if !h.sameSizeGrow() {
@@ -382,11 +386,8 @@ func mapaccess1(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
b = oldb
}
}
- top := uint8(hash >> (sys.PtrSize*8 - 8))
- if top < minTopHash {
- top += minTopHash
- }
- for {
+ top := tophash(hash)
+ for ; b != nil; b = b.overflow(t) {
for i := uintptr(0); i < bucketCnt; i++ {
if b.tophash[i] != top {
continue
@@ -403,16 +404,13 @@ func mapaccess1(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
return v
}
}
- b = b.overflow(t)
- if b == nil {
- return unsafe.Pointer(&zeroVal[0])
- }
}
+ return unsafe.Pointer(&zeroVal[0])
}
func mapaccess2(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, bool) {
if raceenabled && h != nil {
- callerpc := getcallerpc(unsafe.Pointer( /* &t */ nil))
+ callerpc := getcallerpc()
pc := funcPC(mapaccess2)
racereadpc(unsafe.Pointer(h), callerpc, pc)
raceReadObjectPC(t.key, key, callerpc, pc)
@@ -429,7 +427,7 @@ func mapaccess2(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, bool)
hashfn := t.key.hashfn
equalfn := t.key.equalfn
hash := hashfn(key, uintptr(h.hash0))
- m := uintptr(1)<<h.B - 1
+ m := bucketMask(h.B)
b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + (hash&m)*uintptr(t.bucketsize)))
if c := h.oldbuckets; c != nil {
if !h.sameSizeGrow() {
@@ -441,11 +439,8 @@ func mapaccess2(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, bool)
b = oldb
}
}
- top := uint8(hash >> (sys.PtrSize*8 - 8))
- if top < minTopHash {
- top += minTopHash
- }
- for {
+ top := tophash(hash)
+ for ; b != nil; b = b.overflow(t) {
for i := uintptr(0); i < bucketCnt; i++ {
if b.tophash[i] != top {
continue
@@ -462,11 +457,8 @@ func mapaccess2(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, bool)
return v, true
}
}
- b = b.overflow(t)
- if b == nil {
- return unsafe.Pointer(&zeroVal[0]), false
- }
}
+ return unsafe.Pointer(&zeroVal[0]), false
}
// returns both key and value. Used by map iterator
@@ -477,7 +469,7 @@ func mapaccessK(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, unsafe
hashfn := t.key.hashfn
equalfn := t.key.equalfn
hash := hashfn(key, uintptr(h.hash0))
- m := uintptr(1)<<h.B - 1
+ m := bucketMask(h.B)
b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + (hash&m)*uintptr(t.bucketsize)))
if c := h.oldbuckets; c != nil {
if !h.sameSizeGrow() {
@@ -489,11 +481,8 @@ func mapaccessK(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, unsafe
b = oldb
}
}
- top := uint8(hash >> (sys.PtrSize*8 - 8))
- if top < minTopHash {
- top += minTopHash
- }
- for {
+ top := tophash(hash)
+ for ; b != nil; b = b.overflow(t) {
for i := uintptr(0); i < bucketCnt; i++ {
if b.tophash[i] != top {
continue
@@ -510,11 +499,8 @@ func mapaccessK(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, unsafe
return k, v
}
}
- b = b.overflow(t)
- if b == nil {
- return nil, nil
- }
}
+ return nil, nil
}
func mapaccess1_fat(t *maptype, h *hmap, key, zero unsafe.Pointer) unsafe.Pointer {
@@ -539,7 +525,7 @@ func mapassign(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
panic(plainError("assignment to entry in nil map"))
}
if raceenabled {
- callerpc := getcallerpc(unsafe.Pointer( /* &t */ nil))
+ callerpc := getcallerpc()
pc := funcPC(mapassign)
racewritepc(unsafe.Pointer(h), callerpc, pc)
raceReadObjectPC(t.key, key, callerpc, pc)
@@ -559,19 +545,16 @@ func mapassign(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
h.flags |= hashWriting
if h.buckets == nil {
- h.buckets = newarray(t.bucket, 1)
+ h.buckets = newobject(t.bucket) // newarray(t.bucket, 1)
}
again:
- bucket := hash & (uintptr(1)<<h.B - 1)
+ bucket := hash & bucketMask(h.B)
if h.growing() {
growWork(t, h, bucket)
}
b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize)))
- top := uint8(hash >> (sys.PtrSize*8 - 8))
- if top < minTopHash {
- top += minTopHash
- }
+ top := tophash(hash)
var inserti *uint8
var insertk unsafe.Pointer
@@ -611,7 +594,7 @@ again:
// If we hit the max load factor or we have too many overflow buckets,
// and we're not already in the middle of growing, start growing.
