aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree.cc
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/tree.cc')
-rw-r--r--gcc/tree.cc15221
1 files changed, 15221 insertions, 0 deletions
diff --git a/gcc/tree.cc b/gcc/tree.cc
new file mode 100644
index 0000000..d98b77d
--- /dev/null
+++ b/gcc/tree.cc
@@ -0,0 +1,15221 @@
+/* Language-independent node constructors for parse phase of GNU compiler.
+ Copyright (C) 1987-2022 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+/* This file contains the low level primitives for operating on tree nodes,
+ including allocation, list operations, interning of identifiers,
+ construction of data type nodes and statement nodes,
+ and construction of type conversion nodes. It also contains
+ tables index by tree code that describe how to take apart
+ nodes of that code.
+
+ It is intended to be language-independent but can occasionally
+ calls language-dependent routines. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "backend.h"
+#include "target.h"
+#include "tree.h"
+#include "gimple.h"
+#include "tree-pass.h"
+#include "ssa.h"
+#include "cgraph.h"
+#include "diagnostic.h"
+#include "flags.h"
+#include "alias.h"
+#include "fold-const.h"
+#include "stor-layout.h"
+#include "calls.h"
+#include "attribs.h"
+#include "toplev.h" /* get_random_seed */
+#include "output.h"
+#include "common/common-target.h"
+#include "langhooks.h"
+#include "tree-inline.h"
+#include "tree-iterator.h"
+#include "internal-fn.h"
+#include "gimple-iterator.h"
+#include "gimplify.h"
+#include "tree-dfa.h"
+#include "langhooks-def.h"
+#include "tree-diagnostic.h"
+#include "except.h"
+#include "builtins.h"
+#include "print-tree.h"
+#include "ipa-utils.h"
+#include "selftest.h"
+#include "stringpool.h"
+#include "attribs.h"
+#include "rtl.h"
+#include "regs.h"
+#include "tree-vector-builder.h"
+#include "gimple-fold.h"
+#include "escaped_string.h"
+#include "gimple-range.h"
+
+/* Tree code classes. */
+
+#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
+#define END_OF_BASE_TREE_CODES tcc_exceptional,
+
+const enum tree_code_class tree_code_type[] = {
+#include "all-tree.def"
+};
+
+#undef DEFTREECODE
+#undef END_OF_BASE_TREE_CODES
+
+/* Table indexed by tree code giving number of expression
+ operands beyond the fixed part of the node structure.
+ Not used for types or decls. */
+
+#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
+#define END_OF_BASE_TREE_CODES 0,
+
+const unsigned char tree_code_length[] = {
+#include "all-tree.def"
+};
+
+#undef DEFTREECODE
+#undef END_OF_BASE_TREE_CODES
+
+/* Names of tree components.
+ Used for printing out the tree and error messages. */
+#define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
+#define END_OF_BASE_TREE_CODES "@dummy",
+
+static const char *const tree_code_name[] = {
+#include "all-tree.def"
+};
+
+#undef DEFTREECODE
+#undef END_OF_BASE_TREE_CODES
+
+/* Each tree code class has an associated string representation.
+ These must correspond to the tree_code_class entries. */
+
+const char *const tree_code_class_strings[] =
+{
+ "exceptional",
+ "constant",
+ "type",
+ "declaration",
+ "reference",
+ "comparison",
+ "unary",
+ "binary",
+ "statement",
+ "vl_exp",
+ "expression"
+};
+
+/* obstack.[ch] explicitly declined to prototype this. */
+extern int _obstack_allocated_p (struct obstack *h, void *obj);
+
+/* Statistics-gathering stuff. */
+
+static uint64_t tree_code_counts[MAX_TREE_CODES];
+uint64_t tree_node_counts[(int) all_kinds];
+uint64_t tree_node_sizes[(int) all_kinds];
+
+/* Keep in sync with tree.h:enum tree_node_kind. */
+static const char * const tree_node_kind_names[] = {
+ "decls",
+ "types",
+ "blocks",
+ "stmts",
+ "refs",
+ "exprs",
+ "constants",
+ "identifiers",
+ "vecs",
+ "binfos",
+ "ssa names",
+ "constructors",
+ "random kinds",
+ "lang_decl kinds",
+ "lang_type kinds",
+ "omp clauses",
+};
+
+/* Unique id for next decl created. */
+static GTY(()) int next_decl_uid;
+/* Unique id for next type created. */
+static GTY(()) unsigned next_type_uid = 1;
+/* Unique id for next debug decl created. Use negative numbers,
+ to catch erroneous uses. */
+static GTY(()) int next_debug_decl_uid;
+
+/* Since we cannot rehash a type after it is in the table, we have to
+ keep the hash code. */
+
+struct GTY((for_user)) type_hash {
+ unsigned long hash;
+ tree type;
+};
+
+/* Initial size of the hash table (rounded to next prime). */
+#define TYPE_HASH_INITIAL_SIZE 1000
+
+struct type_cache_hasher : ggc_cache_ptr_hash<type_hash>
+{
+ static hashval_t hash (type_hash *t) { return t->hash; }
+ static bool equal (type_hash *a, type_hash *b);
+
+ static int
+ keep_cache_entry (type_hash *&t)
+ {
+ return ggc_marked_p (t->type);
+ }
+};
+
+/* Now here is the hash table. When recording a type, it is added to
+ the slot whose index is the hash code. Note that the hash table is
+ used for several kinds of types (function types, array types and
+ array index range types, for now). While all these live in the
+ same table, they are completely independent, and the hash code is
+ computed differently for each of these. */
+
+static GTY ((cache)) hash_table<type_cache_hasher> *type_hash_table;
+
+/* Hash table and temporary node for larger integer const values. */
+static GTY (()) tree int_cst_node;
+
+struct int_cst_hasher : ggc_cache_ptr_hash<tree_node>
+{
+ static hashval_t hash (tree t);
+ static bool equal (tree x, tree y);
+};
+
+static GTY ((cache)) hash_table<int_cst_hasher> *int_cst_hash_table;
+
+/* Class and variable for making sure that there is a single POLY_INT_CST
+ for a given value. */
+struct poly_int_cst_hasher : ggc_cache_ptr_hash<tree_node>
+{
+ typedef std::pair<tree, const poly_wide_int *> compare_type;
+ static hashval_t hash (tree t);
+ static bool equal (tree x, const compare_type &y);
+};
+
+static GTY ((cache)) hash_table<poly_int_cst_hasher> *poly_int_cst_hash_table;
+
+/* Hash table for optimization flags and target option flags. Use the same
+ hash table for both sets of options. Nodes for building the current
+ optimization and target option nodes. The assumption is most of the time
+ the options created will already be in the hash table, so we avoid
+ allocating and freeing up a node repeatably. */
+static GTY (()) tree cl_optimization_node;
+static GTY (()) tree cl_target_option_node;
+
+struct cl_option_hasher : ggc_cache_ptr_hash<tree_node>
+{
+ static hashval_t hash (tree t);
+ static bool equal (tree x, tree y);
+};
+
+static GTY ((cache)) hash_table<cl_option_hasher> *cl_option_hash_table;
+
+/* General tree->tree mapping structure for use in hash tables. */
+
+
+static GTY ((cache))
+ hash_table<tree_decl_map_cache_hasher> *debug_expr_for_decl;
+
+static GTY ((cache))
+ hash_table<tree_decl_map_cache_hasher> *value_expr_for_decl;
+
+struct tree_vec_map_cache_hasher : ggc_cache_ptr_hash<tree_vec_map>
+{
+ static hashval_t hash (tree_vec_map *m) { return DECL_UID (m->base.from); }
+
+ static bool
+ equal (tree_vec_map *a, tree_vec_map *b)
+ {
+ return a->base.from == b->base.from;
+ }
+
+ static int
+ keep_cache_entry (tree_vec_map *&m)
+ {
+ return ggc_marked_p (m->base.from);
+ }
+};
+
+static GTY ((cache))
+ hash_table<tree_vec_map_cache_hasher> *debug_args_for_decl;
+
+static void set_type_quals (tree, int);
+static void print_type_hash_statistics (void);
+static void print_debug_expr_statistics (void);
+static void print_value_expr_statistics (void);
+
+tree global_trees[TI_MAX];
+tree integer_types[itk_none];
+
+bool int_n_enabled_p[NUM_INT_N_ENTS];
+struct int_n_trees_t int_n_trees [NUM_INT_N_ENTS];
+
+bool tree_contains_struct[MAX_TREE_CODES][64];
+
+/* Number of operands for each OMP clause. */
+unsigned const char omp_clause_num_ops[] =
+{
+ 0, /* OMP_CLAUSE_ERROR */
+ 1, /* OMP_CLAUSE_PRIVATE */
+ 1, /* OMP_CLAUSE_SHARED */
+ 1, /* OMP_CLAUSE_FIRSTPRIVATE */
+ 2, /* OMP_CLAUSE_LASTPRIVATE */
+ 5, /* OMP_CLAUSE_REDUCTION */
+ 5, /* OMP_CLAUSE_TASK_REDUCTION */
+ 5, /* OMP_CLAUSE_IN_REDUCTION */
+ 1, /* OMP_CLAUSE_COPYIN */
+ 1, /* OMP_CLAUSE_COPYPRIVATE */
+ 3, /* OMP_CLAUSE_LINEAR */
+ 1, /* OMP_CLAUSE_AFFINITY */
+ 2, /* OMP_CLAUSE_ALIGNED */
+ 3, /* OMP_CLAUSE_ALLOCATE */
+ 1, /* OMP_CLAUSE_DEPEND */
+ 1, /* OMP_CLAUSE_NONTEMPORAL */
+ 1, /* OMP_CLAUSE_UNIFORM */
+ 1, /* OMP_CLAUSE_TO_DECLARE */
+ 1, /* OMP_CLAUSE_LINK */
+ 1, /* OMP_CLAUSE_DETACH */
+ 1, /* OMP_CLAUSE_USE_DEVICE_PTR */
+ 1, /* OMP_CLAUSE_USE_DEVICE_ADDR */
+ 1, /* OMP_CLAUSE_IS_DEVICE_PTR */
+ 1, /* OMP_CLAUSE_INCLUSIVE */
+ 1, /* OMP_CLAUSE_EXCLUSIVE */
+ 2, /* OMP_CLAUSE_FROM */
+ 2, /* OMP_CLAUSE_TO */
+ 2, /* OMP_CLAUSE_MAP */
+ 2, /* OMP_CLAUSE__CACHE_ */
+ 2, /* OMP_CLAUSE_GANG */
+ 1, /* OMP_CLAUSE_ASYNC */
+ 1, /* OMP_CLAUSE_WAIT */
+ 0, /* OMP_CLAUSE_AUTO */
+ 0, /* OMP_CLAUSE_SEQ */
+ 1, /* OMP_CLAUSE__LOOPTEMP_ */
+ 1, /* OMP_CLAUSE__REDUCTEMP_ */
+ 1, /* OMP_CLAUSE__CONDTEMP_ */
+ 1, /* OMP_CLAUSE__SCANTEMP_ */
+ 1, /* OMP_CLAUSE_IF */
+ 1, /* OMP_CLAUSE_NUM_THREADS */
+ 1, /* OMP_CLAUSE_SCHEDULE */
+ 0, /* OMP_CLAUSE_NOWAIT */
+ 1, /* OMP_CLAUSE_ORDERED */
+ 0, /* OMP_CLAUSE_DEFAULT */
+ 3, /* OMP_CLAUSE_COLLAPSE */
+ 0, /* OMP_CLAUSE_UNTIED */
+ 1, /* OMP_CLAUSE_FINAL */
+ 0, /* OMP_CLAUSE_MERGEABLE */
+ 1, /* OMP_CLAUSE_DEVICE */
+ 1, /* OMP_CLAUSE_DIST_SCHEDULE */
+ 0, /* OMP_CLAUSE_INBRANCH */
+ 0, /* OMP_CLAUSE_NOTINBRANCH */
+ 2, /* OMP_CLAUSE_NUM_TEAMS */
+ 1, /* OMP_CLAUSE_THREAD_LIMIT */
+ 0, /* OMP_CLAUSE_PROC_BIND */
+ 1, /* OMP_CLAUSE_SAFELEN */
+ 1, /* OMP_CLAUSE_SIMDLEN */
+ 0, /* OMP_CLAUSE_DEVICE_TYPE */
+ 0, /* OMP_CLAUSE_FOR */
+ 0, /* OMP_CLAUSE_PARALLEL */
+ 0, /* OMP_CLAUSE_SECTIONS */
+ 0, /* OMP_CLAUSE_TASKGROUP */
+ 1, /* OMP_CLAUSE_PRIORITY */
+ 1, /* OMP_CLAUSE_GRAINSIZE */
+ 1, /* OMP_CLAUSE_NUM_TASKS */
+ 0, /* OMP_CLAUSE_NOGROUP */
+ 0, /* OMP_CLAUSE_THREADS */
+ 0, /* OMP_CLAUSE_SIMD */
+ 1, /* OMP_CLAUSE_HINT */
+ 0, /* OMP_CLAUSE_DEFAULTMAP */
+ 0, /* OMP_CLAUSE_ORDER */
+ 0, /* OMP_CLAUSE_BIND */
+ 1, /* OMP_CLAUSE_FILTER */
+ 1, /* OMP_CLAUSE__SIMDUID_ */
+ 0, /* OMP_CLAUSE__SIMT_ */
+ 0, /* OMP_CLAUSE_INDEPENDENT */
+ 1, /* OMP_CLAUSE_WORKER */
+ 1, /* OMP_CLAUSE_VECTOR */
+ 1, /* OMP_CLAUSE_NUM_GANGS */
+ 1, /* OMP_CLAUSE_NUM_WORKERS */
+ 1, /* OMP_CLAUSE_VECTOR_LENGTH */
+ 3, /* OMP_CLAUSE_TILE */
+ 0, /* OMP_CLAUSE_IF_PRESENT */
+ 0, /* OMP_CLAUSE_FINALIZE */
+ 0, /* OMP_CLAUSE_NOHOST */
+};
+
+const char * const omp_clause_code_name[] =
+{
+ "error_clause",
+ "private",
+ "shared",
+ "firstprivate",
+ "lastprivate",
+ "reduction",
+ "task_reduction",
+ "in_reduction",
+ "copyin",
+ "copyprivate",
+ "linear",
+ "affinity",
+ "aligned",
+ "allocate",
+ "depend",
+ "nontemporal",
+ "uniform",
+ "to",
+ "link",
+ "detach",
+ "use_device_ptr",
+ "use_device_addr",
+ "is_device_ptr",
+ "inclusive",
+ "exclusive",
+ "from",
+ "to",
+ "map",
+ "_cache_",
+ "gang",
+ "async",
+ "wait",
+ "auto",
+ "seq",
+ "_looptemp_",
+ "_reductemp_",
+ "_condtemp_",
+ "_scantemp_",
+ "if",
+ "num_threads",
+ "schedule",
+ "nowait",
+ "ordered",
+ "default",
+ "collapse",
+ "untied",
+ "final",
+ "mergeable",
+ "device",
+ "dist_schedule",
+ "inbranch",
+ "notinbranch",
+ "num_teams",
+ "thread_limit",
+ "proc_bind",
+ "safelen",
+ "simdlen",
+ "device_type",
+ "for",
+ "parallel",
+ "sections",
+ "taskgroup",
+ "priority",
+ "grainsize",
+ "num_tasks",
+ "nogroup",
+ "threads",
+ "simd",
+ "hint",
+ "defaultmap",
+ "order",
+ "bind",
+ "filter",
+ "_simduid_",
+ "_simt_",
+ "independent",
+ "worker",
+ "vector",
+ "num_gangs",
+ "num_workers",
+ "vector_length",
+ "tile",
+ "if_present",
+ "finalize",
+ "nohost",
+};
+
+
+/* Return the tree node structure used by tree code CODE. */
+
+static inline enum tree_node_structure_enum
+tree_node_structure_for_code (enum tree_code code)
+{
+ switch (TREE_CODE_CLASS (code))
+ {
+ case tcc_declaration:
+ switch (code)
+ {
+ case CONST_DECL: return TS_CONST_DECL;
+ case DEBUG_EXPR_DECL: return TS_DECL_WRTL;
+ case FIELD_DECL: return TS_FIELD_DECL;
+ case FUNCTION_DECL: return TS_FUNCTION_DECL;
+ case LABEL_DECL: return TS_LABEL_DECL;
+ case PARM_DECL: return TS_PARM_DECL;
+ case RESULT_DECL: return TS_RESULT_DECL;
+ case TRANSLATION_UNIT_DECL: return TS_TRANSLATION_UNIT_DECL;
+ case TYPE_DECL: return TS_TYPE_DECL;
+ case VAR_DECL: return TS_VAR_DECL;
+ default: return TS_DECL_NON_COMMON;
+ }
+
+ case tcc_type: return TS_TYPE_NON_COMMON;
+
+ case tcc_binary:
+ case tcc_comparison:
+ case tcc_expression:
+ case tcc_reference:
+ case tcc_statement:
+ case tcc_unary:
+ case tcc_vl_exp: return TS_EXP;
+
+ default: /* tcc_constant and tcc_exceptional */
+ break;
+ }
+
+ switch (code)
+ {
+ /* tcc_constant cases. */
+ case COMPLEX_CST: return TS_COMPLEX;
+ case FIXED_CST: return TS_FIXED_CST;
+ case INTEGER_CST: return TS_INT_CST;
+ case POLY_INT_CST: return TS_POLY_INT_CST;
+ case REAL_CST: return TS_REAL_CST;
+ case STRING_CST: return TS_STRING;
+ case VECTOR_CST: return TS_VECTOR;
+ case VOID_CST: return TS_TYPED;
+
+ /* tcc_exceptional cases. */
+ case BLOCK: return TS_BLOCK;
+ case CONSTRUCTOR: return TS_CONSTRUCTOR;
+ case ERROR_MARK: return TS_COMMON;
+ case IDENTIFIER_NODE: return TS_IDENTIFIER;
+ case OMP_CLAUSE: return TS_OMP_CLAUSE;
+ case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
+ case PLACEHOLDER_EXPR: return TS_COMMON;
+ case SSA_NAME: return TS_SSA_NAME;
+ case STATEMENT_LIST: return TS_STATEMENT_LIST;
+ case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
+ case TREE_BINFO: return TS_BINFO;
+ case TREE_LIST: return TS_LIST;
+ case TREE_VEC: return TS_VEC;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+
+/* Initialize tree_contains_struct to describe the hierarchy of tree
+ nodes. */
+
+static void
+initialize_tree_contains_struct (void)
+{
+ unsigned i;
+
+ for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
+ {
+ enum tree_code code;
+ enum tree_node_structure_enum ts_code;
+
+ code = (enum tree_code) i;
+ ts_code = tree_node_structure_for_code (code);
+
+ /* Mark the TS structure itself. */
+ tree_contains_struct[code][ts_code] = 1;
+
+ /* Mark all the structures that TS is derived from. */
+ switch (ts_code)
+ {
+ case TS_TYPED:
+ case TS_BLOCK:
+ case TS_OPTIMIZATION:
+ case TS_TARGET_OPTION:
+ MARK_TS_BASE (code);
+ break;
+
+ case TS_COMMON:
+ case TS_INT_CST:
+ case TS_POLY_INT_CST:
+ case TS_REAL_CST:
+ case TS_FIXED_CST:
+ case TS_VECTOR:
+ case TS_STRING:
+ case TS_COMPLEX:
+ case TS_SSA_NAME:
+ case TS_CONSTRUCTOR:
+ case TS_EXP:
+ case TS_STATEMENT_LIST:
+ MARK_TS_TYPED (code);
+ break;
+
+ case TS_IDENTIFIER:
+ case TS_DECL_MINIMAL:
+ case TS_TYPE_COMMON:
+ case TS_LIST:
+ case TS_VEC:
+ case TS_BINFO:
+ case TS_OMP_CLAUSE:
+ MARK_TS_COMMON (code);
+ break;
+
+ case TS_TYPE_WITH_LANG_SPECIFIC:
+ MARK_TS_TYPE_COMMON (code);
+ break;
+
+ case TS_TYPE_NON_COMMON:
+ MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
+ break;
+
+ case TS_DECL_COMMON:
+ MARK_TS_DECL_MINIMAL (code);
+ break;
+
+ case TS_DECL_WRTL:
+ case TS_CONST_DECL:
+ MARK_TS_DECL_COMMON (code);
+ break;
+
+ case TS_DECL_NON_COMMON:
+ MARK_TS_DECL_WITH_VIS (code);
+ break;
+
+ case TS_DECL_WITH_VIS:
+ case TS_PARM_DECL:
+ case TS_LABEL_DECL:
+ case TS_RESULT_DECL:
+ MARK_TS_DECL_WRTL (code);
+ break;
+
+ case TS_FIELD_DECL:
+ MARK_TS_DECL_COMMON (code);
+ break;
+
+ case TS_VAR_DECL:
+ MARK_TS_DECL_WITH_VIS (code);
+ break;
+
+ case TS_TYPE_DECL:
+ case TS_FUNCTION_DECL:
+ MARK_TS_DECL_NON_COMMON (code);
+ break;
+
+ case TS_TRANSLATION_UNIT_DECL:
+ MARK_TS_DECL_COMMON (code);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+
+ /* Basic consistency checks for attributes used in fold. */
+ gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
+ gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
+ gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
+ gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
+ gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
+ gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
+ gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
+ gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
+ gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
+ gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
+ gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
+ gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
+ gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
+ gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
+ gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
+ gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
+ gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
+ gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
+ gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
+ gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
+ gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
+ gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
+ gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
+ gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
+ gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
+ gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
+ gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
+ gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
+ gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
+ gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
+ gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
+ gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
+ gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
+ gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
+ gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
+ gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
+ gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
+ gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
+ gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_MINIMAL]);
+ gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_COMMON]);
+}
+
+
+/* Init tree.c. */
+
+void
+init_ttree (void)
+{
+ /* Initialize the hash table of types. */
+ type_hash_table
+ = hash_table<type_cache_hasher>::create_ggc (TYPE_HASH_INITIAL_SIZE);
+
+ debug_expr_for_decl
+ = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
+
+ value_expr_for_decl
+ = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
+
+ int_cst_hash_table = hash_table<int_cst_hasher>::create_ggc (1024);
+
+ poly_int_cst_hash_table = hash_table<poly_int_cst_hasher>::create_ggc (64);
+
+ int_cst_node = make_int_cst (1, 1);
+
+ cl_option_hash_table = hash_table<cl_option_hasher>::create_ggc (64);
+
+ cl_optimization_node = make_node (OPTIMIZATION_NODE);
+ cl_target_option_node = make_node (TARGET_OPTION_NODE);
+
+ /* Initialize the tree_contains_struct array. */
+ initialize_tree_contains_struct ();
+ lang_hooks.init_ts ();
+}
+
+
+/* The name of the object as the assembler will see it (but before any
+ translations made by ASM_OUTPUT_LABELREF). Often this is the same
+ as DECL_NAME. It is an IDENTIFIER_NODE. */
+tree
+decl_assembler_name (tree decl)
+{
+ if (!DECL_ASSEMBLER_NAME_SET_P (decl))
+ lang_hooks.set_decl_assembler_name (decl);
+ return DECL_ASSEMBLER_NAME_RAW (decl);
+}
+
+/* The DECL_ASSEMBLER_NAME_RAW of DECL is being explicitly set to NAME
+ (either of which may be NULL). Inform the FE, if this changes the
+ name. */
+
+void
+overwrite_decl_assembler_name (tree decl, tree name)
+{
+ if (DECL_ASSEMBLER_NAME_RAW (decl) != name)
+ lang_hooks.overwrite_decl_assembler_name (decl, name);
+}
+
+/* Return true if DECL may need an assembler name to be set. */
+
+static inline bool
+need_assembler_name_p (tree decl)
+{
+ /* We use DECL_ASSEMBLER_NAME to hold mangled type names for One Definition
+ Rule merging. This makes type_odr_p to return true on those types during
+ LTO and by comparing the mangled name, we can say what types are intended
+ to be equivalent across compilation unit.
+
+ We do not store names of type_in_anonymous_namespace_p.
+
+ Record, union and enumeration type have linkage that allows use
+ to check type_in_anonymous_namespace_p. We do not mangle compound types
+ that always can be compared structurally.
+
+ Similarly for builtin types, we compare properties of their main variant.
+ A special case are integer types where mangling do make differences
+ between char/signed char/unsigned char etc. Storing name for these makes
+ e.g. -fno-signed-char/-fsigned-char mismatches to be handled well.
+ See cp/mangle.c:write_builtin_type for details. */
+
+ if (TREE_CODE (decl) == TYPE_DECL)
+ {
+ if (DECL_NAME (decl)
+ && decl == TYPE_NAME (TREE_TYPE (decl))
+ && TYPE_MAIN_VARIANT (TREE_TYPE (decl)) == TREE_TYPE (decl)
+ && !TYPE_ARTIFICIAL (TREE_TYPE (decl))
+ && ((TREE_CODE (TREE_TYPE (decl)) != RECORD_TYPE
+ && TREE_CODE (TREE_TYPE (decl)) != UNION_TYPE)
+ || TYPE_CXX_ODR_P (TREE_TYPE (decl)))
+ && (type_with_linkage_p (TREE_TYPE (decl))
+ || TREE_CODE (TREE_TYPE (decl)) == INTEGER_TYPE)
+ && !variably_modified_type_p (TREE_TYPE (decl), NULL_TREE))
+ return !DECL_ASSEMBLER_NAME_SET_P (decl);
+ return false;
+ }
+ /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
+ if (!VAR_OR_FUNCTION_DECL_P (decl))
+ return false;
+
+ /* If DECL already has its assembler name set, it does not need a
+ new one. */
+ if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
+ || DECL_ASSEMBLER_NAME_SET_P (decl))
+ return false;
+
+ /* Abstract decls do not need an assembler name. */
+ if (DECL_ABSTRACT_P (decl))
+ return false;
+
+ /* For VAR_DECLs, only static, public and external symbols need an
+ assembler name. */
+ if (VAR_P (decl)
+ && !TREE_STATIC (decl)
+ && !TREE_PUBLIC (decl)
+ && !DECL_EXTERNAL (decl))
+ return false;
+
+ if (TREE_CODE (decl) == FUNCTION_DECL)
+ {
+ /* Do not set assembler name on builtins. Allow RTL expansion to
+ decide whether to expand inline or via a regular call. */
+ if (fndecl_built_in_p (decl)
+ && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
+ return false;
+
+ /* Functions represented in the callgraph need an assembler name. */
+ if (cgraph_node::get (decl) != NULL)
+ return true;
+
+ /* Unused and not public functions don't need an assembler name. */
+ if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
+ return false;
+ }
+
+ return true;
+}
+
+/* If T needs an assembler name, have one created for it. */
+
+void
+assign_assembler_name_if_needed (tree t)
+{
+ if (need_assembler_name_p (t))
+ {
+ /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
+ diagnostics that use input_location to show locus
+ information. The problem here is that, at this point,
+ input_location is generally anchored to the end of the file
+ (since the parser is long gone), so we don't have a good
+ position to pin it to.
+
+ To alleviate this problem, this uses the location of T's
+ declaration. Examples of this are
+ testsuite/g++.dg/template/cond2.C and
+ testsuite/g++.dg/template/pr35240.C. */
+ location_t saved_location = input_location;
+ input_location = DECL_SOURCE_LOCATION (t);
+
+ decl_assembler_name (t);
+
+ input_location = saved_location;
+ }
+}
+
+/* When the target supports COMDAT groups, this indicates which group the
+ DECL is associated with. This can be either an IDENTIFIER_NODE or a
+ decl, in which case its DECL_ASSEMBLER_NAME identifies the group. */
+tree
+decl_comdat_group (const_tree node)
+{
+ struct symtab_node *snode = symtab_node::get (node);
+ if (!snode)
+ return NULL;
+ return snode->get_comdat_group ();
+}
+
+/* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE. */
+tree
+decl_comdat_group_id (const_tree node)
+{
+ struct symtab_node *snode = symtab_node::get (node);
+ if (!snode)
+ return NULL;
+ return snode->get_comdat_group_id ();
+}
+
+/* When the target supports named section, return its name as IDENTIFIER_NODE
+ or NULL if it is in no section. */
+const char *
+decl_section_name (const_tree node)
+{
+ struct symtab_node *snode = symtab_node::get (node);
+ if (!snode)
+ return NULL;
+ return snode->get_section ();
+}
+
+/* Set section name of NODE to VALUE (that is expected to be
+ identifier node) */
+void
+set_decl_section_name (tree node, const char *value)
+{
+ struct symtab_node *snode;
+
+ if (value == NULL)
+ {
+ snode = symtab_node::get (node);
+ if (!snode)
+ return;
+ }
+ else if (VAR_P (node))
+ snode = varpool_node::get_create (node);
+ else
+ snode = cgraph_node::get_create (node);
+ snode->set_section (value);
+}
+
+/* Set section name of NODE to match the section name of OTHER.
+
+ set_decl_section_name (decl, other) is equivalent to
+ set_decl_section_name (decl, DECL_SECTION_NAME (other)), but possibly more
+ efficient. */
+void
+set_decl_section_name (tree decl, const_tree other)
+{
+ struct symtab_node *other_node = symtab_node::get (other);
+ if (other_node)
+ {
+ struct symtab_node *decl_node;
+ if (VAR_P (decl))
+ decl_node = varpool_node::get_create (decl);
+ else
+ decl_node = cgraph_node::get_create (decl);
+ decl_node->set_section (*other_node);
+ }
+ else
+ {
+ struct symtab_node *decl_node = symtab_node::get (decl);
+ if (!decl_node)
+ return;
+ decl_node->set_section (NULL);
+ }
+}
+
+/* Return TLS model of a variable NODE. */
+enum tls_model
+decl_tls_model (const_tree node)
+{
+ struct varpool_node *snode = varpool_node::get (node);
+ if (!snode)
+ return TLS_MODEL_NONE;
+ return snode->tls_model;
+}
+
+/* Set TLS model of variable NODE to MODEL. */
+void
+set_decl_tls_model (tree node, enum tls_model model)
+{
+ struct varpool_node *vnode;
+
+ if (model == TLS_MODEL_NONE)
+ {
+ vnode = varpool_node::get (node);
+ if (!vnode)
+ return;
+ }
+ else
+ vnode = varpool_node::get_create (node);
+ vnode->tls_model = model;
+}
+
+/* Compute the number of bytes occupied by a tree with code CODE.
+ This function cannot be used for nodes that have variable sizes,
+ including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR. */
+size_t
+tree_code_size (enum tree_code code)
+{
+ switch (TREE_CODE_CLASS (code))
+ {
+ case tcc_declaration: /* A decl node */
+ switch (code)
+ {
+ case FIELD_DECL: return sizeof (tree_field_decl);
+ case PARM_DECL: return sizeof (tree_parm_decl);
+ case VAR_DECL: return sizeof (tree_var_decl);
+ case LABEL_DECL: return sizeof (tree_label_decl);
+ case RESULT_DECL: return sizeof (tree_result_decl);
+ case CONST_DECL: return sizeof (tree_const_decl);
+ case TYPE_DECL: return sizeof (tree_type_decl);
+ case FUNCTION_DECL: return sizeof (tree_function_decl);
+ case DEBUG_EXPR_DECL: return sizeof (tree_decl_with_rtl);
+ case TRANSLATION_UNIT_DECL: return sizeof (tree_translation_unit_decl);
+ case NAMESPACE_DECL:
+ case IMPORTED_DECL:
+ case NAMELIST_DECL: return sizeof (tree_decl_non_common);
+ default:
+ gcc_checking_assert (code >= NUM_TREE_CODES);
+ return lang_hooks.tree_size (code);
+ }
+
+ case tcc_type: /* a type node */
+ switch (code)
+ {
+ case OFFSET_TYPE:
+ case ENUMERAL_TYPE:
+ case BOOLEAN_TYPE:
+ case INTEGER_TYPE:
+ case REAL_TYPE:
+ case OPAQUE_TYPE:
+ case POINTER_TYPE:
+ case REFERENCE_TYPE:
+ case NULLPTR_TYPE:
+ case FIXED_POINT_TYPE:
+ case COMPLEX_TYPE:
+ case VECTOR_TYPE:
+ case ARRAY_TYPE:
+ case RECORD_TYPE:
+ case UNION_TYPE:
+ case QUAL_UNION_TYPE:
+ case VOID_TYPE:
+ case FUNCTION_TYPE:
+ case METHOD_TYPE:
+ case LANG_TYPE: return sizeof (tree_type_non_common);
+ default:
+ gcc_checking_assert (code >= NUM_TREE_CODES);
+ return lang_hooks.tree_size (code);
+ }
+
+ case tcc_reference: /* a reference */
+ case tcc_expression: /* an expression */
+ case tcc_statement: /* an expression with side effects */
+ case tcc_comparison: /* a comparison expression */
+ case tcc_unary: /* a unary arithmetic expression */
+ case tcc_binary: /* a binary arithmetic expression */
+ return (sizeof (struct tree_exp)
+ + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
+
+ case tcc_constant: /* a constant */
+ switch (code)
+ {
+ case VOID_CST: return sizeof (tree_typed);
+ case INTEGER_CST: gcc_unreachable ();
+ case POLY_INT_CST: return sizeof (tree_poly_int_cst);
+ case REAL_CST: return sizeof (tree_real_cst);
+ case FIXED_CST: return sizeof (tree_fixed_cst);
+ case COMPLEX_CST: return sizeof (tree_complex);
+ case VECTOR_CST: gcc_unreachable ();
+ case STRING_CST: gcc_unreachable ();
+ default:
+ gcc_checking_assert (code >= NUM_TREE_CODES);
+ return lang_hooks.tree_size (code);
+ }
+
+ case tcc_exceptional: /* something random, like an identifier. */
+ switch (code)
+ {
+ case IDENTIFIER_NODE: return lang_hooks.identifier_size;
+ case TREE_LIST: return sizeof (tree_list);
+
+ case ERROR_MARK:
+ case PLACEHOLDER_EXPR: return sizeof (tree_common);
+
+ case TREE_VEC: gcc_unreachable ();
+ case OMP_CLAUSE: gcc_unreachable ();
+
+ case SSA_NAME: return sizeof (tree_ssa_name);
+
+ case STATEMENT_LIST: return sizeof (tree_statement_list);
+ case BLOCK: return sizeof (struct tree_block);
+ case CONSTRUCTOR: return sizeof (tree_constructor);
+ case OPTIMIZATION_NODE: return sizeof (tree_optimization_option);
+ case TARGET_OPTION_NODE: return sizeof (tree_target_option);
+
+ default:
+ gcc_checking_assert (code >= NUM_TREE_CODES);
+ return lang_hooks.tree_size (code);
+ }
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Compute the number of bytes occupied by NODE. This routine only
+ looks at TREE_CODE, except for those nodes that have variable sizes. */
+size_t
+tree_size (const_tree node)
+{
+ const enum tree_code code = TREE_CODE (node);
+ switch (code)
+ {
+ case INTEGER_CST:
+ return (sizeof (struct tree_int_cst)
+ + (TREE_INT_CST_EXT_NUNITS (node) - 1) * sizeof (HOST_WIDE_INT));
+
+ case TREE_BINFO:
+ return (offsetof (struct tree_binfo, base_binfos)
+ + vec<tree, va_gc>
+ ::embedded_size (BINFO_N_BASE_BINFOS (node)));
+
+ case TREE_VEC:
+ return (sizeof (struct tree_vec)
+ + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
+
+ case VECTOR_CST:
+ return (sizeof (struct tree_vector)
+ + (vector_cst_encoded_nelts (node) - 1) * sizeof (tree));
+
+ case STRING_CST:
+ return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
+
+ case OMP_CLAUSE:
+ return (sizeof (struct tree_omp_clause)
+ + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
+ * sizeof (tree));
+
+ default:
+ if (TREE_CODE_CLASS (code) == tcc_vl_exp)
+ return (sizeof (struct tree_exp)
+ + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
+ else
+ return tree_code_size (code);
+ }
+}
+
+/* Return tree node kind based on tree CODE. */
+
+static tree_node_kind
+get_stats_node_kind (enum tree_code code)
+{
+ enum tree_code_class type = TREE_CODE_CLASS (code);
+
+ switch (type)
+ {
+ case tcc_declaration: /* A decl node */
+ return d_kind;
+ case tcc_type: /* a type node */
+ return t_kind;
+ case tcc_statement: /* an expression with side effects */
+ return s_kind;
+ case tcc_reference: /* a reference */
+ return r_kind;
+ case tcc_expression: /* an expression */
+ case tcc_comparison: /* a comparison expression */
+ case tcc_unary: /* a unary arithmetic expression */
+ case tcc_binary: /* a binary arithmetic expression */
+ return e_kind;
+ case tcc_constant: /* a constant */
+ return c_kind;
+ case tcc_exceptional: /* something random, like an identifier. */
+ switch (code)
+ {
+ case IDENTIFIER_NODE:
+ return id_kind;
+ case TREE_VEC:
+ return vec_kind;
+ case TREE_BINFO:
+ return binfo_kind;
+ case SSA_NAME:
+ return ssa_name_kind;
+ case BLOCK:
+ return b_kind;
+ case CONSTRUCTOR:
+ return constr_kind;
+ case OMP_CLAUSE:
+ return omp_clause_kind;
+ default:
+ return x_kind;
+ }
+ break;
+ case tcc_vl_exp:
+ return e_kind;
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Record interesting allocation statistics for a tree node with CODE
+ and LENGTH. */
+
+static void
+record_node_allocation_statistics (enum tree_code code, size_t length)
+{
+ if (!GATHER_STATISTICS)
+ return;
+
+ tree_node_kind kind = get_stats_node_kind (code);
+
+ tree_code_counts[(int) code]++;
+ tree_node_counts[(int) kind]++;
+ tree_node_sizes[(int) kind] += length;
+}
+
+/* Allocate and return a new UID from the DECL_UID namespace. */
+
+int
+allocate_decl_uid (void)
+{
+ return next_decl_uid++;
+}
+
+/* Return a newly allocated node of code CODE. For decl and type
+ nodes, some other fields are initialized. The rest of the node is
+ initialized to zero. This function cannot be used for TREE_VEC,
+ INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in
+ tree_code_size.
+
+ Achoo! I got a code in the node. */
+
+tree
+make_node (enum tree_code code MEM_STAT_DECL)
+{
+ tree t;
+ enum tree_code_class type = TREE_CODE_CLASS (code);
+ size_t length = tree_code_size (code);
+
+ record_node_allocation_statistics (code, length);
+
+ t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
+ TREE_SET_CODE (t, code);
+
+ switch (type)
+ {
+ case tcc_statement:
+ if (code != DEBUG_BEGIN_STMT)
+ TREE_SIDE_EFFECTS (t) = 1;
+ break;
+
+ case tcc_declaration:
+ if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
+ {
+ if (code == FUNCTION_DECL)
+ {
+ SET_DECL_ALIGN (t, FUNCTION_ALIGNMENT (FUNCTION_BOUNDARY));
+ SET_DECL_MODE (t, FUNCTION_MODE);
+ }
+ else
+ SET_DECL_ALIGN (t, 1);
+ }
+ DECL_SOURCE_LOCATION (t) = input_location;
+ if (TREE_CODE (t) == DEBUG_EXPR_DECL)
+ DECL_UID (t) = --next_debug_decl_uid;
+ else
+ {
+ DECL_UID (t) = allocate_decl_uid ();
+ SET_DECL_PT_UID (t, -1);
+ }
+ if (TREE_CODE (t) == LABEL_DECL)
+ LABEL_DECL_UID (t) = -1;
+
+ break;
+
+ case tcc_type:
+ TYPE_UID (t) = next_type_uid++;
+ SET_TYPE_ALIGN (t, BITS_PER_UNIT);
+ TYPE_USER_ALIGN (t) = 0;
+ TYPE_MAIN_VARIANT (t) = t;
+ TYPE_CANONICAL (t) = t;
+
+ /* Default to no attributes for type, but let target change that. */
+ TYPE_ATTRIBUTES (t) = NULL_TREE;
+ targetm.set_default_type_attributes (t);
+
+ /* We have not yet computed the alias set for this type. */
+ TYPE_ALIAS_SET (t) = -1;
+ break;
+
+ case tcc_constant:
+ TREE_CONSTANT (t) = 1;
+ break;
+
+ case tcc_expression:
+ switch (code)
+ {
+ case INIT_EXPR:
+ case MODIFY_EXPR:
+ case VA_ARG_EXPR:
+ case PREDECREMENT_EXPR:
+ case PREINCREMENT_EXPR:
+ case POSTDECREMENT_EXPR:
+ case POSTINCREMENT_EXPR:
+ /* All of these have side-effects, no matter what their
+ operands are. */
+ TREE_SIDE_EFFECTS (t) = 1;
+ break;
+
+ default:
+ break;
+ }
+ break;
+
+ case tcc_exceptional:
+ switch (code)
+ {
+ case TARGET_OPTION_NODE:
+ TREE_TARGET_OPTION(t)
+ = ggc_cleared_alloc<struct cl_target_option> ();
+ break;
+
+ case OPTIMIZATION_NODE:
+ TREE_OPTIMIZATION (t)
+ = ggc_cleared_alloc<struct cl_optimization> ();
+ break;
+
+ default:
+ break;
+ }
+ break;
+
+ default:
+ /* Other classes need no special treatment. */
+ break;
+ }
+
+ return t;
+}
+
+/* Free tree node. */
+
+void
+free_node (tree node)
+{
+ enum tree_code code = TREE_CODE (node);
+ if (GATHER_STATISTICS)
+ {
+ enum tree_node_kind kind = get_stats_node_kind (code);
+
+ gcc_checking_assert (tree_code_counts[(int) TREE_CODE (node)] != 0);
+ gcc_checking_assert (tree_node_counts[(int) kind] != 0);
+ gcc_checking_assert (tree_node_sizes[(int) kind] >= tree_size (node));
+
+ tree_code_counts[(int) TREE_CODE (node)]--;
+ tree_node_counts[(int) kind]--;
+ tree_node_sizes[(int) kind] -= tree_size (node);
+ }
+ if (CODE_CONTAINS_STRUCT (code, TS_CONSTRUCTOR))
+ vec_free (CONSTRUCTOR_ELTS (node));
+ else if (code == BLOCK)
+ vec_free (BLOCK_NONLOCALIZED_VARS (node));
+ else if (code == TREE_BINFO)
+ vec_free (BINFO_BASE_ACCESSES (node));
+ else if (code == OPTIMIZATION_NODE)
+ cl_optimization_option_free (TREE_OPTIMIZATION (node));
+ else if (code == TARGET_OPTION_NODE)
+ cl_target_option_free (TREE_TARGET_OPTION (node));
+ ggc_free (node);
+}
+
+/* Return a new node with the same contents as NODE except that its
+ TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
+
+tree
+copy_node (tree node MEM_STAT_DECL)
+{
+ tree t;
+ enum tree_code code = TREE_CODE (node);
+ size_t length;
+
+ gcc_assert (code != STATEMENT_LIST);
+
+ length = tree_size (node);
+ record_node_allocation_statistics (code, length);
+ t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
+ memcpy (t, node, length);
+
+ if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
+ TREE_CHAIN (t) = 0;
+ TREE_ASM_WRITTEN (t) = 0;
+ TREE_VISITED (t) = 0;
+
+ if (TREE_CODE_CLASS (code) == tcc_declaration)
+ {
+ if (code == DEBUG_EXPR_DECL)
+ DECL_UID (t) = --next_debug_decl_uid;
+ else
+ {
+ DECL_UID (t) = allocate_decl_uid ();
+ if (DECL_PT_UID_SET_P (node))
+ SET_DECL_PT_UID (t, DECL_PT_UID (node));
+ }
+ if ((TREE_CODE (node) == PARM_DECL || VAR_P (node))
+ && DECL_HAS_VALUE_EXPR_P (node))
+ {
+ SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
+ DECL_HAS_VALUE_EXPR_P (t) = 1;
+ }
+ /* DECL_DEBUG_EXPR is copied explicitly by callers. */
+ if (VAR_P (node))
+ {
+ DECL_HAS_DEBUG_EXPR_P (t) = 0;
+ t->decl_with_vis.symtab_node = NULL;
+ }
+ if (VAR_P (node) && DECL_HAS_INIT_PRIORITY_P (node))
+ {
+ SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
+ DECL_HAS_INIT_PRIORITY_P (t) = 1;
+ }
+ if (TREE_CODE (node) == FUNCTION_DECL)
+ {
+ DECL_STRUCT_FUNCTION (t) = NULL;
+ t->decl_with_vis.symtab_node = NULL;
+ }
+ }
+ else if (TREE_CODE_CLASS (code) == tcc_type)
+ {
+ TYPE_UID (t) = next_type_uid++;
+ /* The following is so that the debug code for
+ the copy is different from the original type.
+ The two statements usually duplicate each other
+ (because they clear fields of the same union),
+ but the optimizer should catch that. */
+ TYPE_SYMTAB_ADDRESS (t) = 0;
+ TYPE_SYMTAB_DIE (t) = 0;
+
+ /* Do not copy the values cache. */
+ if (TYPE_CACHED_VALUES_P (t))
+ {
+ TYPE_CACHED_VALUES_P (t) = 0;
+ TYPE_CACHED_VALUES (t) = NULL_TREE;
+ }
+ }
+ else if (code == TARGET_OPTION_NODE)
+ {
+ TREE_TARGET_OPTION (t) = ggc_alloc<struct cl_target_option>();
+ memcpy (TREE_TARGET_OPTION (t), TREE_TARGET_OPTION (node),
+ sizeof (struct cl_target_option));
+ }
+ else if (code == OPTIMIZATION_NODE)
+ {
+ TREE_OPTIMIZATION (t) = ggc_alloc<struct cl_optimization>();
+ memcpy (TREE_OPTIMIZATION (t), TREE_OPTIMIZATION (node),
+ sizeof (struct cl_optimization));
+ }
+
+ return t;
+}
+
+/* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
+ For example, this can copy a list made of TREE_LIST nodes. */
+
+tree
+copy_list (tree list)
+{
+ tree head;
+ tree prev, next;
+
+ if (list == 0)
+ return 0;
+
+ head = prev = copy_node (list);
+ next = TREE_CHAIN (list);
+ while (next)
+ {
+ TREE_CHAIN (prev) = copy_node (next);
+ prev = TREE_CHAIN (prev);
+ next = TREE_CHAIN (next);
+ }
+ return head;
+}
+
+
+/* Return the value that TREE_INT_CST_EXT_NUNITS should have for an
+ INTEGER_CST with value CST and type TYPE. */
+
+static unsigned int
+get_int_cst_ext_nunits (tree type, const wide_int &cst)
+{
+ gcc_checking_assert (cst.get_precision () == TYPE_PRECISION (type));
+ /* We need extra HWIs if CST is an unsigned integer with its
+ upper bit set. */
+ if (TYPE_UNSIGNED (type) && wi::neg_p (cst))
+ return cst.get_precision () / HOST_BITS_PER_WIDE_INT + 1;
+ return cst.get_len ();
+}
+
+/* Return a new INTEGER_CST with value CST and type TYPE. */
+
+static tree
+build_new_int_cst (tree type, const wide_int &cst)
+{
+ unsigned int len = cst.get_len ();
+ unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
+ tree nt = make_int_cst (len, ext_len);
+
+ if (len < ext_len)
+ {
+ --ext_len;
+ TREE_INT_CST_ELT (nt, ext_len)
+ = zext_hwi (-1, cst.get_precision () % HOST_BITS_PER_WIDE_INT);
+ for (unsigned int i = len; i < ext_len; ++i)
+ TREE_INT_CST_ELT (nt, i) = -1;
+ }
+ else if (TYPE_UNSIGNED (type)
+ && cst.get_precision () < len * HOST_BITS_PER_WIDE_INT)
+ {
+ len--;
+ TREE_INT_CST_ELT (nt, len)
+ = zext_hwi (cst.elt (len),
+ cst.get_precision () % HOST_BITS_PER_WIDE_INT);
+ }
+
+ for (unsigned int i = 0; i < len; i++)
+ TREE_INT_CST_ELT (nt, i) = cst.elt (i);
+ TREE_TYPE (nt) = type;
+ return nt;
+}
+
+/* Return a new POLY_INT_CST with coefficients COEFFS and type TYPE. */
+
+static tree
+build_new_poly_int_cst (tree type, tree (&coeffs)[NUM_POLY_INT_COEFFS]
+ CXX_MEM_STAT_INFO)
+{
+ size_t length = sizeof (struct tree_poly_int_cst);
+ record_node_allocation_statistics (POLY_INT_CST, length);
+
+ tree t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
+
+ TREE_SET_CODE (t, POLY_INT_CST);
+ TREE_CONSTANT (t) = 1;
+ TREE_TYPE (t) = type;
+ for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
+ POLY_INT_CST_COEFF (t, i) = coeffs[i];
+ return t;
+}
+
+/* Create a constant tree that contains CST sign-extended to TYPE. */
+
+tree
+build_int_cst (tree type, poly_int64 cst)
+{
+ /* Support legacy code. */
+ if (!type)
+ type = integer_type_node;
+
+ return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
+}
+
+/* Create a constant tree that contains CST zero-extended to TYPE. */
+
+tree
+build_int_cstu (tree type, poly_uint64 cst)
+{
+ return wide_int_to_tree (type, wi::uhwi (cst, TYPE_PRECISION (type)));
+}
+
+/* Create a constant tree that contains CST sign-extended to TYPE. */
+
+tree
+build_int_cst_type (tree type, poly_int64 cst)
+{
+ gcc_assert (type);
+ return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
+}
+
+/* Constructs tree in type TYPE from with value given by CST. Signedness
+ of CST is assumed to be the same as the signedness of TYPE. */
+
+tree
+double_int_to_tree (tree type, double_int cst)
+{
+ return wide_int_to_tree (type, widest_int::from (cst, TYPE_SIGN (type)));
+}
+
+/* We force the wide_int CST to the range of the type TYPE by sign or
+ zero extending it. OVERFLOWABLE indicates if we are interested in
+ overflow of the value, when >0 we are only interested in signed
+ overflow, for <0 we are interested in any overflow. OVERFLOWED
+ indicates whether overflow has already occurred. CONST_OVERFLOWED
+ indicates whether constant overflow has already occurred. We force
+ T's value to be within range of T's type (by setting to 0 or 1 all
+ the bits outside the type's range). We set TREE_OVERFLOWED if,
+ OVERFLOWED is nonzero,
+ or OVERFLOWABLE is >0 and signed overflow occurs
+ or OVERFLOWABLE is <0 and any overflow occurs
+ We return a new tree node for the extended wide_int. The node
+ is shared if no overflow flags are set. */
+
+
+tree
+force_fit_type (tree type, const poly_wide_int_ref &cst,
+ int overflowable, bool overflowed)
+{
+ signop sign = TYPE_SIGN (type);
+
+ /* If we need to set overflow flags, return a new unshared node. */
+ if (overflowed || !wi::fits_to_tree_p (cst, type))
+ {
+ if (overflowed
+ || overflowable < 0
+ || (overflowable > 0 && sign == SIGNED))
+ {
+ poly_wide_int tmp = poly_wide_int::from (cst, TYPE_PRECISION (type),
+ sign);
+ tree t;
+ if (tmp.is_constant ())
+ t = build_new_int_cst (type, tmp.coeffs[0]);
+ else
+ {
+ tree coeffs[NUM_POLY_INT_COEFFS];
+ for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
+ {
+ coeffs[i] = build_new_int_cst (type, tmp.coeffs[i]);
+ TREE_OVERFLOW (coeffs[i]) = 1;
+ }
+ t = build_new_poly_int_cst (type, coeffs);
+ }
+ TREE_OVERFLOW (t) = 1;
+ return t;
+ }
+ }
+
+ /* Else build a shared node. */
+ return wide_int_to_tree (type, cst);
+}
+
+/* These are the hash table functions for the hash table of INTEGER_CST
+ nodes of a sizetype. */
+
+/* Return the hash code X, an INTEGER_CST. */
+
+hashval_t
+int_cst_hasher::hash (tree x)
+{
+ const_tree const t = x;
+ hashval_t code = TYPE_UID (TREE_TYPE (t));
+ int i;
+
+ for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
+ code = iterative_hash_host_wide_int (TREE_INT_CST_ELT(t, i), code);
+
+ return code;
+}
+
+/* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
+ is the same as that given by *Y, which is the same. */
+
+bool
+int_cst_hasher::equal (tree x, tree y)
+{
+ const_tree const xt = x;
+ const_tree const yt = y;
+
+ if (TREE_TYPE (xt) != TREE_TYPE (yt)
+ || TREE_INT_CST_NUNITS (xt) != TREE_INT_CST_NUNITS (yt)
+ || TREE_INT_CST_EXT_NUNITS (xt) != TREE_INT_CST_EXT_NUNITS (yt))
+ return false;
+
+ for (int i = 0; i < TREE_INT_CST_NUNITS (xt); i++)
+ if (TREE_INT_CST_ELT (xt, i) != TREE_INT_CST_ELT (yt, i))
+ return false;
+
+ return true;
+}
+
+/* Cache wide_int CST into the TYPE_CACHED_VALUES cache for TYPE.
