diff options
Diffstat (limited to 'libgfortran/intrinsics/trigd.c')
-rw-r--r-- | libgfortran/intrinsics/trigd.c | 205 |
1 files changed, 205 insertions, 0 deletions
diff --git a/libgfortran/intrinsics/trigd.c b/libgfortran/intrinsics/trigd.c new file mode 100644 index 0000000..8169906 --- /dev/null +++ b/libgfortran/intrinsics/trigd.c @@ -0,0 +1,205 @@ +/* Implementation of the degree trignometric functions COSD, SIND, TAND. + Copyright (C) 2020 Free Software Foundation, Inc. + Contributed by Steven G. Kargl <kargl@gcc.gnu.org> + +This file is part of the GNU Fortran runtime library (libgfortran). + +Libgfortran is free software; you can redistribute it and/or +modify it under the terms of the GNU General Public +License as published by the Free Software Foundation; either +version 3 of the License, or (at your option) any later version. + +Libgfortran is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +Under Section 7 of GPL version 3, you are granted additional +permissions described in the GCC Runtime Library Exception, version +3.1, as published by the Free Software Foundation. + +You should have received a copy of the GNU General Public License and +a copy of the GCC Runtime Library Exception along with this program; +see the files COPYING3 and COPYING.RUNTIME respectively. If not, see +<http://www.gnu.org/licenses/>. */ + +#include "libgfortran.h" + +#include <math.h> + + +/* + For real x, let {x}_P or x_P be the closest representible number in the + floating point representation which uses P binary bits of fractional + precision (with IEEE rounding semantics). + + Similarly, let f_P(x) be shorthand for {f(x)}_P. + + Let ulp_P(x) be the unit of least precision for x: in other words the + maximal value of |a_P - b_P| where a_P <= x <= b_P and a_P != b_P. + + Let x ~= y <-> | x - y | < ulp_P(x - y). + + Let deg(x) be the value of x radians in degrees. + + Values for each precision P were selected as follows. + + + COSD_SMALL = 2**{-N} such that for all x <= COSD_SMALL: + + * cos(deg(x)) ~= 1, or equivalently: + + | 1 - cos(deg(x)) | < ulp_P(1). + + Unfortunately for SIND (and therefore TAND) a similar relation is only + possible for REAL(4) and REAL(8). With REAL(10) and REAL(16), enough + precision is available such that sin_P(x) != x_P for some x less than any + value. (There are values where this equality holds, but the distance has + inflection points.) + + For REAL(4) and REAL(8), we can select SIND_SMALL such that: + + * sin(deg(x)) ~= deg(x), or equivalently: + + | deg(x) - sin(deg(x)) | < ulp_P(deg(x)). + + */ + +/* Build _gfortran_sind_r4, _gfortran_cosd_r4, and _gfortran_tand_r4 */ + +#define FTYPE GFC_REAL_4 +#define SIND sind_r4 +#define COSD cosd_r4 +#define TAND tand_r4 +#define SUFFIX(x) x ## f + +#define TINY 0x1.p-100f /* ~= 7.889e-31 */ +#define COSD_SMALL 0x1.p-7f /* = 7.8125e-3 */ +#define SIND_SMALL 0x1.p-5f /* = 3.125e-2 */ +#define COSD30 8.66025388e-01f + +#define PIO180H 1.74560547e-02f /* high 12 bits. */ +#define PIO180L -2.76216747e-06f /* Next 24 bits. */ + +#include "trigd_lib.inc" + +#undef FTYPE +#undef TINY +#undef COSD_SMALL +#undef SIND_SMALL +#undef COSD30 +#undef PIO180H +#undef PIO180L +#undef SIND +#undef COSD +#undef TAND +#undef SUFFIX + + +/* Build _gfortran_sind_r8, _gfortran_cosd_r8, and _gfortran_tand_r8. */ + +#define FTYPE GFC_REAL_8 +#define SIND sind_r8 +#define COSD cosd_r8 +#define TAND tand_r8 +#define SUFFIX(x) x + +#define TINY 0x1.p-1000 /* ~= 9.33e-302 (min exp -1074) */ +#define COSD_SMALL 0x1.p-21 /* ~= 4.768e-7 */ +#define SIND_SMALL 0x1.p-19 /* ~= 9.537e-7 */ +#define COSD30 8.6602540378443860e-01 + +#define PIO180H 1.7453283071517944e-02 /* high 21 bits. */ +#define PIO180L 9.4484253514332993e-09 /* Next 53 bits. */ + +#include "trigd_lib.inc" + +#undef FTYPE +#undef TINY +#undef COSD_SMALL +#undef SIND_SMALL +#undef COSD30 +#undef PIO180H +#undef PIO180L +#undef SIND +#undef COSD +#undef TAND +#undef SUFFIX + + +/* Build _gfortran_sind_r10, _gfortran_cosd_r10, and _gfortran_tand_r10. */ + +#ifdef HAVE_GFC_REAL_10 + +#define FTYPE GFC_REAL_10 +#define SIND sind_r10 +#define COSD cosd_r10 +#define TAND tand_r10 +#define SUFFIX(x) x ## l /* L */ + +#define TINY 0x1.p-16400L /* ~= 1.28e-4937 (min exp -16494) */ +#define COSD_SMALL 0x1.p-26L /* ~= 1.490e-8 */ +#undef SIND_SMALL /* not precise */ +#define COSD30 8.66025403784438646787e-01L + +#define PIO180H 1.74532925229868851602e-02L /* high 32 bits */ +#define PIO180L -3.04358939097084072823e-12L /* Next 64 bits */ + +#include "trigd_lib.inc" +#undef FTYPE +#undef TINY +#undef COSD_SMALL +#undef SIND_SMALL +#undef COSD30 +#undef PIO180H +#undef PIO180L +#undef SIND +#undef COSD +#undef TAND +#undef SUFFIX +#endif /* HAVE_GFC_REAL_10 */ + + +/* Build _gfortran_sind_r16, _gfortran_cosd_r16, and _gfortran_tand_r16. */ + +#ifdef HAVE_GFC_REAL_16 + +#define FTYPE GFC_REAL_16 +#define SIND sind_r16 +#define COSD cosd_r16 +#define TAND tand_r16 + +#ifdef GFC_REAL_16_IS_FLOAT128 /* libquadmath. */ +#define SUFFIX(x) x ## q +#else +#define SUFFIX(x) x ## l +#endif /* GFC_REAL_16_IS_FLOAT128 */ + +#define TINY SUFFIX(0x1.p-16400) /* ~= 1.28e-4937 */ +#define COSD_SMALL SUFFIX(0x1.p-51) /* ~= 4.441e-16 */ +#undef SIND_SMALL /* not precise */ +#define COSD30 SUFFIX(8.66025403784438646763723170752936183e-01) +#define PIO180H SUFFIX(1.74532925199433197605003442731685936e-02) +#define PIO180L SUFFIX(-2.39912634365882824665106671063098954e-17) + +#include "trigd_lib.inc" + +#undef FTYPE +#undef COSD_SMALL +#undef SIND_SMALL +#undef COSD30 +#undef PIO180H +#undef PIO180L +#undef PIO180 +#undef D2R +#undef CPYSGN +#undef FABS +#undef FMOD +#undef SIN +#undef COS +#undef TAN +#undef SIND +#undef COSD +#undef TAND +#undef SUFFIX +#endif /* HAVE_GFC_REAL_16 */ |