- if !h.growing() && (overLoadFactor(int64(h.count), h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) {
+ if !h.growing() && (overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) {
hashGrow(t, h)
goto again // Growing the table invalidates everything, so try again
}
@@ -651,7 +634,7 @@ done:
func mapdelete(t *maptype, h *hmap, key unsafe.Pointer) {
if raceenabled && h != nil {
- callerpc := getcallerpc(unsafe.Pointer( /* &t */ nil))
+ callerpc := getcallerpc()
pc := funcPC(mapdelete)
racewritepc(unsafe.Pointer(h), callerpc, pc)
raceReadObjectPC(t.key, key, callerpc, pc)
@@ -674,16 +657,14 @@ func mapdelete(t *maptype, h *hmap, key unsafe.Pointer) {
// in which case we have not actually done a write (delete).
h.flags |= hashWriting
- bucket := hash & (uintptr(1)<<h.B - 1)
+ bucket := hash & bucketMask(h.B)
if h.growing() {
growWork(t, h, bucket)
}
- b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize)))
- top := uint8(hash >> (sys.PtrSize*8 - 8))
- if top < minTopHash {
- top += minTopHash
- }
- for {
+ b := (*bmap)(add(h.buckets, bucket*uintptr(t.bucketsize)))
+ top := tophash(hash)
+search:
+ for ; b != nil; b = b.overflow(t) {
for i := uintptr(0); i < bucketCnt; i++ {
if b.tophash[i] != top {
continue
@@ -696,53 +677,58 @@ func mapdelete(t *maptype, h *hmap, key unsafe.Pointer) {
if !equalfn(key, k2) {
continue
}
+ // Only clear key if there are pointers in it.
if t.indirectkey {
*(*unsafe.Pointer)(k) = nil
- } else {
- typedmemclr(t.key, k)
+ } else if t.key.kind&kindNoPointers == 0 {
+ memclrHasPointers(k, t.key.size)
}
- v := unsafe.Pointer(uintptr(unsafe.Pointer(b)) + dataOffset + bucketCnt*uintptr(t.keysize) + i*uintptr(t.valuesize))
- if t.indirectvalue {
- *(*unsafe.Pointer)(v) = nil
- } else {
- typedmemclr(t.elem, v)
+ // Only clear value if there are pointers in it.
+ if t.indirectvalue || t.elem.kind&kindNoPointers == 0 {
+ v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
+ if t.indirectvalue {
+ *(*unsafe.Pointer)(v) = nil
+ } else {
+ memclrHasPointers(v, t.elem.size)
+ }
}
b.tophash[i] = empty
h.count--
- goto done
- }
- b = b.overflow(t)
- if b == nil {
- goto done
+ break search
}
}
-done:
if h.flags&hashWriting == 0 {
throw("concurrent map writes")
}
h.flags &^= hashWriting
}
+// mapiterinit initializes the hiter struct used for ranging over maps.
+// The hiter struct pointed to by 'it' is allocated on the stack
+// by the compilers order pass or on the heap by reflect_mapiterinit.
+// Both need to have zeroed hiter since the struct contains pointers.