+ SLOT is the slot entry to store it in, and MAX_SLOTS is the maximum
+ number of slots that can be cached for the type. */
+
+static inline tree
+cache_wide_int_in_type_cache (tree type, const wide_int &cst,
+ int slot, int max_slots)
+{
+ gcc_checking_assert (slot >= 0);
+ /* Initialize cache. */
+ if (!TYPE_CACHED_VALUES_P (type))
+ {
+ TYPE_CACHED_VALUES_P (type) = 1;
+ TYPE_CACHED_VALUES (type) = make_tree_vec (max_slots);
+ }
+ tree t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), slot);
+ if (!t)
+ {
+ /* Create a new shared int. */
+ t = build_new_int_cst (type, cst);
+ TREE_VEC_ELT (TYPE_CACHED_VALUES (type), slot) = t;
+ }
+ return t;
+}
+
+/* Create an INT_CST node of TYPE and value CST.
+ The returned node is always shared. For small integers we use a
+ per-type vector cache, for larger ones we use a single hash table.
+ The value is extended from its precision according to the sign of
+ the type to be a multiple of HOST_BITS_PER_WIDE_INT. This defines
+ the upper bits and ensures that hashing and value equality based
+ upon the underlying HOST_WIDE_INTs works without masking. */
+
+static tree
+wide_int_to_tree_1 (tree type, const wide_int_ref &pcst)
+{
+ tree t;
+ int ix = -1;
+ int limit = 0;
+
+ gcc_assert (type);
+ unsigned int prec = TYPE_PRECISION (type);
+ signop sgn = TYPE_SIGN (type);
+
+ /* Verify that everything is canonical. */
+ int l = pcst.get_len ();
+ if (l > 1)
+ {
+ if (pcst.elt (l - 1) == 0)
+ gcc_checking_assert (pcst.elt (l - 2) < 0);
+ if (pcst.elt (l - 1) == HOST_WIDE_INT_M1)
+ gcc_checking_assert (pcst.elt (l - 2) >= 0);
+ }
+
+ wide_int cst = wide_int::from (pcst, prec, sgn);
+ unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
+
+ enum tree_code code = TREE_CODE (type);
+ if (code == POINTER_TYPE || code == REFERENCE_TYPE)
+ {
+ /* Cache NULL pointer and zero bounds. */
+ if (cst == 0)
+ ix = 0;
+ /* Cache upper bounds of pointers. */
+ else if (cst == wi::max_value (prec, sgn))
+ ix = 1;
+ /* Cache 1 which is used for a non-zero range. */
+ else if (cst == 1)
+ ix = 2;
+
+ if (ix >= 0)
+ {
+ t = cache_wide_int_in_type_cache (type, cst, ix, 3);
+ /* Make sure no one is clobbering the shared constant. */
+ gcc_checking_assert (TREE_TYPE (t) == type
+ && cst == wi::to_wide (t));
+ return t;
+ }
+ }
+ if (ext_len == 1)
+ {
+ /* We just need to store a single HOST_WIDE_INT. */
+ HOST_WIDE_INT hwi;
+ if (TYPE_UNSIGNED (type))
+ hwi = cst.to_uhwi ();
+ else
+ hwi = cst.to_shwi ();
+
+ switch (code)
+ {
+ case NULLPTR_TYPE:
+ gcc_assert (hwi == 0);
+ /* Fallthru. */
+
+ case POINTER_TYPE:
+ case REFERENCE_TYPE:
+ /* Ignore pointers, as they were already handled above. */
+ break;
+
+ case BOOLEAN_TYPE:
+ /* Cache false or true. */
+ limit = 2;
+ if (IN_RANGE (hwi, 0, 1))
+ ix = hwi;
+ break;
+
+ case INTEGER_TYPE:
+ case OFFSET_TYPE:
+ if (TYPE_SIGN (type) == UNSIGNED)
+ {
+ /* Cache [0, N). */
+ limit = param_integer_share_limit;
+ if (IN_RANGE (hwi, 0, param_integer_share_limit - 1))
+ ix = hwi;
+ }
+ else
+ {
+ /* Cache [-1, N). */
+ limit = param_integer_share_limit + 1;
+ if (IN_RANGE (hwi, -1, param_integer_share_limit - 1))
+ ix = hwi + 1;
+ }
+ break;
+
+ case ENUMERAL_TYPE:
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (ix >= 0)
+ {
+ t = cache_wide_int_in_type_cache (type, cst, ix, limit);
+ /* Make sure no one is clobbering the shared constant. */
+ gcc_checking_assert (TREE_TYPE (t) == type
+ && TREE_INT_CST_NUNITS (t) == 1
+ && TREE_INT_CST_OFFSET_NUNITS (t) == 1
+ && TREE_INT_CST_EXT_NUNITS (t) == 1
+ && TREE_INT_CST_ELT (t, 0) == hwi);
+ return t;
+ }
+ else
+ {
+ /* Use the cache of larger shared ints, using int_cst_node as
+ a temporary. */
+
+ TREE_INT_CST_ELT (int_cst_node, 0) = hwi;
+ TREE_TYPE (int_cst_node) = type;
+
+ tree *slot = int_cst_hash_table->find_slot (int_cst_node, INSERT);
+ t = *slot;
+ if (!t)
+ {
+ /* Insert this one into the hash table. */
+ t = int_cst_node;
+ *slot = t;
+ /* Make a new node for next time round. */
+ int_cst_node = make_int_cst (1, 1);
+ }
+ }
+ }
+ else
+ {
+ /* The value either hashes properly or we drop it on the floor
+ for the gc to take care of. There will not be enough of them
+ to worry about. */
+
+ tree nt = build_new_int_cst (type, cst);
+ tree *slot = int_cst_hash_table->find_slot (nt, INSERT);
+ t = *slot;
+ if (!t)
+ {
+ /* Insert this one into the hash table. */
+ t = nt;
+ *slot = t;
+ }
+ else
+ ggc_free (nt);
+ }
+
+ return t;
+}
+
+hashval_t
+poly_int_cst_hasher::hash (tree t)
+{
+ inchash::hash hstate;
+
+ hstate.add_int (TYPE_UID (TREE_TYPE (t)));
+ for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
+ hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
+
+ return hstate.end ();
+}
+
+bool
+poly_int_cst_hasher::equal (tree x, const compare_type &y)
+{
+ if (TREE_TYPE (x) != y.first)
+ return false;
+ for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
+ if (wi::to_wide (POLY_INT_CST_COEFF (x, i)) != y.second->coeffs[i])
+ return false;
+ return true;
+}
+
+/* Build a POLY_INT_CST node with type TYPE and with the elements in VALUES.
+ The elements must also have type TYPE. */
+
+tree
+build_poly_int_cst (tree type, const poly_wide_int_ref &values)
+{
+ unsigned int prec = TYPE_PRECISION (type);
+ gcc_assert (prec <= values.coeffs[0].get_precision ());
+ poly_wide_int c = poly_wide_int::from (values, prec, SIGNED);
+
+ inchash::hash h;
+ h.add_int (TYPE_UID (type));
+ for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
+ h.add_wide_int (c.coeffs[i]);
+ poly_int_cst_hasher::compare_type comp (type, &c);
+ tree *slot = poly_int_cst_hash_table->find_slot_with_hash (comp, h.end (),
+ INSERT);
+ if (*slot == NULL_TREE)
+ {
+ tree coeffs[NUM_POLY_INT_COEFFS];
+ for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
+ coeffs[i] = wide_int_to_tree_1 (type, c.coeffs[i]);
+ *slot = build_new_poly_int_cst (type, coeffs);
+ }
+ return *slot;
+}
+
+/* Create a constant tree with value VALUE in type TYPE. */
+
+tree
+wide_int_to_tree (tree type, const poly_wide_int_ref &value)
+{
+ if (value.is_constant ())
+ return wide_int_to_tree_1 (type, value.coeffs[0]);
+ return build_poly_int_cst (type, value);
+}
+
+/* Insert INTEGER_CST T into a cache of integer constants. And return
+ the cached constant (which may or may not be T). If MIGHT_DUPLICATE
+ is false, and T falls into the type's 'smaller values' range, there
+ cannot be an existing entry. Otherwise, if MIGHT_DUPLICATE is true,
+ or the value is large, should an existing entry exist, it is
+ returned (rather than inserting T). */
+
+tree
+cache_integer_cst (tree t, bool might_duplicate ATTRIBUTE_UNUSED)
+{
+ tree type = TREE_TYPE (t);
+ int ix = -1;
+ int limit = 0;
+ int prec = TYPE_PRECISION (type);
+
+ gcc_assert (!TREE_OVERFLOW (t));
+
+ /* The caching indices here must match those in
+ wide_int_to_type_1. */
+ switch (TREE_CODE (type))
+ {
+ case NULLPTR_TYPE:
+ gcc_checking_assert (integer_zerop (t));
+ /* Fallthru. */
+
+ case POINTER_TYPE:
+ case REFERENCE_TYPE:
+ {
+ if (integer_zerop (t))
+ ix = 0;
+ else if (integer_onep (t))
+ ix = 2;
+
+ if (ix >= 0)
+ limit = 3;
+ }
+ break;
+
+ case BOOLEAN_TYPE:
+ /* Cache false or true. */
+ limit = 2;
+ if (wi::ltu_p (wi::to_wide (t), 2))
+ ix = TREE_INT_CST_ELT (t, 0);
+ break;
+
+ case INTEGER_TYPE:
+ case OFFSET_TYPE:
+ if (TYPE_UNSIGNED (type))
+ {
+ /* Cache 0..N */
+ limit = param_integer_share_limit;
+
+ /* This is a little hokie, but if the prec is smaller than
+ what is necessary to hold param_integer_share_limit, then the
+ obvious test will not get the correct answer. */
+ if (prec < HOST_BITS_PER_WIDE_INT)
+ {
+ if (tree_to_uhwi (t)
+ < (unsigned HOST_WIDE_INT) param_integer_share_limit)
+ ix = tree_to_uhwi (t);
+ }
+ else if (wi::ltu_p (wi::to_wide (t), param_integer_share_limit))
+ ix = tree_to_uhwi (t);
+ }
+ else
+ {
+ /* Cache -1..N */
+ limit = param_integer_share_limit + 1;
+
+ if (integer_minus_onep (t))
+ ix = 0;
+ else if (!wi::neg_p (wi::to_wide (t)))
+ {
+ if (prec < HOST_BITS_PER_WIDE_INT)
+ {
+ if (tree_to_shwi (t) < param_integer_share_limit)
+ ix = tree_to_shwi (t) + 1;
+ }
+ else if (wi::ltu_p (wi::to_wide (t), param_integer_share_limit))
+ ix = tree_to_shwi (t) + 1;
+ }
+ }
+ break;
+
+ case ENUMERAL_TYPE:
+ /* The slot used by TYPE_CACHED_VALUES is used for the enum
+ members. */
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (ix >= 0)
+ {
+ /* Look for it in the type's vector of small shared ints. */
+ if (!TYPE_CACHED_VALUES_P (type))
+ {
+ TYPE_CACHED_VALUES_P (type) = 1;
+ TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
+ }
+
+ if (tree r = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix))
+ {
+ gcc_checking_assert (might_duplicate);
+ t = r;
+ }
+ else
+ TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
+ }
+ else
+ {
+ /* Use the cache of larger shared ints. */
+ tree *slot = int_cst_hash_table->find_slot (t, INSERT);
+ if (tree r = *slot)
+ {
+ /* If there is already an entry for the number verify it's the
+ same value. */
+ gcc_checking_assert (wi::to_wide (tree (r)) == wi::to_wide (t));
+ /* And return the cached value. */
+ t = r;
+ }
+ else
+ /* Otherwise insert this one into the hash table. */
+ *slot = t;
+ }
+
+ return t;
+}
+
+
+/* Builds an integer constant in TYPE such that lowest BITS bits are ones
+ and the rest are zeros. */
+
+tree
+build_low_bits_mask (tree type, unsigned bits)
+{
+ gcc_assert (bits <= TYPE_PRECISION (type));
+
+ return wide_int_to_tree (type, wi::mask (bits, false,
+ TYPE_PRECISION (type)));
+}
+
+/* Checks that X is integer constant that can be expressed in (unsigned)
+ HOST_WIDE_INT without loss of precision. */
+
+bool
+cst_and_fits_in_hwi (const_tree x)
+{
+ return (TREE_CODE (x) == INTEGER_CST
+ && (tree_fits_shwi_p (x) || tree_fits_uhwi_p (x)));
+}
+
+/* Build a newly constructed VECTOR_CST with the given values of
+ (VECTOR_CST_)LOG2_NPATTERNS and (VECTOR_CST_)NELTS_PER_PATTERN. */
+
+tree
+make_vector (unsigned log2_npatterns,
+ unsigned int nelts_per_pattern MEM_STAT_DECL)
+{
+ gcc_assert (IN_RANGE (nelts_per_pattern, 1, 3));
+ tree t;
+ unsigned npatterns = 1 << log2_npatterns;
+ unsigned encoded_nelts = npatterns * nelts_per_pattern;
+ unsigned length = (sizeof (struct tree_vector)
+ + (encoded_nelts - 1) * sizeof (tree));
+
+ record_node_allocation_statistics (VECTOR_CST, length);
+
+ t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
+
+ TREE_SET_CODE (t, VECTOR_CST);
+ TREE_CONSTANT (t) = 1;
+ VECTOR_CST_LOG2_NPATTERNS (t) = log2_npatterns;
+ VECTOR_CST_NELTS_PER_PATTERN (t) = nelts_per_pattern;
+
+ return t;
+}
+
+/* Return a new VECTOR_CST node whose type is TYPE and whose values
+ are extracted from V, a vector of CONSTRUCTOR_ELT. */
+
+tree
+build_vector_from_ctor (tree type, const vec<constructor_elt, va_gc> *v)
+{
+ if (vec_safe_length (v) == 0)
+ return build_zero_cst (type);
+
+ unsigned HOST_WIDE_INT idx, nelts;
+ tree value;
+
+ /* We can't construct a VECTOR_CST for a variable number of elements. */
+ nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
+ tree_vector_builder vec (type, nelts, 1);
+ FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
+ {
+ if (TREE_CODE (value) == VECTOR_CST)
+ {
+ /* If NELTS is constant then this must be too. */
+ unsigned int sub_nelts = VECTOR_CST_NELTS (value).to_constant ();
+ for (unsigned i = 0; i < sub_nelts; ++i)
+ vec.quick_push (VECTOR_CST_ELT (value, i));
+ }
+ else
+ vec.quick_push (value);
+ }
+ while (vec.length () < nelts)
+ vec.quick_push (build_zero_cst (TREE_TYPE (type)));
+
+ return vec.build ();
+}
+
+/* Build a vector of type VECTYPE where all the elements are SCs. */
+tree
+build_vector_from_val (tree vectype, tree sc)
+{
+ unsigned HOST_WIDE_INT i, nunits;
+
+ if (sc == error_mark_node)
+ return sc;
+
+ /* Verify that the vector type is suitable for SC. Note that there
+ is some inconsistency in the type-system with respect to restrict
+ qualifications of pointers. Vector types always have a main-variant
+ element type and the qualification is applied to the vector-type.
+ So TREE_TYPE (vector-type) does not return a properly qualified
+ vector element-type. */
+ gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
+ TREE_TYPE (vectype)));
+
+ if (CONSTANT_CLASS_P (sc))
+ {
+ tree_vector_builder v (vectype, 1, 1);
+ v.quick_push (sc);
+ return v.build ();
+ }
+ else if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nunits))
+ return fold_build1 (VEC_DUPLICATE_EXPR, vectype, sc);
+ else
+ {
+ vec<constructor_elt, va_gc> *v;
+ vec_alloc (v, nunits);
+ for (i = 0; i < nunits; ++i)
+ CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
+ return build_constructor (vectype, v);
+ }
+}
+
+/* If TYPE is not a vector type, just return SC, otherwise return
+ build_vector_from_val (TYPE, SC). */
+
+tree
+build_uniform_cst (tree type, tree sc)
+{
+ if (!VECTOR_TYPE_P (type))
+ return sc;
+
+ return build_vector_from_val (type, sc);
+}
+
+/* Build a vector series of type TYPE in which element I has the value
+ BASE + I * STEP. The result is a constant if BASE and STEP are constant
+ and a VEC_SERIES_EXPR otherwise. */
+
+tree
+build_vec_series (tree type, tree base, tree step)
+{
+ if (integer_zerop (step))
+ return build_vector_from_val (type, base);
+ if (TREE_CODE (base) == INTEGER_CST && TREE_CODE (step) == INTEGER_CST)
+ {
+ tree_vector_builder builder (type, 1, 3);
+ tree elt1 = wide_int_to_tree (TREE_TYPE (base),
+ wi::to_wide (base) + wi::to_wide (step));
+ tree elt2 = wide_int_to_tree (TREE_TYPE (base),
+ wi::to_wide (elt1) + wi::to_wide (step));
+ builder.quick_push (base);
+ builder.quick_push (elt1);
+ builder.quick_push (elt2);
+ return builder.build ();
+ }
+ return build2 (VEC_SERIES_EXPR, type, base, step);
+}
+
+/* Return a vector with the same number of units and number of bits
+ as VEC_TYPE, but in which the elements are a linear series of unsigned
+ integers { BASE, BASE + STEP, BASE + STEP * 2, ... }. */
+
+tree
+build_index_vector (tree vec_type, poly_uint64 base, poly_uint64 step)
+{
+ tree index_vec_type = vec_type;
+ tree index_elt_type = TREE_TYPE (vec_type);
+ poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vec_type);
+ if (!INTEGRAL_TYPE_P (index_elt_type) || !TYPE_UNSIGNED (index_elt_type))
+ {
+ index_elt_type = build_nonstandard_integer_type
+ (GET_MODE_BITSIZE (SCALAR_TYPE_MODE (index_elt_type)), true);
+ index_vec_type = build_vector_type (index_elt_type, nunits);
+ }
+
+ tree_vector_builder v (index_vec_type, 1, 3);
+ for (unsigned int i = 0; i < 3; ++i)
+ v.quick_push (build_int_cstu (index_elt_type, base + i * step));
+ return v.build ();
+}
+
+/* Return a VECTOR_CST of type VEC_TYPE in which the first NUM_A
+ elements are A and the rest are B. */
+
+tree
+build_vector_a_then_b (tree vec_type, unsigned int num_a, tree a, tree b)
+{
+ gcc_assert (known_le (num_a, TYPE_VECTOR_SUBPARTS (vec_type)));
+ unsigned int count = constant_lower_bound (TYPE_VECTOR_SUBPARTS (vec_type));
+ /* Optimize the constant case. */
+ if ((count & 1) == 0 && TYPE_VECTOR_SUBPARTS (vec_type).is_constant ())
+ count /= 2;
+ tree_vector_builder builder (vec_type, count, 2);
+ for (unsigned int i = 0; i < count * 2; ++i)
+ builder.quick_push (i < num_a ? a : b);
+ return builder.build ();
+}
+
+/* Something has messed with the elements of CONSTRUCTOR C after it was built;
+ calculate TREE_CONSTANT and TREE_SIDE_EFFECTS. */
+
+void
+recompute_constructor_flags (tree c)
+{
+ unsigned int i;
+ tree val;
+ bool constant_p = true;
+ bool side_effects_p = false;
+ vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
+
+ FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
+ {
+ /* Mostly ctors will have elts that don't have side-effects, so
+ the usual case is to scan all the elements. Hence a single
+ loop for both const and side effects, rather than one loop
+ each (with early outs). */
+ if (!TREE_CONSTANT (val))
+ constant_p = false;
+ if (TREE_SIDE_EFFECTS (val))
+ side_effects_p = true;
+ }
+
+ TREE_SIDE_EFFECTS (c) = side_effects_p;
+ TREE_CONSTANT (c) = constant_p;
+}
+
+/* Make sure that TREE_CONSTANT and TREE_SIDE_EFFECTS are correct for
+ CONSTRUCTOR C. */
+
+void
+verify_constructor_flags (tree c)
+{
+ unsigned int i;
+ tree val;
+ bool constant_p = TREE_CONSTANT (c);
+ bool side_effects_p = TREE_SIDE_EFFECTS (c);
+ vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
+
+ FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
+ {
+ if (constant_p && !TREE_CONSTANT (val))
+ internal_error ("non-constant element in constant CONSTRUCTOR");
+ if (!side_effects_p && TREE_SIDE_EFFECTS (val))
+ internal_error ("side-effects element in no-side-effects CONSTRUCTOR");
+ }
+}
+
+/* Return a new CONSTRUCTOR node whose type is TYPE and whose values
+ are in the vec pointed to by VALS. */
+tree
+build_constructor (tree type, vec<constructor_elt, va_gc> *vals MEM_STAT_DECL)
+{
+ tree c = make_node (CONSTRUCTOR PASS_MEM_STAT);
+
+ TREE_TYPE (c) = type;
+ CONSTRUCTOR_ELTS (c) = vals;
+
+ recompute_constructor_flags (c);
+
+ return c;
+}
+
+/* Build a CONSTRUCTOR node made of a single initializer, with the specified
+ INDEX and VALUE. */
+tree
+build_constructor_single (tree type, tree index, tree value)
+{
+ vec<constructor_elt, va_gc> *v;
+ constructor_elt elt = {index, value};
+
+ vec_alloc (v, 1);
+ v->quick_push (elt);
+
+ return build_constructor (type, v);
+}
+
+
+/* Return a new CONSTRUCTOR node whose type is TYPE and whose values
+ are in a list pointed to by VALS. */
+tree
+build_constructor_from_list (tree type, tree vals)
+{
+ tree t;
+ vec<constructor_elt, va_gc> *v = NULL;
+
+ if (vals)
+ {
+ vec_alloc (v, list_length (vals));
+ for (t = vals; t; t = TREE_CHAIN (t))
+ CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
+ }
+
+ return build_constructor (type, v);
+}
+
+/* Return a new CONSTRUCTOR node whose type is TYPE and whose values
+ are in a vector pointed to by VALS. Note that the TREE_PURPOSE
+ fields in the constructor remain null. */
+
+tree
+build_constructor_from_vec (tree type, const vec<tree, va_gc> *vals)
+{
+ vec<constructor_elt, va_gc> *v = NULL;
+
+ for (tree t : vals)
+ CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, t);
+
+ return build_constructor (type, v);
+}
+
+/* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number
+ of elements, provided as index/value pairs. */
+
+tree
+build_constructor_va (tree type, int nelts, ...)
+{
+ vec<constructor_elt, va_gc> *v = NULL;
+ va_list p;
+
+ va_start (p, nelts);
+ vec_alloc (v, nelts);
+ while (nelts--)
+ {
+ tree index = va_arg (p, tree);
+ tree value = va_arg (p, tree);
+ CONSTRUCTOR_APPEND_ELT (v, index, value);
+ }
+ va_end (p);
+ return build_constructor (type, v);
+}
+
+/* Return a node of type TYPE for which TREE_CLOBBER_P is true. */
+
+tree
+build_clobber (tree type)
+{
+ tree clobber = build_constructor (type, NULL);
+ TREE_THIS_VOLATILE (clobber) = true;
+ return clobber;
+}
+
+/* Return a new FIXED_CST node whose type is TYPE and value is F. */
+
+tree
+build_fixed (tree type, FIXED_VALUE_TYPE f)
+{
+ tree v;
+ FIXED_VALUE_TYPE *fp;
+
+ v = make_node (FIXED_CST);
+ fp = ggc_alloc<fixed_value> ();
+ memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
+
+ TREE_TYPE (v) = type;
+ TREE_FIXED_CST_PTR (v) = fp;
+ return v;
+}
+
+/* Return a new REAL_CST node whose type is TYPE and value is D. */
+
+tree
+build_real (tree type, REAL_VALUE_TYPE d)
+{
+ tree v;
+ REAL_VALUE_TYPE *dp;
+ int overflow = 0;
+
+ /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
+ Consider doing it via real_convert now. */
+
+ v = make_node (REAL_CST);
+ dp = ggc_alloc<real_value> ();
+ memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
+
+ TREE_TYPE (v) = type;
+ TREE_REAL_CST_PTR (v) = dp;
+ TREE_OVERFLOW (v) = overflow;
+ return v;
+}
+
+/* Like build_real, but first truncate D to the type. */
+
+tree
+build_real_truncate (tree type, REAL_VALUE_TYPE d)
+{
+ return build_real (type, real_value_truncate (TYPE_MODE (type), d));
+}
+
+/* Return a new REAL_CST node whose type is TYPE
+ and whose value is the integer value of the INTEGER_CST node I. */
+
+REAL_VALUE_TYPE
+real_value_from_int_cst (const_tree type, const_tree i)
+{
+ REAL_VALUE_TYPE d;
+
+ /* Clear all bits of the real value type so that we can later do
+ bitwise comparisons to see if two values are the same. */
+ memset (&d, 0, sizeof d);
+
+ real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, wi::to_wide (i),
+ TYPE_SIGN (TREE_TYPE (i)));
+ return d;
+}
+
+/* Given a tree representing an integer constant I, return a tree
+ representing the same value as a floating-point constant of type TYPE. */
+
+tree
+build_real_from_int_cst (tree type, const_tree i)
+{
+ tree v;
+ int overflow = TREE_OVERFLOW (i);
+
+ v = build_real (type, real_value_from_int_cst (type, i));
+
+ TREE_OVERFLOW (v) |= overflow;
+ return v;
+}
+
+/* Return a new REAL_CST node whose type is TYPE
+ and whose value is the integer value I which has sign SGN. */
+
+tree
+build_real_from_wide (tree type, const wide_int_ref &i, signop sgn)
+{
+ REAL_VALUE_TYPE d;
+
+ /* Clear all bits of the real value type so that we can later do
+ bitwise comparisons to see if two values are the same. */
+ memset (&d, 0, sizeof d);
+
+ real_from_integer (&d, TYPE_MODE (type), i, sgn);
+ return build_real (type, d);
+}
+
+/* Return a newly constructed STRING_CST node whose value is the LEN
+ characters at STR when STR is nonnull, or all zeros otherwise.
+ Note that for a C string literal, LEN should include the trailing NUL.
+ The TREE_TYPE is not initialized. */
+
+tree
+build_string (unsigned len, const char *str /*= NULL */)
+{
+ /* Do not waste bytes provided by padding of struct tree_string. */
+ unsigned size = len + offsetof (struct tree_string, str) + 1;
+
+ record_node_allocation_statistics (STRING_CST, size);
+
+ tree s = (tree) ggc_internal_alloc (size);
+
+ memset (s, 0, sizeof (struct tree_typed));
+ TREE_SET_CODE (s, STRING_CST);
+ TREE_CONSTANT (s) = 1;
+ TREE_STRING_LENGTH (s) = len;
+ if (str)
+ memcpy (s->string.str, str, len);
+ else
+ memset (s->string.str, 0, len);
+ s->string.str[len] = '\0';
+
+ return s;
+}
+
+/* Return a newly constructed COMPLEX_CST node whose value is
+ specified by the real and imaginary parts REAL and IMAG.
+ Both REAL and IMAG should be constant nodes. TYPE, if specified,
+ will be the type of the COMPLEX_CST; otherwise a new type will be made. */
+
+tree
+build_complex (tree type, tree real, tree imag)
+{
+ gcc_assert (CONSTANT_CLASS_P (real));
+ gcc_assert (CONSTANT_CLASS_P (imag));
+
+ tree t = make_node (COMPLEX_CST);
+
+ TREE_REALPART (t) = real;
+ TREE_IMAGPART (t) = imag;
+ TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
+ TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
+ return t;
+}
+
+/* Build a complex (inf +- 0i), such as for the result of cproj.
+ TYPE is the complex tree type of the result. If NEG is true, the
+ imaginary zero is negative. */
+
+tree
+build_complex_inf (tree type, bool neg)
+{
+ REAL_VALUE_TYPE rinf, rzero = dconst0;
+
+ real_inf (&rinf);
+ rzero.sign = neg;
+ return build_complex (type, build_real (TREE_TYPE (type), rinf),
+ build_real (TREE_TYPE (type), rzero));
+}
+
+/* Return the constant 1 in type TYPE. If TYPE has several elements, each
+ element is set to 1. In particular, this is 1 + i for complex types. */
+
+tree
+build_each_one_cst (tree type)
+{
+ if (TREE_CODE (type) == COMPLEX_TYPE)
+ {
+ tree scalar = build_one_cst (TREE_TYPE (type));
+ return build_complex (type, scalar, scalar);
+ }
+ else
+ return build_one_cst (type);
+}
+
+/* Return a constant of arithmetic type TYPE which is the
+ multiplicative identity of the set TYPE. */
+
+tree
+build_one_cst (tree type)
+{
+ switch (TREE_CODE (type))
+ {
+ case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
+ case POINTER_TYPE: case REFERENCE_TYPE:
+ case OFFSET_TYPE:
+ return build_int_cst (type, 1);
+
+ case REAL_TYPE:
+ return build_real (type, dconst1);
+
+ case FIXED_POINT_TYPE:
+ /* We can only generate 1 for accum types. */
+ gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
+ return build_fixed (type, FCONST1 (TYPE_MODE (type)));
+
+ case VECTOR_TYPE:
+ {
+ tree scalar = build_one_cst (TREE_TYPE (type));
+
+ return build_vector_from_val (type, scalar);
+ }
+
+ case COMPLEX_TYPE:
+ return build_complex (type,
+ build_one_cst (TREE_TYPE (type)),
+ build_zero_cst (TREE_TYPE (type)));
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Return an integer of type TYPE containing all 1's in as much precision as
+ it contains, or a complex or vector whose subparts are such integers. */
+
+tree
+build_all_ones_cst (tree type)
+{
+ if (TREE_CODE (type) == COMPLEX_TYPE)
+ {
+ tree scalar = build_all_ones_cst (TREE_TYPE (type));
+ return build_complex (type, scalar, scalar);
+ }
+ else
+ return build_minus_one_cst (type);
+}
+
+/* Return a constant of arithmetic type TYPE which is the
+ opposite of the multiplicative identity of the set TYPE. */
+
+tree
+build_minus_one_cst (tree type)
+{
+ switch (TREE_CODE (type))
+ {
+ case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
+ case POINTER_TYPE: case REFERENCE_TYPE:
+ case OFFSET_TYPE:
+ return build_int_cst (type, -1);
+
+ case REAL_TYPE:
+ return build_real (type, dconstm1);
+
+ case FIXED_POINT_TYPE:
+ /* We can only generate 1 for accum types. */
+ gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
+ return build_fixed (type,
+ fixed_from_double_int (double_int_minus_one,
+ SCALAR_TYPE_MODE (type)));
+
+ case VECTOR_TYPE:
+ {
+ tree scalar = build_minus_one_cst (TREE_TYPE (type));
+
+ return build_vector_from_val (type, scalar);
+ }
+
+ case COMPLEX_TYPE:
+ return build_complex (type,
+ build_minus_one_cst (TREE_TYPE (type)),
+ build_zero_cst (TREE_TYPE (type)));
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Build 0 constant of type TYPE. This is used by constructor folding
+ and thus the constant should be represented in memory by
+ zero(es). */
+
+tree
+build_zero_cst (tree type)
+{
+ switch (TREE_CODE (type))
+ {
+ case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
+ case POINTER_TYPE: case REFERENCE_TYPE:
+ case OFFSET_TYPE: case NULLPTR_TYPE:
+ return build_int_cst (type, 0);
+
+ case REAL_TYPE:
+ return build_real (type, dconst0);
+
+ case FIXED_POINT_TYPE:
+ return build_fixed (type, FCONST0 (TYPE_MODE (type)));
+
+ case VECTOR_TYPE:
+ {
+ tree scalar = build_zero_cst (TREE_TYPE (type));
+
+ return build_vector_from_val (type, scalar);
+ }
+
+ case COMPLEX_TYPE:
+ {
+ tree zero = build_zero_cst (TREE_TYPE (type));
+
+ return build_complex (type, zero, zero);
+ }
+
+ default:
+ if (!AGGREGATE_TYPE_P (type))
+ return fold_convert (type, integer_zero_node);
+ return build_constructor (type, NULL);
+ }
+}
+
+
+/* Build a BINFO with LEN language slots. */
+
+tree
+make_tree_binfo (unsigned base_binfos MEM_STAT_DECL)
+{
+ tree t;
+ size_t length = (offsetof (struct tree_binfo, base_binfos)
+ + vec<tree, va_gc>::embedded_size (base_binfos));
+
+ record_node_allocation_statistics (TREE_BINFO, length);
+
+ t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
+
+ memset (t, 0, offsetof (struct tree_binfo, base_binfos));
+
+ TREE_SET_CODE (t, TREE_BINFO);
+
+ BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
+
+ return t;
+}
+
+/* Create a CASE_LABEL_EXPR tree node and return it. */
+
+tree
+build_case_label (tree low_value, tree high_value, tree label_decl)
+{
+ tree t = make_node (CASE_LABEL_EXPR);
+
+ TREE_TYPE (t) = void_type_node;
+ SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
+
+ CASE_LOW (t) = low_value;
+ CASE_HIGH (t) = high_value;
+ CASE_LABEL (t) = label_decl;
+ CASE_CHAIN (t) = NULL_TREE;
+
+ return t;
+}
+
+/* Build a newly constructed INTEGER_CST node. LEN and EXT_LEN are the
+ values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively.
+ The latter determines the length of the HOST_WIDE_INT vector. */
+
+tree
+make_int_cst (int len, int ext_len MEM_STAT_DECL)
+{
+ tree t;
+ int length = ((ext_len - 1) * sizeof (HOST_WIDE_INT)
+ + sizeof (struct tree_int_cst));
+
+ gcc_assert (len);
+ record_node_allocation_statistics (INTEGER_CST, length);
+
+ t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
+
+ TREE_SET_CODE (t, INTEGER_CST);
+ TREE_INT_CST_NUNITS (t) = len;
+ TREE_INT_CST_EXT_NUNITS (t) = ext_len;
+ /* to_offset can only be applied to trees that are offset_int-sized
+ or smaller. EXT_LEN is correct if it fits, otherwise the constant
+ must be exactly the precision of offset_int and so LEN is correct. */
+ if (ext_len <= OFFSET_INT_ELTS)
+ TREE_INT_CST_OFFSET_NUNITS (t) = ext_len;
+ else
+ TREE_INT_CST_OFFSET_NUNITS (t) = len;
+
+ TREE_CONSTANT (t) = 1;
+
+ return t;
+}
+
+/* Build a newly constructed TREE_VEC node of length LEN. */
+
+tree
+make_tree_vec (int len MEM_STAT_DECL)
+{
+ tree t;
+ size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
+
+ record_node_allocation_statistics (TREE_VEC, length);
+
+ t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
+
+ TREE_SET_CODE (t, TREE_VEC);
+ TREE_VEC_LENGTH (t) = len;
+
+ return t;
+}
+
+/* Grow a TREE_VEC node to new length LEN. */
+
+tree
+grow_tree_vec (tree v, int len MEM_STAT_DECL)
+{
+ gcc_assert (TREE_CODE (v) == TREE_VEC);
+
+ int oldlen = TREE_VEC_LENGTH (v);
+ gcc_assert (len > oldlen);
+
+ size_t oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec);
+ size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
+
+ record_node_allocation_statistics (TREE_VEC, length - oldlength);
+
+ v = (tree) ggc_realloc (v, length PASS_MEM_STAT);
+
+ TREE_VEC_LENGTH (v) = len;
+
+ return v;
+}
+
+/* Return 1 if EXPR is the constant zero, whether it is integral, float or
+ fixed, and scalar, complex or vector. */
+
+bool
+zerop (const_tree expr)
+{
+ return (integer_zerop (expr)
+ || real_zerop (expr)
+ || fixed_zerop (expr));
+}
+
+/* Return 1 if EXPR is the integer constant zero or a complex constant
+ of zero, or a location wrapper for such a constant. */
+
+bool
+integer_zerop (const_tree expr)
+{
+ STRIP_ANY_LOCATION_WRAPPER (expr);
+
+ switch (TREE_CODE (expr))
+ {
+ case INTEGER_CST:
+ return wi::to_wide (expr) == 0;
+ case COMPLEX_CST:
+ return (integer_zerop (TREE_REALPART (expr))
+ && integer_zerop (TREE_IMAGPART (expr)));
+ case VECTOR_CST:
+ return (VECTOR_CST_NPATTERNS (expr) == 1
+ && VECTOR_CST_DUPLICATE_P (expr)
+ && integer_zerop (VECTOR_CST_ENCODED_ELT (expr, 0)));
+ default:
+ return false;
+ }
+}
+
+/* Return 1 if EXPR is the integer constant one or the corresponding
+ complex constant, or a location wrapper for such a constant. */
+
+bool
+integer_onep (const_tree expr)
+{
+ STRIP_ANY_LOCATION_WRAPPER (expr);
+
+ switch (TREE_CODE (expr))
+ {
+ case INTEGER_CST:
+ return wi::eq_p (wi::to_widest (expr), 1);
+ case COMPLEX_CST:
+ return (integer_onep (TREE_REALPART (expr))
+ && integer_zerop (TREE_IMAGPART (expr)));
+ case VECTOR_CST:
+ return (VECTOR_CST_NPATTERNS (expr) == 1
+ && VECTOR_CST_DUPLICATE_P (expr)
+ && integer_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
+ default:
+ return false;
+ }
+}
+
+/* Return 1 if EXPR is the integer constant one. For complex and vector,
+ return 1 if every piece is the integer constant one.
+ Also return 1 for location wrappers for such a constant. */
+
+bool
+integer_each_onep (const_tree expr)
+{
+ STRIP_ANY_LOCATION_WRAPPER (expr);
+
+ if (TREE_CODE (expr) == COMPLEX_CST)
+ return (integer_onep (TREE_REALPART (expr))
+ && integer_onep (TREE_IMAGPART (expr)));
+ else
+ return integer_onep (expr);
+}
+
+/* Return 1 if EXPR is an integer containing all 1's in as much precision as
+ it contains, or a complex or vector whose subparts are such integers,
+ or a location wrapper for such a constant. */
+
+bool
+integer_all_onesp (const_tree expr)
+{
+ STRIP_ANY_LOCATION_WRAPPER (expr);
+
+ if (TREE_CODE (expr) == COMPLEX_CST
+ && integer_all_onesp (TREE_REALPART (expr))
+ && integer_all_onesp (TREE_IMAGPART (expr)))
+ return true;
+
+ else if (TREE_CODE (expr) == VECTOR_CST)
+ return (VECTOR_CST_NPATTERNS (expr) == 1
+ && VECTOR_CST_DUPLICATE_P (expr)
+ && integer_all_onesp (VECTOR_CST_ENCODED_ELT (expr, 0)));
+
+ else if (TREE_CODE (expr) != INTEGER_CST)
+ return false;
+
+ return (wi::max_value (TYPE_PRECISION (TREE_TYPE (expr)), UNSIGNED)
+ == wi::to_wide (expr));
+}
+
+/* Return 1 if EXPR is the integer constant minus one, or a location wrapper
+ for such a constant. */
+
+bool
+integer_minus_onep (const_tree expr)
+{
+ STRIP_ANY_LOCATION_WRAPPER (expr);
+
+ if (TREE_CODE (expr) == COMPLEX_CST)
+ return (integer_all_onesp (TREE_REALPART (expr))
+ && integer_zerop (TREE_IMAGPART (expr)));
+ else
+ return integer_all_onesp (expr);
+}
+
+/* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
+ one bit on), or a location wrapper for such a constant. */
+
+bool
+integer_pow2p (const_tree expr)
+{
+ STRIP_ANY_LOCATION_WRAPPER (expr);
+
+ if (TREE_CODE (expr) == COMPLEX_CST
+ && integer_pow2p (TREE_REALPART (expr))
+ && integer_zerop (TREE_IMAGPART (expr)))
+ return true;
+
+ if (TREE_CODE (expr) != INTEGER_CST)
+ return false;
+
+ return wi::popcount (wi::to_wide (expr)) == 1;
+}
+
+/* Return 1 if EXPR is an integer constant other than zero or a
+ complex constant other than zero, or a location wrapper for such a
+ constant. */
+
+bool
+integer_nonzerop (const_tree expr)
+{
+ STRIP_ANY_LOCATION_WRAPPER (expr);
+
+ return ((TREE_CODE (expr) == INTEGER_CST
+ && wi::to_wide (expr) != 0)
+ || (TREE_CODE (expr) == COMPLEX_CST
+ && (integer_nonzerop (TREE_REALPART (expr))
+ || integer_nonzerop (TREE_IMAGPART (expr)))));
+}
+
+/* Return 1 if EXPR is the integer constant one. For vector,
+ return 1 if every piece is the integer constant minus one
+ (representing the value TRUE).
+ Also return 1 for location wrappers for such a constant. */
+
+bool
+integer_truep (const_tree expr)
+{
+ STRIP_ANY_LOCATION_WRAPPER (expr);
+
+ if (TREE_CODE (expr) == VECTOR_CST)
+ return integer_all_onesp (expr);
+ return integer_onep (expr);
+}
+
+/* Return 1 if EXPR is the fixed-point constant zero, or a location wrapper
+ for such a constant. */
+
+bool
+fixed_zerop (const_tree expr)
+{
+ STRIP_ANY_LOCATION_WRAPPER (expr);
+
+ return (TREE_CODE (expr) == FIXED_CST
+ && TREE_FIXED_CST (expr).data.is_zero ());
+}
+
+/* Return the power of two represented by a tree node known to be a
+ power of two. */
+
+int
+tree_log2 (const_tree expr)
+{
+ if (TREE_CODE (expr) == COMPLEX_CST)
+ return tree_log2 (TREE_REALPART (expr));
+
+ return wi::exact_log2 (wi::to_wide (expr));
+}
+
+/* Similar, but return the largest integer Y such that 2 ** Y is less
+ than or equal to EXPR. */
+
+int
+tree_floor_log2 (const_tree expr)
+{
+ if (TREE_CODE (expr) == COMPLEX_CST)
+ return tree_log2 (TREE_REALPART (expr));
+
+ return wi::floor_log2 (wi::to_wide (expr));
+}
+
+/* Return number of known trailing zero bits in EXPR, or, if the value of
+ EXPR is known to be zero, the precision of it's type. */
+
+unsigned int
+tree_ctz (const_tree expr)
+{
+ if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
+ && !POINTER_TYPE_P (TREE_TYPE (expr)))
+ return 0;
+
+ unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr));
+ switch (TREE_CODE (expr))
+ {
+ case INTEGER_CST:
+ ret1 = wi::ctz (wi::to_wide (expr));
+ return MIN (ret1, prec);
+ case SSA_NAME:
+ ret1 = wi::ctz (get_nonzero_bits (expr));
+ return MIN (ret1, prec);
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ case BIT_IOR_EXPR:
+ case BIT_XOR_EXPR:
+ case MIN_EXPR:
+ case MAX_EXPR:
+ ret1 = tree_ctz (TREE_OPERAND (expr, 0));
+ if (ret1 == 0)
+ return ret1;
+ ret2 = tree_ctz (TREE_OPERAND (expr, 1));
+ return MIN (ret1, ret2);
+ case POINTER_PLUS_EXPR:
+ ret1 = tree_ctz (TREE_OPERAND (expr, 0));
+ ret2 = tree_ctz (TREE_OPERAND (expr, 1));
+ /* Second operand is sizetype, which could be in theory
+ wider than pointer's precision. Make sure we never
+ return more than prec. */
+ ret2 = MIN (ret2, prec);
+ return MIN (ret1, ret2);
+ case BIT_AND_EXPR:
+ ret1 = tree_ctz (TREE_OPERAND (expr, 0));
+ ret2 = tree_ctz (TREE_OPERAND (expr, 1));
+ return MAX (ret1, ret2);
+ case MULT_EXPR:
+ ret1 = tree_ctz (TREE_OPERAND (expr, 0));
+ ret2 = tree_ctz (TREE_OPERAND (expr, 1));
+ return MIN (ret1 + ret2, prec);
+ case LSHIFT_EXPR:
+ ret1 = tree_ctz (TREE_OPERAND (expr, 0));
+ if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
+ && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
+ {
+ ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
+ return MIN (ret1 + ret2, prec);
+ }
+ return ret1;
+ case RSHIFT_EXPR:
+ if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
+ && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
+ {
+ ret1 = tree_ctz (TREE_OPERAND (expr, 0));
+ ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
+ if (ret1 > ret2)
+ return ret1 - ret2;
+ }
+ return 0;
+ case TRUNC_DIV_EXPR:
+ case CEIL_DIV_EXPR:
+ case FLOOR_DIV_EXPR:
+ case ROUND_DIV_EXPR:
+ case EXACT_DIV_EXPR:
+ if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
+ && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1)
+ {
+ int l = tree_log2 (TREE_OPERAND (expr, 1));
+ if (l >= 0)
+ {
+ ret1 = tree_ctz (TREE_OPERAND (expr, 0));
+ ret2 = l;
+ if (ret1 > ret2)
+ return ret1 - ret2;
+ }
+ }
+ return 0;
+ CASE_CONVERT:
+ ret1 = tree_ctz (TREE_OPERAND (expr, 0));
+ if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
+ ret1 = prec;
+ return MIN (ret1, prec);
+ case SAVE_EXPR:
+ return tree_ctz (TREE_OPERAND (expr, 0));
+ case COND_EXPR:
+ ret1 = tree_ctz (TREE_OPERAND (expr, 1));
+ if (ret1 == 0)
+ return 0;
+ ret2 = tree_ctz (TREE_OPERAND (expr, 2));
+ return MIN (ret1, ret2);
+ case COMPOUND_EXPR:
+ return tree_ctz (TREE_OPERAND (expr, 1));
+ case ADDR_EXPR:
+ ret1 = get_pointer_alignment (CONST_CAST_TREE (expr));
+ if (ret1 > BITS_PER_UNIT)
+ {
+ ret1 = ctz_hwi (ret1 / BITS_PER_UNIT);
+ return MIN (ret1, prec);
+ }
+ return 0;
+ default:
+ return 0;
+ }
+}
+
+/* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
+ decimal float constants, so don't return 1 for them.
+ Also return 1 for location wrappers around such a constant. */
+
+bool
+real_zerop (const_tree expr)
+{
+ STRIP_ANY_LOCATION_WRAPPER (expr);
+
+ switch (TREE_CODE (expr))
+ {
+ case REAL_CST:
+ return real_equal (&TREE_REAL_CST (expr), &dconst0)
+ && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
+ case COMPLEX_CST:
+ return real_zerop (TREE_REALPART (expr))
+ && real_zerop (TREE_IMAGPART (expr));
+ case VECTOR_CST:
+ {
+ /* Don't simply check for a duplicate because the predicate
+ accepts both +0.0 and -0.0. */
+ unsigned count = vector_cst_encoded_nelts (expr);
+ for (unsigned int i = 0; i < count; ++i)
+ if (!real_zerop (VECTOR_CST_ENCODED_ELT (expr, i)))
+ return false;
+ return true;
+ }
+ default:
+ return false;
+ }
+}
+
+/* Return 1 if EXPR is the real constant one in real or complex form.
+ Trailing zeroes matter for decimal float constants, so don't return
+ 1 for them.
