aboutsummaryrefslogtreecommitdiff
path: root/gcc
diff options
context:
space:
mode:
Diffstat (limited to 'gcc')
-rw-r--r--gcc/Makefile.in1
-rw-r--r--gcc/gimple-range-fold.cc1331
-rw-r--r--gcc/gimple-range-fold.h163
-rw-r--r--gcc/gimple-range-gori.cc66
-rw-r--r--gcc/gimple-range-gori.h9
-rw-r--r--gcc/gimple-range.cc1379
-rw-r--r--gcc/gimple-range.h144
7 files changed, 1574 insertions, 1519 deletions
diff --git a/gcc/Makefile.in b/gcc/Makefile.in
index ebf2644..d32de22 100644
--- a/gcc/Makefile.in
+++ b/gcc/Makefile.in
@@ -1398,6 +1398,7 @@ OBJS = \
gimple-range.o \
gimple-range-cache.o \
gimple-range-edge.o \
+ gimple-range-fold.o \
gimple-range-gori.o \
gimple-ssa-backprop.o \
gimple-ssa-evrp.o \
diff --git a/gcc/gimple-range-fold.cc b/gcc/gimple-range-fold.cc
new file mode 100644
index 0000000..583348e
--- /dev/null
+++ b/gcc/gimple-range-fold.cc
@@ -0,0 +1,1331 @@
+/* Code for GIMPLE range related routines.
+ Copyright (C) 2019-2021 Free Software Foundation, Inc.
+ Contributed by Andrew MacLeod <amacleod@redhat.com>
+ and Aldy Hernandez <aldyh@redhat.com>.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 3, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "backend.h"
+#include "insn-codes.h"
+#include "tree.h"
+#include "gimple.h"
+#include "ssa.h"
+#include "gimple-pretty-print.h"
+#include "optabs-tree.h"
+#include "gimple-fold.h"
+#include "wide-int.h"
+#include "fold-const.h"
+#include "case-cfn-macros.h"
+#include "omp-general.h"
+#include "cfgloop.h"
+#include "tree-ssa-loop.h"
+#include "tree-scalar-evolution.h"
+#include "vr-values.h"
+#include "range.h"
+#include "value-query.h"
+#include "range-op.h"
+#include "gimple-range-fold.h"
+#include "gimple-range-edge.h"
+#include "gimple-range-gori.h"
+// Construct a fur_source, and set the m_query field.
+
+fur_source::fur_source (range_query *q)
+{
+ if (q)
+ m_query = q;
+ else if (cfun)
+ m_query = get_range_query (cfun);
+ else
+ m_query = get_global_range_query ();
+ m_gori = NULL;
+}
+
+// Invoke range_of_expr on EXPR.
+
+bool
+fur_source::get_operand (irange &r, tree expr)
+{
+ return m_query->range_of_expr (r, expr);
+}
+
+// Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current
+// range_query to get the range on the edge.
+
+bool
+fur_source::get_phi_operand (irange &r, tree expr, edge e)
+{
+ return m_query->range_on_edge (r, e, expr);
+}
+
+// Default is no relation.
+
+relation_kind
+fur_source::query_relation (tree op1 ATTRIBUTE_UNUSED,
+ tree op2 ATTRIBUTE_UNUSED)
+{
+ return VREL_NONE;
+}
+
+// Default registers nothing.
+
+void
+fur_source::register_relation (gimple *s ATTRIBUTE_UNUSED,
+ relation_kind k ATTRIBUTE_UNUSED,
+ tree op1 ATTRIBUTE_UNUSED,
+ tree op2 ATTRIBUTE_UNUSED)
+{
+}
+
+// Default registers nothing.
+
+void
+fur_source::register_relation (edge e ATTRIBUTE_UNUSED,
+ relation_kind k ATTRIBUTE_UNUSED,
+ tree op1 ATTRIBUTE_UNUSED,
+ tree op2 ATTRIBUTE_UNUSED)
+{
+}
+
+// This version of fur_source will pick a range up off an edge.
+
+class fur_edge : public fur_source
+{
+public:
+ fur_edge (edge e, range_query *q = NULL);
+ virtual bool get_operand (irange &r, tree expr) OVERRIDE;
+ virtual bool get_phi_operand (irange &r, tree expr, edge e) OVERRIDE;
+private:
+ edge m_edge;
+};
+
+// Instantiate an edge based fur_source.
+
+inline
+fur_edge::fur_edge (edge e, range_query *q) : fur_source (q)
+{
+ m_edge = e;
+}
+
+// Get the value of EXPR on edge m_edge.
+
+bool
+fur_edge::get_operand (irange &r, tree expr)
+{
+ return m_query->range_on_edge (r, m_edge, expr);
+}
+
+// Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current
+// range_query to get the range on the edge.
+
+bool
+fur_edge::get_phi_operand (irange &r, tree expr, edge e)
+{
+ // Edge to edge recalculations not supoprted yet, until we sort it out.
+ gcc_checking_assert (e == m_edge);
+ return m_query->range_on_edge (r, e, expr);
+}
+
+// Instantiate a stmt based fur_source.
+
+fur_stmt::fur_stmt (gimple *s, range_query *q) : fur_source (q)
+{
+ m_stmt = s;
+}
+
+// Retreive range of EXPR as it occurs as a use on stmt M_STMT.
+
+bool
+fur_stmt::get_operand (irange &r, tree expr)
+{
+ return m_query->range_of_expr (r, expr, m_stmt);
+}
+
+// Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current
+// range_query to get the range on the edge.
+
+bool
+fur_stmt::get_phi_operand (irange &r, tree expr, edge e)
+{
+ // Pick up the range of expr from edge E.
+ fur_edge e_src (e, m_query);
+ return e_src.get_operand (r, expr);
+}
+
+// Return relation based from m_stmt.
+
+relation_kind
+fur_stmt::query_relation (tree op1, tree op2)
+{
+ return m_query->query_relation (m_stmt, op1, op2);
+}
+
+// Instantiate a stmt based fur_source with a GORI object.
+
+
+fur_depend::fur_depend (gimple *s, gori_compute *gori, range_query *q)
+ : fur_stmt (s, q)
+{
+ gcc_checking_assert (gori);
+ m_gori = gori;
+ // Set relations if there is an oracle in the range_query.
+ // This will enable registering of relationships as they are discovered.
+ m_oracle = q->oracle ();
+
+}
+
+// Register a relation on a stmt if there is an oracle.
+
+void
+fur_depend::register_relation (gimple *s, relation_kind k, tree op1, tree op2)
+{
+ if (m_oracle)
+ m_oracle->register_relation (s, k, op1, op2);
+}
+
+// Register a relation on an edge if there is an oracle.
+
+void
+fur_depend::register_relation (edge e, relation_kind k, tree op1, tree op2)
+{
+ if (m_oracle)
+ m_oracle->register_relation (e, k, op1, op2);
+}
+
+// This version of fur_source will pick a range up from a list of ranges
+// supplied by the caller.
+
+class fur_list : public fur_source
+{
+public:
+ fur_list (irange &r1);
+ fur_list (irange &r1, irange &r2);
+ fur_list (unsigned num, irange *list);
+ virtual bool get_operand (irange &r, tree expr) OVERRIDE;
+ virtual bool get_phi_operand (irange &r, tree expr, edge e) OVERRIDE;
+private:
+ int_range_max m_local[2];
+ irange *m_list;
+ unsigned m_index;
+ unsigned m_limit;
+};
+
+// One range supplied for unary operations.
+
+fur_list::fur_list (irange &r1) : fur_source (NULL)
+{
+ m_list = m_local;
+ m_index = 0;
+ m_limit = 1;
+ m_local[0] = r1;
+}
+
+// Two ranges supplied for binary operations.
+
+fur_list::fur_list (irange &r1, irange &r2) : fur_source (NULL)
+{
+ m_list = m_local;
+ m_index = 0;
+ m_limit = 2;
+ m_local[0] = r1;
+ m_local[0] = r2;
+}
+
+// Arbitrary number of ranges in a vector.
+
+fur_list::fur_list (unsigned num, irange *list) : fur_source (NULL)
+{
+ m_list = list;
+ m_index = 0;
+ m_limit = num;
+}
+
+// Get the next operand from the vector, ensure types are compatible.
+
+bool
+fur_list::get_operand (irange &r, tree expr)
+{
+ if (m_index >= m_limit)
+ return m_query->range_of_expr (r, expr);
+ r = m_list[m_index++];
+ gcc_checking_assert (range_compatible_p (TREE_TYPE (expr), r.type ()));
+ return true;
+}
+
+// This will simply pick the next operand from the vector.
+bool
+fur_list::get_phi_operand (irange &r, tree expr, edge e ATTRIBUTE_UNUSED)
+{
+ return get_operand (r, expr);
+}
+
+// Fold stmt S into range R using R1 as the first operand.
+
+bool
+fold_range (irange &r, gimple *s, irange &r1)
+{
+ fold_using_range f;
+ fur_list src (r1);
+ return f.fold_stmt (r, s, src);
+}
+
+// Fold stmt S into range R using R1 and R2 as the first two operands.
+
+bool
+fold_range (irange &r, gimple *s, irange &r1, irange &r2)
+{
+ fold_using_range f;
+ fur_list src (r1, r2);
+ return f.fold_stmt (r, s, src);
+}
+
+// Fold stmt S into range R using NUM_ELEMENTS from VECTOR as the initial
+// operands encountered.
+
+bool
+fold_range (irange &r, gimple *s, unsigned num_elements, irange *vector)
+{
+ fold_using_range f;
+ fur_list src (num_elements, vector);
+ return f.fold_stmt (r, s, src);
+}
+
+// Fold stmt S into range R using range query Q.
+
+bool
+fold_range (irange &r, gimple *s, range_query *q)
+{
+ fold_using_range f;
+ fur_stmt src (s, q);
+ return f.fold_stmt (r, s, src);
+}
+
+// Recalculate stmt S into R using range query Q as if it were on edge ON_EDGE.
+
+bool
+fold_range (irange &r, gimple *s, edge on_edge, range_query *q)
+{
+ fold_using_range f;
+ fur_edge src (on_edge, q);
+ return f.fold_stmt (r, s, src);
+}
+
+// -------------------------------------------------------------------------
+
+// Adjust the range for a pointer difference where the operands came
+// from a memchr.
+//
+// This notices the following sequence:
+//
+// def = __builtin_memchr (arg, 0, sz)
+// n = def - arg
+//
+// The range for N can be narrowed to [0, PTRDIFF_MAX - 1].
+
+static void
+adjust_pointer_diff_expr (irange &res, const gimple *diff_stmt)
+{
+ tree op0 = gimple_assign_rhs1 (diff_stmt);
+ tree op1 = gimple_assign_rhs2 (diff_stmt);
+ tree op0_ptype = TREE_TYPE (TREE_TYPE (op0));
+ tree op1_ptype = TREE_TYPE (TREE_TYPE (op1));
+ gimple *call;
+
+ if (TREE_CODE (op0) == SSA_NAME
+ && TREE_CODE (op1) == SSA_NAME
+ && (call = SSA_NAME_DEF_STMT (op0))
+ && is_gimple_call (call)
+ && gimple_call_builtin_p (call, BUILT_IN_MEMCHR)
+ && TYPE_MODE (op0_ptype) == TYPE_MODE (char_type_node)
+ && TYPE_PRECISION (op0_ptype) == TYPE_PRECISION (char_type_node)
+ && TYPE_MODE (op1_ptype) == TYPE_MODE (char_type_node)
+ && TYPE_PRECISION (op1_ptype) == TYPE_PRECISION (char_type_node)
+ && gimple_call_builtin_p (call, BUILT_IN_MEMCHR)
+ && vrp_operand_equal_p (op1, gimple_call_arg (call, 0))
+ && integer_zerop (gimple_call_arg (call, 1)))
+ {
+ tree max = vrp_val_max (ptrdiff_type_node);
+ wide_int wmax = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
+ tree expr_type = gimple_expr_type (diff_stmt);
+ tree range_min = build_zero_cst (expr_type);
+ tree range_max = wide_int_to_tree (expr_type, wmax - 1);
+ int_range<2> r (range_min, range_max);
+ res.intersect (r);
+ }
+}
+
+// This function looks for situations when walking the use/def chains
+// may provide additonal contextual range information not exposed on
+// this statement. Like knowing the IMAGPART return value from a
+// builtin function is a boolean result.
+
+// We should rework how we're called, as we have an op_unknown entry
+// for IMAGPART_EXPR and POINTER_DIFF_EXPR in range-ops just so this
+// function gets called.
+
+static void
+gimple_range_adjustment (irange &res, const gimple *stmt)
+{
+ switch (gimple_expr_code (stmt))
+ {
+ case POINTER_DIFF_EXPR:
+ adjust_pointer_diff_expr (res, stmt);
+ return;
+
+ case IMAGPART_EXPR:
+ {
+ tree name = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
+ if (TREE_CODE (name) == SSA_NAME)
+ {
+ gimple *def_stmt = SSA_NAME_DEF_STMT (name);
+ if (def_stmt && is_gimple_call (def_stmt)
+ && gimple_call_internal_p (def_stmt))
+ {
+ switch (gimple_call_internal_fn (def_stmt))
+ {
+ case IFN_ADD_OVERFLOW:
+ case IFN_SUB_OVERFLOW:
+ case IFN_MUL_OVERFLOW:
+ case IFN_ATOMIC_COMPARE_EXCHANGE:
+ {
+ int_range<2> r;
+ r.set_varying (boolean_type_node);
+ tree type = TREE_TYPE (gimple_assign_lhs (stmt));
+ range_cast (r, type);
+ res.intersect (r);
+ }
+ default:
+ break;
+ }
+ }
+ }
+ break;
+ }
+
+ default:
+ break;
+ }
+}
+
+// Return the base of the RHS of an assignment.