+// Gccgo-specific: *it need not be zeroed by the compiler,
+// and it's cheaper to zero it here.
func mapiterinit(t *maptype, h *hmap, it *hiter) {
- // Clear pointer fields so garbage collector does not complain.
it.key = nil
it.value = nil
it.t = nil
it.h = nil
it.buckets = nil
it.bptr = nil
- it.overflow[0] = nil
- it.overflow[1] = nil
+ it.overflow = nil
+ it.oldoverflow = nil
+ it.wrapped = false
+ it.i = 0
+ it.checkBucket = 0
if raceenabled && h != nil {
- callerpc := getcallerpc(unsafe.Pointer( /* &t */ nil))
+ callerpc := getcallerpc()
racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapiterinit))
}
if h == nil || h.count == 0 {
- it.key = nil
- it.value = nil
return
}
@@ -762,6 +748,7 @@ func mapiterinit(t *maptype, h *hmap, it *hiter) {
// while we are iterating.
h.createOverflow()
it.overflow = h.extra.overflow
+ it.oldoverflow = h.extra.oldoverflow
}
// decide where to start
@@ -769,16 +756,14 @@ func mapiterinit(t *maptype, h *hmap, it *hiter) {
if h.B > 31-bucketCntBits {
r += uintptr(fastrand()) << 31
}
- it.startBucket = r & (uintptr(1)<<h.B - 1)
+ it.startBucket = r & bucketMask(h.B)
it.offset = uint8(r >> h.B & (bucketCnt - 1))
// iterator state
it.bucket = it.startBucket
- it.wrapped = false
- it.bptr = nil
// Remember we have an iterator.
- // Can run concurrently with another hash_iter_init().
+ // Can run concurrently with another mapiterinit().
if old := h.flags; old&(iterator|oldIterator) != iterator|oldIterator {
atomic.Or8(&h.flags, iterator|oldIterator)
}
@@ -789,7 +774,7 @@ func mapiterinit(t *maptype, h *hmap, it *hiter) {
func mapiternext(it *hiter) {
h := it.h
if raceenabled {
- callerpc := getcallerpc(unsafe.Pointer( /* &it */ nil))
+ callerpc := getcallerpc()
racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapiternext))
}
if h.flags&hashWriting != 0 {
@@ -829,7 +814,7 @@ next:
checkBucket = noCheck
}
bucket++
- if bucket == uintptr(1)<<it.B {
+ if bucket == bucketShift(it.B) {
bucket = 0
it.wrapped = true
}
@@ -837,90 +822,75 @@ next:
}
for ; i < bucketCnt; i++ {
offi := (i + it.offset) & (bucketCnt - 1)
+ if b.tophash[offi] == empty || b.tophash[offi] == evacuatedEmpty {
+ continue
+ }
k := add(unsafe.Pointer(b), dataOffset+uintptr(offi)*uintptr(t.keysize))
+ if t.indirectkey {
+ k = *((*unsafe.Pointer)(k))
+ }
v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+uintptr(offi)*uintptr(t.valuesize))
- if b.tophash[offi] != empty && b.tophash[offi] != evacuatedEmpty {
- if checkBucket != noCheck && !h.sameSizeGrow() {
- // Special case: iterator was started during a grow to a larger size
- // and the grow is not done yet. We're working on a bucket whose
- // oldbucket has not been evacuated yet. Or at least, it wasn't
- // evacuated when we started the bucket. So we're iterating
- // through the oldbucket, skipping any keys that will go
- // to the other new bucket (each oldbucket expands to two
- // buckets during a grow).
- k2 := k
- if t.indirectkey {
- k2 = *((*unsafe.Pointer)(k2))
- }
- if t.reflexivekey || equalfn(k2, k2) {
- // If the item in the oldbucket is not destined for
- // the current new bucket in the iteration, skip it.
- hash := hashfn(k2, uintptr(h.hash0))
- if hash&(uintptr(1)<<it.B-1) != checkBucket {
- continue
- }
- } else {
- // Hash isn't repeatable if k != k (NaNs). We need a
- // repeatable and randomish choice of which direction
- // to send NaNs during evacuation. We'll use the low
- // bit of tophash to decide which way NaNs go.
- // NOTE: this case is why we need two evacuate tophash
- // values, evacuatedX and evacuatedY, that differ in
- // their low bit.
- if checkBucket>>(it.B-1) != uintptr(b.tophash[offi]&1) {
- continue
- }
- }
- }
- if b.tophash[offi] != evacuatedX && b.tophash[offi] != evacuatedY {
- // this is the golden data, we can return it.