+ Also return 1 for location wrappers around such a constant. */
+
+bool
+real_onep (const_tree expr)
+{
+ STRIP_ANY_LOCATION_WRAPPER (expr);
+
+ switch (TREE_CODE (expr))
+ {
+ case REAL_CST:
+ return real_equal (&TREE_REAL_CST (expr), &dconst1)
+ && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
+ case COMPLEX_CST:
+ return real_onep (TREE_REALPART (expr))
+ && real_zerop (TREE_IMAGPART (expr));
+ case VECTOR_CST:
+ return (VECTOR_CST_NPATTERNS (expr) == 1
+ && VECTOR_CST_DUPLICATE_P (expr)
+ && real_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
+ default:
+ return false;
+ }
+}
+
+/* Return 1 if EXPR is the real constant minus one. Trailing zeroes
+ matter for decimal float constants, so don't return 1 for them.
+ Also return 1 for location wrappers around such a constant. */
+
+bool
+real_minus_onep (const_tree expr)
+{
+ STRIP_ANY_LOCATION_WRAPPER (expr);
+
+ switch (TREE_CODE (expr))
+ {
+ case REAL_CST:
+ return real_equal (&TREE_REAL_CST (expr), &dconstm1)
+ && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
+ case COMPLEX_CST:
+ return real_minus_onep (TREE_REALPART (expr))
+ && real_zerop (TREE_IMAGPART (expr));
+ case VECTOR_CST:
+ return (VECTOR_CST_NPATTERNS (expr) == 1
+ && VECTOR_CST_DUPLICATE_P (expr)
+ && real_minus_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
+ default:
+ return false;
+ }
+}
+
+/* Nonzero if EXP is a constant or a cast of a constant. */
+
+bool
+really_constant_p (const_tree exp)
+{
+ /* This is not quite the same as STRIP_NOPS. It does more. */
+ while (CONVERT_EXPR_P (exp)
+ || TREE_CODE (exp) == NON_LVALUE_EXPR)
+ exp = TREE_OPERAND (exp, 0);
+ return TREE_CONSTANT (exp);
+}
+
+/* Return true if T holds a polynomial pointer difference, storing it in
+ *VALUE if so. A true return means that T's precision is no greater
+ than 64 bits, which is the largest address space we support, so *VALUE
+ never loses precision. However, the signedness of the result does
+ not necessarily match the signedness of T: sometimes an unsigned type
+ like sizetype is used to encode a value that is actually negative. */
+
+bool
+ptrdiff_tree_p (const_tree t, poly_int64_pod *value)
+{
+ if (!t)
+ return false;
+ if (TREE_CODE (t) == INTEGER_CST)
+ {
+ if (!cst_and_fits_in_hwi (t))
+ return false;
+ *value = int_cst_value (t);
+ return true;
+ }
+ if (POLY_INT_CST_P (t))
+ {
+ for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
+ if (!cst_and_fits_in_hwi (POLY_INT_CST_COEFF (t, i)))
+ return false;
+ for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
+ value->coeffs[i] = int_cst_value (POLY_INT_CST_COEFF (t, i));
+ return true;
+ }
+ return false;
+}
+
+poly_int64
+tree_to_poly_int64 (const_tree t)
+{
+ gcc_assert (tree_fits_poly_int64_p (t));
+ if (POLY_INT_CST_P (t))
+ return poly_int_cst_value (t).force_shwi ();
+ return TREE_INT_CST_LOW (t);
+}
+
+poly_uint64
+tree_to_poly_uint64 (const_tree t)
+{
+ gcc_assert (tree_fits_poly_uint64_p (t));
+ if (POLY_INT_CST_P (t))
+ return poly_int_cst_value (t).force_uhwi ();
+ return TREE_INT_CST_LOW (t);
+}
+
+/* Return first list element whose TREE_VALUE is ELEM.
+ Return 0 if ELEM is not in LIST. */
+
+tree
+value_member (tree elem, tree list)
+{
+ while (list)
+ {
+ if (elem == TREE_VALUE (list))
+ return list;
+ list = TREE_CHAIN (list);
+ }
+ return NULL_TREE;
+}
+
+/* Return first list element whose TREE_PURPOSE is ELEM.
+ Return 0 if ELEM is not in LIST. */
+
+tree
+purpose_member (const_tree elem, tree list)
+{
+ while (list)
+ {
+ if (elem == TREE_PURPOSE (list))
+ return list;
+ list = TREE_CHAIN (list);
+ }
+ return NULL_TREE;
+}
+
+/* Return true if ELEM is in V. */
+
+bool
+vec_member (const_tree elem, vec<tree, va_gc> *v)
+{
+ unsigned ix;
+ tree t;
+ FOR_EACH_VEC_SAFE_ELT (v, ix, t)
+ if (elem == t)
+ return true;
+ return false;
+}
+
+/* Returns element number IDX (zero-origin) of chain CHAIN, or
+ NULL_TREE. */
+
+tree
+chain_index (int idx, tree chain)
+{
+ for (; chain && idx > 0; --idx)
+ chain = TREE_CHAIN (chain);
+ return chain;
+}
+
+/* Return nonzero if ELEM is part of the chain CHAIN. */
+
+bool
+chain_member (const_tree elem, const_tree chain)
+{
+ while (chain)
+ {
+ if (elem == chain)
+ return true;
+ chain = DECL_CHAIN (chain);
+ }
+
+ return false;
+}
+
+/* Return the length of a chain of nodes chained through TREE_CHAIN.
+ We expect a null pointer to mark the end of the chain.
+ This is the Lisp primitive `length'. */
+
+int
+list_length (const_tree t)
+{
+ const_tree p = t;
+#ifdef ENABLE_TREE_CHECKING
+ const_tree q = t;
+#endif
+ int len = 0;
+
+ while (p)
+ {
+ p = TREE_CHAIN (p);
+#ifdef ENABLE_TREE_CHECKING
+ if (len % 2)
+ q = TREE_CHAIN (q);
+ gcc_assert (p != q);
+#endif
+ len++;
+ }
+
+ return len;
+}
+
+/* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
+ UNION_TYPE TYPE, or NULL_TREE if none. */
+
+tree
+first_field (const_tree type)
+{
+ tree t = TYPE_FIELDS (type);
+ while (t && TREE_CODE (t) != FIELD_DECL)
+ t = TREE_CHAIN (t);
+ return t;
+}
+
+/* Returns the last FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
+ UNION_TYPE TYPE, or NULL_TREE if none. */
+
+tree
+last_field (const_tree type)
+{
+ tree last = NULL_TREE;
+
+ for (tree fld = TYPE_FIELDS (type); fld; fld = TREE_CHAIN (fld))
+ {
+ if (TREE_CODE (fld) != FIELD_DECL)
+ continue;
+
+ last = fld;
+ }
+
+ return last;
+}
+
+/* Concatenate two chains of nodes (chained through TREE_CHAIN)
+ by modifying the last node in chain 1 to point to chain 2.
+ This is the Lisp primitive `nconc'. */
+
+tree
+chainon (tree op1, tree op2)
+{
+ tree t1;
+
+ if (!op1)
+ return op2;
+ if (!op2)
+ return op1;
+
+ for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
+ continue;
+ TREE_CHAIN (t1) = op2;
+
+#ifdef ENABLE_TREE_CHECKING
+ {
+ tree t2;
+ for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
+ gcc_assert (t2 != t1);
+ }
+#endif
+
+ return op1;
+}
+
+/* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
+
+tree
+tree_last (tree chain)
+{
+ tree next;
+ if (chain)
+ while ((next = TREE_CHAIN (chain)))
+ chain = next;
+ return chain;
+}
+
+/* Reverse the order of elements in the chain T,
+ and return the new head of the chain (old last element). */
+
+tree
+nreverse (tree t)
+{
+ tree prev = 0, decl, next;
+ for (decl = t; decl; decl = next)
+ {
+ /* We shouldn't be using this function to reverse BLOCK chains; we
+ have blocks_nreverse for that. */
+ gcc_checking_assert (TREE_CODE (decl) != BLOCK);
+ next = TREE_CHAIN (decl);
+ TREE_CHAIN (decl) = prev;
+ prev = decl;
+ }
+ return prev;
+}
+
+/* Return a newly created TREE_LIST node whose
+ purpose and value fields are PARM and VALUE. */
+
+tree
+build_tree_list (tree parm, tree value MEM_STAT_DECL)
+{
+ tree t = make_node (TREE_LIST PASS_MEM_STAT);
+ TREE_PURPOSE (t) = parm;
+ TREE_VALUE (t) = value;
+ return t;
+}
+
+/* Build a chain of TREE_LIST nodes from a vector. */
+
+tree
+build_tree_list_vec (const vec<tree, va_gc> *vec MEM_STAT_DECL)
+{
+ tree ret = NULL_TREE;
+ tree *pp = &ret;
+ unsigned int i;
+ tree t;
+ FOR_EACH_VEC_SAFE_ELT (vec, i, t)
+ {
+ *pp = build_tree_list (NULL, t PASS_MEM_STAT);
+ pp = &TREE_CHAIN (*pp);
+ }
+ return ret;
+}
+
+/* Return a newly created TREE_LIST node whose
+ purpose and value fields are PURPOSE and VALUE
+ and whose TREE_CHAIN is CHAIN. */
+
+tree
+tree_cons (tree purpose, tree value, tree chain MEM_STAT_DECL)
+{
+ tree node;
+
+ node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
+ memset (node, 0, sizeof (struct tree_common));
+
+ record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
+
+ TREE_SET_CODE (node, TREE_LIST);
+ TREE_CHAIN (node) = chain;
+ TREE_PURPOSE (node) = purpose;
+ TREE_VALUE (node) = value;
+ return node;
+}
+
+/* Return the values of the elements of a CONSTRUCTOR as a vector of
+ trees. */
+
+vec<tree, va_gc> *
+ctor_to_vec (tree ctor)
+{
+ vec<tree, va_gc> *vec;
+ vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
+ unsigned int ix;
+ tree val;
+
+ FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
+ vec->quick_push (val);
+
+ return vec;
+}
+
+/* Return the size nominally occupied by an object of type TYPE
+ when it resides in memory. The value is measured in units of bytes,
+ and its data type is that normally used for type sizes
+ (which is the first type created by make_signed_type or
+ make_unsigned_type). */
+
+tree
+size_in_bytes_loc (location_t loc, const_tree type)
+{
+ tree t;
+
+ if (type == error_mark_node)
+ return integer_zero_node;
+
+ type = TYPE_MAIN_VARIANT (type);
+ t = TYPE_SIZE_UNIT (type);
+
+ if (t == 0)
+ {
+ lang_hooks.types.incomplete_type_error (loc, NULL_TREE, type);
+ return size_zero_node;
+ }
+
+ return t;
+}
+
+/* Return the size of TYPE (in bytes) as a wide integer
+ or return -1 if the size can vary or is larger than an integer. */
+
+HOST_WIDE_INT
+int_size_in_bytes (const_tree type)
+{
+ tree t;
+
+ if (type == error_mark_node)
+ return 0;
+
+ type = TYPE_MAIN_VARIANT (type);
+ t = TYPE_SIZE_UNIT (type);
+
+ if (t && tree_fits_uhwi_p (t))
+ return TREE_INT_CST_LOW (t);
+ else
+ return -1;
+}
+
+/* Return the maximum size of TYPE (in bytes) as a wide integer
+ or return -1 if the size can vary or is larger than an integer. */
+
+HOST_WIDE_INT
+max_int_size_in_bytes (const_tree type)
+{
+ HOST_WIDE_INT size = -1;
+ tree size_tree;
+
+ /* If this is an array type, check for a possible MAX_SIZE attached. */
+
+ if (TREE_CODE (type) == ARRAY_TYPE)
+ {
+ size_tree = TYPE_ARRAY_MAX_SIZE (type);
+
+ if (size_tree && tree_fits_uhwi_p (size_tree))
+ size = tree_to_uhwi (size_tree);
+ }
+
+ /* If we still haven't been able to get a size, see if the language
+ can compute a maximum size. */
+
+ if (size == -1)
+ {
+ size_tree = lang_hooks.types.max_size (type);
+
+ if (size_tree && tree_fits_uhwi_p (size_tree))
+ size = tree_to_uhwi (size_tree);
+ }
+
+ return size;
+}
+
+/* Return the bit position of FIELD, in bits from the start of the record.
+ This is a tree of type bitsizetype. */
+
+tree
+bit_position (const_tree field)
+{
+ return bit_from_pos (DECL_FIELD_OFFSET (field),
+ DECL_FIELD_BIT_OFFSET (field));
+}
+
+/* Return the byte position of FIELD, in bytes from the start of the record.
+ This is a tree of type sizetype. */
+
+tree
+byte_position (const_tree field)
+{
+ return byte_from_pos (DECL_FIELD_OFFSET (field),
+ DECL_FIELD_BIT_OFFSET (field));
+}
+
+/* Likewise, but return as an integer. It must be representable in
+ that way (since it could be a signed value, we don't have the
+ option of returning -1 like int_size_in_byte can. */
+
+HOST_WIDE_INT
+int_byte_position (const_tree field)
+{
+ return tree_to_shwi (byte_position (field));
+}
+
+/* Return, as a tree node, the number of elements for TYPE (which is an
+ ARRAY_TYPE) minus one. This counts only elements of the top array. */
+
+tree
+array_type_nelts (const_tree type)
+{
+ tree index_type, min, max;
+
+ /* If they did it with unspecified bounds, then we should have already
+ given an error about it before we got here. */
+ if (! TYPE_DOMAIN (type))
+ return error_mark_node;
+
+ index_type = TYPE_DOMAIN (type);
+ min = TYPE_MIN_VALUE (index_type);
+ max = TYPE_MAX_VALUE (index_type);
+
+ /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
+ if (!max)
+ {
+ /* zero sized arrays are represented from C FE as complete types with
+ NULL TYPE_MAX_VALUE and zero TYPE_SIZE, while C++ FE represents
+ them as min 0, max -1. */
+ if (COMPLETE_TYPE_P (type)
+ && integer_zerop (TYPE_SIZE (type))
+ && integer_zerop (min))
+ return build_int_cst (TREE_TYPE (min), -1);
+
+ return error_mark_node;
+ }
+
+ return (integer_zerop (min)
+ ? max
+ : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
+}
+
+/* If arg is static -- a reference to an object in static storage -- then
+ return the object. This is not the same as the C meaning of `static'.
+ If arg isn't static, return NULL. */
+
+tree
+staticp (tree arg)
+{
+ switch (TREE_CODE (arg))
+ {
+ case FUNCTION_DECL:
+ /* Nested functions are static, even though taking their address will
+ involve a trampoline as we unnest the nested function and create
+ the trampoline on the tree level. */
+ return arg;
+
+ case VAR_DECL:
+ return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
+ && ! DECL_THREAD_LOCAL_P (arg)
+ && ! DECL_DLLIMPORT_P (arg)
+ ? arg : NULL);
+
+ case CONST_DECL:
+ return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
+ ? arg : NULL);
+
+ case CONSTRUCTOR:
+ return TREE_STATIC (arg) ? arg : NULL;
+
+ case LABEL_DECL:
+ case STRING_CST:
+ return arg;
+
+ case COMPONENT_REF:
+ /* If the thing being referenced is not a field, then it is
+ something language specific. */
+ gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
+
+ /* If we are referencing a bitfield, we can't evaluate an
+ ADDR_EXPR at compile time and so it isn't a constant. */
+ if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
+ return NULL;
+
+ return staticp (TREE_OPERAND (arg, 0));
+
+ case BIT_FIELD_REF:
+ return NULL;
+
+ case INDIRECT_REF:
+ return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
+
+ case ARRAY_REF:
+ case ARRAY_RANGE_REF:
+ if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
+ && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
+ return staticp (TREE_OPERAND (arg, 0));
+ else
+ return NULL;
+
+ case COMPOUND_LITERAL_EXPR:
+ return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
+
+ default:
+ return NULL;
+ }
+}
+
+
+
+
+/* Return whether OP is a DECL whose address is function-invariant. */
+
+bool
+decl_address_invariant_p (const_tree op)
+{
+ /* The conditions below are slightly less strict than the one in
+ staticp. */
+
+ switch (TREE_CODE (op))
+ {
+ case PARM_DECL:
+ case RESULT_DECL:
+ case LABEL_DECL:
+ case FUNCTION_DECL:
+ return true;
+
+ case VAR_DECL:
+ if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
+ || DECL_THREAD_LOCAL_P (op)
+ || DECL_CONTEXT (op) == current_function_decl
+ || decl_function_context (op) == current_function_decl)
+ return true;
+ break;
+
+ case CONST_DECL:
+ if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
+ || decl_function_context (op) == current_function_decl)
+ return true;
+ break;
+
+ default:
+ break;
+ }
+
+ return false;
+}
+
+/* Return whether OP is a DECL whose address is interprocedural-invariant. */
+
+bool
+decl_address_ip_invariant_p (const_tree op)
+{
+ /* The conditions below are slightly less strict than the one in
+ staticp. */
+
+ switch (TREE_CODE (op))
+ {
+ case LABEL_DECL:
+ case FUNCTION_DECL:
+ case STRING_CST:
+ return true;
+
+ case VAR_DECL:
+ if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
+ && !DECL_DLLIMPORT_P (op))
+ || DECL_THREAD_LOCAL_P (op))
+ return true;
+ break;
+
+ case CONST_DECL:
+ if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
+ return true;
+ break;
+
+ default:
+ break;
+ }
+
+ return false;
+}
+
+
+/* Return true if T is function-invariant (internal function, does
+ not handle arithmetic; that's handled in skip_simple_arithmetic and
+ tree_invariant_p). */
+
+static bool
+tree_invariant_p_1 (tree t)
+{
+ tree op;
+
+ if (TREE_CONSTANT (t)
+ || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
+ return true;
+
+ switch (TREE_CODE (t))
+ {
+ case SAVE_EXPR:
+ return true;
+
+ case ADDR_EXPR:
+ op = TREE_OPERAND (t, 0);
+ while (handled_component_p (op))
+ {
+ switch (TREE_CODE (op))
+ {
+ case ARRAY_REF:
+ case ARRAY_RANGE_REF:
+ if (!tree_invariant_p (TREE_OPERAND (op, 1))
+ || TREE_OPERAND (op, 2) != NULL_TREE
+ || TREE_OPERAND (op, 3) != NULL_TREE)
+ return false;
+ break;
+
+ case COMPONENT_REF:
+ if (TREE_OPERAND (op, 2) != NULL_TREE)
+ return false;
+ break;
+
+ default:;
+ }
+ op = TREE_OPERAND (op, 0);
+ }
+
+ return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
+
+ default:
+ break;
+ }
+
+ return false;
+}
+
+/* Return true if T is function-invariant. */
+
+bool
+tree_invariant_p (tree t)
+{
+ tree inner = skip_simple_arithmetic (t);
+ return tree_invariant_p_1 (inner);
+}
+
+/* Wrap a SAVE_EXPR around EXPR, if appropriate.
+ Do this to any expression which may be used in more than one place,
+ but must be evaluated only once.
+
+ Normally, expand_expr would reevaluate the expression each time.
+ Calling save_expr produces something that is evaluated and recorded
+ the first time expand_expr is called on it. Subsequent calls to
+ expand_expr just reuse the recorded value.
+
+ The call to expand_expr that generates code that actually computes
+ the value is the first call *at compile time*. Subsequent calls
+ *at compile time* generate code to use the saved value.
+ This produces correct result provided that *at run time* control
+ always flows through the insns made by the first expand_expr
+ before reaching the other places where the save_expr was evaluated.
+ You, the caller of save_expr, must make sure this is so.
+
+ Constants, and certain read-only nodes, are returned with no
+ SAVE_EXPR because that is safe. Expressions containing placeholders
+ are not touched; see tree.def for an explanation of what these
+ are used for. */
+
+tree
+save_expr (tree expr)
+{
+ tree inner;
+
+ /* If the tree evaluates to a constant, then we don't want to hide that
+ fact (i.e. this allows further folding, and direct checks for constants).
+ However, a read-only object that has side effects cannot be bypassed.
+ Since it is no problem to reevaluate literals, we just return the
+ literal node. */
+ inner = skip_simple_arithmetic (expr);
+ if (TREE_CODE (inner) == ERROR_MARK)
+ return inner;
+
+ if (tree_invariant_p_1 (inner))
+ return expr;
+
+ /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
+ it means that the size or offset of some field of an object depends on
+ the value within another field.
+
+ Note that it must not be the case that EXPR contains both a PLACEHOLDER_EXPR
+ and some variable since it would then need to be both evaluated once and
+ evaluated more than once. Front-ends must assure this case cannot
+ happen by surrounding any such subexpressions in their own SAVE_EXPR
+ and forcing evaluation at the proper time. */
+ if (contains_placeholder_p (inner))
+ return expr;
+
+ expr = build1_loc (EXPR_LOCATION (expr), SAVE_EXPR, TREE_TYPE (expr), expr);
+
+ /* This expression might be placed ahead of a jump to ensure that the
+ value was computed on both sides of the jump. So make sure it isn't
+ eliminated as dead. */
+ TREE_SIDE_EFFECTS (expr) = 1;
+ return expr;
+}
+
+/* Look inside EXPR into any simple arithmetic operations. Return the
+ outermost non-arithmetic or non-invariant node. */
+
+tree
+skip_simple_arithmetic (tree expr)
+{
+ /* We don't care about whether this can be used as an lvalue in this
+ context. */
+ while (TREE_CODE (expr) == NON_LVALUE_EXPR)
+ expr = TREE_OPERAND (expr, 0);
+
+ /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
+ a constant, it will be more efficient to not make another SAVE_EXPR since
+ it will allow better simplification and GCSE will be able to merge the
+ computations if they actually occur. */
+ while (true)
+ {
+ if (UNARY_CLASS_P (expr))
+ expr = TREE_OPERAND (expr, 0);
+ else if (BINARY_CLASS_P (expr))
+ {
+ if (tree_invariant_p (TREE_OPERAND (expr, 1)))
+ expr = TREE_OPERAND (expr, 0);
+ else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
+ expr = TREE_OPERAND (expr, 1);
+ else
+ break;
+ }
+ else
+ break;
+ }
+
+ return expr;
+}
+
+/* Look inside EXPR into simple arithmetic operations involving constants.
+ Return the outermost non-arithmetic or non-constant node. */
+
+tree
+skip_simple_constant_arithmetic (tree expr)
+{
+ while (TREE_CODE (expr) == NON_LVALUE_EXPR)
+ expr = TREE_OPERAND (expr, 0);
+
+ while (true)
+ {
+ if (UNARY_CLASS_P (expr))
+ expr = TREE_OPERAND (expr, 0);
+ else if (BINARY_CLASS_P (expr))
+ {
+ if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
+ expr = TREE_OPERAND (expr, 0);
+ else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
+ expr = TREE_OPERAND (expr, 1);
+ else
+ break;
+ }
+ else
+ break;
+ }
+
+ return expr;
+}
+
+/* Return which tree structure is used by T. */
+
+enum tree_node_structure_enum
+tree_node_structure (const_tree t)
+{
+ const enum tree_code code = TREE_CODE (t);
+ return tree_node_structure_for_code (code);
+}
+
+/* Set various status flags when building a CALL_EXPR object T. */
+
+static void
+process_call_operands (tree t)
+{
+ bool side_effects = TREE_SIDE_EFFECTS (t);
+ bool read_only = false;
+ int i = call_expr_flags (t);
+
+ /* Calls have side-effects, except those to const or pure functions. */
+ if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
+ side_effects = true;
+ /* Propagate TREE_READONLY of arguments for const functions. */
+ if (i & ECF_CONST)
+ read_only = true;
+
+ if (!side_effects || read_only)
+ for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
+ {
+ tree op = TREE_OPERAND (t, i);
+ if (op && TREE_SIDE_EFFECTS (op))
+ side_effects = true;
+ if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
+ read_only = false;
+ }
+
+ TREE_SIDE_EFFECTS (t) = side_effects;
+ TREE_READONLY (t) = read_only;
+}
+
+/* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
+ size or offset that depends on a field within a record. */
+
+bool
+contains_placeholder_p (const_tree exp)
+{
+ enum tree_code code;
+
+ if (!exp)
+ return 0;
+
+ code = TREE_CODE (exp);
+ if (code == PLACEHOLDER_EXPR)
+ return 1;
+
+ switch (TREE_CODE_CLASS (code))
+ {
+ case tcc_reference:
+ /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
+ position computations since they will be converted into a
+ WITH_RECORD_EXPR involving the reference, which will assume
+ here will be valid. */
+ return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
+
+ case tcc_exceptional:
+ if (code == TREE_LIST)
+ return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
+ || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
+ break;
+
+ case tcc_unary:
+ case tcc_binary:
+ case tcc_comparison:
+ case tcc_expression:
+ switch (code)
+ {
+ case COMPOUND_EXPR:
+ /* Ignoring the first operand isn't quite right, but works best. */
+ return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
+
+ case COND_EXPR:
+ return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
+ || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
+ || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
+
+ case SAVE_EXPR:
+ /* The save_expr function never wraps anything containing
+ a PLACEHOLDER_EXPR. */
+ return 0;
+
+ default:
+ break;
+ }
+
+ switch (TREE_CODE_LENGTH (code))
+ {
+ case 1:
+ return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
+ case 2:
+ return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
+ || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
+ default:
+ return 0;
+ }
+
+ case tcc_vl_exp:
+ switch (code)
+ {
+ case CALL_EXPR:
+ {
+ const_tree arg;
+ const_call_expr_arg_iterator iter;
+ FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
+ if (CONTAINS_PLACEHOLDER_P (arg))
+ return 1;
+ return 0;
+ }
+ default:
+ return 0;
+ }
+
+ default:
+ return 0;
+ }
+ return 0;
+}
+
+/* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
+ directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
+ field positions. */
+
+static bool
+type_contains_placeholder_1 (const_tree type)
+{
+ /* If the size contains a placeholder or the parent type (component type in
+ the case of arrays) type involves a placeholder, this type does. */
+ if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
+ || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
+ || (!POINTER_TYPE_P (type)
+ && TREE_TYPE (type)
+ && type_contains_placeholder_p (TREE_TYPE (type))))
+ return true;
+
+ /* Now do type-specific checks. Note that the last part of the check above
+ greatly limits what we have to do below. */
+ switch (TREE_CODE (type))
+ {
+ case VOID_TYPE:
+ case OPAQUE_TYPE:
+ case COMPLEX_TYPE:
+ case ENUMERAL_TYPE:
+ case BOOLEAN_TYPE:
+ case POINTER_TYPE:
+ case OFFSET_TYPE:
+ case REFERENCE_TYPE:
+ case METHOD_TYPE:
+ case FUNCTION_TYPE:
+ case VECTOR_TYPE:
+ case NULLPTR_TYPE:
+ return false;
+
+ case INTEGER_TYPE:
+ case REAL_TYPE:
+ case FIXED_POINT_TYPE:
+ /* Here we just check the bounds. */
+ return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
+ || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
+
+ case ARRAY_TYPE:
+ /* We have already checked the component type above, so just check
+ the domain type. Flexible array members have a null domain. */
+ return TYPE_DOMAIN (type) ?
+ type_contains_placeholder_p (TYPE_DOMAIN (type)) : false;
+
+ case RECORD_TYPE:
+ case UNION_TYPE:
+ case QUAL_UNION_TYPE:
+ {
+ tree field;
+
+ for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
+ if (TREE_CODE (field) == FIELD_DECL
+ && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
+ || (TREE_CODE (type) == QUAL_UNION_TYPE
+ && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
+ || type_contains_placeholder_p (TREE_TYPE (field))))
+ return true;
+
+ return false;
+ }
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Wrapper around above function used to cache its result. */
+
+bool
+type_contains_placeholder_p (tree type)
+{
+ bool result;
+
+ /* If the contains_placeholder_bits field has been initialized,
+ then we know the answer. */
+ if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
+ return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
+
+ /* Indicate that we've seen this type node, and the answer is false.
+ This is what we want to return if we run into recursion via fields. */
+ TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
+
+ /* Compute the real value. */
+ result = type_contains_placeholder_1 (type);
+
+ /* Store the real value. */
+ TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
+
+ return result;
+}
+
+/* Push tree EXP onto vector QUEUE if it is not already present. */
+
+static void
+push_without_duplicates (tree exp, vec<tree> *queue)
+{
+ unsigned int i;
+ tree iter;
+
+ FOR_EACH_VEC_ELT (*queue, i, iter)
+ if (simple_cst_equal (iter, exp) == 1)
+ break;
+
+ if (!iter)
+ queue->safe_push (exp);
+}
+
+/* Given a tree EXP, find all occurrences of references to fields
+ in a PLACEHOLDER_EXPR and place them in vector REFS without
+ duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
+ we assume here that EXP contains only arithmetic expressions
+ or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
+ argument list. */
+
+void
+find_placeholder_in_expr (tree exp, vec<tree> *refs)
+{
+ enum tree_code code = TREE_CODE (exp);
+ tree inner;
+ int i;
+
+ /* We handle TREE_LIST and COMPONENT_REF separately. */
+ if (code == TREE_LIST)
+ {
+ FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
+ FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
+ }
+ else if (code == COMPONENT_REF)
+ {
+ for (inner = TREE_OPERAND (exp, 0);
+ REFERENCE_CLASS_P (inner);
+ inner = TREE_OPERAND (inner, 0))
+ ;
+
+ if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
+ push_without_duplicates (exp, refs);
+ else
+ FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
+ }
+ else
+ switch (TREE_CODE_CLASS (code))
+ {
+ case tcc_constant:
+ break;
+
+ case tcc_declaration:
+ /* Variables allocated to static storage can stay. */
+ if (!TREE_STATIC (exp))
+ push_without_duplicates (exp, refs);
+ break;
+
+ case tcc_expression:
+ /* This is the pattern built in ada/make_aligning_type. */
+ if (code == ADDR_EXPR
+ && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
+ {
+ push_without_duplicates (exp, refs);
+ break;
+ }
+
+ /* Fall through. */
+
+ case tcc_exceptional:
+ case tcc_unary:
+ case tcc_binary:
+ case tcc_comparison:
+ case tcc_reference:
+ for (i = 0; i < TREE_CODE_LENGTH (code); i++)
+ FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
+ break;
+
+ case tcc_vl_exp:
+ for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
+ FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
+ return a tree with all occurrences of references to F in a
+ PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
+ CONST_DECLs. Note that we assume here that EXP contains only
+ arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
+ occurring only in their argument list. */
+
+tree
+substitute_in_expr (tree exp, tree f, tree r)
+{
+ enum tree_code code = TREE_CODE (exp);
+ tree op0, op1, op2, op3;
+ tree new_tree;
+
+ /* We handle TREE_LIST and COMPONENT_REF separately. */
+ if (code == TREE_LIST)
+ {
+ op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
+ op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
+ if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
+ return exp;
+
+ return tree_cons (TREE_PURPOSE (exp), op1, op0);
+ }
+ else if (code == COMPONENT_REF)
+ {
+ tree inner;
+
+ /* If this expression is getting a value from a PLACEHOLDER_EXPR
+ and it is the right field, replace it with R. */
+ for (inner = TREE_OPERAND (exp, 0);
+ REFERENCE_CLASS_P (inner);
+ inner = TREE_OPERAND (inner, 0))
+ ;
+
+ /* The field. */
+ op1 = TREE_OPERAND (exp, 1);
+
+ if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
+ return r;
+
+ /* If this expression hasn't been completed let, leave it alone. */
+ if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
+ return exp;
+
+ op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
+ if (op0 == TREE_OPERAND (exp, 0))
+ return exp;
+
+ new_tree
+ = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
+ }
+ else
+ switch (TREE_CODE_CLASS (code))
+ {
+ case tcc_constant:
+ return exp;
+
+ case tcc_declaration:
+ if (exp == f)
+ return r;
+ else
+ return exp;
+
+ case tcc_expression:
+ if (exp == f)
+ return r;
+
+ /* Fall through. */
+
+ case tcc_exceptional:
+ case tcc_unary:
+ case tcc_binary:
+ case tcc_comparison:
+ case tcc_reference:
+ switch (TREE_CODE_LENGTH (code))
+ {
+ case 0:
+ return exp;
+
+ case 1:
+ op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
+ if (op0 == TREE_OPERAND (exp, 0))
+ return exp;
+
+ new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
+ break;
+
+ case 2:
+ op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
+ op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
+
+ if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
+ return exp;
+
+ new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
+ break;
+
+ case 3:
+ op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
+ op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
+ op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
+
+ if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
+ && op2 == TREE_OPERAND (exp, 2))
+ return exp;
+
+ new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
+ break;
+
+ case 4:
+ op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
+ op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
+ op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
+ op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
+
+ if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
+ && op2 == TREE_OPERAND (exp, 2)
+ && op3 == TREE_OPERAND (exp, 3))
+ return exp;
+
+ new_tree
+ = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ break;
+
+ case tcc_vl_exp:
+ {
+ int i;
+
+ new_tree = NULL_TREE;
+
+ /* If we are trying to replace F with a constant or with another
+ instance of one of the arguments of the call, inline back
+ functions which do nothing else than computing a value from
+ the arguments they are passed. This makes it possible to
+ fold partially or entirely the replacement expression. */
+ if (code == CALL_EXPR)
+ {
+ bool maybe_inline = false;
+ if (CONSTANT_CLASS_P (r))
+ maybe_inline = true;
+ else
+ for (i = 3; i < TREE_OPERAND_LENGTH (exp); i++)
+ if (operand_equal_p (TREE_OPERAND (exp, i), r, 0))
+ {
+ maybe_inline = true;
+ break;
+ }
+ if (maybe_inline)
+ {
+ tree t = maybe_inline_call_in_expr (exp);
+ if (t)
+ return SUBSTITUTE_IN_EXPR (t, f, r);
+ }
+ }
+
+ for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
+ {
+ tree op = TREE_OPERAND (exp, i);
+ tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
+ if (new_op != op)
+ {
+ if (!new_tree)
+ new_tree = copy_node (exp);
+ TREE_OPERAND (new_tree, i) = new_op;
+ }
+ }
+
+ if (new_tree)
+ {
+ new_tree = fold (new_tree);
+ if (TREE_CODE (new_tree) == CALL_EXPR)
+ process_call_operands (new_tree);
+ }
+ else
+ return exp;
+ }
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ TREE_READONLY (new_tree) |= TREE_READONLY (exp);
+
+ if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
+ TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
+
+ return new_tree;
+}
+
+/* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
+ for it within OBJ, a tree that is an object or a chain of references. */
+
+tree
+substitute_placeholder_in_expr (tree exp, tree obj)
+{
+ enum tree_code code = TREE_CODE (exp);
+ tree op0, op1, op2, op3;
+ tree new_tree;
+
+ /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
+ in the chain of OBJ. */
+ if (code == PLACEHOLDER_EXPR)
+ {
+ tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
+ tree elt;
+
+ for (elt = obj; elt != 0;
+ elt = ((TREE_CODE (elt) == COMPOUND_EXPR
+ || TREE_CODE (elt) == COND_EXPR)
+ ? TREE_OPERAND (elt, 1)
+ : (REFERENCE_CLASS_P (elt)
+ || UNARY_CLASS_P (elt)
+ || BINARY_CLASS_P (elt)
+ || VL_EXP_CLASS_P (elt)
+ || EXPRESSION_CLASS_P (elt))
+ ? TREE_OPERAND (elt, 0) : 0))
+ if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
+ return elt;
+
+ for (elt = obj; elt != 0;
+ elt = ((TREE_CODE (elt) == COMPOUND_EXPR
+ || TREE_CODE (elt) == COND_EXPR)
+ ? TREE_OPERAND (elt, 1)
+ : (REFERENCE_CLASS_P (elt)
+ || UNARY_CLASS_P (elt)
+ || BINARY_CLASS_P (elt)
+ || VL_EXP_CLASS_P (elt)
+ || EXPRESSION_CLASS_P (elt))
+ ? TREE_OPERAND (elt, 0) : 0))
+ if (POINTER_TYPE_P (TREE_TYPE (elt))
+ && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
+ == need_type))
+ return fold_build1 (INDIRECT_REF, need_type, elt);
+
+ /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
+ survives until RTL generation, there will be an error. */
+ return exp;
+ }
+
+ /* TREE_LIST is special because we need to look at TREE_VALUE
+ and TREE_CHAIN, not TREE_OPERANDS. */
+ else if (code == TREE_LIST)
+ {
+ op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
+ op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
+ if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
+ return exp;
+
+ return tree_cons (TREE_PURPOSE (exp), op1, op0);
+ }
+ else
+ switch (TREE_CODE_CLASS (code))
+ {
+ case tcc_constant:
+ case tcc_declaration:
+ return exp;
+
+ case tcc_exceptional:
+ case tcc_unary:
+ case tcc_binary:
+ case tcc_comparison:
+ case tcc_expression:
+ case tcc_reference:
+ case tcc_statement:
+ switch (TREE_CODE_LENGTH (code))
+ {
+ case 0:
+ return exp;
+
+ case 1:
+ op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
+ if (op0 == TREE_OPERAND (exp, 0))
+ return exp;
+
+ new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
+ break;
+
+ case 2:
+ op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
+ op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
+
+ if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
+ return exp;
+
+ new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
+ break;
+
+ case 3:
+ op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
+ op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
+ op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
+
+ if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
+ && op2 == TREE_OPERAND (exp, 2))
+ return exp;
+
+ new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
+ break;
+
+ case 4:
+ op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
+ op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
+ op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
+ op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
+
+ if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
+ && op2 == TREE_OPERAND (exp, 2)
+ && op3 == TREE_OPERAND (exp, 3))
+ return exp;
+
+ new_tree
+ = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ break;
+
+ case tcc_vl_exp:
+ {
+ int i;
+
+ new_tree = NULL_TREE;
+
+ for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
+ {
+ tree op = TREE_OPERAND (exp, i);
+ tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
+ if (new_op != op)
+ {
+ if (!new_tree)
+ new_tree = copy_node (exp);
+ TREE_OPERAND (new_tree, i) = new_op;
+ }
+ }
+
+ if (new_tree)
+ {
+ new_tree = fold (new_tree);
+ if (TREE_CODE (new_tree) == CALL_EXPR)
+ process_call_operands (new_tree);
+ }
+ else
+ return exp;
+ }
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ TREE_READONLY (new_tree) |= TREE_READONLY (exp);
+
+ if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
+ TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
+
+ return new_tree;
+}
+
+
+/* Subroutine of stabilize_reference; this is called for subtrees of
+ references. Any expression with side-effects must be put in a SAVE_EXPR
+ to ensure that it is only evaluated once.
+
+ We don't put SAVE_EXPR nodes around everything, because assigning very
+ simple expressions to temporaries causes us to miss good opportunities
+ for optimizations. Among other things, the opportunity to fold in the
+ addition of a constant into an addressing mode often gets lost, e.g.
+ "y[i+1] += x;". In general, we take the approach that we should not make
+ an assignment unless we are forced into it - i.e., that any non-side effect
+ operator should be allowed, and that cse should take care of coalescing
+ multiple utterances of the same expression should that prove fruitful. */
+
+static tree
+stabilize_reference_1 (tree e)
+{
+ tree result;
+ enum tree_code code = TREE_CODE (e);
+
+ /* We cannot ignore const expressions because it might be a reference
+ to a const array but whose index contains side-effects. But we can
+ ignore things that are actual constant or that already have been
+ handled by this function. */
+
+ if (tree_invariant_p (e))
+ return e;
+
+ switch (TREE_CODE_CLASS (code))
+ {
+ case tcc_exceptional:
+ /* Always wrap STATEMENT_LIST into SAVE_EXPR, even if it doesn't
+ have side-effects. */
+ if (code == STATEMENT_LIST)
+ return save_expr (e);
+ /* FALLTHRU */
+ case tcc_type:
+ case tcc_declaration:
+ case tcc_comparison:
+ case tcc_statement:
+ case tcc_expression:
+ case tcc_reference:
+ case tcc_vl_exp:
+ /* If the expression has side-effects, then encase it in a SAVE_EXPR
+ so that it will only be evaluated once. */
+ /* The reference (r) and comparison (<) classes could be handled as
+ below, but it is generally faster to only evaluate them once. */
+ if (TREE_SIDE_EFFECTS (e))
+ return save_expr (e);
+ return e;
+
+ case tcc_constant:
+ /* Constants need no processing. In fact, we should never reach
+ here. */
+ return e;
+
+ case tcc_binary:
+ /* Division is slow and tends to be compiled with jumps,
+ especially the division by powers of 2 that is often
+ found inside of an array reference. So do it just once. */
+ if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
+ || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
+ || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
+ || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
+ return save_expr (e);
+ /* Recursively stabilize each operand. */
+ result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
+ stabilize_reference_1 (TREE_OPERAND (e, 1)));
+ break;
+
+ case tcc_unary:
+ /* Recursively stabilize each operand. */
+ result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ TREE_TYPE (result) = TREE_TYPE (e);
+ TREE_READONLY (result) = TREE_READONLY (e);
+ TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
+ TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
+
+ return result;
+}
+
+/* Stabilize a reference so that we can use it any number of times
+ without causing its operands to be evaluated more than once.
+ Returns the stabilized reference. This works by means of save_expr,
+ so see the caveats in the comments about save_expr.
+
+ Also allows conversion expressions whose operands are references.
+ Any other kind of expression is returned unchanged. */
+
+tree
+stabilize_reference (tree ref)
+{
+ tree result;
+ enum tree_code code = TREE_CODE (ref);
+
+ switch (code)
+ {
+ case VAR_DECL:
+ case PARM_DECL:
+ case RESULT_DECL:
+ /* No action is needed in this case. */
+ return ref;
+
+ CASE_CONVERT:
+ case FLOAT_EXPR:
+ case FIX_TRUNC_EXPR:
+ result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
+ break;
+
+ case INDIRECT_REF:
+ result = build_nt (INDIRECT_REF,
+ stabilize_reference_1 (TREE_OPERAND (ref, 0)));
+ break;
+
+ case COMPONENT_REF:
+ result = build_nt (COMPONENT_REF,
+ stabilize_reference (TREE_OPERAND (ref, 0)),
+ TREE_OPERAND (ref, 1), NULL_TREE);
+ break;
+
+ case BIT_FIELD_REF:
+ result = build_nt (BIT_FIELD_REF,
+ stabilize_reference (TREE_OPERAND (ref, 0)),
+ TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
+ REF_REVERSE_STORAGE_ORDER (result) = REF_REVERSE_STORAGE_ORDER (ref);
+ break;
+
+ case ARRAY_REF:
+ result = build_nt (ARRAY_REF,
+ stabilize_reference (TREE_OPERAND (ref, 0)),
+ stabilize_reference_1 (TREE_OPERAND (ref, 1)),
+ TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
+ break;
+
+ case ARRAY_RANGE_REF:
+ result = build_nt (ARRAY_RANGE_REF,
+ stabilize_reference (TREE_OPERAND (ref, 0)),
+ stabilize_reference_1 (TREE_OPERAND (ref, 1)),
+ TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
+ break;
+
+ case COMPOUND_EXPR:
+ /* We cannot wrap the first expression in a SAVE_EXPR, as then
+ it wouldn't be ignored. This matters when dealing with
+ volatiles. */
+ return stabilize_reference_1 (ref);
+
+ /* If arg isn't a kind of lvalue we recognize, make no change.
+ Caller should recognize the error for an invalid lvalue. */
+ default:
+ return ref;
+
+ case ERROR_MARK:
+ return error_mark_node;
+ }
+
+ TREE_TYPE (result) = TREE_TYPE (ref);
+ TREE_READONLY (result) = TREE_READONLY (ref);
+ TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
+ TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
+ protected_set_expr_location (result, EXPR_LOCATION (ref));
+
+ return result;
+}
+
+/* Low-level constructors for expressions. */
+
+/* A helper function for build1 and constant folders. Set TREE_CONSTANT,
+ and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
+
+void
+recompute_tree_invariant_for_addr_expr (tree t)
+{
+ tree node;
+ bool tc = true, se = false;
+
+ gcc_assert (TREE_CODE (t) == ADDR_EXPR);
+
+ /* We started out assuming this address is both invariant and constant, but
+ does not have side effects. Now go down any handled components and see if
+ any of them involve offsets that are either non-constant or non-invariant.
+ Also check for side-effects.
+
+ ??? Note that this code makes no attempt to deal with the case where
+ taking the address of something causes a copy due to misalignment. */
+
+#define UPDATE_FLAGS(NODE) \
+do { tree _node = (NODE); \
+ if (_node && !TREE_CONSTANT (_node)) tc = false; \
+ if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
+
+ for (node = TREE_OPERAND (t, 0); handled_component_p (node);
+ node = TREE_OPERAND (node, 0))
+ {
+ /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
+ array reference (probably made temporarily by the G++ front end),
+ so ignore all the operands. */
+ if ((TREE_CODE (node) == ARRAY_REF
+ || TREE_CODE (node) == ARRAY_RANGE_REF)
+ && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
+ {
+ UPDATE_FLAGS (TREE_OPERAND (node, 1));
+ if (TREE_OPERAND (node, 2))
+ UPDATE_FLAGS (TREE_OPERAND (node, 2));
+ if (TREE_OPERAND (node, 3))
+ UPDATE_FLAGS (TREE_OPERAND (node, 3));
+ }
+ /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
+ FIELD_DECL, apparently. The G++ front end can put something else
+ there, at least temporarily. */
+ else if (TREE_CODE (node) == COMPONENT_REF
+ && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
+ {
+ if (TREE_OPERAND (node, 2))
+ UPDATE_FLAGS (TREE_OPERAND (node, 2));
+ }
+ }
+
+ node = lang_hooks.expr_to_decl (node, &tc, &se);
+
+ /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
+ the address, since &(*a)->b is a form of addition. If it's a constant, the
+ address is constant too. If it's a decl, its address is constant if the
+ decl is static. Everything else is not constant and, furthermore,
+ taking the address of a volatile variable is not volatile. */
+ if (TREE_CODE (node) == INDIRECT_REF
+ || TREE_CODE (node) == MEM_REF)
+ UPDATE_FLAGS (TREE_OPERAND (node, 0));
+ else if (CONSTANT_CLASS_P (node))
+ ;
+ else if (DECL_P (node))
+ tc &= (staticp (node) != NULL_TREE);
+ else
+ {
+ tc = false;
+ se |= TREE_SIDE_EFFECTS (node);
+ }
+
+
+ TREE_CONSTANT (t) = tc;
+ TREE_SIDE_EFFECTS (t) = se;
+#undef UPDATE_FLAGS
+}
+
+/* Build an expression of code CODE, data type TYPE, and operands as
+ specified. Expressions and reference nodes can be created this way.
+ Constants, decls, types and misc nodes cannot be.