+
+static tree
+gimple_range_base_of_assignment (const gimple *stmt)
+{
+ gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN);
+ tree op1 = gimple_assign_rhs1 (stmt);
+ if (gimple_assign_rhs_code (stmt) == ADDR_EXPR)
+ return get_base_address (TREE_OPERAND (op1, 0));
+ return op1;
+}
+
+// Return the first operand of this statement if it is a valid operand
+// supported by ranges, otherwise return NULL_TREE. Special case is
+// &(SSA_NAME expr), return the SSA_NAME instead of the ADDR expr.
+
+tree
+gimple_range_operand1 (const gimple *stmt)
+{
+ gcc_checking_assert (gimple_range_handler (stmt));
+
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_COND:
+ return gimple_cond_lhs (stmt);
+ case GIMPLE_ASSIGN:
+ {
+ tree base = gimple_range_base_of_assignment (stmt);
+ if (base && TREE_CODE (base) == MEM_REF)
+ {
+ // If the base address is an SSA_NAME, we return it
+ // here. This allows processing of the range of that
+ // name, while the rest of the expression is simply
+ // ignored. The code in range_ops will see the
+ // ADDR_EXPR and do the right thing.
+ tree ssa = TREE_OPERAND (base, 0);
+ if (TREE_CODE (ssa) == SSA_NAME)
+ return ssa;
+ }
+ return base;
+ }
+ default:
+ break;
+ }
+ return NULL;
+}
+
+// Return the second operand of statement STMT, otherwise return NULL_TREE.
+
+tree
+gimple_range_operand2 (const gimple *stmt)
+{
+ gcc_checking_assert (gimple_range_handler (stmt));
+
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_COND:
+ return gimple_cond_rhs (stmt);
+ case GIMPLE_ASSIGN:
+ if (gimple_num_ops (stmt) >= 3)
+ return gimple_assign_rhs2 (stmt);
+ default:
+ break;
+ }
+ return NULL_TREE;
+}
+
+// Calculate a range for statement S and return it in R. If NAME is provided it
+// represents the SSA_NAME on the LHS of the statement. It is only required
+// if there is more than one lhs/output. If a range cannot
+// be calculated, return false.
+
+bool
+fold_using_range::fold_stmt (irange &r, gimple *s, fur_source &src, tree name)
+{
+ bool res = false;
+ // If name and S are specified, make sure it is an LHS of S.
+ gcc_checking_assert (!name || !gimple_get_lhs (s) ||
+ name == gimple_get_lhs (s));
+
+ if (!name)
+ name = gimple_get_lhs (s);
+
+ // Process addresses.
+ if (gimple_code (s) == GIMPLE_ASSIGN
+ && gimple_assign_rhs_code (s) == ADDR_EXPR)
+ return range_of_address (r, s, src);
+
+ if (gimple_range_handler (s))
+ res = range_of_range_op (r, s, src);
+ else if (is_a<gphi *>(s))
+ res = range_of_phi (r, as_a<gphi *> (s), src);
+ else if (is_a<gcall *>(s))
+ res = range_of_call (r, as_a<gcall *> (s), src);
+ else if (is_a<gassign *> (s) && gimple_assign_rhs_code (s) == COND_EXPR)
+ res = range_of_cond_expr (r, as_a<gassign *> (s), src);
+
+ if (!res)
+ {
+ // If no name is specified, try the expression kind.
+ if (!name)
+ {
+ tree t = gimple_expr_type (s);
+ if (!irange::supports_type_p (t))
+ return false;
+ r.set_varying (t);
+ return true;
+ }
+ if (!gimple_range_ssa_p (name))
+ return false;
+ // We don't understand the stmt, so return the global range.
+ r = gimple_range_global (name);
+ return true;
+ }
+
+ if (r.undefined_p ())
+ return true;
+
+ // We sometimes get compatible types copied from operands, make sure
+ // the correct type is being returned.
+ if (name && TREE_TYPE (name) != r.type ())
+ {
+ gcc_checking_assert (range_compatible_p (r.type (), TREE_TYPE (name)));
+ range_cast (r, TREE_TYPE (name));
+ }
+ return true;
+}
+
+// Calculate a range for range_op statement S and return it in R. If any
+// If a range cannot be calculated, return false.
+
+bool
+fold_using_range::range_of_range_op (irange &r, gimple *s, fur_source &src)
+{
+ int_range_max range1, range2;
+ tree type = gimple_expr_type (s);
+ range_operator *handler = gimple_range_handler (s);
+ gcc_checking_assert (handler);
+ gcc_checking_assert (irange::supports_type_p (type));
+
+ tree lhs = gimple_get_lhs (s);
+ tree op1 = gimple_range_operand1 (s);
+ tree op2 = gimple_range_operand2 (s);
+
+ if (src.get_operand (range1, op1))
+ {
+ if (!op2)
+ {
+ // Fold range, and register any dependency if available.
+ int_range<2> r2 (type);
+ handler->fold_range (r, type, range1, r2);
+ if (lhs && gimple_range_ssa_p (op1))
+ {
+ if (src.gori ())
+ src.gori ()->register_dependency (lhs, op1);
+ relation_kind rel;
+ rel = handler->lhs_op1_relation (r, range1, range1);
+ if (rel != VREL_NONE)
+ src.register_relation (s, rel, lhs, op1);
+ }
+ }
+ else if (src.get_operand (range2, op2))
+ {
+ relation_kind rel = src.query_relation (op1, op2);
+ if (dump_file && (dump_flags & TDF_DETAILS) && rel != VREL_NONE)
+ {
+ fprintf (dump_file, " folding with relation ");
+ print_relation (dump_file, rel);
+ fputc ('\n', dump_file);
+ }
+ // Fold range, and register any dependency if available.
+ handler->fold_range (r, type, range1, range2, rel);
+ relation_fold_and_or (r, s, src);
+ if (lhs)
+ {
+ if (src.gori ())
+ {
+ src.gori ()->register_dependency (lhs, op1);
+ src.gori ()->register_dependency (lhs, op2);
+ }
+ if (gimple_range_ssa_p (op1))
+ {
+ rel = handler->lhs_op1_relation (r, range1, range2);
+ if (rel != VREL_NONE)
+ src.register_relation (s, rel, lhs, op1);
+ }
+ if (gimple_range_ssa_p (op2))
+ {
+ rel= handler->lhs_op2_relation (r, range1, range2);
+ if (rel != VREL_NONE)
+ src.register_relation (s, rel, lhs, op2);
+ }
+ }
+ else if (is_a<gcond *> (s))
+ postfold_gcond_edges (as_a<gcond *> (s), src);
+ }
+ else
+ r.set_varying (type);
+ }
+ else
+ r.set_varying (type);
+ // Make certain range-op adjustments that aren't handled any other way.
+ gimple_range_adjustment (r, s);
+ return true;
+}
+
+// Calculate the range of an assignment containing an ADDR_EXPR.
+// Return the range in R.
+// If a range cannot be calculated, set it to VARYING and return true.
+
+bool
+fold_using_range::range_of_address (irange &r, gimple *stmt, fur_source &src)
+{
+ gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN);
+ gcc_checking_assert (gimple_assign_rhs_code (stmt) == ADDR_EXPR);
+
+ bool strict_overflow_p;
+ tree expr = gimple_assign_rhs1 (stmt);
+ poly_int64 bitsize, bitpos;
+ tree offset;
+ machine_mode mode;
+ int unsignedp, reversep, volatilep;
+ tree base = get_inner_reference (TREE_OPERAND (expr, 0), &bitsize,
+ &bitpos, &offset, &mode, &unsignedp,
+ &reversep, &volatilep);
+
+
+ if (base != NULL_TREE
+ && TREE_CODE (base) == MEM_REF
+ && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
+ {
+ tree ssa = TREE_OPERAND (base, 0);
+ tree lhs = gimple_get_lhs (stmt);
+ if (lhs && gimple_range_ssa_p (ssa) && src.gori ())
+ src.gori ()->register_dependency (lhs, ssa);
+ gcc_checking_assert (irange::supports_type_p (TREE_TYPE (ssa)));
+ src.get_operand (r, ssa);
+ range_cast (r, TREE_TYPE (gimple_assign_rhs1 (stmt)));
+
+ poly_offset_int off = 0;
+ bool off_cst = false;
+ if (offset == NULL_TREE || TREE_CODE (offset) == INTEGER_CST)
+ {
+ off = mem_ref_offset (base);
+ if (offset)
+ off += poly_offset_int::from (wi::to_poly_wide (offset),
+ SIGNED);
+ off <<= LOG2_BITS_PER_UNIT;
+ off += bitpos;
+ off_cst = true;
+ }
+ /* If &X->a is equal to X, the range of X is the result. */
+ if (off_cst && known_eq (off, 0))
+ return true;
+ else if (flag_delete_null_pointer_checks
+ && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)))
+ {
+ /* For -fdelete-null-pointer-checks -fno-wrapv-pointer we don't
+ allow going from non-NULL pointer to NULL. */
+ if(!range_includes_zero_p (&r))
+ return true;
+ }
+ /* If MEM_REF has a "positive" offset, consider it non-NULL
+ always, for -fdelete-null-pointer-checks also "negative"
+ ones. Punt for unknown offsets (e.g. variable ones). */
+ if (!TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr))
+ && off_cst
+ && known_ne (off, 0)
+ && (flag_delete_null_pointer_checks || known_gt (off, 0)))
+ {
+ r = range_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt)));
+ return true;
+ }
+ r = int_range<2> (TREE_TYPE (gimple_assign_rhs1 (stmt)));
+ return true;
+ }
+
+ // Handle "= &a".
+ if (tree_single_nonzero_warnv_p (expr, &strict_overflow_p))
+ {
+ r = range_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt)));
+ return true;
+ }
+
+ // Otherwise return varying.
+ r = int_range<2> (TREE_TYPE (gimple_assign_rhs1 (stmt)));
+ return true;
+}
+
+// Calculate a range for phi statement S and return it in R.
+// If a range cannot be calculated, return false.
+
+bool
+fold_using_range::range_of_phi (irange &r, gphi *phi, fur_source &src)
+{
+ tree phi_def = gimple_phi_result (phi);
+ tree type = TREE_TYPE (phi_def);
+ int_range_max arg_range;
+ unsigned x;
+
+ if (!irange::supports_type_p (type))
+ return false;
+
+ // Start with an empty range, unioning in each argument's range.
+ r.set_undefined ();
+ for (x = 0; x < gimple_phi_num_args (phi); x++)
+ {
+ tree arg = gimple_phi_arg_def (phi, x);
+ edge e = gimple_phi_arg_edge (phi, x);
+
+ // Register potential dependencies for stale value tracking.
+ if (gimple_range_ssa_p (arg) && src.gori ())
+ src.gori ()->register_dependency (phi_def, arg);
+
+ // Get the range of the argument on its edge.
+ src.get_phi_operand (arg_range, arg, e);
+ // If we're recomputing the argument elsewhere, try to refine it.
+ r.union_ (arg_range);
+ // Once the value reaches varying, stop looking.
+ if (r.varying_p ())
+ break;
+ }
+
+ // If SCEV is available, query if this PHI has any knonwn values.
+ if (scev_initialized_p () && !POINTER_TYPE_P (TREE_TYPE (phi_def)))
+ {
+ value_range loop_range;
+ class loop *l = loop_containing_stmt (phi);
+ if (l && loop_outer (l))
+ {
+ range_of_ssa_name_with_loop_info (loop_range, phi_def, l, phi, src);
+ if (!loop_range.varying_p ())
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, " Loops range found for ");
+ print_generic_expr (dump_file, phi_def, TDF_SLIM);
+ fprintf (dump_file, ": ");
+ loop_range.dump (dump_file);
+ fprintf (dump_file, " and calculated range :");
+ r.dump (dump_file);
+ fprintf (dump_file, "\n");
+ }
+ r.intersect (loop_range);
+ }
+ }
+ }
+
+ return true;
+}
+
+// Calculate a range for call statement S and return it in R.
+// If a range cannot be calculated, return false.
+
+bool
+fold_using_range::range_of_call (irange &r, gcall *call, fur_source &src)
+{
+ tree type = gimple_call_return_type (call);
+ tree lhs = gimple_call_lhs (call);
+ bool strict_overflow_p;
+
+ if (!irange::supports_type_p (type))
+ return false;
+
+ if (range_of_builtin_call (r, call, src))
+ ;
+ else if (gimple_stmt_nonnegative_warnv_p (call, &strict_overflow_p))
+ r.set (build_int_cst (type, 0), TYPE_MAX_VALUE (type));
+ else if (gimple_call_nonnull_result_p (call)
+ || gimple_call_nonnull_arg (call))
+ r = range_nonzero (type);
+ else
+ r.set_varying (type);
+
+ // If there is an LHS, intersect that with what is known.
+ if (lhs)
+ {
+ value_range def;
+ def = gimple_range_global (lhs);
+ r.intersect (def);
+ }
+ return true;
+}
+
+// Return the range of a __builtin_ubsan* in CALL and set it in R.
+// CODE is the type of ubsan call (PLUS_EXPR, MINUS_EXPR or
+// MULT_EXPR).
+
+void
+fold_using_range::range_of_builtin_ubsan_call (irange &r, gcall *call,
+ tree_code code, fur_source &src)
+{
+ gcc_checking_assert (code == PLUS_EXPR || code == MINUS_EXPR
+ || code == MULT_EXPR);
+ tree type = gimple_call_return_type (call);
+ range_operator *op = range_op_handler (code, type);
+ gcc_checking_assert (op);
+ int_range_max ir0, ir1;
+ tree arg0 = gimple_call_arg (call, 0);
+ tree arg1 = gimple_call_arg (call, 1);
+ src.get_operand (ir0, arg0);
+ src.get_operand (ir1, arg1);
+
+ bool saved_flag_wrapv = flag_wrapv;
+ // Pretend the arithmetic is wrapping. If there is any overflow,
+ // we'll complain, but will actually do wrapping operation.
