diff options
Diffstat (limited to 'gcc/tree.cc')
-rw-r--r-- | gcc/tree.cc | 15221 |
1 files changed, 15221 insertions, 0 deletions
diff --git a/gcc/tree.cc b/gcc/tree.cc new file mode 100644 index 0000000..d98b77d --- /dev/null +++ b/gcc/tree.cc @@ -0,0 +1,15221 @@ +/* Language-independent node constructors for parse phase of GNU compiler. + Copyright (C) 1987-2022 Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +/* This file contains the low level primitives for operating on tree nodes, + including allocation, list operations, interning of identifiers, + construction of data type nodes and statement nodes, + and construction of type conversion nodes. It also contains + tables index by tree code that describe how to take apart + nodes of that code. + + It is intended to be language-independent but can occasionally + calls language-dependent routines. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "backend.h" +#include "target.h" +#include "tree.h" +#include "gimple.h" +#include "tree-pass.h" +#include "ssa.h" +#include "cgraph.h" +#include "diagnostic.h" +#include "flags.h" +#include "alias.h" +#include "fold-const.h" +#include "stor-layout.h" +#include "calls.h" +#include "attribs.h" +#include "toplev.h" /* get_random_seed */ +#include "output.h" +#include "common/common-target.h" +#include "langhooks.h" +#include "tree-inline.h" +#include "tree-iterator.h" +#include "internal-fn.h" +#include "gimple-iterator.h" +#include "gimplify.h" +#include "tree-dfa.h" +#include "langhooks-def.h" +#include "tree-diagnostic.h" +#include "except.h" +#include "builtins.h" +#include "print-tree.h" +#include "ipa-utils.h" +#include "selftest.h" +#include "stringpool.h" +#include "attribs.h" +#include "rtl.h" +#include "regs.h" +#include "tree-vector-builder.h" +#include "gimple-fold.h" +#include "escaped_string.h" +#include "gimple-range.h" + +/* Tree code classes. */ + +#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE, +#define END_OF_BASE_TREE_CODES tcc_exceptional, + +const enum tree_code_class tree_code_type[] = { +#include "all-tree.def" +}; + +#undef DEFTREECODE +#undef END_OF_BASE_TREE_CODES + +/* Table indexed by tree code giving number of expression + operands beyond the fixed part of the node structure. + Not used for types or decls. */ + +#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH, +#define END_OF_BASE_TREE_CODES 0, + +const unsigned char tree_code_length[] = { +#include "all-tree.def" +}; + +#undef DEFTREECODE +#undef END_OF_BASE_TREE_CODES + +/* Names of tree components. + Used for printing out the tree and error messages. */ +#define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME, +#define END_OF_BASE_TREE_CODES "@dummy", + +static const char *const tree_code_name[] = { +#include "all-tree.def" +}; + +#undef DEFTREECODE +#undef END_OF_BASE_TREE_CODES + +/* Each tree code class has an associated string representation. + These must correspond to the tree_code_class entries. */ + +const char *const tree_code_class_strings[] = +{ + "exceptional", + "constant", + "type", + "declaration", + "reference", + "comparison", + "unary", + "binary", + "statement", + "vl_exp", + "expression" +}; + +/* obstack.[ch] explicitly declined to prototype this. */ +extern int _obstack_allocated_p (struct obstack *h, void *obj); + +/* Statistics-gathering stuff. */ + +static uint64_t tree_code_counts[MAX_TREE_CODES]; +uint64_t tree_node_counts[(int) all_kinds]; +uint64_t tree_node_sizes[(int) all_kinds]; + +/* Keep in sync with tree.h:enum tree_node_kind. */ +static const char * const tree_node_kind_names[] = { + "decls", + "types", + "blocks", + "stmts", + "refs", + "exprs", + "constants", + "identifiers", + "vecs", + "binfos", + "ssa names", + "constructors", + "random kinds", + "lang_decl kinds", + "lang_type kinds", + "omp clauses", +}; + +/* Unique id for next decl created. */ +static GTY(()) int next_decl_uid; +/* Unique id for next type created. */ +static GTY(()) unsigned next_type_uid = 1; +/* Unique id for next debug decl created. Use negative numbers, + to catch erroneous uses. */ +static GTY(()) int next_debug_decl_uid; + +/* Since we cannot rehash a type after it is in the table, we have to + keep the hash code. */ + +struct GTY((for_user)) type_hash { + unsigned long hash; + tree type; +}; + +/* Initial size of the hash table (rounded to next prime). */ +#define TYPE_HASH_INITIAL_SIZE 1000 + +struct type_cache_hasher : ggc_cache_ptr_hash<type_hash> +{ + static hashval_t hash (type_hash *t) { return t->hash; } + static bool equal (type_hash *a, type_hash *b); + + static int + keep_cache_entry (type_hash *&t) + { + return ggc_marked_p (t->type); + } +}; + +/* Now here is the hash table. When recording a type, it is added to + the slot whose index is the hash code. Note that the hash table is + used for several kinds of types (function types, array types and + array index range types, for now). While all these live in the + same table, they are completely independent, and the hash code is + computed differently for each of these. */ + +static GTY ((cache)) hash_table<type_cache_hasher> *type_hash_table; + +/* Hash table and temporary node for larger integer const values. */ +static GTY (()) tree int_cst_node; + +struct int_cst_hasher : ggc_cache_ptr_hash<tree_node> +{ + static hashval_t hash (tree t); + static bool equal (tree x, tree y); +}; + +static GTY ((cache)) hash_table<int_cst_hasher> *int_cst_hash_table; + +/* Class and variable for making sure that there is a single POLY_INT_CST + for a given value. */ +struct poly_int_cst_hasher : ggc_cache_ptr_hash<tree_node> +{ + typedef std::pair<tree, const poly_wide_int *> compare_type; + static hashval_t hash (tree t); + static bool equal (tree x, const compare_type &y); +}; + +static GTY ((cache)) hash_table<poly_int_cst_hasher> *poly_int_cst_hash_table; + +/* Hash table for optimization flags and target option flags. Use the same + hash table for both sets of options. Nodes for building the current + optimization and target option nodes. The assumption is most of the time + the options created will already be in the hash table, so we avoid + allocating and freeing up a node repeatably. */ +static GTY (()) tree cl_optimization_node; +static GTY (()) tree cl_target_option_node; + +struct cl_option_hasher : ggc_cache_ptr_hash<tree_node> +{ + static hashval_t hash (tree t); + static bool equal (tree x, tree y); +}; + +static GTY ((cache)) hash_table<cl_option_hasher> *cl_option_hash_table; + +/* General tree->tree mapping structure for use in hash tables. */ + + +static GTY ((cache)) + hash_table<tree_decl_map_cache_hasher> *debug_expr_for_decl; + +static GTY ((cache)) + hash_table<tree_decl_map_cache_hasher> *value_expr_for_decl; + +struct tree_vec_map_cache_hasher : ggc_cache_ptr_hash<tree_vec_map> +{ + static hashval_t hash (tree_vec_map *m) { return DECL_UID (m->base.from); } + + static bool + equal (tree_vec_map *a, tree_vec_map *b) + { + return a->base.from == b->base.from; + } + + static int + keep_cache_entry (tree_vec_map *&m) + { + return ggc_marked_p (m->base.from); + } +}; + +static GTY ((cache)) + hash_table<tree_vec_map_cache_hasher> *debug_args_for_decl; + +static void set_type_quals (tree, int); +static void print_type_hash_statistics (void); +static void print_debug_expr_statistics (void); +static void print_value_expr_statistics (void); + +tree global_trees[TI_MAX]; +tree integer_types[itk_none]; + +bool int_n_enabled_p[NUM_INT_N_ENTS]; +struct int_n_trees_t int_n_trees [NUM_INT_N_ENTS]; + +bool tree_contains_struct[MAX_TREE_CODES][64]; + +/* Number of operands for each OMP clause. */ +unsigned const char omp_clause_num_ops[] = +{ + 0, /* OMP_CLAUSE_ERROR */ + 1, /* OMP_CLAUSE_PRIVATE */ + 1, /* OMP_CLAUSE_SHARED */ + 1, /* OMP_CLAUSE_FIRSTPRIVATE */ + 2, /* OMP_CLAUSE_LASTPRIVATE */ + 5, /* OMP_CLAUSE_REDUCTION */ + 5, /* OMP_CLAUSE_TASK_REDUCTION */ + 5, /* OMP_CLAUSE_IN_REDUCTION */ + 1, /* OMP_CLAUSE_COPYIN */ + 1, /* OMP_CLAUSE_COPYPRIVATE */ + 3, /* OMP_CLAUSE_LINEAR */ + 1, /* OMP_CLAUSE_AFFINITY */ + 2, /* OMP_CLAUSE_ALIGNED */ + 3, /* OMP_CLAUSE_ALLOCATE */ + 1, /* OMP_CLAUSE_DEPEND */ + 1, /* OMP_CLAUSE_NONTEMPORAL */ + 1, /* OMP_CLAUSE_UNIFORM */ + 1, /* OMP_CLAUSE_TO_DECLARE */ + 1, /* OMP_CLAUSE_LINK */ + 1, /* OMP_CLAUSE_DETACH */ + 1, /* OMP_CLAUSE_USE_DEVICE_PTR */ + 1, /* OMP_CLAUSE_USE_DEVICE_ADDR */ + 1, /* OMP_CLAUSE_IS_DEVICE_PTR */ + 1, /* OMP_CLAUSE_INCLUSIVE */ + 1, /* OMP_CLAUSE_EXCLUSIVE */ + 2, /* OMP_CLAUSE_FROM */ + 2, /* OMP_CLAUSE_TO */ + 2, /* OMP_CLAUSE_MAP */ + 2, /* OMP_CLAUSE__CACHE_ */ + 2, /* OMP_CLAUSE_GANG */ + 1, /* OMP_CLAUSE_ASYNC */ + 1, /* OMP_CLAUSE_WAIT */ + 0, /* OMP_CLAUSE_AUTO */ + 0, /* OMP_CLAUSE_SEQ */ + 1, /* OMP_CLAUSE__LOOPTEMP_ */ + 1, /* OMP_CLAUSE__REDUCTEMP_ */ + 1, /* OMP_CLAUSE__CONDTEMP_ */ + 1, /* OMP_CLAUSE__SCANTEMP_ */ + 1, /* OMP_CLAUSE_IF */ + 1, /* OMP_CLAUSE_NUM_THREADS */ + 1, /* OMP_CLAUSE_SCHEDULE */ + 0, /* OMP_CLAUSE_NOWAIT */ + 1, /* OMP_CLAUSE_ORDERED */ + 0, /* OMP_CLAUSE_DEFAULT */ + 3, /* OMP_CLAUSE_COLLAPSE */ + 0, /* OMP_CLAUSE_UNTIED */ + 1, /* OMP_CLAUSE_FINAL */ + 0, /* OMP_CLAUSE_MERGEABLE */ + 1, /* OMP_CLAUSE_DEVICE */ + 1, /* OMP_CLAUSE_DIST_SCHEDULE */ + 0, /* OMP_CLAUSE_INBRANCH */ + 0, /* OMP_CLAUSE_NOTINBRANCH */ + 2, /* OMP_CLAUSE_NUM_TEAMS */ + 1, /* OMP_CLAUSE_THREAD_LIMIT */ + 0, /* OMP_CLAUSE_PROC_BIND */ + 1, /* OMP_CLAUSE_SAFELEN */ + 1, /* OMP_CLAUSE_SIMDLEN */ + 0, /* OMP_CLAUSE_DEVICE_TYPE */ + 0, /* OMP_CLAUSE_FOR */ + 0, /* OMP_CLAUSE_PARALLEL */ + 0, /* OMP_CLAUSE_SECTIONS */ + 0, /* OMP_CLAUSE_TASKGROUP */ + 1, /* OMP_CLAUSE_PRIORITY */ + 1, /* OMP_CLAUSE_GRAINSIZE */ + 1, /* OMP_CLAUSE_NUM_TASKS */ + 0, /* OMP_CLAUSE_NOGROUP */ + 0, /* OMP_CLAUSE_THREADS */ + 0, /* OMP_CLAUSE_SIMD */ + 1, /* OMP_CLAUSE_HINT */ + 0, /* OMP_CLAUSE_DEFAULTMAP */ + 0, /* OMP_CLAUSE_ORDER */ + 0, /* OMP_CLAUSE_BIND */ + 1, /* OMP_CLAUSE_FILTER */ + 1, /* OMP_CLAUSE__SIMDUID_ */ + 0, /* OMP_CLAUSE__SIMT_ */ + 0, /* OMP_CLAUSE_INDEPENDENT */ + 1, /* OMP_CLAUSE_WORKER */ + 1, /* OMP_CLAUSE_VECTOR */ + 1, /* OMP_CLAUSE_NUM_GANGS */ + 1, /* OMP_CLAUSE_NUM_WORKERS */ + 1, /* OMP_CLAUSE_VECTOR_LENGTH */ + 3, /* OMP_CLAUSE_TILE */ + 0, /* OMP_CLAUSE_IF_PRESENT */ + 0, /* OMP_CLAUSE_FINALIZE */ + 0, /* OMP_CLAUSE_NOHOST */ +}; + +const char * const omp_clause_code_name[] = +{ + "error_clause", + "private", + "shared", + "firstprivate", + "lastprivate", + "reduction", + "task_reduction", + "in_reduction", + "copyin", + "copyprivate", + "linear", + "affinity", + "aligned", + "allocate", + "depend", + "nontemporal", + "uniform", + "to", + "link", + "detach", + "use_device_ptr", + "use_device_addr", + "is_device_ptr", + "inclusive", + "exclusive", + "from", + "to", + "map", + "_cache_", + "gang", + "async", + "wait", + "auto", + "seq", + "_looptemp_", + "_reductemp_", + "_condtemp_", + "_scantemp_", + "if", + "num_threads", + "schedule", + "nowait", + "ordered", + "default", + "collapse", + "untied", + "final", + "mergeable", + "device", + "dist_schedule", + "inbranch", + "notinbranch", + "num_teams", + "thread_limit", + "proc_bind", + "safelen", + "simdlen", + "device_type", + "for", + "parallel", + "sections", + "taskgroup", + "priority", + "grainsize", + "num_tasks", + "nogroup", + "threads", + "simd", + "hint", + "defaultmap", + "order", + "bind", + "filter", + "_simduid_", + "_simt_", + "independent", + "worker", + "vector", + "num_gangs", + "num_workers", + "vector_length", + "tile", + "if_present", + "finalize", + "nohost", +}; + + +/* Return the tree node structure used by tree code CODE. */ + +static inline enum tree_node_structure_enum +tree_node_structure_for_code (enum tree_code code) +{ + switch (TREE_CODE_CLASS (code)) + { + case tcc_declaration: + switch (code) + { + case CONST_DECL: return TS_CONST_DECL; + case DEBUG_EXPR_DECL: return TS_DECL_WRTL; + case FIELD_DECL: return TS_FIELD_DECL; + case FUNCTION_DECL: return TS_FUNCTION_DECL; + case LABEL_DECL: return TS_LABEL_DECL; + case PARM_DECL: return TS_PARM_DECL; + case RESULT_DECL: return TS_RESULT_DECL; + case TRANSLATION_UNIT_DECL: return TS_TRANSLATION_UNIT_DECL; + case TYPE_DECL: return TS_TYPE_DECL; + case VAR_DECL: return TS_VAR_DECL; + default: return TS_DECL_NON_COMMON; + } + + case tcc_type: return TS_TYPE_NON_COMMON; + + case tcc_binary: + case tcc_comparison: + case tcc_expression: + case tcc_reference: + case tcc_statement: + case tcc_unary: + case tcc_vl_exp: return TS_EXP; + + default: /* tcc_constant and tcc_exceptional */ + break; + } + + switch (code) + { + /* tcc_constant cases. */ + case COMPLEX_CST: return TS_COMPLEX; + case FIXED_CST: return TS_FIXED_CST; + case INTEGER_CST: return TS_INT_CST; + case POLY_INT_CST: return TS_POLY_INT_CST; + case REAL_CST: return TS_REAL_CST; + case STRING_CST: return TS_STRING; + case VECTOR_CST: return TS_VECTOR; + case VOID_CST: return TS_TYPED; + + /* tcc_exceptional cases. */ + case BLOCK: return TS_BLOCK; + case CONSTRUCTOR: return TS_CONSTRUCTOR; + case ERROR_MARK: return TS_COMMON; + case IDENTIFIER_NODE: return TS_IDENTIFIER; + case OMP_CLAUSE: return TS_OMP_CLAUSE; + case OPTIMIZATION_NODE: return TS_OPTIMIZATION; + case PLACEHOLDER_EXPR: return TS_COMMON; + case SSA_NAME: return TS_SSA_NAME; + case STATEMENT_LIST: return TS_STATEMENT_LIST; + case TARGET_OPTION_NODE: return TS_TARGET_OPTION; + case TREE_BINFO: return TS_BINFO; + case TREE_LIST: return TS_LIST; + case TREE_VEC: return TS_VEC; + + default: + gcc_unreachable (); + } +} + + +/* Initialize tree_contains_struct to describe the hierarchy of tree + nodes. */ + +static void +initialize_tree_contains_struct (void) +{ + unsigned i; + + for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++) + { + enum tree_code code; + enum tree_node_structure_enum ts_code; + + code = (enum tree_code) i; + ts_code = tree_node_structure_for_code (code); + + /* Mark the TS structure itself. */ + tree_contains_struct[code][ts_code] = 1; + + /* Mark all the structures that TS is derived from. */ + switch (ts_code) + { + case TS_TYPED: + case TS_BLOCK: + case TS_OPTIMIZATION: + case TS_TARGET_OPTION: + MARK_TS_BASE (code); + break; + + case TS_COMMON: + case TS_INT_CST: + case TS_POLY_INT_CST: + case TS_REAL_CST: + case TS_FIXED_CST: + case TS_VECTOR: + case TS_STRING: + case TS_COMPLEX: + case TS_SSA_NAME: + case TS_CONSTRUCTOR: + case TS_EXP: + case TS_STATEMENT_LIST: + MARK_TS_TYPED (code); + break; + + case TS_IDENTIFIER: + case TS_DECL_MINIMAL: + case TS_TYPE_COMMON: + case TS_LIST: + case TS_VEC: + case TS_BINFO: + case TS_OMP_CLAUSE: + MARK_TS_COMMON (code); + break; + + case TS_TYPE_WITH_LANG_SPECIFIC: + MARK_TS_TYPE_COMMON (code); + break; + + case TS_TYPE_NON_COMMON: + MARK_TS_TYPE_WITH_LANG_SPECIFIC (code); + break; + + case TS_DECL_COMMON: + MARK_TS_DECL_MINIMAL (code); + break; + + case TS_DECL_WRTL: + case TS_CONST_DECL: + MARK_TS_DECL_COMMON (code); + break; + + case TS_DECL_NON_COMMON: + MARK_TS_DECL_WITH_VIS (code); + break; + + case TS_DECL_WITH_VIS: + case TS_PARM_DECL: + case TS_LABEL_DECL: + case TS_RESULT_DECL: + MARK_TS_DECL_WRTL (code); + break; + + case TS_FIELD_DECL: + MARK_TS_DECL_COMMON (code); + break; + + case TS_VAR_DECL: + MARK_TS_DECL_WITH_VIS (code); + break; + + case TS_TYPE_DECL: + case TS_FUNCTION_DECL: + MARK_TS_DECL_NON_COMMON (code); + break; + + case TS_TRANSLATION_UNIT_DECL: + MARK_TS_DECL_COMMON (code); + break; + + default: + gcc_unreachable (); + } + } + + /* Basic consistency checks for attributes used in fold. */ + gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]); + gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]); + gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]); + gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]); + gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]); + gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]); + gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]); + gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]); + gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]); + gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]); + gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]); + gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]); + gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]); + gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]); + gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]); + gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]); + gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]); + gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]); + gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]); + gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]); + gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]); + gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]); + gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]); + gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]); + gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]); + gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]); + gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]); + gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]); + gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]); + gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]); + gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]); + gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]); + gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]); + gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]); + gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]); + gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]); + gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]); + gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]); + gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_MINIMAL]); + gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_COMMON]); +} + + +/* Init tree.c. */ + +void +init_ttree (void) +{ + /* Initialize the hash table of types. */ + type_hash_table + = hash_table<type_cache_hasher>::create_ggc (TYPE_HASH_INITIAL_SIZE); + + debug_expr_for_decl + = hash_table<tree_decl_map_cache_hasher>::create_ggc (512); + + value_expr_for_decl + = hash_table<tree_decl_map_cache_hasher>::create_ggc (512); + + int_cst_hash_table = hash_table<int_cst_hasher>::create_ggc (1024); + + poly_int_cst_hash_table = hash_table<poly_int_cst_hasher>::create_ggc (64); + + int_cst_node = make_int_cst (1, 1); + + cl_option_hash_table = hash_table<cl_option_hasher>::create_ggc (64); + + cl_optimization_node = make_node (OPTIMIZATION_NODE); + cl_target_option_node = make_node (TARGET_OPTION_NODE); + + /* Initialize the tree_contains_struct array. */ + initialize_tree_contains_struct (); + lang_hooks.init_ts (); +} + + +/* The name of the object as the assembler will see it (but before any + translations made by ASM_OUTPUT_LABELREF). Often this is the same + as DECL_NAME. It is an IDENTIFIER_NODE. */ +tree +decl_assembler_name (tree decl) +{ + if (!DECL_ASSEMBLER_NAME_SET_P (decl)) + lang_hooks.set_decl_assembler_name (decl); + return DECL_ASSEMBLER_NAME_RAW (decl); +} + +/* The DECL_ASSEMBLER_NAME_RAW of DECL is being explicitly set to NAME + (either of which may be NULL). Inform the FE, if this changes the + name. */ + +void +overwrite_decl_assembler_name (tree decl, tree name) +{ + if (DECL_ASSEMBLER_NAME_RAW (decl) != name) + lang_hooks.overwrite_decl_assembler_name (decl, name); +} + +/* Return true if DECL may need an assembler name to be set. */ + +static inline bool +need_assembler_name_p (tree decl) +{ + /* We use DECL_ASSEMBLER_NAME to hold mangled type names for One Definition + Rule merging. This makes type_odr_p to return true on those types during + LTO and by comparing the mangled name, we can say what types are intended + to be equivalent across compilation unit. + + We do not store names of type_in_anonymous_namespace_p. + + Record, union and enumeration type have linkage that allows use + to check type_in_anonymous_namespace_p. We do not mangle compound types + that always can be compared structurally. + + Similarly for builtin types, we compare properties of their main variant. + A special case are integer types where mangling do make differences + between char/signed char/unsigned char etc. Storing name for these makes + e.g. -fno-signed-char/-fsigned-char mismatches to be handled well. + See cp/mangle.c:write_builtin_type for details. */ + + if (TREE_CODE (decl) == TYPE_DECL) + { + if (DECL_NAME (decl) + && decl == TYPE_NAME (TREE_TYPE (decl)) + && TYPE_MAIN_VARIANT (TREE_TYPE (decl)) == TREE_TYPE (decl) + && !TYPE_ARTIFICIAL (TREE_TYPE (decl)) + && ((TREE_CODE (TREE_TYPE (decl)) != RECORD_TYPE + && TREE_CODE (TREE_TYPE (decl)) != UNION_TYPE) + || TYPE_CXX_ODR_P (TREE_TYPE (decl))) + && (type_with_linkage_p (TREE_TYPE (decl)) + || TREE_CODE (TREE_TYPE (decl)) == INTEGER_TYPE) + && !variably_modified_type_p (TREE_TYPE (decl), NULL_TREE)) + return !DECL_ASSEMBLER_NAME_SET_P (decl); + return false; + } + /* Only FUNCTION_DECLs and VAR_DECLs are considered. */ + if (!VAR_OR_FUNCTION_DECL_P (decl)) + return false; + + /* If DECL already has its assembler name set, it does not need a + new one. */ + if (!HAS_DECL_ASSEMBLER_NAME_P (decl) + || DECL_ASSEMBLER_NAME_SET_P (decl)) + return false; + + /* Abstract decls do not need an assembler name. */ + if (DECL_ABSTRACT_P (decl)) + return false; + + /* For VAR_DECLs, only static, public and external symbols need an + assembler name. */ + if (VAR_P (decl) + && !TREE_STATIC (decl) + && !TREE_PUBLIC (decl) + && !DECL_EXTERNAL (decl)) + return false; + + if (TREE_CODE (decl) == FUNCTION_DECL) + { + /* Do not set assembler name on builtins. Allow RTL expansion to + decide whether to expand inline or via a regular call. */ + if (fndecl_built_in_p (decl) + && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND) + return false; + + /* Functions represented in the callgraph need an assembler name. */ + if (cgraph_node::get (decl) != NULL) + return true; + + /* Unused and not public functions don't need an assembler name. */ + if (!TREE_USED (decl) && !TREE_PUBLIC (decl)) + return false; + } + + return true; +} + +/* If T needs an assembler name, have one created for it. */ + +void +assign_assembler_name_if_needed (tree t) +{ + if (need_assembler_name_p (t)) + { + /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit + diagnostics that use input_location to show locus + information. The problem here is that, at this point, + input_location is generally anchored to the end of the file + (since the parser is long gone), so we don't have a good + position to pin it to. + + To alleviate this problem, this uses the location of T's + declaration. Examples of this are + testsuite/g++.dg/template/cond2.C and + testsuite/g++.dg/template/pr35240.C. */ + location_t saved_location = input_location; + input_location = DECL_SOURCE_LOCATION (t); + + decl_assembler_name (t); + + input_location = saved_location; + } +} + +/* When the target supports COMDAT groups, this indicates which group the + DECL is associated with. This can be either an IDENTIFIER_NODE or a + decl, in which case its DECL_ASSEMBLER_NAME identifies the group. */ +tree +decl_comdat_group (const_tree node) +{ + struct symtab_node *snode = symtab_node::get (node); + if (!snode) + return NULL; + return snode->get_comdat_group (); +} + +/* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE. */ +tree +decl_comdat_group_id (const_tree node) +{ + struct symtab_node *snode = symtab_node::get (node); + if (!snode) + return NULL; + return snode->get_comdat_group_id (); +} + +/* When the target supports named section, return its name as IDENTIFIER_NODE + or NULL if it is in no section. */ +const char * +decl_section_name (const_tree node) +{ + struct symtab_node *snode = symtab_node::get (node); + if (!snode) + return NULL; + return snode->get_section (); +} + +/* Set section name of NODE to VALUE (that is expected to be + identifier node) */ +void +set_decl_section_name (tree node, const char *value) +{ + struct symtab_node *snode; + + if (value == NULL) + { + snode = symtab_node::get (node); + if (!snode) + return; + } + else if (VAR_P (node)) + snode = varpool_node::get_create (node); + else + snode = cgraph_node::get_create (node); + snode->set_section (value); +} + +/* Set section name of NODE to match the section name of OTHER. + + set_decl_section_name (decl, other) is equivalent to + set_decl_section_name (decl, DECL_SECTION_NAME (other)), but possibly more + efficient. */ +void +set_decl_section_name (tree decl, const_tree other) +{ + struct symtab_node *other_node = symtab_node::get (other); + if (other_node) + { + struct symtab_node *decl_node; + if (VAR_P (decl)) + decl_node = varpool_node::get_create (decl); + else + decl_node = cgraph_node::get_create (decl); + decl_node->set_section (*other_node); + } + else + { + struct symtab_node *decl_node = symtab_node::get (decl); + if (!decl_node) + return; + decl_node->set_section (NULL); + } +} + +/* Return TLS model of a variable NODE. */ +enum tls_model +decl_tls_model (const_tree node) +{ + struct varpool_node *snode = varpool_node::get (node); + if (!snode) + return TLS_MODEL_NONE; + return snode->tls_model; +} + +/* Set TLS model of variable NODE to MODEL. */ +void +set_decl_tls_model (tree node, enum tls_model model) +{ + struct varpool_node *vnode; + + if (model == TLS_MODEL_NONE) + { + vnode = varpool_node::get (node); + if (!vnode) + return; + } + else + vnode = varpool_node::get_create (node); + vnode->tls_model = model; +} + +/* Compute the number of bytes occupied by a tree with code CODE. + This function cannot be used for nodes that have variable sizes, + including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR. */ +size_t +tree_code_size (enum tree_code code) +{ + switch (TREE_CODE_CLASS (code)) + { + case tcc_declaration: /* A decl node */ + switch (code) + { + case FIELD_DECL: return sizeof (tree_field_decl); + case PARM_DECL: return sizeof (tree_parm_decl); + case VAR_DECL: return sizeof (tree_var_decl); + case LABEL_DECL: return sizeof (tree_label_decl); + case RESULT_DECL: return sizeof (tree_result_decl); + case CONST_DECL: return sizeof (tree_const_decl); + case TYPE_DECL: return sizeof (tree_type_decl); + case FUNCTION_DECL: return sizeof (tree_function_decl); + case DEBUG_EXPR_DECL: return sizeof (tree_decl_with_rtl); + case TRANSLATION_UNIT_DECL: return sizeof (tree_translation_unit_decl); + case NAMESPACE_DECL: + case IMPORTED_DECL: + case NAMELIST_DECL: return sizeof (tree_decl_non_common); + default: + gcc_checking_assert (code >= NUM_TREE_CODES); + return lang_hooks.tree_size (code); + } + + case tcc_type: /* a type node */ + switch (code) + { + case OFFSET_TYPE: + case ENUMERAL_TYPE: + case BOOLEAN_TYPE: + case INTEGER_TYPE: + case REAL_TYPE: + case OPAQUE_TYPE: + case POINTER_TYPE: + case REFERENCE_TYPE: + case NULLPTR_TYPE: + case FIXED_POINT_TYPE: + case COMPLEX_TYPE: + case VECTOR_TYPE: + case ARRAY_TYPE: + case RECORD_TYPE: + case UNION_TYPE: + case QUAL_UNION_TYPE: + case VOID_TYPE: + case FUNCTION_TYPE: + case METHOD_TYPE: + case LANG_TYPE: return sizeof (tree_type_non_common); + default: + gcc_checking_assert (code >= NUM_TREE_CODES); + return lang_hooks.tree_size (code); + } + + case tcc_reference: /* a reference */ + case tcc_expression: /* an expression */ + case tcc_statement: /* an expression with side effects */ + case tcc_comparison: /* a comparison expression */ + case tcc_unary: /* a unary arithmetic expression */ + case tcc_binary: /* a binary arithmetic expression */ + return (sizeof (struct tree_exp) + + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree)); + + case tcc_constant: /* a constant */ + switch (code) + { + case VOID_CST: return sizeof (tree_typed); + case INTEGER_CST: gcc_unreachable (); + case POLY_INT_CST: return sizeof (tree_poly_int_cst); + case REAL_CST: return sizeof (tree_real_cst); + case FIXED_CST: return sizeof (tree_fixed_cst); + case COMPLEX_CST: return sizeof (tree_complex); + case VECTOR_CST: gcc_unreachable (); + case STRING_CST: gcc_unreachable (); + default: + gcc_checking_assert (code >= NUM_TREE_CODES); + return lang_hooks.tree_size (code); + } + + case tcc_exceptional: /* something random, like an identifier. */ + switch (code) + { + case IDENTIFIER_NODE: return lang_hooks.identifier_size; + case TREE_LIST: return sizeof (tree_list); + + case ERROR_MARK: + case PLACEHOLDER_EXPR: return sizeof (tree_common); + + case TREE_VEC: gcc_unreachable (); + case OMP_CLAUSE: gcc_unreachable (); + + case SSA_NAME: return sizeof (tree_ssa_name); + + case STATEMENT_LIST: return sizeof (tree_statement_list); + case BLOCK: return sizeof (struct tree_block); + case CONSTRUCTOR: return sizeof (tree_constructor); + case OPTIMIZATION_NODE: return sizeof (tree_optimization_option); + case TARGET_OPTION_NODE: return sizeof (tree_target_option); + + default: + gcc_checking_assert (code >= NUM_TREE_CODES); + return lang_hooks.tree_size (code); + } + + default: + gcc_unreachable (); + } +} + +/* Compute the number of bytes occupied by NODE. This routine only + looks at TREE_CODE, except for those nodes that have variable sizes. */ +size_t +tree_size (const_tree node) +{ + const enum tree_code code = TREE_CODE (node); + switch (code) + { + case INTEGER_CST: + return (sizeof (struct tree_int_cst) + + (TREE_INT_CST_EXT_NUNITS (node) - 1) * sizeof (HOST_WIDE_INT)); + + case TREE_BINFO: + return (offsetof (struct tree_binfo, base_binfos) + + vec<tree, va_gc> + ::embedded_size (BINFO_N_BASE_BINFOS (node))); + + case TREE_VEC: + return (sizeof (struct tree_vec) + + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree)); + + case VECTOR_CST: + return (sizeof (struct tree_vector) + + (vector_cst_encoded_nelts (node) - 1) * sizeof (tree)); + + case STRING_CST: + return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1; + + case OMP_CLAUSE: + return (sizeof (struct tree_omp_clause) + + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1) + * sizeof (tree)); + + default: + if (TREE_CODE_CLASS (code) == tcc_vl_exp) + return (sizeof (struct tree_exp) + + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree)); + else + return tree_code_size (code); + } +} + +/* Return tree node kind based on tree CODE. */ + +static tree_node_kind +get_stats_node_kind (enum tree_code code) +{ + enum tree_code_class type = TREE_CODE_CLASS (code); + + switch (type) + { + case tcc_declaration: /* A decl node */ + return d_kind; + case tcc_type: /* a type node */ + return t_kind; + case tcc_statement: /* an expression with side effects */ + return s_kind; + case tcc_reference: /* a reference */ + return r_kind; + case tcc_expression: /* an expression */ + case tcc_comparison: /* a comparison expression */ + case tcc_unary: /* a unary arithmetic expression */ + case tcc_binary: /* a binary arithmetic expression */ + return e_kind; + case tcc_constant: /* a constant */ + return c_kind; + case tcc_exceptional: /* something random, like an identifier. */ + switch (code) + { + case IDENTIFIER_NODE: + return id_kind; + case TREE_VEC: + return vec_kind; + case TREE_BINFO: + return binfo_kind; + case SSA_NAME: + return ssa_name_kind; + case BLOCK: + return b_kind; + case CONSTRUCTOR: + return constr_kind; + case OMP_CLAUSE: + return omp_clause_kind; + default: + return x_kind; + } + break; + case tcc_vl_exp: + return e_kind; + default: + gcc_unreachable (); + } +} + +/* Record interesting allocation statistics for a tree node with CODE + and LENGTH. */ + +static void +record_node_allocation_statistics (enum tree_code code, size_t length) +{ + if (!GATHER_STATISTICS) + return; + + tree_node_kind kind = get_stats_node_kind (code); + + tree_code_counts[(int) code]++; + tree_node_counts[(int) kind]++; + tree_node_sizes[(int) kind] += length; +} + +/* Allocate and return a new UID from the DECL_UID namespace. */ + +int +allocate_decl_uid (void) +{ + return next_decl_uid++; +} + +/* Return a newly allocated node of code CODE. For decl and type + nodes, some other fields are initialized. The rest of the node is + initialized to zero. This function cannot be used for TREE_VEC, + INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in + tree_code_size. + + Achoo! I got a code in the node. */ + +tree +make_node (enum tree_code code MEM_STAT_DECL) +{ + tree t; + enum tree_code_class type = TREE_CODE_CLASS (code); + size_t length = tree_code_size (code); + + record_node_allocation_statistics (code, length); + + t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT); + TREE_SET_CODE (t, code); + + switch (type) + { + case tcc_statement: + if (code != DEBUG_BEGIN_STMT) + TREE_SIDE_EFFECTS (t) = 1; + break; + + case tcc_declaration: + if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON)) + { + if (code == FUNCTION_DECL) + { + SET_DECL_ALIGN (t, FUNCTION_ALIGNMENT (FUNCTION_BOUNDARY)); + SET_DECL_MODE (t, FUNCTION_MODE); + } + else + SET_DECL_ALIGN (t, 1); + } + DECL_SOURCE_LOCATION (t) = input_location; + if (TREE_CODE (t) == DEBUG_EXPR_DECL) + DECL_UID (t) = --next_debug_decl_uid; + else + { + DECL_UID (t) = allocate_decl_uid (); + SET_DECL_PT_UID (t, -1); + } + if (TREE_CODE (t) == LABEL_DECL) + LABEL_DECL_UID (t) = -1; + + break; + + case tcc_type: + TYPE_UID (t) = next_type_uid++; + SET_TYPE_ALIGN (t, BITS_PER_UNIT); + TYPE_USER_ALIGN (t) = 0; + TYPE_MAIN_VARIANT (t) = t; + TYPE_CANONICAL (t) = t; + + /* Default to no attributes for type, but let target change that. */ + TYPE_ATTRIBUTES (t) = NULL_TREE; + targetm.set_default_type_attributes (t); + + /* We have not yet computed the alias set for this type. */ + TYPE_ALIAS_SET (t) = -1; + break; + + case tcc_constant: + TREE_CONSTANT (t) = 1; + break; + + case tcc_expression: + switch (code) + { + case INIT_EXPR: + case MODIFY_EXPR: + case VA_ARG_EXPR: + case PREDECREMENT_EXPR: + case PREINCREMENT_EXPR: + case POSTDECREMENT_EXPR: + case POSTINCREMENT_EXPR: + /* All of these have side-effects, no matter what their + operands are. */ + TREE_SIDE_EFFECTS (t) = 1; + break; + + default: + break; + } + break; + + case tcc_exceptional: + switch (code) + { + case TARGET_OPTION_NODE: + TREE_TARGET_OPTION(t) + = ggc_cleared_alloc<struct cl_target_option> (); + break; + + case OPTIMIZATION_NODE: + TREE_OPTIMIZATION (t) + = ggc_cleared_alloc<struct cl_optimization> (); + break; + + default: + break; + } + break; + + default: + /* Other classes need no special treatment. */ + break; + } + + return t; +} + +/* Free tree node. */ + +void +free_node (tree node) +{ + enum tree_code code = TREE_CODE (node); + if (GATHER_STATISTICS) + { + enum tree_node_kind kind = get_stats_node_kind (code); + + gcc_checking_assert (tree_code_counts[(int) TREE_CODE (node)] != 0); + gcc_checking_assert (tree_node_counts[(int) kind] != 0); + gcc_checking_assert (tree_node_sizes[(int) kind] >= tree_size (node)); + + tree_code_counts[(int) TREE_CODE (node)]--; + tree_node_counts[(int) kind]--; + tree_node_sizes[(int) kind] -= tree_size (node); + } + if (CODE_CONTAINS_STRUCT (code, TS_CONSTRUCTOR)) + vec_free (CONSTRUCTOR_ELTS (node)); + else if (code == BLOCK) + vec_free (BLOCK_NONLOCALIZED_VARS (node)); + else if (code == TREE_BINFO) + vec_free (BINFO_BASE_ACCESSES (node)); + else if (code == OPTIMIZATION_NODE) + cl_optimization_option_free (TREE_OPTIMIZATION (node)); + else if (code == TARGET_OPTION_NODE) + cl_target_option_free (TREE_TARGET_OPTION (node)); + ggc_free (node); +} + +/* Return a new node with the same contents as NODE except that its + TREE_CHAIN, if it has one, is zero and it has a fresh uid. */ + +tree +copy_node (tree node MEM_STAT_DECL) +{ + tree t; + enum tree_code code = TREE_CODE (node); + size_t length; + + gcc_assert (code != STATEMENT_LIST); + + length = tree_size (node); + record_node_allocation_statistics (code, length); + t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT); + memcpy (t, node, length); + + if (CODE_CONTAINS_STRUCT (code, TS_COMMON)) + TREE_CHAIN (t) = 0; + TREE_ASM_WRITTEN (t) = 0; + TREE_VISITED (t) = 0; + + if (TREE_CODE_CLASS (code) == tcc_declaration) + { + if (code == DEBUG_EXPR_DECL) + DECL_UID (t) = --next_debug_decl_uid; + else + { + DECL_UID (t) = allocate_decl_uid (); + if (DECL_PT_UID_SET_P (node)) + SET_DECL_PT_UID (t, DECL_PT_UID (node)); + } + if ((TREE_CODE (node) == PARM_DECL || VAR_P (node)) + && DECL_HAS_VALUE_EXPR_P (node)) + { + SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node)); + DECL_HAS_VALUE_EXPR_P (t) = 1; + } + /* DECL_DEBUG_EXPR is copied explicitly by callers. */ + if (VAR_P (node)) + { + DECL_HAS_DEBUG_EXPR_P (t) = 0; + t->decl_with_vis.symtab_node = NULL; + } + if (VAR_P (node) && DECL_HAS_INIT_PRIORITY_P (node)) + { + SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node)); + DECL_HAS_INIT_PRIORITY_P (t) = 1; + } + if (TREE_CODE (node) == FUNCTION_DECL) + { + DECL_STRUCT_FUNCTION (t) = NULL; + t->decl_with_vis.symtab_node = NULL; + } + } + else if (TREE_CODE_CLASS (code) == tcc_type) + { + TYPE_UID (t) = next_type_uid++; + /* The following is so that the debug code for + the copy is different from the original type. + The two statements usually duplicate each other + (because they clear fields of the same union), + but the optimizer should catch that. */ + TYPE_SYMTAB_ADDRESS (t) = 0; + TYPE_SYMTAB_DIE (t) = 0; + + /* Do not copy the values cache. */ + if (TYPE_CACHED_VALUES_P (t)) + { + TYPE_CACHED_VALUES_P (t) = 0; + TYPE_CACHED_VALUES (t) = NULL_TREE; + } + } + else if (code == TARGET_OPTION_NODE) + { + TREE_TARGET_OPTION (t) = ggc_alloc<struct cl_target_option>(); + memcpy (TREE_TARGET_OPTION (t), TREE_TARGET_OPTION (node), + sizeof (struct cl_target_option)); + } + else if (code == OPTIMIZATION_NODE) + { + TREE_OPTIMIZATION (t) = ggc_alloc<struct cl_optimization>(); + memcpy (TREE_OPTIMIZATION (t), TREE_OPTIMIZATION (node), + sizeof (struct cl_optimization)); + } + + return t; +} + +/* Return a copy of a chain of nodes, chained through the TREE_CHAIN field. + For example, this can copy a list made of TREE_LIST nodes. */ + +tree +copy_list (tree list) +{ + tree head; + tree prev, next; + + if (list == 0) + return 0; + + head = prev = copy_node (list); + next = TREE_CHAIN (list); + while (next) + { + TREE_CHAIN (prev) = copy_node (next); + prev = TREE_CHAIN (prev); + next = TREE_CHAIN (next); + } + return head; +} + + +/* Return the value that TREE_INT_CST_EXT_NUNITS should have for an + INTEGER_CST with value CST and type TYPE. */ + +static unsigned int +get_int_cst_ext_nunits (tree type, const wide_int &cst) +{ + gcc_checking_assert (cst.get_precision () == TYPE_PRECISION (type)); + /* We need extra HWIs if CST is an unsigned integer with its + upper bit set. */ + if (TYPE_UNSIGNED (type) && wi::neg_p (cst)) + return cst.get_precision () / HOST_BITS_PER_WIDE_INT + 1; + return cst.get_len (); +} + +/* Return a new INTEGER_CST with value CST and type TYPE. */ + +static tree +build_new_int_cst (tree type, const wide_int &cst) +{ + unsigned int len = cst.get_len (); + unsigned int ext_len = get_int_cst_ext_nunits (type, cst); + tree nt = make_int_cst (len, ext_len); + + if (len < ext_len) + { + --ext_len; + TREE_INT_CST_ELT (nt, ext_len) + = zext_hwi (-1, cst.get_precision () % HOST_BITS_PER_WIDE_INT); + for (unsigned int i = len; i < ext_len; ++i) + TREE_INT_CST_ELT (nt, i) = -1; + } + else if (TYPE_UNSIGNED (type) + && cst.get_precision () < len * HOST_BITS_PER_WIDE_INT) + { + len--; + TREE_INT_CST_ELT (nt, len) + = zext_hwi (cst.elt (len), + cst.get_precision () % HOST_BITS_PER_WIDE_INT); + } + + for (unsigned int i = 0; i < len; i++) + TREE_INT_CST_ELT (nt, i) = cst.elt (i); + TREE_TYPE (nt) = type; + return nt; +} + +/* Return a new POLY_INT_CST with coefficients COEFFS and type TYPE. */ + +static tree +build_new_poly_int_cst (tree type, tree (&coeffs)[NUM_POLY_INT_COEFFS] + CXX_MEM_STAT_INFO) +{ + size_t length = sizeof (struct tree_poly_int_cst); + record_node_allocation_statistics (POLY_INT_CST, length); + + tree t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT); + + TREE_SET_CODE (t, POLY_INT_CST); + TREE_CONSTANT (t) = 1; + TREE_TYPE (t) = type; + for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) + POLY_INT_CST_COEFF (t, i) = coeffs[i]; + return t; +} + +/* Create a constant tree that contains CST sign-extended to TYPE. */ + +tree +build_int_cst (tree type, poly_int64 cst) +{ + /* Support legacy code. */ + if (!type) + type = integer_type_node; + + return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type))); +} + +/* Create a constant tree that contains CST zero-extended to TYPE. */ + +tree +build_int_cstu (tree type, poly_uint64 cst) +{ + return wide_int_to_tree (type, wi::uhwi (cst, TYPE_PRECISION (type))); +} + +/* Create a constant tree that contains CST sign-extended to TYPE. */ + +tree +build_int_cst_type (tree type, poly_int64 cst) +{ + gcc_assert (type); + return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type))); +} + +/* Constructs tree in type TYPE from with value given by CST. Signedness + of CST is assumed to be the same as the signedness of TYPE. */ + +tree +double_int_to_tree (tree type, double_int cst) +{ + return wide_int_to_tree (type, widest_int::from (cst, TYPE_SIGN (type))); +} + +/* We force the wide_int CST to the range of the type TYPE by sign or + zero extending it. OVERFLOWABLE indicates if we are interested in + overflow of the value, when >0 we are only interested in signed + overflow, for <0 we are interested in any overflow. OVERFLOWED + indicates whether overflow has already occurred. CONST_OVERFLOWED + indicates whether constant overflow has already occurred. We force + T's value to be within range of T's type (by setting to 0 or 1 all + the bits outside the type's range). We set TREE_OVERFLOWED if, + OVERFLOWED is nonzero, + or OVERFLOWABLE is >0 and signed overflow occurs + or OVERFLOWABLE is <0 and any overflow occurs + We return a new tree node for the extended wide_int. The node + is shared if no overflow flags are set. */ + + +tree +force_fit_type (tree type, const poly_wide_int_ref &cst, + int overflowable, bool overflowed) +{ + signop sign = TYPE_SIGN (type); + + /* If we need to set overflow flags, return a new unshared node. */ + if (overflowed || !wi::fits_to_tree_p (cst, type)) + { + if (overflowed + || overflowable < 0 + || (overflowable > 0 && sign == SIGNED)) + { + poly_wide_int tmp = poly_wide_int::from (cst, TYPE_PRECISION (type), + sign); + tree t; + if (tmp.is_constant ()) + t = build_new_int_cst (type, tmp.coeffs[0]); + else + { + tree coeffs[NUM_POLY_INT_COEFFS]; + for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) + { + coeffs[i] = build_new_int_cst (type, tmp.coeffs[i]); + TREE_OVERFLOW (coeffs[i]) = 1; + } + t = build_new_poly_int_cst (type, coeffs); + } + TREE_OVERFLOW (t) = 1; + return t; + } + } + + /* Else build a shared node. */ + return wide_int_to_tree (type, cst); +} + +/* These are the hash table functions for the hash table of INTEGER_CST + nodes of a sizetype. */ + +/* Return the hash code X, an INTEGER_CST. */ + +hashval_t +int_cst_hasher::hash (tree x) +{ + const_tree const t = x; + hashval_t code = TYPE_UID (TREE_TYPE (t)); + int i; + + for (i = 0; i < TREE_INT_CST_NUNITS (t); i++) + code = iterative_hash_host_wide_int (TREE_INT_CST_ELT(t, i), code); + + return code; +} + +/* Return nonzero if the value represented by *X (an INTEGER_CST tree node) + is the same as that given by *Y, which is the same. */ + +bool +int_cst_hasher::equal (tree x, tree y) +{ + const_tree const xt = x; + const_tree const yt = y; + + if (TREE_TYPE (xt) != TREE_TYPE (yt) + || TREE_INT_CST_NUNITS (xt) != TREE_INT_CST_NUNITS (yt) + || TREE_INT_CST_EXT_NUNITS (xt) != TREE_INT_CST_EXT_NUNITS (yt)) + return false; + + for (int i = 0; i < TREE_INT_CST_NUNITS (xt); i++) + if (TREE_INT_CST_ELT (xt, i) != TREE_INT_CST_ELT (yt, i)) + return false; + + return true; +} + +/* Cache wide_int CST into the TYPE_CACHED_VALUES cache for TYPE. + SLOT is the slot entry to store it in, and MAX_SLOTS is the maximum + number of slots that can be cached for the type. */ + +static inline tree +cache_wide_int_in_type_cache (tree type, const wide_int &cst, + int slot, int max_slots) +{ + gcc_checking_assert (slot >= 0); + /* Initialize cache. */ + if (!TYPE_CACHED_VALUES_P (type)) + { + TYPE_CACHED_VALUES_P (type) = 1; + TYPE_CACHED_VALUES (type) = make_tree_vec (max_slots); + } + tree t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), slot); + if (!t) + { + /* Create a new shared int. */ + t = build_new_int_cst (type, cst); + TREE_VEC_ELT (TYPE_CACHED_VALUES (type), slot) = t; + } + return t; +} + +/* Create an INT_CST node of TYPE and value CST. + The returned node is always shared. For small integers we use a + per-type vector cache, for larger ones we use a single hash table. + The value is extended from its precision according to the sign of + the type to be a multiple of HOST_BITS_PER_WIDE_INT. This defines + the upper bits and ensures that hashing and value equality based + upon the underlying HOST_WIDE_INTs works without masking. */ + +static tree +wide_int_to_tree_1 (tree type, const wide_int_ref &pcst) +{ + tree t; + int ix = -1; + int limit = 0; + + gcc_assert (type); + unsigned int prec = TYPE_PRECISION (type); + signop sgn = TYPE_SIGN (type); + + /* Verify that everything is canonical. */ + int l = pcst.get_len (); + if (l > 1) + { + if (pcst.elt (l - 1) == 0) + gcc_checking_assert (pcst.elt (l - 2) < 0); + if (pcst.elt (l - 1) == HOST_WIDE_INT_M1) + gcc_checking_assert (pcst.elt (l - 2) >= 0); + } + + wide_int cst = wide_int::from (pcst, prec, sgn); + unsigned int ext_len = get_int_cst_ext_nunits (type, cst); + + enum tree_code code = TREE_CODE (type); + if (code == POINTER_TYPE || code == REFERENCE_TYPE) + { + /* Cache NULL pointer and zero bounds. */ + if (cst == 0) + ix = 0; + /* Cache upper bounds of pointers. */ + else if (cst == wi::max_value (prec, sgn)) + ix = 1; + /* Cache 1 which is used for a non-zero range. */ + else if (cst == 1) + ix = 2; + + if (ix >= 0) + { + t = cache_wide_int_in_type_cache (type, cst, ix, 3); + /* Make sure no one is clobbering the shared constant. */ + gcc_checking_assert (TREE_TYPE (t) == type + && cst == wi::to_wide (t)); + return t; + } + } + if (ext_len == 1) + { + /* We just need to store a single HOST_WIDE_INT. */ + HOST_WIDE_INT hwi; + if (TYPE_UNSIGNED (type)) + hwi = cst.to_uhwi (); + else + hwi = cst.to_shwi (); + + switch (code) + { + case NULLPTR_TYPE: + gcc_assert (hwi == 0); + /* Fallthru. */ + + case POINTER_TYPE: + case REFERENCE_TYPE: + /* Ignore pointers, as they were already handled above. */ + break; + + case BOOLEAN_TYPE: + /* Cache false or true. */ + limit = 2; + if (IN_RANGE (hwi, 0, 1)) + ix = hwi; + break; + + case INTEGER_TYPE: + case OFFSET_TYPE: + if (TYPE_SIGN (type) == UNSIGNED) + { + /* Cache [0, N). */ + limit = param_integer_share_limit; + if (IN_RANGE (hwi, 0, param_integer_share_limit - 1)) + ix = hwi; + } + else + { + /* Cache [-1, N). */ + limit = param_integer_share_limit + 1; + if (IN_RANGE (hwi, -1, param_integer_share_limit - 1)) + ix = hwi + 1; + } + break; + + case ENUMERAL_TYPE: + break; + + default: + gcc_unreachable (); + } + + if (ix >= 0) + { + t = cache_wide_int_in_type_cache (type, cst, ix, limit); + /* Make sure no one is clobbering the shared constant. */ + gcc_checking_assert (TREE_TYPE (t) == type + && TREE_INT_CST_NUNITS (t) == 1 + && TREE_INT_CST_OFFSET_NUNITS (t) == 1 + && TREE_INT_CST_EXT_NUNITS (t) == 1 + && TREE_INT_CST_ELT (t, 0) == hwi); + return t; + } + else + { + /* Use the cache of larger shared ints, using int_cst_node as + a temporary. */ + + TREE_INT_CST_ELT (int_cst_node, 0) = hwi; + TREE_TYPE (int_cst_node) = type; + + tree *slot = int_cst_hash_table->find_slot (int_cst_node, INSERT); + t = *slot; + if (!t) + { + /* Insert this one into the hash table. */ + t = int_cst_node; + *slot = t; + /* Make a new node for next time round. */ + int_cst_node = make_int_cst (1, 1); + } + } + } + else + { + /* The value either hashes properly or we drop it on the floor + for the gc to take care of. There will not be enough of them + to worry about. */ + + tree nt = build_new_int_cst (type, cst); + tree *slot = int_cst_hash_table->find_slot (nt, INSERT); + t = *slot; + if (!t) + { + /* Insert this one into the hash table. */ + t = nt; + *slot = t; + } + else + ggc_free (nt); + } + + return t; +} + +hashval_t +poly_int_cst_hasher::hash (tree t) +{ + inchash::hash hstate; + + hstate.add_int (TYPE_UID (TREE_TYPE (t))); + for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) + hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i))); + + return hstate.end (); +} + +bool +poly_int_cst_hasher::equal (tree x, const compare_type &y) +{ + if (TREE_TYPE (x) != y.first) + return false; + for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) + if (wi::to_wide (POLY_INT_CST_COEFF (x, i)) != y.second->coeffs[i]) + return false; + return true; +} + +/* Build a POLY_INT_CST node with type TYPE and with the elements in VALUES. + The elements must also have type TYPE. */ + +tree +build_poly_int_cst (tree type, const poly_wide_int_ref &values) +{ + unsigned int prec = TYPE_PRECISION (type); + gcc_assert (prec <= values.coeffs[0].get_precision ()); + poly_wide_int c = poly_wide_int::from (values, prec, SIGNED); + + inchash::hash h; + h.add_int (TYPE_UID (type)); + for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) + h.add_wide_int (c.coeffs[i]); + poly_int_cst_hasher::compare_type comp (type, &c); + tree *slot = poly_int_cst_hash_table->find_slot_with_hash (comp, h.end (), + INSERT); + if (*slot == NULL_TREE) + { + tree coeffs[NUM_POLY_INT_COEFFS]; + for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) + coeffs[i] = wide_int_to_tree_1 (type, c.coeffs[i]); + *slot = build_new_poly_int_cst (type, coeffs); + } + return *slot; +} + +/* Create a constant tree with value VALUE in type TYPE. */ + +tree +wide_int_to_tree (tree type, const poly_wide_int_ref &value) +{ + if (value.is_constant ()) + return wide_int_to_tree_1 (type, value.coeffs[0]); + return build_poly_int_cst (type, value); +} + +/* Insert INTEGER_CST T into a cache of integer constants. And return + the cached constant (which may or may not be T). If MIGHT_DUPLICATE + is false, and T falls into the type's 'smaller values' range, there + cannot be an existing entry. Otherwise, if MIGHT_DUPLICATE is true, + or the value is large, should an existing entry exist, it is + returned (rather than inserting T). */ + +tree +cache_integer_cst (tree t, bool might_duplicate ATTRIBUTE_UNUSED) +{ + tree type = TREE_TYPE (t); + int ix = -1; + int limit = 0; + int prec = TYPE_PRECISION (type); + + gcc_assert (!TREE_OVERFLOW (t)); + + /* The caching indices here must match those in + wide_int_to_type_1. */ + switch (TREE_CODE (type)) + { + case NULLPTR_TYPE: + gcc_checking_assert (integer_zerop (t)); + /* Fallthru. */ + + case POINTER_TYPE: + case REFERENCE_TYPE: + { + if (integer_zerop (t)) + ix = 0; + else if (integer_onep (t)) + ix = 2; + + if (ix >= 0) + limit = 3; + } + break; + + case BOOLEAN_TYPE: + /* Cache false or true. */ + limit = 2; + if (wi::ltu_p (wi::to_wide (t), 2)) + ix = TREE_INT_CST_ELT (t, 0); + break; + + case INTEGER_TYPE: + case OFFSET_TYPE: + if (TYPE_UNSIGNED (type)) + { + /* Cache 0..N */ + limit = param_integer_share_limit; + + /* This is a little hokie, but if the prec is smaller than + what is necessary to hold param_integer_share_limit, then the + obvious test will not get the correct answer. */ + if (prec < HOST_BITS_PER_WIDE_INT) + { + if (tree_to_uhwi (t) + < (unsigned HOST_WIDE_INT) param_integer_share_limit) + ix = tree_to_uhwi (t); + } + else if (wi::ltu_p (wi::to_wide (t), param_integer_share_limit)) + ix = tree_to_uhwi (t); + } + else + { + /* Cache -1..N */ + limit = param_integer_share_limit + 1; + + if (integer_minus_onep (t)) + ix = 0; + else if (!wi::neg_p (wi::to_wide (t))) + { + if (prec < HOST_BITS_PER_WIDE_INT) + { + if (tree_to_shwi (t) < param_integer_share_limit) + ix = tree_to_shwi (t) + 1; + } + else if (wi::ltu_p (wi::to_wide (t), param_integer_share_limit)) + ix = tree_to_shwi (t) + 1; + } + } + break; + + case ENUMERAL_TYPE: + /* The slot used by TYPE_CACHED_VALUES is used for the enum + members. */ + break; + + default: + gcc_unreachable (); + } + + if (ix >= 0) + { + /* Look for it in the type's vector of small shared ints. */ + if (!TYPE_CACHED_VALUES_P (type)) + { + TYPE_CACHED_VALUES_P (type) = 1; + TYPE_CACHED_VALUES (type) = make_tree_vec (limit); + } + + if (tree r = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix)) + { + gcc_checking_assert (might_duplicate); + t = r; + } + else + TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t; + } + else + { + /* Use the cache of larger shared ints. */ + tree *slot = int_cst_hash_table->find_slot (t, INSERT); + if (tree r = *slot) + { + /* If there is already an entry for the number verify it's the + same value. */ + gcc_checking_assert (wi::to_wide (tree (r)) == wi::to_wide (t)); + /* And return the cached value. */ + t = r; + } + else + /* Otherwise insert this one into the hash table. */ + *slot = t; + } + + return t; +} + + +/* Builds an integer constant in TYPE such that lowest BITS bits are ones + and the rest are zeros. */ + +tree +build_low_bits_mask (tree type, unsigned bits) +{ + gcc_assert (bits <= TYPE_PRECISION (type)); + + return wide_int_to_tree (type, wi::mask (bits, false, + TYPE_PRECISION (type))); +} + +/* Checks that X