+
+ We define 5 non-variadic functions, from 0 to 4 arguments. This is
+ enough for all extant tree codes. */
+
+tree
+build0 (enum tree_code code, tree tt MEM_STAT_DECL)
+{
+ tree t;
+
+ gcc_assert (TREE_CODE_LENGTH (code) == 0);
+
+ t = make_node (code PASS_MEM_STAT);
+ TREE_TYPE (t) = tt;
+
+ return t;
+}
+
+tree
+build1 (enum tree_code code, tree type, tree node MEM_STAT_DECL)
+{
+ int length = sizeof (struct tree_exp);
+ tree t;
+
+ record_node_allocation_statistics (code, length);
+
+ gcc_assert (TREE_CODE_LENGTH (code) == 1);
+
+ t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
+
+ memset (t, 0, sizeof (struct tree_common));
+
+ TREE_SET_CODE (t, code);
+
+ TREE_TYPE (t) = type;
+ SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
+ TREE_OPERAND (t, 0) = node;
+ if (node && !TYPE_P (node))
+ {
+ TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
+ TREE_READONLY (t) = TREE_READONLY (node);
+ }
+
+ if (TREE_CODE_CLASS (code) == tcc_statement)
+ {
+ if (code != DEBUG_BEGIN_STMT)
+ TREE_SIDE_EFFECTS (t) = 1;
+ }
+ else switch (code)
+ {
+ case VA_ARG_EXPR:
+ /* All of these have side-effects, no matter what their
+ operands are. */
+ TREE_SIDE_EFFECTS (t) = 1;
+ TREE_READONLY (t) = 0;
+ break;
+
+ case INDIRECT_REF:
+ /* Whether a dereference is readonly has nothing to do with whether
+ its operand is readonly. */
+ TREE_READONLY (t) = 0;
+ break;
+
+ case ADDR_EXPR:
+ if (node)
+ recompute_tree_invariant_for_addr_expr (t);
+ break;
+
+ default:
+ if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
+ && node && !TYPE_P (node)
+ && TREE_CONSTANT (node))
+ TREE_CONSTANT (t) = 1;
+ if (TREE_CODE_CLASS (code) == tcc_reference
+ && node && TREE_THIS_VOLATILE (node))
+ TREE_THIS_VOLATILE (t) = 1;
+ break;
+ }
+
+ return t;
+}
+
+#define PROCESS_ARG(N) \
+ do { \
+ TREE_OPERAND (t, N) = arg##N; \
+ if (arg##N &&!TYPE_P (arg##N)) \
+ { \
+ if (TREE_SIDE_EFFECTS (arg##N)) \
+ side_effects = 1; \
+ if (!TREE_READONLY (arg##N) \
+ && !CONSTANT_CLASS_P (arg##N)) \
+ (void) (read_only = 0); \
+ if (!TREE_CONSTANT (arg##N)) \
+ (void) (constant = 0); \
+ } \
+ } while (0)
+
+tree
+build2 (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
+{
+ bool constant, read_only, side_effects, div_by_zero;
+ tree t;
+
+ gcc_assert (TREE_CODE_LENGTH (code) == 2);
+
+ if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
+ && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
+ /* When sizetype precision doesn't match that of pointers
+ we need to be able to build explicit extensions or truncations
+ of the offset argument. */
+ && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
+ gcc_assert (TREE_CODE (arg0) == INTEGER_CST
+ && TREE_CODE (arg1) == INTEGER_CST);
+
+ if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
+ gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
+ && ptrofftype_p (TREE_TYPE (arg1)));
+
+ t = make_node (code PASS_MEM_STAT);
+ TREE_TYPE (t) = tt;
+
+ /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
+ result based on those same flags for the arguments. But if the
+ arguments aren't really even `tree' expressions, we shouldn't be trying
+ to do this. */
+
+ /* Expressions without side effects may be constant if their
+ arguments are as well. */
+ constant = (TREE_CODE_CLASS (code) == tcc_comparison
+ || TREE_CODE_CLASS (code) == tcc_binary);
+ read_only = 1;
+ side_effects = TREE_SIDE_EFFECTS (t);
+
+ switch (code)
+ {
+ case TRUNC_DIV_EXPR:
+ case CEIL_DIV_EXPR:
+ case FLOOR_DIV_EXPR:
+ case ROUND_DIV_EXPR:
+ case EXACT_DIV_EXPR:
+ case CEIL_MOD_EXPR:
+ case FLOOR_MOD_EXPR:
+ case ROUND_MOD_EXPR:
+ case TRUNC_MOD_EXPR:
+ div_by_zero = integer_zerop (arg1);
+ break;
+ default:
+ div_by_zero = false;
+ }
+
+ PROCESS_ARG (0);
+ PROCESS_ARG (1);
+
+ TREE_SIDE_EFFECTS (t) = side_effects;
+ if (code == MEM_REF)
+ {
+ if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
+ {
+ tree o = TREE_OPERAND (arg0, 0);
+ TREE_READONLY (t) = TREE_READONLY (o);
+ TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
+ }
+ }
+ else
+ {
+ TREE_READONLY (t) = read_only;
+ /* Don't mark X / 0 as constant. */
+ TREE_CONSTANT (t) = constant && !div_by_zero;
+ TREE_THIS_VOLATILE (t)
+ = (TREE_CODE_CLASS (code) == tcc_reference
+ && arg0 && TREE_THIS_VOLATILE (arg0));
+ }
+
+ return t;
+}
+
+
+tree
+build3 (enum tree_code code, tree tt, tree arg0, tree arg1,
+ tree arg2 MEM_STAT_DECL)
+{
+ bool constant, read_only, side_effects;
+ tree t;
+
+ gcc_assert (TREE_CODE_LENGTH (code) == 3);
+ gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
+
+ t = make_node (code PASS_MEM_STAT);
+ TREE_TYPE (t) = tt;
+
+ read_only = 1;
+
+ /* As a special exception, if COND_EXPR has NULL branches, we
+ assume that it is a gimple statement and always consider
+ it to have side effects. */
+ if (code == COND_EXPR
+ && tt == void_type_node
+ && arg1 == NULL_TREE
+ && arg2 == NULL_TREE)
+ side_effects = true;
+ else
+ side_effects = TREE_SIDE_EFFECTS (t);
+
+ PROCESS_ARG (0);
+ PROCESS_ARG (1);
+ PROCESS_ARG (2);
+
+ if (code == COND_EXPR)
+ TREE_READONLY (t) = read_only;
+
+ TREE_SIDE_EFFECTS (t) = side_effects;
+ TREE_THIS_VOLATILE (t)
+ = (TREE_CODE_CLASS (code) == tcc_reference
+ && arg0 && TREE_THIS_VOLATILE (arg0));
+
+ return t;
+}
+
+tree
+build4 (enum tree_code code, tree tt, tree arg0, tree arg1,
+ tree arg2, tree arg3 MEM_STAT_DECL)
+{
+ bool constant, read_only, side_effects;
+ tree t;
+
+ gcc_assert (TREE_CODE_LENGTH (code) == 4);
+
+ t = make_node (code PASS_MEM_STAT);
+ TREE_TYPE (t) = tt;
+
+ side_effects = TREE_SIDE_EFFECTS (t);
+
+ PROCESS_ARG (0);
+ PROCESS_ARG (1);
+ PROCESS_ARG (2);
+ PROCESS_ARG (3);
+
+ TREE_SIDE_EFFECTS (t) = side_effects;
+ TREE_THIS_VOLATILE (t)
+ = (TREE_CODE_CLASS (code) == tcc_reference
+ && arg0 && TREE_THIS_VOLATILE (arg0));
+
+ return t;
+}
+
+tree
+build5 (enum tree_code code, tree tt, tree arg0, tree arg1,
+ tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
+{
+ bool constant, read_only, side_effects;
+ tree t;
+
+ gcc_assert (TREE_CODE_LENGTH (code) == 5);
+
+ t = make_node (code PASS_MEM_STAT);
+ TREE_TYPE (t) = tt;
+
+ side_effects = TREE_SIDE_EFFECTS (t);
+
+ PROCESS_ARG (0);
+ PROCESS_ARG (1);
+ PROCESS_ARG (2);
+ PROCESS_ARG (3);
+ PROCESS_ARG (4);
+
+ TREE_SIDE_EFFECTS (t) = side_effects;
+ if (code == TARGET_MEM_REF)
+ {
+ if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
+ {
+ tree o = TREE_OPERAND (arg0, 0);
+ TREE_READONLY (t) = TREE_READONLY (o);
+ TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
+ }
+ }
+ else
+ TREE_THIS_VOLATILE (t)
+ = (TREE_CODE_CLASS (code) == tcc_reference
+ && arg0 && TREE_THIS_VOLATILE (arg0));
+
+ return t;
+}
+
+/* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
+ on the pointer PTR. */
+
+tree
+build_simple_mem_ref_loc (location_t loc, tree ptr)
+{
+ poly_int64 offset = 0;
+ tree ptype = TREE_TYPE (ptr);
+ tree tem;
+ /* For convenience allow addresses that collapse to a simple base
+ and offset. */
+ if (TREE_CODE (ptr) == ADDR_EXPR
+ && (handled_component_p (TREE_OPERAND (ptr, 0))
+ || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
+ {
+ ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
+ gcc_assert (ptr);
+ if (TREE_CODE (ptr) == MEM_REF)
+ {
+ offset += mem_ref_offset (ptr).force_shwi ();
+ ptr = TREE_OPERAND (ptr, 0);
+ }
+ else
+ ptr = build_fold_addr_expr (ptr);
+ gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
+ }
+ tem = build2 (MEM_REF, TREE_TYPE (ptype),
+ ptr, build_int_cst (ptype, offset));
+ SET_EXPR_LOCATION (tem, loc);
+ return tem;
+}
+
+/* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
+
+poly_offset_int
+mem_ref_offset (const_tree t)
+{
+ return poly_offset_int::from (wi::to_poly_wide (TREE_OPERAND (t, 1)),
+ SIGNED);
+}
+
+/* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
+ offsetted by OFFSET units. */
+
+tree
+build_invariant_address (tree type, tree base, poly_int64 offset)
+{
+ tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
+ build_fold_addr_expr (base),
+ build_int_cst (ptr_type_node, offset));
+ tree addr = build1 (ADDR_EXPR, type, ref);
+ recompute_tree_invariant_for_addr_expr (addr);
+ return addr;
+}
+
+/* Similar except don't specify the TREE_TYPE
+ and leave the TREE_SIDE_EFFECTS as 0.
+ It is permissible for arguments to be null,
+ or even garbage if their values do not matter. */
+
+tree
+build_nt (enum tree_code code, ...)
+{
+ tree t;
+ int length;
+ int i;
+ va_list p;
+
+ gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
+
+ va_start (p, code);
+
+ t = make_node (code);
+ length = TREE_CODE_LENGTH (code);
+
+ for (i = 0; i < length; i++)
+ TREE_OPERAND (t, i) = va_arg (p, tree);
+
+ va_end (p);
+ return t;
+}
+
+/* Similar to build_nt, but for creating a CALL_EXPR object with a
+ tree vec. */
+
+tree
+build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
+{
+ tree ret, t;
+ unsigned int ix;
+
+ ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
+ CALL_EXPR_FN (ret) = fn;
+ CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
+ FOR_EACH_VEC_SAFE_ELT (args, ix, t)
+ CALL_EXPR_ARG (ret, ix) = t;
+ return ret;
+}
+
+/* Create a DECL_... node of code CODE, name NAME (if non-null)
+ and data type TYPE.
+ We do NOT enter this node in any sort of symbol table.
+
+ LOC is the location of the decl.
+
+ layout_decl is used to set up the decl's storage layout.
+ Other slots are initialized to 0 or null pointers. */
+
+tree
+build_decl (location_t loc, enum tree_code code, tree name,
+ tree type MEM_STAT_DECL)
+{
+ tree t;
+
+ t = make_node (code PASS_MEM_STAT);
+ DECL_SOURCE_LOCATION (t) = loc;
+
+/* if (type == error_mark_node)
+ type = integer_type_node; */
+/* That is not done, deliberately, so that having error_mark_node
+ as the type can suppress useless errors in the use of this variable. */
+
+ DECL_NAME (t) = name;
+ TREE_TYPE (t) = type;
+
+ if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
+ layout_decl (t, 0);
+
+ return t;
+}
+
+/* Create and return a DEBUG_EXPR_DECL node of the given TYPE. */
+
+tree
+build_debug_expr_decl (tree type)
+{
+ tree vexpr = make_node (DEBUG_EXPR_DECL);
+ DECL_ARTIFICIAL (vexpr) = 1;
+ TREE_TYPE (vexpr) = type;
+ SET_DECL_MODE (vexpr, TYPE_MODE (type));
+ return vexpr;
+}
+
+/* Builds and returns function declaration with NAME and TYPE. */
+
+tree
+build_fn_decl (const char *name, tree type)
+{
+ tree id = get_identifier (name);
+ tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
+
+ DECL_EXTERNAL (decl) = 1;
+ TREE_PUBLIC (decl) = 1;
+ DECL_ARTIFICIAL (decl) = 1;
+ TREE_NOTHROW (decl) = 1;
+
+ return decl;
+}
+
+vec<tree, va_gc> *all_translation_units;
+
+/* Builds a new translation-unit decl with name NAME, queues it in the
+ global list of translation-unit decls and returns it. */
+
+tree
+build_translation_unit_decl (tree name)
+{
+ tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
+ name, NULL_TREE);
+ TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
+ vec_safe_push (all_translation_units, tu);
+ return tu;
+}
+
+
+/* BLOCK nodes are used to represent the structure of binding contours
+ and declarations, once those contours have been exited and their contents
+ compiled. This information is used for outputting debugging info. */
+
+tree
+build_block (tree vars, tree subblocks, tree supercontext, tree chain)
+{
+ tree block = make_node (BLOCK);
+
+ BLOCK_VARS (block) = vars;
+ BLOCK_SUBBLOCKS (block) = subblocks;
+ BLOCK_SUPERCONTEXT (block) = supercontext;
+ BLOCK_CHAIN (block) = chain;
+ return block;
+}
+
+
+/* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
+
+ LOC is the location to use in tree T. */
+
+void
+protected_set_expr_location (tree t, location_t loc)
+{
+ if (CAN_HAVE_LOCATION_P (t))
+ SET_EXPR_LOCATION (t, loc);
+ else if (t && TREE_CODE (t) == STATEMENT_LIST)
+ {
+ t = expr_single (t);
+ if (t && CAN_HAVE_LOCATION_P (t))
+ SET_EXPR_LOCATION (t, loc);
+ }
+}
+
+/* Like PROTECTED_SET_EXPR_LOCATION, but only do that if T has
+ UNKNOWN_LOCATION. */
+
+void
+protected_set_expr_location_if_unset (tree t, location_t loc)
+{
+ t = expr_single (t);
+ if (t && !EXPR_HAS_LOCATION (t))
+ protected_set_expr_location (t, loc);
+}
+
+/* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
+ of the various TYPE_QUAL values. */
+
+static void
+set_type_quals (tree type, int type_quals)
+{
+ TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
+ TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
+ TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
+ TYPE_ATOMIC (type) = (type_quals & TYPE_QUAL_ATOMIC) != 0;
+ TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
+}
+
+/* Returns true iff CAND and BASE have equivalent language-specific
+ qualifiers. */
+
+bool
+check_lang_type (const_tree cand, const_tree base)
+{
+ if (lang_hooks.types.type_hash_eq == NULL)
+ return true;
+ /* type_hash_eq currently only applies to these types. */
+ if (TREE_CODE (cand) != FUNCTION_TYPE
+ && TREE_CODE (cand) != METHOD_TYPE)
+ return true;
+ return lang_hooks.types.type_hash_eq (cand, base);
+}
+
+/* This function checks to see if TYPE matches the size one of the built-in
+ atomic types, and returns that core atomic type. */
+
+static tree
+find_atomic_core_type (const_tree type)
+{
+ tree base_atomic_type;
+
+ /* Only handle complete types. */
+ if (!tree_fits_uhwi_p (TYPE_SIZE (type)))
+ return NULL_TREE;
+
+ switch (tree_to_uhwi (TYPE_SIZE (type)))
+ {
+ case 8:
+ base_atomic_type = atomicQI_type_node;
+ break;
+
+ case 16:
+ base_atomic_type = atomicHI_type_node;
+ break;
+
+ case 32:
+ base_atomic_type = atomicSI_type_node;
+ break;
+
+ case 64:
+ base_atomic_type = atomicDI_type_node;
+ break;
+
+ case 128:
+ base_atomic_type = atomicTI_type_node;
+ break;
+
+ default:
+ base_atomic_type = NULL_TREE;
+ }
+
+ return base_atomic_type;
+}
+
+/* Returns true iff unqualified CAND and BASE are equivalent. */
+
+bool
+check_base_type (const_tree cand, const_tree base)
+{
+ if (TYPE_NAME (cand) != TYPE_NAME (base)
+ /* Apparently this is needed for Objective-C. */
+ || TYPE_CONTEXT (cand) != TYPE_CONTEXT (base)
+ || !attribute_list_equal (TYPE_ATTRIBUTES (cand),
+ TYPE_ATTRIBUTES (base)))
+ return false;
+ /* Check alignment. */
+ if (TYPE_ALIGN (cand) == TYPE_ALIGN (base)
+ && TYPE_USER_ALIGN (cand) == TYPE_USER_ALIGN (base))
+ return true;
+ /* Atomic types increase minimal alignment. We must to do so as well
+ or we get duplicated canonical types. See PR88686. */
+ if ((TYPE_QUALS (cand) & TYPE_QUAL_ATOMIC))
+ {
+ /* See if this object can map to a basic atomic type. */
+ tree atomic_type = find_atomic_core_type (cand);
+ if (atomic_type && TYPE_ALIGN (atomic_type) == TYPE_ALIGN (cand))
+ return true;
+ }
+ return false;
+}
+
+/* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
+
+bool
+check_qualified_type (const_tree cand, const_tree base, int type_quals)
+{
+ return (TYPE_QUALS (cand) == type_quals
+ && check_base_type (cand, base)
+ && check_lang_type (cand, base));
+}
+
+/* Returns true iff CAND is equivalent to BASE with ALIGN. */
+
+static bool
+check_aligned_type (const_tree cand, const_tree base, unsigned int align)
+{
+ return (TYPE_QUALS (cand) == TYPE_QUALS (base)
+ && TYPE_NAME (cand) == TYPE_NAME (base)
+ /* Apparently this is needed for Objective-C. */
+ && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
+ /* Check alignment. */
+ && TYPE_ALIGN (cand) == align
+ /* Check this is a user-aligned type as build_aligned_type
+ would create. */
+ && TYPE_USER_ALIGN (cand)
+ && attribute_list_equal (TYPE_ATTRIBUTES (cand),
+ TYPE_ATTRIBUTES (base))
+ && check_lang_type (cand, base));
+}
+
+/* Return a version of the TYPE, qualified as indicated by the
+ TYPE_QUALS, if one exists. If no qualified version exists yet,
+ return NULL_TREE. */
+
+tree
+get_qualified_type (tree type, int type_quals)
+{
+ if (TYPE_QUALS (type) == type_quals)
+ return type;
+
+ tree mv = TYPE_MAIN_VARIANT (type);
+ if (check_qualified_type (mv, type, type_quals))
+ return mv;
+
+ /* Search the chain of variants to see if there is already one there just
+ like the one we need to have. If so, use that existing one. We must
+ preserve the TYPE_NAME, since there is code that depends on this. */
+ for (tree *tp = &TYPE_NEXT_VARIANT (mv); *tp; tp = &TYPE_NEXT_VARIANT (*tp))
+ if (check_qualified_type (*tp, type, type_quals))
+ {
+ /* Put the found variant at the head of the variant list so
+ frequently searched variants get found faster. The C++ FE
+ benefits greatly from this. */
+ tree t = *tp;
+ *tp = TYPE_NEXT_VARIANT (t);
+ TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (mv);
+ TYPE_NEXT_VARIANT (mv) = t;
+ return t;
+ }
+
+ return NULL_TREE;
+}
+
+/* Like get_qualified_type, but creates the type if it does not
+ exist. This function never returns NULL_TREE. */
+
+tree
+build_qualified_type (tree type, int type_quals MEM_STAT_DECL)
+{
+ tree t;
+
+ /* See if we already have the appropriate qualified variant. */
+ t = get_qualified_type (type, type_quals);
+
+ /* If not, build it. */
+ if (!t)
+ {
+ t = build_variant_type_copy (type PASS_MEM_STAT);
+ set_type_quals (t, type_quals);
+
+ if (((type_quals & TYPE_QUAL_ATOMIC) == TYPE_QUAL_ATOMIC))
+ {
+ /* See if this object can map to a basic atomic type. */
+ tree atomic_type = find_atomic_core_type (type);
+ if (atomic_type)
+ {
+ /* Ensure the alignment of this type is compatible with
+ the required alignment of the atomic type. */
+ if (TYPE_ALIGN (atomic_type) > TYPE_ALIGN (t))
+ SET_TYPE_ALIGN (t, TYPE_ALIGN (atomic_type));
+ }
+ }
+
+ if (TYPE_STRUCTURAL_EQUALITY_P (type))
+ /* Propagate structural equality. */
+ SET_TYPE_STRUCTURAL_EQUALITY (t);
+ else if (TYPE_CANONICAL (type) != type)
+ /* Build the underlying canonical type, since it is different
+ from TYPE. */
+ {
+ tree c = build_qualified_type (TYPE_CANONICAL (type), type_quals);
+ TYPE_CANONICAL (t) = TYPE_CANONICAL (c);
+ }
+ else
+ /* T is its own canonical type. */
+ TYPE_CANONICAL (t) = t;
+
+ }
+
+ return t;
+}
+
+/* Create a variant of type T with alignment ALIGN. */
+
+tree
+build_aligned_type (tree type, unsigned int align)
+{
+ tree t;
+
+ if (TYPE_PACKED (type)
+ || TYPE_ALIGN (type) == align)
+ return type;
+
+ for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
+ if (check_aligned_type (t, type, align))
+ return t;
+
+ t = build_variant_type_copy (type);
+ SET_TYPE_ALIGN (t, align);
+ TYPE_USER_ALIGN (t) = 1;
+
+ return t;
+}
+
+/* Create a new distinct copy of TYPE. The new type is made its own
+ MAIN_VARIANT. If TYPE requires structural equality checks, the
+ resulting type requires structural equality checks; otherwise, its
+ TYPE_CANONICAL points to itself. */
+
+tree
+build_distinct_type_copy (tree type MEM_STAT_DECL)
+{
+ tree t = copy_node (type PASS_MEM_STAT);
+
+ TYPE_POINTER_TO (t) = 0;
+ TYPE_REFERENCE_TO (t) = 0;
+
+ /* Set the canonical type either to a new equivalence class, or
+ propagate the need for structural equality checks. */
+ if (TYPE_STRUCTURAL_EQUALITY_P (type))
+ SET_TYPE_STRUCTURAL_EQUALITY (t);
+ else
+ TYPE_CANONICAL (t) = t;
+
+ /* Make it its own variant. */
+ TYPE_MAIN_VARIANT (t) = t;
+ TYPE_NEXT_VARIANT (t) = 0;
+
+ /* Note that it is now possible for TYPE_MIN_VALUE to be a value
+ whose TREE_TYPE is not t. This can also happen in the Ada
+ frontend when using subtypes. */
+
+ return t;
+}
+
+/* Create a new variant of TYPE, equivalent but distinct. This is so
+ the caller can modify it. TYPE_CANONICAL for the return type will
+ be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
+ are considered equal by the language itself (or that both types
+ require structural equality checks). */
+
+tree
+build_variant_type_copy (tree type MEM_STAT_DECL)
+{
+ tree t, m = TYPE_MAIN_VARIANT (type);
+
+ t = build_distinct_type_copy (type PASS_MEM_STAT);
+
+ /* Since we're building a variant, assume that it is a non-semantic
+ variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
+ TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
+ /* Type variants have no alias set defined. */
+ TYPE_ALIAS_SET (t) = -1;
+
+ /* Add the new type to the chain of variants of TYPE. */
+ TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
+ TYPE_NEXT_VARIANT (m) = t;
+ TYPE_MAIN_VARIANT (t) = m;
+
+ return t;
+}
+
+/* Return true if the from tree in both tree maps are equal. */
+
+int
+tree_map_base_eq (const void *va, const void *vb)
+{
+ const struct tree_map_base *const a = (const struct tree_map_base *) va,
+ *const b = (const struct tree_map_base *) vb;
+ return (a->from == b->from);
+}
+
+/* Hash a from tree in a tree_base_map. */
+
+unsigned int
+tree_map_base_hash (const void *item)
+{
+ return htab_hash_pointer (((const struct tree_map_base *)item)->from);
+}
+
+/* Return true if this tree map structure is marked for garbage collection
+ purposes. We simply return true if the from tree is marked, so that this
+ structure goes away when the from tree goes away. */
+
+int
+tree_map_base_marked_p (const void *p)
+{
+ return ggc_marked_p (((const struct tree_map_base *) p)->from);
+}
+
+/* Hash a from tree in a tree_map. */
+
+unsigned int
+tree_map_hash (const void *item)
+{
+ return (((const struct tree_map *) item)->hash);
+}
+
+/* Hash a from tree in a tree_decl_map. */
+
+unsigned int
+tree_decl_map_hash (const void *item)
+{
+ return DECL_UID (((const struct tree_decl_map *) item)->base.from);
+}
+
+/* Return the initialization priority for DECL. */
+
+priority_type
+decl_init_priority_lookup (tree decl)
+{
+ symtab_node *snode = symtab_node::get (decl);
+
+ if (!snode)
+ return DEFAULT_INIT_PRIORITY;
+ return
+ snode->get_init_priority ();
+}
+
+/* Return the finalization priority for DECL. */
+
+priority_type
+decl_fini_priority_lookup (tree decl)
+{
+ cgraph_node *node = cgraph_node::get (decl);
+
+ if (!node)
+ return DEFAULT_INIT_PRIORITY;
+ return
+ node->get_fini_priority ();
+}
+
+/* Set the initialization priority for DECL to PRIORITY. */
+
+void
+decl_init_priority_insert (tree decl, priority_type priority)
+{
+ struct symtab_node *snode;
+
+ if (priority == DEFAULT_INIT_PRIORITY)
+ {
+ snode = symtab_node::get (decl);
+ if (!snode)
+ return;
+ }
+ else if (VAR_P (decl))
+ snode = varpool_node::get_create (decl);
+ else
+ snode = cgraph_node::get_create (decl);
+ snode->set_init_priority (priority);
+}
+
+/* Set the finalization priority for DECL to PRIORITY. */
+
+void
+decl_fini_priority_insert (tree decl, priority_type priority)
+{
+ struct cgraph_node *node;
+
+ if (priority == DEFAULT_INIT_PRIORITY)
+ {
+ node = cgraph_node::get (decl);
+ if (!node)
+ return;
+ }
+ else
+ node = cgraph_node::get_create (decl);
+ node->set_fini_priority (priority);
+}
+
+/* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
+
+static void
+print_debug_expr_statistics (void)
+{
+ fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
+ (long) debug_expr_for_decl->size (),
+ (long) debug_expr_for_decl->elements (),
+ debug_expr_for_decl->collisions ());
+}
+
+/* Print out the statistics for the DECL_VALUE_EXPR hash table. */
+
+static void
+print_value_expr_statistics (void)
+{
+ fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
+ (long) value_expr_for_decl->size (),
+ (long) value_expr_for_decl->elements (),
+ value_expr_for_decl->collisions ());
+}
+
+/* Lookup a debug expression for FROM, and return it if we find one. */
+
+tree
+decl_debug_expr_lookup (tree from)
+{
+ struct tree_decl_map *h, in;
+ in.base.from = from;
+
+ h = debug_expr_for_decl->find_with_hash (&in, DECL_UID (from));
+ if (h)
+ return h->to;
+ return NULL_TREE;
+}
+
+/* Insert a mapping FROM->TO in the debug expression hashtable. */
+
+void
+decl_debug_expr_insert (tree from, tree to)
+{
+ struct tree_decl_map *h;
+
+ h = ggc_alloc<tree_decl_map> ();
+ h->base.from = from;
+ h->to = to;
+ *debug_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
+}
+
+/* Lookup a value expression for FROM, and return it if we find one. */
+
+tree
+decl_value_expr_lookup (tree from)
+{
+ struct tree_decl_map *h, in;
+ in.base.from = from;
+
+ h = value_expr_for_decl->find_with_hash (&in, DECL_UID (from));
+ if (h)
+ return h->to;
+ return NULL_TREE;
+}
+
+/* Insert a mapping FROM->TO in the value expression hashtable. */
+
+void
+decl_value_expr_insert (tree from, tree to)
+{
+ struct tree_decl_map *h;
+
+ h = ggc_alloc<tree_decl_map> ();
+ h->base.from = from;
+ h->to = to;
+ *value_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
+}
+
+/* Lookup a vector of debug arguments for FROM, and return it if we
+ find one. */
+
+vec<tree, va_gc> **
+decl_debug_args_lookup (tree from)
+{
+ struct tree_vec_map *h, in;
+
+ if (!DECL_HAS_DEBUG_ARGS_P (from))
+ return NULL;
+ gcc_checking_assert (debug_args_for_decl != NULL);
+ in.base.from = from;
+ h = debug_args_for_decl->find_with_hash (&in, DECL_UID (from));
+ if (h)
+ return &h->to;
+ return NULL;
+}
+
+/* Insert a mapping FROM->empty vector of debug arguments in the value
+ expression hashtable. */
+
+vec<tree, va_gc> **
+decl_debug_args_insert (tree from)
+{
+ struct tree_vec_map *h;
+ tree_vec_map **loc;
+
+ if (DECL_HAS_DEBUG_ARGS_P (from))
+ return decl_debug_args_lookup (from);
+ if (debug_args_for_decl == NULL)
+ debug_args_for_decl = hash_table<tree_vec_map_cache_hasher>::create_ggc (64);
+ h = ggc_alloc<tree_vec_map> ();
+ h->base.from = from;
+ h->to = NULL;
+ loc = debug_args_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT);
+ *loc = h;
+ DECL_HAS_DEBUG_ARGS_P (from) = 1;
+ return &h->to;
+}
+
+/* Hashing of types so that we don't make duplicates.
+ The entry point is `type_hash_canon'. */
+
+/* Generate the default hash code for TYPE. This is designed for
+ speed, rather than maximum entropy. */
+
+hashval_t
+type_hash_canon_hash (tree type)
+{
+ inchash::hash hstate;
+
+ hstate.add_int (TREE_CODE (type));
+
+ if (TREE_TYPE (type))
+ hstate.add_object (TYPE_HASH (TREE_TYPE (type)));
+
+ for (tree t = TYPE_ATTRIBUTES (type); t; t = TREE_CHAIN (t))
+ /* Just the identifier is adequate to distinguish. */
+ hstate.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (t)));
+
+ switch (TREE_CODE (type))
+ {
+ case METHOD_TYPE:
+ hstate.add_object (TYPE_HASH (TYPE_METHOD_BASETYPE (type)));
+ /* FALLTHROUGH. */
+ case FUNCTION_TYPE:
+ for (tree t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
+ if (TREE_VALUE (t) != error_mark_node)
+ hstate.add_object (TYPE_HASH (TREE_VALUE (t)));
+ break;
+
+ case OFFSET_TYPE:
+ hstate.add_object (TYPE_HASH (TYPE_OFFSET_BASETYPE (type)));
+ break;
+
+ case ARRAY_TYPE:
+ {
+ if (TYPE_DOMAIN (type))
+ hstate.add_object (TYPE_HASH (TYPE_DOMAIN (type)));
+ if (!AGGREGATE_TYPE_P (TREE_TYPE (type)))
+ {
+ unsigned typeless = TYPE_TYPELESS_STORAGE (type);
+ hstate.add_object (typeless);
+ }
+ }
+ break;
+
+ case INTEGER_TYPE:
+ {
+ tree t = TYPE_MAX_VALUE (type);
+ if (!t)
+ t = TYPE_MIN_VALUE (type);
+ for (int i = 0; i < TREE_INT_CST_NUNITS (t); i++)
+ hstate.add_object (TREE_INT_CST_ELT (t, i));
+ break;
+ }
+
+ case REAL_TYPE:
+ case FIXED_POINT_TYPE:
+ {
+ unsigned prec = TYPE_PRECISION (type);
+ hstate.add_object (prec);
+ break;
+ }
+
+ case VECTOR_TYPE:
+ hstate.add_poly_int (TYPE_VECTOR_SUBPARTS (type));
+ break;
+
+ default:
+ break;
+ }
+
+ return hstate.end ();
+}
+
+/* These are the Hashtable callback functions. */
+
+/* Returns true iff the types are equivalent. */
+
+bool
+type_cache_hasher::equal (type_hash *a, type_hash *b)
+{
+ /* First test the things that are the same for all types. */
+ if (a->hash != b->hash
+ || TREE_CODE (a->type) != TREE_CODE (b->type)
+ || TREE_TYPE (a->type) != TREE_TYPE (b->type)
+ || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
+ TYPE_ATTRIBUTES (b->type))
+ || (TREE_CODE (a->type) != COMPLEX_TYPE
+ && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
+ return 0;
+
+ /* Be careful about comparing arrays before and after the element type
+ has been completed; don't compare TYPE_ALIGN unless both types are
+ complete. */
+ if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
+ && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
+ || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
+ return 0;
+
+ switch (TREE_CODE (a->type))
+ {
+ case VOID_TYPE:
+ case OPAQUE_TYPE:
+ case COMPLEX_TYPE:
+ case POINTER_TYPE:
+ case REFERENCE_TYPE:
+ case NULLPTR_TYPE:
+ return 1;
+
+ case VECTOR_TYPE:
+ return known_eq (TYPE_VECTOR_SUBPARTS (a->type),
+ TYPE_VECTOR_SUBPARTS (b->type));
+
+ case ENUMERAL_TYPE:
+ if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
+ && !(TYPE_VALUES (a->type)
+ && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
+ && TYPE_VALUES (b->type)
+ && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
+ && type_list_equal (TYPE_VALUES (a->type),
+ TYPE_VALUES (b->type))))
+ return 0;
+
+ /* fall through */
+
+ case INTEGER_TYPE:
+ case REAL_TYPE:
+ case BOOLEAN_TYPE:
+ if (TYPE_PRECISION (a->type) != TYPE_PRECISION (b->type))
+ return false;
+ return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
+ || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
+ TYPE_MAX_VALUE (b->type)))
+ && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
+ || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
+ TYPE_MIN_VALUE (b->type))));
+
+ case FIXED_POINT_TYPE:
+ return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
+
+ case OFFSET_TYPE:
+ return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
+
+ case METHOD_TYPE:
+ if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
+ && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
+ || (TYPE_ARG_TYPES (a->type)
+ && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
+ && TYPE_ARG_TYPES (b->type)
+ && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
+ && type_list_equal (TYPE_ARG_TYPES (a->type),
+ TYPE_ARG_TYPES (b->type)))))
+ break;
+ return 0;
+ case ARRAY_TYPE:
+ /* Don't compare TYPE_TYPELESS_STORAGE flag on aggregates,
+ where the flag should be inherited from the element type
+ and can change after ARRAY_TYPEs are created; on non-aggregates
+ compare it and hash it, scalars will never have that flag set
+ and we need to differentiate between arrays created by different
+ front-ends or middle-end created arrays. */
+ return (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
+ && (AGGREGATE_TYPE_P (TREE_TYPE (a->type))
+ || (TYPE_TYPELESS_STORAGE (a->type)
+ == TYPE_TYPELESS_STORAGE (b->type))));
+
+ case RECORD_TYPE:
+ case UNION_TYPE:
+ case QUAL_UNION_TYPE:
+ return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
+ || (TYPE_FIELDS (a->type)
+ && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
+ && TYPE_FIELDS (b->type)
+ && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
+ && type_list_equal (TYPE_FIELDS (a->type),
+ TYPE_FIELDS (b->type))));
+
+ case FUNCTION_TYPE:
+ if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
+ || (TYPE_ARG_TYPES (a->type)
+ && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
+ && TYPE_ARG_TYPES (b->type)
+ && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
+ && type_list_equal (TYPE_ARG_TYPES (a->type),
+ TYPE_ARG_TYPES (b->type))))
+ break;
+ return 0;
+
+ default:
+ return 0;
+ }
+
+ if (lang_hooks.types.type_hash_eq != NULL)
+ return lang_hooks.types.type_hash_eq (a->type, b->type);
+
+ return 1;
+}
+
+/* Given TYPE, and HASHCODE its hash code, return the canonical
+ object for an identical type if one already exists.
+ Otherwise, return TYPE, and record it as the canonical object.
+
+ To use this function, first create a type of the sort you want.
+ Then compute its hash code from the fields of the type that
+ make it different from other similar types.
+ Then call this function and use the value. */
+
+tree
+type_hash_canon (unsigned int hashcode, tree type)
+{
+ type_hash in;
+ type_hash **loc;
+
+ /* The hash table only contains main variants, so ensure that's what we're
+ being passed. */
+ gcc_assert (TYPE_MAIN_VARIANT (type) == type);
+
+ /* The TYPE_ALIGN field of a type is set by layout_type(), so we
+ must call that routine before comparing TYPE_ALIGNs. */
+ layout_type (type);
+
+ in.hash = hashcode;
+ in.type = type;
+
+ loc = type_hash_table->find_slot_with_hash (&in, hashcode, INSERT);
+ if (*loc)
+ {
+ tree t1 = ((type_hash *) *loc)->type;
+ gcc_assert (TYPE_MAIN_VARIANT (t1) == t1
+ && t1 != type);
+ if (TYPE_UID (type) + 1 == next_type_uid)
+ --next_type_uid;
+ /* Free also min/max values and the cache for integer
+ types. This can't be done in free_node, as LTO frees
+ those on its own. */
+ if (TREE_CODE (type) == INTEGER_TYPE)
+ {
+ if (TYPE_MIN_VALUE (type)
+ && TREE_TYPE (TYPE_MIN_VALUE (type)) == type)
+ {
+ /* Zero is always in TYPE_CACHED_VALUES. */
+ if (! TYPE_UNSIGNED (type))
+ int_cst_hash_table->remove_elt (TYPE_MIN_VALUE (type));
+ ggc_free (TYPE_MIN_VALUE (type));
+ }
+ if (TYPE_MAX_VALUE (type)
+ && TREE_TYPE (TYPE_MAX_VALUE (type)) == type)
+ {
+ int_cst_hash_table->remove_elt (TYPE_MAX_VALUE (type));
+ ggc_free (TYPE_MAX_VALUE (type));
+ }
+ if (TYPE_CACHED_VALUES_P (type))
+ ggc_free (TYPE_CACHED_VALUES (type));
+ }
+ free_node (type);
+ return t1;
+ }
+ else
+ {
+ struct type_hash *h;
+
+ h = ggc_alloc<type_hash> ();
+ h->hash = hashcode;
+ h->type = type;
+ *loc = h;
+
+ return type;
+ }
+}
+
+static void
+print_type_hash_statistics (void)
+{
+ fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
+ (long) type_hash_table->size (),
+ (long) type_hash_table->elements (),
+ type_hash_table->collisions ());
+}
+
+/* Given two lists of types
+ (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
+ return 1 if the lists contain the same types in the same order.
+ Also, the TREE_PURPOSEs must match. */
+
+bool
+type_list_equal (const_tree l1, const_tree l2)
+{
+ const_tree t1, t2;
+
+ for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
+ if (TREE_VALUE (t1) != TREE_VALUE (t2)
+ || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
+ && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
+ && (TREE_TYPE (TREE_PURPOSE (t1))
+ == TREE_TYPE (TREE_PURPOSE (t2))))))
+ return false;
+
+ return t1 == t2;
+}
+
+/* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
+ given by TYPE. If the argument list accepts variable arguments,
+ then this function counts only the ordinary arguments. */
+
+int
+type_num_arguments (const_tree fntype)
+{
+ int i = 0;
+
+ for (tree t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
+ /* If the function does not take a variable number of arguments,
+ the last element in the list will have type `void'. */
+ if (VOID_TYPE_P (TREE_VALUE (t)))
+ break;
+ else
+ ++i;
+
+ return i;
+}
+
+/* Return the type of the function TYPE's argument ARGNO if known.
+ For vararg function's where ARGNO refers to one of the variadic
+ arguments return null. Otherwise, return a void_type_node for
+ out-of-bounds ARGNO. */
+
+tree
+type_argument_type (const_tree fntype, unsigned argno)
+{
+ /* Treat zero the same as an out-of-bounds argument number. */
+ if (!argno)
+ return void_type_node;
+
+ function_args_iterator iter;
+
+ tree argtype;
+ unsigned i = 1;
+ FOREACH_FUNCTION_ARGS (fntype, argtype, iter)
+ {
+ /* A vararg function's argument list ends in a null. Otherwise,
+ an ordinary function's argument list ends with void. Return
+ null if ARGNO refers to a vararg argument, void_type_node if
+ it's out of bounds, and the formal argument type otherwise. */
+ if (!argtype)
+ break;
+
+ if (i == argno || VOID_TYPE_P (argtype))
+ return argtype;
+
+ ++i;
+ }
+
+ return NULL_TREE;
+}
+
+/* Nonzero if integer constants T1 and T2
+ represent the same constant value. */
+
+int
+tree_int_cst_equal (const_tree t1, const_tree t2)
+{
+ if (t1 == t2)
+ return 1;
+
+ if (t1 == 0 || t2 == 0)
+ return 0;
+
+ STRIP_ANY_LOCATION_WRAPPER (t1);
+ STRIP_ANY_LOCATION_WRAPPER (t2);
+
+ if (TREE_CODE (t1) == INTEGER_CST
+ && TREE_CODE (t2) == INTEGER_CST
+ && wi::to_widest (t1) == wi::to_widest (t2))
+ return 1;
+
+ return 0;
+}
+
+/* Return true if T is an INTEGER_CST whose numerical value (extended
+ according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. */
+
+bool
+tree_fits_shwi_p (const_tree t)
+{
+ return (t != NULL_TREE
+ && TREE_CODE (t) == INTEGER_CST
+ && wi::fits_shwi_p (wi::to_widest (t)));
+}
+
+/* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
+ value (extended according to TYPE_UNSIGNED) fits in a poly_int64. */
+
+bool
+tree_fits_poly_int64_p (const_tree t)
+{
+ if (t == NULL_TREE)
+ return false;
+ if (POLY_INT_CST_P (t))
+ {
+ for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
+ if (!wi::fits_shwi_p (wi::to_wide (POLY_INT_CST_COEFF (t, i))))
+ return false;
+ return true;
+ }
+ return (TREE_CODE (t) == INTEGER_CST
+ && wi::fits_shwi_p (wi::to_widest (t)));
+}
+
+/* Return true if T is an INTEGER_CST whose numerical value (extended
+ according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. */
+
+bool
+tree_fits_uhwi_p (const_tree t)
+{
+ return (t != NULL_TREE
+ && TREE_CODE (t) == INTEGER_CST
+ && wi::fits_uhwi_p (wi::to_widest (t)));
+}
+
+/* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
+ value (extended according to TYPE_UNSIGNED) fits in a poly_uint64. */
+
+bool
+tree_fits_poly_uint64_p (const_tree t)
+{
+ if (t == NULL_TREE)
+ return false;
+ if (POLY_INT_CST_P (t))
+ {
+ for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
+ if (!wi::fits_uhwi_p (wi::to_widest (POLY_INT_CST_COEFF (t, i))))
+ return false;
+ return true;
+ }
+ return (TREE_CODE (t) == INTEGER_CST
+ && wi::fits_uhwi_p (wi::to_widest (t)));
+}
+
+/* T is an INTEGER_CST whose numerical value (extended according to
+ TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. Return that
+ HOST_WIDE_INT. */
+
+HOST_WIDE_INT
+tree_to_shwi (const_tree t)
+{
+ gcc_assert (tree_fits_shwi_p (t));
+ return TREE_INT_CST_LOW (t);
+}
+
+/* T is an INTEGER_CST whose numerical value (extended according to
+ TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. Return that
+ HOST_WIDE_INT. */
+
+unsigned HOST_WIDE_INT
+tree_to_uhwi (const_tree t)
+{
+ gcc_assert (tree_fits_uhwi_p (t));
+ return TREE_INT_CST_LOW (t);
+}
+
+/* Return the most significant (sign) bit of T. */
+
+int
+tree_int_cst_sign_bit (const_tree t)
+{
+ unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
+
+ return wi::extract_uhwi (wi::to_wide (t), bitno, 1);
+}
+
+/* Return an indication of the sign of the integer constant T.
+ The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
+ Note that -1 will never be returned if T's type is unsigned. */
+
+int
+tree_int_cst_sgn (const_tree t)
+{
+ if (wi::to_wide (t) == 0)
+ return 0;
+ else if (TYPE_UNSIGNED (TREE_TYPE (t)))
+ return 1;
+ else if (wi::neg_p (wi::to_wide (t)))
+ return -1;
+ else
+ return 1;
+}
+
+/* Return the minimum number of bits needed to represent VALUE in a
+ signed or unsigned type, UNSIGNEDP says which. */
+
+unsigned int
+tree_int_cst_min_precision (tree value, signop sgn)
+{
+ /* If the value is negative, compute its negative minus 1. The latter
+ adjustment is because the absolute value of the largest negative value
+ is one larger than the largest positive value. This is equivalent to
+ a bit-wise negation, so use that operation instead. */
+
+ if (tree_int_cst_sgn (value) < 0)
+ value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
+
+ /* Return the number of bits needed, taking into account the fact
+ that we need one more bit for a signed than unsigned type.
+ If value is 0 or -1, the minimum precision is 1 no matter
+ whether unsignedp is true or false. */
+
+ if (integer_zerop (value))
+ return 1;
+ else
+ return tree_floor_log2 (value) + 1 + (sgn == SIGNED ? 1 : 0) ;
+}
+
+/* Return truthvalue of whether T1 is the same tree structure as T2.
+ Return 1 if they are the same.
+ Return 0 if they are understandably different.
+ Return -1 if either contains tree structure not understood by
+ this function. */
+
+int
+simple_cst_equal (const_tree t1, const_tree t2)
+{
+ enum tree_code code1, code2;
+ int cmp;
+ int i;
+
+ if (t1 == t2)
+ return 1;
+ if (t1 == 0 || t2 == 0)
+ return 0;
+
+ /* For location wrappers to be the same, they must be at the same
+ source location (and wrap the same thing). */
+ if (location_wrapper_p (t1) && location_wrapper_p (t2))
+ {
+ if (EXPR_LOCATION (t1) != EXPR_LOCATION (t2))
+ return 0;
+ return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
+ }
+
+ code1 = TREE_CODE (t1);
+ code2 = TREE_CODE (t2);
+
+ if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
+ {
+ if (CONVERT_EXPR_CODE_P (code2)
+ || code2 == NON_LVALUE_EXPR)
+ return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
+ else
+ return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
+ }
+
+ else if (CONVERT_EXPR_CODE_P (code2)
+ || code2 == NON_LVALUE_EXPR)
+ return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
+
+ if (code1 != code2)
+ return 0;
+
+ switch (code1)
+ {
+ case INTEGER_CST:
+ return wi::to_widest (t1) == wi::to_widest (t2);
+
+ case REAL_CST:
+ return real_identical (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2));
+
+ case FIXED_CST:
+ return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
+
+ case STRING_CST:
+ return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
+ && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
+ TREE_STRING_LENGTH (t1)));
+
+ case CONSTRUCTOR:
+ {
+ unsigned HOST_WIDE_INT idx;
+ vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
+ vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
+
+ if (vec_safe_length (v1) != vec_safe_length (v2))
+ return false;
+
+ for (idx = 0; idx < vec_safe_length (v1); ++idx)
+ /* ??? Should we handle also fields here? */
+ if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
+ return false;
+ return true;
+ }
+
+ case SAVE_EXPR:
+ return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
+
+ case CALL_EXPR:
+ cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
+ if (cmp <= 0)
+ return cmp;
+ if (call_expr_nargs (t1) != call_expr_nargs (t2))
+ return 0;
+ {
+ const_tree arg1, arg2;
+ const_call_expr_arg_iterator iter1, iter2;
+ for (arg1 = first_const_call_expr_arg (t1, &iter1),
+ arg2 = first_const_call_expr_arg (t2, &iter2);
+ arg1 && arg2;
+ arg1 = next_const_call_expr_arg (&iter1),
+ arg2 = next_const_call_expr_arg (&iter2))
+ {
+ cmp = simple_cst_equal (arg1, arg2);
+ if (cmp <= 0)
+ return cmp;
+ }
+ return arg1 == arg2;
+ }
+
+ case TARGET_EXPR:
+ /* Special case: if either target is an unallocated VAR_DECL,
+ it means that it's going to be unified with whatever the
+ TARGET_EXPR is really supposed to initialize, so treat it
+ as being equivalent to anything. */
+ if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
+ && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
+ && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
+ || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
+ && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
+ && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
+ cmp = 1;
+ else
+ cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
+
+ if (cmp <= 0)
+ return cmp;
+
+ return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
+
+ case WITH_CLEANUP_EXPR:
+ cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
+ if (cmp <= 0)
+ return cmp;
+
+ return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
+
+ case COMPONENT_REF:
+ if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
+ return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
+
+ return 0;
+
+ case VAR_DECL:
+ case PARM_DECL:
+ case CONST_DECL:
+ case FUNCTION_DECL:
+ return 0;
+
+ default:
+ if (POLY_INT_CST_P (t1))
+ /* A false return means maybe_ne rather than known_ne. */
+ return known_eq (poly_widest_int::from (poly_int_cst_value (t1),
+ TYPE_SIGN (TREE_TYPE (t1))),
+ poly_widest_int::from (poly_int_cst_value (t2),
+ TYPE_SIGN (TREE_TYPE (t2))));
+ break;
+ }
+
+ /* This general rule works for most tree codes. All exceptions should be
+ handled above. If this is a language-specific tree code, we can't
+ trust what might be in the operand, so say we don't know
+ the situation. */
+ if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
+ return -1;
+
+ switch (TREE_CODE_CLASS (code1))
+ {
+ case tcc_unary:
+ case tcc_binary:
+ case tcc_comparison:
+ case tcc_expression:
+ case tcc_reference:
+ case tcc_statement:
+ cmp = 1;
+ for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
+ {
+ cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
+ if (cmp <= 0)
+ return cmp;
+ }
+
+ return cmp;
+
+ default:
+ return -1;
+ }
+}
+
+/* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
+ Return -1, 0, or 1 if the value of T is less than, equal to, or greater
+ than U, respectively. */
+
+int
+compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
+{
+ if (tree_int_cst_sgn (t) < 0)
+ return -1;
+ else if (!tree_fits_uhwi_p (t))
+ return 1;
+ else if (TREE_INT_CST_LOW (t) == u)
+ return 0;
+ else if (TREE_INT_CST_LOW (t) < u)
+ return -1;
+ else
+ return 1;
+}
+
+/* Return true if SIZE represents a constant size that is in bounds of
+ what the middle-end and the backend accepts (covering not more than
+ half of the address-space).