- if t.indirectkey {
- k = *((*unsafe.Pointer)(k))
- }
- it.key = k
- if t.indirectvalue {
- v = *((*unsafe.Pointer)(v))
+ if checkBucket != noCheck && !h.sameSizeGrow() {
+ // Special case: iterator was started during a grow to a larger size
+ // and the grow is not done yet. We're working on a bucket whose
+ // oldbucket has not been evacuated yet. Or at least, it wasn't
+ // evacuated when we started the bucket. So we're iterating
+ // through the oldbucket, skipping any keys that will go
+ // to the other new bucket (each oldbucket expands to two
+ // buckets during a grow).
+ if t.reflexivekey || equalfn(k, k) {
+ // If the item in the oldbucket is not destined for
+ // the current new bucket in the iteration, skip it.
+ hash := hashfn(k, uintptr(h.hash0))
+ if hash&bucketMask(it.B) != checkBucket {
+ continue
}
- it.value = v
} else {
- // The hash table has grown since the iterator was started.
- // The golden data for this key is now somewhere else.
- k2 := k
- if t.indirectkey {
- k2 = *((*unsafe.Pointer)(k2))
- }
- if t.reflexivekey || equalfn(k2, k2) {
- // Check the current hash table for the data.
- // This code handles the case where the key
- // has been deleted, updated, or deleted and reinserted.
- // NOTE: we need to regrab the key as it has potentially been
- // updated to an equal() but not identical key (e.g. +0.0 vs -0.0).
- rk, rv := mapaccessK(t, h, k2)
- if rk == nil {
- continue // key has been deleted
- }
- it.key = rk
- it.value = rv
- } else {
- // if key!=key then the entry can't be deleted or
- // updated, so we can just return it. That's lucky for
- // us because when key!=key we can't look it up
- // successfully in the current table.
- it.key = k2
- if t.indirectvalue {
- v = *((*unsafe.Pointer)(v))
- }
- it.value = v
+ // Hash isn't repeatable if k != k (NaNs). We need a
+ // repeatable and randomish choice of which direction
+ // to send NaNs during evacuation. We'll use the low
+ // bit of tophash to decide which way NaNs go.
+ // NOTE: this case is why we need two evacuate tophash
+ // values, evacuatedX and evacuatedY, that differ in
+ // their low bit.
+ if checkBucket>>(it.B-1) != uintptr(b.tophash[offi]&1) {
+ continue
}
}
- it.bucket = bucket
- if it.bptr != b { // avoid unnecessary write barrier; see issue 14921
- it.bptr = b
+ }
+ if (b.tophash[offi] != evacuatedX && b.tophash[offi] != evacuatedY) ||
+ !(t.reflexivekey || equalfn(k, k)) {
+ // This is the golden data, we can return it.
+ // OR
+ // key!=key, so the entry can't be deleted or updated, so we can just return it.
+ // That's lucky for us because when key!=key we can't look it up successfully.
+ it.key = k
+ if t.indirectvalue {
+ v = *((*unsafe.Pointer)(v))
}
- it.i = i + 1
- it.checkBucket = checkBucket
- return
+ it.value = v
+ } else {
+ // The hash table has grown since the iterator was started.
+ // The golden data for this key is now somewhere else.
+ // Check the current hash table for the data.
+ // This code handles the case where the key
+ // has been deleted, updated, or deleted and reinserted.
+ // NOTE: we need to regrab the key as it has potentially been
+ // updated to an equal() but not identical key (e.g. +0.0 vs -0.0).
+ rk, rv := mapaccessK(t, h, k)
+ if rk == nil {
+ continue // key has been deleted
+ }
+ it.key = rk
+ it.value = rv
}
+ it.bucket = bucket
+ if it.bptr != b { // avoid unnecessary write barrier; see issue 14921
+ it.bptr = b
+ }
+ it.i = i + 1
+ it.checkBucket = checkBucket
+ return
}
b = b.overflow(t)
i = 0
@@ -928,7 +898,7 @@ next:
}
func makeBucketArray(t *maptype, b uint8) (buckets unsafe.Pointer, nextOverflow *bmap) {
- base := uintptr(1 << b)
+ base := bucketShift(b)
nbuckets := base
// For small b, overflow buckets are unlikely.