+ flag_wrapv = 1;
+ op->fold_range (r, type, ir0, ir1);
+ flag_wrapv = saved_flag_wrapv;
+
+ // If for both arguments vrp_valueize returned non-NULL, this should
+ // have been already folded and if not, it wasn't folded because of
+ // overflow. Avoid removing the UBSAN_CHECK_* calls in that case.
+ if (r.singleton_p ())
+ r.set_varying (type);
+}
+
+// For a builtin in CALL, return a range in R if known and return
+// TRUE. Otherwise return FALSE.
+
+bool
+fold_using_range::range_of_builtin_call (irange &r, gcall *call,
+ fur_source &src)
+{
+ combined_fn func = gimple_call_combined_fn (call);
+ if (func == CFN_LAST)
+ return false;
+
+ tree type = gimple_call_return_type (call);
+ tree arg;
+ int mini, maxi, zerov = 0, prec;
+ scalar_int_mode mode;
+
+ switch (func)
+ {
+ case CFN_BUILT_IN_CONSTANT_P:
+ if (cfun->after_inlining)
+ {
+ r.set_zero (type);
+ // r.equiv_clear ();
+ return true;
+ }
+ arg = gimple_call_arg (call, 0);
+ if (src.get_operand (r, arg) && r.singleton_p ())
+ {
+ r.set (build_one_cst (type), build_one_cst (type));
+ return true;
+ }
+ break;
+
+ CASE_CFN_FFS:
+ CASE_CFN_POPCOUNT:
+ // __builtin_ffs* and __builtin_popcount* return [0, prec].
+ arg = gimple_call_arg (call, 0);
+ prec = TYPE_PRECISION (TREE_TYPE (arg));
+ mini = 0;
+ maxi = prec;
+ src.get_operand (r, arg);
+ // If arg is non-zero, then ffs or popcount are non-zero.
+ if (!range_includes_zero_p (&r))
+ mini = 1;
+ // If some high bits are known to be zero, decrease the maximum.
+ if (!r.undefined_p ())
+ {
+ if (TYPE_SIGN (r.type ()) == SIGNED)
+ range_cast (r, unsigned_type_for (r.type ()));
+ wide_int max = r.upper_bound ();
+ maxi = wi::floor_log2 (max) + 1;
+ }
+ r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
+ return true;
+
+ CASE_CFN_PARITY:
+ r.set (build_zero_cst (type), build_one_cst (type));
+ return true;
+
+ CASE_CFN_CLZ:
+ // __builtin_c[lt]z* return [0, prec-1], except when the
+ // argument is 0, but that is undefined behavior.
+ //
+ // For __builtin_c[lt]z* consider argument of 0 always undefined
+ // behavior, for internal fns depending on C?Z_DEFINED_VALUE_AT_ZERO.
+ arg = gimple_call_arg (call, 0);
+ prec = TYPE_PRECISION (TREE_TYPE (arg));
+ mini = 0;
+ maxi = prec - 1;
+ mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
+ if (gimple_call_internal_p (call))
+ {
+ if (optab_handler (clz_optab, mode) != CODE_FOR_nothing
+ && CLZ_DEFINED_VALUE_AT_ZERO (mode, zerov) == 2)
+ {
+ // Only handle the single common value.
+ if (zerov == prec)
+ maxi = prec;
+ else
+ // Magic value to give up, unless we can prove arg is non-zero.
+ mini = -2;
+ }
+ }
+
+ src.get_operand (r, arg);
+ // From clz of minimum we can compute result maximum.
+ if (!r.undefined_p ())
+ {
+ // From clz of minimum we can compute result maximum.
+ if (wi::gt_p (r.lower_bound (), 0, TYPE_SIGN (r.type ())))
+ {
+ maxi = prec - 1 - wi::floor_log2 (r.lower_bound ());
+ if (mini == -2)
+ mini = 0;
+ }
+ else if (!range_includes_zero_p (&r))
+ {
+ mini = 0;
+ maxi = prec - 1;
+ }
+ if (mini == -2)
+ break;
+ // From clz of maximum we can compute result minimum.
+ wide_int max = r.upper_bound ();
+ int newmini = prec - 1 - wi::floor_log2 (max);
+ if (max == 0)
+ {
+ // If CLZ_DEFINED_VALUE_AT_ZERO is 2 with VALUE of prec,
+ // return [prec, prec], otherwise ignore the range.
+ if (maxi == prec)
+ mini = prec;
+ }
+ else
+ mini = newmini;
+ }
+ if (mini == -2)
+ break;
+ r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
+ return true;
+
+ CASE_CFN_CTZ:
+ // __builtin_ctz* return [0, prec-1], except for when the
+ // argument is 0, but that is undefined behavior.
+ //
+ // For __builtin_ctz* consider argument of 0 always undefined
+ // behavior, for internal fns depending on CTZ_DEFINED_VALUE_AT_ZERO.
+ arg = gimple_call_arg (call, 0);
+ prec = TYPE_PRECISION (TREE_TYPE (arg));
+ mini = 0;
+ maxi = prec - 1;
+ mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
+ if (gimple_call_internal_p (call))
+ {
+ if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing
+ && CTZ_DEFINED_VALUE_AT_ZERO (mode, zerov) == 2)
+ {
+ // Handle only the two common values.
+ if (zerov == -1)
+ mini = -1;
+ else if (zerov == prec)
+ maxi = prec;
+ else
+ // Magic value to give up, unless we can prove arg is non-zero.
+ mini = -2;
+ }
+ }
+ src.get_operand (r, arg);
+ if (!r.undefined_p ())
+ {
+ // If arg is non-zero, then use [0, prec - 1].
+ if (!range_includes_zero_p (&r))
+ {
+ mini = 0;
+ maxi = prec - 1;
+ }
+ // If some high bits are known to be zero, we can decrease
+ // the maximum.
+ wide_int max = r.upper_bound ();
+ if (max == 0)
+ {
+ // Argument is [0, 0]. If CTZ_DEFINED_VALUE_AT_ZERO
+ // is 2 with value -1 or prec, return [-1, -1] or [prec, prec].
+ // Otherwise ignore the range.
+ if (mini == -1)
+ maxi = -1;
+ else if (maxi == prec)
+ mini = prec;
+ }
+ // If value at zero is prec and 0 is in the range, we can't lower
+ // the upper bound. We could create two separate ranges though,
+ // [0,floor_log2(max)][prec,prec] though.
+ else if (maxi != prec)
+ maxi = wi::floor_log2 (max);
+ }
+ if (mini == -2)
+ break;
+ r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
+ return true;
+
+ CASE_CFN_CLRSB:
+ arg = gimple_call_arg (call, 0);
+ prec = TYPE_PRECISION (TREE_TYPE (arg));
+ r.set (build_int_cst (type, 0), build_int_cst (type, prec - 1));
+ return true;
+ case CFN_UBSAN_CHECK_ADD:
+ range_of_builtin_ubsan_call (r, call, PLUS_EXPR, src);
+ return true;
+ case CFN_UBSAN_CHECK_SUB:
+ range_of_builtin_ubsan_call (r, call, MINUS_EXPR, src);
+ return true;
+ case CFN_UBSAN_CHECK_MUL:
+ range_of_builtin_ubsan_call (r, call, MULT_EXPR, src);
+ return true;
+
+ case CFN_GOACC_DIM_SIZE:
+ case CFN_GOACC_DIM_POS:
+ // Optimizing these two internal functions helps the loop
+ // optimizer eliminate outer comparisons. Size is [1,N]
+ // and pos is [0,N-1].
+ {
+ bool is_pos = func == CFN_GOACC_DIM_POS;
+ int axis = oacc_get_ifn_dim_arg (call);
+ int size = oacc_get_fn_dim_size (current_function_decl, axis);
+ if (!size)
+ // If it's dynamic, the backend might know a hardware limitation.
+ size = targetm.goacc.dim_limit (axis);
+
+ r.set (build_int_cst (type, is_pos ? 0 : 1),
+ size
+ ? build_int_cst (type, size - is_pos) : vrp_val_max (type));
+ return true;
+ }
+
+ case CFN_BUILT_IN_STRLEN:
+ if (tree lhs = gimple_call_lhs (call))
+ if (ptrdiff_type_node
+ && (TYPE_PRECISION (ptrdiff_type_node)
+ == TYPE_PRECISION (TREE_TYPE (lhs))))
+ {
+ tree type = TREE_TYPE (lhs);
+ tree max = vrp_val_max (ptrdiff_type_node);
+ wide_int wmax
+ = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
+ tree range_min = build_zero_cst (type);
+ // To account for the terminating NULL, the maximum length
+ // is one less than the maximum array size, which in turn
+ // is one less than PTRDIFF_MAX (or SIZE_MAX where it's
+ // smaller than the former type).
+ // FIXME: Use max_object_size() - 1 here.
+ tree range_max = wide_int_to_tree (type, wmax - 2);
+ r.set (range_min, range_max);
+ return true;
+ }
+ break;
+ default:
+ break;
+ }
+ return false;
+}
+
+
+// Calculate a range for COND_EXPR statement S and return it in R.
+// If a range cannot be calculated, return false.
+
+bool
+fold_using_range::range_of_cond_expr (irange &r, gassign *s, fur_source &src)
+{
+ int_range_max cond_range, range1, range2;
+ tree cond = gimple_assign_rhs1 (s);
+ tree op1 = gimple_assign_rhs2 (s);
+ tree op2 = gimple_assign_rhs3 (s);
+
+ gcc_checking_assert (gimple_assign_rhs_code (s) == COND_EXPR);
+ gcc_checking_assert (useless_type_conversion_p (TREE_TYPE (op1),
+ TREE_TYPE (op2)));
+ if (!irange::supports_type_p (TREE_TYPE (op1)))
+ return false;
+
+ src.get_operand (cond_range, cond);
+ src.get_operand (range1, op1);
+ src.get_operand (range2, op2);
+
+ // If the condition is known, choose the appropriate expression.
+ if (cond_range.singleton_p ())
+ {
+ // False, pick second operand.
+ if (cond_range.zero_p ())
+ r = range2;
+ else
+ r = range1;
+ }
+ else
+ {
+ r = range1;
+ r.union_ (range2);
+ }
+ return true;
+}
+
+// If SCEV has any information about phi node NAME, return it as a range in R.
+
+void
+fold_using_range::range_of_ssa_name_with_loop_info (irange &r, tree name,
+ class loop *l, gphi *phi,
+ fur_source &src)
+{
+ gcc_checking_assert (TREE_CODE (name) == SSA_NAME);
+ tree min, max, type = TREE_TYPE (name);
+ if (bounds_of_var_in_loop (&min, &max, src.query (), l, phi, name))
+ {
+ if (TREE_CODE (min) != INTEGER_CST)
+ {
+ if (src.query ()->range_of_expr (r, min, phi) && !r.undefined_p ())
+ min = wide_int_to_tree (type, r.lower_bound ());
+ else
+ min = vrp_val_min (type);
+ }
+ if (TREE_CODE (max) != INTEGER_CST)
+ {
+ if (src.query ()->range_of_expr (r, max, phi) && !r.undefined_p ())
+ max = wide_int_to_tree (type, r.upper_bound ());
+ else
+ max = vrp_val_max (type);
+ }
+ r.set (min, max);
+ }
+ else
+ r.set_varying (type);
+}
+
+// -----------------------------------------------------------------------
+
+// Check if an && or || expression can be folded based on relations. ie
+// c_2 = a_6 > b_7
+// c_3 = a_6 < b_7
+// c_4 = c_2 && c_3
+// c_2 and c_3 can never be true at the same time,
+// Therefore c_4 can always resolve to false based purely on the relations.
+
+void
+fold_using_range::relation_fold_and_or (irange& lhs_range, gimple *s,
+ fur_source &src)
+{
+ // No queries or already folded.
+ if (!src.gori () || !src.query ()->oracle () || lhs_range.singleton_p ())
+ return;
+
+ // Only care about AND and OR expressions.
+ enum tree_code code = gimple_expr_code (s);
+ bool is_and = false;
+ if (code == BIT_AND_EXPR || code == TRUTH_AND_EXPR)
+ is_and = true;
+ else if (code != BIT_IOR_EXPR && code != TRUTH_OR_EXPR)
+ return;
+
+ tree lhs = gimple_get_lhs (s);
+ tree ssa1 = gimple_range_ssa_p (gimple_range_operand1 (s));
+ tree ssa2 = gimple_range_ssa_p (gimple_range_operand2 (s));
+
+ // Deal with || and && only when there is a full set of symbolics.
+ if (!lhs || !ssa1 || !ssa2
+ || (TREE_CODE (TREE_TYPE (lhs)) != BOOLEAN_TYPE)
+ || (TREE_CODE (TREE_TYPE (ssa1)) != BOOLEAN_TYPE)
+ || (TREE_CODE (TREE_TYPE (ssa2)) != BOOLEAN_TYPE))
+ return;
+
+ // Now we know its a boolean AND or OR expression with boolean operands.
+ // Ideally we search dependencies for common names, and see what pops out.
+ // until then, simply try to resolve direct dependencies.
+
+ // Both names will need to have 2 direct dependencies.
