aboutsummaryrefslogtreecommitdiff
path: root/libgo/go/big/rat.go
diff options
context:
space:
mode:
Diffstat (limited to 'libgo/go/big/rat.go')
-rw-r--r--libgo/go/big/rat.go201
1 files changed, 129 insertions, 72 deletions
diff --git a/libgo/go/big/rat.go b/libgo/go/big/rat.go
index f435e63..6b86062 100644
--- a/libgo/go/big/rat.go
+++ b/libgo/go/big/rat.go
@@ -13,11 +13,11 @@ import (
"strings"
)
-// A Rat represents a quotient a/b of arbitrary precision. The zero value for
-// a Rat, 0/0, is not a legal Rat.
+// A Rat represents a quotient a/b of arbitrary precision.
+// The zero value for a Rat represents the value 0.
type Rat struct {
a Int
- b nat
+ b nat // len(b) == 0 acts like b == 1
}
// NewRat creates a new Rat with numerator a and denominator b.
@@ -29,8 +29,11 @@ func NewRat(a, b int64) *Rat {
func (z *Rat) SetFrac(a, b *Int) *Rat {
z.a.neg = a.neg != b.neg
babs := b.abs
+ if len(babs) == 0 {
+ panic("division by zero")
+ }
if &z.a == b || alias(z.a.abs, babs) {
- babs = nat(nil).set(babs) // make a copy
+ babs = nat{}.set(babs) // make a copy
}
z.a.abs = z.a.abs.set(a.abs)
z.b = z.b.set(babs)
@@ -40,6 +43,9 @@ func (z *Rat) SetFrac(a, b *Int) *Rat {
// SetFrac64 sets z to a/b and returns z.
func (z *Rat) SetFrac64(a, b int64) *Rat {
z.a.SetInt64(a)
+ if b == 0 {
+ panic("division by zero")
+ }
if b < 0 {
b = -b
z.a.neg = !z.a.neg
@@ -51,14 +57,55 @@ func (z *Rat) SetFrac64(a, b int64) *Rat {
// SetInt sets z to x (by making a copy of x) and returns z.
func (z *Rat) SetInt(x *Int) *Rat {
z.a.Set(x)
- z.b = z.b.setWord(1)
+ z.b = z.b.make(0)
return z
}
// SetInt64 sets z to x and returns z.
func (z *Rat) SetInt64(x int64) *Rat {
z.a.SetInt64(x)
- z.b = z.b.setWord(1)
+ z.b = z.b.make(0)
+ return z
+}
+
+// Set sets z to x (by making a copy of x) and returns z.
+func (z *Rat) Set(x *Rat) *Rat {
+ if z != x {
+ z.a.Set(&x.a)
+ z.b = z.b.set(x.b)
+ }
+ return z
+}
+
+// Abs sets z to |x| (the absolute value of x) and returns z.
+func (z *Rat) Abs(x *Rat) *Rat {
+ z.Set(x)
+ z.a.neg = false
+ return z
+}
+
+// Neg sets z to -x and returns z.
+func (z *Rat) Neg(x *Rat) *Rat {
+ z.Set(x)
+ z.a.neg = len(z.a.abs) > 0 && !z.a.neg // 0 has no sign
+ return z
+}
+
+// Inv sets z to 1/x and returns z.
+func (z *Rat) Inv(x *Rat) *Rat {
+ if len(x.a.abs) == 0 {
+ panic("division by zero")
+ }
+ z.Set(x)
+ a := z.b
+ if len(a) == 0 {
+ a = a.setWord(1) // materialize numerator
+ }
+ b := z.a.abs
+ if b.cmp(natOne) == 0 {
+ b = b.make(0) // normalize denominator
+ }
+ z.a.abs, z.b = a, b // sign doesn't change
return z
}
@@ -74,21 +121,24 @@ func (x *Rat) Sign() int {
// IsInt returns true if the denominator of x is 1.
func (x *Rat) IsInt() bool {
- return len(x.b) == 1 && x.b[0] == 1
+ return len(x.b) == 0 || x.b.cmp(natOne) == 0
}
-// Num returns the numerator of z; it may be <= 0.
-// The result is a reference to z's numerator; it
-// may change if a new value is assigned to z.
