diff options
Diffstat (limited to 'gcc/value-range.cc')
-rw-r--r-- | gcc/value-range.cc | 1541 |
1 files changed, 1541 insertions, 0 deletions
diff --git a/gcc/value-range.cc b/gcc/value-range.cc new file mode 100644 index 0000000..3d926005 --- /dev/null +++ b/gcc/value-range.cc @@ -0,0 +1,1541 @@ +/* Support routines for value ranges. + Copyright (C) 2019 Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 3, or (at your option) +any later version. + +GCC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "backend.h" +#include "tree.h" +#include "gimple.h" +#include "ssa.h" +#include "tree-pretty-print.h" +#include "fold-const.h" + +value_range::value_range (tree min, tree max, value_range_kind kind) +{ + set (min, max, kind); +} + +value_range::value_range (tree type) +{ + set_varying (type); +} + +value_range::value_range (tree type, + const wide_int &wmin, const wide_int &wmax, + enum value_range_kind kind) +{ + tree min = wide_int_to_tree (type, wmin); + tree max = wide_int_to_tree (type, wmax); + gcc_checking_assert (kind == VR_RANGE || kind == VR_ANTI_RANGE); + set (min, max, kind); +} + +void +value_range::set_undefined () +{ + m_kind = VR_UNDEFINED; + m_min = m_max = NULL; +} + +void +value_range::set_varying (tree type) +{ + m_kind = VR_VARYING; + if (supports_type_p (type)) + { + m_min = vrp_val_min (type); + m_max = vrp_val_max (type); + } + else + /* We can't do anything range-wise with these types. */ + m_min = m_max = error_mark_node; +} + +/* Set value range to the canonical form of {VRTYPE, MIN, MAX, EQUIV}. + This means adjusting VRTYPE, MIN and MAX representing the case of a + wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX] + as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges. + In corner cases where MAX+1 or MIN-1 wraps this will fall back + to varying. + This routine exists to ease canonicalization in the case where we + extract ranges from var + CST op limit. */ + +void +value_range::set (tree min, tree max, value_range_kind kind) +{ + /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */ + if (kind == VR_UNDEFINED) + { + set_undefined (); + return; + } + else if (kind == VR_VARYING) + { + gcc_assert (TREE_TYPE (min) == TREE_TYPE (max)); + tree typ = TREE_TYPE (min); + if (supports_type_p (typ)) + { + gcc_assert (vrp_val_min (typ)); + gcc_assert (vrp_val_max (typ)); + } + set_varying (typ); + return; + } + + /* Convert POLY_INT_CST bounds into worst-case INTEGER_CST bounds. */ + if (POLY_INT_CST_P (min)) + { + tree type_min = vrp_val_min (TREE_TYPE (min)); + widest_int lb + = constant_lower_bound_with_limit (wi::to_poly_widest (min), + wi::to_widest (type_min)); + min = wide_int_to_tree (TREE_TYPE (min), lb); + } + if (POLY_INT_CST_P (max)) + { + tree type_max = vrp_val_max (TREE_TYPE (max)); + widest_int ub + = constant_upper_bound_with_limit (wi::to_poly_widest (max), + wi::to_widest (type_max)); + max = wide_int_to_tree (TREE_TYPE (max), ub); + } + + /* Nothing to canonicalize for symbolic ranges. */ + if (TREE_CODE (min) != INTEGER_CST + || TREE_CODE (max) != INTEGER_CST) + { + m_kind = kind; + m_min = min; + m_max = max; + return; + } + + /* Wrong order for min and max, to swap them and the VR type we need + to adjust them. */ + if (tree_int_cst_lt (max, min)) + { + tree one, tmp; + + /* For one bit precision if max < min, then the swapped + range covers all values, so for VR_RANGE it is varying and + for VR_ANTI_RANGE empty range, so drop to varying as well. */ + if (TYPE_PRECISION (TREE_TYPE (min)) == 1) + { + set_varying (TREE_TYPE (min)); + return; + } + + one = build_int_cst (TREE_TYPE (min), 1); + tmp = int_const_binop (PLUS_EXPR, max, one); + max = int_const_binop (MINUS_EXPR, min, one); + min = tmp; + + /* There's one corner case, if we had [C+1, C] before we now have + that again. But this represents an empty value range, so drop + to varying in this case. */ + if (tree_int_cst_lt (max, min)) + { + set_varying (TREE_TYPE (min)); + return; + } + + kind = kind == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE; + } + + tree type = TREE_TYPE (min); + + /* Anti-ranges that can be represented as ranges should be so. */ + if (kind == VR_ANTI_RANGE) + { + /* For -fstrict-enums we may receive out-of-range ranges so consider + values < -INF and values > INF as -INF/INF as well. */ + bool is_min = vrp_val_is_min (min); + bool is_max = vrp_val_is_max (max); + + if (is_min && is_max) + { + /* We cannot deal with empty ranges, drop to varying. + ??? This could be VR_UNDEFINED instead. */ + set_varying (type); + return; + } + else if (TYPE_PRECISION (TREE_TYPE (min)) == 1 + && (is_min || is_max)) + { + /* Non-empty boolean ranges can always be represented + as a singleton range. */ + if (is_min) + min = max = vrp_val_max (TREE_TYPE (min)); + else + min = max = vrp_val_min (TREE_TYPE (min)); + kind = VR_RANGE; + } + else if (is_min) + { + tree one = build_int_cst (TREE_TYPE (max), 1); + min = int_const_binop (PLUS_EXPR, max, one); + max = vrp_val_max (TREE_TYPE (max)); + kind = VR_RANGE; + } + else if (is_max) + { + tree one = build_int_cst (TREE_TYPE (min), 1); + max = int_const_binop (MINUS_EXPR, min, one); + min = vrp_val_min (TREE_TYPE (min)); + kind = VR_RANGE; + } + } + + /* Normalize [MIN, MAX] into VARYING and ~[MIN, MAX] into UNDEFINED. + + Avoid using TYPE_{MIN,MAX}_VALUE because -fstrict-enums can + restrict those to a subset of what actually fits in the type. + Instead use the extremes of the type precision which will allow + compare_range_with_value() to check if a value is inside a range, + whereas if we used TYPE_*_VAL, said function would just punt + upon seeing a VARYING. */ + unsigned prec = TYPE_PRECISION (type); + signop sign = TYPE_SIGN (type); + if (wi::eq_p (wi::to_wide (min), wi::min_value (prec, sign)) + && wi::eq_p (wi::to_wide (max), wi::max_value (prec, sign))) + { + if (kind == VR_RANGE) + set_varying (type); + else if (kind == VR_ANTI_RANGE) + set_undefined (); + else + gcc_unreachable (); + return; + } + + /* Do not drop [-INF(OVF), +INF(OVF)] to varying. (OVF) has to be sticky + to make sure VRP iteration terminates, otherwise we can get into + oscillations. */ + + m_kind = kind; + m_min = min; + m_max = max; + if (flag_checking) + check (); +} + +void +value_range::set (tree val) +{ + gcc_assert (TREE_CODE (val) == SSA_NAME || is_gimple_min_invariant (val)); + if (TREE_OVERFLOW_P (val)) + val = drop_tree_overflow (val); + set (val, val); +} + +/* Set value range VR to a nonzero range of type TYPE. */ + +void +value_range::set_nonzero (tree type) +{ + tree zero = build_int_cst (type, 0); + set (zero, zero, VR_ANTI_RANGE); +} + +/* Set value range VR to a ZERO range of type TYPE. */ + +void +value_range::set_zero (tree type) +{ + set (build_int_cst (type, 0)); +} + +/* Check the validity of the range. */ + +void +value_range::check () +{ + switch (m_kind) + { + case VR_RANGE: + case VR_ANTI_RANGE: + { + gcc_assert (m_min && m_max); + gcc_assert (!TREE_OVERFLOW_P (m_min) && !TREE_OVERFLOW_P (m_max)); + + /* Creating ~[-MIN, +MAX] is stupid because that would be + the empty set. */ + if (INTEGRAL_TYPE_P (TREE_TYPE (m_min)) && m_kind == VR_ANTI_RANGE) + gcc_assert (!vrp_val_is_min (m_min) || !vrp_val_is_max (m_max)); + + int cmp = compare_values (m_min, m_max); + gcc_assert (cmp == 0 || cmp == -1 || cmp == -2); + break; + } + case VR_UNDEFINED: + gcc_assert (!min () && !max ()); + break; + case VR_VARYING: + gcc_assert (m_min && m_max); + break; + default: + gcc_unreachable (); + } +} + +/* Return the number of sub-ranges in a range. */ + +unsigned +value_range::num_pairs () const +{ + if (undefined_p ()) + return 0; + if (varying_p ()) + return 1; + if (symbolic_p ()) + return normalize_symbolics ().num_pairs (); + if (m_kind == VR_ANTI_RANGE) + { + // ~[MIN, X] has one sub-range of [X+1, MAX], and + // ~[X, MAX] has one sub-range of [MIN, X-1]. + if (vrp_val_is_min (m_min) || vrp_val_is_max (m_max)) + return 1; + return 2; + } + return 1; +} + +/* Return the lower bound for a sub-range. PAIR is the sub-range in + question. */ + +wide_int +value_range::lower_bound (unsigned pair) const +{ + if (symbolic_p ()) + return normalize_symbolics ().lower_bound (pair); + + gcc_checking_assert (!undefined_p ()); + gcc_checking_assert (pair + 1 <= num_pairs ()); + tree t = NULL; + if (m_kind == VR_ANTI_RANGE) + { + tree typ = type (); + if (pair == 1 || vrp_val_is_min (m_min)) + t = wide_int_to_tree (typ, wi::to_wide (m_max) + 1); + else + t = vrp_val_min (typ); + } + else + t = m_min; + return wi::to_wide (t); +} + +/* Return the upper bound for a sub-range. PAIR is the sub-range in + question. */ + +wide_int +value_range::upper_bound (unsigned pair) const +{ + if (symbolic_p ()) + return normalize_symbolics ().upper_bound (pair); + + gcc_checking_assert (!undefined_p ()); + gcc_checking_assert (pair + 1 <= num_pairs ()); + tree t = NULL; + if (m_kind == VR_ANTI_RANGE) + { + tree typ = type (); + if (pair == 1 || vrp_val_is_min (m_min)) + t = vrp_val_max (typ); + else + t = wide_int_to_tree (typ, wi::to_wide (m_min) - 1); + } + else + t = m_max; + return wi::to_wide (t); +} + +/* Return the highest bound in a range. */ + +wide_int +value_range::upper_bound () const +{ + unsigned pairs = num_pairs (); + gcc_checking_assert (pairs > 0); + return upper_bound (pairs - 1); +} + +bool +value_range::equal_p (const value_range &other) const +{ + /* Ignore types for undefined. All undefines are equal. */ + if (undefined_p ()) + return m_kind == other.m_kind; + + return (m_kind == other.m_kind + && vrp_operand_equal_p (m_min, other.m_min) + && vrp_operand_equal_p (m_max, other.m_max)); +} + +bool +value_range::operator== (const value_range &r) const +{ + return equal_p (r); +} + +/* If range is a singleton, place it in RESULT and return TRUE. + Note: A singleton can be any gimple invariant, not just constants. + So, [&x, &x] counts as a singleton. */ +/* Return TRUE if this is a symbolic range. */ + +bool +value_range::symbolic_p () const +{ + return (!varying_p () + && !undefined_p () + && (!is_gimple_min_invariant (m_min) + || !is_gimple_min_invariant (m_max))); +} + +/* NOTE: This is not the inverse of symbolic_p because the range + could also be varying or undefined. Ideally they should be inverse + of each other, with varying only applying to symbolics. Varying of + constants would be represented as [-MIN, +MAX]. */ + +bool +value_range::constant_p () const +{ + return (!varying_p () + && !undefined_p () + && TREE_CODE (m_min) == INTEGER_CST + && TREE_CODE (m_max) == INTEGER_CST); +} + +bool +value_range::singleton_p (tree *result) const +{ + if (m_kind == VR_ANTI_RANGE) + { + if (nonzero_p ()) + { + if (TYPE_PRECISION (type ()) == 1) + { + if (result) + *result = m_max; + return true; + } + return false; + } + if (num_pairs () == 1) + { + value_range vr0, vr1; + ranges_from_anti_range (this, &vr0, &vr1); + return vr0.singleton_p (result); + } + } + if (m_kind == VR_RANGE + && vrp_operand_equal_p (min (), max ()) + && is_gimple_min_invariant (min ())) + { + if (result) + *result = min (); + return true; + } + return false; +} + +/* Return 1 if VAL is inside value range. + 0 if VAL is not inside value range. + -2 if we cannot tell either way. + + Benchmark compile/20001226-1.c compilation time after changing this + function. */ + +int +value_range::value_inside_range (tree val) const +{ + int cmp1, cmp2; + + if (varying_p ()) + return 1; + + if (undefined_p ()) + return 0; + + cmp1 = operand_less_p (val, m_min); + if (cmp1 == -2) + return -2; + if (cmp1 == 1) + return m_kind != VR_RANGE; + + cmp2 = operand_less_p (m_max, val); + if (cmp2 == -2) + return -2; + + if (m_kind == VR_RANGE) + return !cmp2; + else + return !!cmp2; +} + +/* Return TRUE if it is possible that range contains VAL. */ + +bool +value_range::may_contain_p (tree val) const +{ + return value_inside_range (val) != 0; +} + +/* Return TRUE if range contains INTEGER_CST. */ + +bool +value_range::contains_p (tree cst) const +{ + gcc_checking_assert (TREE_CODE (cst) == INTEGER_CST); + if (symbolic_p ()) + return normalize_symbolics ().contains_p (cst); + return value_inside_range (cst) == 1; +} + +/* Normalize addresses into constants. */ + +value_range +value_range::normalize_addresses () const +{ + if (undefined_p ()) + return *this; + + if (!POINTER_TYPE_P (type ()) || range_has_numeric_bounds_p (this)) + return *this; + + if (!range_includes_zero_p (this)) + { + gcc_checking_assert (TREE_CODE (m_min) == ADDR_EXPR + || TREE_CODE (m_max) == ADDR_EXPR); + return range_nonzero (type ()); + } + return value_range (type ()); +} + +/* Normalize symbolics and addresses into constants. */ + +value_range +value_range::normalize_symbolics () const +{ + if (varying_p () || undefined_p ()) + return *this; + tree ttype = type (); + bool min_symbolic = !is_gimple_min_invariant (min ()); + bool max_symbolic = !is_gimple_min_invariant (max ()); + if (!min_symbolic && !max_symbolic) + return normalize_addresses (); + + // [SYM, SYM] -> VARYING + if (min_symbolic && max_symbolic) + { + value_range var; + var.set_varying (ttype); + return var; + } + if (kind () == VR_RANGE) + { + // [SYM, NUM] -> [-MIN, NUM] + if (min_symbolic) + return value_range (vrp_val_min (ttype), max ()); + // [NUM, SYM] -> [NUM, +MAX] + return value_range (min (), vrp_val_max (ttype)); + } + gcc_checking_assert (kind () == VR_ANTI_RANGE); + // ~[SYM, NUM] -> [NUM + 1, +MAX] + if (min_symbolic) + { + if (!vrp_val_is_max (max ())) + { + tree n = wide_int_to_tree (ttype, wi::to_wide (max ()) + 1); + return value_range (n, vrp_val_max (ttype)); + } + value_range var; + var.set_varying (ttype); + return var; + } + // ~[NUM, SYM] -> [-MIN, NUM - 1] + if (!vrp_val_is_min (min ())) + { + tree n = wide_int_to_tree (ttype, wi::to_wide (min ()) - 1); + return value_range (vrp_val_min (ttype), n); + } + value_range var; + var.set_varying (ttype); + return var; +} + +/* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and + { VR1TYPE, VR0MIN, VR0MAX } and store the result + in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest + possible such range. The resulting range is not canonicalized. */ + +static void +intersect_ranges (enum value_range_kind *vr0type, + tree *vr0min, tree *vr0max, + enum value_range_kind vr1type, + tree vr1min, tree vr1max) +{ + bool mineq = vrp_operand_equal_p (*vr0min, vr1min); + bool maxeq = vrp_operand_equal_p (*vr0max, vr1max); + + /* [] is vr0, () is vr1 in the following classification comments. */ + if (mineq && maxeq) + { + /* [( )] */ + if (*vr0type == vr1type) + /* Nothing to do for equal ranges. */ + ; + else if ((*vr0type == VR_RANGE + && vr1type == VR_ANTI_RANGE) + || (*vr0type == VR_ANTI_RANGE + && vr1type == VR_RANGE)) + { + /* For anti-range with range intersection the result is empty. */ + *vr0type = VR_UNDEFINED; + *vr0min = NULL_TREE; + *vr0max = NULL_TREE; + } + else + gcc_unreachable (); + } + else if (operand_less_p (*vr0max, vr1min) == 1 + || operand_less_p (vr1max, *vr0min) == 1) + { + /* [ ] ( ) or ( ) [ ] + If the ranges have an empty intersection, the result of the + intersect operation is the range for intersecting an + anti-range with a range or empty when intersecting two ranges. */ + if (*vr0type == VR_RANGE + && vr1type == VR_ANTI_RANGE) + ; + else if (*vr0type == VR_ANTI_RANGE + && vr1type == VR_RANGE) + { + *vr0type = vr1type; + *vr0min = vr1min; + *vr0max = vr1max; + } + else if (*vr0type == VR_RANGE + && vr1type == VR_RANGE) + { + *vr0type = VR_UNDEFINED; + *vr0min = NULL_TREE; + *vr0max = NULL_TREE; + } + else if (*vr0type == VR_ANTI_RANGE + && vr1type == VR_ANTI_RANGE) + { + /* If the anti-ranges are adjacent to each other merge them. */ + if (TREE_CODE (*vr0max) == INTEGER_CST + && TREE_CODE (vr1min) == INTEGER_CST + && operand_less_p (*vr0max, vr1min) == 1 + && integer_onep (int_const_binop (MINUS_EXPR, + vr1min, *vr0max))) + *vr0max = vr1max; + else if (TREE_CODE (vr1max) == INTEGER_CST + && TREE_CODE (*vr0min) == INTEGER_CST + && operand_less_p (vr1max, *vr0min) == 1 + && integer_onep (int_const_binop (MINUS_EXPR, + *vr0min, vr1max))) + *vr0min = vr1min; + /* Else arbitrarily take VR0. */ + } + } + else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1) + && (mineq || operand_less_p (*vr0min, vr1min) == 1)) + { + /* [ ( ) ] or [( ) ] or [ ( )] */ + if (*vr0type == VR_RANGE + && vr1type == VR_RANGE) + { + /* If both are ranges the result is the inner one. */ + *vr0type = vr1type; + *vr0min = vr1min; + *vr0max = vr1max; + } + else if (*vr0type == VR_RANGE + && vr1type == VR_ANTI_RANGE) + { + /* Choose the right gap if the left one is empty. */ + if (mineq) + { + if (TREE_CODE (vr1max) != INTEGER_CST) + *vr0min = vr1max; + else if (TYPE_PRECISION (TREE_TYPE (vr1max)) == 1 + && !TYPE_UNSIGNED (TREE_TYPE (vr1max))) + *vr0min + = int_const_binop (MINUS_EXPR, vr1max, + build_int_cst (TREE_TYPE (vr1max), -1)); + else + *vr0min + = int_const_binop (PLUS_EXPR, vr1max, + build_int_cst (TREE_TYPE (vr1max), 1)); + } + /* Choose the left gap if the right one is empty. */ + else if (maxeq) + { + if (TREE_CODE (vr1min) != INTEGER_CST) + *vr0max = vr1min; + else if (TYPE_PRECISION (TREE_TYPE (vr1min)) == 1 + && !TYPE_UNSIGNED (TREE_TYPE (vr1min))) + *vr0max + = int_const_binop (PLUS_EXPR, vr1min, + build_int_cst (TREE_TYPE (vr1min), -1)); + else + *vr0max + = int_const_binop (MINUS_EXPR, vr1min, + build_int_cst (TREE_TYPE (vr1min), 1)); + } + /* Choose the anti-range if the range is effectively varying. */ + else if (vrp_val_is_min (*vr0min) + && vrp_val_is_max (*vr0max)) + { + *vr0type = vr1type; + *vr0min = vr1min; + *vr0max = vr1max; + } + /* Else choose the range. */ + } + else if (*vr0type == VR_ANTI_RANGE + && vr1type == VR_ANTI_RANGE) + /* If both are anti-ranges the result is the outer one. */ + ; + else if (*vr0type == VR_ANTI_RANGE + && vr1type == VR_RANGE) + { + /* The intersection is empty. */ + *vr0type = VR_UNDEFINED; + *vr0min = NULL_TREE; + *vr0max = NULL_TREE; + } + else + gcc_unreachable (); + } + else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1) + && (mineq || operand_less_p (vr1min, *vr0min) == 1)) + { + /* ( [ ] ) or ([ ] ) or ( [ ]) */ + if (*vr0type == VR_RANGE + && vr1type == VR_RANGE) + /* Choose the inner range. */ + ; + else if (*vr0type == VR_ANTI_RANGE + && vr1type == VR_RANGE) + { + /* Choose the right gap if the left is empty. */ + if (mineq) + { + *vr0type = VR_RANGE; + if (TREE_CODE (*vr0max) != INTEGER_CST) + *vr0min = *vr0max; + else if (TYPE_PRECISION (TREE_TYPE (*vr0max)) == 1 + && !TYPE_UNSIGNED (TREE_TYPE (*vr0max))) + *vr0min + = int_const_binop (MINUS_EXPR, *vr0max, + build_int_cst (TREE_TYPE (*vr0max), -1)); + else + *vr0min + = int_const_binop (PLUS_EXPR, *vr0max, + build_int_cst (TREE_TYPE (*vr0max), 1)); + *vr0max = vr1max; + } + /* Choose the left gap if the right is empty. */ + else if (maxeq) + { + *vr0type = VR_RANGE; + if (TREE_CODE (*vr0min) != INTEGER_CST) + *vr0max = *vr0min; + else if (TYPE_PRECISION (TREE_TYPE (*vr0min)) == 1 + && !TYPE_UNSIGNED (TREE_TYPE (*vr0min))) + *vr0max + = int_const_binop (PLUS_EXPR, *vr0min, + build_int_cst (TREE_TYPE (*vr0min), -1)); + else + *vr0max + = int_const_binop (MINUS_EXPR, *vr0min, + build_int_cst (TREE_TYPE (*vr0min), 1)); + *vr0min = vr1min; + } + /* Choose the anti-range if the range is effectively varying. */ + else if (vrp_val_is_min (vr1min) + && vrp_val_is_max (vr1max)) + ; + /* Choose the anti-range if it is ~[0,0], that range is special + enough to special case when vr1's range is relatively wide. + At least for types bigger than int - this covers pointers + and arguments to functions like ctz. */ + else if (*vr0min == *vr0max + && integer_zerop (*vr0min) + && ((TYPE_PRECISION (TREE_TYPE (*vr0min)) + >= TYPE_PRECISION (integer_type_node)) + || POINTER_TYPE_P (TREE_TYPE (*vr0min))) + && TREE_CODE (vr1max) == INTEGER_CST + && TREE_CODE (vr1min) == INTEGER_CST + && (wi::clz (wi::to_wide (vr1max) - wi::to_wide (vr1min)) + < TYPE_PRECISION (TREE_TYPE (*vr0min)) / 2)) + ; + /* Else choose the range. */ + else + { + *vr0type = vr1type; + *vr0min = vr1min; + *vr0max = vr1max; + } + } + else if (*vr0type == VR_ANTI_RANGE + && vr1type == VR_ANTI_RANGE) + { + /* If both are anti-ranges the result is the outer one. */ + *vr0type = vr1type; + *vr0min = vr1min; + *vr0max = vr1max; + } + else if (vr1type == VR_ANTI_RANGE + && *vr0type == VR_RANGE) + { + /* The intersection is empty. */ + *vr0type = VR_UNDEFINED; + *vr0min = NULL_TREE; + *vr0max = NULL_TREE; + } + else + gcc_unreachable (); + } + else if ((operand_less_p (vr1min, *vr0max) == 1 + || operand_equal_p (vr1min, *vr0max, 0)) + && operand_less_p (*vr0min, vr1min) == 1) + { + /* [ ( ] ) or [ ]( ) */ + if (*vr0type == VR_ANTI_RANGE + && vr1type == VR_ANTI_RANGE) + *vr0max = vr1max; + else if (*vr0type == VR_RANGE + && vr1type == VR_RANGE) + *vr0min = vr1min; + else if (*vr0type == VR_RANGE + && vr1type == VR_ANTI_RANGE) + { + if (TREE_CODE (vr1min) == INTEGER_CST) + *vr0max = int_const_binop (MINUS_EXPR, vr1min, + build_int_cst (TREE_TYPE (vr1min), 1)); + else + *vr0max = vr1min; + } + else if (*vr0type == VR_ANTI_RANGE + && vr1type == VR_RANGE) + { + *vr0type = VR_RANGE; + if (TREE_CODE (*vr0max) == INTEGER_CST) + *vr0min = int_const_binop (PLUS_EXPR, *vr0max, + build_int_cst (TREE_TYPE (*vr0max), 1)); + else + *vr0min = *vr0max; + *vr0max = vr1max; + } + else + gcc_unreachable (); + } + else if ((operand_less_p (*vr0min, vr1max) == 1 + || operand_equal_p (*vr0min, vr1max, 0)) + && operand_less_p (vr1min, *vr0min) == 1) + { + /* ( [ ) ] or ( )[ ] */ + if (*vr0type == VR_ANTI_RANGE + && vr1type == VR_ANTI_RANGE) + *vr0min = vr1min; + else if (*vr0type == VR_RANGE + && vr1type == VR_RANGE) + *vr0max = vr1max; + else if (*vr0type == VR_RANGE + && vr1type == VR_ANTI_RANGE) + { + if (TREE_CODE (vr1max) == INTEGER_CST) + *vr0min = int_const_binop (PLUS_EXPR, vr1max, + build_int_cst (TREE_TYPE (vr1max), 1)); + else + *vr0min = vr1max; + } + else if (*vr0type == VR_ANTI_RANGE + && vr1type == VR_RANGE) + { + *vr0type = VR_RANGE; + if (TREE_CODE (*vr0min) == INTEGER_CST) + *vr0max = int_const_binop (MINUS_EXPR, *vr0min, + build_int_cst (TREE_TYPE (*vr0min), 1)); + else + *vr0max = *vr0min; + *vr0min = vr1min; + } + else + gcc_unreachable (); + } + + /* If we know the intersection is empty, there's no need to + conservatively add anything else to the set. */ + if (*vr0type == VR_UNDEFINED) + return; + + /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as + result for the intersection. That's always a conservative + correct estimate unless VR1 is a constant singleton range + in which case we choose that. */ + if (vr1type == VR_RANGE + && is_gimple_min_invariant (vr1min) + && vrp_operand_equal_p (vr1min, vr1max)) + { + *vr0type = vr1type; + *vr0min = vr1min; + *vr0max = vr1max; + } +} + +/* Helper for the intersection operation for value ranges. Given two + value ranges VR0 and VR1, return the intersection of the two + ranges. This may not be the smallest possible such range. */ + +value_range +value_range::intersect_helper (const value_range *vr0, const value_range *vr1) +{ + /* If either range is VR_VARYING the other one wins. */ + if (vr1->varying_p ()) + return *vr0; + if (vr0->varying_p ()) + return *vr1; + + /* When either range is VR_UNDEFINED the resulting range is + VR_UNDEFINED, too. */ + if (vr0->undefined_p ()) + return *vr0; + if (vr1->undefined_p ()) + return *vr1; + + value_range_kind vr0kind = vr0->kind (); + tree vr0min = vr0->min (); + tree vr0max = vr0->max (); + intersect_ranges (&vr0kind, &vr0min, &vr0max, + vr1->kind (), vr1->min (), vr1->max ()); + /* Make sure to canonicalize the result though as the inversion of a + VR_RANGE can still be a VR_RANGE. Work on a temporary so we can + fall back to vr0 when this turns things to varying. */ + value_range tem; + if (vr0kind == VR_UNDEFINED) + tem.set_undefined (); + else if (vr0kind == VR_VARYING) + tem.set_varying (vr0->type ()); + else + tem.set (vr0min, vr0max, vr0kind); + /* If that failed, use the saved original VR0. */ + if (tem.varying_p ()) + return *vr0; + + return tem; +} + +/* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and + { VR1TYPE, VR0MIN, VR0MAX } and store the result + in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest + possible such range. The resulting range is not canonicalized. */ + +static void +union_ranges (enum value_range_kind *vr0type, + tree *vr0min, tree *vr0max, + enum value_range_kind vr1type, + tree vr1min, tree vr1max) +{ + int cmpmin = compare_values (*vr0min, vr1min); + int cmpmax = compare_values (*vr0max, vr1max); + bool mineq = cmpmin == 0; + bool maxeq = cmpmax == 0; + + /* [] is vr0, () is vr1 in the following classification comments. */ + if (mineq && maxeq) + { + /* [( )] */ + if (*vr0type == vr1type) + /* Nothing to do for equal ranges. */ + ; + else if ((*vr0type == VR_RANGE + && vr1type == VR_ANTI_RANGE) + || (*vr0type == VR_ANTI_RANGE + && vr1type == VR_RANGE)) + { + /* For anti-range with range union the result is varying. */ + goto give_up; + } + else + gcc_unreachable (); + } + else if (operand_less_p (*vr0max, vr1min) == 1 + || operand_less_p (vr1max, *vr0min) == 1) + { + /* [ ] ( ) or ( ) [ ] + If the ranges have an empty intersection, result of the union + operation is the anti-range or if both are anti-ranges + it covers all. */ + if (*vr0type == VR_ANTI_RANGE + && vr1type == VR_ANTI_RANGE) + goto give_up; + else if (*vr0type == VR_ANTI_RANGE + && vr1type == VR_RANGE) + ; + else if (*vr0type == VR_RANGE + && vr1type == VR_ANTI_RANGE) + { + *vr0type = vr1type; + *vr0min = vr1min; + *vr0max = vr1max; + } + else if (*vr0type == VR_RANGE + && vr1type == VR_RANGE) + { + /* The result is the convex hull of both ranges. */ + if (operand_less_p (*vr0max, vr1min) == 1) + { + /* If the result can be an anti-range, create one. */ + if (TREE_CODE (*vr0max) == INTEGER_CST + && TREE_CODE (vr1min) == INTEGER_CST + && vrp_val_is_min (*vr0min) + && vrp_val_is_max (vr1max)) + { + tree min = int_const_binop (PLUS_EXPR, + *vr0max, + build_int_cst (TREE_TYPE (*vr0max), 1)); + tree max = int_const_binop (MINUS_EXPR, + vr1min, + build_int_cst (TREE_TYPE (vr1min), 1)); + if (!operand_less_p (max, min)) + { + *vr0type = VR_ANTI_RANGE; + *vr0min = min; + *vr0max = max; + } + else + *vr0max = vr1max; + } + else + *vr0max = vr1max; + } + else + { + /* If the result can be an anti-range, create one. */ + if (TREE_CODE (vr1max) == INTEGER_CST + && TREE_CODE (*vr0min) == INTEGER_CST + && vrp_val_is_min (vr1min) + && vrp_val_is_max (*vr0max)) + { + tree min = int_const_binop (PLUS_EXPR, + vr1max, + build_int_cst (TREE_TYPE (vr1max), 1)); + tree max = int_const_binop (MINUS_EXPR, + *vr0min, + build_int_cst (TREE_TYPE (*vr0min), 1)); + if (!operand_less_p (max, min)) + { + *vr0type = VR_ANTI_RANGE; + *vr0min = min; + *vr0max = max; + } + else + *vr0min = vr1min; + } + else + *vr0min = vr1min; + } + } + else + gcc_unreachable (); + } + else if ((maxeq || cmpmax == 1) + && (mineq || cmpmin == -1)) + { + /* [ ( ) ] or [( ) ] or [ ( )] */ + if (*vr0type == VR_RANGE + && vr1type == VR_RANGE) + ; + else if (*vr0type == VR_ANTI_RANGE + && vr1type == VR_ANTI_RANGE) + { + *vr0type = vr1type; + *vr0min = vr1min; + *vr0max = vr1max; + } + else if (*vr0type == VR_ANTI_RANGE + && vr1type == VR_RANGE) + { + /* Arbitrarily choose the right or left gap. */ + if (!mineq && TREE_CODE (vr1min) == INTEGER_CST) + *vr0max = int_const_binop (MINUS_EXPR, vr1min, + build_int_cst (TREE_TYPE (vr1min), 1)); + else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST) + *vr0min = int_const_binop (PLUS_EXPR, vr1max, + build_int_cst (TREE_TYPE (vr1max), 1)); + else + goto give_up; + } + else if (*vr0type == VR_RANGE + && vr1type == VR_ANTI_RANGE) + /* The result covers everything. */ + goto give_up; + else + gcc_unreachable (); + } + else if ((maxeq || cmpmax == -1) + && (mineq || cmpmin == 1)) + { + /* ( [ ] ) or ([ ] ) or ( [ ]) */ + if (*vr0type == VR_RANGE + && vr1type == VR_RANGE) + { + *vr0type = vr1type; + *vr0min = vr1min; + *vr0max = vr1max; + } + else if (*vr0type == VR_ANTI_RANGE + && vr1type == VR_ANTI_RANGE) + ; + else if (*vr0type == VR_RANGE + && vr1type == VR_ANTI_RANGE) + { + *vr0type = VR_ANTI_RANGE; + if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST) + { + *vr0max = int_const_binop (MINUS_EXPR, *vr0min, + build_int_cst (TREE_TYPE (*vr0min), 1)); + *vr0min = vr1min; + } + else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST) + { + *vr0min = int_const_binop (PLUS_EXPR, *vr0max, + build_int_cst (TREE_TYPE (*vr0max), 1)); + *vr0max = vr1max; + } + else + goto give_up; + } + else if (*vr0type == VR_ANTI_RANGE + && vr1type == VR_RANGE) + /* The