+ tree ssa1_dep2 = src.gori ()->depend2 (ssa1);
+ tree ssa2_dep2 = src.gori ()->depend2 (ssa2);
+ if (!ssa1_dep2 || !ssa2_dep2)
+ return;
+
+ tree ssa1_dep1 = src.gori ()->depend1 (ssa1);
+ tree ssa2_dep1 = src.gori ()->depend1 (ssa2);
+ // Make sure they are the same dependencies, and detect the order of the
+ // relationship.
+ bool reverse_op2 = true;
+ if (ssa1_dep1 == ssa2_dep1 && ssa1_dep2 == ssa2_dep2)
+ reverse_op2 = false;
+ else if (ssa1_dep1 != ssa2_dep2 || ssa1_dep2 != ssa2_dep1)
+ return;
+
+ range_operator *handler1 = gimple_range_handler (SSA_NAME_DEF_STMT (ssa1));
+ range_operator *handler2 = gimple_range_handler (SSA_NAME_DEF_STMT (ssa2));
+
+ int_range<2> bool_one (boolean_true_node, boolean_true_node);
+
+ relation_kind relation1 = handler1->op1_op2_relation (bool_one);
+ relation_kind relation2 = handler2->op1_op2_relation (bool_one);
+ if (relation1 == VREL_NONE || relation2 == VREL_NONE)
+ return;
+
+ if (reverse_op2)
+ relation2 = relation_negate (relation2);
+
+ // x && y is false if the relation intersection of the true cases is NULL.
+ if (is_and && relation_intersect (relation1, relation2) == VREL_EMPTY)
+ lhs_range = int_range<2> (boolean_false_node, boolean_false_node);
+ // x || y is true if the union of the true cases is NO-RELATION..
+ // ie, one or the other being true covers the full range of possibilties.
+ else if (!is_and && relation_union (relation1, relation2) == VREL_NONE)
+ lhs_range = bool_one;
+ else
+ return;
+
+ range_cast (lhs_range, TREE_TYPE (lhs));
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, " Relation adjustment: ");
+ print_generic_expr (dump_file, ssa1, TDF_SLIM);
+ fprintf (dump_file, " and ");
+ print_generic_expr (dump_file, ssa2, TDF_SLIM);
+ fprintf (dump_file, " combine to produce ");
+ lhs_range.dump (dump_file);
+ fputc ('\n', dump_file);
+ }
+
+ return;
+}
+
+// Register any outgoing edge relations from a conditional branch.
+
+void
+fold_using_range::postfold_gcond_edges (gcond *s, fur_source &src)
+{
+ int_range_max r;
+ tree name;
+ range_operator *handler;
+ basic_block bb = gimple_bb (s);
+
+ edge e0 = EDGE_SUCC (bb, 0);
+ if (!single_pred_p (e0->dest))
+ e0 = NULL;
+
+ edge e1 = EDGE_SUCC (bb, 1);
+ if (!single_pred_p (e1->dest))
+ e1 = NULL;
+
+ // At least one edge needs to be single pred.
+ if (!e0 && !e1)
+ return;
+
+ // First, register the gcond itself. This will catch statements like
+ // if (a_2 < b_5)
+ tree ssa1 = gimple_range_ssa_p (gimple_range_operand1 (s));
+ tree ssa2 = gimple_range_ssa_p (gimple_range_operand2 (s));
+ if (ssa1 && ssa2)
+ {
+ handler = gimple_range_handler (s);
+ gcc_checking_assert (handler);
+ if (e0)
+ {
+ gcond_edge_range (r, e0);
+ relation_kind relation = handler->op1_op2_relation (r);
+ if (relation != VREL_NONE)
+ src.register_relation (e0, relation, ssa1, ssa2);
+ }
+ if (e1)
+ {
+ gcond_edge_range (r, e1);
+ relation_kind relation = handler->op1_op2_relation (r);
+ if (relation != VREL_NONE)
+ src.register_relation (e1, relation, ssa1, ssa2);
+ }
+ }
+
+ // Outgoing relations of GORI exports require a gori engine.
+ if (!src.gori ())
+ return;
+
+ range_query *q = src.query ();
+ // Now look for other relations in the exports. This will find stmts
+ // leading to the condition such as:
+ // c_2 = a_4 < b_7
+ // if (c_2)
+
+ FOR_EACH_GORI_EXPORT_NAME (*(src.gori ()), bb, name)
+ {
+ if (TREE_CODE (TREE_TYPE (name)) != BOOLEAN_TYPE)
+ continue;
+ gimple *stmt = SSA_NAME_DEF_STMT (name);
+ handler = gimple_range_handler (stmt);
+ if (!handler)
+ continue;
+ tree ssa1 = gimple_range_ssa_p (gimple_range_operand1 (stmt));
+ tree ssa2 = gimple_range_ssa_p (gimple_range_operand2 (stmt));
+ if (ssa1 && ssa2)
+ {
+ if (e0 && src.gori ()->outgoing_edge_range_p (r, e0, name, *q)
+ && r.singleton_p ())
+ {
+ relation_kind relation = handler->op1_op2_relation (r);
+ if (relation != VREL_NONE)
+ src.register_relation (e0, relation, ssa1, ssa2);
+ }
+ if (e1 && src.gori ()->outgoing_edge_range_p (r, e1, name, *q)
+ && r.singleton_p ())
+ {
+ relation_kind relation = handler->op1_op2_relation (r);
+ if (relation != VREL_NONE)
+ src.register_relation (e1, relation, ssa1, ssa2);
+ }
+ }
+ }
+}
diff --git a/gcc/gimple-range-fold.h b/gcc/gimple-range-fold.h
new file mode 100644
index 0000000..aeb9231
--- /dev/null
+++ b/gcc/gimple-range-fold.h
@@ -0,0 +1,163 @@
+/* Header file for the GIMPLE fold_using_range interface.
+ Copyright (C) 2019-2021 Free Software Foundation, Inc.
+ Contributed by Andrew MacLeod <amacleod@redhat.com>
+ and Aldy Hernandez <aldyh@redhat.com>.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#ifndef GCC_GIMPLE_RANGE_FOLD_H
+#define GCC_GIMPLE_RANGE_FOLD_H
+
+// This file is the main include point for gimple range folding.
+// These routines will fold stmt S into the result irange R.
+// Any ssa_names on the stmt will be calculated using the range_query
+// parameter via a call to range_of_expr.
+// If no range_query is provided, current global range info will be used.
+// The second variation specifies an edge, and stmt S is recalculated as if
+// it appeared on that edge.
+
+// Fold stmt S into range R using range query Q.
+bool fold_range (irange &r, gimple *s, range_query *q = NULL);
+// Recalculate stmt S into R using range query Q as if it were on edge ON_EDGE.
+bool fold_range (irange &r, gimple *s, edge on_edge, range_query *q = NULL);
+
+// These routines the operands to be specified when manually folding.
+// Any excess queries will be drawn from the current range_query.
+bool fold_range (irange &r, gimple *s, irange &r1);
+bool fold_range (irange &r, gimple *s, irange &r1, irange &r2);
+bool fold_range (irange &r, gimple *s, unsigned num_elements, irange *vector);
+
+// Return the range_operator pointer for this statement. This routine
+// can also be used to gate whether a routine is range-ops enabled.
+
+static inline range_operator *
+gimple_range_handler (const gimple *s)
+{
+ if (const gassign *ass = dyn_cast<const gassign *> (s))
+ return range_op_handler (gimple_assign_rhs_code (ass),
+ TREE_TYPE (gimple_assign_lhs (ass)));
+ if (const gcond *cond = dyn_cast<const gcond *> (s))
+ return range_op_handler (gimple_cond_code (cond),
+ TREE_TYPE (gimple_cond_lhs (cond)));
+ return NULL;
+}
+
+// Return EXP if it is an SSA_NAME with a type supported by gimple ranges.
+
+static inline tree
+gimple_range_ssa_p (tree exp)
+{
+ if (exp && TREE_CODE (exp) == SSA_NAME &&
+ !SSA_NAME_IS_VIRTUAL_OPERAND (exp) &&
+ irange::supports_type_p (TREE_TYPE (exp)))
+ return exp;
+ return NULL_TREE;
+}
+
+// Return true if TYPE1 and TYPE2 are compatible range types.
+
+static inline bool
+range_compatible_p (tree type1, tree type2)
+{
+ // types_compatible_p requires conversion in both directions to be useless.
+ // GIMPLE only requires a cast one way in order to be compatible.
+ // Ranges really only need the sign and precision to be the same.
+ return (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
+ && TYPE_SIGN (type1) == TYPE_SIGN (type2));
+}
+
+
+// Source of all operands for fold_using_range and gori_compute.
+// It abstracts out the source of an operand so it can come from a stmt or
+// and edge or anywhere a derived class of fur_source wants.
+// The default simply picks up ranges from the current range_query.
+
+class fur_source
+{
+public:
+ fur_source (range_query *q = NULL);
+ inline range_query *query () { return m_query; }
+ inline class gori_compute *gori () { return m_gori; };
+ virtual bool get_operand (irange &r, tree expr);
+ virtual bool get_phi_operand (irange &r, tree expr, edge e);
+ virtual relation_kind query_relation (tree op1, tree op2);
+ virtual void register_relation (gimple *stmt, relation_kind k, tree op1,
+ tree op2);
+ virtual void register_relation (edge e, relation_kind k, tree op1,
+ tree op2);
+protected:
+ range_query *m_query;
+ gori_compute *m_gori;
+};
+
+// fur_stmt is the specification for drawing an operand from range_query Q
+// via a range_of_Expr call on stmt S.
+
+class fur_stmt : public fur_source
+{
+public:
+ fur_stmt (gimple *s, range_query *q = NULL);
+ virtual bool get_operand (irange &r, tree expr) OVERRIDE;
+ virtual bool get_phi_operand (irange &r, tree expr, edge e) OVERRIDE;
+ virtual relation_kind query_relation (tree op1, tree op2) OVERRIDE;
+private:
+ gimple *m_stmt;
+};
+
+// This version of fur_source will pick a range from a stmt, and also register
+// dependencies via a gori_compute object. This is mostly an internal API.
+
+class fur_depend : public fur_stmt
+{
+public:
+ fur_depend (gimple *s, gori_compute *gori, range_query *q = NULL);
+ virtual void register_relation (gimple *stmt, relation_kind k, tree op1,
+ tree op2) OVERRIDE;
+ virtual void register_relation (edge e, relation_kind k, tree op1,
+ tree op2) OVERRIDE;
+private:
+ relation_oracle *m_oracle;
+};
+
+extern tree gimple_range_operand1 (const gimple *s);
+extern tree gimple_range_operand2 (const gimple *s);
+
+// This class uses ranges to fold a gimple statement producinf a range for
+// the LHS. The source of all operands is supplied via the fur_source class
+// which provides a range_query as well as a source location and any other
+// required information.
+
+class fold_using_range
+{
+public:
+ bool fold_stmt (irange &r, gimple *s, class fur_source &src,
+ tree name = NULL_TREE);
+protected:
+ bool range_of_range_op (irange &r, gimple *s, fur_source &src);
+ bool range_of_call (irange &r, gcall *call, fur_source &src);
+ bool range_of_cond_expr (irange &r, gassign* cond, fur_source &src);
+ bool range_of_address (irange &r, gimple *s, fur_source &src);
+ bool range_of_builtin_call (irange &r, gcall *call, fur_source &src);
+ void range_of_builtin_ubsan_call (irange &r, gcall *call, tree_code code,
+ fur_source &src);
+ bool range_of_phi (irange &r, gphi *phi, fur_source &src);
+ void range_of_ssa_name_with_loop_info (irange &, tree, class loop *, gphi *,
+ fur_source &src);
+ void relation_fold_and_or (irange& lhs_range, gimple *s, fur_source &src);
+ void postfold_gcond_edges (gcond *s, fur_source &src);
+};
+#endif // GCC_GIMPLE_RANGE_FOLD_H
diff --git a/gcc/gimple-range-gori.cc b/gcc/gimple-range-gori.cc
index b58f249..17032ac 100644
--- a/gcc/gimple-range-gori.cc
+++ b/gcc/gimple-range-gori.cc
@@ -29,6 +29,72 @@ along with GCC; see the file COPYING3. If not see
#include "gimple-pretty-print.h"
#include "gimple-range.h"
+// Calculate what we can determine of the range of this unary
+// statement's operand if the lhs of the expression has the range
+// LHS_RANGE. Return false if nothing can be determined.
+
+bool
+gimple_range_calc_op1 (irange &r, const gimple *stmt, const irange &lhs_range)
+{
+ gcc_checking_assert (gimple_num_ops (stmt) < 3);
+
+ // An empty range is viral.
+ tree type = TREE_TYPE (gimple_range_operand1 (stmt));
+ if (lhs_range.undefined_p ())
+ {
+ r.set_undefined ();
+ return true;
+ }
+ // Unary operations require the type of the first operand in the
+ // second range position.
+ int_range<2> type_range (type);
+ return gimple_range_handler (stmt)->op1_range (r, type, lhs_range,
+ type_range);
+}
+
+// Calculate what we can determine of the range of this statement's
+// first operand if the lhs of the expression has the range LHS_RANGE
+// and the second operand has the range OP2_RANGE. Return false if
+// nothing can be determined.
+
+bool
+gimple_range_calc_op1 (irange &r, const gimple *stmt,
+ const irange &lhs_range, const irange &op2_range)
+{
+ // Unary operation are allowed to pass a range in for second operand
+ // as there are often additional restrictions beyond the type which
+ // can be imposed. See operator_cast::op1_range().
+ tree type = TREE_TYPE (gimple_range_operand1 (stmt));
+ // An empty range is viral.