+ When PERR is non-null, set *PERR on failure to the description of
+ why SIZE is not valid. */
+
+bool
+valid_constant_size_p (const_tree size, cst_size_error *perr /* = NULL */)
+{
+ if (POLY_INT_CST_P (size))
+ {
+ if (TREE_OVERFLOW (size))
+ return false;
+ for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
+ if (!valid_constant_size_p (POLY_INT_CST_COEFF (size, i)))
+ return false;
+ return true;
+ }
+
+ cst_size_error error;
+ if (!perr)
+ perr = &error;
+
+ if (TREE_CODE (size) != INTEGER_CST)
+ {
+ *perr = cst_size_not_constant;
+ return false;
+ }
+
+ if (TREE_OVERFLOW_P (size))
+ {
+ *perr = cst_size_overflow;
+ return false;
+ }
+
+ if (tree_int_cst_sgn (size) < 0)
+ {
+ *perr = cst_size_negative;
+ return false;
+ }
+ if (!tree_fits_uhwi_p (size)
+ || (wi::to_widest (TYPE_MAX_VALUE (sizetype))
+ < wi::to_widest (size) * 2))
+ {
+ *perr = cst_size_too_big;
+ return false;
+ }
+
+ return true;
+}
+
+/* Return the precision of the type, or for a complex or vector type the
+ precision of the type of its elements. */
+
+unsigned int
+element_precision (const_tree type)
+{
+ if (!TYPE_P (type))
+ type = TREE_TYPE (type);
+ enum tree_code code = TREE_CODE (type);
+ if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
+ type = TREE_TYPE (type);
+
+ return TYPE_PRECISION (type);
+}
+
+/* Return true if CODE represents an associative tree code. Otherwise
+ return false. */
+bool
+associative_tree_code (enum tree_code code)
+{
+ switch (code)
+ {
+ case BIT_IOR_EXPR:
+ case BIT_AND_EXPR:
+ case BIT_XOR_EXPR:
+ case PLUS_EXPR:
+ case MULT_EXPR:
+ case MIN_EXPR:
+ case MAX_EXPR:
+ return true;
+
+ default:
+ break;
+ }
+ return false;
+}
+
+/* Return true if CODE represents a commutative tree code. Otherwise
+ return false. */
+bool
+commutative_tree_code (enum tree_code code)
+{
+ switch (code)
+ {
+ case PLUS_EXPR:
+ case MULT_EXPR:
+ case MULT_HIGHPART_EXPR:
+ case MIN_EXPR:
+ case MAX_EXPR:
+ case BIT_IOR_EXPR:
+ case BIT_XOR_EXPR:
+ case BIT_AND_EXPR:
+ case NE_EXPR:
+ case EQ_EXPR:
+ case UNORDERED_EXPR:
+ case ORDERED_EXPR:
+ case UNEQ_EXPR:
+ case LTGT_EXPR:
+ case TRUTH_AND_EXPR:
+ case TRUTH_XOR_EXPR:
+ case TRUTH_OR_EXPR:
+ case WIDEN_MULT_EXPR:
+ case VEC_WIDEN_MULT_HI_EXPR:
+ case VEC_WIDEN_MULT_LO_EXPR:
+ case VEC_WIDEN_MULT_EVEN_EXPR:
+ case VEC_WIDEN_MULT_ODD_EXPR:
+ return true;
+
+ default:
+ break;
+ }
+ return false;
+}
+
+/* Return true if CODE represents a ternary tree code for which the
+ first two operands are commutative. Otherwise return false. */
+bool
+commutative_ternary_tree_code (enum tree_code code)
+{
+ switch (code)
+ {
+ case WIDEN_MULT_PLUS_EXPR:
+ case WIDEN_MULT_MINUS_EXPR:
+ case DOT_PROD_EXPR:
+ return true;
+
+ default:
+ break;
+ }
+ return false;
+}
+
+/* Returns true if CODE can overflow. */
+
+bool
+operation_can_overflow (enum tree_code code)
+{
+ switch (code)
+ {
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ case MULT_EXPR:
+ case LSHIFT_EXPR:
+ /* Can overflow in various ways. */
+ return true;
+ case TRUNC_DIV_EXPR:
+ case EXACT_DIV_EXPR:
+ case FLOOR_DIV_EXPR:
+ case CEIL_DIV_EXPR:
+ /* For INT_MIN / -1. */
+ return true;
+ case NEGATE_EXPR:
+ case ABS_EXPR:
+ /* For -INT_MIN. */
+ return true;
+ default:
+ /* These operators cannot overflow. */
+ return false;
+ }
+}
+
+/* Returns true if CODE operating on operands of type TYPE doesn't overflow, or
+ ftrapv doesn't generate trapping insns for CODE. */
+
+bool
+operation_no_trapping_overflow (tree type, enum tree_code code)
+{
+ gcc_checking_assert (ANY_INTEGRAL_TYPE_P (type));
+
+ /* We don't generate instructions that trap on overflow for complex or vector
+ types. */
+ if (!INTEGRAL_TYPE_P (type))
+ return true;
+
+ if (!TYPE_OVERFLOW_TRAPS (type))
+ return true;
+
+ switch (code)
+ {
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ case MULT_EXPR:
+ case NEGATE_EXPR:
+ case ABS_EXPR:
+ /* These operators can overflow, and -ftrapv generates trapping code for
+ these. */
+ return false;
+ case TRUNC_DIV_EXPR:
+ case EXACT_DIV_EXPR:
+ case FLOOR_DIV_EXPR:
+ case CEIL_DIV_EXPR:
+ case LSHIFT_EXPR:
+ /* These operators can overflow, but -ftrapv does not generate trapping
+ code for these. */
+ return true;
+ default:
+ /* These operators cannot overflow. */
+ return true;
+ }
+}
+
+/* Constructors for pointer, array and function types.
+ (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
+ constructed by language-dependent code, not here.) */
+
+/* Construct, lay out and return the type of pointers to TO_TYPE with
+ mode MODE. If MODE is VOIDmode, a pointer mode for the address
+ space of TO_TYPE will be picked. If CAN_ALIAS_ALL is TRUE,
+ indicate this type can reference all of memory. If such a type has
+ already been constructed, reuse it. */
+
+tree
+build_pointer_type_for_mode (tree to_type, machine_mode mode,
+ bool can_alias_all)
+{
+ tree t;
+ bool could_alias = can_alias_all;
+
+ if (to_type == error_mark_node)
+ return error_mark_node;
+
+ if (mode == VOIDmode)
+ {
+ addr_space_t as = TYPE_ADDR_SPACE (to_type);
+ mode = targetm.addr_space.pointer_mode (as);
+ }
+
+ /* If the pointed-to type has the may_alias attribute set, force
+ a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
+ if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
+ can_alias_all = true;
+
+ /* In some cases, languages will have things that aren't a POINTER_TYPE
+ (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
+ In that case, return that type without regard to the rest of our
+ operands.
+
+ ??? This is a kludge, but consistent with the way this function has
+ always operated and there doesn't seem to be a good way to avoid this
+ at the moment. */
+ if (TYPE_POINTER_TO (to_type) != 0
+ && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
+ return TYPE_POINTER_TO (to_type);
+
+ /* First, if we already have a type for pointers to TO_TYPE and it's
+ the proper mode, use it. */
+ for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
+ if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
+ return t;
+
+ t = make_node (POINTER_TYPE);
+
+ TREE_TYPE (t) = to_type;
+ SET_TYPE_MODE (t, mode);
+ TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
+ TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
+ TYPE_POINTER_TO (to_type) = t;
+
+ /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
+ if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
+ SET_TYPE_STRUCTURAL_EQUALITY (t);
+ else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
+ TYPE_CANONICAL (t)
+ = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
+ mode, false);
+
+ /* Lay out the type. This function has many callers that are concerned
+ with expression-construction, and this simplifies them all. */
+ layout_type (t);
+
+ return t;
+}
+
+/* By default build pointers in ptr_mode. */
+
+tree
+build_pointer_type (tree to_type)
+{
+ return build_pointer_type_for_mode (to_type, VOIDmode, false);
+}
+
+/* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
+
+tree
+build_reference_type_for_mode (tree to_type, machine_mode mode,
+ bool can_alias_all)
+{
+ tree t;
+ bool could_alias = can_alias_all;
+
+ if (to_type == error_mark_node)
+ return error_mark_node;
+
+ if (mode == VOIDmode)
+ {
+ addr_space_t as = TYPE_ADDR_SPACE (to_type);
+ mode = targetm.addr_space.pointer_mode (as);
+ }
+
+ /* If the pointed-to type has the may_alias attribute set, force
+ a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
+ if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
+ can_alias_all = true;
+
+ /* In some cases, languages will have things that aren't a REFERENCE_TYPE
+ (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
+ In that case, return that type without regard to the rest of our
+ operands.
+
+ ??? This is a kludge, but consistent with the way this function has
+ always operated and there doesn't seem to be a good way to avoid this
+ at the moment. */
+ if (TYPE_REFERENCE_TO (to_type) != 0
+ && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
+ return TYPE_REFERENCE_TO (to_type);
+
+ /* First, if we already have a type for pointers to TO_TYPE and it's
+ the proper mode, use it. */
+ for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
+ if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
+ return t;
+
+ t = make_node (REFERENCE_TYPE);
+
+ TREE_TYPE (t) = to_type;
+ SET_TYPE_MODE (t, mode);
+ TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
+ TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
+ TYPE_REFERENCE_TO (to_type) = t;
+
+ /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
+ if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
+ SET_TYPE_STRUCTURAL_EQUALITY (t);
+ else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
+ TYPE_CANONICAL (t)
+ = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
+ mode, false);
+
+ layout_type (t);
+
+ return t;
+}
+
+
+/* Build the node for the type of references-to-TO_TYPE by default
+ in ptr_mode. */
+
+tree
+build_reference_type (tree to_type)
+{
+ return build_reference_type_for_mode (to_type, VOIDmode, false);
+}
+
+#define MAX_INT_CACHED_PREC \
+ (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
+static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
+
+/* Builds a signed or unsigned integer type of precision PRECISION.
+ Used for C bitfields whose precision does not match that of
+ built-in target types. */
+tree
+build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
+ int unsignedp)
+{
+ tree itype, ret;
+
+ if (unsignedp)
+ unsignedp = MAX_INT_CACHED_PREC + 1;
+
+ if (precision <= MAX_INT_CACHED_PREC)
+ {
+ itype = nonstandard_integer_type_cache[precision + unsignedp];
+ if (itype)
+ return itype;
+ }
+
+ itype = make_node (INTEGER_TYPE);
+ TYPE_PRECISION (itype) = precision;
+
+ if (unsignedp)
+ fixup_unsigned_type (itype);
+ else
+ fixup_signed_type (itype);
+
+ inchash::hash hstate;
+ inchash::add_expr (TYPE_MAX_VALUE (itype), hstate);
+ ret = type_hash_canon (hstate.end (), itype);
+ if (precision <= MAX_INT_CACHED_PREC)
+ nonstandard_integer_type_cache[precision + unsignedp] = ret;
+
+ return ret;
+}
+
+#define MAX_BOOL_CACHED_PREC \
+ (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
+static GTY(()) tree nonstandard_boolean_type_cache[MAX_BOOL_CACHED_PREC + 1];
+
+/* Builds a boolean type of precision PRECISION.
+ Used for boolean vectors to choose proper vector element size. */
+tree
+build_nonstandard_boolean_type (unsigned HOST_WIDE_INT precision)
+{
+ tree type;
+
+ if (precision <= MAX_BOOL_CACHED_PREC)
+ {
+ type = nonstandard_boolean_type_cache[precision];
+ if (type)
+ return type;
+ }
+
+ type = make_node (BOOLEAN_TYPE);
+ TYPE_PRECISION (type) = precision;
+ fixup_signed_type (type);
+
+ if (precision <= MAX_INT_CACHED_PREC)
+ nonstandard_boolean_type_cache[precision] = type;
+
+ return type;
+}
+
+/* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
+ or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
+ is true, reuse such a type that has already been constructed. */
+
+static tree
+build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
+{
+ tree itype = make_node (INTEGER_TYPE);
+
+ TREE_TYPE (itype) = type;
+
+ TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
+ TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
+
+ TYPE_PRECISION (itype) = TYPE_PRECISION (type);
+ SET_TYPE_MODE (itype, TYPE_MODE (type));
+ TYPE_SIZE (itype) = TYPE_SIZE (type);
+ TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
+ SET_TYPE_ALIGN (itype, TYPE_ALIGN (type));
+ TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
+ SET_TYPE_WARN_IF_NOT_ALIGN (itype, TYPE_WARN_IF_NOT_ALIGN (type));
+
+ if (!shared)
+ return itype;
+
+ if ((TYPE_MIN_VALUE (itype)
+ && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
+ || (TYPE_MAX_VALUE (itype)
+ && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
+ {
+ /* Since we cannot reliably merge this type, we need to compare it using
+ structural equality checks. */
+ SET_TYPE_STRUCTURAL_EQUALITY (itype);
+ return itype;
+ }
+
+ hashval_t hash = type_hash_canon_hash (itype);
+ itype = type_hash_canon (hash, itype);
+
+ return itype;
+}
+
+/* Wrapper around build_range_type_1 with SHARED set to true. */
+
+tree
+build_range_type (tree type, tree lowval, tree highval)
+{
+ return build_range_type_1 (type, lowval, highval, true);
+}
+
+/* Wrapper around build_range_type_1 with SHARED set to false. */
+
+tree
+build_nonshared_range_type (tree type, tree lowval, tree highval)
+{
+ return build_range_type_1 (type, lowval, highval, false);
+}
+
+/* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
+ MAXVAL should be the maximum value in the domain
+ (one less than the length of the array).
+
+ The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
+ We don't enforce this limit, that is up to caller (e.g. language front end).
+ The limit exists because the result is a signed type and we don't handle
+ sizes that use more than one HOST_WIDE_INT. */
+
+tree
+build_index_type (tree maxval)
+{
+ return build_range_type (sizetype, size_zero_node, maxval);
+}
+
+/* Return true if the debug information for TYPE, a subtype, should be emitted
+ as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
+ high bound, respectively. Sometimes doing so unnecessarily obfuscates the
+ debug info and doesn't reflect the source code. */
+
+bool
+subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
+{
+ tree base_type = TREE_TYPE (type), low, high;
+
+ /* Subrange types have a base type which is an integral type. */
+ if (!INTEGRAL_TYPE_P (base_type))
+ return false;
+
+ /* Get the real bounds of the subtype. */
+ if (lang_hooks.types.get_subrange_bounds)
+ lang_hooks.types.get_subrange_bounds (type, &low, &high);
+ else
+ {
+ low = TYPE_MIN_VALUE (type);
+ high = TYPE_MAX_VALUE (type);
+ }
+
+ /* If the type and its base type have the same representation and the same
+ name, then the type is not a subrange but a copy of the base type. */
+ if ((TREE_CODE (base_type) == INTEGER_TYPE
+ || TREE_CODE (base_type) == BOOLEAN_TYPE)
+ && int_size_in_bytes (type) == int_size_in_bytes (base_type)
+ && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
+ && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type))
+ && TYPE_IDENTIFIER (type) == TYPE_IDENTIFIER (base_type))
+ return false;
+
+ if (lowval)
+ *lowval = low;
+ if (highval)
+ *highval = high;
+ return true;
+}
+
+/* Construct, lay out and return the type of arrays of elements with ELT_TYPE
+ and number of elements specified by the range of values of INDEX_TYPE.
+ If TYPELESS_STORAGE is true, TYPE_TYPELESS_STORAGE flag is set on the type.
+ If SHARED is true, reuse such a type that has already been constructed.
+ If SET_CANONICAL is true, compute TYPE_CANONICAL from the element type. */
+
+tree
+build_array_type_1 (tree elt_type, tree index_type, bool typeless_storage,
+ bool shared, bool set_canonical)
+{
+ tree t;
+
+ if (TREE_CODE (elt_type) == FUNCTION_TYPE)
+ {
+ error ("arrays of functions are not meaningful");
+ elt_type = integer_type_node;
+ }
+
+ t = make_node (ARRAY_TYPE);
+ TREE_TYPE (t) = elt_type;
+ TYPE_DOMAIN (t) = index_type;
+ TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
+ TYPE_TYPELESS_STORAGE (t) = typeless_storage;
+ layout_type (t);
+
+ if (shared)
+ {
+ hashval_t hash = type_hash_canon_hash (t);
+ t = type_hash_canon (hash, t);
+ }
+
+ if (TYPE_CANONICAL (t) == t && set_canonical)
+ {
+ if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
+ || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type))
+ || in_lto_p)
+ SET_TYPE_STRUCTURAL_EQUALITY (t);
+ else if (TYPE_CANONICAL (elt_type) != elt_type
+ || (index_type && TYPE_CANONICAL (index_type) != index_type))
+ TYPE_CANONICAL (t)
+ = build_array_type_1 (TYPE_CANONICAL (elt_type),
+ index_type
+ ? TYPE_CANONICAL (index_type) : NULL_TREE,
+ typeless_storage, shared, set_canonical);
+ }
+
+ return t;
+}
+
+/* Wrapper around build_array_type_1 with SHARED set to true. */
+
+tree
+build_array_type (tree elt_type, tree index_type, bool typeless_storage)
+{
+ return
+ build_array_type_1 (elt_type, index_type, typeless_storage, true, true);
+}
+
+/* Wrapper around build_array_type_1 with SHARED set to false. */
+
+tree
+build_nonshared_array_type (tree elt_type, tree index_type)
+{
+ return build_array_type_1 (elt_type, index_type, false, false, true);
+}
+
+/* Return a representation of ELT_TYPE[NELTS], using indices of type
+ sizetype. */
+
+tree
+build_array_type_nelts (tree elt_type, poly_uint64 nelts)
+{
+ return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
+}
+
+/* Recursively examines the array elements of TYPE, until a non-array
+ element type is found. */
+
+tree
+strip_array_types (tree type)
+{
+ while (TREE_CODE (type) == ARRAY_TYPE)
+ type = TREE_TYPE (type);
+
+ return type;
+}
+
+/* Computes the canonical argument types from the argument type list
+ ARGTYPES.
+
+ Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
+ on entry to this function, or if any of the ARGTYPES are
+ structural.
+
+ Upon return, *ANY_NONCANONICAL_P will be true iff either it was
+ true on entry to this function, or if any of the ARGTYPES are
+ non-canonical.
+
+ Returns a canonical argument list, which may be ARGTYPES when the
+ canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
+ true) or would not differ from ARGTYPES. */
+
+static tree
+maybe_canonicalize_argtypes (tree argtypes,
+ bool *any_structural_p,
+ bool *any_noncanonical_p)
+{
+ tree arg;
+ bool any_noncanonical_argtypes_p = false;
+
+ for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
+ {
+ if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
+ /* Fail gracefully by stating that the type is structural. */
+ *any_structural_p = true;
+ else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
+ *any_structural_p = true;
+ else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
+ || TREE_PURPOSE (arg))
+ /* If the argument has a default argument, we consider it
+ non-canonical even though the type itself is canonical.
+ That way, different variants of function and method types
+ with default arguments will all point to the variant with
+ no defaults as their canonical type. */
+ any_noncanonical_argtypes_p = true;
+ }
+
+ if (*any_structural_p)
+ return argtypes;
+
+ if (any_noncanonical_argtypes_p)
+ {
+ /* Build the canonical list of argument types. */
+ tree canon_argtypes = NULL_TREE;
+ bool is_void = false;
+
+ for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
+ {
+ if (arg == void_list_node)
+ is_void = true;
+ else
+ canon_argtypes = tree_cons (NULL_TREE,
+ TYPE_CANONICAL (TREE_VALUE (arg)),
+ canon_argtypes);
+ }
+
+ canon_argtypes = nreverse (canon_argtypes);
+ if (is_void)
+ canon_argtypes = chainon (canon_argtypes, void_list_node);
+
+ /* There is a non-canonical type. */
+ *any_noncanonical_p = true;
+ return canon_argtypes;
+ }
+
+ /* The canonical argument types are the same as ARGTYPES. */
+ return argtypes;
+}
+
+/* Construct, lay out and return
+ the type of functions returning type VALUE_TYPE
+ given arguments of types ARG_TYPES.
+ ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
+ are data type nodes for the arguments of the function.
+ If such a type has already been constructed, reuse it. */
+
+tree
+build_function_type (tree value_type, tree arg_types)
+{
+ tree t;
+ inchash::hash hstate;
+ bool any_structural_p, any_noncanonical_p;
+ tree canon_argtypes;
+
+ gcc_assert (arg_types != error_mark_node);
+
+ if (TREE_CODE (value_type) == FUNCTION_TYPE)
+ {
+ error ("function return type cannot be function");
+ value_type = integer_type_node;
+ }
+
+ /* Make a node of the sort we want. */
+ t = make_node (FUNCTION_TYPE);
+ TREE_TYPE (t) = value_type;
+ TYPE_ARG_TYPES (t) = arg_types;
+
+ /* If we already have such a type, use the old one. */
+ hashval_t hash = type_hash_canon_hash (t);
+ t = type_hash_canon (hash, t);
+
+ /* Set up the canonical type. */
+ any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
+ any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
+ canon_argtypes = maybe_canonicalize_argtypes (arg_types,
+ &any_structural_p,
+ &any_noncanonical_p);
+ if (any_structural_p)
+ SET_TYPE_STRUCTURAL_EQUALITY (t);
+ else if (any_noncanonical_p)
+ TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
+ canon_argtypes);
+
+ if (!COMPLETE_TYPE_P (t))
+ layout_type (t);
+ return t;
+}
+
+/* Build a function type. The RETURN_TYPE is the type returned by the
+ function. If VAARGS is set, no void_type_node is appended to the
+ list. ARGP must be always be terminated be a NULL_TREE. */
+
+static tree
+build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
+{
+ tree t, args, last;
+
+ t = va_arg (argp, tree);
+ for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
+ args = tree_cons (NULL_TREE, t, args);
+
+ if (vaargs)
+ {
+ last = args;
+ if (args != NULL_TREE)
+ args = nreverse (args);
+ gcc_assert (last != void_list_node);
+ }
+ else if (args == NULL_TREE)
+ args = void_list_node;
+ else
+ {
+ last = args;
+ args = nreverse (args);
+ TREE_CHAIN (last) = void_list_node;
+ }
+ args = build_function_type (return_type, args);
+
+ return args;
+}
+
+/* Build a function type. The RETURN_TYPE is the type returned by the
+ function. If additional arguments are provided, they are
+ additional argument types. The list of argument types must always
+ be terminated by NULL_TREE. */
+
+tree
+build_function_type_list (tree return_type, ...)
+{
+ tree args;
+ va_list p;
+
+ va_start (p, return_type);
+ args = build_function_type_list_1 (false, return_type, p);
+ va_end (p);
+ return args;
+}
+
+/* Build a variable argument function type. The RETURN_TYPE is the
+ type returned by the function. If additional arguments are provided,
+ they are additional argument types. The list of argument types must
+ always be terminated by NULL_TREE. */
+
+tree
+build_varargs_function_type_list (tree return_type, ...)
+{
+ tree args;
+ va_list p;
+
+ va_start (p, return_type);
+ args = build_function_type_list_1 (true, return_type, p);
+ va_end (p);
+
+ return args;
+}
+
+/* Build a function type. RETURN_TYPE is the type returned by the
+ function; VAARGS indicates whether the function takes varargs. The
+ function takes N named arguments, the types of which are provided in
+ ARG_TYPES. */
+
+static tree
+build_function_type_array_1 (bool vaargs, tree return_type, int n,
+ tree *arg_types)
+{
+ int i;
+ tree t = vaargs ? NULL_TREE : void_list_node;
+
+ for (i = n - 1; i >= 0; i--)
+ t = tree_cons (NULL_TREE, arg_types[i], t);
+
+ return build_function_type (return_type, t);
+}
+
+/* Build a function type. RETURN_TYPE is the type returned by the
+ function. The function takes N named arguments, the types of which
+ are provided in ARG_TYPES. */
+
+tree
+build_function_type_array (tree return_type, int n, tree *arg_types)
+{
+ return build_function_type_array_1 (false, return_type, n, arg_types);
+}
+
+/* Build a variable argument function type. RETURN_TYPE is the type
+ returned by the function. The function takes N named arguments, the
+ types of which are provided in ARG_TYPES. */
+
+tree
+build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
+{
+ return build_function_type_array_1 (true, return_type, n, arg_types);
+}
+
+/* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
+ and ARGTYPES (a TREE_LIST) are the return type and arguments types
+ for the method. An implicit additional parameter (of type
+ pointer-to-BASETYPE) is added to the ARGTYPES. */
+
+tree
+build_method_type_directly (tree basetype,
+ tree rettype,
+ tree argtypes)
+{
+ tree t;
+ tree ptype;
+ bool any_structural_p, any_noncanonical_p;
+ tree canon_argtypes;
+
+ /* Make a node of the sort we want. */
+ t = make_node (METHOD_TYPE);
+
+ TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
+ TREE_TYPE (t) = rettype;
+ ptype = build_pointer_type (basetype);
+
+ /* The actual arglist for this function includes a "hidden" argument
+ which is "this". Put it into the list of argument types. */
+ argtypes = tree_cons (NULL_TREE, ptype, argtypes);
+ TYPE_ARG_TYPES (t) = argtypes;
+
+ /* If we already have such a type, use the old one. */
+ hashval_t hash = type_hash_canon_hash (t);
+ t = type_hash_canon (hash, t);
+
+ /* Set up the canonical type. */
+ any_structural_p
+ = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
+ || TYPE_STRUCTURAL_EQUALITY_P (rettype));
+ any_noncanonical_p
+ = (TYPE_CANONICAL (basetype) != basetype
+ || TYPE_CANONICAL (rettype) != rettype);
+ canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
+ &any_structural_p,
+ &any_noncanonical_p);
+ if (any_structural_p)
+ SET_TYPE_STRUCTURAL_EQUALITY (t);
+ else if (any_noncanonical_p)
+ TYPE_CANONICAL (t)
+ = build_method_type_directly (TYPE_CANONICAL (basetype),
+ TYPE_CANONICAL (rettype),
+ canon_argtypes);
+ if (!COMPLETE_TYPE_P (t))
+ layout_type (t);
+
+ return t;
+}
+
+/* Construct, lay out and return the type of methods belonging to class
+ BASETYPE and whose arguments and values are described by TYPE.
+ If that type exists already, reuse it.
+ TYPE must be a FUNCTION_TYPE node. */
+
+tree
+build_method_type (tree basetype, tree type)
+{
+ gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
+
+ return build_method_type_directly (basetype,
+ TREE_TYPE (type),
+ TYPE_ARG_TYPES (type));
+}
+
+/* Construct, lay out and return the type of offsets to a value
+ of type TYPE, within an object of type BASETYPE.
+ If a suitable offset type exists already, reuse it. */
+
+tree
+build_offset_type (tree basetype, tree type)
+{
+ tree t;
+
+ /* Make a node of the sort we want. */
+ t = make_node (OFFSET_TYPE);
+
+ TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
+ TREE_TYPE (t) = type;
+
+ /* If we already have such a type, use the old one. */
+ hashval_t hash = type_hash_canon_hash (t);
+ t = type_hash_canon (hash, t);
+
+ if (!COMPLETE_TYPE_P (t))
+ layout_type (t);
+
+ if (TYPE_CANONICAL (t) == t)
+ {
+ if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
+ || TYPE_STRUCTURAL_EQUALITY_P (type))
+ SET_TYPE_STRUCTURAL_EQUALITY (t);
+ else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
+ || TYPE_CANONICAL (type) != type)
+ TYPE_CANONICAL (t)
+ = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
+ TYPE_CANONICAL (type));
+ }
+
+ return t;
+}
+
+/* Create a complex type whose components are COMPONENT_TYPE.
+
+ If NAMED is true, the type is given a TYPE_NAME. We do not always
+ do so because this creates a DECL node and thus make the DECL_UIDs
+ dependent on the type canonicalization hashtable, which is GC-ed,
+ so the DECL_UIDs would not be stable wrt garbage collection. */
+
+tree
+build_complex_type (tree component_type, bool named)
+{
+ gcc_assert (INTEGRAL_TYPE_P (component_type)
+ || SCALAR_FLOAT_TYPE_P (component_type)
+ || FIXED_POINT_TYPE_P (component_type));
+
+ /* Make a node of the sort we want. */
+ tree probe = make_node (COMPLEX_TYPE);
+
+ TREE_TYPE (probe) = TYPE_MAIN_VARIANT (component_type);
+
+ /* If we already have such a type, use the old one. */
+ hashval_t hash = type_hash_canon_hash (probe);
+ tree t = type_hash_canon (hash, probe);
+
+ if (t == probe)
+ {
+ /* We created a new type. The hash insertion will have laid
+ out the type. We need to check the canonicalization and
+ maybe set the name. */
+ gcc_checking_assert (COMPLETE_TYPE_P (t)
+ && !TYPE_NAME (t)
+ && TYPE_CANONICAL (t) == t);
+
+ if (TYPE_STRUCTURAL_EQUALITY_P (TREE_TYPE (t)))
+ SET_TYPE_STRUCTURAL_EQUALITY (t);
+ else if (TYPE_CANONICAL (TREE_TYPE (t)) != TREE_TYPE (t))
+ TYPE_CANONICAL (t)
+ = build_complex_type (TYPE_CANONICAL (TREE_TYPE (t)), named);
+
+ /* We need to create a name, since complex is a fundamental type. */
+ if (named)
+ {
+ const char *name = NULL;
+
+ if (TREE_TYPE (t) == char_type_node)
+ name = "complex char";
+ else if (TREE_TYPE (t) == signed_char_type_node)
+ name = "complex signed char";
+ else if (TREE_TYPE (t) == unsigned_char_type_node)
+ name = "complex unsigned char";
+ else if (TREE_TYPE (t) == short_integer_type_node)
+ name = "complex short int";
+ else if (TREE_TYPE (t) == short_unsigned_type_node)
+ name = "complex short unsigned int";
+ else if (TREE_TYPE (t) == integer_type_node)
+ name = "complex int";
+ else if (TREE_TYPE (t) == unsigned_type_node)
+ name = "complex unsigned int";
+ else if (TREE_TYPE (t) == long_integer_type_node)
+ name = "complex long int";
+ else if (TREE_TYPE (t) == long_unsigned_type_node)
+ name = "complex long unsigned int";
+ else if (TREE_TYPE (t) == long_long_integer_type_node)
+ name = "complex long long int";
+ else if (TREE_TYPE (t) == long_long_unsigned_type_node)
+ name = "complex long long unsigned int";
+
+ if (name != NULL)
+ TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
+ get_identifier (name), t);
+ }
+ }
+
+ return build_qualified_type (t, TYPE_QUALS (component_type));
+}
+
+/* If TYPE is a real or complex floating-point type and the target
+ does not directly support arithmetic on TYPE then return the wider
+ type to be used for arithmetic on TYPE. Otherwise, return
+ NULL_TREE. */
+
+tree
+excess_precision_type (tree type)
+{
+ /* The target can give two different responses to the question of
+ which excess precision mode it would like depending on whether we
+ are in -fexcess-precision=standard or -fexcess-precision=fast. */
+
+ enum excess_precision_type requested_type
+ = (flag_excess_precision == EXCESS_PRECISION_FAST
+ ? EXCESS_PRECISION_TYPE_FAST
+ : (flag_excess_precision == EXCESS_PRECISION_FLOAT16
+ ? EXCESS_PRECISION_TYPE_FLOAT16 :EXCESS_PRECISION_TYPE_STANDARD));
+
+ enum flt_eval_method target_flt_eval_method
+ = targetm.c.excess_precision (requested_type);
+
+ /* The target should not ask for unpredictable float evaluation (though
+ it might advertise that implicitly the evaluation is unpredictable,
+ but we don't care about that here, it will have been reported
+ elsewhere). If it does ask for unpredictable evaluation, we have
+ nothing to do here. */
+ gcc_assert (target_flt_eval_method != FLT_EVAL_METHOD_UNPREDICTABLE);
+
+ /* Nothing to do. The target has asked for all types we know about
+ to be computed with their native precision and range. */
+ if (target_flt_eval_method == FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16)
+ return NULL_TREE;
+
+ /* The target will promote this type in a target-dependent way, so excess
+ precision ought to leave it alone. */
+ if (targetm.promoted_type (type) != NULL_TREE)
+ return NULL_TREE;
+
+ machine_mode float16_type_mode = (float16_type_node
+ ? TYPE_MODE (float16_type_node)
+ : VOIDmode);
+ machine_mode float_type_mode = TYPE_MODE (float_type_node);
+ machine_mode double_type_mode = TYPE_MODE (double_type_node);
+
+ switch (TREE_CODE (type))
+ {
+ case REAL_TYPE:
+ {
+ machine_mode type_mode = TYPE_MODE (type);
+ switch (target_flt_eval_method)
+ {
+ case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
+ if (type_mode == float16_type_mode)
+ return float_type_node;
+ break;
+ case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
+ if (type_mode == float16_type_mode
+ || type_mode == float_type_mode)
+ return double_type_node;
+ break;
+ case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
+ if (type_mode == float16_type_mode
+ || type_mode == float_type_mode
+ || type_mode == double_type_mode)
+ return long_double_type_node;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ break;
+ }
+ case COMPLEX_TYPE:
+ {
+ if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
+ return NULL_TREE;
+ machine_mode type_mode = TYPE_MODE (TREE_TYPE (type));
+ switch (target_flt_eval_method)
+ {
+ case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
+ if (type_mode == float16_type_mode)
+ return complex_float_type_node;
+ break;
+ case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
+ if (type_mode == float16_type_mode
+ || type_mode == float_type_mode)
+ return complex_double_type_node;
+ break;
+ case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
+ if (type_mode == float16_type_mode
+ || type_mode == float_type_mode
+ || type_mode == double_type_mode)
+ return complex_long_double_type_node;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ break;
+ }
+ default:
+ break;
+ }
+
+ return NULL_TREE;
+}
+
+/* Return OP, stripped of any conversions to wider types as much as is safe.
+ Converting the value back to OP's type makes a value equivalent to OP.
+
+ If FOR_TYPE is nonzero, we return a value which, if converted to
+ type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
+
+ OP must have integer, real or enumeral type. Pointers are not allowed!
+
+ There are some cases where the obvious value we could return
+ would regenerate to OP if converted to OP's type,
+ but would not extend like OP to wider types.
+ If FOR_TYPE indicates such extension is contemplated, we eschew such values.
+ For example, if OP is (unsigned short)(signed char)-1,
+ we avoid returning (signed char)-1 if FOR_TYPE is int,
+ even though extending that to an unsigned short would regenerate OP,
+ since the result of extending (signed char)-1 to (int)
+ is different from (int) OP. */
+
+tree
+get_unwidened (tree op, tree for_type)
+{
+ /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
+ tree type = TREE_TYPE (op);
+ unsigned final_prec
+ = TYPE_PRECISION (for_type != 0 ? for_type : type);
+ int uns
+ = (for_type != 0 && for_type != type
+ && final_prec > TYPE_PRECISION (type)
+ && TYPE_UNSIGNED (type));
+ tree win = op;
+
+ while (CONVERT_EXPR_P (op))
+ {
+ int bitschange;
+
+ /* TYPE_PRECISION on vector types has different meaning
+ (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
+ so avoid them here. */
+ if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
+ break;
+
+ bitschange = TYPE_PRECISION (TREE_TYPE (op))
+ - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
+
+ /* Truncations are many-one so cannot be removed.
+ Unless we are later going to truncate down even farther. */
+ if (bitschange < 0
+ && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
+ break;
+
+ /* See what's inside this conversion. If we decide to strip it,
+ we will set WIN. */
+ op = TREE_OPERAND (op, 0);
+
+ /* If we have not stripped any zero-extensions (uns is 0),
+ we can strip any kind of extension.
+ If we have previously stripped a zero-extension,
+ only zero-extensions can safely be stripped.
+ Any extension can be stripped if the bits it would produce
+ are all going to be discarded later by truncating to FOR_TYPE. */
+
+ if (bitschange > 0)
+ {
+ if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
+ win = op;
+ /* TYPE_UNSIGNED says whether this is a zero-extension.
+ Let's avoid computing it if it does not affect WIN
+ and if UNS will not be needed again. */
+ if ((uns
+ || CONVERT_EXPR_P (op))
+ && TYPE_UNSIGNED (TREE_TYPE (op)))
+ {
+ uns = 1;
+ win = op;
+ }
+ }
+ }
+
+ /* If we finally reach a constant see if it fits in sth smaller and
+ in that case convert it. */
+ if (TREE_CODE (win) == INTEGER_CST)
+ {
+ tree wtype = TREE_TYPE (win);
+ unsigned prec = wi::min_precision (wi::to_wide (win), TYPE_SIGN (wtype));
+ if (for_type)
+ prec = MAX (prec, final_prec);
+ if (prec < TYPE_PRECISION (wtype))
+ {
+ tree t = lang_hooks.types.type_for_size (prec, TYPE_UNSIGNED (wtype));
+ if (t && TYPE_PRECISION (t) < TYPE_PRECISION (wtype))
+ win = fold_convert (t, win);
+ }
+ }
+
+ return win;
+}
+
+/* Return OP or a simpler expression for a narrower value
+ which can be sign-extended or zero-extended to give back OP.
+ Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
+ or 0 if the value should be sign-extended. */
+
+tree
+get_narrower (tree op, int *unsignedp_ptr)
+{
+ int uns = 0;
+ int first = 1;
+ tree win = op;
+ bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
+
+ if (TREE_CODE (op) == COMPOUND_EXPR)
+ {
+ do
+ op = TREE_OPERAND (op, 1);
+ while (TREE_CODE (op) == COMPOUND_EXPR);
+ tree ret = get_narrower (op, unsignedp_ptr);
+ if (ret == op)
+ return win;
+ auto_vec <tree, 16> v;
+ unsigned int i;
+ for (op = win; TREE_CODE (op) == COMPOUND_EXPR;
+ op = TREE_OPERAND (op, 1))
+ v.safe_push (op);
+ FOR_EACH_VEC_ELT_REVERSE (v, i, op)
+ ret = build2_loc (EXPR_LOCATION (op), COMPOUND_EXPR,
+ TREE_TYPE (ret), TREE_OPERAND (op, 0),
+ ret);
+ return ret;
+ }
+ while (TREE_CODE (op) == NOP_EXPR)
+ {
+ int bitschange
+ = (TYPE_PRECISION (TREE_TYPE (op))
+ - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
+
+ /* Truncations are many-one so cannot be removed. */
+ if (bitschange < 0)
+ break;
+
+ /* See what's inside this conversion. If we decide to strip it,
+ we will set WIN. */
+
+ if (bitschange > 0)
+ {
+ op = TREE_OPERAND (op, 0);
+ /* An extension: the outermost one can be stripped,
+ but remember whether it is zero or sign extension. */
+ if (first)
+ uns = TYPE_UNSIGNED (TREE_TYPE (op));
+ /* Otherwise, if a sign extension has been stripped,
+ only sign extensions can now be stripped;
+ if a zero extension has been stripped, only zero-extensions. */
+ else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
+ break;
+ first = 0;
+ }
+ else /* bitschange == 0 */
+ {
+ /* A change in nominal type can always be stripped, but we must
+ preserve the unsignedness. */
+ if (first)
+ uns = TYPE_UNSIGNED (TREE_TYPE (op));
+ first = 0;
+ op = TREE_OPERAND (op, 0);
+ /* Keep trying to narrow, but don't assign op to win if it
+ would turn an integral type into something else. */
+ if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
+ continue;
+ }
+
+ win = op;
+ }
+
+ if (TREE_CODE (op) == COMPONENT_REF
+ /* Since type_for_size always gives an integer type. */
+ && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
+ && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
+ /* Ensure field is laid out already. */
+ && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
+ && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op, 1))))
+ {
+ unsigned HOST_WIDE_INT innerprec
+ = tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op, 1)));
+ int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
+ || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
+ tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
+
+ /* We can get this structure field in a narrower type that fits it,
+ but the resulting extension to its nominal type (a fullword type)
+ must satisfy the same conditions as for other extensions.
+
+ Do this only for fields that are aligned (not bit-fields),
+ because when bit-field insns will be used there is no
+ advantage in doing this. */
+
+ if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
+ && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
+ && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
+ && type != 0)
+ {
+ if (first)
+ uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
+ win = fold_convert (type, op);
+ }
+ }
+
+ *unsignedp_ptr = uns;
+ return win;
+}
+
+/* Return true if integer constant C has a value that is permissible
+ for TYPE, an integral type. */
+
+bool
+int_fits_type_p (const_tree c, const_tree type)
+{
+ tree type_low_bound, type_high_bound;
+ bool ok_for_low_bound, ok_for_high_bound;
+ signop sgn_c = TYPE_SIGN (TREE_TYPE (c));
+
+ /* Non-standard boolean types can have arbitrary precision but various
+ transformations assume that they can only take values 0 and +/-1. */
+ if (TREE_CODE (type) == BOOLEAN_TYPE)
+ return wi::fits_to_boolean_p (wi::to_wide (c), type);
+
+retry:
+ type_low_bound = TYPE_MIN_VALUE (type);
+ type_high_bound = TYPE_MAX_VALUE (type);
+
+ /* If at least one bound of the type is a constant integer, we can check
+ ourselves and maybe make a decision. If no such decision is possible, but
+ this type is a subtype, try checking against that. Otherwise, use
+ fits_to_tree_p, which checks against the precision.
+
+ Compute the status for each possibly constant bound, and return if we see
+ one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
+ for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
+ for "constant known to fit". */
+
+ /* Check if c >= type_low_bound. */
+ if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
+ {
+ if (tree_int_cst_lt (c, type_low_bound))
+ return false;
+ ok_for_low_bound = true;
+ }
+ else
+ ok_for_low_bound = false;
+
+ /* Check if c <= type_high_bound. */
+ if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
+ {
+ if (tree_int_cst_lt (type_high_bound, c))
+ return false;
+ ok_for_high_bound = true;
+ }
+ else
+ ok_for_high_bound = false;
+
+ /* If the constant fits both bounds, the result is known. */
+ if (ok_for_low_bound && ok_for_high_bound)
+ return true;
+
+ /* Perform some generic filtering which may allow making a decision
+ even if the bounds are not constant. First, negative integers
+ never fit in unsigned types, */
+ if (TYPE_UNSIGNED (type) && sgn_c == SIGNED && wi::neg_p (wi::to_wide (c)))
+ return false;
+
+ /* Second, narrower types always fit in wider ones. */
+ if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
+ return true;
+
+ /* Third, unsigned integers with top bit set never fit signed types. */
+ if (!TYPE_UNSIGNED (type) && sgn_c == UNSIGNED)
+ {
+ int prec = GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (TREE_TYPE (c))) - 1;
+ if (prec < TYPE_PRECISION (TREE_TYPE (c)))
+ {
+ /* When a tree_cst is converted to a wide-int, the precision
+ is taken from the type. However, if the precision of the
+ mode underneath the type is smaller than that, it is
+ possible that the value will not fit. The test below
+ fails if any bit is set between the sign bit of the
+ underlying mode and the top bit of the type. */
+ if (wi::zext (wi::to_wide (c), prec - 1) != wi::to_wide (c))
+ return false;
+ }
+ else if (wi::neg_p (wi::to_wide (c)))
+ return false;
+ }
+
+ /* If we haven't been able to decide at this point, there nothing more we
+ can check ourselves here. Look at the base type if we have one and it
+ has the same precision. */
+ if (TREE_CODE (type) == INTEGER_TYPE
+ && TREE_TYPE (type) != 0
+ && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
+ {
+ type = TREE_TYPE (type);
+ goto retry;
+ }
+
+ /* Or to fits_to_tree_p, if nothing else. */
+ return wi::fits_to_tree_p (wi::to_wide (c), type);
+}
+
+/* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
+ bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
+ represented (assuming two's-complement arithmetic) within the bit
+ precision of the type are returned instead. */
+
+void
+get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
+{
+ if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
+ && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
+ wi::to_mpz (wi::to_wide (TYPE_MIN_VALUE (type)), min, TYPE_SIGN (type));
+ else
+ {
+ if (TYPE_UNSIGNED (type))
+ mpz_set_ui (min, 0);
+ else
+ {
+ wide_int mn = wi::min_value (TYPE_PRECISION (type), SIGNED);
+ wi::to_mpz (mn, min, SIGNED);
+ }
+ }
+
+ if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
+ && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
+ wi::to_mpz (wi::to_wide (TYPE_MAX_VALUE (type)), max, TYPE_SIGN (type));
+ else
+ {
+ wide_int mn = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
+ wi::to_mpz (mn, max, TYPE_SIGN (type));
+ }
+}
+
+/* Return true if VAR is an automatic variable. */
+
+bool
+auto_var_p (const_tree var)
+{
+ return ((((VAR_P (var) && ! DECL_EXTERNAL (var))
+ || TREE_CODE (var) == PARM_DECL)
+ && ! TREE_STATIC (var))
+ || TREE_CODE (var) == RESULT_DECL);
+}
+
+/* Return true if VAR is an automatic variable defined in function FN. */
+
+bool
+auto_var_in_fn_p (const_tree var, const_tree fn)
+{
+ return (DECL_P (var) && DECL_CONTEXT (var) == fn
+ && (auto_var_p (var)
+ || TREE_CODE (var) == LABEL_DECL));
+}
+
+/* Subprogram of following function. Called by walk_tree.
+
+ Return *TP if it is an automatic variable or parameter of the
+ function passed in as DATA. */
+
+static tree
+find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
+{
+ tree fn = (tree) data;
+
+ if (TYPE_P (*tp))
+ *walk_subtrees = 0;
+
+ else if (DECL_P (*tp)
+ && auto_var_in_fn_p (*tp, fn))
+ return *tp;
+
+ return NULL_TREE;
+}
+
+/* Returns true if T is, contains, or refers to a type with variable
+ size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
+ arguments, but not the return type. If FN is nonzero, only return
+ true if a modifier of the type or position of FN is a variable or
+ parameter inside FN.
+
+ This concept is more general than that of C99 'variably modified types':
+ in C99, a struct type is never variably modified because a VLA may not
+ appear as a structure member. However, in GNU C code like:
+
+ struct S { int i[f()]; };
+
+ is valid, and other languages may define similar constructs. */
+
+bool
+variably_modified_type_p (tree type, tree fn)
+{
+ tree t;
+
+/* Test if T is either variable (if FN is zero) or an expression containing
+ a variable in FN. If TYPE isn't gimplified, return true also if
+ gimplify_one_sizepos would gimplify the expression into a local
+ variable. */
+#define RETURN_TRUE_IF_VAR(T) \
+ do { tree _t = (T); \
+ if (_t != NULL_TREE \
+ && _t != error_mark_node \
+ && !CONSTANT_CLASS_P (_t) \
+ && TREE_CODE (_t) != PLACEHOLDER_EXPR \
+ && (!fn \
+ || (!TYPE_SIZES_GIMPLIFIED (type) \
+ && (TREE_CODE (_t) != VAR_DECL \
+ && !CONTAINS_PLACEHOLDER_P (_t))) \
+ || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
+ return true; } while (0)
+
+ if (type == error_mark_node)
+ return false;
+
+ /* If TYPE itself has variable size, it is variably modified. */
+ RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
+ RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
+
+ switch (TREE_CODE (type))
+ {
+ case POINTER_TYPE:
+ case REFERENCE_TYPE:
+ case VECTOR_TYPE:
+ /* Ada can have pointer types refering to themselves indirectly. */
+ if (TREE_VISITED (type))
+ return false;
+ TREE_VISITED (type) = true;
+ if (variably_modified_type_p (TREE_TYPE (type), fn))
+ {
+ TREE_VISITED (type) = false;
+ return true;
+ }
+ TREE_VISITED (type) = false;
+ break;
+
+ case FUNCTION_TYPE:
+ case METHOD_TYPE:
+ /* If TYPE is a function type, it is variably modified if the
+ return type is variably modified. */
+ if (variably_modified_type_p (TREE_TYPE (type), fn))
+ return true;
+ break;
+
+ case INTEGER_TYPE:
+ case REAL_TYPE:
+ case FIXED_POINT_TYPE:
+ case ENUMERAL_TYPE:
+ case BOOLEAN_TYPE:
+ /* Scalar types are variably modified if their end points
+ aren't constant. */
+ RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
+ RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
+ break;
+
+ case RECORD_TYPE:
+ case UNION_TYPE:
+ case QUAL_UNION_TYPE:
+ /* We can't see if any of the fields are variably-modified by the
+ definition we normally use, since that would produce infinite
+ recursion via pointers. */
+ /* This is variably modified if some field's type is. */
+ for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
+ if (TREE_CODE (t) == FIELD_DECL)
+ {
+ RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
+ RETURN_TRUE_IF_VAR (DECL_SIZE (t));
+ RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
+
+ /* If the type is a qualified union, then the DECL_QUALIFIER
+ of fields can also be an expression containing a variable. */
+ if (TREE_CODE (type) == QUAL_UNION_TYPE)
+ RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
+
+ /* If the field is a qualified union, then it's only a container
+ for what's inside so we look into it. That's necessary in LTO
+ mode because the sizes of the field tested above have been set
+ to PLACEHOLDER_EXPRs by free_lang_data. */
+ if (TREE_CODE (TREE_TYPE (t)) == QUAL_UNION_TYPE
+ && variably_modified_type_p (TREE_TYPE (t), fn))
+ return true;
+ }
+ break;
+
+ case ARRAY_TYPE:
+ /* Do not call ourselves to avoid infinite recursion. This is
+ variably modified if the element type is. */
+ RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
+ RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
+ break;
+
+ default:
+ break;
+ }
+
+ /* The current language may have other cases to check, but in general,
+ all other types are not variably modified. */
+ return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
+
+#undef RETURN_TRUE_IF_VAR
+}
+
+/* Given a DECL or TYPE, return the scope in which it was declared, or
+ NULL_TREE if there is no containing scope. */
+
+tree
+get_containing_scope (const_tree t)
+{
+ return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
+}
+
+/* Returns the ultimate TRANSLATION_UNIT_DECL context of DECL or NULL. */
+
+const_tree
+get_ultimate_context (const_tree decl)
+{
+ while (decl && TREE_CODE (decl) != TRANSLATION_UNIT_DECL)
+ {
+ if (TREE_CODE (decl) == BLOCK)
+ decl = BLOCK_SUPERCONTEXT (decl);
+ else
+ decl = get_containing_scope (decl);
+ }
+ return decl;
+}
+
+/* Return the innermost context enclosing DECL that is
+ a FUNCTION_DECL, or zero if none. */
+
+tree
+decl_function_context (const_tree decl)
+{
+ tree context;
+
+ if (TREE_CODE (decl) == ERROR_MARK)
+ return 0;
+
+ /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
+ where we look up the function at runtime. Such functions always take
+ a first argument of type 'pointer to real context'.