// Avoid the overhead of the calculation.
@@ -936,7 +906,7 @@ func makeBucketArray(t *maptype, b uint8) (buckets unsafe.Pointer, nextOverflow
// Add on the estimated number of overflow buckets
// required to insert the median number of elements
// used with this value of b.
- nbuckets += 1 << (b - 4)
+ nbuckets += bucketShift(b - 4)
sz := t.bucket.size * nbuckets
up := roundupsize(sz)
if up != sz {
@@ -962,7 +932,7 @@ func hashGrow(t *maptype, h *hmap) {
// Otherwise, there are too many overflow buckets,
// so keep the same number of buckets and "grow" laterally.
bigger := uint8(1)
- if !overLoadFactor(int64(h.count), h.B) {
+ if !overLoadFactor(h.count+1, h.B) {
bigger = 0
h.flags |= sameSizeGrow
}
@@ -981,13 +951,13 @@ func hashGrow(t *maptype, h *hmap) {
h.nevacuate = 0
h.noverflow = 0
- if h.extra != nil && h.extra.overflow[0] != nil {
+ if h.extra != nil && h.extra.overflow != nil {
// Promote current overflow buckets to the old generation.
- if h.extra.overflow[1] != nil {
- throw("overflow is not nil")
+ if h.extra.oldoverflow != nil {
+ throw("oldoverflow is not nil")
}
- h.extra.overflow[1] = h.extra.overflow[0]
- h.extra.overflow[0] = nil
+ h.extra.oldoverflow = h.extra.overflow
+ h.extra.overflow = nil
}
if nextOverflow != nil {
if h.extra == nil {
@@ -1001,9 +971,8 @@ func hashGrow(t *maptype, h *hmap) {
}
// overLoadFactor reports whether count items placed in 1<<B buckets is over loadFactor.
-func overLoadFactor(count int64, B uint8) bool {
- // TODO: rewrite to use integer math and comparison?
- return count >= bucketCnt && float32(count) >= loadFactor*float32((uint64(1)<<B))
+func overLoadFactor(count int, B uint8) bool {
+ return count > bucketCnt && uintptr(count) > loadFactorNum*(bucketShift(B)/loadFactorDen)
}
// tooManyOverflowBuckets reports whether noverflow buckets is too many for a map with 1<<B buckets.
@@ -1014,10 +983,11 @@ func tooManyOverflowBuckets(noverflow uint16, B uint8) bool {
// If the threshold is too high, maps that grow and shrink can hold on to lots of unused memory.
// "too many" means (approximately) as many overflow buckets as regular buckets.
// See incrnoverflow for more details.
- if B < 16 {
- return noverflow >= uint16(1)<<B
+ if B > 15 {
+ B = 15
}
- return noverflow >= 1<<15
+ // The compiler doesn't see here that B < 16; mask B to generate shorter shift code.
+ return noverflow >= uint16(1)<<(B&15)
}
// growing reports whether h is growing. The growth may be to the same size or bigger.
@@ -1036,7 +1006,7 @@ func (h *hmap) noldbuckets() uintptr {
if !h.sameSizeGrow() {
oldB--
}
- return uintptr(1) << oldB
+ return bucketShift(oldB)
}
// oldbucketmask provides a mask that can be applied to calculate n % noldbuckets().
@@ -1060,33 +1030,38 @@ func bucketEvacuated(t *maptype, h *hmap, bucket uintptr) bool {
return evacuated(b)
}
+// evacDst is an evacuation destination.
+type evacDst struct {
+ b *bmap // current destination bucket
+ i int // key/val index into b
+ k unsafe.Pointer // pointer to current key storage
+ v unsafe.Pointer // pointer to current value storage
+}
+
func evacuate(t *maptype, h *hmap, oldbucket uintptr) {
b := (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)))
newbit := h.noldbuckets()
hashfn := t.key.hashfn
- equalfn := t.key.equalfn
if !evacuated(b) {
// TODO: reuse overflow buckets instead of using new ones, if there
// is no iterator using the old buckets. (If !oldIterator.)