+ if (op2_range.undefined_p () || lhs_range.undefined_p ())
+ {
+ r.set_undefined ();
+ return true;
+ }
+ return gimple_range_handler (stmt)->op1_range (r, type, lhs_range,
+ op2_range);
+}
+
+// Calculate what we can determine of the range of this statement's
+// second operand if the lhs of the expression has the range LHS_RANGE
+// and the first operand has the range OP1_RANGE. Return false if
+// nothing can be determined.
+
+bool
+gimple_range_calc_op2 (irange &r, const gimple *stmt,
+ const irange &lhs_range, const irange &op1_range)
+{
+ tree type = TREE_TYPE (gimple_range_operand2 (stmt));
+ // An empty range is viral.
+ if (op1_range.undefined_p () || lhs_range.undefined_p ())
+ {
+ r.set_undefined ();
+ return true;
+ }
+ return gimple_range_handler (stmt)->op2_range (r, type, lhs_range,
+ op1_range);
+}
+
// Return TRUE if GS is a logical && or || expression.
static inline bool
diff --git a/gcc/gimple-range-gori.h b/gcc/gimple-range-gori.h
index 6f187db..ad83324 100644
--- a/gcc/gimple-range-gori.h
+++ b/gcc/gimple-range-gori.h
@@ -182,6 +182,15 @@ private:
gimple_outgoing_range outgoing; // Edge values for COND_EXPR & SWITCH_EXPR.
};
+// These routines provide a GIMPLE interface to the range-ops code.
+extern bool gimple_range_calc_op1 (irange &r, const gimple *s,
+ const irange &lhs_range);
+extern bool gimple_range_calc_op1 (irange &r, const gimple *s,
+ const irange &lhs_range,
+ const irange &op2_range);
+extern bool gimple_range_calc_op2 (irange &r, const gimple *s,
+ const irange &lhs_range,
+ const irange &op1_range);
// For each name that is an import into BB's exports..
#define FOR_EACH_GORI_IMPORT_NAME(gori, bb, name) \
diff --git a/gcc/gimple-range.cc b/gcc/gimple-range.cc
index 49d2650..1851339 100644
--- a/gcc/gimple-range.cc
+++ b/gcc/gimple-range.cc
@@ -23,1186 +23,18 @@ along with GCC; see the file COPYING3. If not see
#include "system.h"
#include "coretypes.h"
#include "backend.h"
-#include "insn-codes.h"
-#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "gimple-iterator.h"
-#include "optabs-tree.h"
-#include "gimple-fold.h"
#include "tree-cfg.h"
#include "fold-const.h"
#include "tree-cfg.h"
-#include "wide-int.h"
-#include "fold-const.h"
-#include "case-cfn-macros.h"
-#include "omp-general.h"
#include "cfgloop.h"
-#include "tree-ssa-loop.h"
#include "tree-scalar-evolution.h"
-#include "dbgcnt.h"
-#include "alloc-pool.h"
-#include "vr-values.h"
#include "gimple-range.h"
-// Construct a fur_source, and set the m_query field.
-
-fur_source::fur_source (range_query *q)
-{
- if (q)
- m_query = q;
- else if (cfun)
- m_query = get_range_query (cfun);
- else
- m_query = get_global_range_query ();
- m_gori = NULL;
-}
-
-// Invoke range_of_expr on EXPR.
-
-bool
-fur_source::get_operand (irange &r, tree expr)
-{
- return m_query->range_of_expr (r, expr);
-}
-
-// Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current
-// range_query to get the range on the edge.
-
-bool
-fur_source::get_phi_operand (irange &r, tree expr, edge e)
-{
- return m_query->range_on_edge (r, e, expr);
-}
-
-// Default is no relation.
-
-relation_kind
-fur_source::query_relation (tree op1 ATTRIBUTE_UNUSED,
- tree op2 ATTRIBUTE_UNUSED)
-{
- return VREL_NONE;
-}
-
-// Default registers nothing.
-
-void
-fur_source::register_relation (gimple *s ATTRIBUTE_UNUSED,
- relation_kind k ATTRIBUTE_UNUSED,
- tree op1 ATTRIBUTE_UNUSED,
- tree op2 ATTRIBUTE_UNUSED)
-{
-}
-
-// Default registers nothing.
-
-void
-fur_source::register_relation (edge e ATTRIBUTE_UNUSED,
- relation_kind k ATTRIBUTE_UNUSED,
- tree op1 ATTRIBUTE_UNUSED,
- tree op2 ATTRIBUTE_UNUSED)
-{
-}
-
-// This version of fur_source will pick a range up off an edge.
-
-class fur_edge : public fur_source
-{
-public:
- fur_edge (edge e, range_query *q = NULL);
- virtual bool get_operand (irange &r, tree expr) OVERRIDE;
- virtual bool get_phi_operand (irange &r, tree expr, edge e) OVERRIDE;
-private:
- edge m_edge;
-};
-
-// Instantiate an edge based fur_source.
-
-inline
-fur_edge::fur_edge (edge e, range_query *q) : fur_source (q)
-{
- m_edge = e;
-}
-
-// Get the value of EXPR on edge m_edge.
-
-bool
-fur_edge::get_operand (irange &r, tree expr)
-{
- return m_query->range_on_edge (r, m_edge, expr);
-}
-
-// Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current
-// range_query to get the range on the edge.
-
-bool
-fur_edge::get_phi_operand (irange &r, tree expr, edge e)
-{
- // Edge to edge recalculations not supoprted yet, until we sort it out.
- gcc_checking_assert (e == m_edge);
- return m_query->range_on_edge (r, e, expr);
-}
-
-// Instantiate a stmt based fur_source.
-
-fur_stmt::fur_stmt (gimple *s, range_query *q) : fur_source (q)
-{
- m_stmt = s;
-}
-
-// Retreive range of EXPR as it occurs as a use on stmt M_STMT.
-
-bool
-fur_stmt::get_operand (irange &r, tree expr)
-{
- return m_query->range_of_expr (r, expr, m_stmt);
-}
-
-// Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current
-// range_query to get the range on the edge.
-
-bool
-fur_stmt::get_phi_operand (irange &r, tree expr, edge e)
-{
- // Pick up the range of expr from edge E.
- fur_edge e_src (e, m_query);
- return e_src.get_operand (r, expr);
-}
-
-// Return relation based from m_stmt.
-
-relation_kind
-fur_stmt::query_relation (tree op1, tree op2)
-{
- return m_query->query_relation (m_stmt, op1, op2);
-}
-
-// This version of fur_source will pick a range from a stmt, and also register
-// dependencies via a gori_compute object. This is mostly an internal API.
-
-class fur_depend : public fur_stmt
-{
-public:
- fur_depend (gimple *s, gori_compute *gori, range_query *q = NULL);
- virtual void register_relation (gimple *stmt, relation_kind k, tree op1,
- tree op2) OVERRIDE;
- virtual void register_relation (edge e, relation_kind k, tree op1,
- tree op2) OVERRIDE;
-private:
- relation_oracle *m_oracle;
-};
-
-// Instantiate a stmt based fur_source with a GORI object.
-
-inline
-fur_depend::fur_depend (gimple *s, gori_compute *gori, range_query *q)
- : fur_stmt (s, q)
-{
- gcc_checking_assert (gori);
- m_gori = gori;
- // Set relations if there is an oracle in the range_query.
- // This will enable registering of relationships as they are discovered.
- m_oracle = q->oracle ();
-
-}
-
-// Register a relation on a stmt if there is an oracle.
-
-void
-fur_depend::register_relation (gimple *s, relation_kind k, tree op1, tree op2)
-{
- if (m_oracle)
- m_oracle->register_relation (s, k, op1, op2);
-}
-
-// Register a relation on an edge if there is an oracle.
-
-void
-fur_depend::register_relation (edge e, relation_kind k, tree op1, tree op2)
-{
- if (m_oracle)
- m_oracle->register_relation (e, k, op1, op2);
-}
-
-// This version of fur_source will pick a range up from a list of ranges
-// supplied by the caller.
-
-class fur_list : public fur_source
-{
-public:
- fur_list (irange &r1);
- fur_list (irange &r1, irange &r2);
- fur_list (unsigned num, irange *list);
- virtual bool get_operand (irange &r, tree expr) OVERRIDE;
- virtual bool get_phi_operand (irange &r, tree expr, edge e) OVERRIDE;
-private:
- int_range_max m_local[2];
- irange *m_list;
- unsigned m_index;
- unsigned m_limit;
-};
-
-// One range supplied for unary operations.
-
-fur_list::fur_list (irange &r1) : fur_source (NULL)
-{
- m_list = m_local;
- m_index = 0;
- m_limit = 1;
- m_local[0] = r1;
-}
-
-// Two ranges supplied for binary operations.
-
-fur_list::fur_list (irange &r1, irange &r2) : fur_source (NULL)
-{
- m_list = m_local;
- m_index = 0;
- m_limit = 2;
- m_local[0] = r1;
- m_local[0] = r2;
-}
-
-// Arbitrary number of ranges in a vector.
-
-fur_list::fur_list (unsigned num, irange *list) : fur_source (NULL)
-{
- m_list = list;
- m_index = 0;
- m_limit = num;
-}
-
-// Get the next operand from the vector, ensure types are compatible.
-
-bool
-fur_list::get_operand (irange &r, tree expr)
-{
- if (m_index >= m_limit)
- return m_query->range_of_expr (r, expr);
- r = m_list[m_index++];
- gcc_checking_assert (range_compatible_p (TREE_TYPE (expr), r.type ()));
- return true;
-}
-
-// This will simply pick the next operand from the vector.
-bool
-fur_list::get_phi_operand (irange &r, tree expr, edge e ATTRIBUTE_UNUSED)
-{
- return get_operand (r, expr);
-}
-
-// Fold stmt S into range R using R1 as the first operand.
-
-bool
-fold_range (irange &r, gimple *s, irange &r1)
-{
- fold_using_range f;
- fur_list src (r1);
- return f.fold_stmt (r, s, src);
-}
-
-// Fold stmt S into range R using R1 and R2 as the first two operands.
-
-bool
-fold_range (irange &r, gimple *s, irange &r1, irange &r2)
-{
- fold_using_range f;
- fur_list src (r1, r2);
- return f.fold_stmt (r, s, src);
-}
-
-// Fold stmt S into range R using NUM_ELEMENTS from VECTOR as the initial
-// operands encountered.
-
-bool
-fold_range (irange &r, gimple *s, unsigned num_elements, irange *vector)
-{
- fold_using_range f;
- fur_list src (num_elements, vector);
- return f.fold_stmt (r, s, src);
-}
-
-// Fold stmt S into range R using range query Q.
-
-bool
-fold_range (irange &r, gimple *s, range_query *q)
-{
- fold_using_range f;
- fur_stmt src (s, q);
- return f.fold_stmt (r, s, src);
-}
-
-// Recalculate stmt S into R using range query Q as if it were on edge ON_EDGE.
-
-bool
-fold_range (irange &r, gimple *s, edge on_edge, range_query *q)
-{
- fold_using_range f;
- fur_edge src (on_edge, q);
- return f.fold_stmt (r, s, src);
-}
-
-// -------------------------------------------------------------------------
-
-// Adjust the range for a pointer difference where the operands came
-// from a memchr.
-//
-// This notices the following sequence:
-//
-// def = __builtin_memchr (arg, 0, sz)
-// n = def - arg
-//
-// The range for N can be narrowed to [0, PTRDIFF_MAX - 1].
-
-static void
-adjust_pointer_diff_expr (irange &res, const gimple *diff_stmt)
-{
- tree op0 = gimple_assign_rhs1 (diff_stmt);
- tree op1 = gimple_assign_rhs2 (diff_stmt);
- tree op0_ptype = TREE_TYPE (TREE_TYPE (op0));
- tree op1_ptype = TREE_TYPE (TREE_TYPE (op1));
- gimple *call;
-
- if (TREE_CODE (op0) == SSA_NAME
- && TREE_CODE (op1) == SSA_NAME
- && (call = SSA_NAME_DEF_STMT (op0))
- && is_gimple_call (call)
- && gimple_call_builtin_p (call, BUILT_IN_MEMCHR)
- && TYPE_MODE (op0_ptype) == TYPE_MODE (char_type_node)
- && TYPE_PRECISION (op0_ptype) == TYPE_PRECISION (char_type_node)
- && TYPE_MODE (op1_ptype) == TYPE_MODE (char_type_node)
- && TYPE_PRECISION (op1_ptype) == TYPE_PRECISION (char_type_node)
- && gimple_call_builtin_p (call, BUILT_IN_MEMCHR)
- && vrp_operand_equal_p (op1, gimple_call_arg (call, 0))
- && integer_zerop (gimple_call_arg (call, 1)))
- {
- tree max = vrp_val_max (ptrdiff_type_node);
- wide_int wmax = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
- tree expr_type = gimple_expr_type (diff_stmt);
- tree range_min = build_zero_cst (expr_type);
- tree range_max = wide_int_to_tree (expr_type, wmax - 1);
- int_range<2> r (range_min, range_max);
- res.intersect (r);
- }
-}
-
-// This function looks for situations when walking the use/def chains
-// may provide additonal contextual range information not exposed on
-// this statement. Like knowing the IMAGPART return value from a
-// builtin function is a boolean result.
-
-// We should rework how we're called, as we have an op_unknown entry
-// for IMAGPART_EXPR and POINTER_DIFF_EXPR in range-ops just so this
-// function gets called.