+
+ C++ should really be fixed to use DECL_CONTEXT for the real context,
+ and use something else for the "virtual context". */
+ else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VIRTUAL_P (decl))
+ context
+ = TYPE_MAIN_VARIANT
+ (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
+ else
+ context = DECL_CONTEXT (decl);
+
+ while (context && TREE_CODE (context) != FUNCTION_DECL)
+ {
+ if (TREE_CODE (context) == BLOCK)
+ context = BLOCK_SUPERCONTEXT (context);
+ else
+ context = get_containing_scope (context);
+ }
+
+ return context;
+}
+
+/* Return the innermost context enclosing DECL that is
+ a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
+ TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
+
+tree
+decl_type_context (const_tree decl)
+{
+ tree context = DECL_CONTEXT (decl);
+
+ while (context)
+ switch (TREE_CODE (context))
+ {
+ case NAMESPACE_DECL:
+ case TRANSLATION_UNIT_DECL:
+ return NULL_TREE;
+
+ case RECORD_TYPE:
+ case UNION_TYPE:
+ case QUAL_UNION_TYPE:
+ return context;
+
+ case TYPE_DECL:
+ case FUNCTION_DECL:
+ context = DECL_CONTEXT (context);
+ break;
+
+ case BLOCK:
+ context = BLOCK_SUPERCONTEXT (context);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return NULL_TREE;
+}
+
+/* CALL is a CALL_EXPR. Return the declaration for the function
+ called, or NULL_TREE if the called function cannot be
+ determined. */
+
+tree
+get_callee_fndecl (const_tree call)
+{
+ tree addr;
+
+ if (call == error_mark_node)
+ return error_mark_node;
+
+ /* It's invalid to call this function with anything but a
+ CALL_EXPR. */
+ gcc_assert (TREE_CODE (call) == CALL_EXPR);
+
+ /* The first operand to the CALL is the address of the function
+ called. */
+ addr = CALL_EXPR_FN (call);
+
+ /* If there is no function, return early. */
+ if (addr == NULL_TREE)
+ return NULL_TREE;
+
+ STRIP_NOPS (addr);
+
+ /* If this is a readonly function pointer, extract its initial value. */
+ if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
+ && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
+ && DECL_INITIAL (addr))
+ addr = DECL_INITIAL (addr);
+
+ /* If the address is just `&f' for some function `f', then we know
+ that `f' is being called. */
+ if (TREE_CODE (addr) == ADDR_EXPR
+ && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
+ return TREE_OPERAND (addr, 0);
+
+ /* We couldn't figure out what was being called. */
+ return NULL_TREE;
+}
+
+/* If CALL_EXPR CALL calls a normal built-in function or an internal function,
+ return the associated function code, otherwise return CFN_LAST. */
+
+combined_fn
+get_call_combined_fn (const_tree call)
+{
+ /* It's invalid to call this function with anything but a CALL_EXPR. */
+ gcc_assert (TREE_CODE (call) == CALL_EXPR);
+
+ if (!CALL_EXPR_FN (call))
+ return as_combined_fn (CALL_EXPR_IFN (call));
+
+ tree fndecl = get_callee_fndecl (call);
+ if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
+ return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
+
+ return CFN_LAST;
+}
+
+/* Comparator of indices based on tree_node_counts. */
+
+static int
+tree_nodes_cmp (const void *p1, const void *p2)
+{
+ const unsigned *n1 = (const unsigned *)p1;
+ const unsigned *n2 = (const unsigned *)p2;
+
+ return tree_node_counts[*n1] - tree_node_counts[*n2];
+}
+
+/* Comparator of indices based on tree_code_counts. */
+
+static int
+tree_codes_cmp (const void *p1, const void *p2)
+{
+ const unsigned *n1 = (const unsigned *)p1;
+ const unsigned *n2 = (const unsigned *)p2;
+
+ return tree_code_counts[*n1] - tree_code_counts[*n2];
+}
+
+#define TREE_MEM_USAGE_SPACES 40
+
+/* Print debugging information about tree nodes generated during the compile,
+ and any language-specific information. */
+
+void
+dump_tree_statistics (void)
+{
+ if (GATHER_STATISTICS)
+ {
+ uint64_t total_nodes, total_bytes;
+ fprintf (stderr, "\nKind Nodes Bytes\n");
+ mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
+ total_nodes = total_bytes = 0;
+
+ {
+ auto_vec<unsigned> indices (all_kinds);
+ for (unsigned i = 0; i < all_kinds; i++)
+ indices.quick_push (i);
+ indices.qsort (tree_nodes_cmp);
+
+ for (unsigned i = 0; i < (int) all_kinds; i++)
+ {
+ unsigned j = indices[i];
+ fprintf (stderr, "%-20s %6" PRIu64 "%c %9" PRIu64 "%c\n",
+ tree_node_kind_names[j], SIZE_AMOUNT (tree_node_counts[j]),
+ SIZE_AMOUNT (tree_node_sizes[j]));
+ total_nodes += tree_node_counts[j];
+ total_bytes += tree_node_sizes[j];
+ }
+ mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
+ fprintf (stderr, "%-20s %6" PRIu64 "%c %9" PRIu64 "%c\n", "Total",
+ SIZE_AMOUNT (total_nodes), SIZE_AMOUNT (total_bytes));
+ mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
+ }
+
+ {
+ fprintf (stderr, "Code Nodes\n");
+ mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
+
+ auto_vec<unsigned> indices (MAX_TREE_CODES);
+ for (unsigned i = 0; i < MAX_TREE_CODES; i++)
+ indices.quick_push (i);
+ indices.qsort (tree_codes_cmp);
+
+ for (unsigned i = 0; i < MAX_TREE_CODES; i++)
+ {
+ unsigned j = indices[i];
+ fprintf (stderr, "%-32s %6" PRIu64 "%c\n",
+ get_tree_code_name ((enum tree_code) j),
+ SIZE_AMOUNT (tree_code_counts[j]));
+ }
+ mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
+ fprintf (stderr, "\n");
+ ssanames_print_statistics ();
+ fprintf (stderr, "\n");
+ phinodes_print_statistics ();
+ fprintf (stderr, "\n");
+ }
+ }
+ else
+ fprintf (stderr, "(No per-node statistics)\n");
+
+ print_type_hash_statistics ();
+ print_debug_expr_statistics ();
+ print_value_expr_statistics ();
+ lang_hooks.print_statistics ();
+}
+
+#define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
+
+/* Generate a crc32 of the low BYTES bytes of VALUE. */
+
+unsigned
+crc32_unsigned_n (unsigned chksum, unsigned value, unsigned bytes)
+{
+ /* This relies on the raw feedback's top 4 bits being zero. */
+#define FEEDBACK(X) ((X) * 0x04c11db7)
+#define SYNDROME(X) (FEEDBACK ((X) & 1) ^ FEEDBACK ((X) & 2) \
+ ^ FEEDBACK ((X) & 4) ^ FEEDBACK ((X) & 8))
+ static const unsigned syndromes[16] =
+ {
+ SYNDROME(0x0), SYNDROME(0x1), SYNDROME(0x2), SYNDROME(0x3),
+ SYNDROME(0x4), SYNDROME(0x5), SYNDROME(0x6), SYNDROME(0x7),
+ SYNDROME(0x8), SYNDROME(0x9), SYNDROME(0xa), SYNDROME(0xb),
+ SYNDROME(0xc), SYNDROME(0xd), SYNDROME(0xe), SYNDROME(0xf),
+ };
+#undef FEEDBACK
+#undef SYNDROME
+
+ value <<= (32 - bytes * 8);
+ for (unsigned ix = bytes * 2; ix--; value <<= 4)
+ {
+ unsigned feedback = syndromes[((value ^ chksum) >> 28) & 0xf];
+
+ chksum = (chksum << 4) ^ feedback;
+ }
+
+ return chksum;
+}
+
+/* Generate a crc32 of a string. */
+
+unsigned
+crc32_string (unsigned chksum, const char *string)
+{
+ do
+ chksum = crc32_byte (chksum, *string);
+ while (*string++);
+ return chksum;
+}
+
+/* P is a string that will be used in a symbol. Mask out any characters
+ that are not valid in that context. */
+
+void
+clean_symbol_name (char *p)
+{
+ for (; *p; p++)
+ if (! (ISALNUM (*p)
+#ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
+ || *p == '$'
+#endif
+#ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
+ || *p == '.'
+#endif
+ ))
+ *p = '_';
+}
+
+static GTY(()) unsigned anon_cnt = 0; /* Saved for PCH. */
+
+/* Create a unique anonymous identifier. The identifier is still a
+ valid assembly label. */
+
+tree
+make_anon_name ()
+{
+ const char *fmt =
+#if !defined (NO_DOT_IN_LABEL)
+ "."
+#elif !defined (NO_DOLLAR_IN_LABEL)
+ "$"
+#else
+ "_"
+#endif
+ "_anon_%d";
+
+ char buf[24];
+ int len = snprintf (buf, sizeof (buf), fmt, anon_cnt++);
+ gcc_checking_assert (len < int (sizeof (buf)));
+
+ tree id = get_identifier_with_length (buf, len);
+ IDENTIFIER_ANON_P (id) = true;
+
+ return id;
+}
+
+/* Generate a name for a special-purpose function.
+ The generated name may need to be unique across the whole link.
+ Changes to this function may also require corresponding changes to
+ xstrdup_mask_random.
+ TYPE is some string to identify the purpose of this function to the
+ linker or collect2; it must start with an uppercase letter,
+ one of:
+ I - for constructors
+ D - for destructors
+ N - for C++ anonymous namespaces
+ F - for DWARF unwind frame information. */
+
+tree
+get_file_function_name (const char *type)
+{
+ char *buf;
+ const char *p;
+ char *q;
+
+ /* If we already have a name we know to be unique, just use that. */
+ if (first_global_object_name)
+ p = q = ASTRDUP (first_global_object_name);
+ /* If the target is handling the constructors/destructors, they
+ will be local to this file and the name is only necessary for
+ debugging purposes.
+ We also assign sub_I and sub_D sufixes to constructors called from
+ the global static constructors. These are always local. */
+ else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
+ || (startswith (type, "sub_")
+ && (type[4] == 'I' || type[4] == 'D')))
+ {
+ const char *file = main_input_filename;
+ if (! file)
+ file = LOCATION_FILE (input_location);
+ /* Just use the file's basename, because the full pathname
+ might be quite long. */
+ p = q = ASTRDUP (lbasename (file));
+ }
+ else
+ {
+ /* Otherwise, the name must be unique across the entire link.
+ We don't have anything that we know to be unique to this translation
+ unit, so use what we do have and throw in some randomness. */
+ unsigned len;
+ const char *name = weak_global_object_name;
+ const char *file = main_input_filename;
+
+ if (! name)
+ name = "";
+ if (! file)
+ file = LOCATION_FILE (input_location);
+
+ len = strlen (file);
+ q = (char *) alloca (9 + 19 + len + 1);
+ memcpy (q, file, len + 1);
+
+ snprintf (q + len, 9 + 19 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
+ crc32_string (0, name), get_random_seed (false));
+
+ p = q;
+ }
+
+ clean_symbol_name (q);
+ buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
+ + strlen (type));
+
+ /* Set up the name of the file-level functions we may need.
+ Use a global object (which is already required to be unique over
+ the program) rather than the file name (which imposes extra
+ constraints). */
+ sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
+
+ return get_identifier (buf);
+}
+
+#if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
+
+/* Complain that the tree code of NODE does not match the expected 0
+ terminated list of trailing codes. The trailing code list can be
+ empty, for a more vague error message. FILE, LINE, and FUNCTION
+ are of the caller. */
+
+void
+tree_check_failed (const_tree node, const char *file,
+ int line, const char *function, ...)
+{
+ va_list args;
+ const char *buffer;
+ unsigned length = 0;
+ enum tree_code code;
+
+ va_start (args, function);
+ while ((code = (enum tree_code) va_arg (args, int)))
+ length += 4 + strlen (get_tree_code_name (code));
+ va_end (args);
+ if (length)
+ {
+ char *tmp;
+ va_start (args, function);
+ length += strlen ("expected ");
+ buffer = tmp = (char *) alloca (length);
+ length = 0;
+ while ((code = (enum tree_code) va_arg (args, int)))
+ {
+ const char *prefix = length ? " or " : "expected ";
+
+ strcpy (tmp + length, prefix);
+ length += strlen (prefix);
+ strcpy (tmp + length, get_tree_code_name (code));
+ length += strlen (get_tree_code_name (code));
+ }
+ va_end (args);
+ }
+ else
+ buffer = "unexpected node";
+
+ internal_error ("tree check: %s, have %s in %s, at %s:%d",
+ buffer, get_tree_code_name (TREE_CODE (node)),
+ function, trim_filename (file), line);
+}
+
+/* Complain that the tree code of NODE does match the expected 0
+ terminated list of trailing codes. FILE, LINE, and FUNCTION are of
+ the caller. */
+
+void
+tree_not_check_failed (const_tree node, const char *file,
+ int line, const char *function, ...)
+{
+ va_list args;
+ char *buffer;
+ unsigned length = 0;
+ enum tree_code code;
+
+ va_start (args, function);
+ while ((code = (enum tree_code) va_arg (args, int)))
+ length += 4 + strlen (get_tree_code_name (code));
+ va_end (args);
+ va_start (args, function);
+ buffer = (char *) alloca (length);
+ length = 0;
+ while ((code = (enum tree_code) va_arg (args, int)))
+ {
+ if (length)
+ {
+ strcpy (buffer + length, " or ");
+ length += 4;
+ }
+ strcpy (buffer + length, get_tree_code_name (code));
+ length += strlen (get_tree_code_name (code));
+ }
+ va_end (args);
+
+ internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
+ buffer, get_tree_code_name (TREE_CODE (node)),
+ function, trim_filename (file), line);
+}
+
+/* Similar to tree_check_failed, except that we check for a class of tree
+ code, given in CL. */
+
+void
+tree_class_check_failed (const_tree node, const enum tree_code_class cl,
+ const char *file, int line, const char *function)
+{
+ internal_error
+ ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
+ TREE_CODE_CLASS_STRING (cl),
+ TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
+ get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
+}
+
+/* Similar to tree_check_failed, except that instead of specifying a
+ dozen codes, use the knowledge that they're all sequential. */
+
+void
+tree_range_check_failed (const_tree node, const char *file, int line,
+ const char *function, enum tree_code c1,
+ enum tree_code c2)
+{
+ char *buffer;
+ unsigned length = 0;
+ unsigned int c;
+
+ for (c = c1; c <= c2; ++c)
+ length += 4 + strlen (get_tree_code_name ((enum tree_code) c));
+
+ length += strlen ("expected ");
+ buffer = (char *) alloca (length);
+ length = 0;
+
+ for (c = c1; c <= c2; ++c)
+ {
+ const char *prefix = length ? " or " : "expected ";
+
+ strcpy (buffer + length, prefix);
+ length += strlen (prefix);
+ strcpy (buffer + length, get_tree_code_name ((enum tree_code) c));
+ length += strlen (get_tree_code_name ((enum tree_code) c));
+ }
+
+ internal_error ("tree check: %s, have %s in %s, at %s:%d",
+ buffer, get_tree_code_name (TREE_CODE (node)),
+ function, trim_filename (file), line);
+}
+
+
+/* Similar to tree_check_failed, except that we check that a tree does
+ not have the specified code, given in CL. */
+
+void
+tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
+ const char *file, int line, const char *function)
+{
+ internal_error
+ ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
+ TREE_CODE_CLASS_STRING (cl),
+ TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
+ get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
+}
+
+
+/* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
+
+void
+omp_clause_check_failed (const_tree node, const char *file, int line,
+ const char *function, enum omp_clause_code code)
+{
+ internal_error ("tree check: expected %<omp_clause %s%>, have %qs "
+ "in %s, at %s:%d",
+ omp_clause_code_name[code],
+ get_tree_code_name (TREE_CODE (node)),
+ function, trim_filename (file), line);
+}
+
+
+/* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
+
+void
+omp_clause_range_check_failed (const_tree node, const char *file, int line,
+ const char *function, enum omp_clause_code c1,
+ enum omp_clause_code c2)
+{
+ char *buffer;
+ unsigned length = 0;
+ unsigned int c;
+
+ for (c = c1; c <= c2; ++c)
+ length += 4 + strlen (omp_clause_code_name[c]);
+
+ length += strlen ("expected ");
+ buffer = (char *) alloca (length);
+ length = 0;
+
+ for (c = c1; c <= c2; ++c)
+ {
+ const char *prefix = length ? " or " : "expected ";
+
+ strcpy (buffer + length, prefix);
+ length += strlen (prefix);
+ strcpy (buffer + length, omp_clause_code_name[c]);
+ length += strlen (omp_clause_code_name[c]);
+ }
+
+ internal_error ("tree check: %s, have %s in %s, at %s:%d",
+ buffer, omp_clause_code_name[TREE_CODE (node)],
+ function, trim_filename (file), line);
+}
+
+
+#undef DEFTREESTRUCT
+#define DEFTREESTRUCT(VAL, NAME) NAME,
+
+static const char *ts_enum_names[] = {
+#include "treestruct.def"
+};
+#undef DEFTREESTRUCT
+
+#define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
+
+/* Similar to tree_class_check_failed, except that we check for
+ whether CODE contains the tree structure identified by EN. */
+
+void
+tree_contains_struct_check_failed (const_tree node,
+ const enum tree_node_structure_enum en,
+ const char *file, int line,
+ const char *function)
+{
+ internal_error
+ ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
+ TS_ENUM_NAME (en),
+ get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
+}
+
+
+/* Similar to above, except that the check is for the bounds of a TREE_VEC's
+ (dynamically sized) vector. */
+
+void
+tree_int_cst_elt_check_failed (int idx, int len, const char *file, int line,
+ const char *function)
+{
+ internal_error
+ ("tree check: accessed elt %d of %<tree_int_cst%> with %d elts in %s, "
+ "at %s:%d",
+ idx + 1, len, function, trim_filename (file), line);
+}
+
+/* Similar to above, except that the check is for the bounds of a TREE_VEC's
+ (dynamically sized) vector. */
+
+void
+tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
+ const char *function)
+{
+ internal_error
+ ("tree check: accessed elt %d of %<tree_vec%> with %d elts in %s, at %s:%d",
+ idx + 1, len, function, trim_filename (file), line);
+}
+
+/* Similar to above, except that the check is for the bounds of the operand
+ vector of an expression node EXP. */
+
+void
+tree_operand_check_failed (int idx, const_tree exp, const char *file,
+ int line, const char *function)
+{
+ enum tree_code code = TREE_CODE (exp);
+ internal_error
+ ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
+ idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp),
+ function, trim_filename (file), line);
+}
+
+/* Similar to above, except that the check is for the number of
+ operands of an OMP_CLAUSE node. */
+
+void
+omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
+ int line, const char *function)
+{
+ internal_error
+ ("tree check: accessed operand %d of %<omp_clause %s%> with %d operands "
+ "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
+ omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
+ trim_filename (file), line);
+}
+#endif /* ENABLE_TREE_CHECKING */
+
+/* Create a new vector type node holding NUNITS units of type INNERTYPE,
+ and mapped to the machine mode MODE. Initialize its fields and build
+ the information necessary for debugging output. */
+
+static tree
+make_vector_type (tree innertype, poly_int64 nunits, machine_mode mode)
+{
+ tree t;
+ tree mv_innertype = TYPE_MAIN_VARIANT (innertype);
+
+ t = make_node (VECTOR_TYPE);
+ TREE_TYPE (t) = mv_innertype;
+ SET_TYPE_VECTOR_SUBPARTS (t, nunits);
+ SET_TYPE_MODE (t, mode);
+
+ if (TYPE_STRUCTURAL_EQUALITY_P (mv_innertype) || in_lto_p)
+ SET_TYPE_STRUCTURAL_EQUALITY (t);
+ else if ((TYPE_CANONICAL (mv_innertype) != innertype
+ || mode != VOIDmode)
+ && !VECTOR_BOOLEAN_TYPE_P (t))
+ TYPE_CANONICAL (t)
+ = make_vector_type (TYPE_CANONICAL (mv_innertype), nunits, VOIDmode);
+
+ layout_type (t);
+
+ hashval_t hash = type_hash_canon_hash (t);
+ t = type_hash_canon (hash, t);
+
+ /* We have built a main variant, based on the main variant of the
+ inner type. Use it to build the variant we return. */
+ if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
+ && TREE_TYPE (t) != innertype)
+ return build_type_attribute_qual_variant (t,
+ TYPE_ATTRIBUTES (innertype),
+ TYPE_QUALS (innertype));
+
+ return t;
+}
+
+static tree
+make_or_reuse_type (unsigned size, int unsignedp)
+{
+ int i;
+
+ if (size == INT_TYPE_SIZE)
+ return unsignedp ? unsigned_type_node : integer_type_node;
+ if (size == CHAR_TYPE_SIZE)
+ return unsignedp ? unsigned_char_type_node : signed_char_type_node;
+ if (size == SHORT_TYPE_SIZE)
+ return unsignedp ? short_unsigned_type_node : short_integer_type_node;
+ if (size == LONG_TYPE_SIZE)
+ return unsignedp ? long_unsigned_type_node : long_integer_type_node;
+ if (size == LONG_LONG_TYPE_SIZE)
+ return (unsignedp ? long_long_unsigned_type_node
+ : long_long_integer_type_node);
+
+ for (i = 0; i < NUM_INT_N_ENTS; i ++)
+ if (size == int_n_data[i].bitsize
+ && int_n_enabled_p[i])
+ return (unsignedp ? int_n_trees[i].unsigned_type
+ : int_n_trees[i].signed_type);
+
+ if (unsignedp)
+ return make_unsigned_type (size);
+ else
+ return make_signed_type (size);
+}
+
+/* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
+
+static tree
+make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
+{
+ if (satp)
+ {
+ if (size == SHORT_FRACT_TYPE_SIZE)
+ return unsignedp ? sat_unsigned_short_fract_type_node
+ : sat_short_fract_type_node;
+ if (size == FRACT_TYPE_SIZE)
+ return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
+ if (size == LONG_FRACT_TYPE_SIZE)
+ return unsignedp ? sat_unsigned_long_fract_type_node
+ : sat_long_fract_type_node;
+ if (size == LONG_LONG_FRACT_TYPE_SIZE)
+ return unsignedp ? sat_unsigned_long_long_fract_type_node
+ : sat_long_long_fract_type_node;
+ }
+ else
+ {
+ if (size == SHORT_FRACT_TYPE_SIZE)
+ return unsignedp ? unsigned_short_fract_type_node
+ : short_fract_type_node;
+ if (size == FRACT_TYPE_SIZE)
+ return unsignedp ? unsigned_fract_type_node : fract_type_node;
+ if (size == LONG_FRACT_TYPE_SIZE)
+ return unsignedp ? unsigned_long_fract_type_node
+ : long_fract_type_node;
+ if (size == LONG_LONG_FRACT_TYPE_SIZE)
+ return unsignedp ? unsigned_long_long_fract_type_node
+ : long_long_fract_type_node;
+ }
+
+ return make_fract_type (size, unsignedp, satp);
+}
+
+/* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
+
+static tree
+make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
+{
+ if (satp)
+ {
+ if (size == SHORT_ACCUM_TYPE_SIZE)
+ return unsignedp ? sat_unsigned_short_accum_type_node
+ : sat_short_accum_type_node;
+ if (size == ACCUM_TYPE_SIZE)
+ return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
+ if (size == LONG_ACCUM_TYPE_SIZE)
+ return unsignedp ? sat_unsigned_long_accum_type_node
+ : sat_long_accum_type_node;
+ if (size == LONG_LONG_ACCUM_TYPE_SIZE)
+ return unsignedp ? sat_unsigned_long_long_accum_type_node
+ : sat_long_long_accum_type_node;
+ }
+ else
+ {
+ if (size == SHORT_ACCUM_TYPE_SIZE)
+ return unsignedp ? unsigned_short_accum_type_node
+ : short_accum_type_node;
+ if (size == ACCUM_TYPE_SIZE)
+ return unsignedp ? unsigned_accum_type_node : accum_type_node;
+ if (size == LONG_ACCUM_TYPE_SIZE)
+ return unsignedp ? unsigned_long_accum_type_node
+ : long_accum_type_node;
+ if (size == LONG_LONG_ACCUM_TYPE_SIZE)
+ return unsignedp ? unsigned_long_long_accum_type_node
+ : long_long_accum_type_node;
+ }
+
+ return make_accum_type (size, unsignedp, satp);
+}
+
+
+/* Create an atomic variant node for TYPE. This routine is called
+ during initialization of data types to create the 5 basic atomic
+ types. The generic build_variant_type function requires these to
+ already be set up in order to function properly, so cannot be
+ called from there. If ALIGN is non-zero, then ensure alignment is
+ overridden to this value. */
+
+static tree
+build_atomic_base (tree type, unsigned int align)
+{
+ tree t;
+
+ /* Make sure its not already registered. */
+ if ((t = get_qualified_type (type, TYPE_QUAL_ATOMIC)))
+ return t;
+
+ t = build_variant_type_copy (type);
+ set_type_quals (t, TYPE_QUAL_ATOMIC);
+
+ if (align)
+ SET_TYPE_ALIGN (t, align);
+
+ return t;
+}
+
+/* Information about the _FloatN and _FloatNx types. This must be in
+ the same order as the corresponding TI_* enum values. */
+const floatn_type_info floatn_nx_types[NUM_FLOATN_NX_TYPES] =
+ {
+ { 16, false },
+ { 32, false },
+ { 64, false },
+ { 128, false },
+ { 32, true },
+ { 64, true },
+ { 128, true },
+ };
+
+
+/* Create nodes for all integer types (and error_mark_node) using the sizes
+ of C datatypes. SIGNED_CHAR specifies whether char is signed. */
+
+void
+build_common_tree_nodes (bool signed_char)
+{
+ int i;
+
+ error_mark_node = make_node (ERROR_MARK);
+ TREE_TYPE (error_mark_node) = error_mark_node;
+
+ initialize_sizetypes ();
+
+ /* Define both `signed char' and `unsigned char'. */
+ signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
+ TYPE_STRING_FLAG (signed_char_type_node) = 1;
+ unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
+ TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
+
+ /* Define `char', which is like either `signed char' or `unsigned char'
+ but not the same as either. */
+ char_type_node
+ = (signed_char
+ ? make_signed_type (CHAR_TYPE_SIZE)
+ : make_unsigned_type (CHAR_TYPE_SIZE));
+ TYPE_STRING_FLAG (char_type_node) = 1;
+
+ short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
+ short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
+ integer_type_node = make_signed_type (INT_TYPE_SIZE);
+ unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
+ long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
+ long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
+ long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
+ long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
+
+ for (i = 0; i < NUM_INT_N_ENTS; i ++)
+ {
+ int_n_trees[i].signed_type = make_signed_type (int_n_data[i].bitsize);
+ int_n_trees[i].unsigned_type = make_unsigned_type (int_n_data[i].bitsize);
+
+ if (int_n_enabled_p[i])
+ {
+ integer_types[itk_intN_0 + i * 2] = int_n_trees[i].signed_type;
+ integer_types[itk_unsigned_intN_0 + i * 2] = int_n_trees[i].unsigned_type;
+ }
+ }
+
+ /* Define a boolean type. This type only represents boolean values but
+ may be larger than char depending on the value of BOOL_TYPE_SIZE. */
+ boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
+ TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
+ TYPE_PRECISION (boolean_type_node) = 1;
+ TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
+
+ /* Define what type to use for size_t. */
+ if (strcmp (SIZE_TYPE, "unsigned int") == 0)
+ size_type_node = unsigned_type_node;
+ else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
+ size_type_node = long_unsigned_type_node;
+ else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
+ size_type_node = long_long_unsigned_type_node;
+ else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
+ size_type_node = short_unsigned_type_node;
+ else
+ {
+ int i;
+
+ size_type_node = NULL_TREE;
+ for (i = 0; i < NUM_INT_N_ENTS; i++)
+ if (int_n_enabled_p[i])
+ {
+ char name[50], altname[50];
+ sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
+ sprintf (altname, "__int%d__ unsigned", int_n_data[i].bitsize);
+
+ if (strcmp (name, SIZE_TYPE) == 0
+ || strcmp (altname, SIZE_TYPE) == 0)
+ {
+ size_type_node = int_n_trees[i].unsigned_type;
+ }
+ }
+ if (size_type_node == NULL_TREE)
+ gcc_unreachable ();
+ }
+
+ /* Define what type to use for ptrdiff_t. */
+ if (strcmp (PTRDIFF_TYPE, "int") == 0)
+ ptrdiff_type_node = integer_type_node;
+ else if (strcmp (PTRDIFF_TYPE, "long int") == 0)
+ ptrdiff_type_node = long_integer_type_node;
+ else if (strcmp (PTRDIFF_TYPE, "long long int") == 0)
+ ptrdiff_type_node = long_long_integer_type_node;
+ else if (strcmp (PTRDIFF_TYPE, "short int") == 0)
+ ptrdiff_type_node = short_integer_type_node;
+ else
+ {
+ ptrdiff_type_node = NULL_TREE;
+ for (int i = 0; i < NUM_INT_N_ENTS; i++)
+ if (int_n_enabled_p[i])
+ {
+ char name[50], altname[50];
+ sprintf (name, "__int%d", int_n_data[i].bitsize);
+ sprintf (altname, "__int%d__", int_n_data[i].bitsize);
+
+ if (strcmp (name, PTRDIFF_TYPE) == 0
+ || strcmp (altname, PTRDIFF_TYPE) == 0)
+ ptrdiff_type_node = int_n_trees[i].signed_type;
+ }
+ if (ptrdiff_type_node == NULL_TREE)
+ gcc_unreachable ();
+ }
+
+ /* Fill in the rest of the sized types. Reuse existing type nodes
+ when possible. */
+ intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
+ intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
+ intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
+ intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
+ intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
+
+ unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
+ unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
+ unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
+ unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
+ unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
+
+ /* Don't call build_qualified type for atomics. That routine does
+ special processing for atomics, and until they are initialized
+ it's better not to make that call.
+
+ Check to see if there is a target override for atomic types. */
+
+ atomicQI_type_node = build_atomic_base (unsigned_intQI_type_node,
+ targetm.atomic_align_for_mode (QImode));
+ atomicHI_type_node = build_atomic_base (unsigned_intHI_type_node,
+ targetm.atomic_align_for_mode (HImode));
+ atomicSI_type_node = build_atomic_base (unsigned_intSI_type_node,
+ targetm.atomic_align_for_mode (SImode));
+ atomicDI_type_node = build_atomic_base (unsigned_intDI_type_node,
+ targetm.atomic_align_for_mode (DImode));
+ atomicTI_type_node = build_atomic_base (unsigned_intTI_type_node,
+ targetm.atomic_align_for_mode (TImode));
+
+ access_public_node = get_identifier ("public");
+ access_protected_node = get_identifier ("protected");
+ access_private_node = get_identifier ("private");
+
+ /* Define these next since types below may used them. */
+ integer_zero_node = build_int_cst (integer_type_node, 0);
+ integer_one_node = build_int_cst (integer_type_node, 1);
+ integer_three_node = build_int_cst (integer_type_node, 3);
+ integer_minus_one_node = build_int_cst (integer_type_node, -1);
+
+ size_zero_node = size_int (0);
+ size_one_node = size_int (1);
+ bitsize_zero_node = bitsize_int (0);
+ bitsize_one_node = bitsize_int (1);
+ bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
+
+ boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
+ boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
+
+ void_type_node = make_node (VOID_TYPE);
+ layout_type (void_type_node);
+
+ /* We are not going to have real types in C with less than byte alignment,
+ so we might as well not have any types that claim to have it. */
+ SET_TYPE_ALIGN (void_type_node, BITS_PER_UNIT);
+ TYPE_USER_ALIGN (void_type_node) = 0;
+
+ void_node = make_node (VOID_CST);
+ TREE_TYPE (void_node) = void_type_node;
+
+ null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
+ layout_type (TREE_TYPE (null_pointer_node));
+
+ ptr_type_node = build_pointer_type (void_type_node);
+ const_ptr_type_node
+ = build_pointer_type (build_type_variant (void_type_node, 1, 0));
+ for (unsigned i = 0;
+ i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
+ ++i)
+ builtin_structptr_types[i].node = builtin_structptr_types[i].base;
+
+ pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1);
+
+ float_type_node = make_node (REAL_TYPE);
+ TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
+ layout_type (float_type_node);
+
+ double_type_node = make_node (REAL_TYPE);
+ TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
+ layout_type (double_type_node);
+
+ long_double_type_node = make_node (REAL_TYPE);
+ TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
+ layout_type (long_double_type_node);
+
+ for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
+ {
+ int n = floatn_nx_types[i].n;
+ bool extended = floatn_nx_types[i].extended;
+ scalar_float_mode mode;
+ if (!targetm.floatn_mode (n, extended).exists (&mode))
+ continue;
+ int precision = GET_MODE_PRECISION (mode);
+ /* Work around the rs6000 KFmode having precision 113 not
+ 128. */
+ const struct real_format *fmt = REAL_MODE_FORMAT (mode);
+ gcc_assert (fmt->b == 2 && fmt->emin + fmt->emax == 3);
+ int min_precision = fmt->p + ceil_log2 (fmt->emax - fmt->emin);
+ if (!extended)
+ gcc_assert (min_precision == n);
+ if (precision < min_precision)
+ precision = min_precision;
+ FLOATN_NX_TYPE_NODE (i) = make_node (REAL_TYPE);
+ TYPE_PRECISION (FLOATN_NX_TYPE_NODE (i)) = precision;
+ layout_type (FLOATN_NX_TYPE_NODE (i));
+ SET_TYPE_MODE (FLOATN_NX_TYPE_NODE (i), mode);
+ }
+
+ float_ptr_type_node = build_pointer_type (float_type_node);
+ double_ptr_type_node = build_pointer_type (double_type_node);
+ long_double_ptr_type_node = build_pointer_type (long_double_type_node);
+ integer_ptr_type_node = build_pointer_type (integer_type_node);
+
+ /* Fixed size integer types. */
+ uint16_type_node = make_or_reuse_type (16, 1);
+ uint32_type_node = make_or_reuse_type (32, 1);
+ uint64_type_node = make_or_reuse_type (64, 1);
+ if (targetm.scalar_mode_supported_p (TImode))
+ uint128_type_node = make_or_reuse_type (128, 1);
+
+ /* Decimal float types. */
+ if (targetm.decimal_float_supported_p ())
+ {
+ dfloat32_type_node = make_node (REAL_TYPE);
+ TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
+ SET_TYPE_MODE (dfloat32_type_node, SDmode);
+ layout_type (dfloat32_type_node);
+
+ dfloat64_type_node = make_node (REAL_TYPE);
+ TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
+ SET_TYPE_MODE (dfloat64_type_node, DDmode);
+ layout_type (dfloat64_type_node);
+
+ dfloat128_type_node = make_node (REAL_TYPE);
+ TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
+ SET_TYPE_MODE (dfloat128_type_node, TDmode);
+ layout_type (dfloat128_type_node);
+ }
+
+ complex_integer_type_node = build_complex_type (integer_type_node, true);
+ complex_float_type_node = build_complex_type (float_type_node, true);
+ complex_double_type_node = build_complex_type (double_type_node, true);
+ complex_long_double_type_node = build_complex_type (long_double_type_node,
+ true);
+
+ for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
+ {
+ if (FLOATN_NX_TYPE_NODE (i) != NULL_TREE)
+ COMPLEX_FLOATN_NX_TYPE_NODE (i)
+ = build_complex_type (FLOATN_NX_TYPE_NODE (i));
+ }
+
+/* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
+#define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
+ sat_ ## KIND ## _type_node = \
+ make_sat_signed_ ## KIND ## _type (SIZE); \
+ sat_unsigned_ ## KIND ## _type_node = \
+ make_sat_unsigned_ ## KIND ## _type (SIZE); \
+ KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
+ unsigned_ ## KIND ## _type_node = \
+ make_unsigned_ ## KIND ## _type (SIZE);
+
+#define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
+ sat_ ## WIDTH ## KIND ## _type_node = \
+ make_sat_signed_ ## KIND ## _type (SIZE); \
+ sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
+ make_sat_unsigned_ ## KIND ## _type (SIZE); \
+ WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
+ unsigned_ ## WIDTH ## KIND ## _type_node = \
+ make_unsigned_ ## KIND ## _type (SIZE);
+
+/* Make fixed-point type nodes based on four different widths. */
+#define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
+ MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
+ MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
+ MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
+ MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
+
+/* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
+#define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
+ NAME ## _type_node = \
+ make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
+ u ## NAME ## _type_node = \
+ make_or_reuse_unsigned_ ## KIND ## _type \
+ (GET_MODE_BITSIZE (U ## MODE ## mode)); \
+ sat_ ## NAME ## _type_node = \
+ make_or_reuse_sat_signed_ ## KIND ## _type \
+ (GET_MODE_BITSIZE (MODE ## mode)); \
+ sat_u ## NAME ## _type_node = \
+ make_or_reuse_sat_unsigned_ ## KIND ## _type \
+ (GET_MODE_BITSIZE (U ## MODE ## mode));
+
+ /* Fixed-point type and mode nodes. */
+ MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
+ MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
+ MAKE_FIXED_MODE_NODE (fract, qq, QQ)
+ MAKE_FIXED_MODE_NODE (fract, hq, HQ)
+ MAKE_FIXED_MODE_NODE (fract, sq, SQ)
+ MAKE_FIXED_MODE_NODE (fract, dq, DQ)
+ MAKE_FIXED_MODE_NODE (fract, tq, TQ)
+ MAKE_FIXED_MODE_NODE (accum, ha, HA)
+ MAKE_FIXED_MODE_NODE (accum, sa, SA)
+ MAKE_FIXED_MODE_NODE (accum, da, DA)
+ MAKE_FIXED_MODE_NODE (accum, ta, TA)
+
+ {
+ tree t = targetm.build_builtin_va_list ();
+
+ /* Many back-ends define record types without setting TYPE_NAME.
+ If we copied the record type here, we'd keep the original
+ record type without a name. This breaks name mangling. So,
+ don't copy record types and let c_common_nodes_and_builtins()
+ declare the type to be __builtin_va_list. */
+ if (TREE_CODE (t) != RECORD_TYPE)
+ t = build_variant_type_copy (t);
+
+ va_list_type_node = t;
+ }
+
+ /* SCEV analyzer global shared trees. */
+ chrec_dont_know = make_node (SCEV_NOT_KNOWN);
+ TREE_TYPE (chrec_dont_know) = void_type_node;
+ chrec_known = make_node (SCEV_KNOWN);
+ TREE_TYPE (chrec_known) = void_type_node;
+}
+
+/* Modify DECL for given flags.
+ TM_PURE attribute is set only on types, so the function will modify
+ DECL's type when ECF_TM_PURE is used. */
+
+void
+set_call_expr_flags (tree decl, int flags)
+{
+ if (flags & ECF_NOTHROW)
+ TREE_NOTHROW (decl) = 1;
+ if (flags & ECF_CONST)
+ TREE_READONLY (decl) = 1;
+ if (flags & ECF_PURE)
+ DECL_PURE_P (decl) = 1;
+ if (flags & ECF_LOOPING_CONST_OR_PURE)
+ DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
+ if (flags & ECF_NOVOPS)
+ DECL_IS_NOVOPS (decl) = 1;
+ if (flags & ECF_NORETURN)
+ TREE_THIS_VOLATILE (decl) = 1;
+ if (flags & ECF_MALLOC)
+ DECL_IS_MALLOC (decl) = 1;
+ if (flags & ECF_RETURNS_TWICE)
+ DECL_IS_RETURNS_TWICE (decl) = 1;
+ if (flags & ECF_LEAF)
+ DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
+ NULL, DECL_ATTRIBUTES (decl));
+ if (flags & ECF_COLD)
+ DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("cold"),
+ NULL, DECL_ATTRIBUTES (decl));
+ if (flags & ECF_RET1)
+ DECL_ATTRIBUTES (decl)
+ = tree_cons (get_identifier ("fn spec"),
+ build_tree_list (NULL_TREE, build_string (2, "1 ")),
+ DECL_ATTRIBUTES (decl));
+ if ((flags & ECF_TM_PURE) && flag_tm)
+ apply_tm_attr (decl, get_identifier ("transaction_pure"));
+ /* Looping const or pure is implied by noreturn.
+ There is currently no way to declare looping const or looping pure alone. */
+ gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
+ || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
+}
+
+
+/* A subroutine of build_common_builtin_nodes. Define a builtin function. */
+
+static void
+local_define_builtin (const char *name, tree type, enum built_in_function code,
+ const char *library_name, int ecf_flags)
+{
+ tree decl;
+
+ decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
+ library_name, NULL_TREE);
+ set_call_expr_flags (decl, ecf_flags);
+
+ set_builtin_decl (code, decl, true);
+}
+
+/* Call this function after instantiating all builtins that the language
+ front end cares about. This will build the rest of the builtins
+ and internal functions that are relied upon by the tree optimizers and
+ the middle-end. */
+
+void
+build_common_builtin_nodes (void)
+{
+ tree tmp, ftype;
+ int ecf_flags;
+
+ if (!builtin_decl_explicit_p (BUILT_IN_CLEAR_PADDING))
+ {
+ ftype = build_function_type_list (void_type_node,
+ ptr_type_node,
+ ptr_type_node,
+ integer_type_node,
+ NULL_TREE);
+ local_define_builtin ("__builtin_clear_padding", ftype,
+ BUILT_IN_CLEAR_PADDING,
+ "__builtin_clear_padding",
+ ECF_LEAF | ECF_NOTHROW);
+ }
+
+ if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE)
+ || !builtin_decl_explicit_p (BUILT_IN_ABORT))
+ {
+ ftype = build_function_type (void_type_node, void_list_node);
+ if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
+ local_define_builtin ("__builtin_unreachable", ftype,
+ BUILT_IN_UNREACHABLE,
+ "__builtin_unreachable",
+ ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
+ | ECF_CONST | ECF_COLD);
+ if (!builtin_decl_explicit_p (BUILT_IN_ABORT))
+ local_define_builtin ("__builtin_abort", ftype, BUILT_IN_ABORT,
+ "abort",
+ ECF_LEAF | ECF_NORETURN | ECF_CONST | ECF_COLD);
+ }
+
+ if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
+ || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
+ {
+ ftype = build_function_type_list (ptr_type_node,
+ ptr_type_node, const_ptr_type_node,
+ size_type_node, NULL_TREE);
+
+ if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
+ local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
+ "memcpy", ECF_NOTHROW | ECF_LEAF);
+ if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
+ local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
+ "memmove", ECF_NOTHROW | ECF_LEAF);
+ }
+
+ if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
+ {
+ ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
+ const_ptr_type_node, size_type_node,
+ NULL_TREE);
+ local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
+ "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
+ }
+
+ if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
+ {
+ ftype = build_function_type_list (ptr_type_node,
+ ptr_type_node, integer_type_node,
+ size_type_node, NULL_TREE);
+ local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
+ "memset", ECF_NOTHROW | ECF_LEAF);
+ }
+
+ /* If we're checking the stack, `alloca' can throw. */
+ const int alloca_flags
+ = ECF_MALLOC | ECF_LEAF | (flag_stack_check ? 0 : ECF_NOTHROW);
+
+ if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
+ {
+ ftype = build_function_type_list (ptr_type_node,
+ size_type_node, NULL_TREE);
+ local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
+ "alloca", alloca_flags);
+ }
+
+ ftype = build_function_type_list (ptr_type_node, size_type_node,
+ size_type_node, NULL_TREE);
+ local_define_builtin ("__builtin_alloca_with_align", ftype,
+ BUILT_IN_ALLOCA_WITH_ALIGN,
+ "__builtin_alloca_with_align",
+ alloca_flags);
+
+ ftype = build_function_type_list (ptr_type_node, size_type_node,
+ size_type_node, size_type_node, NULL_TREE);
+ local_define_builtin ("__builtin_alloca_with_align_and_max", ftype,
+ BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX,
+ "__builtin_alloca_with_align_and_max",
+ alloca_flags);
+
+ ftype = build_function_type_list (void_type_node,
+ ptr_type_node, ptr_type_node,
+ ptr_type_node, NULL_TREE);
+ local_define_builtin ("__builtin_init_trampoline", ftype,
+ BUILT_IN_INIT_TRAMPOLINE,
+ "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
+ local_define_builtin ("__builtin_init_heap_trampoline", ftype,
+ BUILT_IN_INIT_HEAP_TRAMPOLINE,
+ "__builtin_init_heap_trampoline",
+ ECF_NOTHROW | ECF_LEAF);
+ local_define_builtin ("__builtin_init_descriptor", ftype,
+ BUILT_IN_INIT_DESCRIPTOR,
+ "__builtin_init_descriptor", ECF_NOTHROW | ECF_LEAF);
+
+ ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
+ local_define_builtin ("__builtin_adjust_trampoline", ftype,
+ BUILT_IN_ADJUST_TRAMPOLINE,
+ "__builtin_adjust_trampoline",
+ ECF_CONST | ECF_NOTHROW);
+ local_define_builtin ("__builtin_adjust_descriptor", ftype,
+ BUILT_IN_ADJUST_DESCRIPTOR,
+ "__builtin_adjust_descriptor",
+ ECF_CONST | ECF_NOTHROW);
+
+ ftype = build_function_type_list (void_type_node,
+ ptr_type_node, ptr_type_node, NULL_TREE);
+ if (!builtin_decl_explicit_p (BUILT_IN_CLEAR_CACHE))
+ local_define_builtin ("__builtin___clear_cache", ftype,
+ BUILT_IN_CLEAR_CACHE,
+ "__clear_cache",
+ ECF_NOTHROW);
+
+ local_define_builtin ("__builtin_nonlocal_goto", ftype,
+ BUILT_IN_NONLOCAL_GOTO,
+ "__builtin_nonlocal_goto",
+ ECF_NORETURN | ECF_NOTHROW);
+
+ ftype = build_function_type_list (void_type_node,
+ ptr_type_node, ptr_type_node, NULL_TREE);
+ local_define_builtin ("__builtin_setjmp_setup", ftype,
+ BUILT_IN_SETJMP_SETUP,
+ "__builtin_setjmp_setup", ECF_NOTHROW);
+
+ ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
+ local_define_builtin ("__builtin_setjmp_receiver", ftype,
+ BUILT_IN_SETJMP_RECEIVER,
+ "__builtin_setjmp_receiver", ECF_NOTHROW | ECF_LEAF);
+
+ ftype = build_function_type_list (ptr_type_node, NULL_TREE);
+ local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
+ "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
+
+ ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
+ local_define_builtin ("__builtin_stack_restore", ftype,
+ BUILT_IN_STACK_RESTORE,
+ "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
+
+ ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
+ const_ptr_type_node, size_type_node,
+ NULL_TREE);
+ local_define_builtin ("__builtin_memcmp_eq", ftype, BUILT_IN_MEMCMP_EQ,
+ "__builtin_memcmp_eq",
+ ECF_PURE | ECF_NOTHROW | ECF_LEAF);
+
+ local_define_builtin ("__builtin_strncmp_eq", ftype, BUILT_IN_STRNCMP_EQ,
+ "__builtin_strncmp_eq",
+ ECF_PURE | ECF_NOTHROW | ECF_LEAF);
+
+ local_define_builtin ("__builtin_strcmp_eq", ftype, BUILT_IN_STRCMP_EQ,
+ "__builtin_strcmp_eq",
+ ECF_PURE | ECF_NOTHROW | ECF_LEAF);
+
+ /* If there's a possibility that we might use the ARM EABI, build the
+ alternate __cxa_end_cleanup node used to resume from C++. */
+ if (targetm.arm_eabi_unwinder)
+ {
+ ftype = build_function_type_list (void_type_node, NULL_TREE);
+ local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
+ BUILT_IN_CXA_END_CLEANUP,
+ "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
+ }
+
+ ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
+ local_define_builtin ("__builtin_unwind_resume", ftype,
+ BUILT_IN_UNWIND_RESUME,
+ ((targetm_common.except_unwind_info (&global_options)
+ == UI_SJLJ)
+ ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
+ ECF_NORETURN);
+
+ if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
+ {
+ ftype = build_function_type_list (ptr_type_node, integer_type_node,
+ NULL_TREE);
+ local_define_builtin ("__builtin_return_address", ftype,
+ BUILT_IN_RETURN_ADDRESS,
+ "__builtin_return_address",
+ ECF_NOTHROW);
+ }
+
+ if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
+ || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
+ {
+ ftype = build_function_type_list (void_type_node, ptr_type_node,
+ ptr_type_node, NULL_TREE);
+ if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
+ local_define_builtin ("__cyg_profile_func_enter", ftype,
+ BUILT_IN_PROFILE_FUNC_ENTER,
+ "__cyg_profile_func_enter", 0);
+ if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
+ local_define_builtin ("__cyg_profile_func_exit", ftype,
+ BUILT_IN_PROFILE_FUNC_EXIT,
+ "__cyg_profile_func_exit", 0);
+ }
+
+ /* The exception object and filter values from the runtime. The argument
+ must be zero before exception lowering, i.e. from the front end. After
+ exception lowering, it will be the region number for the exception
+ landing pad. These functions are PURE instead of CONST to prevent
+ them from being hoisted past the exception edge that will initialize
+ its value in the landing pad. */
+ ftype = build_function_type_list (ptr_type_node,
+ integer_type_node, NULL_TREE);
+ ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
+ /* Only use TM_PURE if we have TM language support. */
+ if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
+ ecf_flags |= ECF_TM_PURE;
+ local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
+ "__builtin_eh_pointer", ecf_flags);
+
+ tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
+ ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
+ local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
+ "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
+
+ ftype = build_function_type_list (void_type_node,
+ integer_type_node, integer_type_node,
+ NULL_TREE);
+ local_define_builtin ("__builtin_eh_copy_values", ftype,
+ BUILT_IN_EH_COPY_VALUES,
+ "__builtin_eh_copy_values", ECF_NOTHROW);
+
+ /* Complex multiplication and division. These are handled as builtins
+ rather than optabs because emit_library_call_value doesn't support
+ complex. Further, we can do slightly better with folding these
+ beasties if the real and complex parts of the arguments are separate. */
+ {
+ int mode;
+
+ for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
+ {
+ char mode_name_buf[4], *q;
+ const char *p;
+ enum built_in_function mcode, dcode;
+ tree type, inner_type;
+ const char *prefix = "__";
+
+ if (targetm.libfunc_gnu_prefix)
+ prefix = "__gnu_";
+
+ type = lang_hooks.types.type_for_mode ((machine_mode) mode, 0);
+ if (type == NULL)
+ continue;
+ inner_type = TREE_TYPE (type);
+
+ ftype = build_function_type_list (type, inner_type, inner_type,
+ inner_type, inner_type, NULL_TREE);
+
+ mcode = ((enum built_in_function)
+ (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
+ dcode = ((enum built_in_function)
+ (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
+
+ for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
+ *q = TOLOWER (*p);
+ *q = '\0';
+
+ /* For -ftrapping-math these should throw from a former
+ -fnon-call-exception stmt. */
+ built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
+ NULL);
+ local_define_builtin (built_in_names[mcode], ftype, mcode,
+ built_in_names[mcode],
+ ECF_CONST | ECF_LEAF);
+
+ built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
+ NULL);
+ local_define_builtin (built_in_names[dcode], ftype, dcode,
+ built_in_names[dcode],
+ ECF_CONST | ECF_LEAF);
+ }
+ }
+
+ init_internal_fns ();
+}
+
+/* HACK. GROSS. This is absolutely disgusting. I wish there was a
+ better way.
+
+ If we requested a pointer to a vector, build up the pointers that
+ we stripped off while looking for the inner type. Similarly for
+ return values from functions.