-func (z *Rat) Num() *Int {
- return &z.a
+// Num returns the numerator of x; it may be <= 0.
+// The result is a reference to x's numerator; it
+// may change if a new value is assigned to x.
+func (x *Rat) Num() *Int {
+ return &x.a
}
-// Denom returns the denominator of z; it is always > 0.
-// The result is a reference to z's denominator; it
-// may change if a new value is assigned to z.
-func (z *Rat) Denom() *Int {
- return &Int{false, z.b}
+// Denom returns the denominator of x; it is always > 0.
+// The result is a reference to x's denominator; it
+// may change if a new value is assigned to x.
+func (x *Rat) Denom() *Int {
+ if len(x.b) == 0 {
+ return &Int{abs: nat{1}}
+ }
+ return &Int{abs: x.b}
}
func gcd(x, y nat) nat {
@@ -106,24 +156,47 @@ func gcd(x, y nat) nat {
}
func (z *Rat) norm() *Rat {
- f := gcd(z.a.abs, z.b)
- if len(z.a.abs) == 0 {
- // z == 0
- z.a.neg = false // normalize sign
- z.b = z.b.setWord(1)
- return z
- }
- if f.cmp(natOne) != 0 {
- z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f)
- z.b, _ = z.b.div(nil, z.b, f)
+ switch {
+ case len(z.a.abs) == 0:
+ // z == 0 - normalize sign and denominator
+ z.a.neg = false
+ z.b = z.b.make(0)
+ case len(z.b) == 0:
+ // z is normalized int - nothing to do
+ case z.b.cmp(natOne) == 0:
+ // z is int - normalize denominator
+ z.b = z.b.make(0)
+ default:
+ if f := gcd(z.a.abs, z.b); f.cmp(natOne) != 0 {
+ z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f)
+ z.b, _ = z.b.div(nil, z.b, f)
+ }
}
return z
}
-func mulNat(x *Int, y nat) *Int {
+// mulDenom sets z to the denominator product x*y (by taking into
+// account that 0 values for x or y must be interpreted as 1) and
+// returns z.
+func mulDenom(z, x, y nat) nat {
+ switch {
+ case len(x) == 0:
+ return z.set(y)
+ case len(y) == 0:
+ return z.set(x)
+ }
+ return z.mul(x, y)
+}
+
+// scaleDenom computes x*f.
+// If f == 0 (zero value of denominator), the result is (a copy of) x.
+func scaleDenom(x *Int, f nat) *Int {
var z Int
- z.abs = z.abs.mul(x.abs, y)
- z.neg = len(z.abs) > 0 && x.neg
+ if len(f) == 0 {
+ return z.Set(x)
+ }
+ z.abs = z.abs.mul(x.abs, f)
+ z.neg = x.neg
return &z
}
@@ -133,39 +206,32 @@ func mulNat(x *Int, y nat) *Int {
// 0 if x == y
// +1 if x > y
//
-func (x *Rat) Cmp(y *Rat) (r int) {
- return mulNat(&x.a, y.b).Cmp(mulNat(&y.a, x.b))
-}
-
-// Abs sets z to |x| (the absolute value of x) and returns z.
-func (z *Rat) Abs(x *Rat) *Rat {
- z.a.Abs(&x.a)
- z.b = z.b.set(x.b)
- return z
+func (x *Rat) Cmp(y *Rat) int {
+ return scaleDenom(&x.a, y.b).Cmp(scaleDenom(&y.a, x.b))
}
// Add sets z to the sum x+y and returns z.
func (z *Rat) Add(x, y *Rat) *Rat {
- a1 := mulNat(&x.a, y.b)
- a2 := mulNat(&y.a, x.b)
+ a1 := scaleDenom(&x.a, y.b)
+ a2 := scaleDenom(&y.a, x.b)
z.a.Add(a1, a2)
- z.b = z.b.mul(x.b, y.b)
+ z.b = mulDenom(z.b, x.b, y.b)
return z.norm()
}
// Sub sets z to the difference x-y and returns z.