-
-static void
-gimple_range_adjustment (irange &res, const gimple *stmt)
-{
- switch (gimple_expr_code (stmt))
- {
- case POINTER_DIFF_EXPR:
- adjust_pointer_diff_expr (res, stmt);
- return;
-
- case IMAGPART_EXPR:
- {
- tree name = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
- if (TREE_CODE (name) == SSA_NAME)
- {
- gimple *def_stmt = SSA_NAME_DEF_STMT (name);
- if (def_stmt && is_gimple_call (def_stmt)
- && gimple_call_internal_p (def_stmt))
- {
- switch (gimple_call_internal_fn (def_stmt))
- {
- case IFN_ADD_OVERFLOW:
- case IFN_SUB_OVERFLOW:
- case IFN_MUL_OVERFLOW:
- case IFN_ATOMIC_COMPARE_EXCHANGE:
- {
- int_range<2> r;
- r.set_varying (boolean_type_node);
- tree type = TREE_TYPE (gimple_assign_lhs (stmt));
- range_cast (r, type);
- res.intersect (r);
- }
- default:
- break;
- }
- }
- }
- break;
- }
-
- default:
- break;
- }
-}
-
-// Return the base of the RHS of an assignment.
-
-static tree
-gimple_range_base_of_assignment (const gimple *stmt)
-{
- gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN);
- tree op1 = gimple_assign_rhs1 (stmt);
- if (gimple_assign_rhs_code (stmt) == ADDR_EXPR)
- return get_base_address (TREE_OPERAND (op1, 0));
- return op1;
-}
-
-// Return the first operand of this statement if it is a valid operand
-// supported by ranges, otherwise return NULL_TREE. Special case is
-// &(SSA_NAME expr), return the SSA_NAME instead of the ADDR expr.
-
-tree
-gimple_range_operand1 (const gimple *stmt)
-{
- gcc_checking_assert (gimple_range_handler (stmt));
-
- switch (gimple_code (stmt))
- {
- case GIMPLE_COND:
- return gimple_cond_lhs (stmt);
- case GIMPLE_ASSIGN:
- {
- tree base = gimple_range_base_of_assignment (stmt);
- if (base && TREE_CODE (base) == MEM_REF)
- {
- // If the base address is an SSA_NAME, we return it
- // here. This allows processing of the range of that
- // name, while the rest of the expression is simply
- // ignored. The code in range_ops will see the
- // ADDR_EXPR and do the right thing.
- tree ssa = TREE_OPERAND (base, 0);
- if (TREE_CODE (ssa) == SSA_NAME)
- return ssa;
- }
- return base;
- }
- default:
- break;
- }
- return NULL;
-}
-
-// Return the second operand of statement STMT, otherwise return NULL_TREE.
-
-tree
-gimple_range_operand2 (const gimple *stmt)
-{
- gcc_checking_assert (gimple_range_handler (stmt));
-
- switch (gimple_code (stmt))
- {
- case GIMPLE_COND:
- return gimple_cond_rhs (stmt);
- case GIMPLE_ASSIGN:
- if (gimple_num_ops (stmt) >= 3)
- return gimple_assign_rhs2 (stmt);
- default:
- break;
- }
- return NULL_TREE;
-}
-
-// Calculate what we can determine of the range of this unary
-// statement's operand if the lhs of the expression has the range
-// LHS_RANGE. Return false if nothing can be determined.
-
-bool
-gimple_range_calc_op1 (irange &r, const gimple *stmt, const irange &lhs_range)
-{
- gcc_checking_assert (gimple_num_ops (stmt) < 3);
-
- // An empty range is viral.
- tree type = TREE_TYPE (gimple_range_operand1 (stmt));
- if (lhs_range.undefined_p ())
- {
- r.set_undefined ();
- return true;
- }
- // Unary operations require the type of the first operand in the
- // second range position.
- int_range<2> type_range (type);
- return gimple_range_handler (stmt)->op1_range (r, type, lhs_range,
- type_range);
-}
-
-// Calculate what we can determine of the range of this statement's
-// first operand if the lhs of the expression has the range LHS_RANGE
-// and the second operand has the range OP2_RANGE. Return false if
-// nothing can be determined.
-
-bool
-gimple_range_calc_op1 (irange &r, const gimple *stmt,
- const irange &lhs_range, const irange &op2_range)
-{
- // Unary operation are allowed to pass a range in for second operand
- // as there are often additional restrictions beyond the type which
- // can be imposed. See operator_cast::op1_range().
- tree type = TREE_TYPE (gimple_range_operand1 (stmt));
- // An empty range is viral.
- if (op2_range.undefined_p () || lhs_range.undefined_p ())
- {
- r.set_undefined ();
- return true;
- }
- return gimple_range_handler (stmt)->op1_range (r, type, lhs_range,
- op2_range);
-}
-
-// Calculate what we can determine of the range of this statement's
-// second operand if the lhs of the expression has the range LHS_RANGE
-// and the first operand has the range OP1_RANGE. Return false if
-// nothing can be determined.
-
-bool
-gimple_range_calc_op2 (irange &r, const gimple *stmt,
- const irange &lhs_range, const irange &op1_range)
-{
- tree type = TREE_TYPE (gimple_range_operand2 (stmt));
- // An empty range is viral.
- if (op1_range.undefined_p () || lhs_range.undefined_p ())
- {
- r.set_undefined ();
- return true;
- }
- return gimple_range_handler (stmt)->op2_range (r, type, lhs_range,
- op1_range);
-}
-
-// Calculate a range for statement S and return it in R. If NAME is provided it
-// represents the SSA_NAME on the LHS of the statement. It is only required
-// if there is more than one lhs/output. If a range cannot
-// be calculated, return false.
-
-bool
-fold_using_range::fold_stmt (irange &r, gimple *s, fur_source &src, tree name)
-{
- bool res = false;
- // If name and S are specified, make sure it is an LHS of S.
- gcc_checking_assert (!name || !gimple_get_lhs (s) ||
- name == gimple_get_lhs (s));
-
- if (!name)
- name = gimple_get_lhs (s);
-
- // Process addresses.
- if (gimple_code (s) == GIMPLE_ASSIGN
- && gimple_assign_rhs_code (s) == ADDR_EXPR)
- return range_of_address (r, s, src);
-
- if (gimple_range_handler (s))
- res = range_of_range_op (r, s, src);
- else if (is_a<gphi *>(s))
- res = range_of_phi (r, as_a<gphi *> (s), src);
- else if (is_a<gcall *>(s))
- res = range_of_call (r, as_a<gcall *> (s), src);
- else if (is_a<gassign *> (s) && gimple_assign_rhs_code (s) == COND_EXPR)
- res = range_of_cond_expr (r, as_a<gassign *> (s), src);
-
- if (!res)
- {
- // If no name is specified, try the expression kind.
- if (!name)
- {
- tree t = gimple_expr_type (s);
- if (!irange::supports_type_p (t))
- return false;
- r.set_varying (t);
- return true;
- }
- if (!gimple_range_ssa_p (name))
- return false;
- // We don't understand the stmt, so return the global range.
- r = gimple_range_global (name);
- return true;
- }
-
- if (r.undefined_p ())
- return true;
-
- // We sometimes get compatible types copied from operands, make sure
- // the correct type is being returned.
- if (name && TREE_TYPE (name) != r.type ())
- {
- gcc_checking_assert (range_compatible_p (r.type (), TREE_TYPE (name)));
- range_cast (r, TREE_TYPE (name));
- }
- return true;
-}
-
-// Calculate a range for range_op statement S and return it in R. If any
-// If a range cannot be calculated, return false.
-
-bool
-fold_using_range::range_of_range_op (irange &r, gimple *s, fur_source &src)
-{
- int_range_max range1, range2;
- tree type = gimple_expr_type (s);
- range_operator *handler = gimple_range_handler (s);
- gcc_checking_assert (handler);
- gcc_checking_assert (irange::supports_type_p (type));
-
- tree lhs = gimple_get_lhs (s);
- tree op1 = gimple_range_operand1 (s);
- tree op2 = gimple_range_operand2 (s);
-
- if (src.get_operand (range1, op1))
- {
- if (!op2)
- {
- // Fold range, and register any dependency if available.
- int_range<2> r2 (type);
- handler->fold_range (r, type, range1, r2);
- if (lhs && gimple_range_ssa_p (op1))
- {
- if (src.gori ())
- src.gori ()->register_dependency (lhs, op1);
- relation_kind rel;
- rel = handler->lhs_op1_relation (r, range1, range1);
- if (rel != VREL_NONE)
- src.register_relation (s, rel, lhs, op1);
- }
- }
- else if (src.get_operand (range2, op2))
- {
- relation_kind rel = src.query_relation (op1, op2);
- if (dump_file && (dump_flags & TDF_DETAILS) && rel != VREL_NONE)
- {
- fprintf (dump_file, " folding with relation ");
- print_relation (dump_file, rel);
- fputc ('\n', dump_file);
- }
- // Fold range, and register any dependency if available.
- handler->fold_range (r, type, range1, range2, rel);
- relation_fold_and_or (r, s, src);
- if (lhs)
- {
- if (src.gori ())
- {
- src.gori ()->register_dependency (lhs, op1);
- src.gori ()->register_dependency (lhs, op2);
- }
- if (gimple_range_ssa_p (op1))
- {
- rel = handler->lhs_op1_relation (r, range1, range2);
- if (rel != VREL_NONE)
- src.register_relation (s, rel, lhs, op1);
- }
- if (gimple_range_ssa_p (op2))
- {
- rel= handler->lhs_op2_relation (r, range1, range2);
- if (rel != VREL_NONE)
- src.register_relation (s, rel, lhs, op2);
- }
- }
- else if (is_a<gcond *> (s))
- postfold_gcond_edges (as_a<gcond *> (s), src);
- }
- else
- r.set_varying (type);
- }
- else
- r.set_varying (type);
- // Make certain range-op adjustments that aren't handled any other way.
- gimple_range_adjustment (r, s);
- return true;
-}
-
-// Calculate the range of an assignment containing an ADDR_EXPR.
-// Return the range in R.
-// If a range cannot be calculated, set it to VARYING and return true.
-
-bool
-fold_using_range::range_of_address (irange &r, gimple *stmt, fur_source &src)
-{
- gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN);
- gcc_checking_assert (gimple_assign_rhs_code (stmt) == ADDR_EXPR);
-
- bool strict_overflow_p;
- tree expr = gimple_assign_rhs1 (stmt);
- poly_int64 bitsize, bitpos;
- tree offset;
- machine_mode mode;
- int unsignedp, reversep, volatilep;
- tree base = get_inner_reference (TREE_OPERAND (expr, 0), &bitsize,
- &bitpos, &offset, &mode, &unsignedp,
- &reversep, &volatilep);
-
-
- if (base != NULL_TREE
- && TREE_CODE (base) == MEM_REF
- && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
- {
- tree ssa = TREE_OPERAND (base, 0);
- tree lhs = gimple_get_lhs (stmt);
- if (lhs && gimple_range_ssa_p (ssa) && src.gori ())
- src.gori ()->register_dependency (lhs, ssa);
- gcc_checking_assert (irange::supports_type_p (TREE_TYPE (ssa)));
- src.get_operand (r, ssa);
- range_cast (r, TREE_TYPE (gimple_assign_rhs1 (stmt)));
-
- poly_offset_int off = 0;
- bool off_cst = false;
- if (offset == NULL_TREE || TREE_CODE (offset) == INTEGER_CST)
- {
- off = mem_ref_offset (base);
- if (offset)
- off += poly_offset_int::from (wi::to_poly_wide (offset),
- SIGNED);
- off <<= LOG2_BITS_PER_UNIT;
- off += bitpos;
- off_cst = true;
- }
- /* If &X->a is equal to X, the range of X is the result. */
- if (off_cst && known_eq (off, 0))
- return true;
- else if (flag_delete_null_pointer_checks
- && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)))
- {
- /* For -fdelete-null-pointer-checks -fno-wrapv-pointer we don't
- allow going from non-NULL pointer to NULL. */
- if(!range_includes_zero_p (&r))
- return true;
- }
- /* If MEM_REF has a "positive" offset, consider it non-NULL
- always, for -fdelete-null-pointer-checks also "negative"
- ones. Punt for unknown offsets (e.g. variable ones). */
- if (!TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr))
- && off_cst
- && known_ne (off, 0)
- && (flag_delete_null_pointer_checks || known_gt (off, 0)))
- {
- r = range_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt)));
- return true;
- }
- r = int_range<2> (TREE_TYPE (gimple_assign_rhs1 (stmt)));
- return true;
- }
-
- // Handle "= &a".
- if (tree_single_nonzero_warnv_p (expr, &strict_overflow_p))
- {
- r = range_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt)));
- return true;
- }
-
- // Otherwise return varying.
- r = int_range<2> (TREE_TYPE (gimple_assign_rhs1 (stmt)));
- return true;
-}
-
-// Calculate a range for phi statement S and return it in R.
-// If a range cannot be calculated, return false.
-
-bool
-fold_using_range::range_of_phi (irange &r, gphi *phi, fur_source &src)
-{
- tree phi_def = gimple_phi_result (phi);
- tree type = TREE_TYPE (phi_def);
- int_range_max arg_range;
- unsigned x;
-
- if (!irange::supports_type_p (type))
- return false;
-
- // Start with an empty range, unioning in each argument's range.
- r.set_undefined ();
- for (x = 0; x < gimple_phi_num_args (phi); x++)
- {
- tree arg = gimple_phi_arg_def (phi, x);
- edge e = gimple_phi_arg_edge (phi, x);
-
- // Register potential dependencies for stale value tracking.
- if (gimple_range_ssa_p (arg) && src.gori ())
- src.gori ()->register_dependency (phi_def, arg);
-
- // Get the range of the argument on its edge.
- src.get_phi_operand (arg_range, arg, e);
- // If we're recomputing the argument elsewhere, try to refine it.
- r.union_ (arg_range);
- // Once the value reaches varying, stop looking.
- if (r.varying_p ())
- break;
- }
-
- // If SCEV is available, query if this PHI has any knonwn values.