- var (
- x, y *bmap // current low/high buckets in new map
- xi, yi int // key/val indices into x and y
- xk, yk unsafe.Pointer // pointers to current x and y key storage
- xv, yv unsafe.Pointer // pointers to current x and y value storage
- )
- x = (*bmap)(add(h.buckets, oldbucket*uintptr(t.bucketsize)))
- xi = 0
- xk = add(unsafe.Pointer(x), dataOffset)
- xv = add(xk, bucketCnt*uintptr(t.keysize))
+ // xy contains the x and y (low and high) evacuation destinations.
+ var xy [2]evacDst
+ x := &xy[0]
+ x.b = (*bmap)(add(h.buckets, oldbucket*uintptr(t.bucketsize)))
+ x.k = add(unsafe.Pointer(x.b), dataOffset)
+ x.v = add(x.k, bucketCnt*uintptr(t.keysize))
+
if !h.sameSizeGrow() {
// Only calculate y pointers if we're growing bigger.
// Otherwise GC can see bad pointers.
- y = (*bmap)(add(h.buckets, (oldbucket+newbit)*uintptr(t.bucketsize)))
- yi = 0
- yk = add(unsafe.Pointer(y), dataOffset)
- yv = add(yk, bucketCnt*uintptr(t.keysize))
+ y := &xy[1]
+ y.b = (*bmap)(add(h.buckets, (oldbucket+newbit)*uintptr(t.bucketsize)))
+ y.k = add(unsafe.Pointer(y.b), dataOffset)
+ y.v = add(y.k, bucketCnt*uintptr(t.keysize))
}
+
for ; b != nil; b = b.overflow(t) {
k := add(unsafe.Pointer(b), dataOffset)
v := add(k, bucketCnt*uintptr(t.keysize))
@@ -1103,122 +1078,102 @@ func evacuate(t *maptype, h *hmap, oldbucket uintptr) {
if t.indirectkey {
k2 = *((*unsafe.Pointer)(k2))
}
- useX := true
+ var useY uint8
if !h.sameSizeGrow() {
// Compute hash to make our evacuation decision (whether we need
// to send this key/value to bucket x or bucket y).
hash := hashfn(k2, uintptr(h.hash0))
- if h.flags&iterator != 0 {
- if !t.reflexivekey && !equalfn(k2, k2) {
- // If key != key (NaNs), then the hash could be (and probably
- // will be) entirely different from the old hash. Moreover,
- // it isn't reproducible. Reproducibility is required in the
- // presence of iterators, as our evacuation decision must
- // match whatever decision the iterator made.
- // Fortunately, we have the freedom to send these keys either
- // way. Also, tophash is meaningless for these kinds of keys.
- // We let the low bit of tophash drive the evacuation decision.
- // We recompute a new random tophash for the next level so
- // these keys will get evenly distributed across all buckets
- // after multiple grows.
- if top&1 != 0 {
- hash |= newbit
- } else {
- hash &^= newbit
- }
- top = uint8(hash >> (sys.PtrSize*8 - 8))
- if top < minTopHash {
- top += minTopHash
- }
+ if h.flags&iterator != 0 && !t.reflexivekey && !t.key.equalfn(k2, k2) {
+ // If key != key (NaNs), then the hash could be (and probably
+ // will be) entirely different from the old hash. Moreover,
+ // it isn't reproducible. Reproducibility is required in the
+ // presence of iterators, as our evacuation decision must
+ // match whatever decision the iterator made.
+ // Fortunately, we have the freedom to send these keys either
+ // way. Also, tophash is meaningless for these kinds of keys.
+ // We let the low bit of tophash drive the evacuation decision.
+ // We recompute a new random tophash for the next level so
+ // these keys will get evenly distributed across all buckets
+ // after multiple grows.