is integer constant that can be expressed in (unsigned) + HOST_WIDE_INT without loss of precision. */ + +bool +cst_and_fits_in_hwi (const_tree x) +{ + return (TREE_CODE (x) == INTEGER_CST + && (tree_fits_shwi_p (x) || tree_fits_uhwi_p (x))); +} + +/* Build a newly constructed VECTOR_CST with the given values of + (VECTOR_CST_)LOG2_NPATTERNS and (VECTOR_CST_)NELTS_PER_PATTERN. */ + +tree +make_vector (unsigned log2_npatterns, + unsigned int nelts_per_pattern MEM_STAT_DECL) +{ + gcc_assert (IN_RANGE (nelts_per_pattern, 1, 3)); + tree t; + unsigned npatterns = 1 << log2_npatterns; + unsigned encoded_nelts = npatterns * nelts_per_pattern; + unsigned length = (sizeof (struct tree_vector) + + (encoded_nelts - 1) * sizeof (tree)); + + record_node_allocation_statistics (VECTOR_CST, length); + + t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT); + + TREE_SET_CODE (t, VECTOR_CST); + TREE_CONSTANT (t) = 1; + VECTOR_CST_LOG2_NPATTERNS (t) = log2_npatterns; + VECTOR_CST_NELTS_PER_PATTERN (t) = nelts_per_pattern; + + return t; +} + +/* Return a new VECTOR_CST node whose type is TYPE and whose values + are extracted from V, a vector of CONSTRUCTOR_ELT. */ + +tree +build_vector_from_ctor (tree type, const vec<constructor_elt, va_gc> *v) +{ + if (vec_safe_length (v) == 0) + return build_zero_cst (type); + + unsigned HOST_WIDE_INT idx, nelts; + tree value; + + /* We can't construct a VECTOR_CST for a variable number of elements. */ + nelts = TYPE_VECTOR_SUBPARTS (type).to_constant (); + tree_vector_builder vec (type, nelts, 1); + FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value) + { + if (TREE_CODE (value) == VECTOR_CST) + { + /* If NELTS is constant then this must be too. */ + unsigned int sub_nelts = VECTOR_CST_NELTS (value).to_constant (); + for (unsigned i = 0; i < sub_nelts; ++i) + vec.quick_push (VECTOR_CST_ELT (value, i)); + } + else + vec.quick_push (value); + } + while (vec.length () < nelts) + vec.quick_push (build_zero_cst (TREE_TYPE (type))); + + return vec.build (); +} + +/* Build a vector of type VECTYPE where all the elements are SCs. */ +tree +build_vector_from_val (tree vectype, tree sc) +{ + unsigned HOST_WIDE_INT i, nunits; + + if (sc == error_mark_node) + return sc; + + /* Verify that the vector type is suitable for SC. Note that there + is some inconsistency in the type-system with respect to restrict + qualifications of pointers. Vector types always have a main-variant + element type and the qualification is applied to the vector-type. + So TREE_TYPE (vector-type) does not return a properly qualified + vector element-type. */ + gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)), + TREE_TYPE (vectype))); + + if (CONSTANT_CLASS_P (sc)) + { + tree_vector_builder v (vectype, 1, 1); + v.quick_push (sc); + return v.build (); + } + else if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nunits)) + return fold_build1 (VEC_DUPLICATE_EXPR, vectype, sc); + else + { + vec<constructor_elt, va_gc> *v; + vec_alloc (v, nunits); + for (i = 0; i < nunits; ++i) + CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc); + return build_constructor (vectype, v); + } +} + +/* If TYPE is not a vector type, just return SC, otherwise return + build_vector_from_val (TYPE, SC). */ + +tree +build_uniform_cst (tree type, tree sc) +{ + if (!VECTOR_TYPE_P (type)) + return sc; + + return build_vector_from_val (type, sc); +} + +/* Build a vector series of type TYPE in which element I has the value + BASE + I * STEP. The result is a constant if BASE and STEP are constant + and a VEC_SERIES_EXPR otherwise. */ + +tree +build_vec_series (tree type, tree base, tree step) +{ + if (integer_zerop (step)) + return build_vector_from_val (type, base); + if (TREE_CODE (base) == INTEGER_CST && TREE_CODE (step) == INTEGER_CST) + { + tree_vector_builder builder (type, 1, 3); + tree elt1 = wide_int_to_tree (TREE_TYPE (base), + wi::to_wide (base) + wi::to_wide (step)); + tree elt2 = wide_int_to_tree (TREE_TYPE (base), + wi::to_wide (elt1) + wi::to_wide (step)); + builder.quick_push (base); + builder.quick_push (elt1); + builder.quick_push (elt2); + return builder.build (); + } + return build2 (VEC_SERIES_EXPR, type, base, step); +} + +/* Return a vector with the same number of units and number of bits + as VEC_TYPE, but in which the elements are a linear series of unsigned + integers { BASE, BASE + STEP, BASE + STEP * 2, ... }. */ + +tree +build_index_vector (tree vec_type, poly_uint64 base, poly_uint64 step) +{ + tree index_vec_type = vec_type; + tree index_elt_type = TREE_TYPE (vec_type); + poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vec_type); + if (!INTEGRAL_TYPE_P (index_elt_type) || !TYPE_UNSIGNED (index_elt_type)) + { + index_elt_type = build_nonstandard_integer_type + (GET_MODE_BITSIZE (SCALAR_TYPE_MODE (index_elt_type)), true); + index_vec_type = build_vector_type (index_elt_type, nunits); + } + + tree_vector_builder v (index_vec_type, 1, 3); + for (unsigned int i = 0; i < 3; ++i) + v.quick_push (build_int_cstu (index_elt_type, base + i * step)); + return v.build (); +} + +/* Return a VECTOR_CST of type VEC_TYPE in which the first NUM_A + elements are A and the rest are B. */ + +tree +build_vector_a_then_b (tree vec_type, unsigned int num_a, tree a, tree b) +{ + gcc_assert (known_le (num_a, TYPE_VECTOR_SUBPARTS (vec_type))); + unsigned int count = constant_lower_bound (TYPE_VECTOR_SUBPARTS (vec_type)); + /* Optimize the constant case. */ + if ((count & 1) == 0 && TYPE_VECTOR_SUBPARTS (vec_type).is_constant ()) + count /= 2; + tree_vector_builder builder (vec_type, count, 2); + for (unsigned int i = 0; i < count * 2; ++i) + builder.quick_push (i < num_a ? a : b); + return builder.build (); +} + +/* Something has messed with the elements of CONSTRUCTOR C after it was built; + calculate TREE_CONSTANT and TREE_SIDE_EFFECTS. */ + +void +recompute_constructor_flags (tree c) +{ + unsigned int i; + tree val; + bool constant_p = true; + bool side_effects_p = false; + vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c); + + FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val) + { + /* Mostly ctors will have elts that don't have side-effects, so + the usual case is to scan all the elements. Hence a single + loop for both const and side effects, rather than one loop + each (with early outs). */ + if (!TREE_CONSTANT (val)) + constant_p = false; + if (TREE_SIDE_EFFECTS (val)) + side_effects_p = true; + } + + TREE_SIDE_EFFECTS (c) = side_effects_p; + TREE_CONSTANT (c) = constant_p; +} + +/* Make sure that TREE_CONSTANT and TREE_SIDE_EFFECTS are correct for + CONSTRUCTOR C. */ + +void +verify_constructor_flags (tree c) +{ + unsigned int i; + tree val; + bool constant_p = TREE_CONSTANT (c); + bool side_effects_p = TREE_SIDE_EFFECTS (c); + vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c); + + FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val) + { + if (constant_p && !TREE_CONSTANT (val)) + internal_error ("non-constant element in constant CONSTRUCTOR"); + if (!side_effects_p && TREE_SIDE_EFFECTS (val)) + internal_error ("side-effects element in no-side-effects CONSTRUCTOR"); + } +} + +/* Return a new CONSTRUCTOR node whose type is TYPE and whose values + are in the vec pointed to by VALS. */ +tree +build_constructor (tree type, vec<constructor_elt, va_gc> *vals MEM_STAT_DECL) +{ + tree c = make_node (CONSTRUCTOR PASS_MEM_STAT); + + TREE_TYPE (c) = type; + CONSTRUCTOR_ELTS (c) = vals; + + recompute_constructor_flags (c); + + return c; +} + +/* Build a CONSTRUCTOR node made of a single initializer, with the specified + INDEX and VALUE. */ +tree +build_constructor_single (tree type, tree index, tree value) +{ + vec<constructor_elt, va_gc> *v; + constructor_elt elt = {index, value}; + + vec_alloc (v, 1); + v->quick_push (elt); + + return build_constructor (type, v); +} + + +/* Return a new CONSTRUCTOR node whose type is TYPE and whose values + are in a list pointed to by VALS. */ +tree +build_constructor_from_list (tree type, tree vals) +{ + tree t; + vec<constructor_elt, va_gc> *v = NULL; + + if (vals) + { + vec_alloc (v, list_length (vals)); + for (t = vals; t; t = TREE_CHAIN (t)) + CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t)); + } + + return build_constructor (type, v); +} + +/* Return a new CONSTRUCTOR node whose type is TYPE and whose values + are in a vector pointed to by VALS. Note that the TREE_PURPOSE + fields in the constructor remain null. */ + +tree +build_constructor_from_vec (tree type, const vec<tree, va_gc> *vals) +{ + vec<constructor_elt, va_gc> *v = NULL; + + for (tree t : vals) + CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, t); + + return build_constructor (type, v); +} + +/* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number + of elements, provided as index/value pairs. */ + +tree +build_constructor_va (tree type, int nelts, ...) +{ + vec<constructor_elt, va_gc> *v = NULL; + va_list p; + + va_start (p, nelts); + vec_alloc (v, nelts); + while (nelts--) + { + tree index = va_arg (p, tree); + tree value = va_arg (p, tree); + CONSTRUCTOR_APPEND_ELT (v, index, value); + } + va_end (p); + return build_constructor (type, v); +} + +/* Return a node of type TYPE for which TREE_CLOBBER_P is true. */ + +tree +build_clobber (tree type) +{ + tree clobber = build_constructor (type, NULL); + TREE_THIS_VOLATILE (clobber) = true; + return clobber; +} + +/* Return a new FIXED_CST node whose type is TYPE and value is F. */ + +tree +build_fixed (tree type, FIXED_VALUE_TYPE f) +{ + tree v; + FIXED_VALUE_TYPE *fp; + + v = make_node (FIXED_CST); + fp = ggc_alloc<fixed_value> (); + memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE)); + + TREE_TYPE (v) = type; + TREE_FIXED_CST_PTR (v) = fp; + return v; +} + +/* Return a new REAL_CST node whose type is TYPE and value is D. */ + +tree +build_real (tree type, REAL_VALUE_TYPE d) +{ + tree v; + REAL_VALUE_TYPE *dp; + int overflow = 0; + + /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE. + Consider doing it via real_convert now. */ + + v = make_node (REAL_CST); + dp = ggc_alloc<real_value> (); + memcpy (dp, &d, sizeof (REAL_VALUE_TYPE)); + + TREE_TYPE (v) = type; + TREE_REAL_CST_PTR (v) = dp; + TREE_OVERFLOW (v) = overflow; + return v; +} + +/* Like build_real, but first truncate D to the type. */ + +tree +build_real_truncate (tree type, REAL_VALUE_TYPE d) +{ + return build_real (type, real_value_truncate (TYPE_MODE (type), d)); +} + +/* Return a new REAL_CST node whose type is TYPE + and whose value is the integer value of the INTEGER_CST node I. */ + +REAL_VALUE_TYPE +real_value_from_int_cst (const_tree type, const_tree i) +{ + REAL_VALUE_TYPE d; + + /* Clear all bits of the real value type so that we can later do + bitwise comparisons to see if two values are the same. */ + memset (&d, 0, sizeof d); + + real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, wi::to_wide (i), + TYPE_SIGN (TREE_TYPE (i))); + return d; +} + +/* Given a tree representing an integer constant I, return a tree + representing the same value as a floating-point constant of type TYPE. */ + +tree +build_real_from_int_cst (tree type, const_tree i) +{ + tree v; + int overflow = TREE_OVERFLOW (i); + + v = build_real (type, real_value_from_int_cst (type, i)); + + TREE_OVERFLOW (v) |= overflow; + return v; +} + +/* Return a new REAL_CST node whose type is TYPE + and whose value is the integer value I which has sign SGN. */ + +tree +build_real_from_wide (tree type, const wide_int_ref &i, signop sgn) +{ + REAL_VALUE_TYPE d; + + /* Clear all bits of the real value type so that we can later do + bitwise comparisons to see if two values are the same. */ + memset (&d, 0, sizeof d); + + real_from_integer (&d, TYPE_MODE (type), i, sgn); + return build_real (type, d); +} + +/* Return a newly constructed STRING_CST node whose value is the LEN + characters at STR when STR is nonnull, or all zeros otherwise. + Note that for a C string literal, LEN should include the trailing NUL. + The TREE_TYPE is not initialized. */ + +tree +build_string (unsigned len, const char *str /*= NULL */) +{ + /* Do not waste bytes provided by padding of struct tree_string. */ + unsigned size = len + offsetof (struct tree_string, str) + 1; + + record_node_allocation_statistics (STRING_CST, size); + + tree s = (tree) ggc_internal_alloc (size); + + memset (s, 0, sizeof (struct tree_typed)); + TREE_SET_CODE (s, STRING_CST); + TREE_CONSTANT (s) = 1; + TREE_STRING_LENGTH (s) = len; + if (str) + memcpy (s->string.str, str, len); + else + memset (s->string.str, 0, len); + s->string.str[len] = '\0'; + + return s; +} + +/* Return a newly constructed COMPLEX_CST node whose value is + specified by the real and imaginary parts REAL and IMAG. + Both REAL and IMAG should be constant nodes. TYPE, if specified, + will be the type of the COMPLEX_CST; otherwise a new type will be made. */ + +tree +build_complex (tree type, tree real, tree imag) +{ + gcc_assert (CONSTANT_CLASS_P (real)); + gcc_assert (CONSTANT_CLASS_P (imag)); + + tree t = make_node (COMPLEX_CST); + + TREE_REALPART (t) = real; + TREE_IMAGPART (t) = imag; + TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real)); + TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag); + return t; +} + +/* Build a complex (inf +- 0i), such as for the result of cproj. + TYPE is the complex tree type of the result. If NEG is true, the + imaginary zero is negative. */ + +tree +build_complex_inf (tree type, bool neg) +{ + REAL_VALUE_TYPE rinf, rzero = dconst0; + + real_inf (&rinf); + rzero.sign = neg; + return build_complex (type, build_real (TREE_TYPE (type), rinf), + build_real (TREE_TYPE (type), rzero)); +} + +/* Return the constant 1 in type TYPE. If TYPE has several elements, each + element is set to 1. In particular, this is 1 + i for complex types. */ + +tree +build_each_one_cst (tree type) +{ + if (TREE_CODE (type) == COMPLEX_TYPE) + { + tree scalar = build_one_cst (TREE_TYPE (type)); + return build_complex (type, scalar, scalar); + } + else + return build_one_cst (type); +} + +/* Return a constant of arithmetic type TYPE which is the + multiplicative identity of the set TYPE. */ + +tree +build_one_cst (tree type) +{ + switch (TREE_CODE (type)) + { + case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: + case POINTER_TYPE: case REFERENCE_TYPE: + case OFFSET_TYPE: + return build_int_cst (type, 1); + + case REAL_TYPE: + return build_real (type, dconst1); + + case FIXED_POINT_TYPE: + /* We can only generate 1 for accum types. */ + gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type))); + return build_fixed (type, FCONST1 (TYPE_MODE (type))); + + case VECTOR_TYPE: + { + tree scalar = build_one_cst (TREE_TYPE (type)); + + return build_vector_from_val (type, scalar); + } + + case COMPLEX_TYPE: + return build_complex (type, + build_one_cst (TREE_TYPE (type)), + build_zero_cst (TREE_TYPE (type))); + + default: + gcc_unreachable (); + } +} + +/* Return an integer of type TYPE containing all 1's in as much precision as + it contains, or a complex or vector whose subparts are such integers. */ + +tree +build_all_ones_cst (tree type) +{ + if (TREE_CODE (type) == COMPLEX_TYPE) + { + tree scalar = build_all_ones_cst (TREE_TYPE (type)); + return build_complex (type, scalar, scalar); + } + else + return build_minus_one_cst (type); +} + +/* Return a constant of arithmetic type TYPE which is the + opposite of the multiplicative identity of the set TYPE. */ + +tree +build_minus_one_cst (tree type) +{ + switch (TREE_CODE (type)) + { + case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: + case POINTER_TYPE: case REFERENCE_TYPE: + case OFFSET_TYPE: + return build_int_cst (type, -1); + + case REAL_TYPE: + return build_real (type, dconstm1); + + case FIXED_POINT_TYPE: + /* We can only generate 1 for accum types. */ + gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type))); + return build_fixed (type, + fixed_from_double_int (double_int_minus_one, + SCALAR_TYPE_MODE (type))); + + case VECTOR_TYPE: + { + tree scalar = build_minus_one_cst (TREE_TYPE (type)); + + return build_vector_from_val (type, scalar); + } + + case COMPLEX_TYPE: + return build_complex (type, + build_minus_one_cst (TREE_TYPE (type)), + build_zero_cst (TREE_TYPE (type))); + + default: + gcc_unreachable (); + } +} + +/* Build 0 constant of type TYPE. This is used by constructor folding + and thus the constant should be represented in memory by + zero(es). */ + +tree +build_zero_cst (tree type) +{ + switch (TREE_CODE (type)) + { + case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: + case POINTER_TYPE: case REFERENCE_TYPE: + case OFFSET_TYPE: case NULLPTR_TYPE: + return build_int_cst (type, 0); + + case REAL_TYPE: + return build_real (type, dconst0); + + case FIXED_POINT_TYPE: + return build_fixed (type, FCONST0 (TYPE_MODE (type))); + + case VECTOR_TYPE: + { + tree scalar = build_zero_cst (TREE_TYPE (type)); + + return build_vector_from_val (type, scalar); + } + + case COMPLEX_TYPE: + { + tree zero = build_zero_cst (TREE_TYPE (type)); + + return build_complex (type, zero, zero); + } + + default: + if (!AGGREGATE_TYPE_P (type)) + return fold_convert (type, integer_zero_node); + return build_constructor (type, NULL); + } +} + + +/* Build a BINFO with LEN language slots. */ + +tree +make_tree_binfo (unsigned base_binfos MEM_STAT_DECL) +{ + tree t; + size_t length = (offsetof (struct tree_binfo, base_binfos) + + vec<tree, va_gc>::embedded_size (base_binfos)); + + record_node_allocation_statistics (TREE_BINFO, length); + + t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT); + + memset (t, 0, offsetof (struct tree_binfo, base_binfos)); + + TREE_SET_CODE (t, TREE_BINFO); + + BINFO_BASE_BINFOS (t)->embedded_init (base_binfos); + + return t; +} + +/* Create a CASE_LABEL_EXPR tree node and return it. */ + +tree +build_case_label (tree low_value, tree high_value, tree label_decl) +{ + tree t = make_node (CASE_LABEL_EXPR); + + TREE_TYPE (t) = void_type_node; + SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl)); + + CASE_LOW (t) = low_value; + CASE_HIGH (t) = high_value; + CASE_LABEL (t) = label_decl; + CASE_CHAIN (t) = NULL_TREE; + + return t; +} + +/* Build a newly constructed INTEGER_CST node. LEN and EXT_LEN are the + values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively. + The latter determines the length of the HOST_WIDE_INT vector. */ + +tree +make_int_cst (int len, int ext_len MEM_STAT_DECL) +{ + tree t; + int length = ((ext_len - 1) * sizeof (HOST_WIDE_INT) + + sizeof (struct tree_int_cst)); + + gcc_assert (len); + record_node_allocation_statistics (INTEGER_CST, length); + + t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT); + + TREE_SET_CODE (t, INTEGER_CST); + TREE_INT_CST_NUNITS (t) = len; + TREE_INT_CST_EXT_NUNITS (t) = ext_len; + /* to_offset can only be applied to trees that are offset_int-sized + or smaller. EXT_LEN is correct if it fits, otherwise the constant + must be exactly the precision of offset_int and so LEN is correct. */ + if (ext_len <= OFFSET_INT_ELTS) + TREE_INT_CST_OFFSET_NUNITS (t) = ext_len; + else + TREE_INT_CST_OFFSET_NUNITS (t) = len; + + TREE_CONSTANT (t) = 1; + + return t; +} + +/* Build a newly constructed TREE_VEC node of length LEN. */ + +tree +make_tree_vec (int len MEM_STAT_DECL) +{ + tree t; + size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec); + + record_node_allocation_statistics (TREE_VEC, length); + + t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT); + + TREE_SET_CODE (t, TREE_VEC); + TREE_VEC_LENGTH (t) = len; + + return t; +} + +/* Grow a TREE_VEC node to new length LEN. */ + +tree +grow_tree_vec (tree v, int len MEM_STAT_DECL) +{ + gcc_assert (TREE_CODE (v) == TREE_VEC); + + int oldlen = TREE_VEC_LENGTH (v); + gcc_assert (len > oldlen); + + size_t oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec); + size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec); + + record_node_allocation_statistics (TREE_VEC, length - oldlength); + + v = (tree) ggc_realloc (v, length PASS_MEM_STAT); + + TREE_VEC_LENGTH (v) = len; + + return v; +} + +/* Return 1 if EXPR is the constant zero, whether it is integral, float or + fixed, and scalar, complex or vector. */ + +bool +zerop (const_tree expr) +{ + return (integer_zerop (expr) + || real_zerop (expr) + || fixed_zerop (expr)); +} + +/* Return 1 if EXPR is the integer constant zero or a complex constant + of zero, or a location wrapper for such a constant. */ + +bool +integer_zerop (const_tree expr) +{ + STRIP_ANY_LOCATION_WRAPPER (expr); + + switch (TREE_CODE (expr)) + { + case INTEGER_CST: + return wi::to_wide (expr) == 0; + case COMPLEX_CST: + return (integer_zerop (TREE_REALPART (expr)) + && integer_zerop (TREE_IMAGPART (expr))); + case VECTOR_CST: + return (VECTOR_CST_NPATTERNS (expr) == 1 + && VECTOR_CST_DUPLICATE_P (expr) + && integer_zerop (VECTOR_CST_ENCODED_ELT (expr, 0))); + default: + return false; + } +} + +/* Return 1 if EXPR is the integer constant one or the corresponding + complex constant, or a location wrapper for such a constant. */ + +bool +integer_onep (const_tree expr) +{ + STRIP_ANY_LOCATION_WRAPPER (expr); + + switch (TREE_CODE (expr)) + { + case INTEGER_CST: + return wi::eq_p (wi::to_widest (expr), 1); + case COMPLEX_CST: + return (integer_onep (TREE_REALPART (expr)) + && integer_zerop (TREE_IMAGPART (expr))); + case VECTOR_CST: + return (VECTOR_CST_NPATTERNS (expr) == 1 + && VECTOR_CST_DUPLICATE_P (expr) + && integer_onep (VECTOR_CST_ENCODED_ELT (expr, 0))); + default: + return false; + } +} + +/* Return 1 if EXPR is the integer constant one. For complex and vector, + return 1 if every piece is the integer constant one. + Also return 1 for location wrappers for such a constant. */ + +bool +integer_each_onep (const_tree expr) +{ + STRIP_ANY_LOCATION_WRAPPER (expr); + + if (TREE_CODE (expr) == COMPLEX_CST) + return (integer_onep (TREE_REALPART (expr)) + && integer_onep (TREE_IMAGPART (expr))); + else + return integer_onep (expr); +} + +/* Return 1 if EXPR is an integer containing all 1's in as much precision as + it contains, or a complex or vector whose subparts are such integers, + or a location wrapper for such a constant. */ + +bool +integer_all_onesp (const_tree expr) +{ + STRIP_ANY_LOCATION_WRAPPER (expr); + + if (TREE_CODE (expr) == COMPLEX_CST + && integer_all_onesp (TREE_REALPART (expr)) + && integer_all_onesp (TREE_IMAGPART (expr))) + return true; + + else if (TREE_CODE (expr) == VECTOR_CST) + return (VECTOR_CST_NPATTERNS (expr) == 1 + && VECTOR_CST_DUPLICATE_P (expr) + && integer_all_onesp (VECTOR_CST_ENCODED_ELT (expr, 0))); + + else if (TREE_CODE (expr) != INTEGER_CST) + return false; + + return (wi::max_value (TYPE_PRECISION (TREE_TYPE (expr)), UNSIGNED) + == wi::to_wide (expr)); +} + +/* Return 1 if EXPR is the integer constant minus one, or a location wrapper + for such a constant. */ + +bool +integer_minus_onep (const_tree expr) +{ + STRIP_ANY_LOCATION_WRAPPER (expr); + + if (TREE_CODE (expr) == COMPLEX_CST) + return (integer_all_onesp (TREE_REALPART (expr)) + && integer_zerop (TREE_IMAGPART (expr))); + else + return integer_all_onesp (expr); +} + +/* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only + one bit on), or a location wrapper for such a constant. */ + +bool +integer_pow2p (const_tree expr) +{ + STRIP_ANY_LOCATION_WRAPPER (expr); + + if (TREE_CODE (expr) == COMPLEX_CST + && integer_pow2p (TREE_REALPART (expr)) + && integer_zerop (TREE_IMAGPART (expr))) + return true; + + if (TREE_CODE (expr) != INTEGER_CST) + return false; + + return wi::popcount (wi::to_wide (expr)) == 1; +} + +/* Return 1 if EXPR is an integer constant other than zero or a + complex constant other than zero, or a location wrapper for such a + constant. */ + +bool +integer_nonzerop (const_tree expr) +{ + STRIP_ANY_LOCATION_WRAPPER (expr); + + return ((TREE_CODE (expr) == INTEGER_CST + && wi::to_wide (expr) != 0) + || (TREE_CODE (expr) == COMPLEX_CST + && (integer_nonzerop (TREE_REALPART (expr)) + || integer_nonzerop (TREE_IMAGPART (expr))))); +} + +/* Return 1 if EXPR is the integer constant one. For vector, + return 1 if every piece is the integer constant minus one + (representing the value TRUE). + Also return 1 for location wrappers for such a constant. */ + +bool +integer_truep (const_tree expr) +{ + STRIP_ANY_LOCATION_WRAPPER (expr); + + if (TREE_CODE (expr) == VECTOR_CST) + return integer_all_onesp (expr); + return integer_onep (expr); +} + +/* Return 1 if EXPR is the fixed-point constant zero, or a location wrapper + for such a constant. */ + +bool +fixed_zerop (const_tree expr) +{ + STRIP_ANY_LOCATION_WRAPPER (expr); + + return (TREE_CODE (expr) == FIXED_CST + && TREE_FIXED_CST (expr).data.is_zero ()); +} + +/* Return the power of two represented by a tree node known to be a + power of two. */ + +int +tree_log2 (const_tree expr) +{ + if (TREE_CODE (expr) == COMPLEX_CST) + return tree_log2 (TREE_REALPART (expr)); + + return wi::exact_log2 (wi::to_wide (expr)); +} + +/* Similar, but return the largest integer Y such that 2 ** Y is less + than or equal to EXPR. */ + +int +tree_floor_log2 (const_tree expr) +{ + if (TREE_CODE (expr) == COMPLEX_CST) + return tree_log2 (TREE_REALPART (expr)); + + return wi::floor_log2 (wi::to_wide (expr)); +} + +/* Return number of known trailing zero bits in EXPR, or, if the value of + EXPR is known to be zero, the precision of it's type. */ + +unsigned int +tree_ctz (const_tree expr) +{ + if (!INTEGRAL_TYPE_P (TREE_TYPE (expr)) + && !POINTER_TYPE_P (TREE_TYPE (expr))) + return 0; + + unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr)); + switch (TREE_CODE (expr)) + { + case INTEGER_CST: + ret1 = wi::ctz (wi::to_wide (expr)); + return MIN (ret1, prec); + case SSA_NAME: + ret1 = wi::ctz (get_nonzero_bits (expr)); + return MIN (ret1, prec); + case PLUS_EXPR: + case MINUS_EXPR: + case BIT_IOR_EXPR: + case BIT_XOR_EXPR: + case MIN_EXPR: + case MAX_EXPR: + ret1 = tree_ctz (TREE_OPERAND (expr, 0)); + if (ret1 == 0) + return ret1; + ret2 = tree_ctz (TREE_OPERAND (expr, 1)); + return MIN (ret1, ret2); + case POINTER_PLUS_EXPR: + ret1 = tree_ctz (TREE_OPERAND (expr, 0)); + ret2 = tree_ctz (TREE_OPERAND (expr, 1)); + /* Second operand is sizetype, which could be in theory + wider than pointer's precision. Make sure we never + return more than prec. */ + ret2 = MIN (ret2, prec); + return MIN (ret1, ret2); + case BIT_AND_EXPR: + ret1 = tree_ctz (TREE_OPERAND (expr, 0)); + ret2 = tree_ctz (TREE_OPERAND (expr, 1)); + return MAX (ret1, ret2); + case MULT_EXPR: + ret1 = tree_ctz (TREE_OPERAND (expr, 0)); + ret2 = tree_ctz (TREE_OPERAND (expr, 1)); + return MIN (ret1 + ret2, prec); + case LSHIFT_EXPR: + ret1 = tree_ctz (TREE_OPERAND (expr, 0)); + if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1)) + && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec)) + { + ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1)); + return MIN (ret1 + ret2, prec); + } + return ret1; + case RSHIFT_EXPR: + if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1)) + && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec)) + { + ret1 = tree_ctz (TREE_OPERAND (expr, 0)); + ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1)); + if (ret1 > ret2) + return ret1 - ret2; + } + return 0; + case TRUNC_DIV_EXPR: + case CEIL_DIV_EXPR: + case FLOOR_DIV_EXPR: + case ROUND_DIV_EXPR: + case EXACT_DIV_EXPR: + if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST + && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1) + { + int l = tree_log2 (TREE_OPERAND (expr, 1)); + if (l >= 0) + { + ret1 = tree_ctz (TREE_OPERAND (expr, 0)); + ret2 = l; + if (ret1 > ret2) + return ret1 - ret2; + } + } + return 0; + CASE_CONVERT: + ret1 = tree_ctz (TREE_OPERAND (expr, 0)); + if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0)))) + ret1 = prec; + return MIN (ret1, prec); + case SAVE_EXPR: + return tree_ctz (TREE_OPERAND (expr, 0)); + case COND_EXPR: + ret1 = tree_ctz (TREE_OPERAND (expr, 1)); + if (ret1 == 0) + return 0; + ret2 = tree_ctz (TREE_OPERAND (expr, 2)); + return MIN (ret1, ret2); + case COMPOUND_EXPR: + return tree_ctz (TREE_OPERAND (expr, 1)); + case ADDR_EXPR: + ret1 = get_pointer_alignment (CONST_CAST_TREE (expr)); + if (ret1 > BITS_PER_UNIT) + { + ret1 = ctz_hwi (ret1 / BITS_PER_UNIT); + return MIN (ret1, prec); + } + return 0; + default: + return 0; + } +} + +/* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for + decimal float constants, so don't return 1 for them. + Also return 1 for location wrappers around such a constant. */ + +bool +real_zerop (const_tree expr) +{ + STRIP_ANY_LOCATION_WRAPPER (expr); + + switch (TREE_CODE (expr)) + { + case REAL_CST: + return real_equal (&TREE_REAL_CST (expr), &dconst0) + && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))); + case COMPLEX_CST: + return real_zerop (TREE_REALPART (expr)) + && real_zerop (TREE_IMAGPART (expr)); + case VECTOR_CST: + { + /* Don't simply check for a duplicate because the predicate + accepts both +0.0 and -0.0. */ + unsigned count = vector_cst_encoded_nelts (expr); + for (unsigned int i = 0; i < count; ++i) + if (!real_zerop (VECTOR_CST_ENCODED_ELT (expr, i))) + return false; + return true; + } + default: + return false; + } +} + +/* Return 1 if EXPR is the real constant one in real or complex form. + Trailing zeroes matter for decimal float constants, so don't return + 1 for them. + Also return 1 for location wrappers around such a constant. */ + +bool +real_onep (const_tree expr) +{ + STRIP_ANY_LOCATION_WRAPPER (expr); + + switch (TREE_CODE (expr)) + { + case REAL_CST: + return real_equal (&TREE_REAL_CST (expr), &dconst1) + && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))); + case COMPLEX_CST: + return real_onep (TREE_REALPART (expr)) + && real_zerop (TREE_IMAGPART (expr)); + case VECTOR_CST: + return (VECTOR_CST_NPATTERNS (expr) == 1 + && VECTOR_CST_DUPLICATE_P (expr) + && real_onep (VECTOR_CST_ENCODED_ELT (expr, 0))); + default: + return false; + } +} + +/* Return 1 if EXPR is the real constant minus one. Trailing zeroes + matter for decimal float constants, so don't return 1 for them. + Also return 1 for location wrappers around such a constant. */ + +bool +real_minus_onep (const_tree expr) +{ + STRIP_ANY_LOCATION_WRAPPER (expr); + + switch (TREE_CODE (expr)) + { + case REAL_CST: + return real_equal (&TREE_REAL_CST (expr), &dconstm1) + && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))); + case COMPLEX_CST: + return real_minus_onep (TREE_REALPART (expr)) + && real_zerop (TREE_IMAGPART (expr)); + case VECTOR_CST: + return (VECTOR_CST_NPATTERNS (expr) == 1 + && VECTOR_CST_DUPLICATE_P (expr) + && real_minus_onep (VECTOR_CST_ENCODED_ELT (expr, 0))); + default: + return false; + } +} + +/* Nonzero if EXP is a constant or a cast of a constant. */ + +bool +really_constant_p (const_tree exp) +{ + /* This is not quite the same as STRIP_NOPS. It does more. */ + while (CONVERT_EXPR_P (exp) + || TREE_CODE (exp) == NON_LVALUE_EXPR) + exp = TREE_OPERAND (exp, 0); + return TREE_CONSTANT (exp); +} + +/* Return true if T holds a polynomial pointer difference, storing it in + *VALUE if so. A true return means that T's precision is no greater + than 64 bits, which is the largest address space we support, so *VALUE + never loses precision. However, the signedness of the result does + not necessarily match the signedness of T: sometimes an unsigned type + like sizetype is used to encode a value that is actually negative. */ + +bool +ptrdiff_tree_p (const_tree t, poly_int64_pod *value) +{ + if (!t) + return false; + if (TREE_CODE (t) == INTEGER_CST) + { + if (!cst_and_fits_in_hwi (t)) + return false; + *value = int_cst_value (t); + return true; + } + if (POLY_INT_CST_P (t)) + { + for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) + if (!cst_and_fits_in_hwi (POLY_INT_CST_COEFF (t, i))) + return false; + for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) + value->coeffs[i] = int_cst_value (POLY_INT_CST_COEFF (t, i)); + return true; + } + return false; +} + +poly_int64 +tree_to_poly_int64 (const_tree t) +{ + gcc_assert (tree_fits_poly_int64_p (t)); + if (POLY_INT_CST_P (t)) + return poly_int_cst_value (t).force_shwi (); + return TREE_INT_CST_LOW (t); +} + +poly_uint64 +tree_to_poly_uint64 (const_tree t) +{ + gcc_assert (tree_fits_poly_uint64_p (t)); + if (POLY_INT_CST_P (t)) + return poly_int_cst_value (t).force_uhwi (); + return TREE_INT_CST_LOW (t); +} + +/* Return first list element whose TREE_VALUE is ELEM. + Return 0 if ELEM is not in LIST. */ + +tree +value_member (tree elem, tree list) +{ + while (list) + { + if (elem == TREE_VALUE (list)) + return list; + list = TREE_CHAIN (list); + } + return NULL_TREE; +} + +/* Return first list element whose TREE_PURPOSE is ELEM. + Return 0 if ELEM is not in LIST. */ + +tree +purpose_member (const_tree elem, tree list) +{ + while (list) + { + if (elem == TREE_PURPOSE (list)) + return list; + list = TREE_CHAIN (list); + } + return NULL_TREE; +} + +/* Return true if ELEM is in V. */ + +bool +vec_member (const_tree elem, vec<tree, va_gc> *v) +{ + unsigned ix; + tree t; + FOR_EACH_VEC_SAFE_ELT (v, ix, t) + if (elem == t) + return true; + return false; +} + +/* Returns element number IDX (zero-origin) of chain CHAIN, or + NULL_TREE. */ + +tree +chain_index (int idx, tree chain) +{ + for (; chain && idx > 0; --idx) + chain = TREE_CHAIN (chain); + return chain; +} + +/* Return nonzero if ELEM is part of the chain CHAIN. */ + +bool +chain_member (const_tree elem, const_tree chain) +{ + while (chain) + { + if (elem == chain) + return true; + chain = DECL_CHAIN (chain); + } + + return false; +} + +/* Return the length of a chain of nodes chained through TREE_CHAIN. + We expect a null pointer to mark the end of the chain. + This is the Lisp primitive `length'. */ + +int +list_length (const_tree t) +{ + const_tree p = t; +#ifdef ENABLE_TREE_CHECKING + const_tree q = t; +#endif + int len = 0; + + while (p) + { + p = TREE_CHAIN (p); +#ifdef ENABLE_TREE_CHECKING + if (len % 2) + q = TREE_CHAIN (q); + gcc_assert (p != q); +#endif + len++; + } + + return len; +} + +/* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or + UNION_TYPE TYPE, or NULL_TREE if none. */ + +tree +first_field (const_tree type) +{ + tree t = TYPE_FIELDS (type); + while (t && TREE_CODE (t) != FIELD_DECL) + t = TREE_CHAIN (t); + return t; +} + +/* Returns the last FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or + UNION_TYPE TYPE, or NULL_TREE if none. */ + +tree +last_field (const_tree type) +{ + tree last = NULL_TREE; + + for (tree fld = TYPE_FIELDS (type); fld; fld = TREE_CHAIN (fld)) + { + if (TREE_CODE (fld) != FIELD_DECL) + continue; + + last = fld; + } + + return last; +} + +/* Concatenate two chains of nodes (chained through TREE_CHAIN) + by modifying the last node in chain 1 to point to chain 2. + This is the Lisp primitive `nconc'. */ + +tree +chainon (tree op1, tree op2) +{ + tree t1; + + if (!op1) + return op2; + if (!op2) + return op1; + + for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1)) + continue; + TREE_CHAIN (t1) = op2; + +#ifdef ENABLE_TREE_CHECKING + { + tree t2; + for (t2 = op2; t2; t2 = TREE_CHAIN (t2)) + gcc_assert (t2 != t1); + } +#endif + + return op1; +} + +/* Return the last node in a chain of nodes (chained through TREE_CHAIN). */ + +tree +tree_last (tree chain) +{ + tree next; + if (chain) + while ((next = TREE_CHAIN (chain))) + chain = next; + return chain; +} + +/* Reverse the order of elements in the chain T, + and return the new head of the chain (old last element). */ + +tree +nreverse (tree t) +{ + tree prev = 0, decl, next; + for (decl = t; decl; decl = next) + { + /* We shouldn't be using this function to reverse BLOCK chains; we + have blocks_nreverse for that. */ + gcc_checking_assert (TREE_CODE (decl) != BLOCK); + next = TREE_CHAIN (decl); + TREE_CHAIN (decl) = prev; + prev = decl; + } + return prev; +} + +/* Return a newly created TREE_LIST node whose + purpose and value fields are PARM and VALUE. */ + +tree +build_tree_list (tree parm, tree value MEM_STAT_DECL) +{ + tree t = make_node (TREE_LIST PASS_MEM_STAT); + TREE_PURPOSE (t) = parm; + TREE_VALUE (t) = value; + return t; +} + +/* Build a chain of TREE_LIST nodes from a vector. */ + +tree +build_tree_list_vec (const vec<tree, va_gc> *vec MEM_STAT_DECL) +{ + tree ret = NULL_TREE; + tree *pp = &ret; + unsigned int i; + tree t; + FOR_EACH_VEC_SAFE_ELT (vec, i, t) + { + *pp = build_tree_list (NULL, t PASS_MEM_STAT); + pp = &TREE_CHAIN (*pp); + } + return ret; +} + +/* Return a newly created TREE_LIST node whose + purpose and value fields are PURPOSE and VALUE + and whose TREE_CHAIN is CHAIN. */ + +tree +tree_cons (tree purpose, tree value, tree chain MEM_STAT_DECL) +{ + tree node; + + node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT); + memset (node, 0, sizeof (struct tree_common)); + + record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list)); + + TREE_SET_CODE (node, TREE_LIST); + TREE_CHAIN (node) = chain; + TREE_PURPOSE (node) = purpose; + TREE_VALUE (node) = value; + return node; +} + +/* Return the values of the elements of a CONSTRUCTOR as a vector of + trees. */ + +vec<tree, va_gc> * +ctor_to_vec (tree ctor) +{ + vec<tree, va_gc> *vec; + vec_alloc (vec, CONSTRUCTOR_NELTS (ctor)); + unsigned int ix; + tree val; + + FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val) + vec->quick_push (val); + + return vec; +} + +/* Return the size nominally occupied by an object of type TYPE + when it resides in memory. The value is measured in units of bytes, + and its data type is that normally used for type sizes + (which is the first type created by make_signed_type or + make_unsigned_type). */ + +tree +size_in_bytes_loc (location_t loc, const_tree type) +{ + tree t; + + if (type == error_mark_node) + return integer_zero_node; + + type = TYPE_MAIN_VARIANT (type); + t = TYPE_SIZE_UNIT (type); + + if (t == 0) + { + lang_hooks.types.incomplete_type_error (loc, NULL_TREE, type); + return size_zero_node; + } + + return t; +} + +/* Return the size of TYPE (in bytes) as a wide integer + or return -1 if the size can vary or is larger than an integer. */ + +HOST_WIDE_INT +int_size_in_bytes (const_tree type) +{ + tree t; + + if (type == error_mark_node) + return 0; + + type = TYPE_MAIN_VARIANT (type); + t = TYPE_SIZE_UNIT (type); + + if (t && tree_fits_uhwi_p (t)) + return TREE_INT_CST_LOW (t); + else + return -1; +} + +/* Return the maximum size of TYPE (in bytes) as a wide integer + or return -1 if the size can vary or is larger than an integer. */ + +HOST_WIDE_INT +max_int_size_in_bytes (const_tree type) +{ + HOST_WIDE_INT size = -1; + tree size_tree; + + /* If this is an array type, check for a possible MAX_SIZE attached. */ + + if (TREE_CODE (type) == ARRAY_TYPE) + { + size_tree = TYPE_ARRAY_MAX_SIZE (type); + + if (size_tree && tree_fits_uhwi_p (size_tree)) + size = tree_to_uhwi (size_tree); + } + + /* If we still haven't been able to get a size, see if the language + can compute a maximum size. */ + + if (size == -1) + { + size_tree = lang_hooks.types.max_size (type); + + if (size_tree && tree_fits_uhwi_p (size_tree)) + size = tree_to_uhwi (size_tree); + } + + return size; +} + +/* Return the bit position of FIELD, in bits from the start of the record. + This is a tree of type bitsizetype. */ + +tree +bit_position (const_tree field) +{ + return bit_from_pos (DECL_FIELD_OFFSET (field), + DECL_FIELD_BIT_OFFSET (field)); +} + +/* Return the byte position of FIELD, in bytes from the start of the record. + This is a tree of type sizetype. */ + +tree +byte_position (const_tree field) +{ + return byte_from_pos (DECL_FIELD_OFFSET (field), + DECL_FIELD_BIT_OFFSET (field)); +} + +/* Likewise, but return as an integer. It must be representable in + that way (since it could be a signed value, we don't have the + option of returning -1 like int_size_in_byte can. */ + +HOST_WIDE_INT +int_byte_position (const_tree field) +{ + return tree_to_shwi (byte_position (field)); +} + +/* Return, as a tree node, the number of elements for TYPE (which is an + ARRAY_TYPE) minus one. This counts only elements of the top array. */ + +tree +array_type_nelts (const_tree type) +{ + tree index_type, min, max; + + /* If they did it with unspecified bounds, then we should have already + given an error about it before we got here. */ + if (! TYPE_DOMAIN (type)) + return error_mark_node; + + index_type = TYPE_DOMAIN (type); + min = TYPE_MIN_VALUE (index_type); + max = TYPE_MAX_VALUE (index_type); + + /* TYPE_MAX_VALUE may not be set if the array has unknown length. */ + if (!max) + { + /* zero sized arrays are represented from C FE as complete types with + NULL TYPE_MAX_VALUE and zero TYPE_SIZE, while C++ FE represents + them as min 0, max -1. */ + if (COMPLETE_TYPE_P (type) + && integer_zerop (TYPE_SIZE (type)) + && integer_zerop (min)) + return build_int_cst (TREE_TYPE (min), -1); + + return error_mark_node; + } + + return (integer_zerop (min) + ? max + : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min)); +} + +/* If arg is static -- a reference to an object in static storage -- then + return the object. This is not the same as the C meaning of `static'. + If arg isn't static, return NULL. */ + +tree +staticp (tree arg) +{ + switch (TREE_CODE (arg)) + { + case FUNCTION_DECL: + /* Nested functions are static, even though taking their address will + involve a trampoline as we unnest the nested function and create + the trampoline on the tree level. */ + return arg; + + case VAR_DECL: + return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg)) + && ! DECL_THREAD_LOCAL_P (arg) + && ! DECL_DLLIMPORT_P (arg) + ? arg : NULL); + + case CONST_DECL: + return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg)) + ? arg : NULL); + + case CONSTRUCTOR: + return TREE_STATIC (arg) ? arg : NULL; + + case LABEL_DECL: + case STRING_CST: + return arg; + + case COMPONENT_REF: + /* If the thing being referenced is not a field, then it is + something language specific. */ + gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL); + + /* If we are referencing a bitfield, we can't evaluate an + ADDR_EXPR at compile time and so it isn't a constant. */ + if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1))) + return NULL; + + return staticp (TREE_OPERAND (arg, 0)); + + case BIT_FIELD_REF: + return NULL; + + case INDIRECT_REF: + return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL; + + case ARRAY_REF: + case ARRAY_RANGE_REF: + if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST + && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST) + return staticp (TREE_OPERAND (arg, 0)); + else + return NULL; + + case COMPOUND_LITERAL_EXPR: + return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL; + + default: + return NULL; + } +} + + + + +/* Return whether OP is a DECL whose address is function-invariant. */ + +bool +decl_address_invariant_p (const_tree op) +{ + /* The conditions below are slightly less strict than the one in + staticp. */ + + switch (TREE_CODE (op)) + { + case PARM_DECL: + case RESULT_DECL: + case LABEL_DECL: + case FUNCTION_DECL: + return true; + + case VAR_DECL: + if ((TREE_STATIC (op) || DECL_EXTERNAL (op)) + || DECL_THREAD_LOCAL_P (op) + || DECL_CONTEXT (op) == current_function_decl + || decl_function_context (op) == current_function_decl) + return true; + break; + + case CONST_DECL: + if ((TREE_STATIC (op) || DECL_EXTERNAL (op)) + || decl_function_context (op) == current_function_decl) + return true; + break; + + default: + break; + } + + return false; +} + +/* Return whether OP is a DECL whose address is interprocedural-invariant. */ + +bool +decl_address_ip_invariant_p (const_tree op) +{ + /* The conditions below are slightly less strict than the one in + staticp. */ + + switch (TREE_CODE (op)) + { + case LABEL_DECL: + case FUNCTION_DECL: + case STRING_CST: + return true; + + case VAR_DECL: + if (((TREE_STATIC (op) || DECL_EXTERNAL (op)) + && !DECL_DLLIMPORT_P (op)) + || DECL_THREAD_LOCAL_P (op)) + return true; + break; + + case CONST_DECL: + if ((TREE_STATIC (op) || DECL_EXTERNAL (op))) + return true; + break; + + default: + break; + } + + return false; +} + + +/* Return true if T is function-invariant (internal function, does + not handle arithmetic; that's handled in skip_simple_arithmetic and + tree_invariant_p). */ + +static bool +tree_invariant_p_1 (tree t) +{ + tree op; + + if (TREE_CONSTANT (t) + || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t))) + return true; + + switch (TREE_CODE (t)) + { + case SAVE_EXPR: + return true; + + case ADDR_EXPR: + op = TREE_OPERAND (t, 0); + while (handled_component_p (op)) + { + switch (TREE_CODE (op)) + { + case ARRAY_REF: + case ARRAY_RANGE_REF: + if (!tree_invariant_p (TREE_OPERAND (op, 1)) + || TREE_OPERAND (op, 2) != NULL_TREE + || TREE_OPERAND (op, 3) != NULL_TREE) + return false; + break; + + case COMPONENT_REF: + if (TREE_OPERAND (op, 2) != NULL_TREE) + return false; + break; + + default:; + } + op = TREE_OPERAND (op, 0); + } + + return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op); + + default: + break; + } + + return false; +} + +/* Return true if T is function-invariant. */ + +bool +tree_invariant_p (tree t) +{ + tree inner = skip_simple_arithmetic (t); + return tree_invariant_p_1 (inner); +} + +/* Wrap a SAVE_EXPR around EXPR, if appropriate. + Do this to any expression which may be used in more than one place, + but must be evaluated only once. + + Normally, expand_expr would reevaluate the expression each time. + Calling save_expr produces something that is evaluated and recorded + the first time expand_expr is called on it. Subsequent calls to + expand_expr just reuse the recorded value. + + The call to expand_expr that generates code that actually computes + the value is the first call *at compile time*. Subsequent calls + *at compile time* generate code to use the saved value. + This produces correct result provided that *at run time* control + always flows through the insns made by the first expand_expr + before reaching the other places where the save_expr was evaluated. + You, the caller of save_expr, must make sure this is so. + + Constants, and certain read-only nodes, are returned with no + SAVE_EXPR because that is safe. Expressions containing placeholders + are not touched; see tree.def for an explanation of what these + are used for. */ + +tree +save_expr (tree expr) +{ + tree inner; + + /* If the tree evaluates to a constant, then we don't want to hide that + fact (i.e. this allows further folding, and direct checks for constants). + However, a read-only object that has side effects cannot be bypassed. + Since it is no problem to reevaluate literals, we just return the + literal node. */ + inner = skip_simple_arithmetic (expr); + if (TREE_CODE (inner) == ERROR_MARK) + return inner; + + if (tree_invariant_p_1 (inner)) + return expr; + + /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since + it means that the size or offset of some field of an object depends on + the value within another field. + + Note that it must not be the case that EXPR contains both a PLACEHOLDER_EXPR + and some variable since it would then need to be both evaluated once and + evaluated more than once. Front-ends must assure this case cannot + happen by surrounding any such subexpressions in their own SAVE_EXPR + and forcing evaluation at the proper time. */ + if (contains_placeholder_p (inner)) + return expr; + + expr = build1_loc (EXPR_LOCATION (expr), SAVE_EXPR, TREE_TYPE (expr), expr); + + /* This expression might be placed ahead of a jump to ensure that the + value was computed on both sides of the jump. So make sure it isn't + eliminated as dead. */ + TREE_SIDE_EFFECTS (expr) = 1; + return expr; +} + +/* Look inside EXPR into any simple arithmetic operations. Return the + outermost non-arithmetic or non-invariant node. */ + +tree +skip_simple_arithmetic (tree expr) +{ + /* We don't care about whether this can be used as an lvalue in this + context. */ + while (TREE_CODE (expr) == NON_LVALUE_EXPR) + expr = TREE_OPERAND (expr, 0); + + /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and + a constant, it will be more efficient to not make another SAVE_EXPR since + it will allow better simplification and GCSE will be able to merge the + computations if they actually occur. */ + while (true) + { + if (UNARY_CLASS_P (expr)) + expr = TREE_OPERAND (expr, 0); + else if (BINARY_CLASS_P (expr)) + { + if (tree_invariant_p (TREE_OPERAND (expr, 1))) + expr = TREE_OPERAND (expr, 0); + else if (tree_invariant_p (TREE_OPERAND (expr, 0))) + expr = TREE_OPERAND (expr, 1); + else + break; + } + else + break; + } + + return expr; +} + +/* Look inside EXPR into simple arithmetic operations involving constants. + Return the outermost non-arithmetic or non-constant node. */ + +tree +skip_simple_constant_arithmetic (tree expr) +{ + while (TREE_CODE (expr) == NON_LVALUE_EXPR) + expr = TREE_OPERAND (expr, 0); + + while (true) + { + if (UNARY_CLASS_P (expr)) + expr = TREE_OPERAND (expr, 0); + else if (BINARY_CLASS_P (expr)) + { + if (TREE_CONSTANT (TREE_OPERAND (expr, 1))) + expr = TREE_OPERAND (expr, 0); + else if (TREE_CONSTANT (TREE_OPERAND (expr, 0))) + expr = TREE_OPERAND (expr, 1); + else + break; + } + else + break; + } + + return expr; +} + +/* Return which tree structure is used by T. */ + +enum tree_node_structure_enum +tree_node_structure (const_tree t) +{ + const enum tree_code code = TREE_CODE (t); + return tree_node_structure_for_code (code); +} + +/* Set various status flags when building a CALL_EXPR object T. */ + +static void +process_call_operands (tree t) +{ + bool side_effects = TREE_SIDE_EFFECTS (t); + bool read_only = false; + int i = call_expr_flags (t); + + /* Calls have side-effects, except those to const or pure functions. */ + if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE))) + side_effects = true; + /* Propagate TREE_READONLY of arguments for const functions. */ + if (i & ECF_CONST) + read_only = true; + + if (!side_effects || read_only) + for (i = 1; i < TREE_OPERAND_LENGTH (t); i++) + { + tree op = TREE_OPERAND (t, i); + if (op && TREE_SIDE_EFFECTS (op)) + side_effects = true; + if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op)) + read_only = false; + } + + TREE_SIDE_EFFECTS (t) = side_effects; + TREE_READONLY (t) = read_only; +} + +/* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a + size or offset that depends on a field within a record. */ + +bool +contains_placeholder_p (const_tree exp) +{ + enum tree_code code; + + if (!exp) + return 0; + + code = TREE_CODE (exp); + if (code == PLACEHOLDER_EXPR) + return 1; + + switch (TREE_CODE_CLASS (code)) + { + case tcc_reference: + /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit + position computations since they will be converted into a + WITH_RECORD_EXPR involving the reference, which will assume + here will be valid. */ + return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0)); + + case tcc_exceptional: + if (code == TREE_LIST) + return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp)) + || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp))); + break; + + case tcc_unary: + case tcc_binary: + case tcc_comparison: + case tcc_expression: + switch (code) + { + case COMPOUND_EXPR: + /* Ignoring the first operand isn't quite right, but works best. */ + return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)); + + case COND_EXPR: + return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0)) + || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)) + || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2))); + + case SAVE_EXPR: + /* The save_expr function never wraps anything containing + a PLACEHOLDER_EXPR. */ + return 0; + + default: + break; + } + + switch (TREE_CODE_LENGTH (code)) + { + case 1: + return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0)); + case 2: + return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0)) + || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))); + default: + return 0; + } + + case tcc_vl_exp: + switch (code) + { + case CALL_EXPR: + { + const_tree arg; + const_call_expr_arg_iterator iter; + FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp) + if (CONTAINS_PLACEHOLDER_P (arg)) + return 1; + return 0; + } + default: + return 0; + } + + default: + return 0; + } + return 0; +} + +/* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR + directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and + field positions. */ + +static bool +type_contains_placeholder_1 (const_tree type) +{ + /* If the size contains a placeholder or the parent type (component type in + the case of arrays) type involves a placeholder, this type does. */ + if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type)) + || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type)) + || (!POINTER_TYPE_P (type) + && TREE_TYPE (type) + && type_contains_placeholder_p (TREE_TYPE (type)))) + return true; + + /* Now do type-specific checks. Note that the last part of the check above + greatly limits what we have to do below. */ + switch (TREE_CODE (type)) + { + case VOID_TYPE: + case OPAQUE_TYPE: + case COMPLEX_TYPE: + case ENUMERAL_TYPE: + case BOOLEAN_TYPE: + case POINTER_TYPE: + case OFFSET_TYPE: + case REFERENCE_TYPE: + case METHOD_TYPE: + case FUNCTION_TYPE: + case VECTOR_TYPE: + case NULLPTR_TYPE: + return false; + + case INTEGER_TYPE: + case REAL_TYPE: + case FIXED_POINT_TYPE: + /* Here we just check the bounds. */ + return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type)) + || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type))); + + case ARRAY_TYPE: + /* We have already checked the component type above, so just check + the domain type. Flexible array members have a null domain. */ + return TYPE_DOMAIN (type) ? + type_contains_placeholder_p (TYPE_DOMAIN (type)) : false; + + case RECORD_TYPE: + case UNION_TYPE: + case QUAL_UNION_TYPE: + { + tree field; + + for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) + if (TREE_CODE (field) == FIELD_DECL + && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field)) + || (TREE_CODE (type) == QUAL_UNION_TYPE + && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field))) + || type_contains_placeholder_p (TREE_TYPE (field)))) + return true; + + return false; + } + + default: + gcc_unreachable (); + } +} + +/* Wrapper around above function used to cache its result. */ + +bool +type_contains_placeholder_p (tree type) +{ + bool result; + + /* If the contains_placeholder_bits field has been initialized, + then we know the answer. */ + if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0) + return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1; + + /* Indicate that we've seen this type node, and the answer is false. + This is what we want to return if we run into recursion via fields. */ + TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1; + + /* Compute the real value. */ + result = type_contains_placeholder_1 (type); + + /* Store the real value. */ + TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1; + + return result; +} + +/* Push tree EXP onto vector QUEUE if it is not already present. */ + +static void +push_without_duplicates (tree exp, vec<tree> *queue) +{ + unsigned int i; + tree iter; + + FOR_EACH_VEC_ELT (*queue, i, iter) + if (simple_cst_equal (iter, exp) == 1) + break; + + if (!iter) + queue->safe_push (exp); +} + +/* Given a tree EXP, find all occurrences of references to fields + in a PLACEHOLDER_EXPR and place them in vector REFS without + duplicates. Also record VAR_DECLs and CONST_DECLs. Note that + we assume here that EXP contains only arithmetic expressions + or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their + argument list. */ + +void +find_placeholder_in_expr (tree exp, vec<tree> *refs) +{ + enum tree_code code = TREE_CODE (exp); + tree inner; + int i; + + /* We handle TREE_LIST and COMPONENT_REF separately. */ + if (code == TREE_LIST) + { + FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs); + FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs); + } + else if (code == COMPONENT_REF) + { + for (inner = TREE_OPERAND (exp, 0); + REFERENCE_CLASS_P (inner); + inner = TREE_OPERAND (inner, 0)) + ; + + if (TREE_CODE (inner) == PLACEHOLDER_EXPR) + push_without_duplicates (exp, refs); + else + FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs); + } + else + switch (TREE_CODE_CLASS (code)) + { + case tcc_constant: + break; + + case tcc_declaration: + /* Variables allocated to static storage can stay. */ + if (!TREE_STATIC (exp)) + push_without_duplicates (exp, refs); + break; + + case tcc_expression: + /* This is the pattern built in ada/make_aligning_type. */ + if (code == ADDR_EXPR + && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR) + { + push_without_duplicates (exp, refs); + break; + } + + /* Fall through. */ + + case tcc_exceptional: + case tcc_unary: + case tcc_binary: + case tcc_comparison: + case tcc_reference: + for (i = 0; i < TREE_CODE_LENGTH (code); i++) + FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs); + break; + + case tcc_vl_exp: + for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++) + FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs); + break; + + default: + gcc_unreachable (); + } +} + +/* Given a tree EXP, a FIELD_DECL F, and a replacement value R, + return a tree with all occurrences of references to F in a + PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and + CONST_DECLs. Note that we assume here that EXP contains only + arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs + occurring only in their argument list. */ + +tree +substitute_in_expr (tree exp, tree f, tree r) +{ + enum tree_code code = TREE_CODE (exp); + tree op0, op1, op2, op3; + tree new_tree; + + /* We handle TREE_LIST and COMPONENT_REF separately. */ + if (code == TREE_LIST) + { + op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r); + op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r); + if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp)) + return exp; + + return tree_cons (TREE_PURPOSE (exp), op1, op0); + } + else if (code == COMPONENT_REF) + { + tree inner; + + /* If this expression is getting a value from a PLACEHOLDER_EXPR + and it is the right field, replace it with R. */ + for (inner = TREE_OPERAND (exp, 0); + REFERENCE_CLASS_P (inner); + inner = TREE_OPERAND (inner, 0)) + ; + + /* The field. */ + op1 = TREE_OPERAND (exp, 1); + + if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f) + return r; + + /* If this expression hasn't been completed let, leave it alone. */ + if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner)) + return exp; + + op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r); + if (op0 == TREE_OPERAND (exp, 0)) + return exp; + + new_tree + = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE); + } + else + switch (TREE_CODE_CLASS (code)) + { + case tcc_constant: + return exp; + + case tcc_declaration: + if (exp == f) + return r; + else + return exp; + + case tcc_expression: + if (exp == f) + return r; + + /* Fall through. */ + + case tcc_exceptional: + case tcc_unary: + case tcc_binary: + case tcc_comparison: + case tcc_reference: + switch (TREE_CODE_LENGTH (code)) + { + case 0: + return exp; + + case 1: + op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r); + if (op0 == TREE_OPERAND (exp, 0)) + return exp; + + new_tree = fold_build1 (code, TREE_TYPE (exp), op0); + break; + + case 2: + op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r); + op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r); + + if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)) + return exp; + + new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1); + break; + + case 3: + op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r); + op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r); + op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r); + + if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1) + && op2 == TREE_OPERAND (exp, 2)) + return exp; + + new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2); + break; + + case 4: + op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r); + op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r); + op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r); + op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r); + + if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1) + && op2 == TREE_OPERAND (exp, 2) + && op3 == TREE_OPERAND (exp, 3)) + return exp; + + new_tree + = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3)); + break; + + default: + gcc_unreachable (); + } + break; + + case tcc_vl_exp: + { + int i; + + new_tree = NULL_TREE; + + /* If we are trying to replace F with a constant or with another + instance of one of the arguments of the call, inline back + functions which do nothing else than computing a value from + the arguments they are passed. This makes it possible to + fold partially or entirely the replacement expression. */ + if (code == CALL_EXPR) + { + bool maybe_inline = false; + if (CONSTANT_CLASS_P (r)) + maybe_inline = true; + else + for (i = 3; i < TREE_OPERAND_LENGTH (exp); i++) + if (operand_equal_p (TREE_OPERAND (exp, i), r, 0)) + { + maybe_inline = true; + break; + } + if (maybe_inline) + { + tree t = maybe_inline_call_in_expr (exp); + if (t) + return SUBSTITUTE_IN_EXPR (t, f, r); + } + } + + for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++) + { + tree op = TREE_OPERAND (exp, i); + tree new_op = SUBSTITUTE_IN_EXPR (op, f, r); + if (new_op != op) + { + if (!new_tree) + new_tree = copy_node (exp); + TREE_OPERAND (new_tree, i) = new_op; + } + } + + if (new_tree) + { + new_tree = fold (new_tree); + if (TREE_CODE (new_tree) == CALL_EXPR) + process_call_operands (new_tree); + } + else + return exp; + } + break; + + default: + gcc_unreachable (); + } + + TREE_READONLY (new_tree) |= TREE_READONLY (exp); + + if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF) + TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp); + + return new_tree; +} + +/* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement + for it within OBJ, a tree that is an object or a chain of references. */ + +tree +substitute_placeholder_in_expr (tree exp, tree obj) +{ + enum tree_code code = TREE_CODE (exp); + tree op0, op1, op2, op3; + tree new_tree; + + /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type + in the chain of OBJ. */ + if (code == PLACEHOLDER_EXPR) + { + tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp)); + tree elt; + + for (elt = obj; elt != 0; + elt = ((TREE_CODE (elt) == COMPOUND_EXPR + || TREE_CODE (elt) == COND_EXPR) + ? TREE_OPERAND (elt, 1) + : (REFERENCE_CLASS_P (elt) + || UNARY_CLASS_P (elt) + || BINARY_CLASS_P (elt) + || VL_EXP_CLASS_P (elt) + || EXPRESSION_CLASS_P (elt)) + ? TREE_OPERAND (elt, 0) : 0)) + if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type) + return elt; + + for (elt = obj; elt != 0; + elt = ((TREE_CODE (elt) == COMPOUND_EXPR + || TREE_CODE (elt) == COND_EXPR) + ? TREE_OPERAND (elt, 1) + : (REFERENCE_CLASS_P (elt) + || UNARY_CLASS_P (elt) + || BINARY_CLASS_P (elt) + || VL_EXP_CLASS_P (elt) + || EXPRESSION_CLASS_P (elt)) + ? TREE_OPERAND (elt, 0) : 0)) + if (POINTER_TYPE_P (TREE_TYPE (elt)) + && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt))) + == need_type)) + return fold_build1 (INDIRECT_REF, need_type, elt); + + /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it + survives until RTL generation, there will be an error. */ + return exp; + } + + /* TREE_LIST is special because we need to look at TREE_VALUE + and TREE_CHAIN, not TREE_OPERANDS. */ + else if (code == TREE_LIST) + { + op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj); + op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj); + if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp)) + return exp; + + return tree_cons (TREE_PURPOSE (exp), op1, op0); + } + else + switch (TREE_CODE_CLASS (code)) + { + case tcc_constant: + case tcc_declaration: + return exp; + + case tcc_exceptional: + case tcc_unary: + case tcc_binary: + case tcc_comparison: + case tcc_expression: + case tcc_reference: + case tcc_statement: + switch (TREE_CODE_LENGTH (code)) + { + case 0: + return exp; + + case 1: + op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj); + if (op0 == TREE_OPERAND (exp, 0)) + return exp; + + new_tree = fold_build1 (code, TREE_TYPE (exp), op0); + break; + + case 2: + op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj); + op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj); + + if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)) + return exp; + + new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1); + break; + + case 3: + op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj); + op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj); + op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj); + + if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1) + && op2 == TREE_OPERAND (exp, 2)) + return exp; + + new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2); + break; + + case 4: + op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj); + op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj); + op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj); + op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj); + + if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1) + && op2 == TREE_OPERAND (exp, 2) + && op3 == TREE_OPERAND (exp, 3)) + return exp; + + new_tree + = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3)); + break; + + default: + gcc_unreachable (); + } + break; + + case tcc_vl_exp: + { + int i; + + new_tree = NULL_TREE; + + for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++) + { + tree op = TREE_OPERAND (exp, i); + tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj); + if (new_op != op) + { + if (!new_tree) + new_tree = copy_node (exp); + TREE_OPERAND (new_tree, i) = new_op; + } + } + + if (new_tree) + { + new_tree = fold (new_tree); + if (TREE_CODE (new_tree) == CALL_EXPR) + process_call_operands (new_tree); + } + else + return exp; + } + break; + + default: + gcc_unreachable (); + } + + TREE_READONLY (new_tree) |= TREE_READONLY (exp); + + if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF) + TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp); + + return new_tree; +} + + +/* Subroutine of stabilize_reference; this is called for subtrees of + references. Any expression with side-effects must be put in a SAVE_EXPR + to ensure that it is only evaluated once. + + We don't put SAVE_EXPR nodes around everything, because assigning very + simple expressions to temporaries causes us to miss good opportunities + for optimizations. Among other things, the opportunity to fold in the + addition of a constant into an addressing mode often gets lost, e.g. + "y[i+1] += x;". In general, we take the approach that we should not make + an assignment unless we are forced into it - i.e., that any non-side effect + operator should be allowed, and that cse should take care of coalescing + multiple utterances of the same expression should that prove fruitful. */ + +static tree +stabilize_reference_1 (tree e) +{ + tree result; + enum tree_code code = TREE_CODE (e); + + /* We cannot ignore const expressions because it might be a reference + to a const array but whose index contains side-effects. But we can + ignore things that are actual constant or that already have been + handled by this function. */ + + if (tree_invariant_p (e)) + return e; + + switch (TREE_CODE_CLASS (code)) + { + case tcc_exceptional: + /* Always wrap STATEMENT_LIST into SAVE_EXPR, even if it doesn't + have side-effects. */ + if (code == STATEMENT_LIST) + return save_expr (e); + /* FALLTHRU */ + case tcc_type: + case tcc_declaration: + case tcc_comparison: + case tcc_statement: + case tcc_expression: + case tcc_reference: + case tcc_vl_exp: + /* If the expression has side-effects, then encase it in a SAVE_EXPR + so that it will only be evaluated once. */ + /* The reference (r) and comparison (<) classes could be handled as + below, but it is generally faster to only evaluate them once. */ + if (TREE_SIDE_EFFECTS (e)) + return save_expr (e); + return e; + + case tcc_constant: + /* Constants need no processing. In fact, we should never reach + here. */ + return e; + + case tcc_binary: + /* Division is slow and tends to be compiled with jumps, + especially the division by powers of 2 that is often + found inside of an array reference. So do it just once. */ + if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR + || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR + || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR + || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR) + return save_expr (e); + /* Recursively stabilize each operand. */ + result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)), + stabilize_reference_1 (TREE_OPERAND (e, 1))); + break; + + case tcc_unary: + /* Recursively stabilize each operand. */ + result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0))); + break; + + default: + gcc_unreachable (); + } + + TREE_TYPE (result) = TREE_TYPE (e); + TREE_READONLY (result) = TREE_READONLY (e); + TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e); + TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e); + + return result; +} + +/* Stabilize a reference so that we can use it any number of times + without causing its operands to be evaluated more than once. + Returns the stabilized reference. This works by means of save_expr, + so see the caveats in the comments about save_expr. + + Also allows conversion expressions whose operands are references. + Any other kind of expression is returned unchanged. */ + +tree +stabilize_reference (tree ref) +{ + tree result; + enum tree_code code = TREE_CODE (ref); + + switch (code) + { + case VAR_DECL: + case PARM_DECL: + case RESULT_DECL: + /* No action is needed in this case. */ + return ref; + + CASE_CONVERT: + case FLOAT_EXPR: + case FIX_TRUNC_EXPR: + result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0))); + break; + + case INDIRECT_REF: + result = build_nt (INDIRECT_REF, + stabilize_reference_1 (TREE_OPERAND (ref, 0))); + break; + + case COMPONENT_REF: + result = build_nt (COMPONENT_REF, + stabilize_reference (TREE_OPERAND (ref, 0)), + TREE_OPERAND (ref, 1), NULL_TREE); + break; + + case BIT_FIELD_REF: + result = build_nt (BIT_FIELD_REF, + stabilize_reference (TREE_OPERAND (ref, 0)), + TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2)); + REF_REVERSE_STORAGE_ORDER (result) = REF_REVERSE_STORAGE_ORDER (ref); + break; + + case ARRAY_REF: + result = build_nt (ARRAY_REF, + stabilize_reference (TREE_OPERAND (ref, 0)), + stabilize_reference_1 (TREE_OPERAND (ref, 1)), + TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3)); + break; + + case ARRAY_RANGE_REF: + result = build_nt (ARRAY_RANGE_REF, + stabilize_reference (TREE_OPERAND (ref, 0)), + stabilize_reference_1 (TREE_OPERAND (ref, 1)), + TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3)); + break; + + case COMPOUND_EXPR: + /* We cannot wrap the first expression in a SAVE_EXPR, as then + it wouldn't be ignored. This matters when dealing with + volatiles. */ + return stabilize_reference_1 (ref); + + /* If arg isn't a kind of lvalue we recognize, make no change. + Caller should recognize the error for an invalid lvalue. */ + default: + return ref; + + case ERROR_MARK: + return error_mark_node; + } + + TREE_TYPE (result) = TREE_TYPE (ref); + TREE_READONLY (result) = TREE_READONLY (ref); + TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref); + TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref); + protected_set_expr_location (result, EXPR_LOCATION (ref)); + + return result; +} + +/* Low-level constructors for expressions. */ + +/* A helper function for build1 and constant folders. Set TREE_CONSTANT, + and TREE_SIDE_EFFECTS for an ADDR_EXPR. */ + +void +recompute_tree_invariant_for_addr_expr (tree t) +{ + tree node; + bool tc = true, se = false; + + gcc_assert (TREE_CODE (t) == ADDR_EXPR); + + /* We started out assuming this address is both invariant and constant, but + does not have side effects. Now go down any handled components and see if + any of them involve offsets that are either non-constant or non-invariant. + Also check for side-effects. + + ??? Note that this code makes no attempt to deal with the case where + taking the address of something causes a copy due to misalignment. */ + +#define UPDATE_FLAGS(NODE) \ +do { tree _node = (NODE); \ + if (_node && !TREE_CONSTANT (_node)) tc = false; \ + if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0) + + for (node = TREE_OPERAND (t, 0); handled_component_p (node); + node = TREE_OPERAND (node, 0)) + { + /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus + array reference (probably made temporarily by the G++ front end), + so ignore all the operands. */ + if ((TREE_CODE (node) == ARRAY_REF + || TREE_CODE (node) == ARRAY_RANGE_REF) + && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE) + { + UPDATE_FLAGS (TREE_OPERAND (node, 1)); + if (TREE_OPERAND (node, 2)) + UPDATE_FLAGS (TREE_OPERAND (node, 2)); + if (TREE_OPERAND (node, 3)) + UPDATE_FLAGS (TREE_OPERAND (node, 3)); + } + /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a + FIELD_DECL, apparently. The G++ front end can put something else + there, at least temporarily. */ + else if (TREE_CODE (node) == COMPONENT_REF + && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL) + { + if (TREE_OPERAND (node, 2)) + UPDATE_FLAGS (TREE_OPERAND (node, 2)); + } + } + + node = lang_hooks.expr_to_decl (node, &tc, &se); + + /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from + the address, since &(*a)->b is a form of addition. If it's a constant, the + address is constant too. If it's a decl, its address is constant if the + decl is static. Everything else is not constant and, furthermore, + taking the address of a volatile variable is not volatile. */ + if (TREE_CODE (node) == INDIRECT_REF + || TREE_CODE (node) == MEM_REF) + UPDATE_FLAGS (TREE_OPERAND (node, 0)); + else if (CONSTANT_CLASS_P (node)) + ; + else if (DECL_P (node)) + tc &= (staticp (node) != NULL_TREE); + else + { + tc = false; + se |= TREE_SIDE_EFFECTS (node); + } + + + TREE_CONSTANT (t) = tc; + TREE_SIDE_EFFECTS (t) = se; +#undef UPDATE_FLAGS +} + +/* Build an expression of code CODE, data type TYPE, and operands as + specified. Expressions and reference nodes can be created this way. + Constants, decls, types and misc nodes cannot be. + + We define 5 non-variadic functions, from 0 to 4 arguments. This is + enough for all extant tree codes. */ + +tree +build0 (enum tree_code code, tree tt MEM_STAT_DECL) +{ + tree t; + + gcc_assert (TREE_CODE_LENGTH (code) == 0); + + t = make_node (code PASS_MEM_STAT); + TREE_TYPE (t) = tt; + + return t; +} + +tree +build1 (enum tree_code code, tree type, tree node MEM_STAT_DECL) +{ + int length = sizeof (struct tree_exp); + tree t; + + record_node_allocation_statistics (code, length); + + gcc_assert (TREE_CODE_LENGTH (code) == 1); + + t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT); + + memset (t, 0, sizeof (struct tree_common)); + + TREE_SET_CODE (t, code); + + TREE_TYPE (t) = type; + SET_EXPR_LOCATION (t, UNKNOWN_LOCATION); + TREE_OPERAND (t, 0) = node; + if (node && !TYPE_P (node)) + { + TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node); + TREE_READONLY (t) = TREE_READONLY (node); + } + + if (TREE_CODE_CLASS (code) == tcc_statement) + { + if (code != DEBUG_BEGIN_STMT) + TREE_SIDE_EFFECTS (t) = 1; + } + else switch (code) + { + case VA_ARG_EXPR: + /* All of these have side-effects, no matter what their + operands are. */ + TREE_SIDE_EFFECTS (t) = 1; + TREE_READONLY (t) = 0; + break; + + case INDIRECT_REF: + /* Whether a dereference is readonly has nothing to do with whether + its operand is readonly. */ + TREE_READONLY (t) = 0; + break; + + case ADDR_EXPR: + if (node) + recompute_tree_invariant_for_addr_expr (t); + break; + + default: + if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR) + && node && !TYPE_P (node) + && TREE_CONSTANT (node)) + TREE_CONSTANT (t) = 1; + if (TREE_CODE_CLASS (code) == tcc_reference + && node && TREE_THIS_VOLATILE (node)) + TREE_THIS_VOLATILE (t) = 1; + break; + } + + return t; +} + +#define PROCESS_ARG(N) \ + do { \ + TREE_OPERAND (t, N) = arg##N; \ + if (arg##N &&!TYPE_P (arg##N)) \ + { \ + if (TREE_SIDE_EFFECTS (arg##N)) \ + side_effects = 1; \ + if (!TREE_READONLY (arg##N) \ + && !CONSTANT_CLASS_P (arg##N)) \ + (void) (read_only = 0); \ + if (!TREE_CONSTANT (arg##N)) \ + (void) (constant = 0); \ + } \ + } while (0) + +tree +build2 (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL) +{ + bool constant, read_only, side_effects, div_by_zero; + tree t; + + gcc_assert (TREE_CODE_LENGTH (code) == 2); + + if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR) + && arg0 && arg1 && tt && POINTER_TYPE_P (tt) + /* When sizetype precision doesn't match that of pointers + we need to be able to build explicit extensions or truncations + of the offset argument. */ + && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt)) + gcc_assert (TREE_CODE (arg0) == INTEGER_CST + && TREE_CODE (arg1) == INTEGER_CST); + + if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt) + gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0)) + && ptrofftype_p (TREE_TYPE (arg1))); + + t = make_node (code PASS_MEM_STAT); + TREE_TYPE (t) = tt; + + /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the + result based on those same flags for the arguments. But if the + arguments aren't really even `tree' expressions, we shouldn't be trying + to do this. */ + + /* Expressions without side effects may be constant if their + arguments are as well. */ + constant = (TREE_CODE_CLASS (code) == tcc_comparison + || TREE_CODE_CLASS (code) == tcc_binary); + read_only = 1; + side_effects = TREE_SIDE_EFFECTS (t); + + switch (code) + { + case TRUNC_DIV_EXPR: + case CEIL_DIV_EXPR: + case FLOOR_DIV_EXPR: + case ROUND_DIV_EXPR: + case EXACT_DIV_EXPR: + case CEIL_MOD_EXPR: + case FLOOR_MOD_EXPR: + case ROUND_MOD_EXPR: + case TRUNC_MOD_EXPR: + div_by_zero = integer_zerop (arg1); + break; + default: + div_by_zero = false; + } + + PROCESS_ARG (0); + PROCESS_ARG (1); + + TREE_SIDE_EFFECTS (t) = side_effects; + if (code == MEM_REF) + { + if (arg0 && TREE_CODE (arg0) == ADDR_EXPR) + { + tree o = TREE_OPERAND (arg0, 0); + TREE_READONLY (t) = TREE_READONLY (o); + TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o); + } + } + else + { + TREE_READONLY (t) = read_only; + /* Don't mark X / 0 as constant. */ + TREE_CONSTANT (t) = constant && !div_by_zero; + TREE_THIS_VOLATILE (t) + = (TREE_CODE_CLASS (code) == tcc_reference + && arg0 && TREE_THIS_VOLATILE (arg0)); + } + + return t; +} + + +tree +build3 (enum tree_code code, tree tt, tree arg0, tree arg1, + tree arg2 MEM_STAT_DECL) +{ + bool constant, read_only, side_effects; + tree t; + + gcc_assert (TREE_CODE_LENGTH (code) == 3); + gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp); + + t = make_node (code PASS_MEM_STAT); + TREE_TYPE (t) = tt; + + read_only = 1; + + /* As a special exception, if COND_EXPR has NULL branches, we + assume that it is a gimple statement and always consider + it to have side effects. */ + if (code == COND_EXPR + && tt == void_type_node + && arg1 == NULL_TREE + && arg2 == NULL_TREE) + side_effects = true; + else + side_effects = TREE_SIDE_EFFECTS (t); + + PROCESS_ARG (0); + PROCESS_ARG (1); + PROCESS_ARG (2); + + if (code == COND_EXPR) + TREE_READONLY (t) = read_only; + + TREE_SIDE_EFFECTS (t) = side_effects; + TREE_THIS_VOLATILE (t) + = (TREE_CODE_CLASS (code) == tcc_reference + && arg0 && TREE_THIS_VOLATILE (arg0)); + + return t; +} + +tree +build4 (enum tree_code code, tree tt, tree arg0, tree arg1, + tree arg2, tree arg3 MEM_STAT_DECL) +{ + bool constant, read_only, side_effects; + tree t; + + gcc_assert (TREE_CODE_LENGTH (code) == 4); + + t = make_node (code PASS_MEM_STAT); + TREE_TYPE (t) = tt; + + side_effects = TREE_SIDE_EFFECTS (t); + + PROCESS_ARG (0); + PROCESS_ARG (1); + PROCESS_ARG (2); + PROCESS_ARG (3); + + TREE_SIDE_EFFECTS (t) = side_effects; + TREE_THIS_VOLATILE (t) + = (TREE_CODE_CLASS (code) == tcc_reference + && arg0 && TREE_THIS_VOLATILE (arg0)); + + return t; +} + +tree +build5 (enum tree_code code, tree tt, tree arg0, tree arg1, + tree arg2, tree arg3, tree arg4 MEM_STAT_DECL) +{ + bool constant, read_only, side_effects; + tree t; + + gcc_assert (TREE_CODE_LENGTH (code) == 5); + + t = make_node (code PASS_MEM_STAT); + TREE_TYPE (t) = tt; + + side_effects = TREE_SIDE_EFFECTS (t); + + PROCESS_ARG (0); + PROCESS_ARG (1); + PROCESS_ARG (2); + PROCESS_ARG (3); + PROCESS_ARG (4); + + TREE_SIDE_EFFECTS (t) = side_effects; + if (code == TARGET_MEM_REF) + { + if (arg0 && TREE_CODE (arg0) == ADDR_EXPR) + { + tree o = TREE_OPERAND (arg0, 0); + TREE_READONLY (t) = TREE_READONLY (o); + TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o); + } + } + else + TREE_THIS_VOLATILE (t) + = (TREE_CODE_CLASS (code) == tcc_reference + && arg0 && TREE_THIS_VOLATILE (arg0)); + + return t; +} + +/* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF + on the pointer PTR. */ + +tree +build_simple_mem_ref_loc (location_t loc, tree ptr) +{ + poly_int64 offset = 0; + tree ptype = TREE_TYPE (ptr); + tree tem; + /* For convenience allow addresses that collapse to a simple base + and offset. */ + if (TREE_CODE (ptr) == ADDR_EXPR + && (handled_component_p (TREE_OPERAND (ptr, 0)) + || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF)) + { + ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset); + gcc_assert (ptr); + if (TREE_CODE (ptr) == MEM_REF) + { + offset += mem_ref_offset (ptr).force_shwi (); + ptr = TREE_OPERAND (ptr, 0); + } + else + ptr = build_fold_addr_expr (ptr); + gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr)); + } + tem = build2 (MEM_REF, TREE_TYPE (ptype), + ptr, build_int_cst (ptype, offset)); + SET_EXPR_LOCATION (tem, loc); + return tem; +} + +/* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */ + +poly_offset_int +mem_ref_offset (const_tree t) +{ + return poly_offset_int::from (wi::to_poly_wide (TREE_OPERAND (t, 1)), + SIGNED); +} + +/* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE + offsetted by OFFSET units. */ + +tree +build_invariant_address (tree type, tree base, poly_int64 offset) +{ + tree ref = fold_build2 (MEM_REF, TREE_TYPE (type), + build_fold_addr_expr (base), + build_int_cst (ptr_type_node, offset)); + tree addr = build1 (ADDR_EXPR, type, ref); + recompute_tree_invariant_for_addr_expr (addr); + return addr; +} + +/* Similar except don't specify the TREE_TYPE + and leave the TREE_SIDE_EFFECTS as 0. + It is permissible for arguments to be null, + or even garbage if their values do not matter. */ + +tree +build_nt (enum tree_code code, ...) +{ + tree t; + int length; + int i; + va_list p; + + gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp); + + va_start (p, code); + + t = make_node (code); + length = TREE_CODE_LENGTH (code); + + for (i = 0; i < length; i++) + TREE_OPERAND (t, i) = va_arg (p, tree); + + va_end (p); + return t; +} + +/* Similar to build_nt, but for creating a CALL_EXPR object with a + tree vec. */ + +tree +build_nt_call_vec (tree fn, vec<tree, va_gc> *args) +{ + tree ret, t; + unsigned int ix; + + ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3); + CALL_EXPR_FN (ret) = fn; + CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE; + FOR_EACH_VEC_SAFE_ELT (args, ix, t) + CALL_EXPR_ARG (ret, ix) = t; + return ret; +} + +/* Create a DECL_... node of code CODE, name NAME (if non-null) + and data type TYPE. + We do NOT enter this node in any sort of symbol table. + + LOC is the location of the decl. + + layout_decl is used to set up the decl's storage layout. + Other slots are initialized to 0 or null pointers. */ + +tree +build_decl (location_t loc, enum tree_code code, tree name, + tree type MEM_STAT_DECL) +{ + tree t; + + t = make_node (code PASS_MEM_STAT); + DECL_SOURCE_LOCATION (t) = loc; + +/* if (type == error_mark_node) + type = integer_type_node; */ +/* That is not done, deliberately, so that having error_mark_node + as the type can suppress useless errors in the use of this variable. */ + + DECL_NAME (t) = name; + TREE_TYPE (t) = type; + + if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL) + layout_decl (t, 0); + + return t; +} + +/* Create and return a DEBUG_EXPR_DECL node of the given TYPE. */ + +tree +build_debug_expr_decl (tree type) +{ + tree vexpr = make_node (DEBUG_EXPR_DECL); + DECL_ARTIFICIAL (vexpr) = 1; + TREE_TYPE (vexpr) = type; + SET_DECL_MODE (vexpr, TYPE_MODE (type)); + return vexpr; +} + +/* Builds and returns function declaration with NAME and TYPE. */ + +tree +build_fn_decl (const char *name, tree type) +{ + tree id = get_identifier (name); + tree decl = build_decl (input_location, FUNCTION_DECL, id, type); + + DECL_EXTERNAL (decl) = 1; + TREE_PUBLIC (decl) = 1; + DECL_ARTIFICIAL (decl) = 1; + TREE_NOTHROW (decl) = 1; + + return decl; +} + +vec<tree, va_gc> *all_translation_units; + +/* Builds a new translation-unit decl with name NAME, queues it in the + global list of translation-unit decls and returns it. */ + +tree +build_translation_unit_decl (tree name) +{ + tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL, + name, NULL_TREE); + TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name; + vec_safe_push (all_translation_units, tu); + return tu; +} + + +/* BLOCK nodes are used to represent the structure of binding contours + and declarations, once those contours have been exited and their contents + compiled. This information is used for outputting debugging info. */ + +tree +build_block (tree vars, tree subblocks, tree supercontext, tree chain) +{ + tree block = make_node (BLOCK); + + BLOCK_VARS (block) = vars; + BLOCK_SUBBLOCKS (block) = subblocks; + BLOCK_SUPERCONTEXT (block) = supercontext; + BLOCK_CHAIN (block) = chain; + return block; +} + + +/* Like SET_EXPR_LOCATION, but make sure the tree can have a location. + + LOC is the location to use in tree T. */ + +void +protected_set_expr_location (tree t, location_t loc) +{ + if (CAN_HAVE_LOCATION_P (t)) + SET_EXPR_LOCATION (t, loc); + else if (t && TREE_CODE (t) == STATEMENT_LIST) + { + t = expr_single (t); + if (t && CAN_HAVE_LOCATION_P (t)) + SET_EXPR_LOCATION (t, loc); + } +} + +/* Like PROTECTED_SET_EXPR_LOCATION, but only do that if T has + UNKNOWN_LOCATION. */ + +void +protected_set_expr_location_if_unset (tree t, location_t loc) +{ + t = expr_single (t); + if (t && !EXPR_HAS_LOCATION (t)) + protected_set_expr_location (t, loc); +} + +/* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask + of the various TYPE_QUAL values. */ + +static void +set_type_quals (tree type, int type_quals) +{ + TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0; + TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0; + TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0; + TYPE_ATOMIC (type) = (type_quals & TYPE_QUAL_ATOMIC) != 0; + TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals); +} + +/* Returns true iff CAND and BASE have equivalent language-specific + qualifiers. */ + +bool +check_lang_type (const_tree cand, const_tree base) +{ + if (lang_hooks.types.type_hash_eq == NULL) + return true; + /* type_hash_eq currently only applies to these types. */ + if (TREE_CODE (cand) != FUNCTION_TYPE + && TREE_CODE (cand) != METHOD_TYPE) + return true; + return lang_hooks.types.type_hash_eq (cand, base); +} + +/* This function checks to see if TYPE matches the size one of the built-in + atomic types, and returns that core atomic type. */ + +static tree +find_atomic_core_type (const_tree type) +{ + tree base_atomic_type; + + /* Only handle complete types. */ + if (!tree_fits_uhwi_p (TYPE_SIZE (type))) + return NULL_TREE; + + switch (tree_to_uhwi (TYPE_SIZE (type))) + { + case 8: + base_atomic_type = atomicQI_type_node; + break; + + case 16: + base_atomic_type = atomicHI_type_node; + break; + + case 32: + base_atomic_type = atomicSI_type_node; + break; + + case 64: + base_atomic_type = atomicDI_type_node; + break; + + case 128: + base_atomic_type = atomicTI_type_node; + break; + + default: + base_atomic_type = NULL_TREE; + } + + return base_atomic_type; +} + +/* Returns true iff unqualified CAND and BASE are equivalent. */ + +bool +check_base_type (const_tree cand, const_tree base) +{ + if (TYPE_NAME (cand) != TYPE_NAME (base) + /* Apparently this is needed for Objective-C. */ + || TYPE_CONTEXT (cand) != TYPE_CONTEXT (base) + || !attribute_list_equal (TYPE_ATTRIBUTES (cand), + TYPE_ATTRIBUTES (base))) + return false; + /* Check alignment. */ + if (TYPE_ALIGN (cand) == TYPE_ALIGN (base) + && TYPE_USER_ALIGN (cand) == TYPE_USER_ALIGN (base)) + return true; + /* Atomic types increase minimal alignment. We must to do so as well + or we get duplicated canonical types. See PR88686. */ + if ((TYPE_QUALS (cand) & TYPE_QUAL_ATOMIC)) + { + /* See if this object can map to a basic atomic type. */ + tree atomic_type = find_atomic_core_type (cand); + if (atomic_type && TYPE_ALIGN (atomic_type) == TYPE_ALIGN (cand)) + return true; + } + return false; +} + +/* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */ + +bool +check_qualified_type (const_tree cand, const_tree base, int type_quals) +{ + return (TYPE_QUALS (cand) == type_quals + && check_base_type (cand, base) + && check_lang_type (cand, base)); +} + +/* Returns true iff CAND is equivalent to BASE with ALIGN. */ + +static bool +check_aligned_type (const_tree cand, const_tree base, unsigned int align) +{ + return (TYPE_QUALS (cand) == TYPE_QUALS (base) + && TYPE_NAME (cand) == TYPE_NAME (base) + /* Apparently this is needed for Objective-C. */ + && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base) + /* Check alignment. */ + && TYPE_ALIGN (cand) == align + /* Check this is a user-aligned type as build_aligned_type + would create. */ + && TYPE_USER_ALIGN (cand) + && attribute_list_equal (TYPE_ATTRIBUTES (cand), + TYPE_ATTRIBUTES (base)) + && check_lang_type (cand, base)); +} + +/* Return a version of the TYPE, qualified as indicated by the + TYPE_QUALS, if one exists. If no qualified version exists yet, + return NULL_TREE. */ + +tree +get_qualified_type (tree type, int type_quals) +{ + if (TYPE_QUALS (type) == type_quals) + return type; + + tree mv = TYPE_MAIN_VARIANT (type); + if (check_qualified_type (mv, type, type_quals)) + return mv; + + /* Search the chain of variants to see if there is already one there just + like the one we need to have. If so, use that existing one. We must + preserve the TYPE_NAME, since there is code that depends on this. */ + for (tree *tp = &TYPE_NEXT_VARIANT (mv); *tp; tp = &TYPE_NEXT_VARIANT (*tp)) + if (check_qualified_type (*tp, type, type_quals)) + { + /* Put the found variant at the head of the variant list so + frequently searched variants get found faster. The C++ FE + benefits greatly from this. */ + tree t = *tp; + *tp = TYPE_NEXT_VARIANT (t); + TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (mv); + TYPE_NEXT_VARIANT (mv) = t; + return t; + } + + return NULL_TREE; +} + +/* Like get_qualified_type, but creates the type if it does not + exist. This function never returns NULL_TREE. */ + +tree +build_qualified_type (tree type, int type_quals MEM_STAT_DECL) +{ + tree t; + + /* See if we already have the appropriate qualified variant. */ + t = get_qualified_type (type, type_quals); + + /* If not, build it. */ + if (!t) + { + t = build_variant_type_copy (type PASS_MEM_STAT); + set_type_quals (t, type_quals); + + if (((type_quals & TYPE_QUAL_ATOMIC) == TYPE_QUAL_ATOMIC)) + { + /* See if this object can map to a basic atomic type. */ + tree atomic_type = find_atomic_core_type (type); + if (atomic_type) + { + /* Ensure the alignment of this type is compatible with + the required alignment of the atomic type. */ + if (TYPE_ALIGN (atomic_type) > TYPE_ALIGN (t)) + SET_TYPE_ALIGN (t, TYPE_ALIGN (atomic_type)); + } + } + + if (TYPE_STRUCTURAL_EQUALITY_P (type)) + /* Propagate structural equality. */ + SET_TYPE_STRUCTURAL_EQUALITY (t); + else if (TYPE_CANONICAL (type) != type) + /* Build the underlying canonical type, since it is different + from TYPE. */ + { + tree c = build_qualified_type (TYPE_CANONICAL (type), type_quals); + TYPE_CANONICAL (t) = TYPE_CANONICAL (c); + } + else + /* T is its own canonical type. */ + TYPE_CANONICAL (t) = t; + + } + + return t; +} + +/* Create a variant of type T with alignment ALIGN. */ + +tree +build_aligned_type (tree type, unsigned int align) +{ + tree t; + + if (TYPE_PACKED (type) + || TYPE_ALIGN (type) == align) + return type; + + for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t)) + if (check_aligned_type (t, type, align)) + return t; + + t = build_variant_type_copy (type); + SET_TYPE_ALIGN (t, align); + TYPE_USER_ALIGN (t) = 1; + + return t; +} + +/* Create a new distinct copy of TYPE. The new type is made its own + MAIN_VARIANT. If TYPE requires structural equality checks, the + resulting type requires structural equality checks; otherwise, its + TYPE_CANONICAL points to itself. */ + +tree +build_distinct_type_copy (tree type MEM_STAT_DECL) +{ + tree t = copy_node (type PASS_MEM_STAT); + + TYPE_POINTER_TO (t) = 0; + TYPE_REFERENCE_TO (t) = 0; + + /* Set the canonical type either to a new equivalence class, or + propagate the need for structural equality checks. */ + if (TYPE_STRUCTURAL_EQUALITY_P (type)) + SET_TYPE_STRUCTURAL_EQUALITY (t); + else + TYPE_CANONICAL (t) = t; + + /* Make it its own variant. */ + TYPE_MAIN_VARIANT (t) = t; + TYPE_NEXT_VARIANT (t) = 0; + + /* Note that it is now possible for TYPE_MIN_VALUE to be a value + whose TREE_TYPE is not t. This can also happen in the Ada + frontend when using subtypes. */ + + return t; +} + +/* Create a new variant of TYPE, equivalent but distinct. This is so + the caller can modify it. TYPE_CANONICAL for the return type will + be equivalent to TYPE_CANONICAL of TYPE, indicating that the types + are considered equal by the language itself (or that both types + require structural equality checks). */ + +tree +build_variant_type_copy (tree type MEM_STAT_DECL) +{ + tree t, m = TYPE_MAIN_VARIANT (type); + + t = build_distinct_type_copy (type PASS_MEM_STAT); + + /* Since we're building a variant, assume that it is a non-semantic + variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */ + TYPE_CANONICAL (t) = TYPE_CANONICAL (type); + /* Type variants have no alias set defined. */ + TYPE_ALIAS_SET (t) = -1; + + /* Add the new type to the chain of variants of TYPE. */ + TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m); + TYPE_NEXT_VARIANT (m) = t; + TYPE_MAIN_VARIANT (t) = m; + + return t; +} + +/* Return true if the from tree in both tree maps are equal. */ + +int +tree_map_base_eq (const void *va, const void *vb) +{ + const struct tree_map_base *const a = (const struct tree_map_base *) va, + *const b = (const struct tree_map_base *) vb; + return (a->from == b->from); +} + +/* Hash a from tree in a tree_base_map. */ + +unsigned int +tree_map_base_hash (const void *item) +{ + return htab_hash_pointer (((const struct tree_map_base *)item)->from); +} + +/* Return true if this tree map structure is marked for garbage collection + purposes. We simply return true if the from tree is marked, so that this + structure goes away when the from tree goes away. */ + +int +tree_map_base_marked_p (const void *p) +{ + return ggc_marked_p (((const struct tree_map_base *) p)->from); +} + +/* Hash a from tree in a tree_map. */ + +unsigned int +tree_map_hash (const void *item) +{ + return (((const struct tree_map *) item)->hash); +} + +/* Hash a from tree in a tree_decl_map. */ + +unsigned int +tree_decl_map_hash (const void *item) +{ + return DECL_UID (((const struct tree_decl_map *) item)->base.from); +} + +/* Return the initialization priority for DECL. */ + +priority_type +decl_init_priority_lookup (tree decl) +{ + symtab_node *snode = symtab_node::get (decl); + + if (!snode) + return DEFAULT_INIT_PRIORITY; + return + snode->get_init_priority (); +} + +/* Return the finalization priority for DECL. */ + +priority_type +decl_fini_priority_lookup (tree decl) +{ + cgraph_node *node = cgraph_node::get (decl); + + if (!node) + return DEFAULT_INIT_PRIORITY; + return + node->get_fini_priority (); +} + +/* Set the initialization priority for DECL to PRIORITY. */ + +void +decl_init_priority_insert (tree decl, priority_type priority) +{ + struct symtab_node *snode; + + if (priority == DEFAULT_INIT_PRIORITY) + { + snode = symtab_node::get (decl); + if (!snode) + return; + } + else if (VAR_P (decl)) + snode = varpool_node::get_create (decl); + else + snode = cgraph_node::get_create (decl); + snode->set_init_priority (priority); +} + +/* Set the finalization priority for DECL to PRIORITY. */ + +void +decl_fini_priority_insert (tree decl, priority_type priority) +{ + struct cgraph_node *node; + + if (priority == DEFAULT_INIT_PRIORITY) + { + node = cgraph_node::get (decl); + if (!node) + return; + } + else + node = cgraph_node::get_create (decl); + node->set_fini_priority (priority); +} + +/* Print out the statistics for the DECL_DEBUG_EXPR hash table. */ + +static void +print_debug_expr_statistics (void) +{ + fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n", + (long) debug_expr_for_decl->size (), + (long) debug_expr_for_decl->elements (), + debug_expr_for_decl->collisions ()); +} + +/* Print out the statistics for the DECL_VALUE_EXPR hash table. */ + +static void +print_value_expr_statistics (void) +{ + fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n", + (long) value_expr_for_decl->size (), + (long) value_expr_for_decl->elements (), + value_expr_for_decl->collisions ()); +} + +/* Lookup a debug expression for FROM, and return it if we find one. */ + +tree +decl_debug_expr_lookup (tree from) +{ + struct tree_decl_map *h, in; + in.base.from = from; + + h = debug_expr_for_decl->find_with_hash (&in, DECL_UID (from)); + if (h) + return h->to; + return NULL_TREE; +} + +/* Insert a mapping FROM->TO in the debug expression hashtable. */ + +void +decl_debug_expr_insert (tree from, tree to) +{ + struct tree_decl_map *h; + + h = ggc_alloc<tree_decl_map> (); + h->base.from = from; + h->to = to; + *debug_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h; +} + +/* Lookup a value expression for FROM, and return it if we find one. */ + +tree +decl_value_expr_lookup (tree from) +{ + struct tree_decl_map *h, in; + in.base.from = from; + + h = value_expr_for_decl->find_with_hash (&in, DECL_UID (from)); + if (h) + return h->to; + return NULL_TREE; +} + +/* Insert a mapping FROM->TO in the value expression hashtable. */ + +void +decl_value_expr_insert (tree from, tree to) +{ + struct tree_decl_map *h; + + h = ggc_alloc<tree_decl_map> (); + h->base.from = from; + h->to = to; + *value_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h; +} + +/* Lookup a vector of debug arguments for FROM, and return it if we + find one. */ + +vec<tree, va_gc> ** +decl_debug_args_lookup (tree from) +{ + struct tree_vec_map *h, in; + + if (!DECL_HAS_DEBUG_ARGS_P (from)) + return NULL; + gcc_checking_assert (debug_args_for_decl != NULL); + in.base.from = from; + h = debug_args_for_decl->find_with_hash (&in, DECL_UID (from)); + if (h) + return &h->to; + return NULL; +} + +/* Insert a mapping FROM->empty vector of debug arguments in the value + expression hashtable. */ + +vec<tree, va_gc> ** +decl_debug_args_insert (tree from) +{ + struct tree_vec_map *h; + tree_vec_map **loc; + + if (DECL_HAS_DEBUG_ARGS_P (from)) + return decl_debug_args_lookup (from); + if (debug_args_for_decl == NULL) + debug_args_for_decl = hash_table<tree_vec_map_cache_hasher>::create_ggc (64); + h = ggc_alloc<tree_vec_map> (); + h->base.from = from; + h->to = NULL; + loc = debug_args_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT); + *loc = h; + DECL_HAS_DEBUG_ARGS_P (from) = 1; + return &h->to; +} + +/* Hashing of types so that we don't make duplicates. + The entry point is `type_hash_canon'. */ + +/* Generate the default hash code for TYPE. This is designed for + speed, rather than maximum entropy. */ + +hashval_t +type_hash_canon_hash (tree type) +{ + inchash::hash hstate; + + hstate.add_int (TREE_CODE (type)); + + if (TREE_TYPE (type)) + hstate.add_object (TYPE_HASH (TREE_TYPE (type))); + + for (tree t = TYPE_ATTRIBUTES (type); t; t = TREE_CHAIN (t)) + /* Just the identifier is adequate to distinguish. */ + hstate.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (t))); + + switch (TREE_CODE (type)) + { + case METHOD_TYPE: + hstate.add_object (TYPE_HASH (TYPE_METHOD_BASETYPE (type))); + /* FALLTHROUGH. */ + case FUNCTION_TYPE: + for (tree t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t)) + if (TREE_VALUE (t) != error_mark_node) + hstate.add_object (TYPE_HASH (TREE_VALUE (t))); + break; + + case OFFSET_TYPE: + hstate.add_object (TYPE_HASH (TYPE_OFFSET_BASETYPE (type))); + break; + + case ARRAY_TYPE: + { + if (TYPE_DOMAIN (type)) + hstate.add_object (TYPE_HASH (TYPE_DOMAIN (type))); + if (!AGGREGATE_TYPE_P (TREE_TYPE (type))) + { + unsigned typeless = TYPE_TYPELESS_STORAGE (type); + hstate.add_object (typeless); + } + } + break; + + case INTEGER_TYPE: + { + tree t = TYPE_MAX_VALUE (type); + if (!t) + t = TYPE_MIN_VALUE (type); + for (int i = 0; i < TREE_INT_CST_NUNITS (t); i++) + hstate.add_object (TREE_INT_CST_ELT (t, i)); + break; + } + + case REAL_TYPE: + case FIXED_POINT_TYPE: + { + unsigned prec = TYPE_PRECISION (type); + hstate.add_object (prec); + break; + } + + case VECTOR_TYPE: + hstate.add_poly_int (TYPE_VECTOR_SUBPARTS (type)); + break; + + default: + break; + } + + return hstate.end (); +} + +/* These are the Hashtable callback functions. */ + +/* Returns true iff the types are equivalent. */ + +bool +type_cache_hasher::equal (type_hash *a, type_hash *b) +{ + /* First test the things that are the same for all types. */ + if (a->hash != b->hash + || TREE_CODE (a->type) != TREE_CODE (b->type) + || TREE_TYPE (a->type) != TREE_TYPE (b->type) + || !attribute_list_equal (TYPE_ATTRIBUTES (a->type), + TYPE_ATTRIBUTES (b->type)) + || (TREE_CODE (a->type) != COMPLEX_TYPE + && TYPE_NAME (a->type) != TYPE_NAME (b->type))) + return 0; + + /* Be careful about comparing arrays before and after the element type + has been completed; don't compare TYPE_ALIGN unless both types are + complete. */ + if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type) + && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type) + || TYPE_MODE (a->type) != TYPE_MODE (b->type))) + return 0; + + switch (TREE_CODE (a->type)) + { + case VOID_TYPE: + case OPAQUE_TYPE: + case COMPLEX_TYPE: + case POINTER_TYPE: + case REFERENCE_TYPE: + case NULLPTR_TYPE: + return 1; + + case VECTOR_TYPE: + return known_eq (TYPE_VECTOR_SUBPARTS (a->type), + TYPE_VECTOR_SUBPARTS (b->type)); + + case ENUMERAL_TYPE: + if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type) + && !