- if (scev_initialized_p () && !POINTER_TYPE_P (TREE_TYPE (phi_def)))
- {
- value_range loop_range;
- class loop *l = loop_containing_stmt (phi);
- if (l && loop_outer (l))
- {
- range_of_ssa_name_with_loop_info (loop_range, phi_def, l, phi, src);
- if (!loop_range.varying_p ())
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, " Loops range found for ");
- print_generic_expr (dump_file, phi_def, TDF_SLIM);
- fprintf (dump_file, ": ");
- loop_range.dump (dump_file);
- fprintf (dump_file, " and calculated range :");
- r.dump (dump_file);
- fprintf (dump_file, "\n");
- }
- r.intersect (loop_range);
- }
- }
- }
-
- return true;
-}
-
-// Calculate a range for call statement S and return it in R.
-// If a range cannot be calculated, return false.
-
-bool
-fold_using_range::range_of_call (irange &r, gcall *call, fur_source &src)
-{
- tree type = gimple_call_return_type (call);
- tree lhs = gimple_call_lhs (call);
- bool strict_overflow_p;
-
- if (!irange::supports_type_p (type))
- return false;
-
- if (range_of_builtin_call (r, call, src))
- ;
- else if (gimple_stmt_nonnegative_warnv_p (call, &strict_overflow_p))
- r.set (build_int_cst (type, 0), TYPE_MAX_VALUE (type));
- else if (gimple_call_nonnull_result_p (call)
- || gimple_call_nonnull_arg (call))
- r = range_nonzero (type);
- else
- r.set_varying (type);
-
- // If there is an LHS, intersect that with what is known.
- if (lhs)
- {
- value_range def;
- def = gimple_range_global (lhs);
- r.intersect (def);
- }
- return true;
-}
-
-// Return the range of a __builtin_ubsan* in CALL and set it in R.
-// CODE is the type of ubsan call (PLUS_EXPR, MINUS_EXPR or
-// MULT_EXPR).
-
-void
-fold_using_range::range_of_builtin_ubsan_call (irange &r, gcall *call,
- tree_code code, fur_source &src)
-{
- gcc_checking_assert (code == PLUS_EXPR || code == MINUS_EXPR
- || code == MULT_EXPR);
- tree type = gimple_call_return_type (call);
- range_operator *op = range_op_handler (code, type);
- gcc_checking_assert (op);
- int_range_max ir0, ir1;
- tree arg0 = gimple_call_arg (call, 0);
- tree arg1 = gimple_call_arg (call, 1);
- src.get_operand (ir0, arg0);
- src.get_operand (ir1, arg1);
-
- bool saved_flag_wrapv = flag_wrapv;
- // Pretend the arithmetic is wrapping. If there is any overflow,
- // we'll complain, but will actually do wrapping operation.
- flag_wrapv = 1;
- op->fold_range (r, type, ir0, ir1);
- flag_wrapv = saved_flag_wrapv;
-
- // If for both arguments vrp_valueize returned non-NULL, this should
- // have been already folded and if not, it wasn't folded because of
- // overflow. Avoid removing the UBSAN_CHECK_* calls in that case.
- if (r.singleton_p ())
- r.set_varying (type);
-}
-
-// For a builtin in CALL, return a range in R if known and return
-// TRUE. Otherwise return FALSE.
-
-bool
-fold_using_range::range_of_builtin_call (irange &r, gcall *call,
- fur_source &src)
-{
- combined_fn func = gimple_call_combined_fn (call);
- if (func == CFN_LAST)
- return false;
-
- tree type = gimple_call_return_type (call);
- tree arg;
- int mini, maxi, zerov = 0, prec;
- scalar_int_mode mode;
-
- switch (func)
- {
- case CFN_BUILT_IN_CONSTANT_P:
- if (cfun->after_inlining)
- {
- r.set_zero (type);
- // r.equiv_clear ();
- return true;
- }
- arg = gimple_call_arg (call, 0);
- if (src.get_operand (r, arg) && r.singleton_p ())
- {
- r.set (build_one_cst (type), build_one_cst (type));
- return true;
- }
- break;
-
- CASE_CFN_FFS:
- CASE_CFN_POPCOUNT:
- // __builtin_ffs* and __builtin_popcount* return [0, prec].
- arg = gimple_call_arg (call, 0);
- prec = TYPE_PRECISION (TREE_TYPE (arg));
- mini = 0;
- maxi = prec;
- src.get_operand (r, arg);
- // If arg is non-zero, then ffs or popcount are non-zero.
- if (!range_includes_zero_p (&r))
- mini = 1;
- // If some high bits are known to be zero, decrease the maximum.
- if (!r.undefined_p ())
- {
- if (TYPE_SIGN (r.type ()) == SIGNED)
- range_cast (r, unsigned_type_for (r.type ()));
- wide_int max = r.upper_bound ();
- maxi = wi::floor_log2 (max) + 1;
- }
- r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
- return true;
-
- CASE_CFN_PARITY:
- r.set (build_zero_cst (type), build_one_cst (type));
- return true;
-
- CASE_CFN_CLZ:
- // __builtin_c[lt]z* return [0, prec-1], except when the
- // argument is 0, but that is undefined behavior.
- //
- // For __builtin_c[lt]z* consider argument of 0 always undefined
- // behavior, for internal fns depending on C?Z_DEFINED_VALUE_AT_ZERO.
- arg = gimple_call_arg (call, 0);
- prec = TYPE_PRECISION (TREE_TYPE (arg));
- mini = 0;
- maxi = prec - 1;
- mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
- if (gimple_call_internal_p (call))
- {
- if (optab_handler (clz_optab, mode) != CODE_FOR_nothing
- && CLZ_DEFINED_VALUE_AT_ZERO (mode, zerov) == 2)
- {
- // Only handle the single common value.
- if (zerov == prec)
- maxi = prec;
- else
- // Magic value to give up, unless we can prove arg is non-zero.
- mini = -2;
- }
- }
-
- src.get_operand (r, arg);
- // From clz of minimum we can compute result maximum.
- if (!r.undefined_p ())
- {
- // From clz of minimum we can compute result maximum.
- if (wi::gt_p (r.lower_bound (), 0, TYPE_SIGN (r.type ())))
- {
- maxi = prec - 1 - wi::floor_log2 (r.lower_bound ());
- if (mini == -2)
- mini = 0;
- }
- else if (!range_includes_zero_p (&r))
- {
- mini = 0;
- maxi = prec - 1;
- }
- if (mini == -2)
- break;
- // From clz of maximum we can compute result minimum.
- wide_int max = r.upper_bound ();
- int newmini = prec - 1 - wi::floor_log2 (max);
- if (max == 0)
- {
- // If CLZ_DEFINED_VALUE_AT_ZERO is 2 with VALUE of prec,
- // return [prec, prec], otherwise ignore the range.
- if (maxi == prec)
- mini = prec;
- }
- else
- mini = newmini;
- }
- if (mini == -2)
- break;
- r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
- return true;
-
- CASE_CFN_CTZ:
- // __builtin_ctz* return [0, prec-1], except for when the
- // argument is 0, but that is undefined behavior.
- //
- // For __builtin_ctz* consider argument of 0 always undefined
- // behavior, for internal fns depending on CTZ_DEFINED_VALUE_AT_ZERO.
- arg = gimple_call_arg (call, 0);
- prec = TYPE_PRECISION (TREE_TYPE (arg));
- mini = 0;
- maxi = prec - 1;
- mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
- if (gimple_call_internal_p (call))
- {
- if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing
- && CTZ_DEFINED_VALUE_AT_ZERO (mode, zerov) == 2)
- {
- // Handle only the two common values.
- if (zerov == -1)
- mini = -1;
- else if (zerov == prec)
- maxi = prec;
- else
- // Magic value to give up, unless we can prove arg is non-zero.
- mini = -2;
- }
- }
- src.get_operand (r, arg);
- if (!r.undefined_p ())
- {
- // If arg is non-zero, then use [0, prec - 1].
- if (!range_includes_zero_p (&r))
- {
- mini = 0;
- maxi = prec - 1;
- }
- // If some high bits are known to be zero, we can decrease
- // the maximum.
- wide_int max = r.upper_bound ();
- if (max == 0)
- {
- // Argument is [0, 0]. If CTZ_DEFINED_VALUE_AT_ZERO
- // is 2 with value -1 or prec, return [-1, -1] or [prec, prec].
- // Otherwise ignore the range.
- if (mini == -1)
- maxi = -1;
- else if (maxi == prec)
- mini = prec;
- }
- // If value at zero is prec and 0 is in the range, we can't lower
- // the upper bound. We could create two separate ranges though,
- // [0,floor_log2(max)][prec,prec] though.
- else if (maxi != prec)
- maxi = wi::floor_log2 (max);
- }
- if (mini == -2)
- break;
- r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
- return true;
-
- CASE_CFN_CLRSB:
- arg = gimple_call_arg (call, 0);
- prec = TYPE_PRECISION (TREE_TYPE (arg));
- r.set (build_int_cst (type, 0), build_int_cst (type, prec - 1));
- return true;
- case CFN_UBSAN_CHECK_ADD:
- range_of_builtin_ubsan_call (r, call, PLUS_EXPR, src);
- return true;
- case CFN_UBSAN_CHECK_SUB:
- range_of_builtin_ubsan_call (r, call, MINUS_EXPR, src);
- return true;
- case CFN_UBSAN_CHECK_MUL:
- range_of_builtin_ubsan_call (r, call, MULT_EXPR, src);
- return true;
-
- case CFN_GOACC_DIM_SIZE:
- case CFN_GOACC_DIM_POS:
- // Optimizing these two internal functions helps the loop
- // optimizer eliminate outer comparisons. Size is [1,N]
- // and pos is [0,N-1].
- {
- bool is_pos = func == CFN_GOACC_DIM_POS;
- int axis = oacc_get_ifn_dim_arg (call);
- int size = oacc_get_fn_dim_size (current_function_decl, axis);
- if (!size)
- // If it's dynamic, the backend might know a hardware limitation.
- size = targetm.goacc.dim_limit (axis);
-
- r.set (build_int_cst (type, is_pos ? 0 : 1),
- size
- ? build_int_cst (type, size - is_pos) : vrp_val_max (type));
- return true;
- }
-
- case CFN_BUILT_IN_STRLEN:
- if (tree lhs = gimple_call_lhs (call))
- if (ptrdiff_type_node
- && (TYPE_PRECISION (ptrdiff_type_node)
- == TYPE_PRECISION (TREE_TYPE (lhs))))
- {
- tree type = TREE_TYPE (lhs);
- tree max = vrp_val_max (ptrdiff_type_node);
- wide_int wmax
- = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
- tree range_min = build_zero_cst (type);
- // To account for the terminating NULL, the maximum length
- // is one less than the maximum array size, which in turn
- // is one less than PTRDIFF_MAX (or SIZE_MAX where it's
- // smaller than the former type).
- // FIXME: Use max_object_size() - 1 here.
- tree range_max = wide_int_to_tree (type, wmax - 2);
- r.set (range_min, range_max);
- return true;
- }
- break;
- default:
- break;
- }
- return false;
-}
-
-
-// Calculate a range for COND_EXPR statement S and return it in R.
-// If a range cannot be calculated, return false.
-
-bool
-fold_using_range::range_of_cond_expr (irange &r, gassign *s, fur_source &src)
-{
- int_range_max cond_range, range1, range2;
- tree cond = gimple_assign_rhs1 (s);
- tree op1 = gimple_assign_rhs2 (s);
- tree op2 = gimple_assign_rhs3 (s);
-
- gcc_checking_assert (gimple_assign_rhs_code (s) == COND_EXPR);
- gcc_checking_assert (useless_type_conversion_p (TREE_TYPE (op1),
- TREE_TYPE (op2)));
- if (!irange::supports_type_p (TREE_TYPE (op1)))
- return false;
-
- src.get_operand (cond_range, cond);
- src.get_operand (range1, op1);
- src.get_operand (range2, op2);
-
- // If the condition is known, choose the appropriate expression.
- if (cond_range.singleton_p ())
- {
- // False, pick second operand.
- if (cond_range.zero_p ())
- r = range2;
- else
- r = range1;
- }
- else
- {
- r = range1;
- r.union_ (range2);
- }
- return true;
-}
-
gimple_ranger::gimple_ranger ()
{
// If the cache has a relation oracle, use it.
@@ -1493,217 +325,6 @@ gimple_ranger::dump (FILE *f)
m_cache.dump (f);
}
-// If SCEV has any information about phi node NAME, return it as a range in R.
-
-void
-fold_using_range::range_of_ssa_name_with_loop_info (irange &r, tree name,
- class loop *l, gphi *phi,
- fur_source &src)
-{
- gcc_checking_assert (TREE_CODE (name) == SSA_NAME);
- tree min, max, type = TREE_TYPE (name);
- if (bounds_of_var_in_loop (&min, &max, src.query (), l, phi, name))
- {
- if (TREE_CODE (min) != INTEGER_CST)
- {
- if (src.query ()->range_of_expr (r, min, phi) && !r.undefined_p ())
- min = wide_int_to_tree (type, r.lower_bound ());
- else
- min = vrp_val_min (type);
- }
- if (TREE_CODE (max) != INTEGER_CST)
- {
- if (src.query ()->range_of_expr (r, max, phi) && !r.undefined_p ())
- max = wide_int_to_tree (type, r.upper_bound ());
- else
- max = vrp_val_max (type);
- }
- r.set (min, max);
- }
- else
- r.set_varying (type);
-}
-
-// -----------------------------------------------------------------------
-
-// Check if an && or || expression can be folded based on relations. ie
-// c_2 = a_6 > b_7
-// c_3 = a_6 < b_7
-// c_4 = c_2 && c_3
-// c_2 and c_3 can never be true at the same time,
-// Therefore c_4 can always resolve to false based purely on the relations.