result covers everything. */ + goto give_up; + else + gcc_unreachable (); + } + else if (cmpmin == -1 + && cmpmax == -1 + && (operand_less_p (vr1min, *vr0max) == 1 + || operand_equal_p (vr1min, *vr0max, 0))) + { + /* [ ( ] ) or [ ]( ) */ + if (*vr0type == VR_RANGE + && vr1type == VR_RANGE) + *vr0max = vr1max; + else if (*vr0type == VR_ANTI_RANGE + && vr1type == VR_ANTI_RANGE) + *vr0min = vr1min; + else if (*vr0type == VR_ANTI_RANGE + && vr1type == VR_RANGE) + { + if (TREE_CODE (vr1min) == INTEGER_CST) + *vr0max = int_const_binop (MINUS_EXPR, vr1min, + build_int_cst (TREE_TYPE (vr1min), 1)); + else + goto give_up; + } + else if (*vr0type == VR_RANGE + && vr1type == VR_ANTI_RANGE) + { + if (TREE_CODE (*vr0max) == INTEGER_CST) + { + *vr0type = vr1type; + *vr0min = int_const_binop (PLUS_EXPR, *vr0max, + build_int_cst (TREE_TYPE (*vr0max), 1)); + *vr0max = vr1max; + } + else + goto give_up; + } + else + gcc_unreachable (); + } + else if (cmpmin == 1 + && cmpmax == 1 + && (operand_less_p (*vr0min, vr1max) == 1 + || operand_equal_p (*vr0min, vr1max, 0))) + { + /* ( [ ) ] or ( )[ ] */ + if (*vr0type == VR_RANGE + && vr1type == VR_RANGE) + *vr0min = vr1min; + else if (*vr0type == VR_ANTI_RANGE + && vr1type == VR_ANTI_RANGE) + *vr0max = vr1max; + else if (*vr0type == VR_ANTI_RANGE + && vr1type == VR_RANGE) + { + if (TREE_CODE (vr1max) == INTEGER_CST) + *vr0min = int_const_binop (PLUS_EXPR, vr1max, + build_int_cst (TREE_TYPE (vr1max), 1)); + else + goto give_up; + } + else if (*vr0type == VR_RANGE + && vr1type == VR_ANTI_RANGE) + { + if (TREE_CODE (*vr0min) == INTEGER_CST) + { + *vr0type = vr1type; + *vr0max = int_const_binop (MINUS_EXPR, *vr0min, + build_int_cst (TREE_TYPE (*vr0min), 1)); + *vr0min = vr1min; + } + else + goto give_up; + } + else + gcc_unreachable (); + } + else + goto give_up; + + return; + +give_up: + *vr0type = VR_VARYING; + *vr0min = NULL_TREE; + *vr0max = NULL_TREE; +} + +/* Helper for meet operation for value ranges. Given two value ranges VR0 and + VR1, return a range that contains both VR0 and VR1. This may not be the + smallest possible such range. */ + +value_range +value_range::union_helper (const value_range *vr0, const value_range *vr1) +{ + /* VR0 has the resulting range if VR1 is undefined or VR0 is varying. */ + if (vr1->undefined_p () + || vr0->varying_p ()) + return *vr0; + + /* VR1 has the resulting range if VR0 is undefined or VR1 is varying. */ + if (vr0->undefined_p () + || vr1->varying_p ()) + return *vr1; + + value_range_kind vr0kind = vr0->kind (); + tree vr0min = vr0->min (); + tree vr0max = vr0->max (); + union_ranges (&vr0kind, &vr0min, &vr0max, + vr1->kind (), vr1->min (), vr1->max ()); + + /* Work on a temporary so we can still use vr0 when union returns varying. */ + value_range tem; + if (vr0kind == VR_UNDEFINED) + tem.set_undefined (); + else if (vr0kind == VR_VARYING) + tem.set_varying (vr0->type ()); + else + tem.set (vr0min, vr0max, vr0kind); + + /* Failed to find an efficient meet. Before giving up and setting + the result to VARYING, see if we can at least derive a useful + anti-range. */ + if (tem.varying_p () + && range_includes_zero_p (vr0) == 0 + && range_includes_zero_p (vr1) == 0) + { + tem.set_nonzero (vr0->type ()); + return tem; + } + + return tem; +} + +/* Meet operation for value ranges. Given two value ranges VR0 and + VR1, store in VR0 a range that contains both VR0 and VR1. This + may not be the smallest possible such range. */ + +void +value_range::union_ (const value_range *other) +{ + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Meeting\n "); + dump_value_range (dump_file, this); + fprintf (dump_file, "\nand\n "); + dump_value_range (dump_file, other); + fprintf (dump_file, "\n"); + } + + *this = union_helper (this, other); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "to\n "); + dump_value_range (dump_file, this); + fprintf (dump_file, "\n"); + } +} + +/* Range union, but for references. */ + +void +value_range::union_ (const value_range &r) +{ + /* Disable details for now, because it makes the ranger dump + unnecessarily verbose. */ + bool details = dump_flags & TDF_DETAILS; + if (details) + dump_flags &= ~TDF_DETAILS; + union_ (&r); + if (details) + dump_flags |= TDF_DETAILS; +} + +void +value_range::intersect (const value_range *other) +{ + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Intersecting\n "); + dump_value_range (dump_file, this); + fprintf (dump_file, "\nand\n "); + dump_value_range (dump_file, other); + fprintf (dump_file, "\n"); + } + + *this = intersect_helper (this, other); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "to\n "); + dump_value_range (dump_file, this); + fprintf (dump_file, "\n"); + } +} + +/* Range intersect, but for references. */ + +void +value_range::intersect (const