(TYPE_VALUES (a->type) + && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST + && TYPE_VALUES (b->type) + && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST + && type_list_equal (TYPE_VALUES (a->type), + TYPE_VALUES (b->type)))) + return 0; + + /* fall through */ + + case INTEGER_TYPE: + case REAL_TYPE: + case BOOLEAN_TYPE: + if (TYPE_PRECISION (a->type) != TYPE_PRECISION (b->type)) + return false; + return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type) + || tree_int_cst_equal (TYPE_MAX_VALUE (a->type), + TYPE_MAX_VALUE (b->type))) + && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type) + || tree_int_cst_equal (TYPE_MIN_VALUE (a->type), + TYPE_MIN_VALUE (b->type)))); + + case FIXED_POINT_TYPE: + return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type); + + case OFFSET_TYPE: + return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type); + + case METHOD_TYPE: + if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type) + && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type) + || (TYPE_ARG_TYPES (a->type) + && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST + && TYPE_ARG_TYPES (b->type) + && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST + && type_list_equal (TYPE_ARG_TYPES (a->type), + TYPE_ARG_TYPES (b->type))))) + break; + return 0; + case ARRAY_TYPE: + /* Don't compare TYPE_TYPELESS_STORAGE flag on aggregates, + where the flag should be inherited from the element type + and can change after ARRAY_TYPEs are created; on non-aggregates + compare it and hash it, scalars will never have that flag set + and we need to differentiate between arrays created by different + front-ends or middle-end created arrays. */ + return (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type) + && (AGGREGATE_TYPE_P (TREE_TYPE (a->type)) + || (TYPE_TYPELESS_STORAGE (a->type) + == TYPE_TYPELESS_STORAGE (b->type)))); + + case RECORD_TYPE: + case UNION_TYPE: + case QUAL_UNION_TYPE: + return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type) + || (TYPE_FIELDS (a->type) + && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST + && TYPE_FIELDS (b->type) + && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST + && type_list_equal (TYPE_FIELDS (a->type), + TYPE_FIELDS (b->type)))); + + case FUNCTION_TYPE: + if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type) + || (TYPE_ARG_TYPES (a->type) + && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST + && TYPE_ARG_TYPES (b->type) + && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST + && type_list_equal (TYPE_ARG_TYPES (a->type), + TYPE_ARG_TYPES (b->type)))) + break; + return 0; + + default: + return 0; + } + + if (lang_hooks.types.type_hash_eq != NULL) + return lang_hooks.types.type_hash_eq (a->type, b->type); + + return 1; +} + +/* Given TYPE, and HASHCODE its hash code, return the canonical + object for an identical type if one already exists. + Otherwise, return TYPE, and record it as the canonical object. + + To use this function, first create a type of the sort you want. + Then compute its hash code from the fields of the type that + make it different from other similar types. + Then call this function and use the value. */ + +tree +type_hash_canon (unsigned int hashcode, tree type) +{ + type_hash in; + type_hash **loc; + + /* The hash table only contains main variants, so ensure that's what we're + being passed. */ + gcc_assert (TYPE_MAIN_VARIANT (type) == type); + + /* The TYPE_ALIGN field of a type is set by layout_type(), so we + must call that routine before comparing TYPE_ALIGNs. */ + layout_type (type); + + in.hash = hashcode; + in.type = type; + + loc = type_hash_table->find_slot_with_hash (&in, hashcode, INSERT); + if (*loc) + { + tree t1 = ((type_hash *) *loc)->type; + gcc_assert (TYPE_MAIN_VARIANT (t1) == t1 + && t1 != type); + if (TYPE_UID (type) + 1 == next_type_uid) + --next_type_uid; + /* Free also min/max values and the cache for integer + types. This can't be done in free_node, as LTO frees + those on its own. */ + if (TREE_CODE (type) == INTEGER_TYPE) + { + if (TYPE_MIN_VALUE (type) + && TREE_TYPE (TYPE_MIN_VALUE (type)) == type) + { + /* Zero is always in TYPE_CACHED_VALUES. */ + if (! TYPE_UNSIGNED (type)) + int_cst_hash_table->remove_elt (TYPE_MIN_VALUE (type)); + ggc_free (TYPE_MIN_VALUE (type)); + } + if (TYPE_MAX_VALUE (type) + && TREE_TYPE (TYPE_MAX_VALUE (type)) == type) + { + int_cst_hash_table->remove_elt (TYPE_MAX_VALUE (type)); + ggc_free (TYPE_MAX_VALUE (type)); + } + if (TYPE_CACHED_VALUES_P (type)) + ggc_free (TYPE_CACHED_VALUES (type)); + } + free_node (type); + return t1; + } + else + { + struct type_hash *h; + + h = ggc_alloc<type_hash> (); + h->hash = hashcode; + h->type = type; + *loc = h; + + return type; + } +} + +static void +print_type_hash_statistics (void) +{ + fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n", + (long) type_hash_table->size (), + (long) type_hash_table->elements (), + type_hash_table->collisions ()); +} + +/* Given two lists of types + (chains of TREE_LIST nodes with types in the TREE_VALUE slots) + return 1 if the lists contain the same types in the same order. + Also, the TREE_PURPOSEs must match. */ + +bool +type_list_equal (const_tree l1, const_tree l2) +{ + const_tree t1, t2; + + for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2)) + if (TREE_VALUE (t1) != TREE_VALUE (t2) + || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2) + && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2)) + && (TREE_TYPE (TREE_PURPOSE (t1)) + == TREE_TYPE (TREE_PURPOSE (t2)))))) + return false; + + return t1 == t2; +} + +/* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE + given by TYPE. If the argument list accepts variable arguments, + then this function counts only the ordinary arguments. */ + +int +type_num_arguments (const_tree fntype) +{ + int i = 0; + + for (tree t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t)) + /* If the function does not take a variable number of arguments, + the last element in the list will have type `void'. */ + if (VOID_TYPE_P (TREE_VALUE (t))) + break; + else + ++i; + + return i; +} + +/* Return the type of the function TYPE's argument ARGNO if known. + For vararg function's where ARGNO refers to one of the variadic + arguments return null. Otherwise, return a void_type_node for + out-of-bounds ARGNO. */ + +tree +type_argument_type (const_tree fntype, unsigned argno) +{ + /* Treat zero the same as an out-of-bounds argument number. */ + if (!argno) + return void_type_node; + + function_args_iterator iter; + + tree argtype; + unsigned i = 1; + FOREACH_FUNCTION_ARGS (fntype, argtype, iter) + { + /* A vararg function's argument list ends in a null. Otherwise, + an ordinary function's argument list ends with void. Return + null if ARGNO refers to a vararg argument, void_type_node if + it's out of bounds, and the formal argument type otherwise. */ + if (!argtype) + break; + + if (i == argno || VOID_TYPE_P (argtype)) + return argtype; + + ++i; + } + + return NULL_TREE; +} + +/* Nonzero if integer constants T1 and T2 + represent the same constant value. */ + +int +tree_int_cst_equal (const_tree t1, const_tree t2) +{ + if (t1 == t2) + return 1; + + if (t1 == 0 || t2 == 0) + return 0; + + STRIP_ANY_LOCATION_WRAPPER (t1); + STRIP_ANY_LOCATION_WRAPPER (t2); + + if (TREE_CODE (t1) == INTEGER_CST + && TREE_CODE (t2) == INTEGER_CST + && wi::to_widest (t1) == wi::to_widest (t2)) + return 1; + + return 0; +} + +/* Return true if T is an INTEGER_CST whose numerical value (extended + according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. */ + +bool +tree_fits_shwi_p (const_tree t) +{ + return (t != NULL_TREE + && TREE_CODE (t) == INTEGER_CST + && wi::fits_shwi_p (wi::to_widest (t))); +} + +/* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical + value (extended according to TYPE_UNSIGNED) fits in a poly_int64. */ + +bool +tree_fits_poly_int64_p (const_tree t) +{ + if (t == NULL_TREE) + return false; + if (POLY_INT_CST_P (t)) + { + for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++) + if (!wi::fits_shwi_p (wi::to_wide (POLY_INT_CST_COEFF (t, i)))) + return false; + return true; + } + return (TREE_CODE (t) == INTEGER_CST + && wi::fits_shwi_p (wi::to_widest (t))); +} + +/* Return true if T is an INTEGER_CST whose numerical value (extended + according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. */ + +bool +tree_fits_uhwi_p (const_tree t) +{ + return (t != NULL_TREE + && TREE_CODE (t) == INTEGER_CST + && wi::fits_uhwi_p (wi::to_widest (t))); +} + +/* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical + value (extended according to TYPE_UNSIGNED) fits in a poly_uint64. */ + +bool +tree_fits_poly_uint64_p (const_tree t) +{ + if (t == NULL_TREE) + return false; + if (POLY_INT_CST_P (t)) + { + for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++) + if (!wi::fits_uhwi_p (wi::to_widest (POLY_INT_CST_COEFF (t, i)))) + return false; + return true; + } + return (TREE_CODE (t) == INTEGER_CST + && wi::fits_uhwi_p (wi::to_widest (t))); +} + +/* T is an INTEGER_CST whose numerical value (extended according to + TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. Return that + HOST_WIDE_INT. */ + +HOST_WIDE_INT +tree_to_shwi (const_tree t) +{ + gcc_assert (tree_fits_shwi_p (t)); + return TREE_INT_CST_LOW (t); +} + +/* T is an INTEGER_CST whose numerical value (extended according to + TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. Return that + HOST_WIDE_INT. */ + +unsigned HOST_WIDE_INT +tree_to_uhwi (const_tree t) +{ + gcc_assert (tree_fits_uhwi_p (t)); + return TREE_INT_CST_LOW (t); +} + +/* Return the most significant (sign) bit of T. */ + +int +tree_int_cst_sign_bit (const_tree t) +{ + unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1; + + return wi::extract_uhwi (wi::to_wide (t), bitno, 1); +} + +/* Return an indication of the sign of the integer constant T. + The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0. + Note that -1 will never be returned if T's type is unsigned. */ + +int +tree_int_cst_sgn (const_tree t) +{ + if (wi::to_wide (t) == 0) + return 0; + else if (TYPE_UNSIGNED (TREE_TYPE (t))) + return 1; + else if (wi::neg_p (wi::to_wide (t))) + return -1; + else + return 1; +} + +/* Return the minimum number of bits needed to represent VALUE in a + signed or unsigned type, UNSIGNEDP says which. */ + +unsigned int +tree_int_cst_min_precision (tree value, signop sgn) +{ + /* If the value is negative, compute its negative minus 1. The latter + adjustment is because the absolute value of the largest negative value + is one larger than the largest positive value. This is equivalent to + a bit-wise negation, so use that operation instead. */ + + if (tree_int_cst_sgn (value) < 0) + value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value); + + /* Return the number of bits needed, taking into account the fact + that we need one more bit for a signed than unsigned type. + If value is 0 or -1, the minimum precision is 1 no matter + whether unsignedp is true or false. */ + + if (integer_zerop (value)) + return 1; + else + return tree_floor_log2 (value) + 1 + (sgn == SIGNED ? 1 : 0) ; +} + +/* Return truthvalue of whether T1 is the same tree structure as T2. + Return 1 if they are the same. + Return 0 if they are understandably different. + Return -1 if either contains tree structure not understood by + this function. */ + +int +simple_cst_equal (const_tree t1, const_tree t2) +{ + enum tree_code code1, code2; + int cmp; + int i; + + if (t1 == t2) + return 1; + if (t1 == 0 || t2 == 0) + return 0; + + /* For location wrappers to be the same, they must be at the same + source location (and wrap the same thing). */ + if (location_wrapper_p (t1) && location_wrapper_p (t2)) + { + if (EXPR_LOCATION (t1) != EXPR_LOCATION (t2)) + return 0; + return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)); + } + + code1 = TREE_CODE (t1); + code2 = TREE_CODE (t2); + + if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR) + { + if (CONVERT_EXPR_CODE_P (code2) + || code2 == NON_LVALUE_EXPR) + return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)); + else + return simple_cst_equal (TREE_OPERAND (t1, 0), t2); + } + + else if (CONVERT_EXPR_CODE_P (code2) + || code2 == NON_LVALUE_EXPR) + return simple_cst_equal (t1, TREE_OPERAND (t2, 0)); + + if (code1 != code2) + return 0; + + switch (code1) + { + case INTEGER_CST: + return wi::to_widest (t1) == wi::to_widest (t2); + + case REAL_CST: + return real_identical (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2)); + + case FIXED_CST: + return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2)); + + case STRING_CST: + return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2) + && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2), + TREE_STRING_LENGTH (t1))); + + case CONSTRUCTOR: + { + unsigned HOST_WIDE_INT idx; + vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1); + vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2); + + if (vec_safe_length (v1) != vec_safe_length (v2)) + return false; + + for (idx = 0; idx < vec_safe_length (v1); ++idx) + /* ??? Should we handle also fields here? */ + if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value)) + return false; + return true; + } + + case SAVE_EXPR: + return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)); + + case CALL_EXPR: + cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2)); + if (cmp <= 0) + return cmp; + if (call_expr_nargs (t1) != call_expr_nargs (t2)) + return 0; + { + const_tree arg1, arg2; + const_call_expr_arg_iterator iter1, iter2; + for (arg1 = first_const_call_expr_arg (t1, &iter1), + arg2 = first_const_call_expr_arg (t2, &iter2); + arg1 && arg2; + arg1 = next_const_call_expr_arg (&iter1), + arg2 = next_const_call_expr_arg (&iter2)) + { + cmp = simple_cst_equal (arg1, arg2); + if (cmp <= 0) + return cmp; + } + return arg1 == arg2; + } + + case TARGET_EXPR: + /* Special case: if either target is an unallocated VAR_DECL, + it means that it's going to be unified with whatever the + TARGET_EXPR is really supposed to initialize, so treat it + as being equivalent to anything. */ + if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL + && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE + && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0))) + || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL + && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE + && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0)))) + cmp = 1; + else + cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)); + + if (cmp <= 0) + return cmp; + + return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1)); + + case WITH_CLEANUP_EXPR: + cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)); + if (cmp <= 0) + return cmp; + + return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1)); + + case COMPONENT_REF: + if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1)) + return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)); + + return 0; + + case VAR_DECL: + case PARM_DECL: + case CONST_DECL: + case FUNCTION_DECL: + return 0; + + default: + if (POLY_INT_CST_P (t1)) + /* A false return means maybe_ne rather than known_ne. */ + return known_eq (poly_widest_int::from (poly_int_cst_value (t1), + TYPE_SIGN (TREE_TYPE (t1))), + poly_widest_int::from (poly_int_cst_value (t2), + TYPE_SIGN (TREE_TYPE (t2)))); + break; + } + + /* This general rule works for most tree codes. All exceptions should be + handled above. If this is a language-specific tree code, we can't + trust what might be in the operand, so say we don't know + the situation. */ + if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE) + return -1; + + switch (TREE_CODE_CLASS (code1)) + { + case tcc_unary: + case tcc_binary: + case tcc_comparison: + case tcc_expression: + case tcc_reference: + case tcc_statement: + cmp = 1; + for (i = 0; i < TREE_CODE_LENGTH (code1); i++) + { + cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i)); + if (cmp <= 0) + return cmp; + } + + return cmp; + + default: + return -1; + } +} + +/* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value. + Return -1, 0, or 1 if the value of T is less than, equal to, or greater + than U, respectively. */ + +int +compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u) +{ + if (tree_int_cst_sgn (t) < 0) + return -1; + else if (!tree_fits_uhwi_p (t)) + return 1; + else if (TREE_INT_CST_LOW (t) == u) + return 0; + else if (TREE_INT_CST_LOW (t) < u) + return -1; + else + return 1; +} + +/* Return true if SIZE represents a constant size that is in bounds of + what the middle-end and the backend accepts (covering not more than + half of the address-space). + When PERR is non-null, set *PERR on failure to the description of + why SIZE is not valid. */ + +bool +valid_constant_size_p (const_tree size, cst_size_error *perr /* = NULL */) +{ + if (POLY_INT_CST_P (size)) + { + if (TREE_OVERFLOW (size)) + return false; + for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) + if (!valid_constant_size_p (POLY_INT_CST_COEFF (size, i))) + return false; + return true; + } + + cst_size_error error; + if (!perr) + perr = &error; + + if (TREE_CODE (size) != INTEGER_CST) + { + *perr = cst_size_not_constant; + return false; + } + + if (TREE_OVERFLOW_P (size)) + { + *perr = cst_size_overflow; + return false; + } + + if (tree_int_cst_sgn (size) < 0) + { + *perr = cst_size_negative; + return false; + } + if (!tree_fits_uhwi_p (size) + || (wi::to_widest (TYPE_MAX_VALUE (sizetype)) + < wi::to_widest (size) * 2)) + { + *perr = cst_size_too_big; + return false; + } + + return true; +} + +/* Return the precision of the type, or for a complex or vector type the + precision of the type of its elements. */ + +unsigned int +element_precision (const_tree type) +{ + if (!TYPE_P (type)) + type = TREE_TYPE (type); + enum tree_code code = TREE_CODE (type); + if (code == COMPLEX_TYPE || code == VECTOR_TYPE) + type = TREE_TYPE (type); + + return TYPE_PRECISION (type); +} + +/* Return true if CODE represents an associative tree code. Otherwise + return false. */ +bool +associative_tree_code (enum tree_code code) +{ + switch (code) + { + case BIT_IOR_EXPR: + case BIT_AND_EXPR: + case BIT_XOR_EXPR: + case PLUS_EXPR: + case MULT_EXPR: + case MIN_EXPR: + case MAX_EXPR: + return true; + + default: + break; + } + return false; +} + +/* Return true if CODE represents a commutative tree code. Otherwise + return false. */ +bool +commutative_tree_code (enum tree_code code) +{ + switch (code) + { + case PLUS_EXPR: + case MULT_EXPR: + case MULT_HIGHPART_EXPR: + case MIN_EXPR: + case MAX_EXPR: + case BIT_IOR_EXPR: + case BIT_XOR_EXPR: + case BIT_AND_EXPR: + case NE_EXPR: + case EQ_EXPR: + case UNORDERED_EXPR: + case ORDERED_EXPR: + case UNEQ_EXPR: + case LTGT_EXPR: + case TRUTH_AND_EXPR: + case TRUTH_XOR_EXPR: + case TRUTH_OR_EXPR: + case WIDEN_MULT_EXPR: + case VEC_WIDEN_MULT_HI_EXPR: + case VEC_WIDEN_MULT_LO_EXPR: + case VEC_WIDEN_MULT_EVEN_EXPR: + case VEC_WIDEN_MULT_ODD_EXPR: + return true; + + default: + break; + } + return false; +} + +/* Return true if CODE represents a ternary tree code for which the + first two operands are commutative. Otherwise return false. */ +bool +commutative_ternary_tree_code (enum tree_code code) +{ + switch (code) + { + case WIDEN_MULT_PLUS_EXPR: + case WIDEN_MULT_MINUS_EXPR: + case DOT_PROD_EXPR: + return true; + + default: + break; + } + return false; +} + +/* Returns true if CODE can overflow. */ + +bool +operation_can_overflow (enum tree_code code) +{ + switch (code) + { + case PLUS_EXPR: + case MINUS_EXPR: + case MULT_EXPR: + case LSHIFT_EXPR: + /* Can overflow in various ways. */ + return true; + case TRUNC_DIV_EXPR: + case EXACT_DIV_EXPR: + case FLOOR_DIV_EXPR: + case CEIL_DIV_EXPR: + /* For INT_MIN / -1. */ + return true; + case NEGATE_EXPR: + case ABS_EXPR: + /* For -INT_MIN. */ + return true; + default: + /* These operators cannot overflow. */ + return false; + } +} + +/* Returns true if CODE operating on operands of type TYPE doesn't overflow, or + ftrapv doesn't generate trapping insns for CODE. */ + +bool +operation_no_trapping_overflow (tree type, enum tree_code code) +{ + gcc_checking_assert (ANY_INTEGRAL_TYPE_P (type)); + + /* We don't generate instructions that trap on overflow for complex or vector + types. */ + if (!INTEGRAL_TYPE_P (type)) + return true; + + if (!TYPE_OVERFLOW_TRAPS (type)) + return true; + + switch (code) + { + case PLUS_EXPR: + case MINUS_EXPR: + case MULT_EXPR: + case NEGATE_EXPR: + case ABS_EXPR: + /* These operators can overflow, and -ftrapv generates trapping code for + these. */ + return false; + case TRUNC_DIV_EXPR: + case EXACT_DIV_EXPR: + case FLOOR_DIV_EXPR: + case CEIL_DIV_EXPR: + case LSHIFT_EXPR: + /* These operators can overflow, but -ftrapv does not generate trapping + code for these. */ + return true; + default: + /* These operators cannot overflow. */ + return true; + } +} + +/* Constructors for pointer, array and function types. + (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are + constructed by language-dependent code, not here.) */ + +/* Construct, lay out and return the type of pointers to TO_TYPE with + mode MODE. If MODE is VOIDmode, a pointer mode for the address + space of TO_TYPE will be picked. If CAN_ALIAS_ALL is TRUE, + indicate this type can reference all of memory. If such a type has + already been constructed, reuse it. */ + +tree +build_pointer_type_for_mode (tree to_type, machine_mode mode, + bool can_alias_all) +{ + tree t; + bool could_alias = can_alias_all; + + if (to_type == error_mark_node) + return error_mark_node; + + if (mode == VOIDmode) + { + addr_space_t as = TYPE_ADDR_SPACE (to_type); + mode = targetm.addr_space.pointer_mode (as); + } + + /* If the pointed-to type has the may_alias attribute set, force + a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */ + if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type))) + can_alias_all = true; + + /* In some cases, languages will have things that aren't a POINTER_TYPE + (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO. + In that case, return that type without regard to the rest of our + operands. + + ??? This is a kludge, but consistent with the way this function has + always operated and there doesn't seem to be a good way to avoid this + at the moment. */ + if (TYPE_POINTER_TO (to_type) != 0 + && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE) + return TYPE_POINTER_TO (to_type); + + /* First, if we already have a type for pointers to TO_TYPE and it's + the proper mode, use it. */ + for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t)) + if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all) + return t; + + t = make_node (POINTER_TYPE); + + TREE_TYPE (t) = to_type; + SET_TYPE_MODE (t, mode); + TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all; + TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type); + TYPE_POINTER_TO (to_type) = t; + + /* During LTO we do not set TYPE_CANONICAL of pointers and references. */ + if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p) + SET_TYPE_STRUCTURAL_EQUALITY (t); + else if (TYPE_CANONICAL (to_type) != to_type || could_alias) + TYPE_CANONICAL (t) + = build_pointer_type_for_mode (TYPE_CANONICAL (to_type), + mode, false); + + /* Lay out the type. This function has many callers that are concerned + with expression-construction, and this simplifies them all. */ + layout_type (t); + + return t; +} + +/* By default build pointers in ptr_mode. */ + +tree +build_pointer_type (tree to_type) +{ + return build_pointer_type_for_mode (to_type, VOIDmode, false); +} + +/* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */ + +tree +build_reference_type_for_mode (tree to_type, machine_mode mode, + bool can_alias_all) +{ + tree t; + bool could_alias = can_alias_all; + + if (to_type == error_mark_node) + return error_mark_node; + + if (mode == VOIDmode) + { + addr_space_t as = TYPE_ADDR_SPACE (to_type); + mode = targetm.addr_space.pointer_mode (as); + } + + /* If the pointed-to type has the may_alias attribute set, force + a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */ + if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type))) + can_alias_all = true; + + /* In some cases, languages will have things that aren't a REFERENCE_TYPE + (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO. + In that case, return that type without regard to the rest of our + operands. + + ??? This is a kludge, but consistent with the way this function has + always operated and there doesn't seem to be a good way to avoid this + at the moment. */ + if (TYPE_REFERENCE_TO (to_type) != 0 + && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE) + return TYPE_REFERENCE_TO (to_type); + + /* First, if we already have a type for pointers to TO_TYPE and it's + the proper mode, use it. */ + for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t)) + if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all) + return t; + + t = make_node (REFERENCE_TYPE); + + TREE_TYPE (t) = to_type; + SET_TYPE_MODE (t, mode); + TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all; + TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type); + TYPE_REFERENCE_TO (to_type) = t; + + /* During LTO we do not set TYPE_CANONICAL of pointers and references. */ + if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p) + SET_TYPE_STRUCTURAL_EQUALITY (t); + else if (TYPE_CANONICAL (to_type) != to_type || could_alias) + TYPE_CANONICAL (t) + = build_reference_type_for_mode (TYPE_CANONICAL (to_type), + mode, false); + + layout_type (t); + + return t; +} + + +/* Build the node for the type of references-to-TO_TYPE by default + in ptr_mode. */ + +tree +build_reference_type (tree to_type) +{ + return build_reference_type_for_mode (to_type, VOIDmode, false); +} + +#define MAX_INT_CACHED_PREC \ + (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64) +static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2]; + +/* Builds a signed or unsigned integer type of precision PRECISION. + Used for C bitfields whose precision does not match that of + built-in target types. */ +tree +build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision, + int unsignedp) +{ + tree itype, ret; + + if (unsignedp) + unsignedp = MAX_INT_CACHED_PREC + 1; + + if (precision <= MAX_INT_CACHED_PREC) + { + itype = nonstandard_integer_type_cache[precision + unsignedp]; + if (itype) + return itype; + } + + itype = make_node (INTEGER_TYPE); + TYPE_PRECISION (itype) = precision; + + if (unsignedp) + fixup_unsigned_type (itype); + else + fixup_signed_type (itype); + + inchash::hash hstate; + inchash::add_expr (TYPE_MAX_VALUE (itype), hstate); + ret = type_hash_canon (hstate.end (), itype); + if (precision <= MAX_INT_CACHED_PREC) + nonstandard_integer_type_cache[precision + unsignedp] = ret; + + return ret; +} + +#define MAX_BOOL_CACHED_PREC \ + (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64) +static GTY(()) tree nonstandard_boolean_type_cache[MAX_BOOL_CACHED_PREC + 1]; + +/* Builds a boolean type of precision PRECISION. + Used for boolean vectors to choose proper vector element size. */ +tree +build_nonstandard_boolean_type (unsigned HOST_WIDE_INT precision) +{ + tree type; + + if (precision <= MAX_BOOL_CACHED_PREC) + { + type = nonstandard_boolean_type_cache[precision]; + if (type) + return type; + } + + type = make_node (BOOLEAN_TYPE); + TYPE_PRECISION (type) = precision; + fixup_signed_type (type); + + if (precision <= MAX_INT_CACHED_PREC) + nonstandard_boolean_type_cache[precision] = type; + + return type; +} + +/* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE + or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED + is true, reuse such a type that has already been constructed. */ + +static tree +build_range_type_1 (tree type, tree lowval, tree highval, bool shared) +{ + tree itype = make_node (INTEGER_TYPE); + + TREE_TYPE (itype) = type; + + TYPE_MIN_VALUE (itype) = fold_convert (type, lowval); + TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL; + + TYPE_PRECISION (itype) = TYPE_PRECISION (type); + SET_TYPE_MODE (itype, TYPE_MODE (type)); + TYPE_SIZE (itype) = TYPE_SIZE (type); + TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type); + SET_TYPE_ALIGN (itype, TYPE_ALIGN (type)); + TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type); + SET_TYPE_WARN_IF_NOT_ALIGN (itype, TYPE_WARN_IF_NOT_ALIGN (type)); + + if (!shared) + return itype; + + if ((TYPE_MIN_VALUE (itype) + && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST) + || (TYPE_MAX_VALUE (itype) + && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST)) + { + /* Since we cannot reliably merge this type, we need to compare it using + structural equality checks. */ + SET_TYPE_STRUCTURAL_EQUALITY (itype); + return itype; + } + + hashval_t hash = type_hash_canon_hash (itype); + itype = type_hash_canon (hash, itype); + + return itype; +} + +/* Wrapper around build_range_type_1 with SHARED set to true. */ + +tree +build_range_type (tree type, tree lowval, tree highval) +{ + return build_range_type_1 (type, lowval, highval, true); +} + +/* Wrapper around build_range_type_1 with SHARED set to false. */ + +tree +build_nonshared_range_type (tree type, tree lowval, tree highval) +{ + return build_range_type_1 (type, lowval, highval, false); +} + +/* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE. + MAXVAL should be the maximum value in the domain + (one less than the length of the array). + + The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT. + We don't enforce this limit, that is up to caller (e.g. language front end). + The limit exists because the result is a signed type and we don't handle + sizes that use more than one HOST_WIDE_INT. */ + +tree +build_index_type (tree maxval) +{ + return build_range_type (sizetype, size_zero_node, maxval); +} + +/* Return true if the debug information for TYPE, a subtype, should be emitted + as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the + high bound, respectively. Sometimes doing so unnecessarily obfuscates the + debug info and doesn't reflect the source code. */ + +bool +subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval) +{ + tree base_type = TREE_TYPE (type), low, high; + + /* Subrange types have a base type which is an integral type. */ + if (!INTEGRAL_TYPE_P (base_type)) + return false; + + /* Get the real bounds of the subtype. */ + if (lang_hooks.types.get_subrange_bounds) + lang_hooks.types.get_subrange_bounds (type, &low, &high); + else + { + low = TYPE_MIN_VALUE (type); + high = TYPE_MAX_VALUE (type); + } + + /* If the type and its base type have the same representation and the same + name, then the type is not a subrange but a copy of the base type. */ + if ((TREE_CODE (base_type) == INTEGER_TYPE + || TREE_CODE (base_type) == BOOLEAN_TYPE) + && int_size_in_bytes (type) == int_size_in_bytes (base_type) + && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type)) + && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)) + && TYPE_IDENTIFIER (type) == TYPE_IDENTIFIER (base_type)) + return false; + + if (lowval) + *lowval = low; + if (highval) + *highval = high; + return true; +} + +/* Construct, lay out and return the type of arrays of elements with ELT_TYPE + and number of elements specified by the range of values of INDEX_TYPE. + If TYPELESS_STORAGE is true, TYPE_TYPELESS_STORAGE flag is set on the type. + If SHARED is true, reuse such a type that has already been constructed. + If SET_CANONICAL is true, compute TYPE_CANONICAL from the element type. */ + +tree +build_array_type_1 (tree elt_type, tree index_type, bool typeless_storage, + bool shared, bool set_canonical) +{ + tree t; + + if (TREE_CODE (elt_type) == FUNCTION_TYPE) + { + error ("arrays of functions are not meaningful"); + elt_type = integer_type_node; + } + + t = make_node (ARRAY_TYPE); + TREE_TYPE (t) = elt_type; + TYPE_DOMAIN (t) = index_type; + TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type); + TYPE_TYPELESS_STORAGE (t) = typeless_storage; + layout_type (t); + + if (shared) + { + hashval_t hash = type_hash_canon_hash (t); + t = type_hash_canon (hash, t); + } + + if (TYPE_CANONICAL (t) == t && set_canonical) + { + if (TYPE_STRUCTURAL_EQUALITY_P (elt_type) + || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)) + || in_lto_p) + SET_TYPE_STRUCTURAL_EQUALITY (t); + else if (TYPE_CANONICAL (elt_type) != elt_type + || (index_type && TYPE_CANONICAL (index_type) != index_type)) + TYPE_CANONICAL (t) + = build_array_type_1 (TYPE_CANONICAL (elt_type), + index_type + ? TYPE_CANONICAL (index_type) : NULL_TREE, + typeless_storage, shared, set_canonical); + } + + return t; +} + +/* Wrapper around build_array_type_1 with SHARED set to true. */ + +tree +build_array_type (tree elt_type, tree index_type, bool typeless_storage) +{ + return + build_array_type_1 (elt_type, index_type, typeless_storage, true, true); +} + +/* Wrapper around build_array_type_1 with SHARED set to false. */ + +tree +build_nonshared_array_type (tree elt_type, tree index_type) +{ + return build_array_type_1 (elt_type, index_type, false, false, true); +} + +/* Return a representation of ELT_TYPE[NELTS], using indices of type + sizetype. */ + +tree +build_array_type_nelts (tree elt_type, poly_uint64 nelts) +{ + return build_array_type (elt_type, build_index_type (size_int (nelts - 1))); +} + +/* Recursively examines the array elements of TYPE, until a non-array + element type is found. */ + +tree +strip_array_types (tree type) +{ + while (TREE_CODE (type) == ARRAY_TYPE) + type = TREE_TYPE (type); + + return type; +} + +/* Computes the canonical argument types from the argument type list + ARGTYPES. + + Upon return, *ANY_STRUCTURAL_P will be true iff either it was true + on entry to this function, or if any of the ARGTYPES are + structural. + + Upon return, *ANY_NONCANONICAL_P will be true iff either it was + true on entry to this function, or if any of the ARGTYPES are + non-canonical. + + Returns a canonical argument list, which may be ARGTYPES when the + canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is + true) or would not differ from ARGTYPES. */ + +static tree +maybe_canonicalize_argtypes (tree argtypes, + bool *any_structural_p, + bool *any_noncanonical_p) +{ + tree arg; + bool any_noncanonical_argtypes_p = false; + + for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg)) + { + if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node) + /* Fail gracefully by stating that the type is structural. */ + *any_structural_p = true; + else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg))) + *any_structural_p = true; + else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg) + || TREE_PURPOSE (arg)) + /* If the argument has a default argument, we consider it + non-canonical even though the type itself is canonical. + That way, different variants of function and method types + with default arguments will all point to the variant with + no defaults as their canonical type. */ + any_noncanonical_argtypes_p = true; + } + + if (*any_structural_p) + return argtypes; + + if (any_noncanonical_argtypes_p) + { + /* Build the canonical list of argument types. */ + tree canon_argtypes = NULL_TREE; + bool is_void = false; + + for (arg = argtypes; arg; arg = TREE_CHAIN (arg)) + { + if (arg == void_list_node) + is_void = true; + else + canon_argtypes = tree_cons (NULL_TREE, + TYPE_CANONICAL (TREE_VALUE (arg)), + canon_argtypes); + } + + canon_argtypes = nreverse (canon_argtypes); + if (is_void) + canon_argtypes = chainon (canon_argtypes, void_list_node); + + /* There is a non-canonical type. */ + *any_noncanonical_p = true; + return canon_argtypes; + } + + /* The canonical argument types are the same as ARGTYPES. */ + return argtypes; +} + +/* Construct, lay out and return + the type of functions returning type VALUE_TYPE + given arguments of types ARG_TYPES. + ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs + are data type nodes for the arguments of the function. + If such a type has already been constructed, reuse it. */ + +tree +build_function_type (tree value_type, tree arg_types) +{ + tree t; + inchash::hash hstate; + bool any_structural_p, any_noncanonical_p; + tree canon_argtypes; + + gcc_assert (arg_types != error_mark_node); + + if (TREE_CODE (value_type) == FUNCTION_TYPE) + { + error ("function return type cannot be function"); + value_type = integer_type_node; + } + + /* Make a node of the sort we want. */ + t = make_node (FUNCTION_TYPE); + TREE_TYPE (t) = value_type; + TYPE_ARG_TYPES (t) = arg_types; + + /* If we already have such a type, use the old one. */ + hashval_t hash = type_hash_canon_hash (t); + t = type_hash_canon (hash, t); + + /* Set up the canonical type. */ + any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type); + any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type; + canon_argtypes = maybe_canonicalize_argtypes (arg_types, + &any_structural_p, + &any_noncanonical_p); + if (any_structural_p) + SET_TYPE_STRUCTURAL_EQUALITY (t); + else if (any_noncanonical_p) + TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type), + canon_argtypes); + + if (!COMPLETE_TYPE_P (t)) + layout_type (t); + return t; +} + +/* Build a function type. The RETURN_TYPE is the type returned by the + function. If VAARGS is set, no void_type_node is appended to the + list. ARGP must be always be terminated be a NULL_TREE. */ + +static tree +build_function_type_list_1 (bool vaargs, tree return_type, va_list argp) +{ + tree t, args, last; + + t = va_arg (argp, tree); + for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree)) + args = tree_cons (NULL_TREE, t, args); + + if (vaargs) + { + last = args; + if (args != NULL_TREE) + args = nreverse (args); + gcc_assert (last != void_list_node); + } + else if (args == NULL_TREE) + args = void_list_node; + else + { + last = args; + args = nreverse (args); + TREE_CHAIN (last) = void_list_node; + } + args = build_function_type (return_type, args); + + return args; +} + +/* Build a function type. The RETURN_TYPE is the type returned by the + function. If additional arguments are provided, they are + additional argument types. The list of argument types must always + be terminated by NULL_TREE. */ + +tree +build_function_type_list (tree return_type, ...) +{ + tree args; + va_list p; + + va_start (p, return_type); + args = build_function_type_list_1 (false, return_type, p); + va_end (p); + return args; +} + +/* Build a variable argument function type. The RETURN_TYPE is the + type returned by the function. If additional arguments are provided, + they are additional argument types. The list of argument types must + always be terminated by NULL_TREE. */ + +tree +build_varargs_function_type_list (tree return_type, ...) +{ + tree args; + va_list p; + + va_start (p, return_type); + args = build_function_type_list_1 (true, return_type, p); + va_end (p); + + return args; +} + +/* Build a function type. RETURN_TYPE is the type returned by the + function; VAARGS indicates whether the function takes varargs. The + function takes N named arguments, the types of which are provided in + ARG_TYPES. */ + +static tree +build_function_type_array_1 (bool vaargs, tree return_type, int n, + tree *arg_types) +{ + int i; + tree t = vaargs ? NULL_TREE : void_list_node; + + for (i = n - 1; i >= 0; i--) + t = tree_cons (NULL_TREE, arg_types[i], t); + + return build_function_type (return_type, t); +} + +/* Build a function type. RETURN_TYPE is the type returned by the + function. The function takes N named arguments, the types of which + are provided in ARG_TYPES. */ + +tree +build_function_type_array (tree return_type, int n, tree *arg_types) +{ + return build_function_type_array_1 (false, return_type, n, arg_types); +} + +/* Build a variable argument function type. RETURN_TYPE is the type + returned by the function. The function takes N named arguments, the + types of which are provided in ARG_TYPES. */ + +tree +build_varargs_function_type_array (tree return_type, int n, tree *arg_types) +{ + return build_function_type_array_1 (true, return_type, n, arg_types); +} + +/* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE) + and ARGTYPES (a TREE_LIST) are the return type and arguments types + for the method. An implicit additional parameter (of type + pointer-to-BASETYPE) is added to the ARGTYPES. */ + +tree +build_method_type_directly (tree basetype, + tree rettype, + tree argtypes) +{ + tree t; + tree ptype; + bool any_structural_p, any_noncanonical_p; + tree canon_argtypes; + + /* Make a node of the sort we want. */ + t = make_node (METHOD_TYPE); + + TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype); + TREE_TYPE (t) = rettype; + ptype = build_pointer_type (basetype); + + /* The actual arglist for this function includes a "hidden" argument + which is "this". Put it into the list of argument types. */ + argtypes = tree_cons (NULL_TREE, ptype, argtypes); + TYPE_ARG_TYPES (t) = argtypes; + + /* If we already have such a type, use the old one. */ + hashval_t hash = type_hash_canon_hash (t); + t = type_hash_canon (hash, t); + + /* Set up the canonical type. */ + any_structural_p + = (TYPE_STRUCTURAL_EQUALITY_P (basetype) + || TYPE_STRUCTURAL_EQUALITY_P (rettype)); + any_noncanonical_p + = (TYPE_CANONICAL (basetype) != basetype + || TYPE_CANONICAL (rettype) != rettype); + canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes), + &any_structural_p, + &any_noncanonical_p); + if (any_structural_p) + SET_TYPE_STRUCTURAL_EQUALITY (t); + else if (any_noncanonical_p) + TYPE_CANONICAL (t) + = build_method_type_directly (TYPE_CANONICAL (basetype), + TYPE_CANONICAL (rettype), + canon_argtypes); + if (!COMPLETE_TYPE_P (t)) + layout_type (t); + + return t; +} + +/* Construct, lay out and return the type of methods belonging to class + BASETYPE and whose arguments and values are described by TYPE. + If that type exists already, reuse it. + TYPE must be a FUNCTION_TYPE node. */ + +tree +build_method_type (tree basetype, tree type) +{ + gcc_assert (TREE_CODE (type) == FUNCTION_TYPE); + + return build_method_type_directly (basetype, + TREE_TYPE (type), + TYPE_ARG_TYPES (type)); +} + +/* Construct, lay out and return the type of offsets to a value + of type TYPE, within an object of type BASETYPE. + If a suitable offset type exists already, reuse it. */ + +tree +build_offset_type (tree basetype, tree type) +{ + tree t; + + /* Make a node of the sort we want. */ + t = make_node (OFFSET_TYPE); + + TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype); + TREE_TYPE (t) = type; + + /* If we already have such a type, use the old one. */ + hashval_t hash = type_hash_canon_hash (t); + t = type_hash_canon (hash, t); + + if (!COMPLETE_TYPE_P (t)) + layout_type (t); + + if (TYPE_CANONICAL (t) == t) + { + if (TYPE_STRUCTURAL_EQUALITY_P (basetype) + || TYPE_STRUCTURAL_EQUALITY_P (type)) + SET_TYPE_STRUCTURAL_EQUALITY (t); + else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype + || TYPE_CANONICAL (type) != type) + TYPE_CANONICAL (t) + = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)), + TYPE_CANONICAL (type)); + } + + return t; +} + +/* Create a complex type whose components are COMPONENT_TYPE. + + If NAMED is true, the type is given a TYPE_NAME. We do not always + do so because this creates a DECL node and thus make the DECL_UIDs + dependent on the type canonicalization hashtable, which is GC-ed, + so the DECL_UIDs would not be stable wrt garbage collection. */ + +tree +build_complex_type (tree component_type, bool named) +{ + gcc_assert (INTEGRAL_TYPE_P (component_type) + || SCALAR_FLOAT_TYPE_P (component_type) + || FIXED_POINT_TYPE_P (component_type)); + + /* Make a node of the sort we want. */ + tree probe = make_node (COMPLEX_TYPE); + + TREE_TYPE (probe) = TYPE_MAIN_VARIANT (component_type); + + /* If we already have such a type, use the old one. */ + hashval_t hash = type_hash_canon_hash (probe); + tree t = type_hash_canon (hash, probe); + + if (t == probe) + { + /* We created a new type. The hash insertion will have laid + out the type. We need to check the canonicalization and + maybe set the name. */ + gcc_checking_assert (COMPLETE_TYPE_P (t) + && !TYPE_NAME (t) + && TYPE_CANONICAL (t) == t); + + if (TYPE_STRUCTURAL_EQUALITY_P (TREE_TYPE (t))) + SET_TYPE_STRUCTURAL_EQUALITY (t); + else if (TYPE_CANONICAL (TREE_TYPE (t)) != TREE_TYPE (t)) + TYPE_CANONICAL (t) + = build_complex_type (TYPE_CANONICAL (TREE_TYPE (t)), named); + + /* We need to create a name, since complex is a fundamental type. */ + if (named) + { + const char *name = NULL; + + if (TREE_TYPE (t) == char_type_node) + name = "complex char"; + else if (TREE_TYPE (t) == signed_char_type_node) + name = "complex signed char"; + else if (TREE_TYPE (t) == unsigned_char_type_node) + name = "complex unsigned char"; + else if (TREE_TYPE (t) == short_integer_type_node) + name = "complex short int"; + else if (TREE_TYPE (t) == short_unsigned_type_node) + name = "complex short unsigned int"; + else if (TREE_TYPE (t) == integer_type_node) + name = "complex int"; + else if (TREE_TYPE (t) == unsigned_type_node) + name = "complex unsigned int"; + else if (TREE_TYPE (t) == long_integer_type_node) + name = "complex long int"; + else if (TREE_TYPE (t) == long_unsigned_type_node) + name = "complex long unsigned int"; + else if (TREE_TYPE (t) == long_long_integer_type_node) + name = "complex long long int"; + else if (TREE_TYPE (t) == long_long_unsigned_type_node) + name = "complex long long unsigned int"; + + if (name != NULL) + TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL, + get_identifier (name), t); + } + } + + return build_qualified_type (t, TYPE_QUALS (component_type)); +} + +/* If TYPE is a real or complex floating-point type and the target + does not directly support arithmetic on TYPE then return the wider + type to be used for arithmetic on TYPE. Otherwise, return + NULL_TREE. */ + +tree +excess_precision_type (tree type) +{ + /* The target can give two different responses to the question of + which excess precision mode it would like depending on whether we + are in -fexcess-precision=standard or -fexcess-precision=fast. */ + + enum excess_precision_type requested_type + = (flag_excess_precision == EXCESS_PRECISION_FAST + ? EXCESS_PRECISION_TYPE_FAST + : (flag_excess_precision == EXCESS_PRECISION_FLOAT16 + ? EXCESS_PRECISION_TYPE_FLOAT16 :EXCESS_PRECISION_TYPE_STANDARD)); + + enum flt_eval_method target_flt_eval_method + = targetm.c.excess_precision (requested_type); + + /* The target should not ask for unpredictable float evaluation (though + it might advertise that implicitly the evaluation is unpredictable, + but we don't care about that here, it will have been reported + elsewhere). If it does ask for unpredictable evaluation, we have + nothing to do here. */ + gcc_assert (target_flt_eval_method != FLT_EVAL_METHOD_UNPREDICTABLE); + + /* Nothing to do. The target has asked for all types we know about + to be computed with their native precision and range. */ + if (target_flt_eval_method == FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16) + return NULL_TREE; + + /* The target will promote this type in a target-dependent way, so excess + precision ought to leave it alone. */ + if (targetm.promoted_type (type) != NULL_TREE) + return NULL_TREE; + + machine_mode float16_type_mode = (float16_type_node + ? TYPE_MODE (float16_type_node) + : VOIDmode); + machine_mode float_type_mode = TYPE_MODE (float_type_node); + machine_mode double_type_mode = TYPE_MODE (double_type_node); + + switch (TREE_CODE (type)) + { + case REAL_TYPE: + { + machine_mode type_mode = TYPE_MODE (type); + switch (target_flt_eval_method) + { + case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT: + if (type_mode == float16_type_mode) + return float_type_node; + break; + case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE: + if (type_mode == float16_type_mode + || type_mode == float_type_mode) + return double_type_node; + break; + case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE: + if (type_mode == float16_type_mode + || type_mode == float_type_mode + || type_mode == double_type_mode) + return long_double_type_node; + break; + default: + gcc_unreachable (); + } + break; + } + case COMPLEX_TYPE: + { + if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE) + return NULL_TREE; + machine_mode type_mode = TYPE_MODE (TREE_TYPE (type)); + switch (target_flt_eval_method) + { + case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT: + if (type_mode == float16_type_mode) + return complex_float_type_node; + break; + case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE: + if (type_mode == float16_type_mode + || type_mode == float_type_mode) + return complex_double_type_node; + break; + case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE: + if (type_mode == float16_type_mode + || type_mode == float_type_mode + || type_mode == double_type_mode) + return complex_long_double_type_node; + break; + default: + gcc_unreachable (); + } + break; + } + default: + break; + } + + return NULL_TREE; +} + +/* Return OP, stripped of any conversions to wider types as much as is safe. + Converting the value back to OP's type makes a value equivalent to OP. + + If FOR_TYPE is nonzero, we return a value which, if converted to + type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE. + + OP must have integer, real or enumeral type. Pointers are not allowed! + + There are some cases where the obvious value we could return + would regenerate to OP if converted to OP's type, + but would not extend like OP to wider types. + If FOR_TYPE indicates such extension is contemplated, we eschew such values. + For example, if OP is (unsigned short)(signed char)-1, + we avoid returning (signed char)-1 if FOR_TYPE is int, + even though extending that to an unsigned short would regenerate OP, + since the result of extending (signed char)-1 to (int) + is different from (int) OP. */ + +tree +get_unwidened (tree op, tree for_type) +{ + /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */ + tree type = TREE_TYPE (op); + unsigned final_prec + = TYPE_PRECISION (for_type != 0 ? for_type : type); + int uns + = (for_type != 0 && for_type != type + && final_prec > TYPE_PRECISION (type) + && TYPE_UNSIGNED (type)); + tree win = op; + + while (CONVERT_EXPR_P (op)) + { + int bitschange; + + /* TYPE_PRECISION on vector types has different meaning + (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions, + so avoid them here. */ + if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE) + break; + + bitschange = TYPE_PRECISION (TREE_TYPE (op)) + - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))); + + /* Truncations are many-one so cannot be removed. + Unless we are later going to truncate down even farther. */ + if (bitschange < 0 + && final_prec > TYPE_PRECISION (TREE_TYPE (op))) + break; + + /* See what's inside this conversion. If we decide to strip it, + we will set WIN. */ + op = TREE_OPERAND (op, 0); + + /* If we have not stripped any zero-extensions (uns is 0), + we can strip any kind of extension. + If we have previously stripped a zero-extension, + only zero-extensions can safely be stripped. + Any extension can be stripped if the bits it would produce + are all going to be discarded later by truncating to FOR_TYPE. */ + + if (bitschange > 0) + { + if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op))) + win = op; + /* TYPE_UNSIGNED says whether this is a zero-extension. + Let's avoid computing it if it does not affect WIN + and if UNS will not be needed again. */ + if ((uns + || CONVERT_EXPR_P (op)) + && TYPE_UNSIGNED (TREE_TYPE (op))) + { + uns = 1; + win = op; + } + } + } + + /* If we finally reach a constant see if it fits in sth smaller and + in that case convert it. */ + if (TREE_CODE (win) == INTEGER_CST) + { + tree wtype = TREE_TYPE (win); + unsigned prec = wi::min_precision (wi::to_wide (win), TYPE_SIGN (wtype)); + if (for_type) + prec = MAX (prec, final_prec); + if (prec < TYPE_PRECISION (wtype)) + { + tree t = lang_hooks.types.type_for_size (prec, TYPE_UNSIGNED (wtype)); + if (t && TYPE_PRECISION (t) < TYPE_PRECISION (wtype)) + win = fold_convert (t, win); + } + } + + return win; +} + +/* Return OP or a simpler expression for a narrower value + which can be sign-extended or zero-extended to give back OP. + Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended + or 0 if the value should be sign-extended. */ + +tree +get_narrower (tree op, int *unsignedp_ptr) +{ + int uns = 0; + int first = 1; + tree win = op; + bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op)); + + if (TREE_CODE (op) == COMPOUND_EXPR) + { + do + op = TREE_OPERAND (op, 1); + while (TREE_CODE (op) == COMPOUND_EXPR); + tree ret = get_narrower (op, unsignedp_ptr); + if (ret == op) + return win; + auto_vec <tree, 16> v; + unsigned int i; + for (op = win; TREE_CODE (op) == COMPOUND_EXPR; + op = TREE_OPERAND (op, 1)) + v.safe_push (op); + FOR_EACH_VEC_ELT_REVERSE (v, i, op) + ret = build2_loc (EXPR_LOCATION (op), COMPOUND_EXPR, + TREE_TYPE (ret), TREE_OPERAND (op, 0), + ret); + return ret; + } + while (TREE_CODE (op) == NOP_EXPR) + { + int bitschange + = (TYPE_PRECISION (TREE_TYPE (op)) + - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)))); + + /* Truncations are many-one so cannot be removed. */ + if (bitschange < 0) + break; + + /* See what's inside this conversion. If we decide to strip it, + we will set WIN. */ + + if (bitschange > 0) + { + op = TREE_OPERAND (op, 0); + /* An extension: the outermost one can be stripped, + but remember whether it is zero or sign extension. */ + if (first) + uns = TYPE_UNSIGNED (TREE_TYPE (op)); + /* Otherwise, if a sign extension has been stripped, + only sign extensions can now be stripped; + if a zero extension has been stripped, only zero-extensions. */ + else if (uns != TYPE_UNSIGNED (TREE_TYPE (op))) + break; + first = 0; + } + else /* bitschange == 0 */ + { + /* A change in nominal type can always be stripped, but we must + preserve the unsignedness. */ + if (first) + uns = TYPE_UNSIGNED (TREE_TYPE (op)); + first = 0; + op = TREE_OPERAND (op, 0); + /* Keep trying to narrow, but don't assign op to win if it + would turn an integral type into something else. */ + if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p) + continue; + } + + win = op; + } + + if (TREE_CODE (op) == COMPONENT_REF + /* Since type_for_size always gives an integer type. */ + && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE + && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE + /* Ensure field is laid out already. */ + && DECL_SIZE (TREE_OPERAND (op, 1)) != 0 + && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op, 1)))) + { + unsigned HOST_WIDE_INT innerprec + = tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op, 1))); + int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1)) + || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1)))); + tree type = lang_hooks.types.type_for_size (innerprec, unsignedp); + + /* We can get this structure field in a narrower type that fits it, + but the resulting extension to its nominal type (a fullword type) + must satisfy the same conditions as for other extensions. + + Do this only for fields that are aligned (not bit-fields), + because when bit-field insns will be used there is no + advantage in doing this. */ + + if (innerprec < TYPE_PRECISION (TREE_TYPE (op)) + && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)) + && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1))) + && type != 0) + { + if (first) + uns = DECL_UNSIGNED (TREE_OPERAND (op, 1)); + win = fold_convert (type, op); + } + } + + *unsignedp_ptr = uns; + return win; +} + +/* Return true if integer constant C has a value that is permissible + for TYPE, an integral type. */ + +bool +int_fits_type_p (const_tree c, const_tree type) +{ + tree type_low_bound, type_high_bound; + bool ok_for_low_bound, ok_for_high_bound; + signop sgn_c = TYPE_SIGN (TREE_TYPE (c)); + + /* Non-standard boolean types can have arbitrary precision but various + transformations assume that they can only take values 0 and +/-1. */ + if (TREE_CODE (type) == BOOLEAN_TYPE) + return wi::fits_to_boolean_p (wi::to_wide (c), type); + +retry: + type_low_bound = TYPE_MIN_VALUE (type); + type_high_bound = TYPE_MAX_VALUE (type); + + /* If at least one bound of the type is a constant integer, we can check + ourselves and maybe make a decision. If no such decision is possible, but + this type is a subtype, try checking against that. Otherwise, use + fits_to_tree_p, which checks against the precision. + + Compute the status for each possibly constant bound, and return if we see + one does not match. Use ok_for_xxx_bound for this purpose, assigning -1 + for "unknown if constant fits", 0 for "constant known *not* to fit" and 1 + for "constant known to fit". */ + + /* Check if c >= type_low_bound. */ + if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST) + { + if (tree_int_cst_lt (c, type_low_bound)) + return false; + ok_for_low_bound = true; + } + else + ok_for_low_bound = false; + + /* Check if c <= type_high_bound. */ + if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST) + { + if (tree_int_cst_lt (type_high_bound, c)) + return false; + ok_for_high_bound = true; + } + else + ok_for_high_bound = false; + + /* If the constant fits both bounds, the result is known. */ + if (ok_for_low_bound && ok_for_high_bound) + return true; + + /* Perform some generic filtering which may allow making a decision + even if the bounds are not constant. First, negative integers + never fit in unsigned types, */ + if (TYPE_UNSIGNED (type) && sgn_c == SIGNED && wi::neg_p (wi::to_wide (c))) + return false; + + /* Second, narrower types always fit in wider ones. */ + if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c))) + return true; + + /* Third, unsigned integers with top bit set never fit signed types. */ + if (!TYPE_UNSIGNED (type) && sgn_c == UNSIGNED) + { + int prec = GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (TREE_TYPE (c))) - 1; + if (prec < TYPE_PRECISION (TREE_TYPE (c))) + { + /* When a tree_cst is converted to a wide-int, the precision + is taken from the type. However, if the precision of the + mode underneath the type is smaller than that, it is + possible that the value will not fit. The test below + fails if any bit is set between the sign bit of the + underlying mode and the top bit of the type. */ + if (wi::zext (wi::to_wide (c), prec - 1) != wi::to_wide (c)) + return false; + } + else if (wi::neg_p (wi::to_wide (c))) + return false; + } + + /* If we haven't been able to decide at this point, there nothing more we + can check ourselves here. Look at the base type if we have one and it + has the same precision. */ + if (TREE_CODE (type) == INTEGER_TYPE + && TREE_TYPE (type) != 0 + && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type))) + { + type = TREE_TYPE (type); + goto retry; + } + + /* Or to fits_to_tree_p, if nothing else. */ + return wi::fits_to_tree_p (wi::to_wide (c), type); +} + +/* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant + bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be + represented (assuming two's-complement arithmetic) within the bit + precision of the type are returned instead. */ + +void +get_type_static_bounds (const_tree type, mpz_t min, mpz_t max) +{ + if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type) + && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST) + wi::to_mpz (wi::to_wide (TYPE_MIN_VALUE (type)), min, TYPE_SIGN (type)); + else + { + if (TYPE_UNSIGNED (type)) + mpz_set_ui (min, 0); + else + { + wide_int mn = wi::min_value (TYPE_PRECISION (type), SIGNED); + wi::to_mpz (mn, min, SIGNED); + } + } + + if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type) + && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST) + wi::to_mpz (wi::to_wide (TYPE_MAX_VALUE (type)), max, TYPE_SIGN (type)); + else + { + wide_int mn = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type)); + wi::to_mpz (mn, max, TYPE_SIGN (type)); + } +} + +/* Return true if VAR is an automatic variable. */ + +bool +auto_var_p (const_tree var) +{ + return ((((VAR_P (var) && ! DECL_EXTERNAL (var)) + || TREE_CODE (var) == PARM_DECL) + && ! TREE_STATIC (var)) + || TREE_CODE (var) == RESULT_DECL); +} + +/* Return true if VAR is an automatic variable defined in function FN. */ + +bool +auto_var_in_fn_p (const_tree var, const_tree fn) +{ + return (DECL_P (var) && DECL_CONTEXT (var) == fn + && (auto_var_p (var) + || TREE_CODE (var) == LABEL_DECL)); +} + +/* Subprogram of following function. Called by walk_tree. + + Return *TP if it is an automatic variable or parameter of the + function passed in as DATA. */ + +static tree +find_var_from_fn (tree *tp, int *walk_subtrees, void *data) +{ + tree fn = (tree) data; + + if (TYPE_P (*tp)) + *walk_subtrees = 0; + + else if (DECL_P (*tp) + && auto_var_in_fn_p (*tp, fn)) + return *tp; + + return NULL_TREE; +} + +/* Returns true if T is, contains, or refers to a type with variable + size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the + arguments, but not the return type. If FN is nonzero, only return + true if a modifier of the type or position of FN is a variable or + parameter inside FN. + + This concept is more general than that of C99 'variably modified types': + in C99, a struct type is never variably modified because a VLA may not + appear as a structure member. However, in GNU C code like: + + struct S { int i[f()]; }; + + is valid, and other languages may define similar constructs. */ + +bool +variably_modified_type_p (tree type, tree fn) +{ + tree t; + +/* Test if T is either variable (if FN is zero) or an expression containing + a variable in FN. If TYPE isn't gimplified, return true also if + gimplify_one_sizepos would gimplify the expression into a local + variable. */ +#define RETURN_TRUE_IF_VAR(T) \ + do { tree _t = (T); \ + if (_t != NULL_TREE \ + && _t != error_mark_node \ + && !CONSTANT_CLASS_P (_t) \ + && TREE_CODE (_t) != PLACEHOLDER_EXPR \ + && (!fn \ + || (!TYPE_SIZES_GIMPLIFIED (type) \ + && (TREE_CODE (_t) != VAR_DECL \ + && !CONTAINS_PLACEHOLDER_P (_t))) \ + || walk_tree (&_t, find_var_from_fn, fn, NULL))) \ + return true; } while (0) + + if (type == error_mark_node) + return false; + + /* If TYPE itself has variable size, it is variably modified. */ + RETURN_TRUE_IF_VAR (TYPE_SIZE (type)); + RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type)); + + switch (TREE_CODE (type)) + { + case POINTER_TYPE: + case REFERENCE_TYPE: + case VECTOR_TYPE: + /* Ada can have pointer types refering to themselves indirectly. */ + if (TREE_VISITED (type)) + return false; + TREE_VISITED (type) = true; + if (variably_modified_type_p (TREE_TYPE (type), fn)) + { + TREE_VISITED (type) = false; + return true; + } + TREE_VISITED (type) = false; + break; + + case FUNCTION_TYPE: + case METHOD_TYPE: + /* If TYPE is a function type, it is variably modified if the + return type is variably modified. */ + if (variably_modified_type_p (TREE_TYPE (type), fn)) + return true; + break; + + case INTEGER_TYPE: + case REAL_TYPE: + case FIXED_POINT_TYPE: + case ENUMERAL_TYPE: + case BOOLEAN_TYPE: + /* Scalar types are variably modified if their end points + aren't constant. */ + RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type)); + RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type)); + break; + + case RECORD_TYPE: + case UNION_TYPE: + case QUAL_UNION_TYPE: + /* We can't see if any of the fields are variably-modified by the + definition we normally use, since that would produce infinite + recursion via pointers. */ + /* This is variably modified if some field's type is. */ + for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t)) + if (TREE_CODE (t) == FIELD_DECL) + { + RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t)); + RETURN_TRUE_IF_VAR (DECL_SIZE (t)); + RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t)); + + /* If the type is a qualified union, then the DECL_QUALIFIER + of fields can also be an expression containing a variable. */ + if (TREE_CODE (type) == QUAL_UNION_TYPE) + RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t)); + + /* If the field is a qualified union, then it's only a container + for what's inside so we look into it. That's necessary in LTO + mode because the sizes of the field tested above have been set + to PLACEHOLDER_EXPRs by free_lang_data. */ + if (TREE_CODE (TREE_TYPE (t)) == QUAL_UNION_TYPE + && variably_modified_type_p (TREE_TYPE (t), fn)) + return true; + } + break; + + case ARRAY_TYPE: + /* Do not call ourselves to avoid infinite recursion. This is + variably modified if the element type is. */ + RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type))); + RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type))); + break; + + default: + break; + } + + /* The current language may have other cases to check, but in general, + all other types are not variably modified. */ + return lang_hooks.tree_inlining.var_mod_type_p (type, fn); + +#undef RETURN_TRUE_IF_VAR +} + +/* Given a DECL or TYPE, return the scope in which it was declared, or + NULL_TREE if there is no containing scope. */ + +tree +get_containing_scope (const_tree t) +{ + return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t)); +} + +/* Returns the ultimate TRANSLATION_UNIT_DECL context of DECL or NULL. */ + +const_tree +get_ultimate_context (const_tree decl) +{ + while (decl && TREE_CODE (decl) != TRANSLATION_UNIT_DECL) + { + if (TREE_CODE (decl) == BLOCK) + decl = BLOCK_SUPERCONTEXT (decl); + else + decl = get_containing_scope (decl); + } + return decl; +} + +/* Return the innermost context enclosing DECL that is + a FUNCTION_DECL, or zero if none. */ + +tree +decl_function_context (const_tree decl) +{ + tree context; + + if (TREE_CODE (decl) == ERROR_MARK) + return 0; + + /* C++ virtual functions use DECL_CONTEXT for the class of the vtable + where we look up the function at runtime. Such functions always take + a first argument of type 'pointer to real context'. + + C++ should really be fixed to use DECL_CONTEXT for the real context, + and use something else for the "virtual context". */ + else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VIRTUAL_P (decl)) + context + = TYPE_MAIN_VARIANT + (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl))))); + else + context = DECL_CONTEXT (decl); + + while (context && TREE_CODE (context) != FUNCTION_DECL) + { + if (TREE_CODE (context) == BLOCK) + context = BLOCK_SUPERCONTEXT (context); + else + context = get_containing_scope (context); + } + + return context; +} + +/* Return the innermost context enclosing DECL that is + a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none. + TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */ + +tree +decl_type_context (const_tree decl) +{ + tree context = DECL_CONTEXT (decl); + + while (context) + switch (TREE_CODE (context)) + { + case NAMESPACE_DECL: + case TRANSLATION_UNIT_DECL: + return NULL_TREE; + + case RECORD_TYPE: + case UNION_TYPE: + case QUAL_UNION_TYPE: + return context; + + case TYPE_DECL: + case FUNCTION_DECL: + context = DECL_CONTEXT (context); + break; + + case BLOCK: + context = BLOCK_SUPERCONTEXT (context); + break; + + default: + gcc_unreachable (); + } + + return NULL_TREE; +} + +/* CALL is a CALL_EXPR. Return the declaration for the function + called, or NULL_TREE if the called function cannot be + determined. */ + +tree +get_callee_fndecl (const_tree call) +{ + tree addr; + + if (call == error_mark_node) + return error_mark_node; + + /* It's invalid to call this function with anything but a + CALL_EXPR. */ + gcc_assert (TREE_CODE (call) == CALL_EXPR); + + /* The first operand to the CALL is the address of the function + called. */ + addr = CALL_EXPR_FN (call); + + /* If there is no function, return early. */ + if (addr == NULL_TREE) + return NULL_TREE; + + STRIP_NOPS (addr); + + /* If this is a readonly function pointer, extract its initial value. */ + if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL + && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr) + && DECL_INITIAL (addr)) + addr = DECL_INITIAL (addr); + + /* If the address is just `&f' for some function `f', then we know + that `f' is being called. */ + if (TREE_CODE (addr) == ADDR_EXPR + && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL) + return TREE_OPERAND (addr, 0); + + /* We couldn't figure out what was being called. */ + return NULL_TREE; +} + +/* If CALL_EXPR CALL calls a normal built-in function or an internal function, + return the associated function code, otherwise return CFN_LAST. */ + +combined_fn +get_call_combined_fn (const_tree call) +{ + /* It's invalid to call this function with anything but a CALL_EXPR. */ + gcc_assert (TREE_CODE (call) == CALL_EXPR); + + if (!CALL_EXPR_FN (call)) + return as_combined_fn (CALL_EXPR_IFN (call)); + + tree fndecl = get_callee_fndecl (call); + if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)) + return as_combined_fn (DECL_FUNCTION_CODE (fndecl)); + + return CFN_LAST; +} + +/* Comparator of indices based on tree_node_counts. */ + +static int +tree_nodes_cmp (const void *p1, const void *p2) +{ + const unsigned *n1 = (const unsigned *)p1; + const unsigned *n2 = (const unsigned *)p2; + + return tree_node_counts[*n1] - tree_node_counts[*n2]; +} + +/* Comparator of indices based on tree_code_counts. */ + +static int +tree_codes_cmp (const void *p1, const void *p2) +{ + const unsigned *n1 = (const unsigned *)p1; + const unsigned *n2 = (const unsigned *)p2; + + return tree_code_counts[*n1] - tree_code_counts[*n2]; +} + +#define TREE_MEM_USAGE_SPACES 40 + +/* Print debugging information about tree nodes generated during the compile, + and any language-specific information. */ + +void +dump_tree_statistics (void) +{ + if (GATHER_STATISTICS) + { + uint64_t total_nodes, total_bytes; + fprintf (stderr, "\nKind Nodes Bytes\n"); + mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES); + total_nodes = total_bytes = 0; + + { + auto_vec<unsigned> indices (all_kinds); + for (unsigned i = 0; i < all_kinds; i++) + indices.quick_push (i); + indices.qsort (tree_nodes_cmp); + + for (unsigned i = 0; i < (int) all_kinds; i++) + { + unsigned j = indices[i]; + fprintf (stderr, "%-20s %6" PRIu64 "%c %9" PRIu64 "%c\n", + tree_node_kind_names[j], SIZE_AMOUNT (tree_node_counts[j]), + SIZE_AMOUNT (tree_node_sizes[j])); + total_nodes += tree_node_counts[j]; + total_bytes += tree_node_sizes[j]; + } + mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES); + fprintf (stderr, "%-20s %6" PRIu64 "%c %9" PRIu64 "%c\n", "Total", + SIZE_AMOUNT (total_nodes), SIZE_AMOUNT (total_bytes)); + mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES); + } + + { + fprintf (stderr, "Code Nodes\n"); + mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES); + + auto_vec<unsigned> indices (MAX_TREE_CODES); + for (unsigned i = 0; i < MAX_TREE_CODES; i++) + indices.quick_push (i); + indices.qsort (tree_codes_cmp); + + for (unsigned i = 0; i < MAX_TREE_CODES; i++) + { + unsigned j = indices[i]; + fprintf (stderr, "%-32s %6" PRIu64 "%c\n", + get_tree_code_name ((enum tree_code) j), + SIZE_AMOUNT (tree_code_counts[j])); + } + mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES); + fprintf (stderr, "\n"); + ssanames_print_statistics (); + fprintf (stderr, "\n"); + phinodes_print_statistics (); + fprintf (stderr, "\n"); + } + } + else + fprintf (stderr, "(No per-node statistics)\n"); + + print_type_hash_statistics (); + print_debug_expr_statistics (); + print_value_expr_statistics (); + lang_hooks.print_statistics (); +} + +#define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s" + +/* Generate a crc32 of the low BYTES bytes of VALUE. */ + +unsigned +crc32_unsigned_n (unsigned chksum, unsigned value, unsigned bytes) +{ + /* This relies on the raw feedback's top 4 bits being zero. */ +#define FEEDBACK(X) ((X) * 0x04c11db7) +#define SYNDROME(X) (FEEDBACK ((X) & 1) ^ FEEDBACK ((X) & 2) \ + ^ FEEDBACK ((X) & 4) ^ FEEDBACK ((X) & 8)) + static const unsigned syndromes[16] = + { + SYNDROME(0x0), SYNDROME(0x1), SYNDROME(0x2), SYNDROME(0x3), + SYNDROME(0x4), SYNDROME(0x5), SYNDROME(0x6), SYNDROME(0x7), + SYNDROME(0x8), SYNDROME(0x9), SYNDROME(0xa), SYNDROME(0xb), + SYNDROME(0xc), SYNDROME(0xd), SYNDROME(0xe), SYNDROME(0xf), + }; +#undef FEEDBACK +#undef SYNDROME + + value <<= (32 - bytes * 8); + for (unsigned ix = bytes * 2; ix--; value <<= 4) + { + unsigned feedback = syndromes[((value ^ chksum) >> 28) & 0xf]; + + chksum = (chksum << 4) ^ feedback; + } + + return chksum; +} + +/* Generate a crc32 of a string. */ + +unsigned +crc32_string (unsigned chksum, const char *string) +{ + do + chksum = crc32_byte (chksum, *string); + while (*string++); + return chksum; +} + +/* P is a string that will be used in a symbol. Mask out any characters + that are not valid in that context. */ + +void +clean_symbol_name (char *p) +{ + for (; *p; p++) + if (! (ISALNUM (*p) +#ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */ + || *p == '$' +#endif +#ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */ + || *p == '.' +#endif + )) + *p = '_'; +} + +static GTY(()) unsigned anon_cnt = 0; /* Saved for PCH. */ + +/* Create a unique anonymous identifier. The identifier is still a + valid assembly label. */ + +tree +make_anon_name () +{ + const char *fmt = +#if !defined (NO_DOT_IN_LABEL) + "." +#elif !defined (NO_DOLLAR_IN_LABEL) + "$" +#else + "_" +#endif + "_anon_%d"; + + char buf[24]; + int len = snprintf (buf, sizeof (buf), fmt, anon_cnt++); + gcc_checking_assert (len < int (sizeof (buf))); + + tree id = get_identifier_with_length (buf, len); + IDENTIFIER_ANON_P (id) = true; + + return id; +} + +/* Generate a name for a special-purpose function. + The generated name may need to be unique across the whole link. + Changes to this function may also require corresponding changes to + xstrdup_mask_random. + TYPE is some string to identify the purpose of this function to the + linker or collect2; it must start with an uppercase letter, + one of: + I - for constructors + D - for destructors + N - for C++ anonymous namespaces + F - for DWARF unwind frame information. */ + +tree +get_file_function_name (const char *type) +{ + char *buf; + const char *p; + char *q; + + /* If we already have a name we know to be unique, just use that. */ + if (first_global_object_name) + p = q = ASTRDUP (first_global_object_name); + /* If the target is handling the constructors/destructors, they + will be local to this file and the name is only necessary for + debugging purposes. + We also assign sub_I and sub_D sufixes to constructors called from + the global static constructors. These are always local. */ + else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors) + || (startswith (type, "sub_") + && (type[4] == 'I' || type[4] == 'D'))) + { + const char *file = main_input_filename; + if (! file) + file = LOCATION_FILE (input_location); + /* Just use the file's basename, because the full pathname + might be quite long. */ + p = q = ASTRDUP (lbasename (file)); + } + else + { + /* Otherwise, the name must be unique across the entire link. + We don't have anything that we know to be unique to this translation + unit, so use what we do have and throw in some randomness. */ + unsigned len; + const char *name = weak_global_object_name; + const char *file = main_input_filename; + + if (! name) + name = ""; + if (! file) + file = LOCATION_FILE (input_location); + + len = strlen (file); + q = (char *) alloca (9 + 19 + len + 1); + memcpy (q, file, len + 1); + + snprintf (q + len, 9 + 19 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX, + crc32_string (0, name), get_random_seed (false)); + + p = q; + } + + clean_symbol_name (q); + buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + + strlen (type)); + + /* Set up the name of the file-level functions we may need. + Use a global object (which is already required to be unique over + the program) rather than the file name (which imposes extra + constraints). */ + sprintf (buf, FILE_FUNCTION_FORMAT, type, p); + + return get_identifier (buf); +} + +#if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007) + +/* Complain that the tree code of NODE does not match the expected 0 + terminated list of trailing codes. The trailing code list can be + empty, for a more vague error message. FILE, LINE, and FUNCTION + are of the caller. */ + +void +tree_check_failed (const_tree node, const char *file, + int line, const char *function, ...) +{ + va_list args; + const char *buffer; + unsigned length = 0; + enum tree_code code; + + va_start (args, function); + while ((code = (enum tree_code) va_arg (args, int))) + length += 4 + strlen (get_tree_code_name (code)); + va_end (args); + if (length) + { + char *tmp; + va_start (args, function); + length += strlen ("expected "); + buffer = tmp = (char *) alloca (length); + length = 0; + while ((code = (enum tree_code) va_arg (args, int))) + { + const char *prefix = length ? " or " : "expected "; + + strcpy (tmp + length, prefix); + length += strlen (prefix); + strcpy (tmp + length, get_tree_code_name (code)); + length += strlen (get_tree_code_name (code)); + } + va_end (args); + } + else + buffer = "unexpected node"; + + internal_error ("tree check: %s, have %s in %s, at %s:%d", + buffer, get_tree_code_name (TREE_CODE (node)), + function, trim_filename (file), line); +} + +/* Complain that the tree code of NODE does match the expected 0 + terminated list of trailing codes. FILE, LINE, and FUNCTION are of + the caller. */ + +void +tree_not_check_failed (const_tree node, const char *file, + int line, const char *function, ...) +{ + va_list args; + char *buffer; + unsigned length = 0; + enum tree_code code; + + va_start (args, function); + while ((code = (enum tree_code) va_arg (args, int))) + length += 4 + strlen (get_tree_code_name (code)); + va_end (args); + va_start (args, function); + buffer = (char *) alloca (length); + length = 0; + while ((code = (enum tree_code) va_arg (args, int))) + { + if (length) + { + strcpy (buffer + length, " or "); + length += 4; + } + strcpy (buffer + length, get_tree_code_name (code)); + length += strlen (get_tree_code_name (code)); + } + va_end (args); + + internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d", + buffer, get_tree_code_name (TREE_CODE (node)), + function, trim_filename (file), line); +} + +/* Similar to tree_check_failed, except that we check for a class of tree + code, given in CL. */ + +void +tree_class_check_failed (const_tree node, const enum tree_code_class cl, + const char *file, int line, const char *function) +{ + internal_error + ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d", + TREE_CODE_CLASS_STRING (cl), + TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))), + get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line); +} + +/* Similar to tree_check_failed, except that instead of specifying a + dozen codes, use the knowledge that they're all sequential. */ + +void +tree_range_check_failed (const_tree node, const char *file, int line, + const char *function, enum tree_code c1, + enum tree_code c2) +{ + char *buffer; + unsigned length = 0; + unsigned int c; + + for (c = c1; c <= c2; ++c) + length += 4 + strlen (get_tree_code_name ((enum tree_code) c)); + + length += strlen ("expected "); + buffer = (char *) alloca (length); + length = 0; + + for (c = c1; c <= c2; ++c) + { + const char *prefix = length ? " or " : "expected "; + + strcpy (buffer + length, prefix); + length += strlen (prefix); + strcpy (buffer + length, get_tree_code_name ((enum tree_code) c)); + length += strlen (get_tree_code_name ((enum tree_code) c)); + } + + internal_error ("tree check: %s, have %s in %s, at %s:%d", + buffer, get_tree_code_name (TREE_CODE (node)), + function, trim_filename (file), line); +} + + +/* Similar to tree_check_failed, except that we check that a tree does + not have the specified code, given in CL. */ + +void +tree_not_class_check_failed (const_tree node, const enum tree_code_class cl, + const char *file, int line, const char *function) +{ + internal_error + ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d", + TREE_CODE_CLASS_STRING (cl), + TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))), + get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line); +} + + +/* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */ + +void +omp_clause_check_failed (const_tree node, const char *file, int line, + const char *function, enum omp_clause_code code) +{ + internal_error ("tree check: expected %<omp_clause %s%>, have %qs " + "in %s, at %s:%d", + omp_clause_code_name[code], + get_tree_code_name (TREE_CODE (node)), + function, trim_filename (file), line); +} + + +/* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */ + +void +omp_clause_range_check_failed (const_tree node, const char *file, int line, + const char *function, enum omp_clause_code c1, + enum omp_clause_code c2) +{ + char *buffer; + unsigned length = 0; + unsigned int c; + + for (c = c1; c <= c2; ++c) + length += 4 + strlen (omp_clause_code_name[c]); + + length += strlen ("expected "); + buffer = (char *) alloca (length); + length = 0; + + for (c = c1; c <= c2; ++c) + { + const char *prefix = length ? " or " : "expected "; + + strcpy (buffer + length, prefix); + length += strlen (prefix); + strcpy (buffer + length, omp_clause_code_name[c]); + length += strlen (omp_clause_code_name[c]); + } + + internal_error ("tree check: %s, have %s in %s, at %s:%d", + buffer, omp_clause_code_name[TREE_CODE (node)], + function, trim_filename (file), line); +} + + +#undef DEFTREESTRUCT +#define DEFTREESTRUCT(VAL, NAME) NAME, + +static const char *ts_enum_names[] = { +#include "treestruct.def" +}; +#undef DEFTREESTRUCT + +#define TS_ENUM_NAME(EN) (ts_enum_names[(EN)]) + +/* Similar to tree_class_check_failed, except that we check for + whether CODE contains the tree structure identified by EN. */ + +void +tree_contains_struct_check_failed (const_tree node, + const enum tree_node_structure_enum en, + const char *file, int line, + const char *function) +{ + internal_error + ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d", + TS_ENUM_NAME (en), + get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line); +} + + +/* Similar to above, except that the check is for the bounds of a TREE_VEC's + (dynamically sized) vector. */ + +void +tree_int_cst_elt_check_failed (int idx, int len, const char *file, int line, + const char *function) +{ + internal_error + ("tree check: accessed elt %d of %<tree_int_cst%> with %d elts in %s, " + "at %s:%d", + idx + 1, len, function, trim_filename (file), line); +} + +/* Similar to above, except that the check is for the bounds of a TREE_VEC's + (dynamically sized) vector. */ + +void +tree_vec_elt_check_failed (int idx, int len, const char *file, int line, + const char *function) +{ + internal_error + ("tree check: accessed elt %d of %<tree_vec%> with %d elts in %s, at %s:%d", + idx + 1, len, function, trim_filename (file), line); +} + +/* Similar to above, except that the check is for the bounds of the operand + vector of an expression node EXP. */ + +void +tree_operand_check_failed (int idx, const_tree exp, const char *file, + int line, const char *function) +{ + enum tree_code code = TREE_CODE (exp); + internal_error + ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d", + idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp), + function, trim_filename (file), line); +} + +/* Similar to above, except that the check is for the number of + operands of an OMP_CLAUSE node. */ + +void +omp_clause_operand_check_failed (int idx, const_tree t, const char *file, + int line, const char *function) +{ + internal_error + ("tree check: accessed operand %d of %<omp_clause %s%> with %d operands " + "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)], + omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function, + trim_filename (file), line); +} +#endif /* ENABLE_TREE_CHECKING */ + +/* Create a new vector type node holding NUNITS units of type INNERTYPE, + and mapped to the machine mode MODE. Initialize its fields and build + the information necessary for debugging output. */ + +static tree +make_vector_type (tree innertype, poly_int64 nunits, machine_mode mode) +{ + tree t; + tree mv_innertype = TYPE_MAIN_VARIANT (innertype); + + t = make_node (VECTOR_TYPE); + TREE_TYPE (t) = mv_innertype; + SET_TYPE_VECTOR_SUBPARTS (t, nunits); + SET_TYPE_MODE (t, mode); + + if (TYPE_STRUCTURAL_EQUALITY_P (mv_innertype) || in_lto_p) + SET_TYPE_STRUCTURAL_EQUALITY (t); + else if ((TYPE_CANONICAL (mv_innertype) != innertype + || mode != VOIDmode) + && !VECTOR_BOOLEAN_TYPE_P (t)) + TYPE_CANONICAL (t) + = make_vector_type (TYPE_CANONICAL (mv_innertype), nunits, VOIDmode); + + layout_type (t); + + hashval_t hash = type_hash_canon_hash (t); + t = type_hash_canon (hash, t); + + /* We have built a main variant, based on the main variant of the + inner type. Use it to build the variant we return. */ + if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype)) + && TREE_TYPE (t) != innertype) + return build_type_attribute_qual_variant (t, + TYPE_ATTRIBUTES (innertype), + TYPE_QUALS (innertype)); + + return t; +} + +static tree +make_or_reuse_type (unsigned size, int unsignedp) +{ + int i; + + if (size == INT_TYPE_SIZE) + return unsignedp ? unsigned_type_node : integer_type_node; + if (size == CHAR_TYPE_SIZE) + return unsignedp ? unsigned_char_type_node : signed_char_type_node; + if (size == SHORT_TYPE_SIZE) + return unsignedp ? short_unsigned_type_node : short_integer_type_node; + if (size == LONG_TYPE_SIZE) + return unsignedp ? long_unsigned_type_node : long_integer_type_node; + if (size == LONG_LONG_TYPE_SIZE) + return (unsignedp ? long_long_unsigned_type_node + : long_long_integer_type_node); + + for (i = 0; i < NUM_INT_N_ENTS; i ++) + if (size == int_n_data[i].bitsize + && int_n_enabled_p[i]) + return (unsignedp ? int_n_trees[i].unsigned_type + : int_n_trees[i].signed_type); + + if (unsignedp) + return make_unsigned_type (size); + else + return make_signed_type (size); +} + +/* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */ + +static tree +make_or_reuse_fract_type (unsigned size, int unsignedp, int satp) +{ + if (satp) + { + if (size == SHORT_FRACT_TYPE_SIZE) + return unsignedp ? sat_unsigned_short_fract_type_node + : sat_short_fract_type_node; + if (size == FRACT_TYPE_SIZE) + return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node; + if (size == LONG_FRACT_TYPE_SIZE) + return unsignedp ? sat_unsigned_long_fract_type_node + : sat_long_fract_type_node; + if (size == LONG_LONG_FRACT_TYPE_SIZE) + return unsignedp ? sat_unsigned_long_long_fract_type_node + : sat_long_long_fract_type_node; + } + else + { + if (size == SHORT_FRACT_TYPE_SIZE) + return unsignedp ? unsigned_short_fract_type_node + : short_fract_type_node; + if (size == FRACT_TYPE_SIZE) + return unsignedp ? unsigned_fract_type_node : fract_type_node; + if (size == LONG_FRACT_TYPE_SIZE) + return unsignedp ? unsigned_long_fract_type_node + : long_fract_type_node; + if (size == LONG_LONG_FRACT_TYPE_SIZE) + return unsignedp ? unsigned_long_long_fract_type_node + : long_long_fract_type_node; + } + + return make_fract_type (size, unsignedp, satp); +} + +/* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */ + +static tree +make_or_reuse_accum_type (unsigned size, int unsignedp, int satp) +{ + if (satp) + { + if (size == SHORT_ACCUM_TYPE_SIZE) + return unsignedp ? sat_unsigned_short_accum_type_node + : sat_short_accum_type_node; + if (size == ACCUM_TYPE_SIZE) + return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node; + if (size == LONG_ACCUM_TYPE_SIZE) + return unsignedp ? sat_unsigned_long_accum_type_node + : sat_long_accum_type_node; + if (size == LONG_LONG_ACCUM_TYPE_SIZE) + return unsignedp ? sat_unsigned_long_long_accum_type_node + : sat_long_long_accum_type_node; + } + else + { + if (size == SHORT_ACCUM_TYPE_SIZE) + return unsignedp ? unsigned_short_accum_type_node + : short_accum_type_node; + if (size == ACCUM_TYPE_SIZE) + return unsignedp ? unsigned_accum_type_node : accum_type_node; + if (size == LONG_ACCUM_TYPE_SIZE) + return unsignedp ? unsigned_long_accum_type_node + : long_accum_type_node; + if (size == LONG_LONG_ACCUM_TYPE_SIZE) + return unsignedp ? unsigned_long_long_accum_type_node + : long_long_accum_type_node; + } + + return make_accum_type (size, unsignedp, satp); +} + + +/* Create an atomic variant node for TYPE. This routine is called + during initialization of data types to create the 5 basic atomic + types. The generic build_variant_type function requires these to + already be set up in order to function properly, so cannot be + called from there. If ALIGN is non-zero, then ensure alignment is + overridden to this value. */ + +static tree +build_atomic_base (tree type, unsigned int align) +{ + tree t; + + /* Make sure its not already registered. */ + if ((t = get_qualified_type (type, TYPE_QUAL_ATOMIC))) + return t; + + t = build_variant_type_copy (type); + set_type_quals (t, TYPE_QUAL_ATOMIC); + + if (align) + SET_TYPE_ALIGN (t, align); + + return t; +} + +/* Information about the _FloatN and _FloatNx types. This must be in + the same order as the corresponding TI_* enum values. */ +const floatn_type_info floatn_nx_types[NUM_FLOATN_NX_TYPES] = + { + { 16, false }, + { 32, false }, + { 64, false }, + { 128, false }, + { 32, true }, + { 64, true }, + { 128, true }, + }; + + +/* Create nodes for all integer types (and error_mark_node) using the sizes + of C datatypes. SIGNED_CHAR specifies whether char is signed. */ + +void +build_common_tree_nodes (bool signed_char) +{ + int i; + + error_mark_node = make_node (ERROR_MARK); + TREE_TYPE (error_mark_node) = error_mark_node; + + initialize_sizetypes (); + + /* Define both `signed char' and `unsigned char'. */ + signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE); + TYPE_STRING_FLAG (signed_char_type_node) = 1; + unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE); + TYPE_STRING_FLAG (unsigned_char_type_node) = 1; + + /* Define `char', which is like either `signed char' or `unsigned char' + but not the same as either. */ + char_type_node + = (signed_char + ? make_signed_type (CHAR_TYPE_SIZE) + : make_unsigned_type (CHAR_TYPE_SIZE)); + TYPE_STRING_FLAG (char_type_node) = 1; + + short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE); + short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE); + integer_type_node = make_signed_type (INT_TYPE_SIZE); + unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE); + long_integer_type_node = make_signed_type (LONG_TYPE_SIZE); + long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE); + long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE); + long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE); + + for (i = 0; i < NUM_INT_N_ENTS; i ++) + { + int_n_trees[i].signed_type = make_signed_type (int_n_data[i].bitsize); + int_n_trees[i].unsigned_type = make_unsigned_type (int_n_data[i].bitsize); + + if (int_n_enabled_p[i]) + { + integer_types[itk_intN_0 + i * 2] = int_n_trees[i].signed_type; + integer_types[itk_unsigned_intN_0 + i * 2] = int_n_trees[i].unsigned_type; + } + } + + /* Define a boolean type. This type only represents boolean values but + may be larger than char depending on the value of BOOL_TYPE_SIZE. */ + boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE); + TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE); + TYPE_PRECISION (boolean_type_node) = 1; + TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1); + + /* Define what type to use for size_t. */ + if (strcmp (SIZE_TYPE, "unsigned int") == 0) + size_type_node = unsigned_type_node; + else if (strcmp (SIZE_TYPE, "long unsigned int") == 0) + size_type_node = long_unsigned_type_node; + else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0) + size_type_node = long_long_unsigned_type_node; + else if (strcmp (SIZE_TYPE, "short unsigned int") == 0) + size_type_node = short_unsigned_type_node; + else + { + int i; + + size_type_node = NULL_TREE; + for (i = 0; i < NUM_INT_N_ENTS; i++) + if (int_n_enabled_p[i]) + { + char name[50], altname[50]; + sprintf (name, "__int%d unsigned", int_n_data[i].bitsize); + sprintf (altname, "__int%d__ unsigned", int_n_data[i].bitsize); + + if (strcmp (name, SIZE_TYPE) == 0 + || strcmp (altname, SIZE_TYPE) == 0) + { + size_type_node = int_n_trees[i].unsigned_type; + } + } + if (size_type_node == NULL_TREE) + gcc_unreachable (); + } + + /* Define what type to use for ptrdiff_t. */ + if (strcmp (PTRDIFF_TYPE, "int") == 0) + ptrdiff_type_node = integer_type_node; + else if (strcmp (PTRDIFF_TYPE, "long int") == 0) + ptrdiff_type_node = long_integer_type_node; + else if (strcmp (PTRDIFF_TYPE, "long long int") == 0) + ptrdiff_type_node = long_long_integer_type_node; + else if (strcmp (PTRDIFF_TYPE, "short int") == 0) + ptrdiff_type_node = short_integer_type_node; + else + { + ptrdiff_type_node = NULL_TREE; + for (int i = 0; i < NUM_INT_N_ENTS; i++) + if (int_n_enabled_p[i]) + { + char name[50], altname[50]; + sprintf (name, "__int%d", int_n_data[i].bitsize); + sprintf (altname, "__int%d__", int_n_data[i].bitsize); + + if (strcmp (name, PTRDIFF_TYPE) == 0 + || strcmp (altname, PTRDIFF_TYPE) == 0) + ptrdiff_type_node = int_n_trees[i].signed_type; + } + if (ptrdiff_type_node == NULL_TREE) + gcc_unreachable (); + } + + /* Fill in the rest of the sized types. Reuse existing type nodes + when possible. */ + intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0); + intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0); + intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0); + intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0); + intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0); + + unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1); + unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1); + unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1); + unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1); + unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1); + + /* Don't call build_qualified type for atomics. That routine does + special processing for atomics, and until they are initialized + it's better not to make that call. + + Check to see if there is a target override for atomic types. */ + + atomicQI_type_node = build_atomic_base (unsigned_intQI_type_node, + targetm.atomic_align_for_mode (QImode)); + atomicHI_type_node = build_atomic_base (unsigned_intHI_type_node, + targetm.atomic_align_for_mode (HImode)); + atomicSI_type_node = build_atomic_base (unsigned_intSI_type_node, + targetm.atomic_align_for_mode (SImode)); + atomicDI_type_node = build_atomic_base (unsigned_intDI_type_node, + targetm.atomic_align_for_mode (DImode)); + atomicTI_type_node = build_atomic_base (unsigned_intTI_type_node, + targetm.atomic_align_for_mode (TImode)); + + access_public_node = get_identifier ("public"); + access_protected_node = get_identifier ("protected"); + access_private_node = get_identifier ("private"); + + /* Define these next since types below may used them. */ + integer_zero_node = build_int_cst (integer_type_node, 0); + integer_one_node = build_int_cst (integer_type_node, 1); + integer_three_node = build_int_cst (integer_type_node, 3); + integer_minus_one_node = build_int_cst (integer_type_node, -1); + + size_zero_node = size_int (0); + size_one_node = size_int (1); + bitsize_zero_node = bitsize_int (0); + bitsize_one_node = bitsize_int (1); + bitsize_unit_node = bitsize_int (BITS_PER_UNIT); + + boolean_false_node = TYPE_MIN_VALUE (boolean_type_node); + boolean_true_node = TYPE_MAX_VALUE (boolean_type_node); + + void_type_node = make_node (VOID_TYPE); + layout_type (void_type_node); + + /* We are not going to have real types in C with less than byte alignment, + so we might as well not have any types that claim to have it. */ + SET_TYPE_ALIGN (void_type_node, BITS_PER_UNIT); + TYPE_USER_ALIGN (void_type_node) = 0; + + void_node = make_node (VOID_CST); + TREE_TYPE (void_node) = void_type_node; + + null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0); + layout_type (TREE_TYPE (null_pointer_node)); + + ptr_type_node = build_pointer_type (void_type_node); + const_ptr_type_node + = build_pointer_type (build_type_variant (void_type_node, 1, 0)); + for (unsigned i = 0; + i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type); + ++i) + builtin_structptr_types[i].node = builtin_structptr_types[i].base; + + pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1); + + float_type_node = make_node (REAL_TYPE); + TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE; + layout_type (float_type_node); + + double_type_node = make_node (REAL_TYPE); + TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE; + layout_type (double_type_node); + + long_double_type_node = make_node (REAL_TYPE); + TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE; + layout_type (long_double_type_node); + + for (i = 0; i < NUM_FLOATN_NX_TYPES; i++) + { + int n = floatn_nx_types[i].n; + bool extended = floatn_nx_types[i].extended; + scalar_float_mode mode; + if (!targetm.floatn_mode (n, extended).exists (&mode)) + continue; + int precision = GET_MODE_PRECISION (mode); + /* Work around the rs6000 KFmode having precision 113 not + 128. */ + const struct real_format *fmt = REAL_MODE_FORMAT (mode); + gcc_assert (fmt->b == 2 && fmt->emin + fmt->emax == 3); + int min_precision = fmt->p + ceil_log2 (fmt->emax - fmt->emin); + if (!extended) + gcc_assert (min_precision == n); + if (precision < min_precision) + precision = min_precision; + FLOATN_NX_TYPE_NODE (i) = make_node (REAL_TYPE); + TYPE_PRECISION (FLOATN_NX_TYPE_NODE (i)) = precision; + layout_type (FLOATN_NX_TYPE_NODE (i)); + SET_TYPE_MODE (FLOATN_NX_TYPE_NODE (i), mode); + } + + float_ptr_type_node = build_pointer_type (float_type_node); + double_ptr_type_node = build_pointer_type (double_type_node); + long_double_ptr_type_node = build_pointer_type (long_double_type_node); + integer_ptr_type_node = build_pointer_type (integer_type_node); + + /* Fixed size integer types. */ + uint16_type_node = make_or_reuse_type (16, 1); + uint32_type_node = make_or_reuse_type (32, 1); + uint64_type_node = make_or_reuse_type (64, 1); + if (targetm.scalar_mode_supported_p (TImode)) + uint128_type_node = make_or_reuse_type (128, 1); + + /* Decimal float types. */ + if (targetm.decimal_float_supported_p ()) + { + dfloat32_type_node = make_node (REAL_TYPE); + TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE; + SET_TYPE_MODE (dfloat32_type_node, SDmode); + layout_type (dfloat32_type_node); + + dfloat64_type_node = make_node (REAL_TYPE); + TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE; + SET_TYPE_MODE (dfloat64_type_node, DDmode); + layout_type (dfloat64_type_node); + + dfloat128_type_node = make_node (REAL_TYPE); + TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE; + SET_TYPE_MODE (dfloat128_type_node, TDmode); + layout_type (dfloat128_type_node); + } + + complex_integer_type_node = build_complex_type (integer_type_node, true); + complex_float_type_node = build_complex_type (float_type_node, true); + complex_double_type_node = build_complex_type (double_type_node, true); + complex_long_double_type_node = build_complex_type (long_double_type_node, + true); + + for (i = 0; i < NUM_FLOATN_NX_TYPES; i++) + { + if (FLOATN_NX_TYPE_NODE (i) != NULL_TREE) + COMPLEX_FLOATN_NX_TYPE_NODE (i) + = build_complex_type (FLOATN_NX_TYPE_NODE (i)); + } + +/* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */ +#define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \ + sat_ ## KIND ## _type_node = \ + make_sat_signed_ ## KIND ## _type (SIZE); \ + sat_unsigned_ ## KIND ## _type_node = \ + make_sat_unsigned_ ## KIND ## _type (SIZE); \ + KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \ + unsigned_ ## KIND ## _type_node = \ + make_unsigned_ ## KIND ## _type (SIZE); + +#define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \ + sat_ ## WIDTH ## KIND ## _type_node = \ + make_sat_signed_ ## KIND ## _type (SIZE); \ + sat_unsigned_ ## WIDTH ## KIND ## _type_node = \ + make_sat_unsigned_ ## KIND ## _type (SIZE); \ + WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \ + unsigned_ ## WIDTH ## KIND ## _type_node = \ + make_unsigned_ ## KIND ## _type (SIZE); + +/* Make fixed-point type nodes based on four different widths. */ +#define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \ + MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \ + MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \ + MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \ + MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE) + +/* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */ +#define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \ + NAME ## _type_node = \ + make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \ + u ## NAME ## _type_node = \ + make_or_reuse_unsigned_ ## KIND ## _type \ + (GET_MODE_BITSIZE (U ## MODE ## mode)); \ + sat_ ## NAME ## _type_node = \ + make_or_reuse_sat_signed_ ## KIND ## _type \ + (GET_MODE_BITSIZE (MODE ## mode)); \ + sat_u ## NAME ## _type_node = \ + make_or_reuse_sat_unsigned_ ## KIND ## _type \ + (GET_MODE_BITSIZE (U ## MODE ## mode)); + + /* Fixed-point type and mode nodes. */ + MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT) + MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM) + MAKE_FIXED_MODE_NODE (fract, qq, QQ) + MAKE_FIXED_MODE_NODE (fract, hq, HQ) + MAKE_FIXED_MODE_NODE (fract, sq, SQ) + MAKE_FIXED_MODE_NODE (fract, dq, DQ) + MAKE_FIXED_MODE_NODE (fract, tq, TQ) + MAKE_FIXED_MODE_NODE (accum, ha, HA) + MAKE_FIXED_MODE_NODE (accum, sa, SA) + MAKE_FIXED_MODE_NODE (accum, da, DA) + MAKE_FIXED_MODE_NODE (accum, ta, TA) + + { + tree t = targetm.build_builtin_va_list (); + + /* Many back-ends define record types without setting TYPE_NAME. + If we copied the record type here, we'd keep the original + record type without a name. This breaks name mangling. So, + don't copy record types and let c_common_nodes_and_builtins() + declare the type to be __builtin_va_list. */ + if (TREE_CODE (t) != RECORD_TYPE) + t = build_variant_type_copy (t); + + va_list_type_node = t; + } + + /* SCEV analyzer global shared trees. */ + chrec_dont_know = make_node (SCEV_NOT_KNOWN); + TREE_TYPE (chrec_dont_know) = void_type_node; + chrec_known = make_node (SCEV_KNOWN); + TREE_TYPE (chrec_known) = void_type_node; +} + +/* Modify DECL for given flags. + TM_PURE attribute is set only on types, so the function will modify + DECL's type when ECF_TM_PURE is used. */ + +void +set_call_expr_flags (tree decl, int flags) +{ + if (flags & ECF_NOTHROW) + TREE_NOTHROW (decl) = 1; + if (flags & ECF_CONST) + TREE_READONLY (decl) = 1; + if (flags & ECF_PURE) + DECL_PURE_P (decl) = 1; + if (flags & ECF_LOOPING_CONST_OR_PURE) + DECL_LOOPING_CONST_OR_PURE_P (decl) = 1; + if (flags & ECF_NOVOPS) + DECL_IS_NOVOPS (decl) = 1; + if (flags & ECF_NORETURN) + TREE_THIS_VOLATILE (decl) = 1; + if (flags & ECF_MALLOC) + DECL_IS_MALLOC (decl) = 1; + if (flags & ECF_RETURNS_TWICE) + DECL_IS_RETURNS_TWICE (decl) = 1; + if (flags & ECF_LEAF) + DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"), + NULL, DECL_ATTRIBUTES (decl)); + if (flags & ECF_COLD) + DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("cold"), + NULL, DECL_ATTRIBUTES (decl)); + if (flags & ECF_RET1) + DECL_ATTRIBUTES (decl) + = tree_cons (get_identifier ("fn spec"), + build_tree_list (NULL_TREE, build_string (2, "1 ")), + DECL_ATTRIBUTES (decl)); + if ((flags & ECF_TM_PURE) && flag_tm) + apply_tm_attr (decl, get_identifier ("transaction_pure")); + /* Looping const or pure is implied by noreturn. + There is currently no way to declare looping const or looping pure alone. */ + gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE) + || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE)))); +} + + +/* A subroutine of build_common_builtin_nodes. Define a builtin function. */ + +static void +local_define_builtin (const char *name, tree type, enum built_in_function code, + const char *library_name, int ecf_flags) +{ + tree decl; + + decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL, + library_name, NULL_TREE); + set_call_expr_flags (decl, ecf_flags); + + set_builtin_decl (code, decl, true); +} + +/* Call this function after instantiating all builtins that the language + front end cares about. This will build the rest of the builtins + and internal functions that are relied upon by the tree optimizers and + the middle-end. */ + +void +build_common_builtin_nodes (void) +{ + tree tmp, ftype; + int ecf_flags; + + if (!builtin_decl_explicit_p (BUILT_IN_CLEAR_PADDING)) + { + ftype = build_function_type_list (void_type_node, + ptr_type_node, + ptr_type_node, + integer_type_node, + NULL_TREE); + local_define_builtin ("__builtin_clear_padding", ftype, + BUILT_IN_CLEAR_PADDING, + "__builtin_clear_padding", + ECF_LEAF | ECF_NOTHROW); + } + + if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE) + || !builtin_decl_explicit_p (BUILT_IN_ABORT)) + { + ftype = build_function_type (void_type_node, void_list_node); + if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE)) + local_define_builtin ("__builtin_unreachable", ftype, + BUILT_IN_UNREACHABLE, + "__builtin_unreachable", + ECF_NOTHROW | ECF_LEAF | ECF_NORETURN + | ECF_CONST | ECF_COLD); + if (!builtin_decl_explicit_p (BUILT_IN_ABORT)) + local_define_builtin ("__builtin_abort", ftype, BUILT_IN_ABORT, + "abort", + ECF_LEAF | ECF_NORETURN | ECF_CONST | ECF_COLD); + } + + if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY) + || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE)) + { + ftype = build_function_type_list (ptr_type_node, + ptr_type_node, const_ptr_type_node, + size_type_node, NULL_TREE); + + if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)) + local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY, + "memcpy", ECF_NOTHROW | ECF_LEAF); + if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE)) + local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE, + "memmove", ECF_NOTHROW | ECF_LEAF); + } + + if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP)) + { + ftype = build_function_type_list (integer_type_node, const_ptr_type_node, + const_ptr_type_node, size_type_node, + NULL_TREE); + local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP, + "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF); + } + + if (!builtin_decl_explicit_p (BUILT_IN_MEMSET)) + { + ftype = build_function_type_list (ptr_type_node, + ptr_type_node, integer_type_node, + size_type_node, NULL_TREE); + local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET, + "memset", ECF_NOTHROW | ECF_LEAF); + } + + /* If we're checking the stack, `alloca' can throw. */ + const int alloca_flags + = ECF_MALLOC | ECF_LEAF | (flag_stack_check ? 