+ useY = top & 1
+ top = tophash(hash)
+ } else {
+ if hash&newbit != 0 {
+ useY = 1
}
}
- useX = hash&newbit == 0
}
- if useX {
- b.tophash[i] = evacuatedX
- if xi == bucketCnt {
- newx := h.newoverflow(t, x)
- x = newx
- xi = 0
- xk = add(unsafe.Pointer(x), dataOffset)
- xv = add(xk, bucketCnt*uintptr(t.keysize))
- }
- x.tophash[xi] = top
- if t.indirectkey {
- *(*unsafe.Pointer)(xk) = k2 // copy pointer
- } else {
- typedmemmove(t.key, xk, k) // copy value
- }
- if t.indirectvalue {
- *(*unsafe.Pointer)(xv) = *(*unsafe.Pointer)(v)
- } else {
- typedmemmove(t.elem, xv, v)
- }
- xi++
- xk = add(xk, uintptr(t.keysize))
- xv = add(xv, uintptr(t.valuesize))
+
+ if evacuatedX+1 != evacuatedY {
+ throw("bad evacuatedN")
+ }
+
+ b.tophash[i] = evacuatedX + useY // evacuatedX + 1 == evacuatedY
+ dst := &xy[useY] // evacuation destination
+
+ if dst.i == bucketCnt {
+ dst.b = h.newoverflow(t, dst.b)
+ dst.i = 0
+ dst.k = add(unsafe.Pointer(dst.b), dataOffset)
+ dst.v = add(dst.k, bucketCnt*uintptr(t.keysize))
+ }
+ dst.b.tophash[dst.i&(bucketCnt-1)] = top // mask dst.i as an optimization, to avoid a bounds check
+ if t.indirectkey {
+ *(*unsafe.Pointer)(dst.k) = k2 // copy pointer
} else {
- b.tophash[i] = evacuatedY
- if yi == bucketCnt {
- newy := h.newoverflow(t, y)
- y = newy
- yi = 0
- yk = add(unsafe.Pointer(y), dataOffset)
- yv = add(yk, bucketCnt*uintptr(t.keysize))
- }
- y.tophash[yi] = top
- if t.indirectkey {
- *(*unsafe.Pointer)(yk) = k2
- } else {
- typedmemmove(t.key, yk, k)
- }
- if t.indirectvalue {
- *(*unsafe.Pointer)(yv) = *(*unsafe.Pointer)(v)
- } else {
- typedmemmove(t.elem, yv, v)
- }
- yi++
- yk = add(yk, uintptr(t.keysize))
- yv = add(yv, uintptr(t.valuesize))
+ typedmemmove(t.key, dst.k, k) // copy value
}
+ if t.indirectvalue {
+ *(*unsafe.Pointer)(dst.v) = *(*unsafe.Pointer)(v)
+ } else {
+ typedmemmove(t.elem, dst.v, v)
+ }
+ dst.i++
+ // These updates might push these pointers past the end of the
+ // key or value arrays. That's ok, as we have the overflow pointer
+ // at the end of the bucket to protect against pointing past the
+ // end of the bucket.
+ dst.k = add(dst.k, uintptr(t.keysize))
+ dst.v = add(dst.v, uintptr(t.valuesize))
}
}
// Unlink the overflow buckets & clear key/value to help GC.
- if h.flags&oldIterator == 0 {
- b = (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)))
+ if h.flags&oldIterator == 0 && t.bucket.kind&kindNoPointers == 0 {
+ b := add(h.oldbuckets, oldbucket*uintptr(t.bucketsize))
// Preserve b.tophash because the evacuation
// state is maintained there.
- if t.bucket.kind&kindNoPointers == 0 {
- memclrHasPointers(add(unsafe.Pointer(b), dataOffset), uintptr(t.bucketsize)-dataOffset)
- } else {
- memclrNoHeapPointers(add(unsafe.Pointer(b), dataOffset), uintptr(t.bucketsize)-dataOffset)
- }
+ ptr := add(b, dataOffset)
+ n := uintptr(t.bucketsize) - dataOffset
+ memclrHasPointers(ptr, n)
}
}
- // Advance evacuation mark
if oldbucket == h.nevacuate {
- h.nevacuate = oldbucket + 1
- // Experiments suggest that 1024 is overkill by at least an order of magnitude.