func (z *Rat) Sub(x, y *Rat) *Rat {
- a1 := mulNat(&x.a, y.b)
- a2 := mulNat(&y.a, x.b)
+ a1 := scaleDenom(&x.a, y.b)
+ a2 := scaleDenom(&y.a, x.b)
z.a.Sub(a1, a2)
- z.b = z.b.mul(x.b, y.b)
+ z.b = mulDenom(z.b, x.b, y.b)
return z.norm()
}
// Mul sets z to the product x*y and returns z.
func (z *Rat) Mul(x, y *Rat) *Rat {
z.a.Mul(&x.a, &y.a)
- z.b = z.b.mul(x.b, y.b)
+ z.b = mulDenom(z.b, x.b, y.b)
return z.norm()
}
@@ -175,28 +241,14 @@ func (z *Rat) Quo(x, y *Rat) *Rat {
if len(y.a.abs) == 0 {
panic("division by zero")
}
- a := mulNat(&x.a, y.b)
- b := mulNat(&y.a, x.b)
+ a := scaleDenom(&x.a, y.b)
+ b := scaleDenom(&y.a, x.b)
z.a.abs = a.abs
z.b = b.abs
z.a.neg = a.neg != b.neg
return z.norm()
}
-// Neg sets z to -x (by making a copy of x if necessary) and returns z.
-func (z *Rat) Neg(x *Rat) *Rat {
- z.a.Neg(&x.a)
- z.b = z.b.set(x.b)
- return z
-}
-
-// Set sets z to x (by making a copy of x if necessary) and returns z.
-func (z *Rat) Set(x *Rat) *Rat {
- z.a.Set(&x.a)
- z.b = z.b.set(x.b)
- return z
-}
-
func ratTok(ch int) bool {
return strings.IndexRune("+-/0123456789.eE", ch) >= 0
}
@@ -219,23 +271,23 @@ func (z *Rat) Scan(s fmt.ScanState, ch int) os.Error {
// SetString sets z to the value of s and returns z and a boolean indicating
// success. s can be given as a fraction "a/b" or as a floating-point number
-// optionally followed by an exponent. If the operation failed, the value of z
-// is undefined.
+// optionally followed by an exponent. If the operation failed, the value of
+// z is undefined but the returned value is nil.
func (z *Rat) SetString(s string) (*Rat, bool) {
if len(s) == 0 {
- return z, false
+ return nil, false
}
// check for a quotient
sep := strings.Index(s, "/")
if sep >= 0 {
if _, ok := z.a.SetString(s[0:sep], 10); !ok {
- return z, false
+ return nil, false
}
s = s[sep+1:]
var err os.Error
if z.b, _, err = z.b.scan(strings.NewReader(s), 10); err != nil {
- return z, false
+ return nil, false
}
return z.norm(), true
}
@@ -248,10 +300,10 @@ func (z *Rat) SetString(s string) (*Rat, bool) {
if e >= 0 {
if e < sep {
// The E must come after the decimal point.
- return z, false
+ return nil, false
}
if _, ok := exp.SetString(s[e+1:], 10); !ok {
- return z, false
+ return nil, false
}
s = s[0:e]
}
@@ -261,7 +313,7 @@ func (z *Rat) SetString(s string) (*Rat, bool) {
}
if _, ok := z.a.SetString(s, 10); !ok {
- return z, false
+ return nil, false
}
powTen := nat{}.expNN(natTen, exp.abs, nil)
if exp.neg {
@@ -269,7 +321,7 @@ func (z *Rat) SetString(s string) (*Rat, bool) {
z.norm()
} else {
z.a.abs = z.a.abs.mul(z.a.abs, powTen)
- z.b = z.b.setWord(1)
+ z.b = z.b.make(0)
}
return z, true
@@ -277,7 +329,11 @@ func (z *Rat) SetString(s string) (*Rat, bool) {
// String returns a string representation of z in the form "a/b" (even if b == 1).
func (z *Rat) String() string {
- return z.a.String() + "/" + z.b.decimalString()
+ s := "/1"
+ if len(z.b) != 0 {
+ s = "/" + z.b.decimalString()
+ }
+ return z.a.String() + s
}
// RatString returns a string representation of z in the form "a/b" if b != 1,
@@ -299,6 +355,7 @@ func (z *Rat) FloatString(prec int) string {
}
return s
}
+ // z.b != 0
q, r := nat{}.div(nat{}, z.a.abs, z.b)