0 : ECF_NOTHROW); + + if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA)) + { + ftype = build_function_type_list (ptr_type_node, + size_type_node, NULL_TREE); + local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA, + "alloca", alloca_flags); + } + + ftype = build_function_type_list (ptr_type_node, size_type_node, + size_type_node, NULL_TREE); + local_define_builtin ("__builtin_alloca_with_align", ftype, + BUILT_IN_ALLOCA_WITH_ALIGN, + "__builtin_alloca_with_align", + alloca_flags); + + ftype = build_function_type_list (ptr_type_node, size_type_node, + size_type_node, size_type_node, NULL_TREE); + local_define_builtin ("__builtin_alloca_with_align_and_max", ftype, + BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX, + "__builtin_alloca_with_align_and_max", + alloca_flags); + + ftype = build_function_type_list (void_type_node, + ptr_type_node, ptr_type_node, + ptr_type_node, NULL_TREE); + local_define_builtin ("__builtin_init_trampoline", ftype, + BUILT_IN_INIT_TRAMPOLINE, + "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF); + local_define_builtin ("__builtin_init_heap_trampoline", ftype, + BUILT_IN_INIT_HEAP_TRAMPOLINE, + "__builtin_init_heap_trampoline", + ECF_NOTHROW | ECF_LEAF); + local_define_builtin ("__builtin_init_descriptor", ftype, + BUILT_IN_INIT_DESCRIPTOR, + "__builtin_init_descriptor", ECF_NOTHROW | ECF_LEAF); + + ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE); + local_define_builtin ("__builtin_adjust_trampoline", ftype, + BUILT_IN_ADJUST_TRAMPOLINE, + "__builtin_adjust_trampoline", + ECF_CONST | ECF_NOTHROW); + local_define_builtin ("__builtin_adjust_descriptor", ftype, + BUILT_IN_ADJUST_DESCRIPTOR, + "__builtin_adjust_descriptor", + ECF_CONST | ECF_NOTHROW); + + ftype = build_function_type_list (void_type_node, + ptr_type_node, ptr_type_node, NULL_TREE); + if (!builtin_decl_explicit_p (BUILT_IN_CLEAR_CACHE)) + local_define_builtin ("__builtin___clear_cache", ftype, + BUILT_IN_CLEAR_CACHE, + "__clear_cache", + ECF_NOTHROW); + + local_define_builtin ("__builtin_nonlocal_goto", ftype, + BUILT_IN_NONLOCAL_GOTO, + "__builtin_nonlocal_goto", + ECF_NORETURN | ECF_NOTHROW); + + ftype = build_function_type_list (void_type_node, + ptr_type_node, ptr_type_node, NULL_TREE); + local_define_builtin ("__builtin_setjmp_setup", ftype, + BUILT_IN_SETJMP_SETUP, + "__builtin_setjmp_setup", ECF_NOTHROW); + + ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE); + local_define_builtin ("__builtin_setjmp_receiver", ftype, + BUILT_IN_SETJMP_RECEIVER, + "__builtin_setjmp_receiver", ECF_NOTHROW | ECF_LEAF); + + ftype = build_function_type_list (ptr_type_node, NULL_TREE); + local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE, + "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF); + + ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE); + local_define_builtin ("__builtin_stack_restore", ftype, + BUILT_IN_STACK_RESTORE, + "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF); + + ftype = build_function_type_list (integer_type_node, const_ptr_type_node, + const_ptr_type_node, size_type_node, + NULL_TREE); + local_define_builtin ("__builtin_memcmp_eq", ftype, BUILT_IN_MEMCMP_EQ, + "__builtin_memcmp_eq", + ECF_PURE | ECF_NOTHROW | ECF_LEAF); + + local_define_builtin ("__builtin_strncmp_eq", ftype, BUILT_IN_STRNCMP_EQ, + "__builtin_strncmp_eq", + ECF_PURE | ECF_NOTHROW | ECF_LEAF); + + local_define_builtin ("__builtin_strcmp_eq", ftype, BUILT_IN_STRCMP_EQ, + "__builtin_strcmp_eq", + ECF_PURE | ECF_NOTHROW | ECF_LEAF); + + /* If there's a possibility that we might use the ARM EABI, build the + alternate __cxa_end_cleanup node used to resume from C++. */ + if (targetm.arm_eabi_unwinder) + { + ftype = build_function_type_list (void_type_node, NULL_TREE); + local_define_builtin ("__builtin_cxa_end_cleanup", ftype, + BUILT_IN_CXA_END_CLEANUP, + "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF); + } + + ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE); + local_define_builtin ("__builtin_unwind_resume", ftype, + BUILT_IN_UNWIND_RESUME, + ((targetm_common.except_unwind_info (&global_options) + == UI_SJLJ) + ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"), + ECF_NORETURN); + + if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE) + { + ftype = build_function_type_list (ptr_type_node, integer_type_node, + NULL_TREE); + local_define_builtin ("__builtin_return_address", ftype, + BUILT_IN_RETURN_ADDRESS, + "__builtin_return_address", + ECF_NOTHROW); + } + + if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER) + || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT)) + { + ftype = build_function_type_list (void_type_node, ptr_type_node, + ptr_type_node, NULL_TREE); + if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)) + local_define_builtin ("__cyg_profile_func_enter", ftype, + BUILT_IN_PROFILE_FUNC_ENTER, + "__cyg_profile_func_enter", 0); + if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT)) + local_define_builtin ("__cyg_profile_func_exit", ftype, + BUILT_IN_PROFILE_FUNC_EXIT, + "__cyg_profile_func_exit", 0); + } + + /* The exception object and filter values from the runtime. The argument + must be zero before exception lowering, i.e. from the front end. After + exception lowering, it will be the region number for the exception + landing pad. These functions are PURE instead of CONST to prevent + them from being hoisted past the exception edge that will initialize + its value in the landing pad. */ + ftype = build_function_type_list (ptr_type_node, + integer_type_node, NULL_TREE); + ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF; + /* Only use TM_PURE if we have TM language support. */ + if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1)) + ecf_flags |= ECF_TM_PURE; + local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER, + "__builtin_eh_pointer", ecf_flags); + + tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0); + ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE); + local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER, + "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF); + + ftype = build_function_type_list (void_type_node, + integer_type_node, integer_type_node, + NULL_TREE); + local_define_builtin ("__builtin_eh_copy_values", ftype, + BUILT_IN_EH_COPY_VALUES, + "__builtin_eh_copy_values", ECF_NOTHROW); + + /* Complex multiplication and division. These are handled as builtins + rather than optabs because emit_library_call_value doesn't support + complex. Further, we can do slightly better with folding these + beasties if the real and complex parts of the arguments are separate. */ + { + int mode; + + for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode) + { + char mode_name_buf[4], *q; + const char *p; + enum built_in_function mcode, dcode; + tree type, inner_type; + const char *prefix = "__"; + + if (targetm.libfunc_gnu_prefix) + prefix = "__gnu_"; + + type = lang_hooks.types.type_for_mode ((machine_mode) mode, 0); + if (type == NULL) + continue; + inner_type = TREE_TYPE (type); + + ftype = build_function_type_list (type, inner_type, inner_type, + inner_type, inner_type, NULL_TREE); + + mcode = ((enum built_in_function) + (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT)); + dcode = ((enum built_in_function) + (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT)); + + for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++) + *q = TOLOWER (*p); + *q = '\0'; + + /* For -ftrapping-math these should throw from a former + -fnon-call-exception stmt. */ + built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3", + NULL); + local_define_builtin (built_in_names[mcode], ftype, mcode, + built_in_names[mcode], + ECF_CONST | ECF_LEAF); + + built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3", + NULL); + local_define_builtin (built_in_names[dcode], ftype, dcode, + built_in_names[dcode], + ECF_CONST | ECF_LEAF); + } + } + + init_internal_fns (); +} + +/* HACK. GROSS. This is absolutely disgusting. I wish there was a + better way. + + If we requested a pointer to a vector, build up the pointers that + we stripped off while looking for the inner type. Similarly for + return values from functions. + + The argument TYPE is the top of the chain, and BOTTOM is the + new type which we will point to. */ + +tree +reconstruct_complex_type (tree type, tree bottom) +{ + tree inner, outer; + + if (TREE_CODE (type) == POINTER_TYPE) + { + inner = reconstruct_complex_type (TREE_TYPE (type), bottom); + outer = build_pointer_type_for_mode (inner, TYPE_MODE (type), + TYPE_REF_CAN_ALIAS_ALL (type)); + } + else if (TREE_CODE (type) == REFERENCE_TYPE) + { + inner = reconstruct_complex_type (TREE_TYPE (type), bottom); + outer = build_reference_type_for_mode (inner, TYPE_MODE (type), + TYPE_REF_CAN_ALIAS_ALL (type)); + } + else if (TREE_CODE (type) == ARRAY_TYPE) + { + inner = reconstruct_complex_type (TREE_TYPE (type), bottom); + outer = build_array_type (inner, TYPE_DOMAIN (type)); + } + else if (TREE_CODE (type) == FUNCTION_TYPE) + { + inner = reconstruct_complex_type (TREE_TYPE (type), bottom); + outer = build_function_type (inner, TYPE_ARG_TYPES (type)); + } + else if (TREE_CODE (type) == METHOD_TYPE) + { + inner = reconstruct_complex_type (TREE_TYPE (type), bottom); + /* The build_method_type_directly() routine prepends 'this' to argument list, + so we must compensate by getting rid of it. */ + outer + = build_method_type_directly + (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))), + inner, + TREE_CHAIN (TYPE_ARG_TYPES (type))); + } + else if (TREE_CODE (type) == OFFSET_TYPE) + { + inner = reconstruct_complex_type (TREE_TYPE (type), bottom); + outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner); + } + else + return bottom; + + return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type), + TYPE_QUALS (type)); +} + +/* Returns a vector tree node given a mode (integer, vector, or BLKmode) and + the inner type. */ +tree +build_vector_type_for_mode (tree innertype, machine_mode mode) +{ + poly_int64 nunits; + unsigned int bitsize; + + switch (GET_MODE_CLASS (mode)) + { + case MODE_VECTOR_BOOL: + case MODE_VECTOR_INT: + case MODE_VECTOR_FLOAT: + case MODE_VECTOR_FRACT: + case MODE_VECTOR_UFRACT: + case MODE_VECTOR_ACCUM: + case MODE_VECTOR_UACCUM: + nunits = GET_MODE_NUNITS (mode); + break; + + case MODE_INT: + /* Check that there are no leftover bits. */ + bitsize = GET_MODE_BITSIZE (as_a <scalar_int_mode> (mode)); + gcc_assert (bitsize % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0); + nunits = bitsize / TREE_INT_CST_LOW (TYPE_SIZE (innertype)); + break; + + default: + gcc_unreachable (); + } + + return make_vector_type (innertype, nunits, mode); +} + +/* Similarly, but takes the inner type and number of units, which must be + a power of two. */ + +tree +build_vector_type (tree innertype, poly_int64 nunits) +{ + return make_vector_type (innertype, nunits, VOIDmode); +} + +/* Build a truth vector with NUNITS units, giving it mode MASK_MODE. */ + +tree +build_truth_vector_type_for_mode (poly_uint64 nunits, machine_mode mask_mode) +{ + gcc_assert (mask_mode != BLKmode); + + unsigned HOST_WIDE_INT esize; + if (VECTOR_MODE_P (mask_mode)) + { + poly_uint64 vsize = GET_MODE_BITSIZE (mask_mode); + esize = vector_element_size (vsize, nunits); + } + else + esize = 1; + + tree bool_type = build_nonstandard_boolean_type (esize); + + return make_vector_type (bool_type, nunits, mask_mode); +} + +/* Build a vector type that holds one boolean result for each element of + vector type VECTYPE. The public interface for this operation is + truth_type_for. */ + +static tree +build_truth_vector_type_for (tree vectype) +{ + machine_mode vector_mode = TYPE_MODE (vectype); + poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype); + + machine_mode mask_mode; + if (VECTOR_MODE_P (vector_mode) + && targetm.vectorize.get_mask_mode (vector_mode).exists (&mask_mode)) + return build_truth_vector_type_for_mode (nunits, mask_mode); + + poly_uint64 vsize = tree_to_poly_uint64 (TYPE_SIZE (vectype)); + unsigned HOST_WIDE_INT esize = vector_element_size (vsize, nunits); + tree bool_type = build_nonstandard_boolean_type (esize); + + return make_vector_type (bool_type, nunits, VOIDmode); +} + +/* Like build_vector_type, but builds a variant type with TYPE_VECTOR_OPAQUE + set. */ + +tree +build_opaque_vector_type (tree innertype, poly_int64 nunits) +{ + tree t = make_vector_type (innertype, nunits, VOIDmode); + tree cand; + /* We always build the non-opaque variant before the opaque one, + so if it already exists, it is TYPE_NEXT_VARIANT of this one. */ + cand = TYPE_NEXT_VARIANT (t); + if (cand + && TYPE_VECTOR_OPAQUE (cand) + && check_qualified_type (cand, t, TYPE_QUALS (t))) + return cand; + /* Othewise build a variant type and make sure to queue it after + the non-opaque type. */ + cand = build_distinct_type_copy (t); + TYPE_VECTOR_OPAQUE (cand) = true; + TYPE_CANONICAL (cand) = TYPE_CANONICAL (t); + TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t); + TYPE_NEXT_VARIANT (t) = cand; + TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t); + return cand; +} + +/* Return the value of element I of VECTOR_CST T as a wide_int. */ + +static poly_wide_int +vector_cst_int_elt (const_tree t, unsigned int i) +{ + /* First handle elements that are directly encoded. */ + unsigned int encoded_nelts = vector_cst_encoded_nelts (t); + if (i < encoded_nelts) + return wi::to_poly_wide (VECTOR_CST_ENCODED_ELT (t, i)); + + /* Identify the pattern that contains element I and work out the index of + the last encoded element for that pattern. */ + unsigned int npatterns = VECTOR_CST_NPATTERNS (t); + unsigned int pattern = i % npatterns; + unsigned int count = i / npatterns; + unsigned int final_i = encoded_nelts - npatterns + pattern; + + /* If there are no steps, the final encoded value is the right one. */ + if (!VECTOR_CST_STEPPED_P (t)) + return wi::to_poly_wide (VECTOR_CST_ENCODED_ELT (t, final_i)); + + /* Otherwise work out the value from the last two encoded elements. */ + tree v1 = VECTOR_CST_ENCODED_ELT (t, final_i - npatterns); + tree v2 = VECTOR_CST_ENCODED_ELT (t, final_i); + poly_wide_int diff = wi::to_poly_wide (v2) - wi::to_poly_wide (v1); + return wi::to_poly_wide (v2) + (count - 2) * diff; +} + +/* Return the value of element I of VECTOR_CST T. */ + +tree +vector_cst_elt (const_tree t, unsigned int i) +{ + /* First handle elements that are directly encoded. */ + unsigned int encoded_nelts = vector_cst_encoded_nelts (t); + if (i < encoded_nelts) + return VECTOR_CST_ENCODED_ELT (t, i); + + /* If there are no steps, the final encoded value is the right one. */ + if (!VECTOR_CST_STEPPED_P (t)) + { + /* Identify the pattern that contains element I and work out the index of + the last encoded element for that pattern. */ + unsigned int npatterns = VECTOR_CST_NPATTERNS (t); + unsigned int pattern = i % npatterns; + unsigned int final_i = encoded_nelts - npatterns + pattern; + return VECTOR_CST_ENCODED_ELT (t, final_i); + } + + /* Otherwise work out the value from the last two encoded elements. */ + return wide_int_to_tree (TREE_TYPE (TREE_TYPE (t)), + vector_cst_int_elt (t, i)); +} + +/* Given an initializer INIT, return TRUE if INIT is zero or some + aggregate of zeros. Otherwise return FALSE. If NONZERO is not + null, set *NONZERO if and only if INIT is known not to be all + zeros. The combination of return value of false and *NONZERO + false implies that INIT may but need not be all zeros. Other + combinations indicate definitive answers. */ + +bool +initializer_zerop (const_tree init, bool *nonzero /* = NULL */) +{ + bool dummy; + if (!nonzero) + nonzero = &dummy; + + /* Conservatively clear NONZERO and set it only if INIT is definitely + not all zero. */ + *nonzero = false; + + STRIP_NOPS (init); + + unsigned HOST_WIDE_INT off = 0; + + switch (TREE_CODE (init)) + { + case INTEGER_CST: + if (integer_zerop (init)) + return true; + + *nonzero = true; + return false; + + case REAL_CST: + /* ??? Note that this is not correct for C4X float formats. There, + a bit pattern of all zeros is 1.0; 0.0 is encoded with the most + negative exponent. */ + if (real_zerop (init) + && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init))) + return true; + + *nonzero = true; + return false; + + case FIXED_CST: + if (fixed_zerop (init)) + return true; + + *nonzero = true; + return false; + + case COMPLEX_CST: + if (integer_zerop (init) + || (real_zerop (init) + && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init))) + && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))))) + return true; + + *nonzero = true; + return false; + + case VECTOR_CST: + if (VECTOR_CST_NPATTERNS (init) == 1 + && VECTOR_CST_DUPLICATE_P (init) + && initializer_zerop (VECTOR_CST_ENCODED_ELT (init, 0))) + return true; + + *nonzero = true; + return false; + + case CONSTRUCTOR: + { + if (TREE_CLOBBER_P (init)) + return false; + + unsigned HOST_WIDE_INT idx; + tree elt; + + FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt) + if (!initializer_zerop (elt, nonzero)) + return false; + + return true; + } + + case MEM_REF: + { + tree arg = TREE_OPERAND (init, 0); + if (TREE_CODE (arg) != ADDR_EXPR) + return false; + tree offset = TREE_OPERAND (init, 1); + if (TREE_CODE (offset) != INTEGER_CST + || !tree_fits_uhwi_p (offset)) + return false; + off = tree_to_uhwi (offset); + if (INT_MAX < off) + return false; + arg = TREE_OPERAND (arg, 0); + if (TREE_CODE (arg) != STRING_CST) + return false; + init = arg; + } + /* Fall through. */ + + case STRING_CST: + { + gcc_assert (off <= INT_MAX); + + int i = off; + int n = TREE_STRING_LENGTH (init); + if (n <= i) + return false; + + /* We need to loop through all elements to handle cases like + "\0" and "\0foobar". */ + for (i = 0; i < n; ++i) + if (TREE_STRING_POINTER (init)[i] != '\0') + { + *nonzero = true; + return false; + } + + return true; + } + + default: + return false; + } +} + +/* Return true if EXPR is an initializer expression in which every element + is a constant that is numerically equal to 0 or 1. The elements do not + need to be equal to each other. */ + +bool +initializer_each_zero_or_onep (const_tree expr) +{ + STRIP_ANY_LOCATION_WRAPPER (expr); + + switch (TREE_CODE (expr)) + { + case INTEGER_CST: + return integer_zerop (expr) || integer_onep (expr); + + case REAL_CST: + return real_zerop (expr) || real_onep (expr); + + case VECTOR_CST: + { + unsigned HOST_WIDE_INT nelts = vector_cst_encoded_nelts (expr); + if (VECTOR_CST_STEPPED_P (expr) + && !TYPE_VECTOR_SUBPARTS (TREE_TYPE (expr)).is_constant (&nelts)) + return false; + + for (unsigned int i = 0; i < nelts; ++i) + { + tree elt = vector_cst_elt (expr, i); + if (!initializer_each_zero_or_onep (elt)) + return false; + } + + return true; + } + + default: + return false; + } +} + +/* Check if vector VEC consists of all the equal elements and + that the number of elements corresponds to the type of VEC. + The function returns first element of the vector + or NULL_TREE if the vector is not uniform. */ +tree +uniform_vector_p (const_tree vec) +{ + tree first, t; + unsigned HOST_WIDE_INT i, nelts; + + if (vec == NULL_TREE) + return NULL_TREE; + + gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec))); + + if (TREE_CODE (vec) == VEC_DUPLICATE_EXPR) + return TREE_OPERAND (vec, 0); + + else if (TREE_CODE (vec) == VECTOR_CST) + { + if (VECTOR_CST_NPATTERNS (vec) == 1 && VECTOR_CST_DUPLICATE_P (vec)) + return VECTOR_CST_ENCODED_ELT (vec, 0); + return NULL_TREE; + } + + else if (TREE_CODE (vec) == CONSTRUCTOR + && TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)).is_constant (&nelts)) + { + first = error_mark_node; + + FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t) + { + if (i == 0) + { + first = t; + continue; + } + if (!operand_equal_p (first, t, 0)) + return NULL_TREE; + } + if (i != nelts) + return NULL_TREE; + + return first; + } + + return NULL_TREE; +} + +/* If the argument is INTEGER_CST, return it. If the argument is vector + with all elements the same INTEGER_CST, return that INTEGER_CST. Otherwise + return NULL_TREE. + Look through location wrappers. */ + +tree +uniform_integer_cst_p (tree t) +{ + STRIP_ANY_LOCATION_WRAPPER (t); + + if (TREE_CODE (t) == INTEGER_CST) + return t; + + if (VECTOR_TYPE_P (TREE_TYPE (t))) + { + t = uniform_vector_p (t); + if (t && TREE_CODE (t) == INTEGER_CST) + return t; + } + + return NULL_TREE; +} + +/* Checks to see if T is a constant or a constant vector and if each element E + adheres to ~E + 1 == pow2 then return ~E otherwise NULL_TREE. */ + +tree +bitmask_inv_cst_vector_p (tree t) +{ + + tree_code code = TREE_CODE (t); + tree type = TREE_TYPE (t); + + if (!INTEGRAL_TYPE_P (type) + && !VECTOR_INTEGER_TYPE_P (type)) + return NULL_TREE; + + unsigned HOST_WIDE_INT nelts = 1; + tree cst; + unsigned int idx = 0; + bool uniform = uniform_integer_cst_p (t); + tree newtype = unsigned_type_for (type); + tree_vector_builder builder; + if (code == INTEGER_CST) + cst = t; + else + { + if (!VECTOR_CST_NELTS (t).is_constant (&nelts)) + return NULL_TREE; + + cst = vector_cst_elt (t, 0); + builder.new_vector (newtype, nelts, 1); + } + + tree ty = unsigned_type_for (TREE_TYPE (cst)); + + do + { + if (idx > 0) + cst = vector_cst_elt (t, idx); + wide_int icst = wi::to_wide (cst); + wide_int inv = wi::bit_not (icst); + icst = wi::add (1, inv); + if (wi::popcount (icst) != 1) + return NULL_TREE; + + tree newcst = wide_int_to_tree (ty, inv); + + if (uniform) + return build_uniform_cst (newtype, newcst); + + builder.quick_push (newcst); + } + while (++idx < nelts); + + return builder.build (); +} + +/* If VECTOR_CST T has a single nonzero element, return the index of that + element, otherwise return -1. */ + +int +single_nonzero_element (const_tree t) +{ + unsigned HOST_WIDE_INT nelts; + unsigned int repeat_nelts; + if (VECTOR_CST_NELTS (t).is_constant (&nelts)) + repeat_nelts = nelts; + else if (VECTOR_CST_NELTS_PER_PATTERN (t) == 2) + { + nelts = vector_cst_encoded_nelts (t); + repeat_nelts = VECTOR_CST_NPATTERNS (t); + } + else + return -1; + + int res = -1; + for (unsigned int i = 0; i < nelts; ++i) + { + tree elt = vector_cst_elt (t, i); + if (!integer_zerop (elt) && !real_zerop (elt)) + { + if (res >= 0 || i >= repeat_nelts) + return -1; + res = i; + } + } + return res; +} + +/* Build an empty statement at location LOC. */ + +tree +build_empty_stmt (location_t loc) +{ + tree t = build1 (NOP_EXPR, void_type_node, size_zero_node); + SET_EXPR_LOCATION (t, loc); + return t; +} + + +/* Build an OMP clause with code CODE. LOC is the location of the + clause. */ + +tree +build_omp_clause (location_t loc, enum omp_clause_code code) +{ + tree t; + int size, length; + + length = omp_clause_num_ops[code]; + size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree)); + + record_node_allocation_statistics (OMP_CLAUSE, size); + + t = (tree) ggc_internal_alloc (size); + memset (t, 0, size); + TREE_SET_CODE (t, OMP_CLAUSE); + OMP_CLAUSE_SET_CODE (t, code); + OMP_CLAUSE_LOCATION (t) = loc; + + return t; +} + +/* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN + includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1. + Except for the CODE and operand count field, other storage for the + object is initialized to zeros. */ + +tree +build_vl_exp (enum tree_code code, int len MEM_STAT_DECL) +{ + tree t; + int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp); + + gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp); + gcc_assert (len >= 1); + + record_node_allocation_statistics (code, length); + + t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT); + + TREE_SET_CODE (t, code); + + /* Can't use TREE_OPERAND to store the length because if checking is + enabled, it will try to check the length before we store it. :-P */ + t->exp.operands[0] = build_int_cst (sizetype, len); + + return t; +} + +/* Helper function for build_call_* functions; build a CALL_EXPR with + indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of + the argument slots. */ + +static tree +build_call_1 (tree return_type, tree fn, int nargs) +{ + tree t; + + t = build_vl_exp (CALL_EXPR, nargs + 3); + TREE_TYPE (t) = return_type; + CALL_EXPR_FN (t) = fn; + CALL_EXPR_STATIC_CHAIN (t) = NULL; + + return t; +} + +/* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and + FN and a null static chain slot. NARGS is the number of call arguments + which are specified as "..." arguments. */ + +tree +build_call_nary (tree return_type, tree fn, int nargs, ...) +{ + tree ret; + va_list args; + va_start (args, nargs); + ret = build_call_valist (return_type, fn, nargs, args); + va_end (args); + return ret; +} + +/* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and + FN and a null static chain slot. NARGS is the number of call arguments + which are specified as a va_list ARGS. */ + +tree +build_call_valist (tree return_type, tree fn, int nargs, va_list args) +{ + tree t; + int i; + + t = build_call_1 (return_type, fn, nargs); + for (i = 0; i < nargs; i++) + CALL_EXPR_ARG (t, i) = va_arg (args, tree); + process_call_operands (t); + return t; +} + +/* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and + FN and a null static chain slot. NARGS is the number of call arguments + which are specified as a tree array ARGS. */ + +tree +build_call_array_loc (location_t loc, tree return_type, tree fn, + int nargs, const tree *args) +{ + tree t; + int i; + + t = build_call_1 (return_type, fn, nargs); + for (i = 0; i < nargs; i++) + CALL_EXPR_ARG (t, i) = args[i]; + process_call_operands (t); + SET_EXPR_LOCATION (t, loc); + return t; +} + +/* Like build_call_array, but takes a vec. */ + +tree +build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args) +{ + tree ret, t; + unsigned int ix; + + ret = build_call_1 (return_type, fn, vec_safe_length (args)); + FOR_EACH_VEC_SAFE_ELT (args, ix, t) + CALL_EXPR_ARG (ret, ix) = t; + process_call_operands (ret); + return ret; +} + +/* Conveniently construct a function call expression. FNDECL names the + function to be called and N arguments are passed in the array + ARGARRAY. */ + +tree +build_call_expr_loc_array (location_t loc, tree fndecl, int n, tree *argarray) +{ + tree fntype = TREE_TYPE (fndecl); + tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl); + + return fold_build_call_array_loc (loc, TREE_TYPE (fntype), fn, n, argarray); +} + +/* Conveniently construct a function call expression. FNDECL names the + function to be called and the arguments are passed in the vector + VEC. */ + +tree +build_call_expr_loc_vec (location_t loc, tree fndecl, vec<tree, va_gc> *vec) +{ + return build_call_expr_loc_array (loc, fndecl, vec_safe_length (vec), + vec_safe_address (vec)); +} + + +/* Conveniently construct a function call expression. FNDECL names the + function to be called, N is the number of arguments, and the "..." + parameters are the argument expressions. */ + +tree +build_call_expr_loc (location_t loc, tree fndecl, int n, ...) +{ + va_list ap; + tree *argarray = XALLOCAVEC (tree, n); + int i; + + va_start (ap, n); + for (i = 0; i < n; i++) + argarray[i] = va_arg (ap, tree); + va_end (ap); + return build_call_expr_loc_array (loc, fndecl, n, argarray); +} + +/* Like build_call_expr_loc (UNKNOWN_LOCATION, ...). Duplicated because + varargs macros aren't supported by all bootstrap compilers. */ + +tree +build_call_expr (tree fndecl, int n, ...) +{ + va_list ap; + tree *argarray = XALLOCAVEC (tree, n); + int i; + + va_start (ap, n); + for (i = 0; i < n; i++) + argarray[i] = va_arg (ap, tree); + va_end (ap); + return build_call_expr_loc_array (UNKNOWN_LOCATION, fndecl, n, argarray); +} + +/* Build an internal call to IFN, with arguments ARGS[0:N-1] and with return + type TYPE. This is just like CALL_EXPR, except its CALL_EXPR_FN is NULL. + It will get gimplified later into an ordinary internal function. */ + +tree +build_call_expr_internal_loc_array (location_t loc, internal_fn ifn, + tree type, int n, const tree *args) +{ + tree t = build_call_1 (type, NULL_TREE, n); + for (int i = 0; i < n; ++i) + CALL_EXPR_ARG (t, i) = args[i]; + SET_EXPR_LOCATION (t, loc); + CALL_EXPR_IFN (t) = ifn; + process_call_operands (t); + return t; +} + +/* Build internal call expression. This is just like CALL_EXPR, except + its CALL_EXPR_FN is NULL. It will get gimplified later into ordinary + internal function. */ + +tree +build_call_expr_internal_loc (location_t loc, enum internal_fn ifn, + tree type, int n, ...) +{ + va_list ap; + tree *argarray = XALLOCAVEC (tree, n); + int i; + + va_start (ap, n); + for (i = 0; i < n; i++) + argarray[i] = va_arg (ap, tree); + va_end (ap); + return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray); +} + +/* Return a function call to FN, if the target is guaranteed to support it, + or null otherwise. + + N is the number of arguments, passed in the "...", and TYPE is the + type of the return value. */ + +tree +maybe_build_call_expr_loc (location_t loc, combined_fn fn, tree type, + int n, ...) +{ + va_list ap; + tree *argarray = XALLOCAVEC (tree, n); + int i; + + va_start (ap, n); + for (i = 0; i < n; i++) + argarray[i] = va_arg (ap, tree); + va_end (ap); + if (internal_fn_p (fn)) + { + internal_fn ifn = as_internal_fn (fn); + if (direct_internal_fn_p (ifn)) + { + tree_pair types = direct_internal_fn_types (ifn, type, argarray); + if (!direct_internal_fn_supported_p (ifn, types, + OPTIMIZE_FOR_BOTH)) + return NULL_TREE; + } + return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray); + } + else + { + tree fndecl = builtin_decl_implicit (as_builtin_fn (fn)); + if (!fndecl) + return NULL_TREE; + return build_call_expr_loc_array (loc, fndecl, n, argarray); + } +} + +/* Return a function call to the appropriate builtin alloca variant. + + SIZE is the size to be allocated. ALIGN, if non-zero, is the requested + alignment of the allocated area. MAX_SIZE, if non-negative, is an upper + bound for SIZE in case it is not a fixed value. */ + +tree +build_alloca_call_expr (tree size, unsigned int align, HOST_WIDE_INT max_size) +{ + if (max_size >= 0) + { + tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX); + return + build_call_expr (t, 3, size, size_int (align), size_int (max_size)); + } + else if (align > 0) + { + tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN); + return build_call_expr (t, 2, size, size_int (align)); + } + else + { + tree t = builtin_decl_explicit (BUILT_IN_ALLOCA); + return build_call_expr (t, 1, size); + } +} + +/* Create a new constant string literal of type ELTYPE[SIZE] (or LEN + if SIZE == -1) and return a tree node representing char* pointer to + it as an ADDR_EXPR (ARRAY_REF (ELTYPE, ...)). When STR is nonnull + the STRING_CST value is the LEN bytes at STR (the representation + of the string, which may be wide). Otherwise it's all zeros. */ + +tree +build_string_literal (unsigned len, const char *str /* = NULL */, + tree eltype /* = char_type_node */, + unsigned HOST_WIDE_INT size /* = -1 */) +{ + tree t = build_string (len, str); + /* Set the maximum valid index based on the string length or SIZE. */ + unsigned HOST_WIDE_INT maxidx + = (size == HOST_WIDE_INT_M1U ? len : size) - 1; + + tree index = build_index_type (size_int (maxidx)); + eltype = build_type_variant (eltype, 1, 0); + tree type = build_array_type (eltype, index); + TREE_TYPE (t) = type; + TREE_CONSTANT (t) = 1; + TREE_READONLY (t) = 1; + TREE_STATIC (t) = 1; + + type = build_pointer_type (eltype); + t = build1 (ADDR_EXPR, type, + build4 (ARRAY_REF, eltype, + t, integer_zero_node, NULL_TREE, NULL_TREE)); + return t; +} + + + +/* Return true if T (assumed to be a DECL) must be assigned a memory + location. */ + +bool +needs_to_live_in_memory (const_tree t) +{ + return (TREE_ADDRESSABLE (t) + || is_global_var (t) + || (TREE_CODE (t) == RESULT_DECL + && !DECL_BY_REFERENCE (t) + && aggregate_value_p (t, current_function_decl))); +} + +/* Return value of a constant X and sign-extend it. */ + +HOST_WIDE_INT +int_cst_value (const_tree x) +{ + unsigned bits = TYPE_PRECISION (TREE_TYPE (x)); + unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x); + + /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */ + gcc_assert (cst_and_fits_in_hwi (x)); + + if (bits < HOST_BITS_PER_WIDE_INT) + { + bool negative = ((val >> (bits - 1)) & 1) != 0; + if (negative) + val |= HOST_WIDE_INT_M1U << (bits - 1) << 1; + else + val &= ~(HOST_WIDE_INT_M1U << (bits - 1) << 1); + } + + return val; +} + +/* If TYPE is an integral or pointer type, return an integer type with + the same precision which is unsigned iff UNSIGNEDP is true, or itself + if TYPE is already an integer type of signedness UNSIGNEDP. + If TYPE is a floating-point type, return an integer type with the same + bitsize and with the signedness given by UNSIGNEDP; this is useful + when doing bit-level operations on a floating-point value. */ + +tree +signed_or_unsigned_type_for (int unsignedp, tree type) +{ + if (ANY_INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type) == unsignedp) + return type; + + if (TREE_CODE (type) == VECTOR_TYPE) + { + tree inner = TREE_TYPE (type); + tree inner2 = signed_or_unsigned_type_for (unsignedp, inner); + if (!inner2) + return NULL_TREE; + if (inner == inner2) + return type; + return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type)); + } + + if (TREE_CODE (type) == COMPLEX_TYPE) + { + tree inner = TREE_TYPE (type); + tree inner2 = signed_or_unsigned_type_for (unsignedp, inner); + if (!inner2) + return NULL_TREE; + if (inner == inner2) + return type; + return build_complex_type (inner2); + } + + unsigned int bits; + if (INTEGRAL_TYPE_P (type) + || POINTER_TYPE_P (type) + || TREE_CODE (type) == OFFSET_TYPE) + bits = TYPE_PRECISION (type); + else if (TREE_CODE (type) == REAL_TYPE) + bits = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (type)); + else + return NULL_TREE; + + return build_nonstandard_integer_type (bits, unsignedp); +} + +/* If TYPE is an integral or pointer type, return an integer type with + the same precision which is unsigned, or itself if TYPE is already an + unsigned integer type. If TYPE is a floating-point type, return an + unsigned integer type with the same bitsize as TYPE. */ + +tree +unsigned_type_for (tree type) +{ + return signed_or_unsigned_type_for (1, type); +} + +/* If TYPE is an integral or pointer type, return an integer type with + the same precision which is signed, or itself if TYPE is already a + signed integer type. If TYPE is a floating-point type, return a + signed integer type with the same bitsize as TYPE. */ + +tree +signed_type_for (tree type) +{ + return signed_or_unsigned_type_for (0, type); +} + +/* - For VECTOR_TYPEs: + - The truth type must be a VECTOR_BOOLEAN_TYPE. + - The number of elements must match (known_eq). + - targetm.vectorize.get_mask_mode exists, and exactly + the same mode as the truth type. + - Otherwise, the truth type must be a BOOLEAN_TYPE + or useless_type_conversion_p to BOOLEAN_TYPE. */ +bool +is_truth_type_for (tree type, tree truth_type) +{ + machine_mode mask_mode = TYPE_MODE (truth_type); + machine_mode vmode = TYPE_MODE (type); + machine_mode tmask_mode; + + if (TREE_CODE (type) == VECTOR_TYPE) + { + if (VECTOR_BOOLEAN_TYPE_P (truth_type) + && known_eq (TYPE_VECTOR_SUBPARTS (type), + TYPE_VECTOR_SUBPARTS (truth_type)) + && targetm.vectorize.get_mask_mode (vmode).exists (&tmask_mode) + && tmask_mode == mask_mode) + return true; + + return false; + } + + return useless_type_conversion_p (boolean_type_node, truth_type); +} + +/* If TYPE is a vector type, return a signed integer vector type with the + same width and number of subparts. Otherwise return boolean_type_node. */ + +tree +truth_type_for (tree type) +{ + if (TREE_CODE (type) == VECTOR_TYPE) + { + if (VECTOR_BOOLEAN_TYPE_P (type)) + return type; + return build_truth_vector_type_for (type); + } + else + return boolean_type_node; +} + +/* Returns the largest value obtainable by casting something in INNER type to + OUTER type. */ + +tree +upper_bound_in_type (tree outer, tree inner) +{ + unsigned int det = 0; + unsigned oprec = TYPE_PRECISION (outer); + unsigned iprec = TYPE_PRECISION (inner); + unsigned prec; + + /* Compute a unique number for every combination. */ + det |= (oprec > iprec) ? 4 : 0; + det |= TYPE_UNSIGNED (outer) ? 2 : 0; + det |= TYPE_UNSIGNED (inner) ? 1 : 0; + + /* Determine the exponent to use. */ + switch (det) + { + case 0: + case 1: + /* oprec <= iprec, outer: signed, inner: don't care. */ + prec = oprec - 1; + break; + case 2: + case 3: + /* oprec <= iprec, outer: unsigned, inner: don't care. */ + prec = oprec; + break; + case 4: + /* oprec > iprec, outer: signed, inner: signed. */ + prec = iprec - 1; + break; + case 5: + /* oprec > iprec, outer: signed, inner: unsigned. */ + prec = iprec; + break; + case 6: + /* oprec > iprec, outer: unsigned, inner: signed. */ + prec = oprec; + break; + case 7: + /* oprec > iprec, outer: unsigned, inner: unsigned. */ + prec = iprec; + break; + default: + gcc_unreachable (); + } + + return wide_int_to_tree (outer, + wi::mask (prec, false, TYPE_PRECISION (outer))); +} + +/* Returns the smallest value obtainable by casting something in INNER type to + OUTER type. */ + +tree +lower_bound_in_type (tree outer, tree inner) +{ + unsigned oprec = TYPE_PRECISION (outer); + unsigned iprec = TYPE_PRECISION (inner); + + /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type + and obtain 0. */ + if (TYPE_UNSIGNED (outer) + /* If we are widening something of an unsigned type, OUTER type + contains all values of INNER type. In particular, both INNER + and OUTER types have zero in common. */ + || (oprec > iprec && TYPE_UNSIGNED (inner))) + return build_int_cst (outer, 0); + else + { + /* If we are widening a signed type to another signed type, we + want to obtain -2^^(iprec-1). If we are keeping the + precision or narrowing to a signed type, we want to obtain + -2^(oprec-1). */ + unsigned prec = oprec > iprec ? iprec : oprec; + return wide_int_to_tree (outer, + wi::mask (prec - 1, true, + TYPE_PRECISION (outer))); + } +} + +/* Return nonzero if two operands that are suitable for PHI nodes are + necessarily equal. Specifically, both ARG0 and ARG1 must be either + SSA_NAME or invariant. Note that this is strictly an optimization. + That is, callers of this function can directly call operand_equal_p + and get the same result, only slower. */ + +int +operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1) +{ + if (arg0 == arg1) + return 1; + if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME) + return 0; + return operand_equal_p (arg0, arg1, 0); +} + +/* Returns number of zeros at the end of binary representation of X. */ + +tree +num_ending_zeros (const_tree x) +{ + return build_int_cst (TREE_TYPE (x), wi::ctz (wi::to_wide (x))); +} + + +#define WALK_SUBTREE(NODE) \ + do \ + { \ + result = walk_tree_1 (&(NODE), func, data, pset, lh); \ + if (result) \ + return result; \ + } \ + while (0) + +/* This is a subroutine of walk_tree that walks field of TYPE that are to + be walked whenever a type is seen in the tree. Rest of operands and return + value are as for walk_tree. */ + +static tree +walk_type_fields (tree type, walk_tree_fn func, void *data, + hash_set<tree> *pset, walk_tree_lh lh) +{ + tree result = NULL_TREE; + + switch (TREE_CODE (type)) + { + case POINTER_TYPE: + case REFERENCE_TYPE: + case VECTOR_TYPE: + /* We have to worry about mutually recursive pointers. These can't + be written in C. They can in Ada. It's pathological, but + there's an ACATS test (c38102a) that checks it. Deal with this + by checking if we're pointing to another pointer, that one + points to another pointer, that one does too, and we have no htab. + If so, get a hash table. We check three levels deep to avoid + the cost of the hash table if we don't need one. */ + if (POINTER_TYPE_P (TREE_TYPE (type)) + && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type))) + && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type)))) + && !pset) + { + result = walk_tree_without_duplicates (&TREE_TYPE (type), + func, data); + if (result) + return result; + + break; + } + + /* fall through */ + + case COMPLEX_TYPE: + WALK_SUBTREE (TREE_TYPE (type)); + break; + + case METHOD_TYPE: + WALK_SUBTREE (TYPE_METHOD_BASETYPE (type)); + + /* Fall through. */ + + case FUNCTION_TYPE: + WALK_SUBTREE (TREE_TYPE (type)); + { + tree arg; + + /* We never want to walk into default arguments. */ + for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg)) + WALK_SUBTREE (TREE_VALUE (arg)); + } + break; + + case ARRAY_TYPE: + /* Don't follow this nodes's type if a pointer for fear that + we'll have infinite recursion. If we have a PSET, then we + need not fear. */ + if (pset + || (!POINTER_TYPE_P (TREE_TYPE (type)) + && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE)) + WALK_SUBTREE (TREE_TYPE (type)); + WALK_SUBTREE (TYPE_DOMAIN (type)); + break; + + case OFFSET_TYPE: + WALK_SUBTREE (TREE_TYPE (type)); + WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type)); + break; + + default: + break; + } + + return NULL_TREE; +} + +/* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is + called with the DATA and the address of each sub-tree. If FUNC returns a + non-NULL value, the traversal is stopped, and the value returned by FUNC + is returned. If PSET is non-NULL it is used to record the nodes visited, + and to avoid visiting a node more than once. */ + +tree +walk_tree_1 (tree *tp, walk_tree_fn func, void *data, + hash_set<tree> *pset, walk_tree_lh lh) +{ + enum tree_code code; + int walk_subtrees; + tree result; + +#define WALK_SUBTREE_TAIL(NODE) \ + do \ + { \ + tp = & (NODE); \ + goto tail_recurse; \ + } \ + while (0) + + tail_recurse: + /* Skip empty subtrees. */ + if (!*tp) + return NULL_TREE; + + /* Don't walk the same tree twice, if the user has requested + that we avoid doing so. */ + if (pset && pset->add (*tp)) + return NULL_TREE; + + /* Call the function. */ + walk_subtrees = 1; + result = (*func) (tp, &walk_subtrees, data); + + /* If we found something, return it. */ + if (result) + return result; + + code = TREE_CODE (*tp); + + /* Even if we didn't, FUNC may have decided that there was nothing + interesting below this point in the tree. */ + if (!walk_subtrees) + { + /* But we still need to check our siblings. */ + if (code == TREE_LIST) + WALK_SUBTREE_TAIL (TREE_CHAIN (*tp)); + else if (code == OMP_CLAUSE) + WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp)); + else + return NULL_TREE; + } + + if (lh) + { + result = (*lh) (tp, &walk_subtrees, func, data, pset); + if (result || !walk_subtrees) + return result; + } + + switch (code) + { + case ERROR_MARK: + case IDENTIFIER_NODE: + case INTEGER_CST: + case REAL_CST: + case FIXED_CST: + case STRING_CST: + case BLOCK: + case PLACEHOLDER_EXPR: + case SSA_NAME: + case FIELD_DECL: + case RESULT_DECL: + /* None of these have subtrees other than those already walked + above. */ + break; + + case TREE_LIST: + WALK_SUBTREE (TREE_VALUE (*tp)); + WALK_SUBTREE_TAIL (TREE_CHAIN (*tp)); + + case TREE_VEC: + { + int len = TREE_VEC_LENGTH (*tp); + + if (len == 0) + break; + + /* Walk all elements but the first. */ + while (--len) + WALK_SUBTREE (TREE_VEC_ELT (*tp, len)); + + /* Now walk the first one as a tail call. */ + WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0)); + } + + case VECTOR_CST: + { + unsigned len = vector_cst_encoded_nelts (*tp); + if (len == 0) + break; + /* Walk all elements but the first. */ + while (--len) + WALK_SUBTREE (VECTOR_CST_ENCODED_ELT (*tp, len)); + /* Now walk the first one as a tail call. */ + WALK_SUBTREE_TAIL (VECTOR_CST_ENCODED_ELT (*tp, 0)); + } + + case COMPLEX_CST: + WALK_SUBTREE (TREE_REALPART (*tp)); + WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp)); + + case CONSTRUCTOR: + { + unsigned HOST_WIDE_INT idx; + constructor_elt *ce; + + for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp), idx, &ce); + idx++) + WALK_SUBTREE (ce->value); + } + break; + + case SAVE_EXPR: + WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0)); + + case BIND_EXPR: + { + tree decl; + for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl)) + { + /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk + into declarations that are just mentioned, rather than + declared; they don't really belong to this part of the tree. + And, we can see cycles: the initializer for a declaration + can refer to the declaration itself. */ + WALK_SUBTREE (DECL_INITIAL (decl)); + WALK_SUBTREE (DECL_SIZE (decl)); + WALK_SUBTREE (DECL_SIZE_UNIT (decl)); + } + WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp)); + } + + case STATEMENT_LIST: + { + tree_stmt_iterator i; + for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i)) + WALK_SUBTREE (*tsi_stmt_ptr (i)); + } + break; + + case OMP_CLAUSE: + { + int len = omp_clause_num_ops[OMP_CLAUSE_CODE (*tp)]; + for (int i = 0; i < len; i++) + WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i)); + WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp)); + } + + case TARGET_EXPR: + { + int i, len; + + /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same. + But, we only want to walk once. */ + len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3; + for (i = 0; i < len; ++i) + WALK_SUBTREE (TREE_OPERAND (*tp, i)); + WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len)); + } + + case DECL_EXPR: + /* If this is a TYPE_DECL, walk into the fields of the type that it's + defining. We only want to walk into these fields of a type in this + case and not in the general case of a mere reference to the type. + + The criterion is as follows: if the field can be an expression, it + must be walked only here. This should be in keeping with the fields + that are directly gimplified in gimplify_type_sizes in order for the + mark/copy-if-shared/unmark machinery of the gimplifier to work with + variable-sized types. + + Note that DECLs get walked as part of processing the BIND_EXPR. */ + if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL) + { + /* Call the function for the decl so e.g. copy_tree_body_r can + replace it with the remapped one. */ + result = (*func) (&DECL_EXPR_DECL (*tp), &walk_subtrees, data); + if (result || !walk_subtrees) + return result; + + tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp)); + if (TREE_CODE (*type_p) == ERROR_MARK) + return NULL_TREE; + + /* Call the function for the type. See if it returns anything or + doesn't want us to continue. If we are to continue, walk both + the normal fields and those for the declaration case. */ + result = (*func) (type_p, &walk_subtrees, data); + if (result || !walk_subtrees) + return result; + + /* But do not walk a pointed-to type since it may itself need to + be walked in the declaration case if it isn't anonymous. */ + if (!POINTER_TYPE_P (*type_p)) + { + result = walk_type_fields (*type_p, func, data, pset, lh); + if (result) + return result; + } + + /* If this is a record type, also walk the fields. */ + if (RECORD_OR_UNION_TYPE_P (*type_p)) + { + tree field; + + for (field = TYPE_FIELDS (*type_p); field; + field = DECL_CHAIN (field)) + { + /* We'd like to look at the type of the field, but we can + easily get infinite recursion. So assume it's pointed + to elsewhere in the tree. Also, ignore things that + aren't fields. */ + if (TREE_CODE (field) != FIELD_DECL) + continue; + + WALK_SUBTREE (DECL_FIELD_OFFSET (field)); + WALK_SUBTREE (DECL_SIZE (field)); + WALK_SUBTREE (DECL_SIZE_UNIT (field)); + if (TREE_CODE (*type_p) == QUAL_UNION_TYPE) + WALK_SUBTREE (DECL_QUALIFIER (field)); + } + } + + /* Same for scalar types. */ + else if (TREE_CODE (*type_p) == BOOLEAN_TYPE + || TREE_CODE (*type_p) == ENUMERAL_TYPE + || TREE_CODE (*type_p) == INTEGER_TYPE + || TREE_CODE (*type_p) == FIXED_POINT_TYPE + || TREE_CODE (*type_p) == REAL_TYPE) + { + WALK_SUBTREE (TYPE_MIN_VALUE (*type_p)); + WALK_SUBTREE (TYPE_MAX_VALUE (*type_p)); + } + + WALK_SUBTREE (TYPE_SIZE (*type_p)); + WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p)); + } + /* FALLTHRU */ + + default: + if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code))) + { + int i, len; + + /* Walk over all the sub-trees of this operand. */ + len = TREE_OPERAND_LENGTH (*tp); + + /* Go through the subtrees. We need to do this in forward order so + that the scope of a FOR_EXPR is handled properly. */ + if (len) + { + for (i = 0; i < len - 1; ++i) + WALK_SUBTREE (TREE_OPERAND (*tp, i)); + WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1)); + } + } + /* If this is a type, walk the needed fields in the type. */ + else if (TYPE_P (*tp)) + return walk_type_fields (*tp, func, data, pset, lh); + break; + } + + /* We didn't find what we were looking for. */ + return NULL_TREE; + +#undef WALK_SUBTREE_TAIL +} +#undef WALK_SUBTREE + +/* Like walk_tree, but does not walk duplicate nodes more than once. */ + +tree +walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data, + walk_tree_lh lh) +{ + tree result; + + hash_set<tree> pset; + result = walk_tree_1 (tp, func, data, &pset, lh); + return result; +} + + +tree +tree_block (tree t) +{ + const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t)); + + if (IS_EXPR_CODE_CLASS (c)) + return LOCATION_BLOCK (t->exp.locus); + gcc_unreachable (); + return NULL; +} + +void +tree_set_block (tree t, tree b) +{ + const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t)); + + if (IS_EXPR_CODE_CLASS (c)) + { + t->exp.locus = set_block (t->exp.locus, b); + } + else + gcc_unreachable (); +} + +/* Create a nameless artificial label and put it in the current + function context. The label has a location of LOC. Returns the + newly created label. */ + +tree +create_artificial_label (location_t loc) +{ + tree lab = build_decl (loc, + LABEL_DECL, NULL_TREE, void_type_node); + + DECL_ARTIFICIAL (lab) = 1; + DECL_IGNORED_P (lab) = 1; + DECL_CONTEXT (lab) = current_function_decl; + return lab; +} + +/* Given a tree, try to return a useful variable name that we can use + to prefix a temporary that is being assigned the value of the tree. + I.E. given <temp> = &A, return A. */ + +const char * +get_name (tree t) +{ + tree stripped_decl; + + stripped_decl = t; + STRIP_NOPS (stripped_decl); + if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl)) + return IDENTIFIER_POINTER (DECL_NAME (stripped_decl)); + else if (TREE_CODE (stripped_decl) == SSA_NAME) + { + tree name = SSA_NAME_IDENTIFIER (stripped_decl); + if (!name) + return NULL; + return IDENTIFIER_POINTER (name); + } + else + { + switch (TREE_CODE (stripped_decl)) + { + case ADDR_EXPR: + return get_name (TREE_OPERAND (stripped_decl, 0)); + default: + return NULL; + } + } +} + +/* Return true if TYPE has a variable argument list. */ + +bool +stdarg_p (const_tree fntype) +{ + function_args_iterator args_iter; + tree n = NULL_TREE, t; + + if (!fntype) + return false; + + FOREACH_FUNCTION_ARGS (fntype, t, args_iter) + { + n = t; + } + + return n != NULL_TREE && n != void_type_node; +} + +/* Return true if TYPE has a prototype. */ + +bool +prototype_p (const_tree fntype) +{ + tree t; + + gcc_assert (fntype != NULL_TREE); + + t = TYPE_ARG_TYPES (fntype); + return (t != NULL_TREE); +} + +/* If BLOCK is inlined from an __attribute__((__artificial__)) + routine, return pointer to location from where it has been + called. */ +location_t * +block_nonartificial_location (tree block) +{ + location_t *ret = NULL; + + while (block && TREE_CODE (block) == BLOCK + && BLOCK_ABSTRACT_ORIGIN (block)) + { + tree ao = BLOCK_ABSTRACT_ORIGIN (block); + if (TREE_CODE (ao) == FUNCTION_DECL) + { + /* If AO is an artificial inline, point RET to the + call site locus at which it has been inlined and continue + the loop, in case AO's caller is also an artificial + inline. */ + if (DECL_DECLARED_INLINE_P (ao) + && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao))) + ret = &BLOCK_SOURCE_LOCATION (block); + else + break; + } + else if (TREE_CODE (ao) != BLOCK) + break; + + block = BLOCK_SUPERCONTEXT (block); + } + return ret; +} + + +/* If EXP is inlined from an __attribute__((__artificial__)) + function, return the location of the original call expression. */ + +location_t +tree_nonartificial_location (tree exp) +{ + location_t *loc = block_nonartificial_location (TREE_BLOCK (exp)); + + if (loc) + return *loc; + else + return EXPR_LOCATION (exp); +} + +/* Return the location into which EXP has been inlined. Analogous + to tree_nonartificial_location() above but not limited to artificial + functions declared inline. If SYSTEM_HEADER is true, return + the macro expansion point of the location if it's in a system header */ + +location_t +tree_inlined_location (tree exp, bool system_header /* = true */) +{ + location_t loc = UNKNOWN_LOCATION; + + tree block = TREE_BLOCK (exp); + + while (block && TREE_CODE (block) == BLOCK + && BLOCK_ABSTRACT_ORIGIN (block)) + { + tree ao = BLOCK_ABSTRACT_ORIGIN (block); + if (TREE_CODE (ao) == FUNCTION_DECL) + loc = BLOCK_SOURCE_LOCATION (block); + else if (TREE_CODE (ao) != BLOCK) + break; + + block = BLOCK_SUPERCONTEXT (block); + } + + if (loc == UNKNOWN_LOCATION) + { + loc = EXPR_LOCATION (exp); + if (system_header) + /* Only consider macro expansion when the block traversal failed + to find a location. Otherwise it's not relevant. */ + return expansion_point_location_if_in_system_header (loc); + } + + return loc; +} + +/* These are the hash table functions for the hash table of OPTIMIZATION_NODE + nodes. */ + +/* Return the hash code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */ + +hashval_t +cl_option_hasher::hash (tree x) +{ + const_tree const t = x; + + if (TREE_CODE (t) == OPTIMIZATION_NODE) + return cl_optimization_hash (TREE_OPTIMIZATION (t)); + else if (TREE_CODE (t) == TARGET_OPTION_NODE) + return cl_target_option_hash (TREE_TARGET_OPTION (t)); + else + gcc_unreachable (); +} + +/* Return nonzero if the value represented by *X (an OPTIMIZATION or + TARGET_OPTION tree node) is the same as that given by *Y, which is the + same. */ + +bool +cl_option_hasher::equal (tree x, tree y) +{ + const_tree const xt = x; + const_tree const yt = y; + + if (TREE_CODE (xt) != TREE_CODE (yt)) + return 0; + + if (TREE_CODE (xt) == OPTIMIZATION_NODE) + return cl_optimization_option_eq (TREE_OPTIMIZATION (xt), + TREE_OPTIMIZATION (yt)); + else if (TREE_CODE (xt) == TARGET_OPTION_NODE) + return cl_target_option_eq (TREE_TARGET_OPTION (xt), + TREE_TARGET_OPTION (yt)); + else + gcc_unreachable (); +} + +/* Build an OPTIMIZATION_NODE based on the options in OPTS and OPTS_SET. */ + +tree +build_optimization_node (struct gcc_options *opts, + struct gcc_options *opts_set) +{ + tree t; + + /* Use the cache of optimization nodes. */ + + cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node), + opts, opts_set); + + tree *slot = cl_option_hash_table->find_slot (cl_optimization_node, INSERT); + t = *slot; + if (!t) + { + /* Insert this one into the hash table. */ + t = cl_optimization_node; + *slot = t; + + /* Make a new node for next time round. */ + cl_optimization_node = make_node (OPTIMIZATION_NODE); + } + + return t; +} + +/* Build a TARGET_OPTION_NODE based on the options in OPTS and OPTS_SET. */ + +tree +build_target_option_node (struct gcc_options *opts, + struct gcc_options *opts_set) +{ + tree t; + + /* Use the cache of optimization nodes. */ + + cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node), + opts, opts_set); + + tree *slot = cl_option_hash_table->find_slot (cl_target_option_node, INSERT); + t = *slot; + if (!t) + { + /* Insert this one into the hash table. */ + t = cl_target_option_node; + *slot = t; + + /* Make a new node for next time round. */ + cl_target_option_node = make_node (TARGET_OPTION_NODE); + } + + return t; +} + +/* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees, + so that they aren't saved during PCH writing. */ + +void +prepare_target_option_nodes_for_pch (void) +{ + hash_table<cl_option_hasher>::iterator iter = cl_option_hash_table->begin (); + for (; iter != cl_option_hash_table->end (); ++iter) + if (TREE_CODE (*iter) == TARGET_OPTION_NODE) + TREE_TARGET_GLOBALS (*iter) = NULL; +} + +/* Determine the "ultimate origin" of a block. */ + +tree +block_ultimate_origin (const_tree block) +{ + tree origin = BLOCK_ABSTRACT_ORIGIN (block); + + if (origin == NULL_TREE) + return NULL_TREE; + else + { + gcc_checking_assert ((DECL_P (origin) + && DECL_ORIGIN (origin) == origin) + || BLOCK_ORIGIN (origin) == origin); + return origin; + } +} + +/* Return true iff conversion from INNER_TYPE to OUTER_TYPE generates + no instruction. */ + +bool +tree_nop_conversion_p (const_tree outer_type, const_tree inner_type) +{ + /* Do not strip casts into or out of differing address spaces. */ + if (POINTER_TYPE_P (outer_type) + && TYPE_ADDR_SPACE (TREE_TYPE (outer_type)) != ADDR_SPACE_GENERIC) + { + if (!POINTER_TYPE_P (inner_type) + || (TYPE_ADDR_SPACE (TREE_TYPE (outer_type)) + != TYPE_ADDR_SPACE (TREE_TYPE (inner_type)))) + return false; + } + else if (POINTER_TYPE_P (inner_type) + && TYPE_ADDR_SPACE (TREE_TYPE (inner_type)) != ADDR_SPACE_GENERIC) + { + /* We already know that outer_type is not a pointer with + a non-generic address space. */ + return false; + } + + /* Use precision rather then machine mode when we can, which gives + the correct answer even for submode (bit-field) types. */ + if ((INTEGRAL_TYPE_P (outer_type) + || POINTER_TYPE_P (outer_type) + || TREE_CODE (outer_type) == OFFSET_TYPE) + && (INTEGRAL_TYPE_P (inner_type) + || POINTER_TYPE_P (inner_type) + || TREE_CODE (inner_type) == OFFSET_TYPE)) + return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type); + + /* Otherwise fall back on comparing machine modes (e.g. for + aggregate types, floats). */ + return TYPE_MODE (outer_type) == TYPE_MODE (inner_type); +} + +/* Return true iff conversion in EXP generates no instruction. Mark + it inline so that we fully inline into the stripping functions even + though we have two uses of this function. */ + +static inline bool +tree_nop_conversion (const_tree exp) +{ + tree outer_type, inner_type; + + if (location_wrapper_p (exp)) + return true; + if (!CONVERT_EXPR_P (exp) + && TREE_CODE (exp) != NON_LVALUE_EXPR) + return false; + + outer_type = TREE_TYPE (exp); + inner_type = TREE_TYPE (TREE_OPERAND (exp, 0)); + if (!inner_type || inner_type == error_mark_node) + return false; + + return tree_nop_conversion_p (outer_type, inner_type); +} + +/* Return true iff conversion in EXP generates no instruction. Don't + consider conversions changing the signedness. */ + +static bool +tree_sign_nop_conversion (const_tree exp) +{ + tree outer_type, inner_type; + + if (!tree_nop_conversion (exp)) + return false; + + outer_type = TREE_TYPE (exp); + inner_type = TREE_TYPE (TREE_OPERAND (exp, 0)); + + return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type) + && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type)); +} + +/* Strip conversions from EXP according to tree_nop_conversion and + return the resulting expression. */ + +tree +tree_strip_nop_conversions (tree exp) +{ + while (tree_nop_conversion (exp)) + exp = TREE_OPERAND (exp, 0); + return exp; +} + +/* Strip conversions from EXP according to tree_sign_nop_conversion + and return the resulting expression. */ + +tree +tree_strip_sign_nop_conversions (tree exp) +{ + while (tree_sign_nop_conversion (exp)) + exp = TREE_OPERAND (exp, 0); + return exp; +} + +/* Avoid any floating point extensions from EXP. */ +tree +strip_float_extensions (tree exp) +{ + tree sub, expt, subt; + + /* For floating point constant look up the narrowest type that can hold + it properly and handle it like (type)(narrowest_type)constant. + This way we can optimize for instance a=a*2.0 where "a" is float + but 2.0 is double constant. */ + if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp))) + { + REAL_VALUE_TYPE orig; + tree type = NULL; + + orig = TREE_REAL_CST (exp); + if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node) + && exact_real_truncate (TYPE_MODE (float_type_node), &orig)) + type = float_type_node; + else if (TYPE_PRECISION (TREE_TYPE (exp)) + > TYPE_PRECISION (double_type_node) + && exact_real_truncate (TYPE_MODE (double_type_node), &orig)) + type = double_type_node; + if (type) + return build_real_truncate (type, orig); + } + + if (!CONVERT_EXPR_P (exp)) + return exp; + + sub = TREE_OPERAND (exp, 0); + subt = TREE_TYPE (sub); + expt = TREE_TYPE (exp); + + if (!FLOAT_TYPE_P (subt)) + return exp; + + if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt)) + return exp; + + if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt)) + return exp; + + return strip_float_extensions (sub); +} + +/* Strip out all handled components that produce invariant + offsets. */ + +const_tree +strip_invariant_refs (const_tree op) +{ + while (handled_component_p (op)) + { + switch (TREE_CODE (op)) + { + case ARRAY_REF: + case ARRAY_RANGE_REF: + if (!is_gimple_constant (TREE_OPERAND (op, 1)) + || TREE_OPERAND (op, 2) != NULL_TREE + || TREE_OPERAND (op, 3) != NULL_TREE) + return NULL; + break; + + case COMPONENT_REF: + if (TREE_OPERAND (op, 2) != NULL_TREE) + return NULL; + break; + + default:; + } + op = TREE_OPERAND (op, 0); + } + + return op; +} + +static GTY(()) tree gcc_eh_personality_decl; + +/* Return the GCC personality function decl. */ + +tree +lhd_gcc_personality (void) +{ + if (!gcc_eh_personality_decl) + gcc_eh_personality_decl = build_personality_function ("gcc"); + return gcc_eh_personality_decl; +} + +/* TARGET is a call target of GIMPLE call statement + (obtained by gimple_call_fn). Return true if it is + OBJ_TYPE_REF representing an virtual call of C++ method. + (As opposed to OBJ_TYPE_REF representing objc calls + through a cast where middle-end devirtualization machinery + can't apply.) FOR_DUMP_P is true when being called from + the dump routines. */ + +bool +virtual_method_call_p (const_tree target, bool for_dump_p) +{ + if (TREE_CODE (target) != OBJ_TYPE_REF) + return false; + tree t = TREE_TYPE (target); + gcc_checking_assert (TREE_CODE (t) == POINTER_TYPE); + t = TREE_TYPE (t); + if (TREE_CODE (t) == FUNCTION_TYPE) + return false; + gcc_checking_assert (TREE_CODE (t) == METHOD_TYPE); + /* If we do not have BINFO associated, it means that type was built + without devirtualization enabled. Do not consider this a virtual + call. */ + if (!TYPE_BINFO (obj_type_ref_class (target, for_dump_p))) + return false; + return true; +} + +/* Lookup sub-BINFO of BINFO of TYPE at offset POS. */ + +static tree +lookup_binfo_at_offset (tree binfo, tree type, HOST_WIDE_INT pos) +{ + unsigned int i; + tree base_binfo, b; + + for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++) + if (pos == tree_to_shwi (BINFO_OFFSET (base_binfo)) + && types_same_for_odr (TREE_TYPE (base_binfo), type)) + return base_binfo; + else if ((b = lookup_binfo_at_offset (base_binfo, type, pos)) != NULL) + return b; + return NULL; +} + +/* Try to find a base info of BINFO that would have its field decl at offset + OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be + found, return, otherwise return NULL_TREE. */ + +tree +get_binfo_at_offset (tree binfo, poly_int64 offset, tree expected_type) +{ + tree type = BINFO_TYPE (binfo); + + while (true) + { + HOST_WIDE_INT pos, size; + tree fld; + int i; + + if (types_same_for_odr (type, expected_type)) + return binfo; + if (maybe_lt (offset, 0)) + return NULL_TREE; + + for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld)) + { + if (TREE_CODE (fld) != FIELD_DECL || !DECL_ARTIFICIAL (fld)) + continue; + + pos = int_bit_position (fld); + size = tree_to_uhwi (DECL_SIZE (fld)); + if (known_in_range_p (offset, pos, size)) + break; + } + if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE) + return NULL_TREE; + + /* Offset 0 indicates the primary base, whose vtable contents are + represented in the binfo for the derived class. */ + else if (maybe_ne (offset, 0)) + { + tree found_binfo = NULL, base_binfo; + /* Offsets in BINFO are in bytes relative to the whole structure + while POS is in bits relative to the containing field. */ + int binfo_offset = (tree_to_shwi (BINFO_OFFSET (binfo)) + pos + / BITS_PER_UNIT); + + for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++) + if (tree_to_shwi (BINFO_OFFSET (base_binfo)) == binfo_offset + && types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld))) + { + found_binfo = base_binfo; + break; + } + if (found_binfo) + binfo = found_binfo; + else + binfo = lookup_binfo_at_offset (binfo, TREE_TYPE (fld), + binfo_offset); + } + + type = TREE_TYPE (fld); + offset -= pos; + } +} + +/* Returns true if X is a typedef decl. */ + +bool +is_typedef_decl (const_tree x) +{ + return (x && TREE_CODE (x) == TYPE_DECL + && DECL_ORIGINAL_TYPE (x) != NULL_TREE); +} + +/* Returns true iff TYPE is a type variant created for a typedef. */ + +bool +typedef_variant_p (const_tree type) +{ + return is_typedef_decl (TYPE_NAME (type)); +} + +/* PR 84195: Replace control characters in "unescaped" with their + escaped equivalents. Allow newlines if -fmessage-length has + been set to a non-zero value. This is done here, rather than + where the attribute is recorded as the message length can + change between these two locations. */ + +void +escaped_string::escape (const char *unescaped) +{ + char *escaped; + size_t i, new_i, len; + + if (m_owned) + free (m_str); + + m_str = const_cast<char *> (unescaped); + m_owned = false; + + if (unescaped == NULL || *unescaped == 0) + return; + + len = strlen (unescaped); + escaped = NULL; + new_i = 0; + + for (i = 0; i < len; i++) + { + char c = unescaped[i]; + + if (!ISCNTRL (c)) + { + if (escaped) + escaped[new_i++] = c; + continue; + } + + if (c != '\n' || !pp_is_wrapping_line (global_dc->printer)) + { + if (escaped == NULL) + { + /* We only allocate space for a new string if we + actually encounter a control character that + needs replacing. */ + escaped = (char *) xmalloc (len * 2 + 1); + strncpy (escaped, unescaped, i); + new_i = i; + } + + escaped[new_i++] = '\\'; + + switch (c) + { + case '\a': escaped[new_i++] = 'a'; break; + case '\b': escaped[new_i++] = 'b'; break; + case '\f': escaped[new_i++] = 'f'; break; + case '\n': escaped[new_i++] = 'n'; break; + case '\r': escaped[new_i++] = 'r'; break; + case '\t': escaped[new_i++] = 't'; break; + case '\v': escaped[new_i++] = 'v'; break; + default: escaped[new_i++] = '?'; break; + } + } + else if (escaped) + escaped[new_i++] = c; + } + + if (escaped) + { + escaped[new_i] = 0; + m_str = escaped; + m_owned = true; + } +} + +/* Warn about a use of an identifier which was marked deprecated. Returns + whether a warning was given. */ + +bool +warn_deprecated_use (tree node, tree attr) +{ + escaped_string msg; + + if (node == 0 || !warn_deprecated_decl) + return false; + + if (!attr) + { + if (DECL_P (node)) + attr = DECL_ATTRIBUTES (node); + else if (TYPE_P (node)) + { + tree decl = TYPE_STUB_DECL (node); + if (decl) + attr = lookup_attribute ("deprecated", + TYPE_ATTRIBUTES (TREE_TYPE (decl))); + } + } + + if (attr) + attr = lookup_attribute ("deprecated", attr); + + if (attr) + msg.escape (TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)))); + + bool w = false; + if (DECL_P (node)) + { + auto_diagnostic_group d; + if (msg) + w = warning (OPT_Wdeprecated_declarations, + "%qD is deprecated: %s", node, (const char *) msg); + else + w = warning (OPT_Wdeprecated_declarations, + "%qD is deprecated", node); + if (w) + inform (DECL_SOURCE_LOCATION (node), "declared here"); + } + else if (TYPE_P (node)) + { + tree what = NULL_TREE; + tree decl = TYPE_STUB_DECL (node); + + if (TYPE_NAME (node)) + { + if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE) + what = TYPE_NAME (node); + else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL + && DECL_NAME (TYPE_NAME (node))) + what = DECL_NAME (TYPE_NAME (node)); + } + + auto_diagnostic_group d; + if (what) + { + if (msg) + w = warning (OPT_Wdeprecated_declarations, + "%qE is deprecated: %s", what, (const char *) msg); + else + w = warning (OPT_Wdeprecated_declarations, + "%qE is deprecated", what); + } + else + { + if (msg) + w = warning (OPT_Wdeprecated_declarations, + "type is deprecated: %s", (const char *) msg); + else + w = warning (OPT_Wdeprecated_declarations, + "type is deprecated"); + } + + if (w && decl) + inform (DECL_SOURCE_LOCATION (decl), "declared here"); + } + + return w; +} + +/* Error out with an identifier which was marked 'unavailable'. */ +void +error_unavailable_use (tree node, tree attr) +{ + escaped_string msg; + + if (node == 0) + return; + + if (!attr) + { + if (DECL_P (node)) + attr = DECL_ATTRIBUTES (node); + else if (TYPE_P (node)) + { + tree decl = TYPE_STUB_DECL (node); + if (decl) + attr = lookup_attribute ("unavailable", + TYPE_ATTRIBUTES (TREE_TYPE (decl))); + } + } + + if (attr) + attr = lookup_attribute ("unavailable", attr); + + if (attr) + msg.escape (TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)))); + + if (DECL_P (node)) + { + auto_diagnostic_group d; + if (msg) + error ("%qD is unavailable: %s", node, (const char *) msg); + else + error ("%qD is unavailable", node); + inform (DECL_SOURCE_LOCATION (node), "declared here"); + } + else if (TYPE_P (node)) + { + tree what = NULL_TREE; + tree decl = TYPE_STUB_DECL (node); + + if (TYPE_NAME (node)) + { + if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE) + what = TYPE_NAME (node); + else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL + && DECL_NAME (TYPE_NAME (node))) + what = DECL_NAME (TYPE_NAME (node)); + } + + auto_diagnostic_group d; + if (what) + { + if (msg) + error ("%qE is unavailable: %s", what, (const char *) msg); + else + error ("%qE is unavailable", what); + } + else + { + if (msg) + error ("type is unavailable: %s", (const char *) msg); + else + error ("type is unavailable"); + } + + if (decl) + inform (DECL_SOURCE_LOCATION (decl), "declared here"); + } +} + +/* Return true if REF has a COMPONENT_REF with a bit-field field declaration + somewhere in it. */ + +bool +contains_bitfld_component_ref_p (const_tree ref) +{ + while (handled_component_p (ref)) + { + if (TREE_CODE (ref) == COMPONENT_REF + && DECL_BIT_FIELD (TREE_OPERAND (ref, 1))) + return true; + ref = TREE_OPERAND (ref, 0); + } + + return false; +} + +/* Try to determine whether a TRY_CATCH expression can fall through. + This is a subroutine of block_may_fallthru. */ + +static bool +try_catch_may_fallthru (const_tree stmt) +{ + tree_stmt_iterator i; + + /* If the TRY block can fall through, the whole TRY_CATCH can + fall through. */ + if (block_may_fallthru (TREE_OPERAND (stmt, 0))) + return true; + + i = tsi_start (TREE_OPERAND (stmt, 1)); + switch (TREE_CODE (tsi_stmt (i))) + { + case CATCH_EXPR: + /* We expect to see a sequence of CATCH_EXPR trees, each with a + catch expression and a body. The whole TRY_CATCH may fall + through iff any of the catch bodies falls through. */ + for (; !tsi_end_p (i); tsi_next (&i)) + { + if (block_may_fallthru (CATCH_BODY (tsi_stmt (i)))) + return true; + } + return false; + + case EH_FILTER_EXPR: + /* The exception filter expression only matters if there is an + exception. If the exception does not match EH_FILTER_TYPES, + we will execute EH_FILTER_FAILURE, and we will fall through + if that falls through. If the exception does match + EH_FILTER_TYPES, the stack unwinder will continue up the + stack, so we will not fall through. We don't know whether we + will throw an exception which matches EH_FILTER_TYPES or not, + so we just ignore EH_FILTER_TYPES and assume that we might + throw an exception which doesn't match. */ + return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i))); + + default: + /* This case represents statements to be executed when an + exception occurs. Those statements are implicitly followed + by a RESX statement to resume execution after the exception. + So in this case the TRY_CATCH never falls through. */ + return false; + } +} + +/* Try to determine if we can fall out of the bottom of BLOCK. This guess + need not be 100% accurate; simply be conservative and return true if we + don't know. This is used only to avoid stupidly generating extra code. + If we're wrong, we'll just delete the extra code later. */ + +bool +block_may_fallthru (const_tree block) +{ + /* This CONST_CAST is okay because expr_last returns its argument + unmodified and we assign it to a const_tree. */ + const_tree stmt = expr_last (CONST_CAST_TREE (block)); + + switch (stmt ? TREE_CODE (stmt) : ERROR_MARK) + { + case GOTO_EXPR: + case RETURN_EXPR: + /* Easy cases. If the last statement of the block implies + control transfer, then we can't fall through. */ + return false; + + case SWITCH_EXPR: + /* If there is a default: label or case labels cover all possible + SWITCH_COND values, then the SWITCH_EXPR will transfer control + to some case label in all cases and all we care is whether the + SWITCH_BODY falls through. */ + if (SWITCH_ALL_CASES_P (stmt)) + return block_may_fallthru (SWITCH_BODY (stmt)); + return true; + + case COND_EXPR: + if (block_may_fallthru (COND_EXPR_THEN (stmt))) + return true; + return block_may_fallthru (COND_EXPR_ELSE (stmt)); + + case BIND_EXPR: + return block_may_fallthru (BIND_EXPR_BODY (stmt)); + + case TRY_CATCH_EXPR: + return try_catch_may_fallthru (stmt); + + case TRY_FINALLY_EXPR: + /* The finally clause is always executed after the try clause, + so if it does not fall through, then the try-finally will not + fall through. Otherwise, if the try clause does not fall + through, then when the finally clause falls through it will + resume execution wherever the try clause was going. So the + whole try-finally will only fall through if both the try + clause and the finally clause fall through. */ + return (block_may_fallthru (TREE_OPERAND (stmt, 0)) + && block_may_fallthru (TREE_OPERAND (stmt, 1))); + + case EH_ELSE_EXPR: + return block_may_fallthru (TREE_OPERAND (stmt, 0)); + + case MODIFY_EXPR: + if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR) + stmt = TREE_OPERAND (stmt, 1); + else + return true; + /* FALLTHRU */ + + case CALL_EXPR: + /* Functions that do not return do not fall through. */ + return (call_expr_flags (stmt) & ECF_NORETURN) == 0; + + case CLEANUP_POINT_EXPR: + return block_may_fallthru (TREE_OPERAND (stmt, 0)); + + case TARGET_EXPR: + return block_may_fallthru (TREE_OPERAND (stmt, 1)); + + case ERROR_MARK: + return true; + + default: + return lang_hooks.block_may_fallthru (stmt); + } +} + +/* True if we are using EH to handle cleanups. */ +static bool using_eh_for_cleanups_flag = false; + +/* This routine is called from front ends to indicate eh should be used for + cleanups. */ +void +using_eh_for_cleanups (void) +{ + using_eh_for_cleanups_flag = true; +} + +/* Query whether EH is used for cleanups. */ +bool +using_eh_for_cleanups_p (void) +{ + return using_eh_for_cleanups_flag; +} + +/* Wrapper for tree_code_name to ensure that tree code is valid */ +const char * +get_tree_code_name (enum tree_code code) +{ + const char *invalid = "<invalid tree code>"; + + /* The tree_code enum promotes to signed, but we could be getting + invalid values, so force an unsigned comparison. */ + if (unsigned (code) >= MAX_TREE_CODES) + { + if ((unsigned)code == 0xa5a5) + return "ggc_freed"; + return invalid; + } + + return tree_code_name[code]; +} + +/* Drops the TREE_OVERFLOW flag from T. */ + +tree +drop_tree_overflow (tree t) +{ + gcc_checking_assert (TREE_OVERFLOW (t)); + + /* For tree codes with a sharing machinery re-build the result. */ + if (poly_int_tree_p (t)) + return wide_int_to_tree (TREE_TYPE (t), wi::to_poly_wide (t)); + + /* For VECTOR_CST, remove the overflow bits from the encoded elements + and canonicalize the result. */ + if (TREE_CODE (t) == VECTOR_CST) + { + tree_vector_builder builder; + builder.new_unary_operation (TREE_TYPE (t), t, true); + unsigned int count = builder.encoded_nelts (); + for (unsigned int i = 0; i < count; ++i) + { + tree elt = VECTOR_CST_ELT (t, i); + if (TREE_OVERFLOW (elt)) + elt = drop_tree_overflow (elt); + builder.quick_push (elt); + } + return builder.build (); + } + + /* Otherwise, as all tcc_constants are possibly shared, copy the node + and drop the flag. */ + t = copy_node (t); + TREE_OVERFLOW (t) = 0; + + /* For constants that contain nested constants, drop the flag + from those as well. */ + if (TREE_CODE (t) == COMPLEX_CST) + { + if (TREE_OVERFLOW (TREE_REALPART (t))) + TREE_REALPART (t) = drop_tree_overflow (TREE_REALPART (t)); + if (TREE_OVERFLOW (TREE_IMAGPART (t))) + TREE_IMAGPART (t) = drop_tree_overflow (TREE_IMAGPART (t)); + } + + return t; +} + +/* Given a memory reference expression T, return its base address. + The base address of a memory reference expression is the main + object being referenced. For instance, the base address for + 'array[i].fld[j]' is 'array'. You can think of this as stripping + away the offset part from a memory address. + + This function calls handled_component_p to strip away all the inner + parts of the memory reference until it reaches the base object. */ + +tree +get_base_address (tree t) +{ + if (TREE_CODE (t) == WITH_SIZE_EXPR) + t = TREE_OPERAND (t, 0); + while (handled_component_p (t)) + t = TREE_OPERAND (t, 0); + + if ((TREE_CODE (t) == MEM_REF + || TREE_CODE (t) == TARGET_MEM_REF) + && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR) + t = TREE_OPERAND (TREE_OPERAND (t, 0), 0); + + return t; +} + +/* Return a tree of sizetype representing the size, in bytes, of the element + of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */ + +tree +array_ref_element_size (tree exp) +{ + tree aligned_size = TREE_OPERAND (exp, 3); + tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))); + location_t loc = EXPR_LOCATION (exp); + + /* If a size was specified in the ARRAY_REF, it's the size measured + in alignment units of the element type. So multiply by that value. */ + if (aligned_size) + { + /* ??? tree_ssa_useless_type_conversion will eliminate casts to + sizetype from another type of the same width and signedness. */ + if (TREE_TYPE (aligned_size) != sizetype) + aligned_size = fold_convert_loc (loc, sizetype, aligned_size); + return size_binop_loc (loc, MULT_EXPR, aligned_size, + size_int (TYPE_ALIGN_UNIT (elmt_type))); + } + + /* Otherwise, take the size from that of the element type. Substitute + any PLACEHOLDER_EXPR that we have. */ + else + return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp); +} + +/* Return a tree representing the lower bound of the array mentioned in + EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */ + +tree +array_ref_low_bound (tree exp) +{ + tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0))); + + /* If a lower bound is specified in EXP, use it. */ + if (TREE_OPERAND (exp, 2)) + return TREE_OPERAND (exp, 2); + + /* Otherwise, if there is a domain type and it has a lower bound, use it, + substituting for a PLACEHOLDER_EXPR as needed. */ + if (domain_type && TYPE_MIN_VALUE (domain_type)) + return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp); + + /* Otherwise, return a zero of the appropriate type. */ + tree idxtype = TREE_TYPE (TREE_OPERAND (exp, 1)); + return (idxtype == error_mark_node + ? integer_zero_node : build_int_cst (idxtype, 0)); +} + +/* Return a tree representing the upper bound of the array mentioned in + EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */ + +tree +array_ref_up_bound (tree exp) +{ + tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0))); + + /* If there is a domain type and it has an upper bound, use it, substituting + for a PLACEHOLDER_EXPR as needed. */ + if (domain_type && TYPE_MAX_VALUE (domain_type)) + return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp); + + /* Otherwise fail. */ + return NULL_TREE; +} + +/* Returns true if REF is an array reference, component reference, + or memory reference to an array at the end of a structure. + If this is the case, the array may be allocated larger + than its upper bound implies. */ + +bool +array_at_struct_end_p (tree ref) +{ + tree atype; + + if (TREE_CODE (ref) == ARRAY_REF + || TREE_CODE (ref) == ARRAY_RANGE_REF) + { + atype = TREE_TYPE (TREE_OPERAND (ref, 0)); + ref = TREE_OPERAND (ref, 0); + } + else if (TREE_CODE (ref) == COMPONENT_REF + && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 1))) == ARRAY_TYPE) + atype = TREE_TYPE (TREE_OPERAND (ref, 1)); + else if (TREE_CODE (ref) == MEM_REF) + { + tree arg = TREE_OPERAND (ref, 0); + if (TREE_CODE (arg) == ADDR_EXPR) + arg = TREE_OPERAND (arg, 0); + tree argtype = TREE_TYPE (arg); + if (TREE_CODE (argtype) == RECORD_TYPE) + { + if (tree fld = last_field (argtype)) + { + atype = TREE_TYPE (fld); + if (TREE_CODE (atype) != ARRAY_TYPE) + return false; + if (VAR_P (arg) && DECL_SIZE (fld)) + return false; + } + else + return false; + } + else + return false; + } + else + return false; + + if (TREE_CODE (ref) == STRING_CST) + return false; + + tree ref_to_array = ref; + while (handled_component_p (ref)) + { + /* If the reference chain contains a component reference to a + non-union type and there follows another field the reference + is not at the end of a structure. */ + if (TREE_CODE (ref) == COMPONENT_REF) + { + if (TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE) + { + tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1)); + while (nextf && TREE_CODE (nextf) != FIELD_DECL) + nextf = DECL_CHAIN (nextf); + if (nextf) + return false; + } + } + /* If we have a multi-dimensional array we do not consider + a non-innermost dimension as flex array if the whole + multi-dimensional array is at struct end. + Same for an array of aggregates with a trailing array + member. */ + else if (TREE_CODE (ref) == ARRAY_REF) + return false; + else if (TREE_CODE (ref) == ARRAY_RANGE_REF) + ; + /* If we view an underlying object as sth else then what we + gathered up to now is what we have to rely on. */ + else if (TREE_CODE (ref) == VIEW_CONVERT_EXPR) + break; + else + gcc_unreachable (); + + ref = TREE_OPERAND (ref, 0); + } + + /* The array now is at struct end. Treat flexible arrays as + always subject to extend, even into just padding constrained by + an underlying decl. */ + if (! TYPE_SIZE (atype) + || ! TYPE_DOMAIN (atype) + || ! TYPE_MAX_VALUE (TYPE_DOMAIN (atype))) + return true; + + /* If the reference is based on a declared entity, the size of the array + is constrained by its given domain. (Do not trust commons PR/69368). */ + ref = get_base_address (ref); + if (ref + && DECL_P (ref) + && !(flag_unconstrained_commons + && VAR_P (ref) && DECL_COMMON (ref)) + && DECL_SIZE_UNIT (ref) + && TREE_CODE (DECL_SIZE_UNIT (ref)) == INTEGER_CST) + { + /* Check whether the array domain covers all of the available + padding. */ + poly_int64 offset; + if (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (atype))) != INTEGER_CST + || TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST + || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST) + return true; + if (! get_addr_base_and_unit_offset (ref_to_array, &offset)) + return true; + + /* If at least one extra element fits it is a flexarray. */ + if (known_le ((wi::to_offset (TYPE_MAX_VALUE (TYPE_DOMAIN (atype))) + - wi::to_offset (TYPE_MIN_VALUE (TYPE_DOMAIN (atype))) + + 2) + * wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (atype))), + wi::to_offset (DECL_SIZE_UNIT (ref)) - offset)) + return true; + + return false; + } + + return true; +} + +/* Return a tree representing the offset, in bytes, of the field referenced + by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */ + +tree +component_ref_field_offset (tree exp) +{ + tree aligned_offset = TREE_OPERAND (exp, 2); + tree field = TREE_OPERAND (exp, 1); + location_t loc = EXPR_LOCATION (exp); + + /* If an offset was specified in the COMPONENT_REF, it's the offset measured + in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that + value. */ + if (aligned_offset) + { + /* ??? tree_ssa_useless_type_conversion will eliminate casts to + sizetype from another type of the same width and signedness. */ + if (TREE_TYPE (aligned_offset) != sizetype) + aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset); + return size_binop_loc (loc, MULT_EXPR, aligned_offset, + size_int (DECL_OFFSET_ALIGN (field) + / BITS_PER_UNIT)); + } + + /* Otherwise, take the offset from that of the field. Substitute + any PLACEHOLDER_EXPR that we have. */ + else + return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp); +} + +/* Given the initializer INIT, return the initializer for the field + DECL if it exists, otherwise null. Used to obtain the initializer + for a flexible array member and determine its size. */ + +static tree +get_initializer_for (tree init, tree decl) +{ + STRIP_NOPS (init); + + tree fld, fld_init; + unsigned HOST_WIDE_INT i; + FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), i, fld, fld_init) + { + if (decl == fld) + return fld_init; + + if (TREE_CODE (fld) == CONSTRUCTOR) + { + fld_init = get_initializer_for (fld_init, decl); + if (fld_init) + return fld_init; + } + } + + return NULL_TREE; +} + +/* Determines the size of the member referenced by the COMPONENT_REF + REF, using its initializer expression if necessary in order to + determine the size of an initialized flexible array member. + If non-null, set *ARK when REF refers to an interior zero-length + array or a trailing one-element array. + Returns the size as sizetype (which might be zero for an object + with an uninitialized flexible array member) or null if the size + cannot be determined. */ + +tree +component_ref_size (tree ref, special_array_member *sam /* = NULL */) +{ + gcc_assert (TREE_CODE (ref) == COMPONENT_REF); + + special_array_member sambuf; + if (!sam) + sam = &sambuf; + *sam = special_array_member::none; + + /* The object/argument referenced by the COMPONENT_REF and its type. */ + tree arg = TREE_OPERAND (ref, 0); + tree argtype = TREE_TYPE (arg); + /* The referenced member. */ + tree member = TREE_OPERAND (ref, 1); + + tree memsize = DECL_SIZE_UNIT (member); + if (memsize) + { + tree memtype = TREE_TYPE (member); + if (TREE_CODE (memtype) != ARRAY_TYPE) + /* DECL_SIZE may be less than TYPE_SIZE in C++ when referring + to the type of a class with a virtual base which doesn't + reflect the size of the virtual's members (see pr97595). + If that's the case fail for now and implement something + more robust in the future. */ + return (tree_int_cst_equal (memsize, TYPE_SIZE_UNIT (memtype)) + ? memsize : NULL_TREE); + + bool trailing = array_at_struct_end_p (ref); + bool zero_length = integer_zerop (memsize); + if (!trailing && !zero_length) + /* MEMBER is either an interior array or is an array with + more than one element. */ + return memsize; + + if (zero_length) + { + if (trailing) + *sam = special_array_member::trail_0; + else + { + *sam = special_array_member::int_0; + memsize = NULL_TREE; + } + } + + if (!zero_length) + if (tree dom = TYPE_DOMAIN (memtype)) + if (tree min = TYPE_MIN_VALUE (dom)) + if (tree max = TYPE_MAX_VALUE (dom)) + if (TREE_CODE (min) == INTEGER_CST + && TREE_CODE (max) == INTEGER_CST) + { + offset_int minidx = wi::to_offset (min); + offset_int maxidx = wi::to_offset (max); + offset_int neltsm1 = maxidx - minidx; + if (neltsm1 > 0) + /* MEMBER is an array with more than one element. */ + return memsize; + + if (neltsm1 == 0) + *sam = special_array_member::trail_1; + } + + /* For a reference to a zero- or one-element array member of a union + use the size of the union instead of the size of the member. */ + if (TREE_CODE (argtype) == UNION_TYPE) + memsize = TYPE_SIZE_UNIT (argtype); + } + + /* MEMBER is either a bona fide flexible array member, or a zero-length + array member, or an array of length one treated as such. */ + + /* If the reference is to a declared object and the member a true + flexible array, try to determine its size from its initializer. */ + poly_int64 baseoff = 0; + tree base = get_addr_base_and_unit_offset (ref, &baseoff); + if (!base || !VAR_P (base)) + { + if (*sam != special_array_member::int_0) + return NULL_TREE; + + if (TREE_CODE (arg) != COMPONENT_REF) + return NULL_TREE; + + base = arg; + while (TREE_CODE (base) == COMPONENT_REF) + base = TREE_OPERAND (base, 0); + baseoff = tree_to_poly_int64 (byte_position (TREE_OPERAND (ref, 1))); + } + + /* BASE is the declared object of which MEMBER is either a member + or that is cast to ARGTYPE (e.g., a char buffer used to store + an ARGTYPE object). */ + tree basetype = TREE_TYPE (base); + + /* Determine the base type of the referenced object. If it's + the same as ARGTYPE and MEMBER has a known size, return it. */ + tree bt = basetype; + if (*sam != special_array_member::int_0) + while (TREE_CODE (bt) == ARRAY_TYPE) + bt = TREE_TYPE (bt); + bool typematch = useless_type_conversion_p (argtype, bt); + if (memsize && typematch) + return memsize; + + memsize = NULL_TREE; + + if (typematch) + /* MEMBER is a true flexible array member. Compute its size from + the initializer of the BASE object if it has one. */ + if (tree init = DECL_P (base) ? DECL_INITIAL (base) : NULL_TREE) + if (init != error_mark_node) + { + init = get_initializer_for (init, member); + if (init) + { + memsize = TYPE_SIZE_UNIT (TREE_TYPE (init)); + if (tree refsize = TYPE_SIZE_UNIT (argtype)) + { + /* Use the larger of the initializer size and the tail + padding in the enclosing struct. */ + poly_int64 rsz = tree_to_poly_int64 (refsize); + rsz -= baseoff; + if (known_lt (tree_to_poly_int64 (memsize), rsz)) + memsize = wide_int_to_tree (TREE_TYPE (memsize), rsz); + } + + baseoff = 0; + } + } + + if (!memsize) + { + if (typematch) + { + if (DECL_P (base) + && DECL_EXTERNAL (base) + && bt == basetype + && *sam != special_array_member::int_0) + /* The size of a flexible array member of an extern struct + with no initializer cannot be determined (it's defined + in another translation unit and can have an initializer + with an arbitrary number of elements). */ + return NULL_TREE; + + /* Use the size of the base struct or, for interior zero-length + arrays, the size of the enclosing type. */ + memsize = TYPE_SIZE_UNIT (bt); + } + else if (DECL_P (base)) + /* Use the size of the BASE object (possibly an array of some + other type such as char used to store the struct). */ + memsize = DECL_SIZE_UNIT (base); + else + return NULL_TREE; + } + + /* If the flexible array member has a known size use the greater + of it and the tail padding in the enclosing struct. + Otherwise, when the size of the flexible array member is unknown + and the referenced object is not a struct, use the size of its + type when known. This detects sizes of array buffers when cast + to struct types with flexible array members. */ + if (memsize) + { + poly_int64 memsz64 = memsize ? tree_to_poly_int64 (memsize) : 0; + if (known_lt (baseoff, memsz64)) + { + memsz64 -= baseoff; + return wide_int_to_tree (TREE_TYPE (memsize), memsz64); + } + return size_zero_node; + } + + /* Return "don't know" for an external non-array object since its + flexible array member can be initialized to have any number of + elements. Otherwise, return zero because the flexible array + member has no elements. */ + return (DECL_P (base) + && DECL_EXTERNAL (base) + && (!typematch + || TREE_CODE (basetype) != ARRAY_TYPE) + ? NULL_TREE : size_zero_node); +} + +/* Return the machine mode of T. For vectors, returns the mode of the + inner type. The main use case is to feed the result to HONOR_NANS, + avoiding the BLKmode that a direct TYPE_MODE (T) might return. */ + +machine_mode +element_mode (const_tree t) +{ + if (!TYPE_P (t)) + t = TREE_TYPE (t); + if (VECTOR_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE) + t = TREE_TYPE (t); + return TYPE_MODE (t); +} + +/* Vector types need to re-check the target flags each time we report + the machine mode. We need to do this because attribute target can + change the result of vector_mode_supported_p and have_regs_of_mode + on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can + change on a per-function basis. */ +/* ??? Possibly a better solution is to run through all the types + referenced by a function and re-compute the TYPE_MODE once, rather + than make the TYPE_MODE macro call a function. */ + +machine_mode +vector_type_mode (const_tree t) +{ + machine_mode mode; + + gcc_assert (TREE_CODE (t) == VECTOR_TYPE); + + mode = t->type_common.mode; + if (VECTOR_MODE_P (mode) + && (!targetm.vector_mode_supported_p (mode) + || !have_regs_of_mode[mode])) + { + scalar_int_mode innermode; + + /* For integers, try mapping it to a same-sized scalar mode. */ + if (is_int_mode (TREE_TYPE (t)->type_common.mode, &innermode)) + { + poly_int64 size = (TYPE_VECTOR_SUBPARTS (t) + * GET_MODE_BITSIZE (innermode)); + scalar_int_mode mode; + if (int_mode_for_size (size, 0).exists (&mode) + && have_regs_of_mode[mode]) + return mode; + } + + return BLKmode; + } + + return mode; +} + +/* Return the size in bits of each element of vector type TYPE. */ + +unsigned int +vector_element_bits (const_tree type) +{ + gcc_checking_assert (VECTOR_TYPE_P (type)); + if (VECTOR_BOOLEAN_TYPE_P (type)) + return TYPE_PRECISION (TREE_TYPE (type)); + return tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type))); +} + +/* Calculate the size in bits of each element of vector type TYPE + and return the result as a tree of type bitsizetype. */ + +tree +vector_element_bits_tree (const_tree type) +{ + gcc_checking_assert (VECTOR_TYPE_P (type)); + if (VECTOR_BOOLEAN_TYPE_P (type)) + return bitsize_int (vector_element_bits (type)); + return TYPE_SIZE (TREE_TYPE (type)); +} + +/* Verify that basic properties of T match TV and thus T can be a variant of + TV. TV should be the more specified variant (i.e. the main variant). */ + +static bool +verify_type_variant (const_tree t, tree tv) +{ + /* Type variant can differ by: + + - TYPE_QUALS: TYPE_READONLY, TYPE_VOLATILE, TYPE_ATOMIC, TYPE_RESTRICT, + ENCODE_QUAL_ADDR_SPACE. + - main variant may be TYPE_COMPLETE_P and variant types !TYPE_COMPLETE_P + in this case some values may not be set in the variant types + (see TYPE_COMPLETE_P checks). + - it is possible to have TYPE_ARTIFICIAL variant of non-artifical type + - by TYPE_NAME and attributes (i.e. when variant originate by typedef) + - TYPE_CANONICAL (TYPE_ALIAS_SET is the same among variants) + - by the alignment: TYPE_ALIGN and TYPE_USER_ALIGN + - during LTO by TYPE_CONTEXT if type is TYPE_FILE_SCOPE_P + this is necessary to make it possible to merge types form different TUs + - arrays, pointers and references may have TREE_TYPE that is a variant + of TREE_TYPE of their main variants. + - aggregates may have new TYPE_FIELDS list that list variants of + the main variant TYPE_FIELDS. + - vector types may differ by TYPE_VECTOR_OPAQUE + */ + + /* Convenience macro for matching individual fields. */ +#define verify_variant_match(flag) \ + do { \ + if (flag (tv) != flag (t)) \ + { \ + error ("type variant differs by %s", #flag); \ + debug_tree (tv); \ + return false; \ + } \ + } while (false) + + /* tree_base checks. */ + + verify_variant_match (TREE_CODE); + /* FIXME: Ada builds non-artificial variants of artificial types. */ +#if 0 + if (TYPE_ARTIFICIAL (tv)) + verify_variant_match (TYPE_ARTIFICIAL); +#endif + if (POINTER_TYPE_P (tv)) + verify_variant_match (TYPE_REF_CAN_ALIAS_ALL); + /* FIXME: TYPE_SIZES_GIMPLIFIED may differs for Ada build. */ + verify_variant_match (TYPE_UNSIGNED); + verify_variant_match (TYPE_PACKED); + if (TREE_CODE (t) == REFERENCE_TYPE) + verify_variant_match (TYPE_REF_IS_RVALUE); + if (AGGREGATE_TYPE_P (t)) + verify_variant_match (TYPE_REVERSE_STORAGE_ORDER); + else + verify_variant_match (TYPE_SATURATING); + /* FIXME: This check trigger during libstdc++ build. */ +#if 0 + if (RECORD_OR_UNION_TYPE_P (t) && COMPLETE_TYPE_P (t)) + verify_variant_match (TYPE_FINAL_P); +#endif + + /* tree_type_common checks. */ + + if (COMPLETE_TYPE_P (t)) + { + verify_variant_match (TYPE_MODE); + if (TREE_CODE (TYPE_SIZE (t)) != PLACEHOLDER_EXPR + && TREE_CODE (TYPE_SIZE (tv)) != PLACEHOLDER_EXPR) + verify_variant_match (TYPE_SIZE); + if (TREE_CODE (TYPE_SIZE_UNIT (t)) != PLACEHOLDER_EXPR + && TREE_CODE (TYPE_SIZE_UNIT (tv)) != PLACEHOLDER_EXPR + && TYPE_SIZE_UNIT (t) != TYPE_SIZE_UNIT (tv)) + { + gcc_assert (!operand_equal_p (TYPE_SIZE_UNIT (t), + TYPE_SIZE_UNIT (tv), 0)); + error ("type variant has different %<TYPE_SIZE_UNIT%>"); + debug_tree (tv); + error ("type variant%'s %<TYPE_SIZE_UNIT%>"); + debug_tree (TYPE_SIZE_UNIT (tv)); + error ("type%'s %<TYPE_SIZE_UNIT%>"); + debug_tree (TYPE_SIZE_UNIT (t)); + return false; + } + verify_variant_match (TYPE_NEEDS_CONSTRUCTING); + } + verify_variant_match (TYPE_PRECISION); + if (RECORD_OR_UNION_TYPE_P (t)) + verify_variant_match (TYPE_TRANSPARENT_AGGR); + else if (TREE_CODE (t) == ARRAY_TYPE) + verify_variant_match (TYPE_NONALIASED_COMPONENT); + /* During LTO we merge variant lists from diferent translation units + that may differ BY TYPE_CONTEXT that in turn may point + to TRANSLATION_UNIT_DECL. + Ada also builds variants of types with different TYPE_CONTEXT. */ +#if 0 + if (!in_lto_p || !TYPE_FILE_SCOPE_P (t)) + verify_variant_match (TYPE_CONTEXT); +#endif + if (TREE_CODE (t) == ARRAY_TYPE || TREE_CODE (t) == INTEGER_TYPE) + verify_variant_match (TYPE_STRING_FLAG); + if (TREE_CODE (t) == RECORD_TYPE || TREE_CODE (t) == UNION_TYPE) + verify_variant_match (TYPE_CXX_ODR_P); + if (TYPE_ALIAS_SET_KNOWN_P (t)) + { + error ("type variant with %<TYPE_ALIAS_SET_KNOWN_P%>"); + debug_tree (tv); + return false; + } + + /* tree_type_non_common checks. */ + + /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS + and dangle the pointer from time to time. */ + if (RECORD_OR_UNION_TYPE_P (t) && TYPE_VFIELD (t) != TYPE_VFIELD (tv) + && (in_lto_p || !TYPE_VFIELD (tv) + || TREE_CODE (TYPE_VFIELD (tv)) != TREE_LIST)) + { + error ("type variant has different %<TYPE_VFIELD%>"); + debug_tree (tv); + return false; + } + if ((TREE_CODE (t) == ENUMERAL_TYPE && COMPLETE_TYPE_P (t)) + || TREE_CODE (t) == INTEGER_TYPE + || TREE_CODE (t) == BOOLEAN_TYPE + || TREE_CODE (t) == REAL_TYPE + || TREE_CODE (t) == FIXED_POINT_TYPE) + { + verify_variant_match (TYPE_MAX_VALUE); + verify_variant_match (TYPE_MIN_VALUE); + } + if (TREE_CODE (t) == METHOD_TYPE) + verify_variant_match (TYPE_METHOD_BASETYPE); + if (TREE_CODE (t) == OFFSET_TYPE) + verify_variant_match (TYPE_OFFSET_BASETYPE); + if (TREE_CODE (t) == ARRAY_TYPE) + verify_variant_match (TYPE_ARRAY_MAX_SIZE); + /* FIXME: Be lax and allow TYPE_BINFO to be missing in variant types + or even type's main variant. This is needed to make bootstrap pass + and the bug seems new in GCC 5. + C++ FE should be updated to make this consistent and we should check + that TYPE_BINFO is always NULL for !COMPLETE_TYPE_P and otherwise there + is a match with main variant. + + Also disable the check for Java for now because of parser hack that builds + first an dummy BINFO and then sometimes replace it by real BINFO in some + of the copies. */ + if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t) && TYPE_BINFO (tv) + && TYPE_BINFO (t) != TYPE_BINFO (tv) + /* FIXME: Java sometimes keep dump TYPE_BINFOs on variant types. + Since there is no cheap way to tell C++/Java type w/o LTO, do checking + at LTO time only. */ + && (in_lto_p && odr_type_p (t))) + { + error ("type variant has different %<TYPE_BINFO%>"); + debug_tree (tv); + error ("type variant%'s %<TYPE_BINFO%>"); + debug_tree (TYPE_BINFO (tv)); + error ("type%'s %<TYPE_BINFO%>"); + debug_tree (TYPE_BINFO (t)); + return false; + } + + /* Check various uses of TYPE_VALUES_RAW. */ + if (TREE_CODE (t) == ENUMERAL_TYPE + && TYPE_VALUES (t)) + verify_variant_match (TYPE_VALUES); + else if (TREE_CODE (t) == ARRAY_TYPE) + verify_variant_match (TYPE_DOMAIN); + /* Permit incomplete variants of complete type. While FEs may complete + all variants, this does not happen for C++ templates in all cases. */ + else if (RECORD_OR_UNION_TYPE_P (t) + && COMPLETE_TYPE_P (t) + && TYPE_FIELDS (t) != TYPE_FIELDS (tv)) + { + tree f1, f2; + + /* Fortran builds qualified variants as new records with items of + qualified type. Verify that they looks same. */ + for (f1 = TYPE_FIELDS (t), f2 = TYPE_FIELDS (tv); + f1 && f2; + f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2)) + if (TREE_CODE (f1) != FIELD_DECL || TREE_CODE (f2) != FIELD_DECL + || (TYPE_MAIN_VARIANT (TREE_TYPE (f1)) + != TYPE_MAIN_VARIANT (TREE_TYPE (f2)) + /* FIXME: gfc_nonrestricted_type builds all types as variants + with exception of pointer types. It deeply copies the type + which means that we may end up with a variant type + referring non-variant pointer. We may change it to + produce types as variants, too, like + objc_get_protocol_qualified_type does. */ + && !POINTER_TYPE_P (TREE_TYPE (f1))) + || DECL_FIELD_OFFSET (f1) != DECL_FIELD_OFFSET (f2) + || DECL_FIELD_BIT_OFFSET (f1) != DECL_FIELD_BIT_OFFSET (f2)) + break; + if (f1 || f2) + { + error ("type variant has different %<TYPE_FIELDS%>"); + debug_tree (tv); + error ("first mismatch is field"); + debug_tree (f1); + error ("and field"); + debug_tree (f2); + return false; + } + } + else if ((TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)) + verify_variant_match (TYPE_ARG_TYPES); + /* For C++ the qualified variant of array type is really an array type + of qualified TREE_TYPE. + objc builds variants of pointer where pointer to type is a variant, too + in objc_get_protocol_qualified_type. */ + if (TREE_TYPE (t) != TREE_TYPE (tv) + && ((TREE_CODE (t) != ARRAY_TYPE + && !POINTER_TYPE_P (t)) + || TYPE_MAIN_VARIANT (TREE_TYPE (t)) + != TYPE_MAIN_VARIANT (TREE_TYPE (tv)))) + { + error ("type variant has different %<TREE_TYPE%>"); + debug_tree (tv); + error ("type variant%'s %<TREE_TYPE%>"); + debug_tree (TREE_TYPE (tv)); + error ("type%'s %<TREE_TYPE%>"); + debug_tree (TREE_TYPE (t)); + return false; + } + if (type_with_alias_set_p (t) + && !gimple_canonical_types_compatible_p (t, tv, false)) + { + error ("type is not compatible with its variant"); + debug_tree (tv); + error ("type variant%'s %<TREE_TYPE%>"); + debug_tree (TREE_TYPE (tv)); + error ("type%'s %<TREE_TYPE%>"); + debug_tree (TREE_TYPE (t)); + return false; + } + return true; +#undef verify_variant_match +} + + +/* The TYPE_CANONICAL merging machinery. It should closely resemble + the middle-end types_compatible_p function. It needs to avoid + claiming types are different for types that should be treated + the same with respect to TBAA. Canonical types are also used + for IL consistency checks via the useless_type_conversion_p + predicate which does not handle all type kinds itself but falls + back to pointer-comparison of TYPE_CANONICAL for aggregates + for example. */ + +/* Return true if TYPE_UNSIGNED of TYPE should be ignored for canonical + type calculation because we need to allow inter-operability between signed + and unsigned variants. */ + +bool +type_with_interoperable_signedness (const_tree type) +{ + /* Fortran standard require C_SIGNED_CHAR to be interoperable with both + signed char and unsigned char. Similarly fortran FE builds + C_SIZE_T as signed type, while C defines it unsigned. */ + + return tree_code_for_canonical_type_merging (TREE_CODE (type)) + == INTEGER_TYPE + && (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node) + || TYPE_PRECISION (type) == TYPE_PRECISION (size_type_node)); +} + +/* Return true iff T1 and T2 are structurally identical for what + TBAA is concerned. + This function is used both by lto.c canonical type merging and by the + verifier. If TRUST_TYPE_CANONICAL we do not look into structure of types + that have TYPE_CANONICAL defined and assume them equivalent. This is useful + only for LTO because only in these cases TYPE_CANONICAL equivalence + correspond to one defined by gimple_canonical_types_compatible_p. */ + +bool +gimple_canonical_types_compatible_p (const_tree t1, const_tree t2, + bool trust_type_canonical) +{ + /* Type variants should be same as the main variant. When not doing sanity + checking to verify this fact, go to main variants and save some work. */ + if (trust_type_canonical) + { + t1 = TYPE_MAIN_VARIANT (t1); + t2 = TYPE_MAIN_VARIANT (t2); + } + + /* Check first for the obvious case of pointer identity. */ + if (t1 == t2) + return true; + + /* Check that we have two types to compare. */ + if (t1 == NULL_TREE || t2 == NULL_TREE) + return false; + + /* We consider complete types always compatible with incomplete type. + This does not make sense for canonical type calculation and thus we + need to ensure that we are never called on it. + + FIXME: For more correctness the function probably should have three modes + 1) mode assuming that types are complete mathcing their structure + 2) mode allowing incomplete types but producing equivalence classes + and thus ignoring all info from complete types + 3) mode allowing incomplete types to match complete but checking + compatibility between complete types. + + 1 and 2 can be used for canonical type calculation. 3 is the real + definition of type compatibility that can be used i.e. for warnings during + declaration merging. */ + + gcc_assert (!trust_type_canonical + || (type_with_alias_set_p (t1) && type_with_alias_set_p (t2))); + + /* If the types have been previously registered and found equal + they still are. */ + + if (TYPE_CANONICAL (t1) && TYPE_CANONICAL (t2) + && trust_type_canonical) + { + /* Do not use TYPE_CANONICAL of pointer types. For LTO streamed types + they are always NULL, but they are set to non-NULL for types + constructed by build_pointer_type and variants. In this case the + TYPE_CANONICAL is more fine grained than the equivalnce we test (where + all pointers are considered equal. Be sure to not return false + negatives. */ + gcc_checking_assert (canonical_type_used_p (t1) + && canonical_type_used_p (t2)); + return TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2); + } + + /* For types where we do ODR based TBAA the canonical type is always + set correctly, so we know that types are different if their + canonical types does not match. */ + if (trust_type_canonical + && (odr_type_p (t1) && odr_based_tbaa_p (t1)) + != (odr_type_p (t2) && odr_based_tbaa_p (t2))) + return false; + + /* Can't be the same type if the types don't have the same code. */ + enum tree_code code = tree_code_for_canonical_type_merging (TREE_CODE (t1)); + if (code != tree_code_for_canonical_type_merging (TREE_CODE (t2))) + return false; + + /* Qualifiers do not matter for canonical type comparison purposes. */ + + /* Void types and nullptr types are always the same. */ + if (TREE_CODE (t1) == VOID_TYPE + || TREE_CODE (t1) == NULLPTR_TYPE) + return true; + + /* Can't be the same type if they have different mode. */ + if (TYPE_MODE (t1) != TYPE_MODE (t2)) + return false; + + /* Non-aggregate types can be handled cheaply. */ + if (INTEGRAL_TYPE_P (t1) + || SCALAR_FLOAT_TYPE_P (t1) + || FIXED_POINT_TYPE_P (t1) + || TREE_CODE (t1) == VECTOR_TYPE + || TREE_CODE (t1) == COMPLEX_TYPE + || TREE_CODE (t1) == OFFSET_TYPE + || POINTER_TYPE_P (t1)) + { + /* Can't be the same type if they have different recision. */ + if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2)) + return false; + + /* In some cases the signed and unsigned types are required to be + inter-operable. */ + if (TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2) + && !type_with_interoperable_signedness (t1)) + return false; + + /* Fortran's C_SIGNED_CHAR is !TYPE_STRING_FLAG but needs to be + interoperable with "signed char". Unless all frontends are revisited + to agree on these types, we must ignore the flag completely. */ + + /* Fortran standard define C_PTR type that is compatible with every + C pointer. For this reason we need to glob all pointers into one. + Still pointers in different address spaces are not compatible. */ + if (POINTER_TYPE_P (t1)) + { + if (TYPE_ADDR_SPACE (TREE_TYPE (t1)) + != TYPE_ADDR_SPACE (TREE_TYPE (t2))) + return false; + } + + /* Tail-recurse to components. */ + if (TREE_CODE (t1) == VECTOR_TYPE + || TREE_CODE (t1) == COMPLEX_TYPE) + return gimple_canonical_types_compatible_p (TREE_TYPE (t1), + TREE_TYPE (t2), + trust_type_canonical); + + return true; + } + + /* Do type-specific comparisons. */ + switch (TREE_CODE (t1)) + { + case ARRAY_TYPE: + /* Array types are the same if the element types are the same and + the number of elements are the same. */ + if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2), + trust_type_canonical) + || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2) + || TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2) + || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2)) + return false; + else + { + tree i1 = TYPE_DOMAIN (t1); + tree i2 = TYPE_DOMAIN (t2); + + /* For an incomplete external array, the type domain can be + NULL_TREE. Check this condition also. */ + if (i1 == NULL_TREE && i2 == NULL_TREE) + return true; + else if (i1 == NULL_TREE || i2 == NULL_TREE) + return false; + else + { + tree min1 = TYPE_MIN_VALUE (i1); + tree min2 = TYPE_MIN_VALUE (i2); + tree max1 = TYPE_MAX_VALUE (i1); + tree max2 = TYPE_MAX_VALUE (i2); + + /* The minimum/maximum values have to be the same. */ + if ((min1 == min2 + || (min1 && min2 + && ((TREE_CODE (min1) == PLACEHOLDER_EXPR + && TREE_CODE (min2) == PLACEHOLDER_EXPR) + || operand_equal_p (min1, min2, 0)))) + && (max1 == max2 + || (max1 && max2 + && ((TREE_CODE (max1) == PLACEHOLDER_EXPR + && TREE_CODE (max2) == PLACEHOLDER_EXPR) + || operand_equal_p (max1, max2, 0))))) + return true; + else + return false; + } + } + + case METHOD_TYPE: + case FUNCTION_TYPE: + /* Function types are the same if the return type and arguments types + are the same. */ + if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2), + trust_type_canonical)) + return false; + + if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2)) + return true; + else + { + tree parms1, parms2; + + for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2); + parms1 && parms2; + parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2)) + { + if (!gimple_canonical_types_compatible_p + (TREE_VALUE (parms1), TREE_VALUE (parms2), + trust_type_canonical)) + return false; + } + + if (parms1 || parms2) + return false; + + return true; + } + + case RECORD_TYPE: + case UNION_TYPE: + case QUAL_UNION_TYPE: + { + tree f1, f2; + + /* Don't try to compare variants of an incomplete type, before + TYPE_FIELDS has been copied around. */ + if (!COMPLETE_TYPE_P (t1) && !COMPLETE_TYPE_P (t2)) + return true; + + + if (TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2)) + return false; + + /* For aggregate types, all the fields must be the same. */ + for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2); + f1 || f2; + f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2)) + { + /* Skip non-fields and zero-sized fields. */ + while (f1 && (TREE_CODE (f1) != FIELD_DECL + || (DECL_SIZE (f1) + && integer_zerop (DECL_SIZE (f1))))) + f1 = TREE_CHAIN (f1); + while (f2 && (TREE_CODE (f2) != FIELD_DECL + || (DECL_SIZE (f2) + && integer_zerop (DECL_SIZE (f2))))) + f2 = TREE_CHAIN (f2); + if (!f1 || !f2) + break; + /* The fields must have the same name, offset and type. */ + if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2) + || !gimple_compare_field_offset (f1, f2) + || !gimple_canonical_types_compatible_p + (TREE_TYPE (f1), TREE_TYPE (f2), + trust_type_canonical)) + return false; + } + + /* If one aggregate has more fields than the other, they + are not the same. */ + if (f1 || f2) + return false; + + return true; + } + + default: + /* Consider all types with language specific trees in them mutually + compatible. This is executed only from verify_type and false + positives can be tolerated. */ + gcc_assert (!in_lto_p); + return true; + } +} + +/* Verify type T. */ + +void +verify_type (const_tree t) +{ + bool error_found = false; + tree mv = TYPE_MAIN_VARIANT (t); + if (!mv) + { + error ("main variant is not defined"); + error_found = true; + } + else if (mv != TYPE_MAIN_VARIANT (mv)) + { + error ("%<TYPE_MAIN_VARIANT%> has different %<TYPE_MAIN_VARIANT%>"); + debug_tree (mv); + error_found = true; + } + else if (t != mv && !verify_type_variant (t, mv)) + error_found = true; + + tree ct = TYPE_CANONICAL (t); + if (!ct) + ; + else if (TYPE_CANONICAL (ct) != ct) + { + error ("%<TYPE_CANONICAL%> has different %<TYPE_CANONICAL%>"); + debug_tree (ct); + error_found = true; + } + /* Method and function types cannot be used to address memory and thus + TYPE_CANONICAL really matters only for determining useless conversions. + + FIXME: C++ FE produce declarations of builtin functions that are not + compatible with main variants. */ + else if (TREE_CODE (t) == FUNCTION_TYPE) + ; + else if (t != ct + /* FIXME: gimple_canonical_types_compatible_p cannot compare types + with variably sized arrays because their sizes possibly + gimplified to different variables. */ + && !variably_modified_type_p (ct, NULL) + && !gimple_canonical_types_compatible_p (t, ct, false) + && COMPLETE_TYPE_P (t)) + { + error ("%<TYPE_CANONICAL%> is not compatible"); + debug_tree (ct); + error_found = true; + } + + if (COMPLETE_TYPE_P (t) && TYPE_CANONICAL (t) + && TYPE_MODE (t) != TYPE_MODE (TYPE_CANONICAL (t))) + { + error ("%<TYPE_MODE%> of %<TYPE_CANONICAL%> is not compatible"); + debug_tree (ct); + error_found = true; + } + if (TYPE_MAIN_VARIANT (t) == t && ct && TYPE_MAIN_VARIANT (ct) != ct) + { + error ("%<TYPE_CANONICAL%> of main variant is not main variant"); + debug_tree (ct); + debug_tree (TYPE_MAIN_VARIANT (ct)); + error_found = true; + } + + + /* Check various uses of TYPE_MIN_VALUE_RAW. */ + if (RECORD_OR_UNION_TYPE_P (t)) + { + /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS + and danagle the pointer from time to time. */ + if (TYPE_VFIELD (t) + && TREE_CODE (TYPE_VFIELD (t)) != FIELD_DECL + && TREE_CODE (TYPE_VFIELD (t)) != TREE_LIST) + { + error ("%<TYPE_VFIELD%> is not %<FIELD_DECL%> nor %<TREE_LIST%>"); + debug_tree (TYPE_VFIELD (t)); + error_found = true; + } + } + else if (TREE_CODE (t) == POINTER_TYPE) + { + if (TYPE_NEXT_PTR_TO (t) + && TREE_CODE (TYPE_NEXT_PTR_TO (t)) != POINTER_TYPE) + { + error ("%<TYPE_NEXT_PTR_TO%> is not %<POINTER_TYPE%>"); + debug_tree (TYPE_NEXT_PTR_TO (t)); + error_found = true; + } + } + else if (TREE_CODE (t) == REFERENCE_TYPE) + { + if (TYPE_NEXT_REF_TO (t) + && TREE_CODE (TYPE_NEXT_REF_TO (t)) != REFERENCE_TYPE) + { + error ("%<TYPE_NEXT_REF_TO%> is not %<REFERENCE_TYPE%>"); + debug_tree (TYPE_NEXT_REF_TO (t)); + error_found = true; + } + } + else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE + || TREE_CODE (t) == FIXED_POINT_TYPE) + { + /* FIXME: The following check should pass: + useless_type_conversion_p (const_cast <tree> (t), + TREE_TYPE (TYPE_MIN_VALUE (t)) + but does not for C sizetypes in LTO. */ + } + + /* Check various uses of TYPE_MAXVAL_RAW. */ + if (RECORD_OR_UNION_TYPE_P (t)) + { + if (!TYPE_BINFO (t)) + ; + else if (TREE_CODE (TYPE_BINFO (t)) != TREE_BINFO) + { + error ("%<TYPE_BINFO%> is not %<TREE_BINFO%>"); + debug_tree (TYPE_BINFO (t)); + error_found = true; + } + else if (TREE_TYPE (TYPE_BINFO (t)) != TYPE_MAIN_VARIANT (t)) + { + error ("%<TYPE_BINFO%> type is not %<TYPE_MAIN_VARIANT%>"); + debug_tree (TREE_TYPE (TYPE_BINFO (t))); + error_found = true; + } + } + else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE) + { + if (TYPE_METHOD_BASETYPE (t) + && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != RECORD_TYPE + && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != UNION_TYPE) + { + error ("%<TYPE_METHOD_BASETYPE%> is not record nor union"); + debug_tree (TYPE_METHOD_BASETYPE (t)); + error_found = true; + } + } + else if (TREE_CODE (t) == OFFSET_TYPE) + { + if (TYPE_OFFSET_BASETYPE (t) + && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != RECORD_TYPE + && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != UNION_TYPE) + { + error ("%<TYPE_OFFSET_BASETYPE%> is not record nor union"); + debug_tree (TYPE_OFFSET_BASETYPE (t)); + error_found = true; + } + } + else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE + || TREE_CODE (t) == FIXED_POINT_TYPE) + { + /* FIXME: The following check should pass: + useless_type_conversion_p (const_cast <tree> (t), + TREE_TYPE (TYPE_MAX_VALUE (t)) + but does not for C sizetypes in LTO. */ + } + else if (TREE_CODE (t) == ARRAY_TYPE) + { + if (TYPE_ARRAY_MAX_SIZE (t) + && TREE_CODE (TYPE_ARRAY_MAX_SIZE (t)) != INTEGER_CST) + { + error ("%<TYPE_ARRAY_MAX_SIZE%> not %<INTEGER_CST%>"); + debug_tree (TYPE_ARRAY_MAX_SIZE (t)); + error_found = true; + } + } + else if (TYPE_MAX_VALUE_RAW (t)) + { + error ("%<TYPE_MAX_VALUE_RAW%> non-NULL"); + debug_tree (TYPE_MAX_VALUE_RAW (t)); + error_found = true; + } + + if (TYPE_LANG_SLOT_1 (t) && in_lto_p) + { + error ("%<TYPE_LANG_SLOT_1 (binfo)%> field is non-NULL"); + debug_tree (TYPE_LANG_SLOT_1 (t)); + error_found = true; + } + + /* Check various uses of TYPE_VALUES_RAW. */ + if (TREE_CODE (t) == ENUMERAL_TYPE) + for (tree l = TYPE_VALUES (t); l; l = TREE_CHAIN (l)) + { + tree value = TREE_VALUE (l); + tree name = TREE_PURPOSE (l); + + /* C FE porduce INTEGER_CST of INTEGER_TYPE, while C++ FE uses + CONST_DECL of ENUMERAL TYPE. */ + if (TREE_CODE (value) != INTEGER_CST && TREE_CODE (value) != CONST_DECL) + { + error ("enum value is not %<CONST_DECL%> or %<INTEGER_CST%>"); + debug_tree (value); + debug_tree (name); + error_found = true; + } + if (TREE_CODE (TREE_TYPE (value)) != INTEGER_TYPE + && TREE_CODE (TREE_TYPE (value)) != BOOLEAN_TYPE + && !useless_type_conversion_p (const_cast <tree> (t), TREE_TYPE (value))) + { + error ("enum value type is not %<INTEGER_TYPE%> nor convertible " + "to the enum"); + debug_tree (value); + debug_tree (name); + error_found = true; + } + if (TREE_CODE (name) != IDENTIFIER_NODE) + { + error ("enum value name is not %<IDENTIFIER_NODE%>"); + debug_tree (value); + debug_tree (name); + error_found = true; + } + } + else if (TREE_CODE (t) == ARRAY_TYPE) + { + if (TYPE_DOMAIN (t) && TREE_CODE (TYPE_DOMAIN (t)) != INTEGER_TYPE) + { + error ("array %<TYPE_DOMAIN%> is not integer type"); + debug_tree (TYPE_DOMAIN (t)); + error_found = true; + } + } + else if (RECORD_OR_UNION_TYPE_P (t)) + { + if (TYPE_FIELDS (t) && !COMPLETE_TYPE_P (t) && in_lto_p) + { + error ("%<TYPE_FIELDS%> defined in incomplete type"); + error_found = true; + } + for (tree fld = TYPE_FIELDS (t); fld; fld = TREE_CHAIN (fld)) + { + /* TODO: verify properties of decls. */ + if (TREE_CODE (fld) == FIELD_DECL) + ; + else if (TREE_CODE (fld) == TYPE_DECL) + ; + else if (TREE_CODE (fld) == CONST_DECL) + ; + else if (VAR_P (fld)) + ; + else if (TREE_CODE (fld) == TEMPLATE_DECL) + ; + else if (TREE_CODE (fld) == USING_DECL) + ; + else if (TREE_CODE (fld) == FUNCTION_DECL) + ; + else + { + error ("wrong tree in %<TYPE_FIELDS%> list"); + debug_tree (fld); + error_found = true; + } + } + } + else if (TREE_CODE (t) == INTEGER_TYPE + || TREE_CODE (t) == BOOLEAN_TYPE + || TREE_CODE (t) == OFFSET_TYPE + || TREE_CODE (t) == REFERENCE_TYPE + || TREE_CODE (t) == NULLPTR_TYPE + || TREE_CODE (t) == POINTER_TYPE) + { + if (TYPE_CACHED_VALUES_P (t) != (TYPE_CACHED_VALUES (t) != NULL)) + { + error ("%<TYPE_CACHED_VALUES_P%> is %i while %<TYPE_CACHED_VALUES%> " + "is %p", + TYPE_CACHED_VALUES_P (t), (void *)TYPE_CACHED_VALUES (t)); + error_found = true; + } + else if (TYPE_CACHED_VALUES_P (t) && TREE_CODE (TYPE_CACHED_VALUES (t)) != TREE_VEC) + { + error ("%<TYPE_CACHED_VALUES%> is not %<TREE_VEC%>"); + debug_tree (TYPE_CACHED_VALUES (t)); + error_found = true; + } + /* Verify just enough of cache to ensure that no one copied it to new type. + All copying should go by copy_node that should clear it. */ + else if (TYPE_CACHED_VALUES_P (t)) + { + int i; + for (i = 0; i < TREE_VEC_LENGTH (TYPE_CACHED_VALUES (t)); i++) + if (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i) + && TREE_TYPE (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)) != t) + { + error ("wrong %<TYPE_CACHED_VALUES%> entry"); + debug_tree (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)); + error_found = true; + break; + } + } + } + else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE) + for (tree l = TYPE_ARG_TYPES (t); l; l = TREE_CHAIN (l)) + { + /* C++ FE uses TREE_PURPOSE to store initial values. */ + if (TREE_PURPOSE (l) && in_lto_p) + { + error ("%<TREE_PURPOSE%> is non-NULL in %<TYPE_ARG_TYPES%> list"); + debug_tree (l); + error_found = true; + } + if (!TYPE_P (TREE_VALUE (l))) + { + error ("wrong entry in %<TYPE_ARG_TYPES%> list"); + debug_tree (l); + error_found = true; + } + } + else if (!is_lang_specific (t) && TYPE_VALUES_RAW (t)) + { + error ("%<TYPE_VALUES_RAW%> field is non-NULL"); + debug_tree (TYPE_VALUES_RAW (t)); + error_found = true; + } + if (TREE_CODE (t) != INTEGER_TYPE + && TREE_CODE (t) != BOOLEAN_TYPE + && TREE_CODE (t) != OFFSET_TYPE + && TREE_CODE (t) != REFERENCE_TYPE + && TREE_CODE (t) != NULLPTR_TYPE + && TREE_CODE (t) != POINTER_TYPE + && TYPE_CACHED_VALUES_P (t)) + { + error ("%<TYPE_CACHED_VALUES_P%> is set while it should not be"); + error_found = true; + } + + /* ipa-devirt makes an assumption that TYPE_METHOD_BASETYPE is always + TYPE_MAIN_VARIANT and it would be odd to add methods only to variatns + of a type. */ + if (TREE_CODE (t) == METHOD_TYPE + && TYPE_MAIN_VARIANT (TYPE_METHOD_BASETYPE (t)) != TYPE_METHOD_BASETYPE (t)) + { + error ("%<TYPE_METHOD_BASETYPE%> is not main variant"); + error_found = true; + } + + if (error_found) + { + debug_tree (const_cast <tree> (t)); + internal_error ("%qs failed", __func__); + } +} + + +/* Return 1 if ARG interpreted as signed in its precision is known to be + always positive or 2 if ARG is known to be always negative, or 3 if + ARG may be positive or negative. */ + +int +get_range_pos_neg (tree arg) +{ + if (arg == error_mark_node) + return 3; + + int prec = TYPE_PRECISION (TREE_TYPE (arg)); + int cnt = 0; + if (TREE_CODE (arg) == INTEGER_CST) + { + wide_int w = wi::sext (wi::to_wide (arg), prec); + if (wi::neg_p (w)) + return 2; + else + return 1; + } + while (CONVERT_EXPR_P (arg) + && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0))) + && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec) + { + arg = TREE_OPERAND (arg, 0); + /* Narrower value zero extended into wider type + will always result in positive values. */ + if (TYPE_UNSIGNED (TREE_TYPE (arg)) + && TYPE_PRECISION (TREE_TYPE (arg)) < prec) + return 1; + prec = TYPE_PRECISION (TREE_TYPE (arg)); + if (++cnt > 30) + return 3; + } + + if (TREE_CODE (arg) != SSA_NAME) + return 3; + value_range r; + while (!get_global_range_query ()->range_of_expr (r, arg) || r.kind () != VR_RANGE) + { + gimple *g = SSA_NAME_DEF_STMT (arg); + if (is_gimple_assign (g) + && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g))) + { + tree t = gimple_assign_rhs1 (g); + if (INTEGRAL_TYPE_P (TREE_TYPE (t)) + && TYPE_PRECISION (TREE_TYPE (t)) <= prec) + { + if (TYPE_UNSIGNED (TREE_TYPE (t)) + && TYPE_PRECISION (TREE_TYPE (t)) < prec) + return 1; + prec = TYPE_PRECISION (TREE_TYPE (t)); + arg = t; + if (++cnt > 30) + return 3; + continue; + } + } + return 3; + } + if (TYPE_UNSIGNED (TREE_TYPE (arg))) + { + /* For unsigned values, the "positive" range comes + below the "negative" range. */ + if (!wi::neg_p (wi::sext (r.upper_bound (), prec), SIGNED)) + return 1; + if (wi::neg_p (wi::sext (r.lower_bound (), prec), SIGNED)) + return 2; + } + else + { + if (!wi::neg_p (wi::sext (r.lower_bound (), prec), SIGNED)) + return 1; + if (wi::neg_p (wi::sext (r.upper_bound (), prec), SIGNED)) + return 2; + } + return 3; +} + + + + +/* Return true if ARG is marked with the nonnull attribute in the + current function signature. */ + +bool +nonnull_arg_p (const_tree arg) +{ + tree t, attrs, fntype; + unsigned HOST_WIDE_INT arg_num; + + gcc_assert (TREE_CODE (arg) == PARM_DECL + && (POINTER_TYPE_P (TREE_TYPE (arg)) + || TREE_CODE (TREE_TYPE (arg)) == OFFSET_TYPE)); + + /* The static chain decl is always non null. */ + if (arg == cfun->static_chain_decl) + return true; + + /* THIS argument of method is always non-NULL. */ + if (TREE_CODE (TREE_TYPE (cfun->decl)) == METHOD_TYPE + && arg == DECL_ARGUMENTS (cfun->decl) + && flag_delete_null_pointer_checks) + return true; + + /* Values passed by reference are always non-NULL. */ + if (TREE_CODE (TREE_TYPE (arg)) == REFERENCE_TYPE + && flag_delete_null_pointer_checks) + return true; + + fntype = TREE_TYPE (cfun->decl); + for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs)) + { + attrs = lookup_attribute ("nonnull", attrs); + + /* If "nonnull" wasn't specified, we know nothing about the argument. */ + if (attrs == NULL_TREE) + return false; + + /* If "nonnull" applies to all the arguments, then ARG is non-null. */ + if (TREE_VALUE (attrs) == NULL_TREE) + return true; + + /* Get the position number for ARG in the function signature. */ + for (arg_num = 1, t = DECL_ARGUMENTS (cfun->decl); + t; + t = DECL_CHAIN (t), arg_num++) + { + if (t == arg) + break; + } + + gcc_assert (t == arg); + + /* Now see if ARG_NUM is mentioned in the nonnull list. */ + for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t)) + { + if (compare_tree_int (TREE_VALUE (t), arg_num) == 0) + return true; + } + } + + return false; +} + +/* Combine LOC and BLOCK to a combined adhoc loc, retaining any range + information. */ + +location_t +set_block (location_t loc, tree block) +{ + location_t pure_loc = get_pure_location (loc); + source_range src_range = get_range_from_loc (line_table, loc); + return COMBINE_LOCATION_DATA (line_table, pure_loc, src_range, block); +} + +location_t +set_source_range (tree expr, location_t start, location_t finish) +{ + source_range src_range; + src_range.m_start = start; + src_range.m_finish = finish; + return set_source_range (expr, src_range); +} + +location_t +set_source_range (tree expr, source_range src_range) +{ + if (!EXPR_P (expr)) + return UNKNOWN_LOCATION; + + location_t pure_loc = get_pure_location (EXPR_LOCATION (expr)); + location_t adhoc = COMBINE_LOCATION_DATA (line_table, + pure_loc, + src_range, + NULL); + SET_EXPR_LOCATION (expr, adhoc); + return adhoc; +} + +/* Return EXPR, potentially wrapped with a node expression LOC, + if !CAN_HAVE_LOCATION_P (expr). + + NON_LVALUE_EXPR is used for wrapping constants, apart from STRING_CST. + VIEW_CONVERT_EXPR is used for wrapping non-constants and STRING_CST. + + Wrapper nodes can be identified using location_wrapper_p. */ + +tree +maybe_wrap_with_location (tree expr, location_t loc) +{ + if (expr == NULL) + return NULL; + if (loc == UNKNOWN_LOCATION) + return expr; + if (CAN_HAVE_LOCATION_P (expr)) + return expr; + /* We should only be adding wrappers for constants and for decls, + or for some exceptional tree nodes (e.g. BASELINK in the C++ FE). */ + gcc_assert (CONSTANT_CLASS_P (expr) + || DECL_P (expr) + || EXCEPTIONAL_CLASS_P (expr)); + + /* For now, don't add wrappers to exceptional tree nodes, to minimize + any impact of the wrapper nodes. */ + if (EXCEPTIONAL_CLASS_P (expr)) + return expr; + + /* Compiler-generated temporary variables don't need a wrapper. */ + if (DECL_P (expr) && DECL_ARTIFICIAL (expr) && DECL_IGNORED_P (expr)) + return expr; + + /* If any auto_suppress_location_wrappers are active, don't create + wrappers. */ + if (suppress_location_wrappers > 0) + return expr; + + tree_code code + = (((CONSTANT_CLASS_P (expr) && TREE_CODE (expr) != STRING_CST) + || (TREE_CODE (expr) == CONST_DECL && !TREE_STATIC (expr))) + ? NON_LVALUE_EXPR : VIEW_CONVERT_EXPR); + tree wrapper = build1_loc (loc, code, TREE_TYPE (expr), expr); + /* Mark this node as being a wrapper. */ + EXPR_LOCATION_WRAPPER_P (wrapper) = 1; + return wrapper; +} + +int suppress_location_wrappers; + +/* Return the name of combined function FN, for debugging purposes. */ + +const char * +combined_fn_name (combined_fn fn) +{ + if (builtin_fn_p (fn)) + { + tree fndecl = builtin_decl_explicit (as_builtin_fn (fn)); + return IDENTIFIER_POINTER (DECL_NAME (fndecl)); + } + else + return internal_fn_name (as_internal_fn (fn)); +} + +/* Return a bitmap with a bit set corresponding to each argument in + a function call type FNTYPE declared with attribute nonnull, + or null if none of the function's argument are nonnull. The caller + must free the bitmap. */ + +bitmap +get_nonnull_args (const_tree fntype) +{ + if (fntype == NULL_TREE) + return NULL; + + bitmap argmap = NULL; + if (TREE_CODE (fntype) == METHOD_TYPE) + { + /* The this pointer in C++ non-static member functions is + implicitly nonnull whether or not it's declared as such. */ + argmap = BITMAP_ALLOC (NULL); + bitmap_set_bit (argmap, 0); + } + + tree attrs = TYPE_ATTRIBUTES (fntype); + if (!attrs) + return argmap; + + /* A function declaration can specify multiple attribute nonnull, + each with zero or more arguments. The loop below creates a bitmap + representing a union of all the arguments. An empty (but non-null) + bitmap means that all arguments have been declaraed nonnull. */ + for ( ; attrs; attrs = TREE_CHAIN (attrs)) + { + attrs = lookup_attribute ("nonnull", attrs); + if (!attrs) + break; + + if (!argmap) + argmap = BITMAP_ALLOC (NULL); + + if (!TREE_VALUE (attrs)) + { + /* Clear the bitmap in case a previous attribute nonnull + set it and this one overrides it for all arguments. */ + bitmap_clear (argmap); + return argmap; + } + + /* Iterate over the indices of the format arguments declared nonnull + and set a bit for each. */ + for (tree idx = TREE_VALUE (attrs); idx; idx = TREE_CHAIN (idx)) + { + unsigned int val = TREE_INT_CST_LOW (TREE_VALUE (idx)) - 1; + bitmap_set_bit (argmap, val); + } + } + + return argmap; +} + +/* Returns true if TYPE is a type where it and all of its subobjects + (recursively) are of structure, union, or array type. */ + +bool +is_empty_type (const_tree type) +{ + if (RECORD_OR_UNION_TYPE_P (type)) + { + for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) + if (TREE_CODE (field) == FIELD_DECL + && !DECL_PADDING_P (field) + && !is_empty_type (TREE_TYPE (field))) + return false; + return true; + } + else if (TREE_CODE (type) == ARRAY_TYPE) + return (integer_minus_onep (array_type_nelts (type)) + || TYPE_DOMAIN (type) == NULL_TREE + || is_empty_type (TREE_TYPE (type))); + return false; +} + +/* Implement TARGET_EMPTY_RECORD_P. Return true if TYPE is an empty type + that shouldn't be passed via stack. */ + +bool +default_is_empty_record (const_tree type) +{ + if (!abi_version_at_least (12)) + return false; + + if (type == error_mark_node) + return false; + + if (TREE_ADDRESSABLE (type)) + return false; + + return is_empty_type (TYPE_MAIN_VARIANT (type)); +} + +/* Determine whether TYPE is a structure with a flexible array member, + or a union containing such a structure (possibly recursively). */ + +bool +flexible_array_type_p (const_tree type) +{ + tree x, last; + switch (TREE_CODE (type)) + { + case RECORD_TYPE: + last = NULL_TREE; + for (x = TYPE_FIELDS (type); x != NULL_TREE; x = DECL_CHAIN (x)) + if (TREE_CODE (x) == FIELD_DECL) + last = x; + if (last == NULL_TREE) + return false; + if (TREE_CODE (TREE_TYPE (last)) == ARRAY_TYPE + && TYPE_SIZE (TREE_TYPE (last)) == NULL_TREE + && TYPE_DOMAIN (TREE_TYPE (last)) != NULL_TREE + && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (last))) == NULL_TREE) + return true; + return false; + case UNION_TYPE: + for (x = TYPE_FIELDS (type); x != NULL_TREE; x = DECL_CHAIN (x)) + { + if (TREE_CODE (x) == FIELD_DECL + && flexible_array_type_p (TREE_TYPE (x))) + return true; + } + return false; + default: + return false; + } +} + +/* Like int_size_in_bytes, but handle empty records specially. */ + +HOST_WIDE_INT +arg_int_size_in_bytes (const_tree type) +{ + return TYPE_EMPTY_P (type) ? 0 : int_size_in_bytes (type); +} + +/* Like size_in_bytes, but handle empty records specially. */ + +tree +arg_size_in_bytes (const_tree type) +{ + return TYPE_EMPTY_P (type) ? size_zero_node : size_in_bytes (type); +} + +/* Return true if an expression with CODE has to have the same result type as + its first operand. */ + +bool +expr_type_first_operand_type_p (tree_code code) +{ + switch (code) + { + case NEGATE_EXPR: + case ABS_EXPR: + case BIT_NOT_EXPR: + case PAREN_EXPR: + case CONJ_EXPR: + + case PLUS_EXPR: + case MINUS_EXPR: + case MULT_EXPR: + case TRUNC_DIV_EXPR: + case CEIL_DIV_EXPR: + case FLOOR_DIV_EXPR: + case ROUND_DIV_EXPR: + case TRUNC_MOD_EXPR: + case CEIL_MOD_EXPR: + case FLOOR_MOD_EXPR: + case ROUND_MOD_EXPR: + case RDIV_EXPR: + case EXACT_DIV_EXPR: + case MIN_EXPR: + case MAX_EXPR: + case BIT_IOR_EXPR: + case BIT_XOR_EXPR: + case BIT_AND_EXPR: + + case LSHIFT_EXPR: + case RSHIFT_EXPR: + case LROTATE_EXPR: + case RROTATE_EXPR: + return true; + + default: + return false; + } +} + +/* Return a typenode for the "standard" C type with a given name. */ +tree +get_typenode_from_name (const char *name) +{ + if (name == NULL || *name == '\0') + return NULL_TREE; + + if (strcmp (name, "char") == 0) + return char_type_node; + if (strcmp (name, "unsigned char") == 0) + return unsigned_char_type_node; + if (strcmp (name, "signed char") == 0) + return signed_char_type_node; + + if (strcmp (name, "short int") == 0) + return short_integer_type_node; + if (strcmp (name, "short unsigned int") == 0) + return short_unsigned_type_node; + + if (strcmp (name, "int") == 0) + return integer_type_node; + if (strcmp (name, "unsigned int") == 0) + return unsigned_type_node; + + if (strcmp (name, "long int") == 0) + return long_integer_type_node; + if (strcmp (name, "long unsigned int") == 0) + return long_unsigned_type_node; + + if (strcmp (name, "long long int") == 0) + return long_long_integer_type_node; + if (strcmp (name, "long long unsigned int") == 0) + return long_long_unsigned_type_node; + + gcc_unreachable (); +} + +/* List of pointer types used to declare builtins before we have seen their + real declaration. + + Keep the size up to date in tree.h ! */ +const builtin_structptr_type builtin_structptr_types[6] = +{ + { fileptr_type_node, ptr_type_node, "FILE" }, + { const_tm_ptr_type_node, const_ptr_type_node, "tm" }, + { fenv_t_ptr_type_node, ptr_type_node, "fenv_t" }, + { const_fenv_t_ptr_type_node, const_ptr_type_node, "fenv_t" }, + { fexcept_t_ptr_type_node, ptr_type_node, "fexcept_t" }, + { const_fexcept_t_ptr_type_node, const_ptr_type_node, "fexcept_t" } +}; + +/* Return the maximum object size. */ + +tree +max_object_size (void) +{ + /* To do: Make this a configurable parameter. */ + return TYPE_MAX_VALUE (ptrdiff_type_node); +} + +/* A wrapper around TARGET_VERIFY_TYPE_CONTEXT that makes the silent_p + parameter default to false and that weeds out error_mark_node. */ + +bool +verify_type_context (location_t loc, type_context_kind context, + const_tree type, bool silent_p) +{ + if (type == error_mark_node) + return true; + + gcc_assert (TYPE_P (type)); + return (!targetm.verify_type_context + || targetm.verify_type_context (loc, context, type, silent_p)); +} + +/* Return true if NEW_ASM and DELETE_ASM name a valid pair of new and + delete operators. Return false if they may or may not name such + a pair and, when nonnull, set *PCERTAIN to true if they certainly + do not. */ + +bool +valid_new_delete_pair_p (tree new_asm, tree delete_asm, + bool *pcertain /* = NULL */) +{ + bool certain; + if (!pcertain) + pcertain = &certain; + + const char *new_name = IDENTIFIER_POINTER (new_asm); + const char *delete_name = IDENTIFIER_POINTER (delete_asm); + unsigned int new_len = IDENTIFIER_LENGTH (new_asm); + unsigned int delete_len = IDENTIFIER_LENGTH (delete_asm); + + /* The following failures are due to invalid names so they're not + considered certain mismatches. */ + *pcertain = false; + + if (new_len < 5 || delete_len < 6) + return false; + if (new_name[0] == '_') + ++new_name, --new_len; + if (new_name[0] == '_') + ++new_name, --new_len; + if (delete_name[0] == '_') + ++delete_name, --delete_len; + if (delete_name[0] == '_') + ++delete_name, --delete_len; + if (new_len < 4 || delete_len < 5) + return false; + + /* The following failures are due to names of user-defined operators + so they're also not considered certain mismatches. */ + + /* *_len is now just the length after initial underscores. */ + if (new_name[0] != 'Z' || new_name[1] != 'n') + return false; + if (delete_name[0] != 'Z' || delete_name[1] != 'd') + return false; + + /* The following failures are certain mismatches. */ + *pcertain = true; + + /* _Znw must match _Zdl, _Zna must match _Zda. */ + if ((new_name[2] != 'w' || delete_name[2] != 'l') + && (new_name[2] != 'a' || delete_name[2] != 'a')) + return false; + /* 'j', 'm' and 'y' correspond to size_t. */ + if (new_name[3] != 'j' && new_name[3] != 'm' && new_name[3] != 'y') + return false; + if (delete_name[3] != 'P' || delete_name[4] != 'v') + return false; + if (new_len == 4 + || (new_len == 18 && !memcmp (new_name + 4, "RKSt9nothrow_t", 14))) + { + /* _ZnXY or _ZnXYRKSt9nothrow_t matches + _ZdXPv, _ZdXPvY and _ZdXPvRKSt9nothrow_t. */ + if (delete_len == 5) + return true; + if (delete_len == 6 && delete_name[5] == new_name[3]) + return true; + if (delete_len == 19 && !memcmp (delete_name + 5, "RKSt9nothrow_t", 14)) + return true; + } + else if ((new_len == 19 && !memcmp (new_name + 4, "St11align_val_t", 15)) + || (new_len == 33 + && !memcmp (new_name + 4, "St11align_val_tRKSt9nothrow_t", 29))) + { + /* _ZnXYSt11align_val_t or _ZnXYSt11align_val_tRKSt9nothrow_t matches + _ZdXPvSt11align_val_t or _ZdXPvYSt11align_val_t or or + _ZdXPvSt11align_val_tRKSt9nothrow_t. */ + if (delete_len == 20 && !memcmp (delete_name + 5, "St11align_val_t", 15)) + return true; + if (delete_len == 21 + && delete_name[5] == new_name[3] + && !memcmp (delete_name + 6, "St11align_val_t", 15)) + return true; + if (delete_len == 34 + && !memcmp (delete_name + 5, "St11align_val_tRKSt9nothrow_t", 29)) + return true; + } + + /* The negative result is conservative. */ + *pcertain = false; + return false; +} + +/* Return the zero-based number corresponding to the argument being + deallocated if FNDECL is a deallocation function or an out-of-bounds + value if it isn't. */ + +unsigned +fndecl_dealloc_argno (tree fndecl) +{ + /* A call to operator delete isn't recognized as one to a built-in. */ + if (DECL_IS_OPERATOR_DELETE_P (fndecl)) + { + if (DECL_IS_REPLACEABLE_OPERATOR (fndecl)) + return 0; + + /* Avoid placement delete that's not been inlined. */ + tree fname = DECL_ASSEMBLER_NAME (fndecl); + if (id_equal (fname, "_ZdlPvS_") // ordinary form + || id_equal (fname, "_ZdaPvS_")) // array form + return UINT_MAX; + return 0; + } + + /* TODO: Handle user-defined functions with attribute malloc? Handle + known non-built-ins like fopen? */ + if (fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)) + { + switch (DECL_FUNCTION_CODE (fndecl)) + { + case BUILT_IN_FREE: + case BUILT_IN_REALLOC: + return 0; + default: + break; + } + return UINT_MAX; + } + + tree attrs = DECL_ATTRIBUTES (fndecl); + if (!attrs) + return UINT_MAX; + + for (tree atfree = attrs; + (atfree = lookup_attribute ("*dealloc", atfree)); + atfree = TREE_CHAIN (atfree)) + { + tree alloc = TREE_VALUE (atfree); + if (!alloc) + continue; + + tree pos = TREE_CHAIN (alloc); + if (!pos) + return 0; + + pos = TREE_VALUE (pos); + return TREE_INT_CST_LOW (pos) - 1; + } + + return UINT_MAX; +} + +/* If EXPR refers to a character array or pointer declared attribute + nonstring, return a decl for that array or pointer and set *REF + to the referenced enclosing object or pointer. Otherwise return + null. */ + +tree +get_attr_nonstring_decl (tree expr, tree *ref) +{ + tree decl = expr; + tree var = NULL_TREE; + if (TREE_CODE (decl) == SSA_NAME) + { + gimple *def = SSA_NAME_DEF_STMT (decl); + + if (is_gimple_assign (def)) + { + tree_code code = gimple_assign_rhs_code (def); + if (code == ADDR_EXPR + || code == COMPONENT_REF + || code == VAR_DECL) + decl = gimple_assign_rhs1 (def); + } + else + var = SSA_NAME_VAR (decl); + } + + if (TREE_CODE (decl) == ADDR_EXPR) + decl = TREE_OPERAND (decl, 0); + + /* To simplify calling code, store the referenced DECL regardless of + the attribute determined below, but avoid storing the SSA_NAME_VAR + obtained above (it's not useful for dataflow purposes). */ + if (ref) + *ref = decl; + + /* Use the SSA_NAME_VAR that was determined above to see if it's + declared nonstring. Otherwise drill down into the referenced + DECL. */ + if (var) + decl = var; + else if (TREE_CODE (decl) == ARRAY_REF) + decl = TREE_OPERAND (decl, 0); + else if (TREE_CODE (decl) == COMPONENT_REF) + decl = TREE_OPERAND (decl, 1); + else if (TREE_CODE (decl) == MEM_REF) + return get_attr_nonstring_decl (TREE_OPERAND (decl, 0), ref); + + if (DECL_P (decl) + && lookup_attribute ("nonstring", DECL_ATTRIBUTES (decl))) + return decl; + + return NULL_TREE; +} + +#if CHECKING_P + +namespace selftest { + +/* Selftests for tree. */ + +/* Verify that integer constants are sane. */ + +static void +test_integer_constants () +{ + ASSERT_TRUE (integer_type_node != NULL); + ASSERT_TRUE (build_int_cst (integer_type_node, 0) != NULL); + + tree type = integer_type_node; + + tree zero = build_zero_cst (type); + ASSERT_EQ (INTEGER_CST, TREE_CODE (zero)); + ASSERT_EQ (type, TREE_TYPE (zero)); + + tree one = build_int_cst (type, 1); + ASSERT_EQ (INTEGER_CST, TREE_CODE (one)); + ASSERT_EQ (type, TREE_TYPE (zero)); +} + +/* Verify identifiers. */ + +static void +test_identifiers () +{ + tree identifier = get_identifier ("foo"); + ASSERT_EQ (3, IDENTIFIER_LENGTH (identifier)); + ASSERT_STREQ ("foo", IDENTIFIER_POINTER (identifier)); +} + +/* Verify LABEL_DECL. */ + +static void +test_labels () +{ + tree identifier = get_identifier ("err"); + tree label_decl = build_decl (UNKNOWN_LOCATION, LABEL_DECL, + identifier, void_type_node); + ASSERT_EQ (-1, LABEL_DECL_UID (label_decl)); + ASSERT_FALSE (FORCED_LABEL (label_decl)); +} + +/* Return a new VECTOR_CST node whose type is TYPE and whose values + are given by VALS. */ + +static tree +build_vector (tree type, const vec<tree> &vals MEM_STAT_DECL) +{ + gcc_assert (known_eq (vals.length (), TYPE_VECTOR_SUBPARTS (type))); + tree_vector_builder builder (type, vals.length (), 1); + builder.splice (vals); + return builder.build (); +} + +/* Check that VECTOR_CST ACTUAL contains the elements in EXPECTED. */ + +static void +check_vector_cst (const vec<tree> &expected, tree actual) +{ + ASSERT_KNOWN_EQ (expected.length (), + TYPE_VECTOR_SUBPARTS (TREE_TYPE (actual))); + for (unsigned int i = 0; i < expected.length (); ++i) + ASSERT_EQ (wi::to_wide (expected[i]), + wi::to_wide (vector_cst_elt (actual, i))); +} + +/* Check that VECTOR_CST ACTUAL contains NPATTERNS duplicated elements, + and that its elements match EXPECTED. */ + +static void +check_vector_cst_duplicate (const vec<tree> &expected, tree actual, + unsigned int npatterns) +{ + ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual)); + ASSERT_EQ (1, VECTOR_CST_NELTS_PER_PATTERN (actual)); + ASSERT_EQ (npatterns, vector_cst_encoded_nelts (actual)); + ASSERT_TRUE (VECTOR_CST_DUPLICATE_P (actual)); + ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual)); + check_vector_cst (expected, actual); +} + +/* Check that VECTOR_CST ACTUAL contains NPATTERNS foreground elements + and NPATTERNS background elements, and that its elements match + EXPECTED. */ + +static void +check_vector_cst_fill (const vec<tree> &expected, tree actual, + unsigned int npatterns) +{ + ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual)); + ASSERT_EQ (2, VECTOR_CST_NELTS_PER_PATTERN (actual)); + ASSERT_EQ (2 * npatterns, vector_cst_encoded_nelts (actual)); + ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual)); + ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual)); + check_vector_cst (expected, actual); +} + +/* Check that VECTOR_CST ACTUAL contains NPATTERNS stepped patterns, + and that its elements match EXPECTED. */ + +static void +check_vector_cst_stepped (const vec<tree> &expected, tree actual, + unsigned int npatterns) +{ + ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual)); + ASSERT_EQ (3, VECTOR_CST_NELTS_PER_PATTERN (actual)); + ASSERT_EQ (3 * npatterns, vector_cst_encoded_nelts (actual)); + ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual)); + ASSERT_TRUE (VECTOR_CST_STEPPED_P (actual)); + check_vector_cst (expected, actual); +} + +/* Test the creation of VECTOR_CSTs. */ + +static void +test_vector_cst_patterns (ALONE_CXX_MEM_STAT_INFO) +{ + auto_vec<tree, 8> elements (8); + elements.quick_grow (8); + tree element_type = build_nonstandard_integer_type (16, true); + tree vector_type = build_vector_type (element_type, 8); + + /* Test a simple linear series with a base of 0 and a step of 1: + { 0, 1, 2, 3, 4, 5, 6, 7 }. */ + for (unsigned int i = 0; i < 8; ++i) + elements[i] = build_int_cst (element_type, i); + tree vector = build_vector (vector_type, elements PASS_MEM_STAT); + check_vector_cst_stepped (elements, vector, 1); + + /* Try the same with the first element replaced by 100: + { 100, 1, 2, 3, 4, 5, 6, 7 }. */ + elements[0] = build_int_cst (element_type, 100); + vector = build_vector (vector_type, elements PASS_MEM_STAT); + check_vector_cst_stepped (elements, vector, 1); + + /* Try a series that wraps around. + { 100, 65531, 65532, 65533, 65534, 65535, 0, 1 }. */ + for (unsigned int i = 1; i < 8; ++i) + elements[i] = build_int_cst (element_type, (65530 + i) & 0xffff); + vector = build_vector (vector_type, elements PASS_MEM_STAT); + check_vector_cst_stepped (elements, vector, 1); + + /* Try a downward series: + { 100, 79, 78, 77, 76, 75, 75, 73 }. */ + for (unsigned int i = 1; i < 8; ++i) + elements[i] = build_int_cst (element_type, 80 - i); + vector = build_vector (vector_type, elements PASS_MEM_STAT); + check_vector_cst_stepped (elements, vector, 1); + + /* Try two interleaved series with different bases and steps: + { 100, 53, 66, 206, 62, 212, 58, 218 }. */ + elements[1] = build_int_cst (element_type, 53); + for (unsigned int i = 2; i < 8; i += 2) + { + elements[i] = build_int_cst (element_type, 70 - i * 2); + elements[i + 1] = build_int_cst (element_type, 200 + i * 3); + } + vector = build_vector (vector_type, elements PASS_MEM_STAT); + check_vector_cst_stepped (elements, vector, 2); + + /* Try a duplicated value: + { 100, 100, 100, 100, 100, 100, 100, 100 }. */ + for (unsigned int i = 1; i < 8; ++i) + elements[i] = elements[0]; + vector = build_vector (vector_type, elements PASS_MEM_STAT); + check_vector_cst_duplicate (elements, vector, 1); + + /* Try an interleaved duplicated value: + { 100, 55, 100, 55, 100, 55, 100, 55 }. */ + elements[1] = build_int_cst (element_type, 55); + for (unsigned int i = 2; i < 8; ++i) + elements[i] = elements[i - 2]; + vector = build_vector (vector_type, elements PASS_MEM_STAT); + check_vector_cst_duplicate (elements, vector, 2); + + /* Try a duplicated value with 2 exceptions + { 41, 97, 100, 55, 100, 55, 100, 55 }. */ + elements[0] = build_int_cst (element_type, 41); + elements[1] = build_int_cst (element_type, 97); + vector = build_vector (vector_type, elements PASS_MEM_STAT); + check_vector_cst_fill (elements, vector, 2); + + /* Try with and without a step + { 41, 97, 100, 21, 100, 35, 100, 49 }. */ + for (unsigned int i = 3; i < 8; i += 2) + elements[i] = build_int_cst (element_type, i * 7); + vector = build_vector (vector_type, elements PASS_MEM_STAT); + check_vector_cst_stepped (elements, vector, 2); + + /* Try a fully-general constant: + { 41, 97, 100, 21, 100, 9990, 100, 49 }. */ + elements[5] = build_int_cst (element_type, 9990); + vector = build_vector (vector_type, elements PASS_MEM_STAT); + check_vector_cst_fill (elements, vector, 4); +} + +/* Verify that STRIP_NOPS (NODE) is EXPECTED. + Helper function for test_location_wrappers, to deal with STRIP_NOPS + modifying its argument in-place. */ + +static void +check_strip_nops (tree node, tree expected) +{ + STRIP_NOPS (node); + ASSERT_EQ (expected, node); +} + +/* Verify location wrappers. */ + +static void +test_location_wrappers () +{ + location_t loc = BUILTINS_LOCATION; + + ASSERT_EQ (NULL_TREE, maybe_wrap_with_location (NULL_TREE, loc)); + + /* Wrapping a constant. */ + tree int_cst = build_int_cst (integer_type_node, 42); + ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_cst)); + ASSERT_FALSE (location_wrapper_p (int_cst)); + + tree wrapped_int_cst = maybe_wrap_with_location (int_cst, loc); + ASSERT_TRUE (location_wrapper_p (wrapped_int_cst)); + ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_cst)); + ASSERT_EQ (int_cst, tree_strip_any_location_wrapper (wrapped_int_cst)); + + /* We shouldn't add wrapper nodes for UNKNOWN_LOCATION. */ + ASSERT_EQ (int_cst, maybe_wrap_with_location (int_cst, UNKNOWN_LOCATION)); + + /* We shouldn't add wrapper nodes for nodes that CAN_HAVE_LOCATION_P. */ + tree cast = build1 (NOP_EXPR, char_type_node, int_cst); + ASSERT_TRUE (CAN_HAVE_LOCATION_P (cast)); + ASSERT_EQ (cast, maybe_wrap_with_location (cast, loc)); + + /* Wrapping a STRING_CST. */ + tree string_cst = build_string (4, "foo"); + ASSERT_FALSE (CAN_HAVE_LOCATION_P (string_cst)); + ASSERT_FALSE (location_wrapper_p (string_cst)); + + tree wrapped_string_cst = maybe_wrap_with_location (string_cst, loc); + ASSERT_TRUE (location_wrapper_p (wrapped_string_cst)); + ASSERT_EQ (VIEW_CONVERT_EXPR, TREE_CODE (wrapped_string_cst)); + ASSERT_EQ (loc, EXPR_LOCATION (wrapped_string_cst)); + ASSERT_EQ (string_cst, tree_strip_any_location_wrapper (wrapped_string_cst)); + + + /* Wrapping a variable. */ + tree int_var = build_decl (UNKNOWN_LOCATION, VAR_DECL, + get_identifier ("some_int_var"), + integer_type_node); + ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_var)); + ASSERT_FALSE (location_wrapper_p (int_var)); + + tree wrapped_int_var = maybe_wrap_with_location (int_var, loc); + ASSERT_TRUE (location_wrapper_p (wrapped_int_var)); + ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_var)); + ASSERT_EQ (int_var, tree_strip_any_location_wrapper (wrapped_int_var)); + + /* Verify that "reinterpret_cast<int>(some_int_var)" is not a location + wrapper. */ + tree r_cast = build1 (NON_LVALUE_EXPR, integer_type_node, int_var); + ASSERT_FALSE (location_wrapper_p (r_cast)); + ASSERT_EQ (r_cast, tree_strip_any_location_wrapper (r_cast)); + + /* Verify that STRIP_NOPS removes wrappers. */ + check_strip_nops (wrapped_int_cst, int_cst); + check_strip_nops (wrapped_string_cst, string_cst); + check_strip_nops (wrapped_int_var, int_var); +} + +/* Test various tree predicates. Verify that location wrappers don't + affect the results. */ + +static void +test_predicates () +{ + /* Build various constants and wrappers around them. */ + + location_t loc = BUILTINS_LOCATION; + + tree i_0 = build_int_cst (integer_type_node, 0); + tree wr_i_0 = maybe_wrap_with_location (i_0, loc); + + tree i_1 = build_int_cst (integer_type_node, 1); + tree wr_i_1 = maybe_wrap_with_location (i_1, loc); + + tree i_m1 = build_int_cst (integer_type_node, -1); + tree wr_i_m1 = maybe_wrap_with_location (i_m1, loc); + + tree f_0 = build_real_from_int_cst (float_type_node, i_0); + tree wr_f_0 = maybe_wrap_with_location (f_0, loc); + tree f_1 = build_real_from_int_cst (float_type_node, i_1); + tree wr_f_1 = maybe_wrap_with_location (f_1, loc); + tree f_m1 = build_real_from_int_cst (float_type_node, i_m1); + tree wr_f_m1 = maybe_wrap_with_location (f_m1, loc); + + tree c_i_0 = build_complex (NULL_TREE, i_0, i_0); + tree c_i_1 = build_complex (NULL_TREE, i_1, i_0); + tree c_i_m1 = build_complex (NULL_TREE, i_m1, i_0); + + tree c_f_0 = build_complex (NULL_TREE, f_0, f_0); + tree c_f_1 = build_complex (NULL_TREE, f_1, f_0); + tree c_f_m1 = build_complex (NULL_TREE, f_m1, f_0); + + /* TODO: vector constants. */ + + /* Test integer_onep. */ + ASSERT_FALSE (integer_onep (i_0)); + ASSERT_FALSE (integer_onep (wr_i_0)); + ASSERT_TRUE (integer_onep (i_1)); + ASSERT_TRUE (integer_onep (wr_i_1)); + ASSERT_FALSE (integer_onep (i_m1)); + ASSERT_FALSE (integer_onep (wr_i_m1)); + ASSERT_FALSE (integer_onep (f_0)); + ASSERT_FALSE (integer_onep (wr_f_0)); + ASSERT_FALSE (integer_onep (f_1)); + ASSERT_FALSE (integer_onep (wr_f_1)); + ASSERT_FALSE (integer_onep (f_m1)); + ASSERT_FALSE (integer_onep (wr_f_m1)); + ASSERT_FALSE (integer_onep (c_i_0)); + ASSERT_TRUE (integer_onep (c_i_1)); + ASSERT_FALSE (integer_onep (c_i_m1)); + ASSERT_FALSE (integer_onep (c_f_0)); + ASSERT_FALSE (integer_onep (c_f_1)); + ASSERT_FALSE (integer_onep (c_f_m1)); + + /* Test integer_zerop. */ + ASSERT_TRUE (integer_zerop (i_0)); + ASSERT_TRUE (integer_zerop (wr_i_0)); + ASSERT_FALSE (integer_zerop (i_1)); + ASSERT_FALSE (integer_zerop (wr_i_1)); + ASSERT_FALSE (integer_zerop (i_m1)); + ASSERT_FALSE (integer_zerop (wr_i_m1)); + ASSERT_FALSE (integer_zerop (f_0)); + ASSERT_FALSE (integer_zerop (wr_f_0)); + ASSERT_FALSE (integer_zerop (f_1)); + ASSERT_FALSE (integer_zerop (wr_f_1)); + ASSERT_FALSE (integer_zerop (f_m1)); + ASSERT_FALSE (integer_zerop (wr_f_m1)); + ASSERT_TRUE (integer_zerop (c_i_0)); + ASSERT_FALSE (integer_zerop (c_i_1)); + ASSERT_FALSE (integer_zerop (c_i_m1)); + ASSERT_FALSE (integer_zerop (c_f_0)); + ASSERT_FALSE (integer_zerop (c_f_1)); + ASSERT_FALSE (integer_zerop (c_f_m1)); + + /* Test integer_all_onesp. */ + ASSERT_FALSE (integer_all_onesp (i_0)); + ASSERT_FALSE (integer_all_onesp (wr_i_0)); + ASSERT_FALSE (integer_all_onesp (i_1)); + ASSERT_FALSE (integer_all_onesp (wr_i_1)); + ASSERT_TRUE (integer_all_onesp (i_m1)); + ASSERT_TRUE (integer_all_onesp (wr_i_m1)); + ASSERT_FALSE (integer_all_onesp (f_0)); + ASSERT_FALSE (integer_all_onesp (wr_f_0)); + ASSERT_FALSE (integer_all_onesp (f_1)); + ASSERT_FALSE (integer_all_onesp (wr_f_1)); + ASSERT_FALSE (integer_all_onesp (f_m1)); + ASSERT_FALSE (integer_all_onesp (wr_f_m1)); + ASSERT_FALSE (integer_all_onesp (c_i_0)); + ASSERT_FALSE (integer_all_onesp (c_i_1)); + ASSERT_FALSE (integer_all_onesp (c_i_m1)); + ASSERT_FALSE (integer_all_onesp (c_f_0)); + ASSERT_FALSE (integer_all_onesp (c_f_1)); + ASSERT_FALSE (integer_all_onesp (c_f_m1)); + + /* Test integer_minus_onep. */ + ASSERT_FALSE (integer_minus_onep (i_0)); + ASSERT_FALSE (integer_minus_onep (wr_i_0)); + ASSERT_FALSE (integer_minus_onep (i_1)); + ASSERT_FALSE (integer_minus_onep (wr_i_1)); + ASSERT_TRUE (integer_minus_onep (i_m1)); + ASSERT_TRUE (integer_minus_onep (wr_i_m1)); + ASSERT_FALSE (integer_minus_onep (f_0)); + ASSERT_FALSE (integer_minus_onep (wr_f_0)); + ASSERT_FALSE (integer_minus_onep (f_1)); + ASSERT_FALSE (integer_minus_onep (wr_f_1)); + ASSERT_FALSE (integer_minus_onep (f_m1)); + ASSERT_FALSE (integer_minus_onep (wr_f_m1)); + ASSERT_FALSE (integer_minus_onep (c_i_0)); + ASSERT_FALSE (integer_minus_onep (c_i_1)); + ASSERT_TRUE (integer_minus_onep (c_i_m1)); + ASSERT_FALSE (integer_minus_onep (c_f_0)); + ASSERT_FALSE (integer_minus_onep (c_f_1)); + ASSERT_FALSE (integer_minus_onep (c_f_m1)); + + /* Test integer_each_onep. */ + ASSERT_FALSE (integer_each_onep (i_0)); + ASSERT_FALSE (integer_each_onep (wr_i_0)); + ASSERT_TRUE (integer_each_onep (i_1)); + ASSERT_TRUE (integer_each_onep (wr_i_1)); + ASSERT_FALSE (integer_each_onep (i_m1)); + ASSERT_FALSE (integer_each_onep (wr_i_m1)); + ASSERT_FALSE (integer_each_onep (f_0)); + ASSERT_FALSE (integer_each_onep (wr_f_0)); + ASSERT_FALSE (integer_each_onep (f_1)); + ASSERT_FALSE (integer_each_onep (wr_f_1)); + ASSERT_FALSE (integer_each_onep (f_m1)); + ASSERT_FALSE (integer_each_onep (wr_f_m1)); + ASSERT_FALSE (integer_each_onep (c_i_0)); + ASSERT_FALSE (integer_each_onep (c_i_1)); + ASSERT_FALSE (integer_each_onep (c_i_m1)); + ASSERT_FALSE (integer_each_onep (c_f_0)); + ASSERT_FALSE (integer_each_onep (c_f_1)); + ASSERT_FALSE (integer_each_onep (c_f_m1)); + + /* Test integer_truep. */ + ASSERT_FALSE (integer_truep (i_0)); + ASSERT_FALSE (integer_truep (wr_i_0)); + ASSERT_TRUE (integer_truep (i_1)); + ASSERT_TRUE (integer_truep (wr_i_1)); + ASSERT_FALSE (integer_truep (i_m1)); + ASSERT_FALSE (integer_truep (wr_i_m1)); + ASSERT_FALSE (integer_truep (f_0)); + ASSERT_FALSE (integer_truep (wr_f_0)); + ASSERT_FALSE (integer_truep (f_1)); + ASSERT_FALSE (integer_truep (wr_f_1)); + ASSERT_FALSE (integer_truep (f_m1)); + ASSERT_FALSE (integer_truep (wr_f_m1)); + ASSERT_FALSE (integer_truep (c_i_0)); + ASSERT_TRUE (integer_truep (c_i_1)); + ASSERT_FALSE (integer_truep (c_i_m1)); + ASSERT_FALSE (integer_truep (c_f_0)); + ASSERT_FALSE (integer_truep (c_f_1)); + ASSERT_FALSE (integer_truep (c_f_m1)); + + /* Test integer_nonzerop. */ + ASSERT_FALSE (integer_nonzerop (i_0)); + ASSERT_FALSE (integer_nonzerop (wr_i_0)); + ASSERT_TRUE (integer_nonzerop (i_1)); + ASSERT_TRUE (integer_nonzerop (wr_i_1)); + ASSERT_TRUE (integer_nonzerop (i_m1)); + ASSERT_TRUE (integer_nonzerop (wr_i_m1)); + ASSERT_FALSE (integer_nonzerop (f_0)); + ASSERT_FALSE (integer_nonzerop (wr_f_0)); + ASSERT_FALSE (integer_nonzerop (f_1)); + ASSERT_FALSE (integer_nonzerop (wr_f_1)); + ASSERT_FALSE (integer_nonzerop (f_m1)); + ASSERT_FALSE (integer_nonzerop (wr_f_m1)); + ASSERT_FALSE (integer_nonzerop (c_i_0)); + ASSERT_TRUE (integer_nonzerop (c_i_1)); + ASSERT_TRUE (integer_nonzerop (c_i_m1)); + ASSERT_FALSE (integer_nonzerop (c_f_0)); + ASSERT_FALSE (integer_nonzerop (c_f_1)); + ASSERT_FALSE (integer_nonzerop (c_f_m1)); + + /* Test real_zerop. */ + ASSERT_FALSE (real_zerop (i_0)); + ASSERT_FALSE (real_zerop (wr_i_0)); + ASSERT_FALSE (real_zerop (i_1)); + ASSERT_FALSE (real_zerop (wr_i_1)); + ASSERT_FALSE (real_zerop (i_m1)); + ASSERT_FALSE (real_zerop (wr_i_m1)); + ASSERT_TRUE (real_zerop (f_0)); + ASSERT_TRUE (real_zerop (wr_f_0)); + ASSERT_FALSE (real_zerop (f_1)); + ASSERT_FALSE (real_zerop (wr_f_1)); + ASSERT_FALSE (real_zerop (f_m1)); + ASSERT_FALSE (real_zerop (wr_f_m1)); + ASSERT_FALSE (real_zerop (c_i_0)); + ASSERT_FALSE (real_zerop (c_i_1)); + ASSERT_FALSE (real_zerop (c_i_m1)); + ASSERT_TRUE (real_zerop (c_f_0)); + ASSERT_FALSE (real_zerop (c_f_1)); + ASSERT_FALSE (real_zerop (c_f_m1)); + + /* Test real_onep. */ + ASSERT_FALSE (real_onep (i_0)); + ASSERT_FALSE (real_onep (wr_i_0)); + ASSERT_FALSE (real_onep (i_1)); + ASSERT_FALSE (real_onep (wr_i_1)); + ASSERT_FALSE (real_onep (i_m1)); + ASSERT_FALSE (real_onep (wr_i_m1)); + ASSERT_FALSE (real_onep (f_0)); + ASSERT_FALSE (real_onep (wr_f_0)); + ASSERT_TRUE (real_onep (f_1)); + ASSERT_TRUE (real_onep (wr_f_1)); + ASSERT_FALSE (real_onep (f_m1)); + ASSERT_FALSE (real_onep (wr_f_m1)); + ASSERT_FALSE (real_onep (c_i_0)); + ASSERT_FALSE (real_onep (c_i_1)); + ASSERT_FALSE (real_onep (c_i_m1)); + ASSERT_FALSE (real_onep (c_f_0)); + ASSERT_TRUE (real_onep (c_f_1)); + ASSERT_FALSE (real_onep (c_f_m1)); + + /* Test real_minus_onep. */ + ASSERT_FALSE (real_minus_onep (i_0)); + ASSERT_FALSE (real_minus_onep (wr_i_0)); + ASSERT_FALSE (real_minus_onep (i_1)); + ASSERT_FALSE (real_minus_onep (wr_i_1)); + ASSERT_FALSE (real_minus_onep (i_m1)); + ASSERT_FALSE (real_minus_onep (wr_i_m1)); + ASSERT_FALSE (real_minus_onep (f_0)); + ASSERT_FALSE (real_minus_onep (wr_f_0)); + ASSERT_FALSE (real_minus_onep (f_1)); + ASSERT_FALSE (real_minus_onep (wr_f_1)); + ASSERT_TRUE (real_minus_onep (f_m1)); + ASSERT_TRUE (real_minus_onep (wr_f_m1)); + ASSERT_FALSE (real_minus_onep (c_i_0)); + ASSERT_FALSE (real_minus_onep (c_i_1)); + ASSERT_FALSE (real_minus_onep (c_i_m1)); + ASSERT_FALSE (real_minus_onep (c_f_0)); + ASSERT_FALSE (real_minus_onep (c_f_1)); + ASSERT_TRUE (real_minus_onep (c_f_m1)); + + /* Test zerop. */ + ASSERT_TRUE (zerop (i_0)); + ASSERT_TRUE (zerop (wr_i_0)); + ASSERT_FALSE (zerop (i_1)); + ASSERT_FALSE (zerop (wr_i_1)); + ASSERT_FALSE (zerop (i_m1)); + ASSERT_FALSE (zerop (wr_i_m1)); + ASSERT_TRUE (zerop (f_0)); + ASSERT_TRUE (zerop (wr_f_0)); + ASSERT_FALSE (zerop (f_1)); + ASSERT_FALSE (zerop (wr_f_1)); + ASSERT_FALSE (zerop (f_m1)); + ASSERT_FALSE (zerop (wr_f_m1)); + ASSERT_TRUE (zerop (c_i_0)); + ASSERT_FALSE (zerop (c_i_1)); + ASSERT_FALSE (zerop (c_i_m1)); + ASSERT_TRUE (zerop (c_f_0)); + ASSERT_FALSE (zerop (c_f_1)); + ASSERT_FALSE (zerop (c_f_m1)); + + /* Test tree_expr_nonnegative_p. */ + ASSERT_TRUE (tree_expr_nonnegative_p (i_0)); + ASSERT_TRUE (tree_expr_nonnegative_p (wr_i_0)); + ASSERT_TRUE (tree_expr_nonnegative_p (i_1)); + ASSERT_TRUE (tree_expr_nonnegative_p (wr_i_1)); + ASSERT_FALSE (tree_expr_nonnegative_p (i_m1)); + ASSERT_FALSE (tree_expr_nonnegative_p (wr_i_m1)); + ASSERT_TRUE (tree_expr_nonnegative_p (f_0)); + ASSERT_TRUE (tree_expr_nonnegative_p (wr_f_0)); + ASSERT_TRUE (tree_expr_nonnegative_p (f_1)); + ASSERT_TRUE (tree_expr_nonnegative_p (wr_f_1)); + ASSERT_FALSE (tree_expr_nonnegative_p (f_m1)); + ASSERT_FALSE (tree_expr_nonnegative_p (wr_f_m1)); + ASSERT_FALSE (tree_expr_nonnegative_p (c_i_0)); + ASSERT_FALSE (tree_expr_nonnegative_p (c_i_1)); + ASSERT_FALSE (tree_expr_nonnegative_p (c_i_m1)); + ASSERT_FALSE (tree_expr_nonnegative_p (c_f_0)); + ASSERT_FALSE (tree_expr_nonnegative_p (c_f_1)); + ASSERT_FALSE (tree_expr_nonnegative_p (c_f_m1)); + + /* Test tree_expr_nonzero_p. */ + ASSERT_FALSE (tree_expr_nonzero_p (i_0)); + ASSERT_FALSE (tree_expr_nonzero_p (wr_i_0)); + ASSERT_TRUE (tree_expr_nonzero_p (i_1)); + ASSERT_TRUE (tree_expr_nonzero_p (wr_i_1)); + ASSERT_TRUE (tree_expr_nonzero_p (i_m1)); + ASSERT_TRUE (tree_expr_nonzero_p (wr_i_m1)); + + /* Test integer_valued_real_p. */ + ASSERT_FALSE (integer_valued_real_p (i_0)); + ASSERT_TRUE (integer_valued_real_p (f_0)); + ASSERT_TRUE (integer_valued_real_p (wr_f_0)); + ASSERT_TRUE (integer_valued_real_p (f_1)); + ASSERT_TRUE (integer_valued_real_p (wr_f_1)); + + /* Test integer_pow2p. */ + ASSERT_FALSE (integer_pow2p (i_0)); + ASSERT_TRUE (integer_pow2p (i_1)); + ASSERT_TRUE (integer_pow2p (wr_i_1)); + + /* Test uniform_integer_cst_p. */ + ASSERT_TRUE (uniform_integer_cst_p (i_0)); + ASSERT_TRUE (uniform_integer_cst_p (wr_i_0)); + ASSERT_TRUE (uniform_integer_cst_p (i_1)); + ASSERT_TRUE (uniform_integer_cst_p (wr_i_1)); + ASSERT_TRUE (uniform_integer_cst_p (i_m1)); + ASSERT_TRUE (uniform_integer_cst_p (wr_i_m1)); + ASSERT_FALSE (uniform_integer_cst_p (f_0)); + ASSERT_FALSE (uniform_integer_cst_p (wr_f_0)); + ASSERT_FALSE (uniform_integer_cst_p (f_1)); + ASSERT_FALSE (uniform_integer_cst_p (wr_f_1)); + ASSERT_FALSE (uniform_integer_cst_p (f_m1)); + ASSERT_FALSE (uniform_integer_cst_p (wr_f_m1)); + ASSERT_FALSE (uniform_integer_cst_p (c_i_0)); + ASSERT_FALSE (uniform_integer_cst_p (c_i_1)); + ASSERT_FALSE (uniform_integer_cst_p (c_i_m1)); + ASSERT_FALSE (uniform_integer_cst_p (c_f_0)); + ASSERT_FALSE (uniform_integer_cst_p (c_f_1)); + ASSERT_FALSE (uniform_integer_cst_p (c_f_m1)); +} + +/* Check that string escaping works correctly. */ + +static void +test_escaped_strings (void) +{ + int saved_cutoff; + escaped_string msg; + + msg.escape (NULL); + /* ASSERT_STREQ does not accept NULL as a valid test + result, so we have to use ASSERT_EQ instead. */ + ASSERT_EQ (NULL, (const char *) msg); + + msg.escape (""); + ASSERT_STREQ ("", (const char *) msg); + + msg.escape ("foobar"); + ASSERT_STREQ ("foobar", (const char *) msg); + + /* Ensure that we have -fmessage-length set to 0. */ + saved_cutoff = pp_line_cutoff (global_dc->printer); + pp_line_cutoff (global_dc->printer) = 0; + + msg.escape ("foo\nbar"); + ASSERT_STREQ ("foo\\nbar", (const char *) msg); + + msg.escape ("\a\b\f\n\r\t\v"); + ASSERT_STREQ ("\\a\\b\\f\\n\\r\\t\\v", (const char *) msg); + + /* Now repeat the tests with -fmessage-length set to 5. */ + pp_line_cutoff (global_dc->printer) = 5; + + /* Note that the newline is not translated into an escape. */ + msg.escape ("foo\nbar"); + ASSERT_STREQ ("foo\nbar", (const char *) msg); + + msg.escape ("\a\b\f\n\r\t\v"); + ASSERT_STREQ ("\\a\\b\\f\n\\r\\t\\v", (const char *) msg); + + /* Restore the original message length setting. */ + pp_line_cutoff (global_dc->printer) = saved_cutoff; +} + +/* Run all of the selftests within this file. */ + +void +tree_c_tests () +{ + test_integer_constants (); + test_identifiers (); + test_labels (); + test_vector_cst_patterns (); + test_location_wrappers (); + test_predicates (); + test_escaped_strings (); +} + +} // namespace selftest + +#endif /* CHECKING_P */ + +#include "gt-tree.h" |