value_range &r) +{ + /* Disable details for now, because it makes the ranger dump + unnecessarily verbose. */ + bool details = dump_flags & TDF_DETAILS; + if (details) + dump_flags &= ~TDF_DETAILS; + intersect (&r); + if (details) + dump_flags |= TDF_DETAILS; +} + +/* Return the inverse of a range. */ + +void +value_range::invert () +{ + /* We can't just invert VR_RANGE and VR_ANTI_RANGE because we may + create non-canonical ranges. Use the constructors instead. */ + if (m_kind == VR_RANGE) + *this = value_range (m_min, m_max, VR_ANTI_RANGE); + else if (m_kind == VR_ANTI_RANGE) + *this = value_range (m_min, m_max); + else + gcc_unreachable (); +} + +void +value_range::dump (FILE *file) const +{ + if (undefined_p ()) + fprintf (file, "UNDEFINED"); + else if (m_kind == VR_RANGE || m_kind == VR_ANTI_RANGE) + { + tree ttype = type (); + + print_generic_expr (file, ttype); + fprintf (file, " "); + + fprintf (file, "%s[", (m_kind == VR_ANTI_RANGE) ? "~" : ""); + + if (INTEGRAL_TYPE_P (ttype) + && !TYPE_UNSIGNED (ttype) + && vrp_val_is_min (min ()) + && TYPE_PRECISION (ttype) != 1) + fprintf (file, "-INF"); + else + print_generic_expr (file, min ()); + + fprintf (file, ", "); + + if (supports_type_p (ttype) + && vrp_val_is_max (max ()) + && TYPE_PRECISION (ttype) != 1) + fprintf (file, "+INF"); + else + print_generic_expr (file, max ()); + + fprintf (file, "]"); + } + else if (varying_p ()) + { + print_generic_expr (file, type ()); + fprintf (file, " VARYING"); + } + else + gcc_unreachable (); +} + +void +value_range::dump () const +{ + dump (stderr); +} + +void +dump_value_range (FILE *file, const value_range *vr) +{ + if (!vr) + fprintf (file, "[]"); + else + vr->dump (file); +} + +DEBUG_FUNCTION void +debug (const value_range *vr) +{ + dump_value_range (stderr, vr); +} + +DEBUG_FUNCTION void +debug (const value_range &vr) +{ + dump_value_range (stderr, &vr); +} + +/* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR + so that *VR0 U *VR1 == *AR. Returns true if that is possible, + false otherwise. If *AR can be represented with a single range + *VR1 will be VR_UNDEFINED. */ + +bool +ranges_from_anti_range (const value_range *ar, + value_range *vr0, value_range *vr1) +{ + tree type = ar->type (); + + vr0->set_undefined (); + vr1->set_undefined (); + + /* As a future improvement, we could handle ~[0, A] as: [-INF, -1] U + [A+1, +INF]. Not sure if this helps in practice, though. */ + + if (ar->kind () != VR_ANTI_RANGE + || TREE_CODE (ar->min ()) != INTEGER_CST + || TREE_CODE (ar->max ()) != INTEGER_CST + || !vrp_val_min (type) + || !vrp_val_max (type)) + return false; + + if (tree_int_cst_lt (vrp_val_min (type), ar->min ())) + vr0->set (vrp_val_min (type), + wide_int_to_tree (type, wi::to_wide (ar->min ()) - 1)); + if (tree_int_cst_lt (ar->max (), vrp_val_max (type))) + vr1->set (wide_int_to_tree (type, wi::to_wide (ar->max ()) + 1), + vrp_val_max (type)); + if (vr0->undefined_p ()) + { + *vr0 = *vr1; + vr1->set_undefined (); + } + + return !vr0->undefined_p (); +} + +bool +range_has_numeric_bounds_p (const value_range *vr) +{ + return (vr->min () + && TREE_CODE (vr->min ()) == INTEGER_CST + && TREE_CODE (vr->max ()) == INTEGER_CST); +} + +/* Return the maximum value for TYPE. */ + +tree +vrp_val_max (const_tree type) +{ + if (INTEGRAL_TYPE_P (type)) + return TYPE_MAX_VALUE (type); + if (POINTER_TYPE_P (type)) + { + wide_int max = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type)); + return wide_int_to_tree (const_cast<tree> (type), max); + } + return NULL_TREE; +} + +/* Return the minimum value for TYPE. */ + +tree +vrp_val_min (const_tree type) +{ + if (INTEGRAL_TYPE_P (type)) + return TYPE_MIN_VALUE (type); + if (POINTER_TYPE_P (type)) + return build_zero_cst (const_cast<tree> (type)); + return NULL_TREE; +} + +/* Return whether VAL is equal to the maximum value of its type. + We can't do a simple equality comparison with TYPE_MAX_VALUE because + C typedefs and Ada subtypes can produce types whose TYPE_MAX_VALUE + is not == to the integer constant with the same value in the type. */ + +bool +vrp_val_is_max (const_tree val) +{ + tree type_max = vrp_val_max (TREE_TYPE (val)); + return (val == type_max + || (type_max != NULL_TREE + && operand_equal_p (val, type_max, 0))); +} + +/* Return whether VAL is equal to the minimum value of its type. */ + +bool +vrp_val_is_min (const_tree val) +{ + tree type_min = vrp_val_min (TREE_TYPE (val)); + return (val == type_min + || (type_min != NULL_TREE + && operand_equal_p (val, type_min, 0))); +} + +/* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */ + +bool +vrp_operand_equal_p (const_tree val1, const_tree val2) +{ + if (val1 == val2) + return true; + if (!val1 || !val2 || !operand_equal_p (val1, val2, 0)) + return false; + return true; +} |