- // Put it in there as a safeguard anyway, to ensure O(1) behavior.
- stop := h.nevacuate + 1024
- if stop > newbit {
- stop = newbit
- }
- for h.nevacuate != stop && bucketEvacuated(t, h, h.nevacuate) {
- h.nevacuate++
- }
- if h.nevacuate == newbit { // newbit == # of oldbuckets
- // Growing is all done. Free old main bucket array.
- h.oldbuckets = nil
- // Can discard old overflow buckets as well.
- // If they are still referenced by an iterator,
- // then the iterator holds a pointers to the slice.
- if h.extra != nil {
- h.extra.overflow[1] = nil
- }
- h.flags &^= sameSizeGrow
+ advanceEvacuationMark(h, t, newbit)
+ }
+}
+
+func advanceEvacuationMark(h *hmap, t *maptype, newbit uintptr) {
+ h.nevacuate++
+ // Experiments suggest that 1024 is overkill by at least an order of magnitude.
+ // Put it in there as a safeguard anyway, to ensure O(1) behavior.
+ stop := h.nevacuate + 1024
+ if stop > newbit {
+ stop = newbit
+ }
+ for h.nevacuate != stop && bucketEvacuated(t, h, h.nevacuate) {
+ h.nevacuate++
+ }
+ if h.nevacuate == newbit { // newbit == # of oldbuckets
+ // Growing is all done. Free old main bucket array.
+ h.oldbuckets = nil
+ // Can discard old overflow buckets as well.
+ // If they are still referenced by an iterator,
+ // then the iterator holds a pointers to the slice.
+ if h.extra != nil {
+ h.extra.oldoverflow = nil
}
+ h.flags &^= sameSizeGrow
}
}
@@ -1230,7 +1185,45 @@ func ismapkey(t *_type) bool {
//go:linkname reflect_makemap reflect.makemap
func reflect_makemap(t *maptype, cap int) *hmap {
- return makemap(t, int64(cap), nil, nil)
+ // Check invariants and reflects math.
+ if sz := unsafe.Sizeof(hmap{}); sz != t.hmap.size {
+ println("runtime: sizeof(hmap) =", sz, ", t.hmap.size =", t.hmap.size)
+ throw("bad hmap size")
+ }
+ if !ismapkey(t.key) {
+ throw("runtime.reflect_makemap: unsupported map key type")
+ }
+ if t.key.size > maxKeySize && (!t.indirectkey || t.keysize != uint8(sys.PtrSize)) ||
+ t.key.size <= maxKeySize && (t.indirectkey || t.keysize != uint8(t.key.size)) {
+ throw("key size wrong")
+ }
+ if t.elem.size > maxValueSize && (!t.indirectvalue || t.valuesize != uint8(sys.PtrSize)) ||
+ t.elem.size <= maxValueSize && (t.indirectvalue || t.valuesize != uint8(t.elem.size)) {
+ throw("value size wrong")
+ }
+ if t.key.align > bucketCnt {
+ throw("key align too big")
+ }
+ if t.elem.align > bucketCnt {
+ throw("value align too big")
+ }
+ if t.key.size%uintptr(t.key.align) != 0 {
+ throw("key size not a multiple of key align")
+ }
+ if t.elem.size%uintptr(t.elem.align) != 0 {
+ throw("value size not a multiple of value align")
+ }
+ if bucketCnt < 8 {
+ throw("bucketsize too small for proper alignment")
+ }
+ if dataOffset%uintptr(t.key.align) != 0 {
+ throw("need padding in bucket (key)")
+ }
+ if dataOffset%uintptr(t.elem.align) != 0 {
+ throw("need padding in bucket (value)")
+ }
+
+ return makemap(t, cap, nil)
}
//go:linkname reflect_mapaccess reflect.mapaccess
@@ -1277,7 +1270,7 @@ func reflect_maplen(h *hmap) int {
return 0
}
if raceenabled {
- callerpc := getcallerpc(unsafe.Pointer( /* &h */ nil))
+ callerpc := getcallerpc()
racereadpc(unsafe.Pointer(h), callerpc, funcPC(reflect_maplen))
}
return h.count