+
+ The argument TYPE is the top of the chain, and BOTTOM is the
+ new type which we will point to. */
+
+tree
+reconstruct_complex_type (tree type, tree bottom)
+{
+ tree inner, outer;
+
+ if (TREE_CODE (type) == POINTER_TYPE)
+ {
+ inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
+ outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
+ TYPE_REF_CAN_ALIAS_ALL (type));
+ }
+ else if (TREE_CODE (type) == REFERENCE_TYPE)
+ {
+ inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
+ outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
+ TYPE_REF_CAN_ALIAS_ALL (type));
+ }
+ else if (TREE_CODE (type) == ARRAY_TYPE)
+ {
+ inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
+ outer = build_array_type (inner, TYPE_DOMAIN (type));
+ }
+ else if (TREE_CODE (type) == FUNCTION_TYPE)
+ {
+ inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
+ outer = build_function_type (inner, TYPE_ARG_TYPES (type));
+ }
+ else if (TREE_CODE (type) == METHOD_TYPE)
+ {
+ inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
+ /* The build_method_type_directly() routine prepends 'this' to argument list,
+ so we must compensate by getting rid of it. */
+ outer
+ = build_method_type_directly
+ (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
+ inner,
+ TREE_CHAIN (TYPE_ARG_TYPES (type)));
+ }
+ else if (TREE_CODE (type) == OFFSET_TYPE)
+ {
+ inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
+ outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
+ }
+ else
+ return bottom;
+
+ return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
+ TYPE_QUALS (type));
+}
+
+/* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
+ the inner type. */
+tree
+build_vector_type_for_mode (tree innertype, machine_mode mode)
+{
+ poly_int64 nunits;
+ unsigned int bitsize;
+
+ switch (GET_MODE_CLASS (mode))
+ {
+ case MODE_VECTOR_BOOL:
+ case MODE_VECTOR_INT:
+ case MODE_VECTOR_FLOAT:
+ case MODE_VECTOR_FRACT:
+ case MODE_VECTOR_UFRACT:
+ case MODE_VECTOR_ACCUM:
+ case MODE_VECTOR_UACCUM:
+ nunits = GET_MODE_NUNITS (mode);
+ break;
+
+ case MODE_INT:
+ /* Check that there are no leftover bits. */
+ bitsize = GET_MODE_BITSIZE (as_a <scalar_int_mode> (mode));
+ gcc_assert (bitsize % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
+ nunits = bitsize / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return make_vector_type (innertype, nunits, mode);
+}
+
+/* Similarly, but takes the inner type and number of units, which must be
+ a power of two. */
+
+tree
+build_vector_type (tree innertype, poly_int64 nunits)
+{
+ return make_vector_type (innertype, nunits, VOIDmode);
+}
+
+/* Build a truth vector with NUNITS units, giving it mode MASK_MODE. */
+
+tree
+build_truth_vector_type_for_mode (poly_uint64 nunits, machine_mode mask_mode)
+{
+ gcc_assert (mask_mode != BLKmode);
+
+ unsigned HOST_WIDE_INT esize;
+ if (VECTOR_MODE_P (mask_mode))
+ {
+ poly_uint64 vsize = GET_MODE_BITSIZE (mask_mode);
+ esize = vector_element_size (vsize, nunits);
+ }
+ else
+ esize = 1;
+
+ tree bool_type = build_nonstandard_boolean_type (esize);
+
+ return make_vector_type (bool_type, nunits, mask_mode);
+}
+
+/* Build a vector type that holds one boolean result for each element of
+ vector type VECTYPE. The public interface for this operation is
+ truth_type_for. */
+
+static tree
+build_truth_vector_type_for (tree vectype)
+{
+ machine_mode vector_mode = TYPE_MODE (vectype);
+ poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
+
+ machine_mode mask_mode;
+ if (VECTOR_MODE_P (vector_mode)
+ && targetm.vectorize.get_mask_mode (vector_mode).exists (&mask_mode))
+ return build_truth_vector_type_for_mode (nunits, mask_mode);
+
+ poly_uint64 vsize = tree_to_poly_uint64 (TYPE_SIZE (vectype));
+ unsigned HOST_WIDE_INT esize = vector_element_size (vsize, nunits);
+ tree bool_type = build_nonstandard_boolean_type (esize);
+
+ return make_vector_type (bool_type, nunits, VOIDmode);
+}
+
+/* Like build_vector_type, but builds a variant type with TYPE_VECTOR_OPAQUE
+ set. */
+
+tree
+build_opaque_vector_type (tree innertype, poly_int64 nunits)
+{
+ tree t = make_vector_type (innertype, nunits, VOIDmode);
+ tree cand;
+ /* We always build the non-opaque variant before the opaque one,
+ so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
+ cand = TYPE_NEXT_VARIANT (t);
+ if (cand
+ && TYPE_VECTOR_OPAQUE (cand)
+ && check_qualified_type (cand, t, TYPE_QUALS (t)))
+ return cand;
+ /* Othewise build a variant type and make sure to queue it after
+ the non-opaque type. */
+ cand = build_distinct_type_copy (t);
+ TYPE_VECTOR_OPAQUE (cand) = true;
+ TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
+ TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
+ TYPE_NEXT_VARIANT (t) = cand;
+ TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
+ return cand;
+}
+
+/* Return the value of element I of VECTOR_CST T as a wide_int. */
+
+static poly_wide_int
+vector_cst_int_elt (const_tree t, unsigned int i)
+{
+ /* First handle elements that are directly encoded. */
+ unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
+ if (i < encoded_nelts)
+ return wi::to_poly_wide (VECTOR_CST_ENCODED_ELT (t, i));
+
+ /* Identify the pattern that contains element I and work out the index of
+ the last encoded element for that pattern. */
+ unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
+ unsigned int pattern = i % npatterns;
+ unsigned int count = i / npatterns;
+ unsigned int final_i = encoded_nelts - npatterns + pattern;
+
+ /* If there are no steps, the final encoded value is the right one. */
+ if (!VECTOR_CST_STEPPED_P (t))
+ return wi::to_poly_wide (VECTOR_CST_ENCODED_ELT (t, final_i));
+
+ /* Otherwise work out the value from the last two encoded elements. */
+ tree v1 = VECTOR_CST_ENCODED_ELT (t, final_i - npatterns);
+ tree v2 = VECTOR_CST_ENCODED_ELT (t, final_i);
+ poly_wide_int diff = wi::to_poly_wide (v2) - wi::to_poly_wide (v1);
+ return wi::to_poly_wide (v2) + (count - 2) * diff;
+}
+
+/* Return the value of element I of VECTOR_CST T. */
+
+tree
+vector_cst_elt (const_tree t, unsigned int i)
+{
+ /* First handle elements that are directly encoded. */
+ unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
+ if (i < encoded_nelts)
+ return VECTOR_CST_ENCODED_ELT (t, i);
+
+ /* If there are no steps, the final encoded value is the right one. */
+ if (!VECTOR_CST_STEPPED_P (t))
+ {
+ /* Identify the pattern that contains element I and work out the index of
+ the last encoded element for that pattern. */
+ unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
+ unsigned int pattern = i % npatterns;
+ unsigned int final_i = encoded_nelts - npatterns + pattern;
+ return VECTOR_CST_ENCODED_ELT (t, final_i);
+ }
+
+ /* Otherwise work out the value from the last two encoded elements. */
+ return wide_int_to_tree (TREE_TYPE (TREE_TYPE (t)),
+ vector_cst_int_elt (t, i));
+}
+
+/* Given an initializer INIT, return TRUE if INIT is zero or some
+ aggregate of zeros. Otherwise return FALSE. If NONZERO is not
+ null, set *NONZERO if and only if INIT is known not to be all
+ zeros. The combination of return value of false and *NONZERO
+ false implies that INIT may but need not be all zeros. Other
+ combinations indicate definitive answers. */
+
+bool
+initializer_zerop (const_tree init, bool *nonzero /* = NULL */)
+{
+ bool dummy;
+ if (!nonzero)
+ nonzero = &dummy;
+
+ /* Conservatively clear NONZERO and set it only if INIT is definitely
+ not all zero. */
+ *nonzero = false;
+
+ STRIP_NOPS (init);
+
+ unsigned HOST_WIDE_INT off = 0;
+
+ switch (TREE_CODE (init))
+ {
+ case INTEGER_CST:
+ if (integer_zerop (init))
+ return true;
+
+ *nonzero = true;
+ return false;
+
+ case REAL_CST:
+ /* ??? Note that this is not correct for C4X float formats. There,
+ a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
+ negative exponent. */
+ if (real_zerop (init)
+ && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init)))
+ return true;
+
+ *nonzero = true;
+ return false;
+
+ case FIXED_CST:
+ if (fixed_zerop (init))
+ return true;
+
+ *nonzero = true;
+ return false;
+
+ case COMPLEX_CST:
+ if (integer_zerop (init)
+ || (real_zerop (init)
+ && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
+ && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init)))))
+ return true;
+
+ *nonzero = true;
+ return false;
+
+ case VECTOR_CST:
+ if (VECTOR_CST_NPATTERNS (init) == 1
+ && VECTOR_CST_DUPLICATE_P (init)
+ && initializer_zerop (VECTOR_CST_ENCODED_ELT (init, 0)))
+ return true;
+
+ *nonzero = true;
+ return false;
+
+ case CONSTRUCTOR:
+ {
+ if (TREE_CLOBBER_P (init))
+ return false;
+
+ unsigned HOST_WIDE_INT idx;
+ tree elt;
+
+ FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
+ if (!initializer_zerop (elt, nonzero))
+ return false;
+
+ return true;
+ }
+
+ case MEM_REF:
+ {
+ tree arg = TREE_OPERAND (init, 0);
+ if (TREE_CODE (arg) != ADDR_EXPR)
+ return false;
+ tree offset = TREE_OPERAND (init, 1);
+ if (TREE_CODE (offset) != INTEGER_CST
+ || !tree_fits_uhwi_p (offset))
+ return false;
+ off = tree_to_uhwi (offset);
+ if (INT_MAX < off)
+ return false;
+ arg = TREE_OPERAND (arg, 0);
+ if (TREE_CODE (arg) != STRING_CST)
+ return false;
+ init = arg;
+ }
+ /* Fall through. */
+
+ case STRING_CST:
+ {
+ gcc_assert (off <= INT_MAX);
+
+ int i = off;
+ int n = TREE_STRING_LENGTH (init);
+ if (n <= i)
+ return false;
+
+ /* We need to loop through all elements to handle cases like
+ "\0" and "\0foobar". */
+ for (i = 0; i < n; ++i)
+ if (TREE_STRING_POINTER (init)[i] != '\0')
+ {
+ *nonzero = true;
+ return false;
+ }
+
+ return true;
+ }
+
+ default:
+ return false;
+ }
+}
+
+/* Return true if EXPR is an initializer expression in which every element
+ is a constant that is numerically equal to 0 or 1. The elements do not
+ need to be equal to each other. */
+
+bool
+initializer_each_zero_or_onep (const_tree expr)
+{
+ STRIP_ANY_LOCATION_WRAPPER (expr);
+
+ switch (TREE_CODE (expr))
+ {
+ case INTEGER_CST:
+ return integer_zerop (expr) || integer_onep (expr);
+
+ case REAL_CST:
+ return real_zerop (expr) || real_onep (expr);
+
+ case VECTOR_CST:
+ {
+ unsigned HOST_WIDE_INT nelts = vector_cst_encoded_nelts (expr);
+ if (VECTOR_CST_STEPPED_P (expr)
+ && !TYPE_VECTOR_SUBPARTS (TREE_TYPE (expr)).is_constant (&nelts))
+ return false;
+
+ for (unsigned int i = 0; i < nelts; ++i)
+ {
+ tree elt = vector_cst_elt (expr, i);
+ if (!initializer_each_zero_or_onep (elt))
+ return false;
+ }
+
+ return true;
+ }
+
+ default:
+ return false;
+ }
+}
+
+/* Check if vector VEC consists of all the equal elements and
+ that the number of elements corresponds to the type of VEC.
+ The function returns first element of the vector
+ or NULL_TREE if the vector is not uniform. */
+tree
+uniform_vector_p (const_tree vec)
+{
+ tree first, t;
+ unsigned HOST_WIDE_INT i, nelts;
+
+ if (vec == NULL_TREE)
+ return NULL_TREE;
+
+ gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));
+
+ if (TREE_CODE (vec) == VEC_DUPLICATE_EXPR)
+ return TREE_OPERAND (vec, 0);
+
+ else if (TREE_CODE (vec) == VECTOR_CST)
+ {
+ if (VECTOR_CST_NPATTERNS (vec) == 1 && VECTOR_CST_DUPLICATE_P (vec))
+ return VECTOR_CST_ENCODED_ELT (vec, 0);
+ return NULL_TREE;
+ }
+
+ else if (TREE_CODE (vec) == CONSTRUCTOR
+ && TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)).is_constant (&nelts))
+ {
+ first = error_mark_node;
+
+ FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
+ {
+ if (i == 0)
+ {
+ first = t;
+ continue;
+ }
+ if (!operand_equal_p (first, t, 0))
+ return NULL_TREE;
+ }
+ if (i != nelts)
+ return NULL_TREE;
+
+ return first;
+ }
+
+ return NULL_TREE;
+}
+
+/* If the argument is INTEGER_CST, return it. If the argument is vector
+ with all elements the same INTEGER_CST, return that INTEGER_CST. Otherwise
+ return NULL_TREE.
+ Look through location wrappers. */
+
+tree
+uniform_integer_cst_p (tree t)
+{
+ STRIP_ANY_LOCATION_WRAPPER (t);
+
+ if (TREE_CODE (t) == INTEGER_CST)
+ return t;
+
+ if (VECTOR_TYPE_P (TREE_TYPE (t)))
+ {
+ t = uniform_vector_p (t);
+ if (t && TREE_CODE (t) == INTEGER_CST)
+ return t;
+ }
+
+ return NULL_TREE;
+}
+
+/* Checks to see if T is a constant or a constant vector and if each element E
+ adheres to ~E + 1 == pow2 then return ~E otherwise NULL_TREE. */
+
+tree
+bitmask_inv_cst_vector_p (tree t)
+{
+
+ tree_code code = TREE_CODE (t);
+ tree type = TREE_TYPE (t);
+
+ if (!INTEGRAL_TYPE_P (type)
+ && !VECTOR_INTEGER_TYPE_P (type))
+ return NULL_TREE;
+
+ unsigned HOST_WIDE_INT nelts = 1;
+ tree cst;
+ unsigned int idx = 0;
+ bool uniform = uniform_integer_cst_p (t);
+ tree newtype = unsigned_type_for (type);
+ tree_vector_builder builder;
+ if (code == INTEGER_CST)
+ cst = t;
+ else
+ {
+ if (!VECTOR_CST_NELTS (t).is_constant (&nelts))
+ return NULL_TREE;
+
+ cst = vector_cst_elt (t, 0);
+ builder.new_vector (newtype, nelts, 1);
+ }
+
+ tree ty = unsigned_type_for (TREE_TYPE (cst));
+
+ do
+ {
+ if (idx > 0)
+ cst = vector_cst_elt (t, idx);
+ wide_int icst = wi::to_wide (cst);
+ wide_int inv = wi::bit_not (icst);
+ icst = wi::add (1, inv);
+ if (wi::popcount (icst) != 1)
+ return NULL_TREE;
+
+ tree newcst = wide_int_to_tree (ty, inv);
+
+ if (uniform)
+ return build_uniform_cst (newtype, newcst);
+
+ builder.quick_push (newcst);
+ }
+ while (++idx < nelts);
+
+ return builder.build ();
+}
+
+/* If VECTOR_CST T has a single nonzero element, return the index of that
+ element, otherwise return -1. */
+
+int
+single_nonzero_element (const_tree t)
+{
+ unsigned HOST_WIDE_INT nelts;
+ unsigned int repeat_nelts;
+ if (VECTOR_CST_NELTS (t).is_constant (&nelts))
+ repeat_nelts = nelts;
+ else if (VECTOR_CST_NELTS_PER_PATTERN (t) == 2)
+ {
+ nelts = vector_cst_encoded_nelts (t);
+ repeat_nelts = VECTOR_CST_NPATTERNS (t);
+ }
+ else
+ return -1;
+
+ int res = -1;
+ for (unsigned int i = 0; i < nelts; ++i)
+ {
+ tree elt = vector_cst_elt (t, i);
+ if (!integer_zerop (elt) && !real_zerop (elt))
+ {
+ if (res >= 0 || i >= repeat_nelts)
+ return -1;
+ res = i;
+ }
+ }
+ return res;
+}
+
+/* Build an empty statement at location LOC. */
+
+tree
+build_empty_stmt (location_t loc)
+{
+ tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
+ SET_EXPR_LOCATION (t, loc);
+ return t;
+}
+
+
+/* Build an OMP clause with code CODE. LOC is the location of the
+ clause. */
+
+tree
+build_omp_clause (location_t loc, enum omp_clause_code code)
+{
+ tree t;
+ int size, length;
+
+ length = omp_clause_num_ops[code];
+ size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
+
+ record_node_allocation_statistics (OMP_CLAUSE, size);
+
+ t = (tree) ggc_internal_alloc (size);
+ memset (t, 0, size);
+ TREE_SET_CODE (t, OMP_CLAUSE);
+ OMP_CLAUSE_SET_CODE (t, code);
+ OMP_CLAUSE_LOCATION (t) = loc;
+
+ return t;
+}
+
+/* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
+ includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
+ Except for the CODE and operand count field, other storage for the
+ object is initialized to zeros. */
+
+tree
+build_vl_exp (enum tree_code code, int len MEM_STAT_DECL)
+{
+ tree t;
+ int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
+
+ gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
+ gcc_assert (len >= 1);
+
+ record_node_allocation_statistics (code, length);
+
+ t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
+
+ TREE_SET_CODE (t, code);
+
+ /* Can't use TREE_OPERAND to store the length because if checking is
+ enabled, it will try to check the length before we store it. :-P */
+ t->exp.operands[0] = build_int_cst (sizetype, len);
+
+ return t;
+}
+
+/* Helper function for build_call_* functions; build a CALL_EXPR with
+ indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
+ the argument slots. */
+
+static tree
+build_call_1 (tree return_type, tree fn, int nargs)
+{
+ tree t;
+
+ t = build_vl_exp (CALL_EXPR, nargs + 3);
+ TREE_TYPE (t) = return_type;
+ CALL_EXPR_FN (t) = fn;
+ CALL_EXPR_STATIC_CHAIN (t) = NULL;
+
+ return t;
+}
+
+/* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
+ FN and a null static chain slot. NARGS is the number of call arguments
+ which are specified as "..." arguments. */
+
+tree
+build_call_nary (tree return_type, tree fn, int nargs, ...)
+{
+ tree ret;
+ va_list args;
+ va_start (args, nargs);
+ ret = build_call_valist (return_type, fn, nargs, args);
+ va_end (args);
+ return ret;
+}
+
+/* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
+ FN and a null static chain slot. NARGS is the number of call arguments
+ which are specified as a va_list ARGS. */
+
+tree
+build_call_valist (tree return_type, tree fn, int nargs, va_list args)
+{
+ tree t;
+ int i;
+
+ t = build_call_1 (return_type, fn, nargs);
+ for (i = 0; i < nargs; i++)
+ CALL_EXPR_ARG (t, i) = va_arg (args, tree);
+ process_call_operands (t);
+ return t;
+}
+
+/* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
+ FN and a null static chain slot. NARGS is the number of call arguments
+ which are specified as a tree array ARGS. */
+
+tree
+build_call_array_loc (location_t loc, tree return_type, tree fn,
+ int nargs, const tree *args)
+{
+ tree t;
+ int i;
+
+ t = build_call_1 (return_type, fn, nargs);
+ for (i = 0; i < nargs; i++)
+ CALL_EXPR_ARG (t, i) = args[i];
+ process_call_operands (t);
+ SET_EXPR_LOCATION (t, loc);
+ return t;
+}
+
+/* Like build_call_array, but takes a vec. */
+
+tree
+build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
+{
+ tree ret, t;
+ unsigned int ix;
+
+ ret = build_call_1 (return_type, fn, vec_safe_length (args));
+ FOR_EACH_VEC_SAFE_ELT (args, ix, t)
+ CALL_EXPR_ARG (ret, ix) = t;
+ process_call_operands (ret);
+ return ret;
+}
+
+/* Conveniently construct a function call expression. FNDECL names the
+ function to be called and N arguments are passed in the array
+ ARGARRAY. */
+
+tree
+build_call_expr_loc_array (location_t loc, tree fndecl, int n, tree *argarray)
+{
+ tree fntype = TREE_TYPE (fndecl);
+ tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
+
+ return fold_build_call_array_loc (loc, TREE_TYPE (fntype), fn, n, argarray);
+}
+
+/* Conveniently construct a function call expression. FNDECL names the
+ function to be called and the arguments are passed in the vector
+ VEC. */
+
+tree
+build_call_expr_loc_vec (location_t loc, tree fndecl, vec<tree, va_gc> *vec)
+{
+ return build_call_expr_loc_array (loc, fndecl, vec_safe_length (vec),
+ vec_safe_address (vec));
+}
+
+
+/* Conveniently construct a function call expression. FNDECL names the
+ function to be called, N is the number of arguments, and the "..."
+ parameters are the argument expressions. */
+
+tree
+build_call_expr_loc (location_t loc, tree fndecl, int n, ...)
+{
+ va_list ap;
+ tree *argarray = XALLOCAVEC (tree, n);
+ int i;
+
+ va_start (ap, n);
+ for (i = 0; i < n; i++)
+ argarray[i] = va_arg (ap, tree);
+ va_end (ap);
+ return build_call_expr_loc_array (loc, fndecl, n, argarray);
+}
+
+/* Like build_call_expr_loc (UNKNOWN_LOCATION, ...). Duplicated because
+ varargs macros aren't supported by all bootstrap compilers. */
+
+tree
+build_call_expr (tree fndecl, int n, ...)
+{
+ va_list ap;
+ tree *argarray = XALLOCAVEC (tree, n);
+ int i;
+
+ va_start (ap, n);
+ for (i = 0; i < n; i++)
+ argarray[i] = va_arg (ap, tree);
+ va_end (ap);
+ return build_call_expr_loc_array (UNKNOWN_LOCATION, fndecl, n, argarray);
+}
+
+/* Build an internal call to IFN, with arguments ARGS[0:N-1] and with return
+ type TYPE. This is just like CALL_EXPR, except its CALL_EXPR_FN is NULL.
+ It will get gimplified later into an ordinary internal function. */
+
+tree
+build_call_expr_internal_loc_array (location_t loc, internal_fn ifn,
+ tree type, int n, const tree *args)
+{
+ tree t = build_call_1 (type, NULL_TREE, n);
+ for (int i = 0; i < n; ++i)
+ CALL_EXPR_ARG (t, i) = args[i];
+ SET_EXPR_LOCATION (t, loc);
+ CALL_EXPR_IFN (t) = ifn;
+ process_call_operands (t);
+ return t;
+}
+
+/* Build internal call expression. This is just like CALL_EXPR, except
+ its CALL_EXPR_FN is NULL. It will get gimplified later into ordinary
+ internal function. */
+
+tree
+build_call_expr_internal_loc (location_t loc, enum internal_fn ifn,
+ tree type, int n, ...)
+{
+ va_list ap;
+ tree *argarray = XALLOCAVEC (tree, n);
+ int i;
+
+ va_start (ap, n);
+ for (i = 0; i < n; i++)
+ argarray[i] = va_arg (ap, tree);
+ va_end (ap);
+ return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
+}
+
+/* Return a function call to FN, if the target is guaranteed to support it,
+ or null otherwise.
+
+ N is the number of arguments, passed in the "...", and TYPE is the
+ type of the return value. */
+
+tree
+maybe_build_call_expr_loc (location_t loc, combined_fn fn, tree type,
+ int n, ...)
+{
+ va_list ap;
+ tree *argarray = XALLOCAVEC (tree, n);
+ int i;
+
+ va_start (ap, n);
+ for (i = 0; i < n; i++)
+ argarray[i] = va_arg (ap, tree);
+ va_end (ap);
+ if (internal_fn_p (fn))
+ {
+ internal_fn ifn = as_internal_fn (fn);
+ if (direct_internal_fn_p (ifn))
+ {
+ tree_pair types = direct_internal_fn_types (ifn, type, argarray);
+ if (!direct_internal_fn_supported_p (ifn, types,
+ OPTIMIZE_FOR_BOTH))
+ return NULL_TREE;
+ }
+ return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
+ }
+ else
+ {
+ tree fndecl = builtin_decl_implicit (as_builtin_fn (fn));
+ if (!fndecl)
+ return NULL_TREE;
+ return build_call_expr_loc_array (loc, fndecl, n, argarray);
+ }
+}
+
+/* Return a function call to the appropriate builtin alloca variant.
+
+ SIZE is the size to be allocated. ALIGN, if non-zero, is the requested
+ alignment of the allocated area. MAX_SIZE, if non-negative, is an upper
+ bound for SIZE in case it is not a fixed value. */
+
+tree
+build_alloca_call_expr (tree size, unsigned int align, HOST_WIDE_INT max_size)
+{
+ if (max_size >= 0)
+ {
+ tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX);
+ return
+ build_call_expr (t, 3, size, size_int (align), size_int (max_size));
+ }
+ else if (align > 0)
+ {
+ tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
+ return build_call_expr (t, 2, size, size_int (align));
+ }
+ else
+ {
+ tree t = builtin_decl_explicit (BUILT_IN_ALLOCA);
+ return build_call_expr (t, 1, size);
+ }
+}
+
+/* Create a new constant string literal of type ELTYPE[SIZE] (or LEN
+ if SIZE == -1) and return a tree node representing char* pointer to
+ it as an ADDR_EXPR (ARRAY_REF (ELTYPE, ...)). When STR is nonnull
+ the STRING_CST value is the LEN bytes at STR (the representation
+ of the string, which may be wide). Otherwise it's all zeros. */
+
+tree
+build_string_literal (unsigned len, const char *str /* = NULL */,
+ tree eltype /* = char_type_node */,
+ unsigned HOST_WIDE_INT size /* = -1 */)
+{
+ tree t = build_string (len, str);
+ /* Set the maximum valid index based on the string length or SIZE. */
+ unsigned HOST_WIDE_INT maxidx
+ = (size == HOST_WIDE_INT_M1U ? len : size) - 1;
+
+ tree index = build_index_type (size_int (maxidx));
+ eltype = build_type_variant (eltype, 1, 0);
+ tree type = build_array_type (eltype, index);
+ TREE_TYPE (t) = type;
+ TREE_CONSTANT (t) = 1;
+ TREE_READONLY (t) = 1;
+ TREE_STATIC (t) = 1;
+
+ type = build_pointer_type (eltype);
+ t = build1 (ADDR_EXPR, type,
+ build4 (ARRAY_REF, eltype,
+ t, integer_zero_node, NULL_TREE, NULL_TREE));
+ return t;
+}
+
+
+
+/* Return true if T (assumed to be a DECL) must be assigned a memory
+ location. */
+
+bool
+needs_to_live_in_memory (const_tree t)
+{
+ return (TREE_ADDRESSABLE (t)
+ || is_global_var (t)
+ || (TREE_CODE (t) == RESULT_DECL
+ && !DECL_BY_REFERENCE (t)
+ && aggregate_value_p (t, current_function_decl)));
+}
+
+/* Return value of a constant X and sign-extend it. */
+
+HOST_WIDE_INT
+int_cst_value (const_tree x)
+{
+ unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
+ unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
+
+ /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
+ gcc_assert (cst_and_fits_in_hwi (x));
+
+ if (bits < HOST_BITS_PER_WIDE_INT)
+ {
+ bool negative = ((val >> (bits - 1)) & 1) != 0;
+ if (negative)
+ val |= HOST_WIDE_INT_M1U << (bits - 1) << 1;
+ else
+ val &= ~(HOST_WIDE_INT_M1U << (bits - 1) << 1);
+ }
+
+ return val;
+}
+
+/* If TYPE is an integral or pointer type, return an integer type with
+ the same precision which is unsigned iff UNSIGNEDP is true, or itself
+ if TYPE is already an integer type of signedness UNSIGNEDP.
+ If TYPE is a floating-point type, return an integer type with the same
+ bitsize and with the signedness given by UNSIGNEDP; this is useful
+ when doing bit-level operations on a floating-point value. */
+
+tree
+signed_or_unsigned_type_for (int unsignedp, tree type)
+{
+ if (ANY_INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type) == unsignedp)
+ return type;
+
+ if (TREE_CODE (type) == VECTOR_TYPE)
+ {
+ tree inner = TREE_TYPE (type);
+ tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
+ if (!inner2)
+ return NULL_TREE;
+ if (inner == inner2)
+ return type;
+ return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
+ }
+
+ if (TREE_CODE (type) == COMPLEX_TYPE)
+ {
+ tree inner = TREE_TYPE (type);
+ tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
+ if (!inner2)
+ return NULL_TREE;
+ if (inner == inner2)
+ return type;
+ return build_complex_type (inner2);
+ }
+
+ unsigned int bits;
+ if (INTEGRAL_TYPE_P (type)
+ || POINTER_TYPE_P (type)
+ || TREE_CODE (type) == OFFSET_TYPE)
+ bits = TYPE_PRECISION (type);
+ else if (TREE_CODE (type) == REAL_TYPE)
+ bits = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (type));
+ else
+ return NULL_TREE;
+
+ return build_nonstandard_integer_type (bits, unsignedp);
+}
+
+/* If TYPE is an integral or pointer type, return an integer type with
+ the same precision which is unsigned, or itself if TYPE is already an
+ unsigned integer type. If TYPE is a floating-point type, return an
+ unsigned integer type with the same bitsize as TYPE. */
+
+tree
+unsigned_type_for (tree type)
+{
+ return signed_or_unsigned_type_for (1, type);
+}
+
+/* If TYPE is an integral or pointer type, return an integer type with
+ the same precision which is signed, or itself if TYPE is already a
+ signed integer type. If TYPE is a floating-point type, return a
+ signed integer type with the same bitsize as TYPE. */
+
+tree
+signed_type_for (tree type)
+{
+ return signed_or_unsigned_type_for (0, type);
+}
+
+/* - For VECTOR_TYPEs:
+ - The truth type must be a VECTOR_BOOLEAN_TYPE.
+ - The number of elements must match (known_eq).
+ - targetm.vectorize.get_mask_mode exists, and exactly
+ the same mode as the truth type.
+ - Otherwise, the truth type must be a BOOLEAN_TYPE
+ or useless_type_conversion_p to BOOLEAN_TYPE. */
+bool
+is_truth_type_for (tree type, tree truth_type)
+{
+ machine_mode mask_mode = TYPE_MODE (truth_type);
+ machine_mode vmode = TYPE_MODE (type);
+ machine_mode tmask_mode;
+
+ if (TREE_CODE (type) == VECTOR_TYPE)
+ {
+ if (VECTOR_BOOLEAN_TYPE_P (truth_type)
+ && known_eq (TYPE_VECTOR_SUBPARTS (type),
+ TYPE_VECTOR_SUBPARTS (truth_type))
+ && targetm.vectorize.get_mask_mode (vmode).exists (&tmask_mode)
+ && tmask_mode == mask_mode)
+ return true;
+
+ return false;
+ }
+
+ return useless_type_conversion_p (boolean_type_node, truth_type);
+}
+
+/* If TYPE is a vector type, return a signed integer vector type with the
+ same width and number of subparts. Otherwise return boolean_type_node. */
+
+tree
+truth_type_for (tree type)
+{
+ if (TREE_CODE (type) == VECTOR_TYPE)
+ {
+ if (VECTOR_BOOLEAN_TYPE_P (type))
+ return type;
+ return build_truth_vector_type_for (type);
+ }
+ else
+ return boolean_type_node;
+}
+
+/* Returns the largest value obtainable by casting something in INNER type to
+ OUTER type. */
+
+tree
+upper_bound_in_type (tree outer, tree inner)
+{
+ unsigned int det = 0;
+ unsigned oprec = TYPE_PRECISION (outer);
+ unsigned iprec = TYPE_PRECISION (inner);
+ unsigned prec;
+
+ /* Compute a unique number for every combination. */
+ det |= (oprec > iprec) ? 4 : 0;
+ det |= TYPE_UNSIGNED (outer) ? 2 : 0;
+ det |= TYPE_UNSIGNED (inner) ? 1 : 0;
+
+ /* Determine the exponent to use. */
+ switch (det)
+ {
+ case 0:
+ case 1:
+ /* oprec <= iprec, outer: signed, inner: don't care. */
+ prec = oprec - 1;
+ break;
+ case 2:
+ case 3:
+ /* oprec <= iprec, outer: unsigned, inner: don't care. */
+ prec = oprec;
+ break;
+ case 4:
+ /* oprec > iprec, outer: signed, inner: signed. */
+ prec = iprec - 1;
+ break;
+ case 5:
+ /* oprec > iprec, outer: signed, inner: unsigned. */
+ prec = iprec;
+ break;
+ case 6:
+ /* oprec > iprec, outer: unsigned, inner: signed. */
+ prec = oprec;
+ break;
+ case 7:
+ /* oprec > iprec, outer: unsigned, inner: unsigned. */
+ prec = iprec;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ return wide_int_to_tree (outer,
+ wi::mask (prec, false, TYPE_PRECISION (outer)));
+}
+
+/* Returns the smallest value obtainable by casting something in INNER type to
+ OUTER type. */
+
+tree
+lower_bound_in_type (tree outer, tree inner)
+{
+ unsigned oprec = TYPE_PRECISION (outer);
+ unsigned iprec = TYPE_PRECISION (inner);
+
+ /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
+ and obtain 0. */
+ if (TYPE_UNSIGNED (outer)
+ /* If we are widening something of an unsigned type, OUTER type
+ contains all values of INNER type. In particular, both INNER
+ and OUTER types have zero in common. */
+ || (oprec > iprec && TYPE_UNSIGNED (inner)))
+ return build_int_cst (outer, 0);
+ else
+ {
+ /* If we are widening a signed type to another signed type, we
+ want to obtain -2^^(iprec-1). If we are keeping the
+ precision or narrowing to a signed type, we want to obtain
+ -2^(oprec-1). */
+ unsigned prec = oprec > iprec ? iprec : oprec;
+ return wide_int_to_tree (outer,
+ wi::mask (prec - 1, true,
+ TYPE_PRECISION (outer)));
+ }
+}
+
+/* Return nonzero if two operands that are suitable for PHI nodes are
+ necessarily equal. Specifically, both ARG0 and ARG1 must be either
+ SSA_NAME or invariant. Note that this is strictly an optimization.
+ That is, callers of this function can directly call operand_equal_p
+ and get the same result, only slower. */
+
+int
+operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
+{
+ if (arg0 == arg1)
+ return 1;
+ if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
+ return 0;
+ return operand_equal_p (arg0, arg1, 0);
+}
+
+/* Returns number of zeros at the end of binary representation of X. */
+
+tree
+num_ending_zeros (const_tree x)
+{
+ return build_int_cst (TREE_TYPE (x), wi::ctz (wi::to_wide (x)));
+}
+
+
+#define WALK_SUBTREE(NODE) \
+ do \
+ { \
+ result = walk_tree_1 (&(NODE), func, data, pset, lh); \
+ if (result) \
+ return result; \
+ } \
+ while (0)
+
+/* This is a subroutine of walk_tree that walks field of TYPE that are to
+ be walked whenever a type is seen in the tree. Rest of operands and return
+ value are as for walk_tree. */
+
+static tree
+walk_type_fields (tree type, walk_tree_fn func, void *data,
+ hash_set<tree> *pset, walk_tree_lh lh)
+{
+ tree result = NULL_TREE;
+
+ switch (TREE_CODE (type))
+ {
+ case POINTER_TYPE:
+ case REFERENCE_TYPE:
+ case VECTOR_TYPE:
+ /* We have to worry about mutually recursive pointers. These can't
+ be written in C. They can in Ada. It's pathological, but
+ there's an ACATS test (c38102a) that checks it. Deal with this
+ by checking if we're pointing to another pointer, that one
+ points to another pointer, that one does too, and we have no htab.
+ If so, get a hash table. We check three levels deep to avoid
+ the cost of the hash table if we don't need one. */
+ if (POINTER_TYPE_P (TREE_TYPE (type))
+ && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
+ && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
+ && !pset)
+ {
+ result = walk_tree_without_duplicates (&TREE_TYPE (type),
+ func, data);
+ if (result)
+ return result;
+
+ break;
+ }
+
+ /* fall through */
+
+ case COMPLEX_TYPE:
+ WALK_SUBTREE (TREE_TYPE (type));
+ break;
+
+ case METHOD_TYPE:
+ WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
+
+ /* Fall through. */
+
+ case FUNCTION_TYPE:
+ WALK_SUBTREE (TREE_TYPE (type));
+ {
+ tree arg;
+
+ /* We never want to walk into default arguments. */
+ for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
+ WALK_SUBTREE (TREE_VALUE (arg));
+ }
+ break;
+
+ case ARRAY_TYPE:
+ /* Don't follow this nodes's type if a pointer for fear that
+ we'll have infinite recursion. If we have a PSET, then we
+ need not fear. */
+ if (pset
+ || (!POINTER_TYPE_P (TREE_TYPE (type))
+ && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
+ WALK_SUBTREE (TREE_TYPE (type));
+ WALK_SUBTREE (TYPE_DOMAIN (type));
+ break;
+
+ case OFFSET_TYPE:
+ WALK_SUBTREE (TREE_TYPE (type));
+ WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
+ break;
+
+ default:
+ break;
+ }
+
+ return NULL_TREE;
+}
+
+/* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
+ called with the DATA and the address of each sub-tree. If FUNC returns a
+ non-NULL value, the traversal is stopped, and the value returned by FUNC
+ is returned. If PSET is non-NULL it is used to record the nodes visited,
+ and to avoid visiting a node more than once. */
+
+tree
+walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
+ hash_set<tree> *pset, walk_tree_lh lh)
+{
+ enum tree_code code;
+ int walk_subtrees;
+ tree result;
+
+#define WALK_SUBTREE_TAIL(NODE) \
+ do \
+ { \
+ tp = & (NODE); \
+ goto tail_recurse; \
+ } \
+ while (0)
+
+ tail_recurse:
+ /* Skip empty subtrees. */
+ if (!*tp)
+ return NULL_TREE;
+
+ /* Don't walk the same tree twice, if the user has requested
+ that we avoid doing so. */
+ if (pset && pset->add (*tp))
+ return NULL_TREE;
+
+ /* Call the function. */
+ walk_subtrees = 1;
+ result = (*func) (tp, &walk_subtrees, data);
+
+ /* If we found something, return it. */
+ if (result)
+ return result;
+
+ code = TREE_CODE (*tp);
+
+ /* Even if we didn't, FUNC may have decided that there was nothing
+ interesting below this point in the tree. */
+ if (!walk_subtrees)
+ {
+ /* But we still need to check our siblings. */
+ if (code == TREE_LIST)
+ WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
+ else if (code == OMP_CLAUSE)
+ WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
+ else
+ return NULL_TREE;
+ }
+
+ if (lh)
+ {
+ result = (*lh) (tp, &walk_subtrees, func, data, pset);
+ if (result || !walk_subtrees)
+ return result;
+ }
+
+ switch (code)
+ {
+ case ERROR_MARK:
+ case IDENTIFIER_NODE:
+ case INTEGER_CST:
+ case REAL_CST:
+ case FIXED_CST:
+ case STRING_CST:
+ case BLOCK:
+ case PLACEHOLDER_EXPR:
+ case SSA_NAME:
+ case FIELD_DECL:
+ case RESULT_DECL:
+ /* None of these have subtrees other than those already walked
+ above. */
+ break;
+
+ case TREE_LIST:
+ WALK_SUBTREE (TREE_VALUE (*tp));
+ WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
+
+ case TREE_VEC:
+ {
+ int len = TREE_VEC_LENGTH (*tp);
+
+ if (len == 0)
+ break;
+
+ /* Walk all elements but the first. */
+ while (--len)
+ WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
+
+ /* Now walk the first one as a tail call. */
+ WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
+ }
+
+ case VECTOR_CST:
+ {
+ unsigned len = vector_cst_encoded_nelts (*tp);
+ if (len == 0)
+ break;
+ /* Walk all elements but the first. */
+ while (--len)
+ WALK_SUBTREE (VECTOR_CST_ENCODED_ELT (*tp, len));
+ /* Now walk the first one as a tail call. */
+ WALK_SUBTREE_TAIL (VECTOR_CST_ENCODED_ELT (*tp, 0));
+ }
+
+ case COMPLEX_CST:
+ WALK_SUBTREE (TREE_REALPART (*tp));
+ WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
+
+ case CONSTRUCTOR:
+ {
+ unsigned HOST_WIDE_INT idx;
+ constructor_elt *ce;
+
+ for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp), idx, &ce);
+ idx++)
+ WALK_SUBTREE (ce->value);
+ }
+ break;
+
+ case SAVE_EXPR:
+ WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
+
+ case BIND_EXPR:
+ {
+ tree decl;
+ for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
+ {
+ /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
+ into declarations that are just mentioned, rather than
+ declared; they don't really belong to this part of the tree.
+ And, we can see cycles: the initializer for a declaration
+ can refer to the declaration itself. */
+ WALK_SUBTREE (DECL_INITIAL (decl));
+ WALK_SUBTREE (DECL_SIZE (decl));
+ WALK_SUBTREE (DECL_SIZE_UNIT (decl));
+ }
+ WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
+ }
+
+ case STATEMENT_LIST:
+ {
+ tree_stmt_iterator i;
+ for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
+ WALK_SUBTREE (*tsi_stmt_ptr (i));
+ }
+ break;
+
+ case OMP_CLAUSE:
+ {
+ int len = omp_clause_num_ops[OMP_CLAUSE_CODE (*tp)];
+ for (int i = 0; i < len; i++)
+ WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
+ WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
+ }
+
+ case TARGET_EXPR:
+ {
+ int i, len;
+
+ /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
+ But, we only want to walk once. */
+ len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
+ for (i = 0; i < len; ++i)
+ WALK_SUBTREE (TREE_OPERAND (*tp, i));
+ WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
+ }
+
+ case DECL_EXPR:
+ /* If this is a TYPE_DECL, walk into the fields of the type that it's
+ defining. We only want to walk into these fields of a type in this
+ case and not in the general case of a mere reference to the type.
+
+ The criterion is as follows: if the field can be an expression, it
+ must be walked only here. This should be in keeping with the fields
+ that are directly gimplified in gimplify_type_sizes in order for the
+ mark/copy-if-shared/unmark machinery of the gimplifier to work with
+ variable-sized types.
+
+ Note that DECLs get walked as part of processing the BIND_EXPR. */
+ if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
+ {
+ /* Call the function for the decl so e.g. copy_tree_body_r can
+ replace it with the remapped one. */
+ result = (*func) (&DECL_EXPR_DECL (*tp), &walk_subtrees, data);
+ if (result || !walk_subtrees)
+ return result;
+
+ tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
+ if (TREE_CODE (*type_p) == ERROR_MARK)
+ return NULL_TREE;
+
+ /* Call the function for the type. See if it returns anything or
+ doesn't want us to continue. If we are to continue, walk both
+ the normal fields and those for the declaration case. */
+ result = (*func) (type_p, &walk_subtrees, data);
+ if (result || !walk_subtrees)
+ return result;
+
+ /* But do not walk a pointed-to type since it may itself need to
+ be walked in the declaration case if it isn't anonymous. */
+ if (!POINTER_TYPE_P (*type_p))
+ {
+ result = walk_type_fields (*type_p, func, data, pset, lh);
+ if (result)
+ return result;
+ }
+
+ /* If this is a record type, also walk the fields. */
+ if (RECORD_OR_UNION_TYPE_P (*type_p))
+ {
+ tree field;
+
+ for (field = TYPE_FIELDS (*type_p); field;
+ field = DECL_CHAIN (field))
+ {
+ /* We'd like to look at the type of the field, but we can
+ easily get infinite recursion. So assume it's pointed
+ to elsewhere in the tree. Also, ignore things that
+ aren't fields. */
+ if (TREE_CODE (field) != FIELD_DECL)
+ continue;
+
+ WALK_SUBTREE (DECL_FIELD_OFFSET (field));
+ WALK_SUBTREE (DECL_SIZE (field));
+ WALK_SUBTREE (DECL_SIZE_UNIT (field));
+ if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
+ WALK_SUBTREE (DECL_QUALIFIER (field));
+ }
+ }
+
+ /* Same for scalar types. */
+ else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
+ || TREE_CODE (*type_p) == ENUMERAL_TYPE
+ || TREE_CODE (*type_p) == INTEGER_TYPE
+ || TREE_CODE (*type_p) == FIXED_POINT_TYPE
+ || TREE_CODE (*type_p) == REAL_TYPE)
+ {
+ WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
+ WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
+ }
+
+ WALK_SUBTREE (TYPE_SIZE (*type_p));
+ WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
+ }
+ /* FALLTHRU */
+
+ default:
+ if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
+ {
+ int i, len;
+
+ /* Walk over all the sub-trees of this operand. */
+ len = TREE_OPERAND_LENGTH (*tp);
+
+ /* Go through the subtrees. We need to do this in forward order so
+ that the scope of a FOR_EXPR is handled properly. */
+ if (len)
+ {
+ for (i = 0; i < len - 1; ++i)
+ WALK_SUBTREE (TREE_OPERAND (*tp, i));
+ WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
+ }
+ }
+ /* If this is a type, walk the needed fields in the type. */
+ else if (TYPE_P (*tp))
+ return walk_type_fields (*tp, func, data, pset, lh);
+ break;
+ }
+
+ /* We didn't find what we were looking for. */
+ return NULL_TREE;
+
+#undef WALK_SUBTREE_TAIL
+}
+#undef WALK_SUBTREE
+
+/* Like walk_tree, but does not walk duplicate nodes more than once. */
+
+tree
+walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
+ walk_tree_lh lh)
+{
+ tree result;
+
+ hash_set<tree> pset;
+ result = walk_tree_1 (tp, func, data, &pset, lh);
+ return result;
+}
+
+
+tree
+tree_block (tree t)
+{
+ const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
+
+ if (IS_EXPR_CODE_CLASS (c))
+ return LOCATION_BLOCK (t->exp.locus);
+ gcc_unreachable ();
+ return NULL;
+}
+
+void
+tree_set_block (tree t, tree b)
+{
+ const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
+
+ if (IS_EXPR_CODE_CLASS (c))
+ {
+ t->exp.locus = set_block (t->exp.locus, b);
+ }
+ else
+ gcc_unreachable ();
+}
+
+/* Create a nameless artificial label and put it in the current
+ function context. The label has a location of LOC. Returns the
+ newly created label. */
+
+tree
+create_artificial_label (location_t loc)
+{
+ tree lab = build_decl (loc,
+ LABEL_DECL, NULL_TREE, void_type_node);
+
+ DECL_ARTIFICIAL (lab) = 1;
+ DECL_IGNORED_P (lab) = 1;
+ DECL_CONTEXT (lab) = current_function_decl;
+ return lab;
+}
+
+/* Given a tree, try to return a useful variable name that we can use
+ to prefix a temporary that is being assigned the value of the tree.