-
-void
-fold_using_range::relation_fold_and_or (irange& lhs_range, gimple *s,
- fur_source &src)
-{
- // No queries or already folded.
- if (!src.gori () || !src.query ()->oracle () || lhs_range.singleton_p ())
- return;
-
- // Only care about AND and OR expressions.
- enum tree_code code = gimple_expr_code (s);
- bool is_and = false;
- if (code == BIT_AND_EXPR || code == TRUTH_AND_EXPR)
- is_and = true;
- else if (code != BIT_IOR_EXPR && code != TRUTH_OR_EXPR)
- return;
-
- tree lhs = gimple_get_lhs (s);
- tree ssa1 = gimple_range_ssa_p (gimple_range_operand1 (s));
- tree ssa2 = gimple_range_ssa_p (gimple_range_operand2 (s));
-
- // Deal with || and && only when there is a full set of symbolics.
- if (!lhs || !ssa1 || !ssa2
- || (TREE_CODE (TREE_TYPE (lhs)) != BOOLEAN_TYPE)
- || (TREE_CODE (TREE_TYPE (ssa1)) != BOOLEAN_TYPE)
- || (TREE_CODE (TREE_TYPE (ssa2)) != BOOLEAN_TYPE))
- return;
-
- // Now we know its a boolean AND or OR expression with boolean operands.
- // Ideally we search dependencies for common names, and see what pops out.
- // until then, simply try to resolve direct dependencies.
-
- // Both names will need to have 2 direct dependencies.
- tree ssa1_dep2 = src.gori ()->depend2 (ssa1);
- tree ssa2_dep2 = src.gori ()->depend2 (ssa2);
- if (!ssa1_dep2 || !ssa2_dep2)
- return;
-
- tree ssa1_dep1 = src.gori ()->depend1 (ssa1);
- tree ssa2_dep1 = src.gori ()->depend1 (ssa2);
- // Make sure they are the same dependencies, and detect the order of the
- // relationship.
- bool reverse_op2 = true;
- if (ssa1_dep1 == ssa2_dep1 && ssa1_dep2 == ssa2_dep2)
- reverse_op2 = false;
- else if (ssa1_dep1 != ssa2_dep2 || ssa1_dep2 != ssa2_dep1)
- return;
-
- range_operator *handler1 = gimple_range_handler (SSA_NAME_DEF_STMT (ssa1));
- range_operator *handler2 = gimple_range_handler (SSA_NAME_DEF_STMT (ssa2));
-
- int_range<2> bool_one (boolean_true_node, boolean_true_node);
-
- relation_kind relation1 = handler1->op1_op2_relation (bool_one);
- relation_kind relation2 = handler2->op1_op2_relation (bool_one);
- if (relation1 == VREL_NONE || relation2 == VREL_NONE)
- return;
-
- if (reverse_op2)
- relation2 = relation_negate (relation2);
-
- // x && y is false if the relation intersection of the true cases is NULL.
- if (is_and && relation_intersect (relation1, relation2) == VREL_EMPTY)
- lhs_range = int_range<2> (boolean_false_node, boolean_false_node);
- // x || y is true if the union of the true cases is NO-RELATION..
- // ie, one or the other being true covers the full range of possibilties.
- else if (!is_and && relation_union (relation1, relation2) == VREL_NONE)
- lhs_range = bool_one;
- else
- return;
-
- range_cast (lhs_range, TREE_TYPE (lhs));
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, " Relation adjustment: ");
- print_generic_expr (dump_file, ssa1, TDF_SLIM);
- fprintf (dump_file, " and ");
- print_generic_expr (dump_file, ssa2, TDF_SLIM);
- fprintf (dump_file, " combine to produce ");
- lhs_range.dump (dump_file);
- fputc ('\n', dump_file);
- }
-
- return;
-}
-
-// Register any outgoing edge relations from a conditional branch.
-
-void
-fold_using_range::postfold_gcond_edges (gcond *s, fur_source &src)
-{
- int_range_max r;
- tree name;
- range_operator *handler;
- basic_block bb = gimple_bb (s);
-
- edge e0 = EDGE_SUCC (bb, 0);
- if (!single_pred_p (e0->dest))
- e0 = NULL;
-
- edge e1 = EDGE_SUCC (bb, 1);
- if (!single_pred_p (e1->dest))
- e1 = NULL;
-
- // At least one edge needs to be single pred.
- if (!e0 && !e1)
- return;
-
- // First, register the gcond itself. This will catch statements like
- // if (a_2 < b_5)
- tree ssa1 = gimple_range_ssa_p (gimple_range_operand1 (s));
- tree ssa2 = gimple_range_ssa_p (gimple_range_operand2 (s));
- if (ssa1 && ssa2)
- {
- handler = gimple_range_handler (s);
- gcc_checking_assert (handler);
- if (e0)
- {
- gcond_edge_range (r, e0);
- relation_kind relation = handler->op1_op2_relation (r);
- if (relation != VREL_NONE)
- src.register_relation (e0, relation, ssa1, ssa2);
- }
- if (e1)
- {
- gcond_edge_range (r, e1);
- relation_kind relation = handler->op1_op2_relation (r);
- if (relation != VREL_NONE)
- src.register_relation (e1, relation, ssa1, ssa2);
- }
- }
-
- // Outgoing relations of GORI exports require a gori engine.
- if (!src.gori ())
- return;
-
- range_query *q = src.query ();
- // Now look for other relations in the exports. This will find stmts
- // leading to the condition such as:
- // c_2 = a_4 < b_7
- // if (c_2)
-
- FOR_EACH_GORI_EXPORT_NAME (*(src.gori ()), bb, name)
- {
- if (TREE_CODE (TREE_TYPE (name)) != BOOLEAN_TYPE)
- continue;
- gimple *stmt = SSA_NAME_DEF_STMT (name);
- handler = gimple_range_handler (stmt);
- if (!handler)
- continue;
- tree ssa1 = gimple_range_ssa_p (gimple_range_operand1 (stmt));
- tree ssa2 = gimple_range_ssa_p (gimple_range_operand2 (stmt));
- if (ssa1 && ssa2)
- {
- if (e0 && src.gori ()->outgoing_edge_range_p (r, e0, name, *q)
- && r.singleton_p ())
- {
- relation_kind relation = handler->op1_op2_relation (r);
- if (relation != VREL_NONE)
- src.register_relation (e0, relation, ssa1, ssa2);
- }
- if (e1 && src.gori ()->outgoing_edge_range_p (r, e1, name, *q)
- && r.singleton_p ())
- {
- relation_kind relation = handler->op1_op2_relation (r);
- if (relation != VREL_NONE)
- src.register_relation (e1, relation, ssa1, ssa2);
- }
- }
- }
-}
-// --------------------------------------------------------------------------
// trace_ranger implementation.
diff --git a/gcc/gimple-range.h b/gcc/gimple-range.h
index 87911b9..aa62039 100644
--- a/gcc/gimple-range.h
+++ b/gcc/gimple-range.h
@@ -19,29 +19,18 @@ You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
-#ifndef GCC_GIMPLE_RANGE_STMT_H
-#define GCC_GIMPLE_RANGE_STMT_H
+#ifndef GCC_GIMPLE_RANGE_H
+#define GCC_GIMPLE_RANGE_H
#include "range.h"
#include "value-query.h"
#include "range-op.h"
#include "gimple-range-edge.h"
+#include "gimple-range-fold.h"
#include "gimple-range-gori.h"
#include "gimple-range-cache.h"
-// This file is the main include point for gimple ranges.
-// There are two fold_range routines of interest:
-// bool fold_range (irange &r, gimple *s, range_query *q)
-// bool fold_range (irange &r, gimple *s, edge on_edge, range_query *q)
-// These routines will fold stmt S into the result irange R.
-// Any ssa_names on the stmt will be calculated using the range_query
-// parameter via a call to range_of_expr.
-// If no range_query is provided, current global range info will be used.
-// The second variation specifies an edge, and stmt S is recalculated as if
-// it appeared on that edge.
-
-
// This is the basic range generator interface.
//
// This base class provides all the API entry points, but only provides
@@ -73,131 +62,6 @@ protected:
ranger_cache m_cache;
};
-// Source of all operands for fold_using_range and gori_compute.
-// It abstracts out the source of an operand so it can come from a stmt or
-// and edge or anywhere a derived class of fur_source wants.
-// THe default simply picks up ranges from the current range_query.
-
-class fur_source
-{
-public:
- fur_source (range_query *q = NULL);
- inline range_query *query () { return m_query; }
- inline class gori_compute *gori () { return m_gori; };
- virtual bool get_operand (irange &r, tree expr);
- virtual bool get_phi_operand (irange &r, tree expr, edge e);
- virtual relation_kind query_relation (tree op1, tree op2);
- virtual void register_relation (gimple *stmt, relation_kind k, tree op1,
- tree op2);
- virtual void register_relation (edge e, relation_kind k, tree op1,
- tree op2);
-protected:
- range_query *m_query;
- gori_compute *m_gori;
-};
-
-// fur_stmt is the specification for drawing an operand from range_query Q
-// via a range_of_Expr call on stmt S.
-
-class fur_stmt : public fur_source
-{
-public:
- fur_stmt (gimple *s, range_query *q = NULL);
- virtual bool get_operand (irange &r, tree expr) OVERRIDE;
- virtual bool get_phi_operand (irange &r, tree expr, edge e) OVERRIDE;
- virtual relation_kind query_relation (tree op1, tree op2) OVERRIDE;
-private:
- gimple *m_stmt;
-};
-
-
-// Fold stmt S into range R using range query Q.
-bool fold_range (irange &r, gimple *s, range_query *q = NULL);
-// Recalculate stmt S into R using range query Q as if it were on edge ON_EDGE.
-bool fold_range (irange &r, gimple *s, edge on_edge, range_query *q = NULL);
-// These routines allow you to specify the operands to use when folding.
-// Any excess queries will be drawn from the current range_query.
-bool fold_range (irange &r, gimple *s, irange &r1);
-bool fold_range (irange &r, gimple *s, irange &r1, irange &r2);
-bool fold_range (irange &r, gimple *s, unsigned num_elements, irange *vector);
-
-// This class uses ranges to fold a gimple statement producinf a range for
-// the LHS. The source of all operands is supplied via the fur_source class
-// which provides a range_query as well as a source location and any other
-// required information.
-
-class fold_using_range
-{
-public:
- bool fold_stmt (irange &r, gimple *s, class fur_source &src,
- tree name = NULL_TREE);
-protected:
- bool range_of_range_op (irange &r, gimple *s, fur_source &src);
- bool range_of_call (irange &r, gcall *call, fur_source &src);
- bool range_of_cond_expr (irange &r, gassign* cond, fur_source &src);
- bool range_of_address (irange &r, gimple *s, fur_source &src);
- bool range_of_builtin_call (irange &r, gcall *call, fur_source &src);
- void range_of_builtin_ubsan_call (irange &r, gcall *call, tree_code code,
- fur_source &src);
- bool range_of_phi (irange &r, gphi *phi, fur_source &src);
- void range_of_ssa_name_with_loop_info (irange &, tree, class loop *, gphi *,
- fur_source &src);
- void relation_fold_and_or (irange& lhs_range, gimple *s, fur_source &src);
- void postfold_gcond_edges (gcond *s, fur_source &src);
-};
-
-
-// These routines provide a GIMPLE interface to the range-ops code.
-extern tree gimple_range_operand1 (const gimple *s);
-extern tree gimple_range_operand2 (const gimple *s);
-extern bool gimple_range_calc_op1 (irange &r, const gimple *s,
- const irange &lhs_range);
-extern bool gimple_range_calc_op1 (irange &r, const gimple *s,
- const irange &lhs_range,
- const irange &op2_range);
-extern bool gimple_range_calc_op2 (irange &r, const gimple *s,
- const irange &lhs_range,
- const irange &op1_range);
-
-
-// Return the range_operator pointer for this statement. This routine
-// can also be used to gate whether a routine is range-ops enabled.
-
-static inline range_operator *
-gimple_range_handler (const gimple *s)
-{
- if (const gassign *ass = dyn_cast<const gassign *> (s))
- return range_op_handler (gimple_assign_rhs_code (ass),
- TREE_TYPE (gimple_assign_lhs (ass)));
- if (const gcond *cond = dyn_cast<const gcond *> (s))
- return range_op_handler (gimple_cond_code (cond),
- TREE_TYPE (gimple_cond_lhs (cond)));
- return NULL;
-}
-
-// Return EXP if it is an SSA_NAME with a type supported by gimple ranges.
-
-static inline tree
-gimple_range_ssa_p (tree exp)
-{
- if (exp && TREE_CODE (exp) == SSA_NAME &&
- !SSA_NAME_IS_VIRTUAL_OPERAND (exp) &&
- irange::supports_type_p (TREE_TYPE (exp)))
- return exp;
- return NULL_TREE;
-}
-
-// Return true if TYPE1 and TYPE2 are compatible range types.
-
-static inline bool
-range_compatible_p (tree type1, tree type2)
-{
- // types_compatible_p requires conversion in both directions to be useless.
- // GIMPLE only requires a cast one way in order to be compatible.
- // Ranges really only need the sign and precision to be the same.
- return (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
- && TYPE_SIGN (type1) == TYPE_SIGN (type2));
-}
// This class overloads the ranger routines to provide tracing facilties
// Entry and exit values to each of the APIs is placed in the dumpfile.
@@ -227,4 +91,4 @@ private:
extern gimple_ranger *enable_ranger (struct function *);
extern void disable_ranger (struct function *);
-#endif // GCC_GIMPLE_RANGE_STMT_H
+#endif // GCC_GIMPLE_RANGE_H