+ I.E. given <temp> = &A, return A. */
+
+const char *
+get_name (tree t)
+{
+ tree stripped_decl;
+
+ stripped_decl = t;
+ STRIP_NOPS (stripped_decl);
+ if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
+ return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
+ else if (TREE_CODE (stripped_decl) == SSA_NAME)
+ {
+ tree name = SSA_NAME_IDENTIFIER (stripped_decl);
+ if (!name)
+ return NULL;
+ return IDENTIFIER_POINTER (name);
+ }
+ else
+ {
+ switch (TREE_CODE (stripped_decl))
+ {
+ case ADDR_EXPR:
+ return get_name (TREE_OPERAND (stripped_decl, 0));
+ default:
+ return NULL;
+ }
+ }
+}
+
+/* Return true if TYPE has a variable argument list. */
+
+bool
+stdarg_p (const_tree fntype)
+{
+ function_args_iterator args_iter;
+ tree n = NULL_TREE, t;
+
+ if (!fntype)
+ return false;
+
+ FOREACH_FUNCTION_ARGS (fntype, t, args_iter)
+ {
+ n = t;
+ }
+
+ return n != NULL_TREE && n != void_type_node;
+}
+
+/* Return true if TYPE has a prototype. */
+
+bool
+prototype_p (const_tree fntype)
+{
+ tree t;
+
+ gcc_assert (fntype != NULL_TREE);
+
+ t = TYPE_ARG_TYPES (fntype);
+ return (t != NULL_TREE);
+}
+
+/* If BLOCK is inlined from an __attribute__((__artificial__))
+ routine, return pointer to location from where it has been
+ called. */
+location_t *
+block_nonartificial_location (tree block)
+{
+ location_t *ret = NULL;
+
+ while (block && TREE_CODE (block) == BLOCK
+ && BLOCK_ABSTRACT_ORIGIN (block))
+ {
+ tree ao = BLOCK_ABSTRACT_ORIGIN (block);
+ if (TREE_CODE (ao) == FUNCTION_DECL)
+ {
+ /* If AO is an artificial inline, point RET to the
+ call site locus at which it has been inlined and continue
+ the loop, in case AO's caller is also an artificial
+ inline. */
+ if (DECL_DECLARED_INLINE_P (ao)
+ && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
+ ret = &BLOCK_SOURCE_LOCATION (block);
+ else
+ break;
+ }
+ else if (TREE_CODE (ao) != BLOCK)
+ break;
+
+ block = BLOCK_SUPERCONTEXT (block);
+ }
+ return ret;
+}
+
+
+/* If EXP is inlined from an __attribute__((__artificial__))
+ function, return the location of the original call expression. */
+
+location_t
+tree_nonartificial_location (tree exp)
+{
+ location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
+
+ if (loc)
+ return *loc;
+ else
+ return EXPR_LOCATION (exp);
+}
+
+/* Return the location into which EXP has been inlined. Analogous
+ to tree_nonartificial_location() above but not limited to artificial
+ functions declared inline. If SYSTEM_HEADER is true, return
+ the macro expansion point of the location if it's in a system header */
+
+location_t
+tree_inlined_location (tree exp, bool system_header /* = true */)
+{
+ location_t loc = UNKNOWN_LOCATION;
+
+ tree block = TREE_BLOCK (exp);
+
+ while (block && TREE_CODE (block) == BLOCK
+ && BLOCK_ABSTRACT_ORIGIN (block))
+ {
+ tree ao = BLOCK_ABSTRACT_ORIGIN (block);
+ if (TREE_CODE (ao) == FUNCTION_DECL)
+ loc = BLOCK_SOURCE_LOCATION (block);
+ else if (TREE_CODE (ao) != BLOCK)
+ break;
+
+ block = BLOCK_SUPERCONTEXT (block);
+ }
+
+ if (loc == UNKNOWN_LOCATION)
+ {
+ loc = EXPR_LOCATION (exp);
+ if (system_header)
+ /* Only consider macro expansion when the block traversal failed
+ to find a location. Otherwise it's not relevant. */
+ return expansion_point_location_if_in_system_header (loc);
+ }
+
+ return loc;
+}
+
+/* These are the hash table functions for the hash table of OPTIMIZATION_NODE
+ nodes. */
+
+/* Return the hash code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
+
+hashval_t
+cl_option_hasher::hash (tree x)
+{
+ const_tree const t = x;
+
+ if (TREE_CODE (t) == OPTIMIZATION_NODE)
+ return cl_optimization_hash (TREE_OPTIMIZATION (t));
+ else if (TREE_CODE (t) == TARGET_OPTION_NODE)
+ return cl_target_option_hash (TREE_TARGET_OPTION (t));
+ else
+ gcc_unreachable ();
+}
+
+/* Return nonzero if the value represented by *X (an OPTIMIZATION or
+ TARGET_OPTION tree node) is the same as that given by *Y, which is the
+ same. */
+
+bool
+cl_option_hasher::equal (tree x, tree y)
+{
+ const_tree const xt = x;
+ const_tree const yt = y;
+
+ if (TREE_CODE (xt) != TREE_CODE (yt))
+ return 0;
+
+ if (TREE_CODE (xt) == OPTIMIZATION_NODE)
+ return cl_optimization_option_eq (TREE_OPTIMIZATION (xt),
+ TREE_OPTIMIZATION (yt));
+ else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
+ return cl_target_option_eq (TREE_TARGET_OPTION (xt),
+ TREE_TARGET_OPTION (yt));
+ else
+ gcc_unreachable ();
+}
+
+/* Build an OPTIMIZATION_NODE based on the options in OPTS and OPTS_SET. */
+
+tree
+build_optimization_node (struct gcc_options *opts,
+ struct gcc_options *opts_set)
+{
+ tree t;
+
+ /* Use the cache of optimization nodes. */
+
+ cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
+ opts, opts_set);
+
+ tree *slot = cl_option_hash_table->find_slot (cl_optimization_node, INSERT);
+ t = *slot;
+ if (!t)
+ {
+ /* Insert this one into the hash table. */
+ t = cl_optimization_node;
+ *slot = t;
+
+ /* Make a new node for next time round. */
+ cl_optimization_node = make_node (OPTIMIZATION_NODE);
+ }
+
+ return t;
+}
+
+/* Build a TARGET_OPTION_NODE based on the options in OPTS and OPTS_SET. */
+
+tree
+build_target_option_node (struct gcc_options *opts,
+ struct gcc_options *opts_set)
+{
+ tree t;
+
+ /* Use the cache of optimization nodes. */
+
+ cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
+ opts, opts_set);
+
+ tree *slot = cl_option_hash_table->find_slot (cl_target_option_node, INSERT);
+ t = *slot;
+ if (!t)
+ {
+ /* Insert this one into the hash table. */
+ t = cl_target_option_node;
+ *slot = t;
+
+ /* Make a new node for next time round. */
+ cl_target_option_node = make_node (TARGET_OPTION_NODE);
+ }
+
+ return t;
+}
+
+/* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees,
+ so that they aren't saved during PCH writing. */
+
+void
+prepare_target_option_nodes_for_pch (void)
+{
+ hash_table<cl_option_hasher>::iterator iter = cl_option_hash_table->begin ();
+ for (; iter != cl_option_hash_table->end (); ++iter)
+ if (TREE_CODE (*iter) == TARGET_OPTION_NODE)
+ TREE_TARGET_GLOBALS (*iter) = NULL;
+}
+
+/* Determine the "ultimate origin" of a block. */
+
+tree
+block_ultimate_origin (const_tree block)
+{
+ tree origin = BLOCK_ABSTRACT_ORIGIN (block);
+
+ if (origin == NULL_TREE)
+ return NULL_TREE;
+ else
+ {
+ gcc_checking_assert ((DECL_P (origin)
+ && DECL_ORIGIN (origin) == origin)
+ || BLOCK_ORIGIN (origin) == origin);
+ return origin;
+ }
+}
+
+/* Return true iff conversion from INNER_TYPE to OUTER_TYPE generates
+ no instruction. */
+
+bool
+tree_nop_conversion_p (const_tree outer_type, const_tree inner_type)
+{
+ /* Do not strip casts into or out of differing address spaces. */
+ if (POINTER_TYPE_P (outer_type)
+ && TYPE_ADDR_SPACE (TREE_TYPE (outer_type)) != ADDR_SPACE_GENERIC)
+ {
+ if (!POINTER_TYPE_P (inner_type)
+ || (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
+ != TYPE_ADDR_SPACE (TREE_TYPE (inner_type))))
+ return false;
+ }
+ else if (POINTER_TYPE_P (inner_type)
+ && TYPE_ADDR_SPACE (TREE_TYPE (inner_type)) != ADDR_SPACE_GENERIC)
+ {
+ /* We already know that outer_type is not a pointer with
+ a non-generic address space. */
+ return false;
+ }
+
+ /* Use precision rather then machine mode when we can, which gives
+ the correct answer even for submode (bit-field) types. */
+ if ((INTEGRAL_TYPE_P (outer_type)
+ || POINTER_TYPE_P (outer_type)
+ || TREE_CODE (outer_type) == OFFSET_TYPE)
+ && (INTEGRAL_TYPE_P (inner_type)
+ || POINTER_TYPE_P (inner_type)
+ || TREE_CODE (inner_type) == OFFSET_TYPE))
+ return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
+
+ /* Otherwise fall back on comparing machine modes (e.g. for
+ aggregate types, floats). */
+ return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
+}
+
+/* Return true iff conversion in EXP generates no instruction. Mark
+ it inline so that we fully inline into the stripping functions even
+ though we have two uses of this function. */
+
+static inline bool
+tree_nop_conversion (const_tree exp)
+{
+ tree outer_type, inner_type;
+
+ if (location_wrapper_p (exp))
+ return true;
+ if (!CONVERT_EXPR_P (exp)
+ && TREE_CODE (exp) != NON_LVALUE_EXPR)
+ return false;
+
+ outer_type = TREE_TYPE (exp);
+ inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
+ if (!inner_type || inner_type == error_mark_node)
+ return false;
+
+ return tree_nop_conversion_p (outer_type, inner_type);
+}
+
+/* Return true iff conversion in EXP generates no instruction. Don't
+ consider conversions changing the signedness. */
+
+static bool
+tree_sign_nop_conversion (const_tree exp)
+{
+ tree outer_type, inner_type;
+
+ if (!tree_nop_conversion (exp))
+ return false;
+
+ outer_type = TREE_TYPE (exp);
+ inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
+
+ return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
+ && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
+}
+
+/* Strip conversions from EXP according to tree_nop_conversion and
+ return the resulting expression. */
+
+tree
+tree_strip_nop_conversions (tree exp)
+{
+ while (tree_nop_conversion (exp))
+ exp = TREE_OPERAND (exp, 0);
+ return exp;
+}
+
+/* Strip conversions from EXP according to tree_sign_nop_conversion
+ and return the resulting expression. */
+
+tree
+tree_strip_sign_nop_conversions (tree exp)
+{
+ while (tree_sign_nop_conversion (exp))
+ exp = TREE_OPERAND (exp, 0);
+ return exp;
+}
+
+/* Avoid any floating point extensions from EXP. */
+tree
+strip_float_extensions (tree exp)
+{
+ tree sub, expt, subt;
+
+ /* For floating point constant look up the narrowest type that can hold
+ it properly and handle it like (type)(narrowest_type)constant.
+ This way we can optimize for instance a=a*2.0 where "a" is float
+ but 2.0 is double constant. */
+ if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
+ {
+ REAL_VALUE_TYPE orig;
+ tree type = NULL;
+
+ orig = TREE_REAL_CST (exp);
+ if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
+ && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
+ type = float_type_node;
+ else if (TYPE_PRECISION (TREE_TYPE (exp))
+ > TYPE_PRECISION (double_type_node)
+ && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
+ type = double_type_node;
+ if (type)
+ return build_real_truncate (type, orig);
+ }
+
+ if (!CONVERT_EXPR_P (exp))
+ return exp;
+
+ sub = TREE_OPERAND (exp, 0);
+ subt = TREE_TYPE (sub);
+ expt = TREE_TYPE (exp);
+
+ if (!FLOAT_TYPE_P (subt))
+ return exp;
+
+ if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
+ return exp;
+
+ if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
+ return exp;
+
+ return strip_float_extensions (sub);
+}
+
+/* Strip out all handled components that produce invariant
+ offsets. */
+
+const_tree
+strip_invariant_refs (const_tree op)
+{
+ while (handled_component_p (op))
+ {
+ switch (TREE_CODE (op))
+ {
+ case ARRAY_REF:
+ case ARRAY_RANGE_REF:
+ if (!is_gimple_constant (TREE_OPERAND (op, 1))
+ || TREE_OPERAND (op, 2) != NULL_TREE
+ || TREE_OPERAND (op, 3) != NULL_TREE)
+ return NULL;
+ break;
+
+ case COMPONENT_REF:
+ if (TREE_OPERAND (op, 2) != NULL_TREE)
+ return NULL;
+ break;
+
+ default:;
+ }
+ op = TREE_OPERAND (op, 0);
+ }
+
+ return op;
+}
+
+static GTY(()) tree gcc_eh_personality_decl;
+
+/* Return the GCC personality function decl. */
+
+tree
+lhd_gcc_personality (void)
+{
+ if (!gcc_eh_personality_decl)
+ gcc_eh_personality_decl = build_personality_function ("gcc");
+ return gcc_eh_personality_decl;
+}
+
+/* TARGET is a call target of GIMPLE call statement
+ (obtained by gimple_call_fn). Return true if it is
+ OBJ_TYPE_REF representing an virtual call of C++ method.
+ (As opposed to OBJ_TYPE_REF representing objc calls
+ through a cast where middle-end devirtualization machinery
+ can't apply.) FOR_DUMP_P is true when being called from
+ the dump routines. */
+
+bool
+virtual_method_call_p (const_tree target, bool for_dump_p)
+{
+ if (TREE_CODE (target) != OBJ_TYPE_REF)
+ return false;
+ tree t = TREE_TYPE (target);
+ gcc_checking_assert (TREE_CODE (t) == POINTER_TYPE);
+ t = TREE_TYPE (t);
+ if (TREE_CODE (t) == FUNCTION_TYPE)
+ return false;
+ gcc_checking_assert (TREE_CODE (t) == METHOD_TYPE);
+ /* If we do not have BINFO associated, it means that type was built
+ without devirtualization enabled. Do not consider this a virtual
+ call. */
+ if (!TYPE_BINFO (obj_type_ref_class (target, for_dump_p)))
+ return false;
+ return true;
+}
+
+/* Lookup sub-BINFO of BINFO of TYPE at offset POS. */
+
+static tree
+lookup_binfo_at_offset (tree binfo, tree type, HOST_WIDE_INT pos)
+{
+ unsigned int i;
+ tree base_binfo, b;
+
+ for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
+ if (pos == tree_to_shwi (BINFO_OFFSET (base_binfo))
+ && types_same_for_odr (TREE_TYPE (base_binfo), type))
+ return base_binfo;
+ else if ((b = lookup_binfo_at_offset (base_binfo, type, pos)) != NULL)
+ return b;
+ return NULL;
+}
+
+/* Try to find a base info of BINFO that would have its field decl at offset
+ OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
+ found, return, otherwise return NULL_TREE. */
+
+tree
+get_binfo_at_offset (tree binfo, poly_int64 offset, tree expected_type)
+{
+ tree type = BINFO_TYPE (binfo);
+
+ while (true)
+ {
+ HOST_WIDE_INT pos, size;
+ tree fld;
+ int i;
+
+ if (types_same_for_odr (type, expected_type))
+ return binfo;
+ if (maybe_lt (offset, 0))
+ return NULL_TREE;
+
+ for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
+ {
+ if (TREE_CODE (fld) != FIELD_DECL || !DECL_ARTIFICIAL (fld))
+ continue;
+
+ pos = int_bit_position (fld);
+ size = tree_to_uhwi (DECL_SIZE (fld));
+ if (known_in_range_p (offset, pos, size))
+ break;
+ }
+ if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
+ return NULL_TREE;
+
+ /* Offset 0 indicates the primary base, whose vtable contents are
+ represented in the binfo for the derived class. */
+ else if (maybe_ne (offset, 0))
+ {
+ tree found_binfo = NULL, base_binfo;
+ /* Offsets in BINFO are in bytes relative to the whole structure
+ while POS is in bits relative to the containing field. */
+ int binfo_offset = (tree_to_shwi (BINFO_OFFSET (binfo)) + pos
+ / BITS_PER_UNIT);
+
+ for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
+ if (tree_to_shwi (BINFO_OFFSET (base_binfo)) == binfo_offset
+ && types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
+ {
+ found_binfo = base_binfo;
+ break;
+ }
+ if (found_binfo)
+ binfo = found_binfo;
+ else
+ binfo = lookup_binfo_at_offset (binfo, TREE_TYPE (fld),
+ binfo_offset);
+ }
+
+ type = TREE_TYPE (fld);
+ offset -= pos;
+ }
+}
+
+/* Returns true if X is a typedef decl. */
+
+bool
+is_typedef_decl (const_tree x)
+{
+ return (x && TREE_CODE (x) == TYPE_DECL
+ && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
+}
+
+/* Returns true iff TYPE is a type variant created for a typedef. */
+
+bool
+typedef_variant_p (const_tree type)
+{
+ return is_typedef_decl (TYPE_NAME (type));
+}
+
+/* PR 84195: Replace control characters in "unescaped" with their
+ escaped equivalents. Allow newlines if -fmessage-length has
+ been set to a non-zero value. This is done here, rather than
+ where the attribute is recorded as the message length can
+ change between these two locations. */
+
+void
+escaped_string::escape (const char *unescaped)
+{
+ char *escaped;
+ size_t i, new_i, len;
+
+ if (m_owned)
+ free (m_str);
+
+ m_str = const_cast<char *> (unescaped);
+ m_owned = false;
+
+ if (unescaped == NULL || *unescaped == 0)
+ return;
+
+ len = strlen (unescaped);
+ escaped = NULL;
+ new_i = 0;
+
+ for (i = 0; i < len; i++)
+ {
+ char c = unescaped[i];
+
+ if (!ISCNTRL (c))
+ {
+ if (escaped)
+ escaped[new_i++] = c;
+ continue;
+ }
+
+ if (c != '\n' || !pp_is_wrapping_line (global_dc->printer))
+ {
+ if (escaped == NULL)
+ {
+ /* We only allocate space for a new string if we
+ actually encounter a control character that
+ needs replacing. */
+ escaped = (char *) xmalloc (len * 2 + 1);
+ strncpy (escaped, unescaped, i);
+ new_i = i;
+ }
+
+ escaped[new_i++] = '\\';
+
+ switch (c)
+ {
+ case '\a': escaped[new_i++] = 'a'; break;
+ case '\b': escaped[new_i++] = 'b'; break;
+ case '\f': escaped[new_i++] = 'f'; break;
+ case '\n': escaped[new_i++] = 'n'; break;
+ case '\r': escaped[new_i++] = 'r'; break;
+ case '\t': escaped[new_i++] = 't'; break;
+ case '\v': escaped[new_i++] = 'v'; break;
+ default: escaped[new_i++] = '?'; break;
+ }
+ }
+ else if (escaped)
+ escaped[new_i++] = c;
+ }
+
+ if (escaped)
+ {
+ escaped[new_i] = 0;
+ m_str = escaped;
+ m_owned = true;
+ }
+}
+
+/* Warn about a use of an identifier which was marked deprecated. Returns
+ whether a warning was given. */
+
+bool
+warn_deprecated_use (tree node, tree attr)
+{
+ escaped_string msg;
+
+ if (node == 0 || !warn_deprecated_decl)
+ return false;
+
+ if (!attr)
+ {
+ if (DECL_P (node))
+ attr = DECL_ATTRIBUTES (node);
+ else if (TYPE_P (node))
+ {
+ tree decl = TYPE_STUB_DECL (node);
+ if (decl)
+ attr = lookup_attribute ("deprecated",
+ TYPE_ATTRIBUTES (TREE_TYPE (decl)));
+ }
+ }
+
+ if (attr)
+ attr = lookup_attribute ("deprecated", attr);
+
+ if (attr)
+ msg.escape (TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
+
+ bool w = false;
+ if (DECL_P (node))
+ {
+ auto_diagnostic_group d;
+ if (msg)
+ w = warning (OPT_Wdeprecated_declarations,
+ "%qD is deprecated: %s", node, (const char *) msg);
+ else
+ w = warning (OPT_Wdeprecated_declarations,
+ "%qD is deprecated", node);
+ if (w)
+ inform (DECL_SOURCE_LOCATION (node), "declared here");
+ }
+ else if (TYPE_P (node))
+ {
+ tree what = NULL_TREE;
+ tree decl = TYPE_STUB_DECL (node);
+
+ if (TYPE_NAME (node))
+ {
+ if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
+ what = TYPE_NAME (node);
+ else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
+ && DECL_NAME (TYPE_NAME (node)))
+ what = DECL_NAME (TYPE_NAME (node));
+ }
+
+ auto_diagnostic_group d;
+ if (what)
+ {
+ if (msg)
+ w = warning (OPT_Wdeprecated_declarations,
+ "%qE is deprecated: %s", what, (const char *) msg);
+ else
+ w = warning (OPT_Wdeprecated_declarations,
+ "%qE is deprecated", what);
+ }
+ else
+ {
+ if (msg)
+ w = warning (OPT_Wdeprecated_declarations,
+ "type is deprecated: %s", (const char *) msg);
+ else
+ w = warning (OPT_Wdeprecated_declarations,
+ "type is deprecated");
+ }
+
+ if (w && decl)
+ inform (DECL_SOURCE_LOCATION (decl), "declared here");
+ }
+
+ return w;
+}
+
+/* Error out with an identifier which was marked 'unavailable'. */
+void
+error_unavailable_use (tree node, tree attr)
+{
+ escaped_string msg;
+
+ if (node == 0)
+ return;
+
+ if (!attr)
+ {
+ if (DECL_P (node))
+ attr = DECL_ATTRIBUTES (node);
+ else if (TYPE_P (node))
+ {
+ tree decl = TYPE_STUB_DECL (node);
+ if (decl)
+ attr = lookup_attribute ("unavailable",
+ TYPE_ATTRIBUTES (TREE_TYPE (decl)));
+ }
+ }
+
+ if (attr)
+ attr = lookup_attribute ("unavailable", attr);
+
+ if (attr)
+ msg.escape (TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
+
+ if (DECL_P (node))
+ {
+ auto_diagnostic_group d;
+ if (msg)
+ error ("%qD is unavailable: %s", node, (const char *) msg);
+ else
+ error ("%qD is unavailable", node);
+ inform (DECL_SOURCE_LOCATION (node), "declared here");
+ }
+ else if (TYPE_P (node))
+ {
+ tree what = NULL_TREE;
+ tree decl = TYPE_STUB_DECL (node);
+
+ if (TYPE_NAME (node))
+ {
+ if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
+ what = TYPE_NAME (node);
+ else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
+ && DECL_NAME (TYPE_NAME (node)))
+ what = DECL_NAME (TYPE_NAME (node));
+ }
+
+ auto_diagnostic_group d;
+ if (what)
+ {
+ if (msg)
+ error ("%qE is unavailable: %s", what, (const char *) msg);
+ else
+ error ("%qE is unavailable", what);
+ }
+ else
+ {
+ if (msg)
+ error ("type is unavailable: %s", (const char *) msg);
+ else
+ error ("type is unavailable");
+ }
+
+ if (decl)
+ inform (DECL_SOURCE_LOCATION (decl), "declared here");
+ }
+}
+
+/* Return true if REF has a COMPONENT_REF with a bit-field field declaration
+ somewhere in it. */
+
+bool
+contains_bitfld_component_ref_p (const_tree ref)
+{
+ while (handled_component_p (ref))
+ {
+ if (TREE_CODE (ref) == COMPONENT_REF
+ && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
+ return true;
+ ref = TREE_OPERAND (ref, 0);
+ }
+
+ return false;
+}
+
+/* Try to determine whether a TRY_CATCH expression can fall through.
+ This is a subroutine of block_may_fallthru. */
+
+static bool
+try_catch_may_fallthru (const_tree stmt)
+{
+ tree_stmt_iterator i;
+
+ /* If the TRY block can fall through, the whole TRY_CATCH can
+ fall through. */
+ if (block_may_fallthru (TREE_OPERAND (stmt, 0)))
+ return true;
+
+ i = tsi_start (TREE_OPERAND (stmt, 1));
+ switch (TREE_CODE (tsi_stmt (i)))
+ {
+ case CATCH_EXPR:
+ /* We expect to see a sequence of CATCH_EXPR trees, each with a
+ catch expression and a body. The whole TRY_CATCH may fall
+ through iff any of the catch bodies falls through. */
+ for (; !tsi_end_p (i); tsi_next (&i))
+ {
+ if (block_may_fallthru (CATCH_BODY (tsi_stmt (i))))
+ return true;
+ }
+ return false;
+
+ case EH_FILTER_EXPR:
+ /* The exception filter expression only matters if there is an
+ exception. If the exception does not match EH_FILTER_TYPES,
+ we will execute EH_FILTER_FAILURE, and we will fall through
+ if that falls through. If the exception does match
+ EH_FILTER_TYPES, the stack unwinder will continue up the
+ stack, so we will not fall through. We don't know whether we
+ will throw an exception which matches EH_FILTER_TYPES or not,
+ so we just ignore EH_FILTER_TYPES and assume that we might
+ throw an exception which doesn't match. */
+ return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i)));
+
+ default:
+ /* This case represents statements to be executed when an
+ exception occurs. Those statements are implicitly followed
+ by a RESX statement to resume execution after the exception.
+ So in this case the TRY_CATCH never falls through. */
+ return false;
+ }
+}
+
+/* Try to determine if we can fall out of the bottom of BLOCK. This guess
+ need not be 100% accurate; simply be conservative and return true if we
+ don't know. This is used only to avoid stupidly generating extra code.
+ If we're wrong, we'll just delete the extra code later. */
+
+bool
+block_may_fallthru (const_tree block)
+{
+ /* This CONST_CAST is okay because expr_last returns its argument
+ unmodified and we assign it to a const_tree. */
+ const_tree stmt = expr_last (CONST_CAST_TREE (block));
+
+ switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
+ {
+ case GOTO_EXPR:
+ case RETURN_EXPR:
+ /* Easy cases. If the last statement of the block implies
+ control transfer, then we can't fall through. */
+ return false;
+
+ case SWITCH_EXPR:
+ /* If there is a default: label or case labels cover all possible
+ SWITCH_COND values, then the SWITCH_EXPR will transfer control
+ to some case label in all cases and all we care is whether the
+ SWITCH_BODY falls through. */
+ if (SWITCH_ALL_CASES_P (stmt))
+ return block_may_fallthru (SWITCH_BODY (stmt));
+ return true;
+
+ case COND_EXPR:
+ if (block_may_fallthru (COND_EXPR_THEN (stmt)))
+ return true;
+ return block_may_fallthru (COND_EXPR_ELSE (stmt));
+
+ case BIND_EXPR:
+ return block_may_fallthru (BIND_EXPR_BODY (stmt));
+
+ case TRY_CATCH_EXPR:
+ return try_catch_may_fallthru (stmt);
+
+ case TRY_FINALLY_EXPR:
+ /* The finally clause is always executed after the try clause,
+ so if it does not fall through, then the try-finally will not
+ fall through. Otherwise, if the try clause does not fall
+ through, then when the finally clause falls through it will
+ resume execution wherever the try clause was going. So the
+ whole try-finally will only fall through if both the try
+ clause and the finally clause fall through. */
+ return (block_may_fallthru (TREE_OPERAND (stmt, 0))
+ && block_may_fallthru (TREE_OPERAND (stmt, 1)));
+
+ case EH_ELSE_EXPR:
+ return block_may_fallthru (TREE_OPERAND (stmt, 0));
+
+ case MODIFY_EXPR:
+ if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
+ stmt = TREE_OPERAND (stmt, 1);
+ else
+ return true;
+ /* FALLTHRU */
+
+ case CALL_EXPR:
+ /* Functions that do not return do not fall through. */
+ return (call_expr_flags (stmt) & ECF_NORETURN) == 0;
+
+ case CLEANUP_POINT_EXPR:
+ return block_may_fallthru (TREE_OPERAND (stmt, 0));
+
+ case TARGET_EXPR:
+ return block_may_fallthru (TREE_OPERAND (stmt, 1));
+
+ case ERROR_MARK:
+ return true;
+
+ default:
+ return lang_hooks.block_may_fallthru (stmt);
+ }
+}
+
+/* True if we are using EH to handle cleanups. */
+static bool using_eh_for_cleanups_flag = false;
+
+/* This routine is called from front ends to indicate eh should be used for
+ cleanups. */
+void
+using_eh_for_cleanups (void)
+{
+ using_eh_for_cleanups_flag = true;
+}
+
+/* Query whether EH is used for cleanups. */
+bool
+using_eh_for_cleanups_p (void)
+{
+ return using_eh_for_cleanups_flag;
+}
+
+/* Wrapper for tree_code_name to ensure that tree code is valid */
+const char *
+get_tree_code_name (enum tree_code code)
+{
+ const char *invalid = "<invalid tree code>";
+
+ /* The tree_code enum promotes to signed, but we could be getting
+ invalid values, so force an unsigned comparison. */
+ if (unsigned (code) >= MAX_TREE_CODES)
+ {
+ if ((unsigned)code == 0xa5a5)
+ return "ggc_freed";
+ return invalid;
+ }
+
+ return tree_code_name[code];
+}
+
+/* Drops the TREE_OVERFLOW flag from T. */
+
+tree
+drop_tree_overflow (tree t)
+{
+ gcc_checking_assert (TREE_OVERFLOW (t));
+
+ /* For tree codes with a sharing machinery re-build the result. */
+ if (poly_int_tree_p (t))
+ return wide_int_to_tree (TREE_TYPE (t), wi::to_poly_wide (t));
+
+ /* For VECTOR_CST, remove the overflow bits from the encoded elements
+ and canonicalize the result. */
+ if (TREE_CODE (t) == VECTOR_CST)
+ {
+ tree_vector_builder builder;
+ builder.new_unary_operation (TREE_TYPE (t), t, true);
+ unsigned int count = builder.encoded_nelts ();
+ for (unsigned int i = 0; i < count; ++i)
+ {
+ tree elt = VECTOR_CST_ELT (t, i);
+ if (TREE_OVERFLOW (elt))
+ elt = drop_tree_overflow (elt);
+ builder.quick_push (elt);
+ }
+ return builder.build ();
+ }
+
+ /* Otherwise, as all tcc_constants are possibly shared, copy the node
+ and drop the flag. */
+ t = copy_node (t);
+ TREE_OVERFLOW (t) = 0;
+
+ /* For constants that contain nested constants, drop the flag
+ from those as well. */
+ if (TREE_CODE (t) == COMPLEX_CST)
+ {
+ if (TREE_OVERFLOW (TREE_REALPART (t)))
+ TREE_REALPART (t) = drop_tree_overflow (TREE_REALPART (t));
+ if (TREE_OVERFLOW (TREE_IMAGPART (t)))
+ TREE_IMAGPART (t) = drop_tree_overflow (TREE_IMAGPART (t));
+ }
+
+ return t;
+}
+
+/* Given a memory reference expression T, return its base address.
+ The base address of a memory reference expression is the main
+ object being referenced. For instance, the base address for
+ 'array[i].fld[j]' is 'array'. You can think of this as stripping
+ away the offset part from a memory address.
+
+ This function calls handled_component_p to strip away all the inner
+ parts of the memory reference until it reaches the base object. */
+
+tree
+get_base_address (tree t)
+{
+ if (TREE_CODE (t) == WITH_SIZE_EXPR)
+ t = TREE_OPERAND (t, 0);
+ while (handled_component_p (t))
+ t = TREE_OPERAND (t, 0);
+
+ if ((TREE_CODE (t) == MEM_REF
+ || TREE_CODE (t) == TARGET_MEM_REF)
+ && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
+ t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
+
+ return t;
+}
+
+/* Return a tree of sizetype representing the size, in bytes, of the element
+ of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
+
+tree
+array_ref_element_size (tree exp)
+{
+ tree aligned_size = TREE_OPERAND (exp, 3);
+ tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
+ location_t loc = EXPR_LOCATION (exp);
+
+ /* If a size was specified in the ARRAY_REF, it's the size measured
+ in alignment units of the element type. So multiply by that value. */
+ if (aligned_size)
+ {
+ /* ??? tree_ssa_useless_type_conversion will eliminate casts to
+ sizetype from another type of the same width and signedness. */
+ if (TREE_TYPE (aligned_size) != sizetype)
+ aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
+ return size_binop_loc (loc, MULT_EXPR, aligned_size,
+ size_int (TYPE_ALIGN_UNIT (elmt_type)));
+ }
+
+ /* Otherwise, take the size from that of the element type. Substitute
+ any PLACEHOLDER_EXPR that we have. */
+ else
+ return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
+}
+
+/* Return a tree representing the lower bound of the array mentioned in
+ EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
+
+tree
+array_ref_low_bound (tree exp)
+{
+ tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
+
+ /* If a lower bound is specified in EXP, use it. */
+ if (TREE_OPERAND (exp, 2))
+ return TREE_OPERAND (exp, 2);
+
+ /* Otherwise, if there is a domain type and it has a lower bound, use it,
+ substituting for a PLACEHOLDER_EXPR as needed. */
+ if (domain_type && TYPE_MIN_VALUE (domain_type))
+ return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
+
+ /* Otherwise, return a zero of the appropriate type. */
+ tree idxtype = TREE_TYPE (TREE_OPERAND (exp, 1));
+ return (idxtype == error_mark_node
+ ? integer_zero_node : build_int_cst (idxtype, 0));
+}
+
+/* Return a tree representing the upper bound of the array mentioned in
+ EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
+
+tree
+array_ref_up_bound (tree exp)
+{
+ tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
+
+ /* If there is a domain type and it has an upper bound, use it, substituting
+ for a PLACEHOLDER_EXPR as needed. */
+ if (domain_type && TYPE_MAX_VALUE (domain_type))
+ return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
+
+ /* Otherwise fail. */
+ return NULL_TREE;
+}
+
+/* Returns true if REF is an array reference, component reference,
+ or memory reference to an array at the end of a structure.
+ If this is the case, the array may be allocated larger
+ than its upper bound implies. */
+
+bool
+array_at_struct_end_p (tree ref)
+{
+ tree atype;
+
+ if (TREE_CODE (ref) == ARRAY_REF
+ || TREE_CODE (ref) == ARRAY_RANGE_REF)
+ {
+ atype = TREE_TYPE (TREE_OPERAND (ref, 0));
+ ref = TREE_OPERAND (ref, 0);
+ }
+ else if (TREE_CODE (ref) == COMPONENT_REF
+ && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 1))) == ARRAY_TYPE)
+ atype = TREE_TYPE (TREE_OPERAND (ref, 1));
+ else if (TREE_CODE (ref) == MEM_REF)
+ {
+ tree arg = TREE_OPERAND (ref, 0);
+ if (TREE_CODE (arg) == ADDR_EXPR)
+ arg = TREE_OPERAND (arg, 0);
+ tree argtype = TREE_TYPE (arg);
+ if (TREE_CODE (argtype) == RECORD_TYPE)
+ {
+ if (tree fld = last_field (argtype))
+ {
+ atype = TREE_TYPE (fld);
+ if (TREE_CODE (atype) != ARRAY_TYPE)
+ return false;
+ if (VAR_P (arg) && DECL_SIZE (fld))
+ return false;
+ }
+ else
+ return false;
+ }
+ else
+ return false;
+ }
+ else
+ return false;
+
+ if (TREE_CODE (ref) == STRING_CST)
+ return false;
+
+ tree ref_to_array = ref;
+ while (handled_component_p (ref))
+ {
+ /* If the reference chain contains a component reference to a
+ non-union type and there follows another field the reference
+ is not at the end of a structure. */
+ if (TREE_CODE (ref) == COMPONENT_REF)
+ {
+ if (TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
+ {
+ tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1));
+ while (nextf && TREE_CODE (nextf) != FIELD_DECL)
+ nextf = DECL_CHAIN (nextf);
+ if (nextf)
+ return false;
+ }
+ }
+ /* If we have a multi-dimensional array we do not consider
+ a non-innermost dimension as flex array if the whole
+ multi-dimensional array is at struct end.
+ Same for an array of aggregates with a trailing array
+ member. */
+ else if (TREE_CODE (ref) == ARRAY_REF)
+ return false;
+ else if (TREE_CODE (ref) == ARRAY_RANGE_REF)
+ ;
+ /* If we view an underlying object as sth else then what we
+ gathered up to now is what we have to rely on. */
+ else if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
+ break;
+ else
+ gcc_unreachable ();
+
+ ref = TREE_OPERAND (ref, 0);
+ }
+
+ /* The array now is at struct end. Treat flexible arrays as
+ always subject to extend, even into just padding constrained by
+ an underlying decl. */
+ if (! TYPE_SIZE (atype)
+ || ! TYPE_DOMAIN (atype)
+ || ! TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
+ return true;
+
+ /* If the reference is based on a declared entity, the size of the array
+ is constrained by its given domain. (Do not trust commons PR/69368). */
+ ref = get_base_address (ref);
+ if (ref
+ && DECL_P (ref)
+ && !(flag_unconstrained_commons
+ && VAR_P (ref) && DECL_COMMON (ref))
+ && DECL_SIZE_UNIT (ref)
+ && TREE_CODE (DECL_SIZE_UNIT (ref)) == INTEGER_CST)
+ {
+ /* Check whether the array domain covers all of the available
+ padding. */
+ poly_int64 offset;
+ if (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (atype))) != INTEGER_CST
+ || TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST
+ || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST)
+ return true;
+ if (! get_addr_base_and_unit_offset (ref_to_array, &offset))
+ return true;
+
+ /* If at least one extra element fits it is a flexarray. */
+ if (known_le ((wi::to_offset (TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
+ - wi::to_offset (TYPE_MIN_VALUE (TYPE_DOMAIN (atype)))
+ + 2)
+ * wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (atype))),
+ wi::to_offset (DECL_SIZE_UNIT (ref)) - offset))
+ return true;
+
+ return false;
+ }
+
+ return true;
+}
+
+/* Return a tree representing the offset, in bytes, of the field referenced
+ by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
+
+tree
+component_ref_field_offset (tree exp)
+{
+ tree aligned_offset = TREE_OPERAND (exp, 2);
+ tree field = TREE_OPERAND (exp, 1);
+ location_t loc = EXPR_LOCATION (exp);
+
+ /* If an offset was specified in the COMPONENT_REF, it's the offset measured
+ in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
+ value. */
+ if (aligned_offset)
+ {
+ /* ??? tree_ssa_useless_type_conversion will eliminate casts to
+ sizetype from another type of the same width and signedness. */
+ if (TREE_TYPE (aligned_offset) != sizetype)
+ aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
+ return size_binop_loc (loc, MULT_EXPR, aligned_offset,
+ size_int (DECL_OFFSET_ALIGN (field)
+ / BITS_PER_UNIT));
+ }
+
+ /* Otherwise, take the offset from that of the field. Substitute
+ any PLACEHOLDER_EXPR that we have. */
+ else
+ return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
+}
+
+/* Given the initializer INIT, return the initializer for the field
+ DECL if it exists, otherwise null. Used to obtain the initializer
+ for a flexible array member and determine its size. */
+
+static tree
+get_initializer_for (tree init, tree decl)
+{
+ STRIP_NOPS (init);
+
+ tree fld, fld_init;
+ unsigned HOST_WIDE_INT i;
+ FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), i, fld, fld_init)
+ {
+ if (decl == fld)
+ return fld_init;
+
+ if (TREE_CODE (fld) == CONSTRUCTOR)
+ {
+ fld_init = get_initializer_for (fld_init, decl);
+ if (fld_init)
+ return fld_init;
+ }
+ }
+
+ return NULL_TREE;
+}
+
+/* Determines the size of the member referenced by the COMPONENT_REF
+ REF, using its initializer expression if necessary in order to
+ determine the size of an initialized flexible array member.
+ If non-null, set *ARK when REF refers to an interior zero-length
+ array or a trailing one-element array.
+ Returns the size as sizetype (which might be zero for an object
+ with an uninitialized flexible array member) or null if the size
+ cannot be determined. */
+
+tree
+component_ref_size (tree ref, special_array_member *sam /* = NULL */)
+{
+ gcc_assert (TREE_CODE (ref) == COMPONENT_REF);
+
+ special_array_member sambuf;
+ if (!sam)
+ sam = &sambuf;
+ *sam = special_array_member::none;
+
+ /* The object/argument referenced by the COMPONENT_REF and its type. */
+ tree arg = TREE_OPERAND (ref, 0);
+ tree argtype = TREE_TYPE (arg);
+ /* The referenced member. */
+ tree member = TREE_OPERAND (ref, 1);
+
+ tree memsize = DECL_SIZE_UNIT (member);
+ if (memsize)
+ {
+ tree memtype = TREE_TYPE (member);
+ if (TREE_CODE (memtype) != ARRAY_TYPE)
+ /* DECL_SIZE may be less than TYPE_SIZE in C++ when referring
+ to the type of a class with a virtual base which doesn't
+ reflect the size of the virtual's members (see pr97595).
+ If that's the case fail for now and implement something
+ more robust in the future. */
+ return (tree_int_cst_equal (memsize, TYPE_SIZE_UNIT (memtype))
+ ? memsize : NULL_TREE);
+
+ bool trailing = array_at_struct_end_p (ref);
+ bool zero_length = integer_zerop (memsize);
+ if (!trailing && !zero_length)
+ /* MEMBER is either an interior array or is an array with
+ more than one element. */
+ return memsize;
+
+ if (zero_length)
+ {
+ if (trailing)
+ *sam = special_array_member::trail_0;
+ else
+ {
+ *sam = special_array_member::int_0;
+ memsize = NULL_TREE;
+ }
+ }
+
+ if (!zero_length)
+ if (tree dom = TYPE_DOMAIN (memtype))
+ if (tree min = TYPE_MIN_VALUE (dom))
+ if (tree max = TYPE_MAX_VALUE (dom))
+ if (TREE_CODE (min) == INTEGER_CST
+ && TREE_CODE (max) == INTEGER_CST)
+ {
+ offset_int minidx = wi::to_offset (min);
+ offset_int maxidx = wi::to_offset (max);
+ offset_int neltsm1 = maxidx - minidx;
+ if (neltsm1 > 0)
+ /* MEMBER is an array with more than one element. */
+ return memsize;
+
+ if (neltsm1 == 0)
+ *sam = special_array_member::trail_1;
+ }
+
+ /* For a reference to a zero- or one-element array member of a union
+ use the size of the union instead of the size of the member. */
+ if (TREE_CODE (argtype) == UNION_TYPE)
+ memsize = TYPE_SIZE_UNIT (argtype);
+ }
+
+ /* MEMBER is either a bona fide flexible array member, or a zero-length
+ array member, or an array of length one treated as such. */
+
+ /* If the reference is to a declared object and the member a true
+ flexible array, try to determine its size from its initializer. */
+ poly_int64 baseoff = 0;
+ tree base = get_addr_base_and_unit_offset (ref, &baseoff);
+ if (!base || !VAR_P (base))
+ {
+ if (*sam != special_array_member::int_0)
+ return NULL_TREE;
+
+ if (TREE_CODE (arg) != COMPONENT_REF)
+ return NULL_TREE;
+
+ base = arg;
+ while (TREE_CODE (base) == COMPONENT_REF)
+ base = TREE_OPERAND (base, 0);
+ baseoff = tree_to_poly_int64 (byte_position (TREE_OPERAND (ref, 1)));
+ }
+
+ /* BASE is the declared object of which MEMBER is either a member
+ or that is cast to ARGTYPE (e.g., a char buffer used to store
+ an ARGTYPE object). */
+ tree basetype = TREE_TYPE (base);
+
+ /* Determine the base type of the referenced object. If it's
+ the same as ARGTYPE and MEMBER has a known size, return it. */
+ tree bt = basetype;
+ if (*sam != special_array_member::int_0)
+ while (TREE_CODE (bt) == ARRAY_TYPE)
+ bt = TREE_TYPE (bt);
+ bool typematch = useless_type_conversion_p (argtype, bt);
+ if (memsize && typematch)
+ return memsize;
+
+ memsize = NULL_TREE;
+
+ if (typematch)
+ /* MEMBER is a true flexible array member. Compute its size from
+ the initializer of the BASE object if it has one. */
+ if (tree init = DECL_P (base) ? DECL_INITIAL (base) : NULL_TREE)
+ if (init != error_mark_node)
+ {
+ init = get_initializer_for (init, member);
+ if (init)
+ {
+ memsize = TYPE_SIZE_UNIT (TREE_TYPE (init));
+ if (tree refsize = TYPE_SIZE_UNIT (argtype))
+ {
+ /* Use the larger of the initializer size and the tail
+ padding in the enclosing struct. */
+ poly_int64 rsz = tree_to_poly_int64 (refsize);
+ rsz -= baseoff;
+ if (known_lt (tree_to_poly_int64 (memsize), rsz))
+ memsize = wide_int_to_tree (TREE_TYPE (memsize), rsz);
+ }
+
+ baseoff = 0;
+ }
+ }
+
+ if (!memsize)
+ {
+ if (typematch)
+ {
+ if (DECL_P (base)
+ && DECL_EXTERNAL (base)
+ && bt == basetype
+ && *sam != special_array_member::int_0)
+ /* The size of a flexible array member of an extern struct
+ with no initializer cannot be determined (it's defined
+ in another translation unit and can have an initializer
+ with an arbitrary number of elements). */
+ return NULL_TREE;
+
+ /* Use the size of the base struct or, for interior zero-length
+ arrays, the size of the enclosing type. */
+ memsize = TYPE_SIZE_UNIT (bt);
+ }
+ else if (DECL_P (base))
+ /* Use the size of the BASE object (possibly an array of some
+ other type such as char used to store the struct). */
+ memsize = DECL_SIZE_UNIT (base);
+ else
+ return NULL_TREE;
+ }
+
+ /* If the flexible array member has a known size use the greater
+ of it and the tail padding in the enclosing struct.
+ Otherwise, when the size of the flexible array member is unknown
+ and the referenced object is not a struct, use the size of its
+ type when known. This detects sizes of array buffers when cast
+ to struct types with flexible array members. */
+ if (memsize)
+ {
+ poly_int64 memsz64 = memsize ? tree_to_poly_int64 (memsize) : 0;
+ if (known_lt (baseoff, memsz64))
+ {
+ memsz64 -= baseoff;
+ return wide_int_to_tree (TREE_TYPE (memsize), memsz64);
+ }
+ return size_zero_node;
+ }
+
+ /* Return "don't know" for an external non-array object since its
+ flexible array member can be initialized to have any number of
+ elements. Otherwise, return zero because the flexible array
+ member has no elements. */
+ return (DECL_P (base)
+ && DECL_EXTERNAL (base)
+ && (!typematch
+ || TREE_CODE (basetype) != ARRAY_TYPE)
+ ? NULL_TREE : size_zero_node);
+}
+
+/* Return the machine mode of T. For vectors, returns the mode of the
+ inner type. The main use case is to feed the result to HONOR_NANS,
+ avoiding the BLKmode that a direct TYPE_MODE (T) might return. */
+
+machine_mode
+element_mode (const_tree t)
+{
+ if (!TYPE_P (t))
+ t = TREE_TYPE (t);
+ if (VECTOR_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
+ t = TREE_TYPE (t);
+ return TYPE_MODE (t);
+}
+
+/* Vector types need to re-check the target flags each time we report
+ the machine mode. We need to do this because attribute target can
+ change the result of vector_mode_supported_p and have_regs_of_mode
+ on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
+ change on a per-function basis. */
+/* ??? Possibly a better solution is to run through all the types
+ referenced by a function and re-compute the TYPE_MODE once, rather
+ than make the TYPE_MODE macro call a function. */
+
+machine_mode
+vector_type_mode (const_tree t)
+{
+ machine_mode mode;
+
+ gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
+
+ mode = t->type_common.mode;
+ if (VECTOR_MODE_P (mode)
+ && (!targetm.vector_mode_supported_p (mode)
+ || !have_regs_of_mode[mode]))
+ {
+ scalar_int_mode innermode;
+
+ /* For integers, try mapping it to a same-sized scalar mode. */
+ if (is_int_mode (TREE_TYPE (t)->type_common.mode, &innermode))
+ {
+ poly_int64 size = (TYPE_VECTOR_SUBPARTS (t)
+ * GET_MODE_BITSIZE (innermode));
+ scalar_int_mode mode;
+ if (int_mode_for_size (size, 0).exists (&mode)
+ && have_regs_of_mode[mode])
+ return mode;
+ }
+
+ return BLKmode;
+ }
+
+ return mode;
+}
+
+/* Return the size in bits of each element of vector type TYPE. */
+
+unsigned int
+vector_element_bits (const_tree type)
+{
+ gcc_checking_assert (VECTOR_TYPE_P (type));
+ if (VECTOR_BOOLEAN_TYPE_P (type))
+ return TYPE_PRECISION (TREE_TYPE (type));
+ return tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)));
+}
+
+/* Calculate the size in bits of each element of vector type TYPE
+ and return the result as a tree of type bitsizetype. */
+
+tree
+vector_element_bits_tree (const_tree type)
+{
+ gcc_checking_assert (VECTOR_TYPE_P (type));
+ if (VECTOR_BOOLEAN_TYPE_P (type))
+ return bitsize_int (vector_element_bits (type));
+ return TYPE_SIZE (TREE_TYPE (type));
+}
+
+/* Verify that basic properties of T match TV and thus T can be a variant of
+ TV. TV should be the more specified variant (i.e. the main variant). */
+
+static bool
+verify_type_variant (const_tree t, tree tv)
+{
+ /* Type variant can differ by:
+
+ - TYPE_QUALS: TYPE_READONLY, TYPE_VOLATILE, TYPE_ATOMIC, TYPE_RESTRICT,
+ ENCODE_QUAL_ADDR_SPACE.
+ - main variant may be TYPE_COMPLETE_P and variant types !TYPE_COMPLETE_P
+ in this case some values may not be set in the variant types
+ (see TYPE_COMPLETE_P checks).
+ - it is possible to have TYPE_ARTIFICIAL variant of non-artifical type
+ - by TYPE_NAME and attributes (i.e. when variant originate by typedef)
+ - TYPE_CANONICAL (TYPE_ALIAS_SET is the same among variants)
+ - by the alignment: TYPE_ALIGN and TYPE_USER_ALIGN
+ - during LTO by TYPE_CONTEXT if type is TYPE_FILE_SCOPE_P
+ this is necessary to make it possible to merge types form different TUs
+ - arrays, pointers and references may have TREE_TYPE that is a variant
+ of TREE_TYPE of their main variants.
+ - aggregates may have new TYPE_FIELDS list that list variants of
+ the main variant TYPE_FIELDS.
+ - vector types may differ by TYPE_VECTOR_OPAQUE
+ */
+
+ /* Convenience macro for matching individual fields. */
+#define verify_variant_match(flag) \
+ do { \
+ if (flag (tv) != flag (t)) \
+ { \
+ error ("type variant differs by %s", #flag); \
+ debug_tree (tv); \
+ return false; \
+ } \
+ } while (false)
+
+ /* tree_base checks. */
+
+ verify_variant_match (TREE_CODE);
+ /* FIXME: Ada builds non-artificial variants of artificial types. */
+#if 0
+ if (TYPE_ARTIFICIAL (tv))
+ verify_variant_match (TYPE_ARTIFICIAL);
+#endif
+ if (POINTER_TYPE_P (tv))
+ verify_variant_match (TYPE_REF_CAN_ALIAS_ALL);
+ /* FIXME: TYPE_SIZES_GIMPLIFIED may differs for Ada build. */
+ verify_variant_match (TYPE_UNSIGNED);
+ verify_variant_match (TYPE_PACKED);
+ if (TREE_CODE (t) == REFERENCE_TYPE)
+ verify_variant_match (TYPE_REF_IS_RVALUE);
+ if (AGGREGATE_TYPE_P (t))
+ verify_variant_match (TYPE_REVERSE_STORAGE_ORDER);
+ else
+ verify_variant_match (TYPE_SATURATING);
+ /* FIXME: This check trigger during libstdc++ build. */
+#if 0
+ if (RECORD_OR_UNION_TYPE_P (t) && COMPLETE_TYPE_P (t))
+ verify_variant_match (TYPE_FINAL_P);
+#endif
+
+ /* tree_type_common checks. */
+
+ if (COMPLETE_TYPE_P (t))
+ {
+ verify_variant_match (TYPE_MODE);
+ if (TREE_CODE (TYPE_SIZE (t)) != PLACEHOLDER_EXPR
+ && TREE_CODE (TYPE_SIZE (tv)) != PLACEHOLDER_EXPR)
+ verify_variant_match (TYPE_SIZE);
+ if (TREE_CODE (TYPE_SIZE_UNIT (t)) != PLACEHOLDER_EXPR
+ && TREE_CODE (TYPE_SIZE_UNIT (tv)) != PLACEHOLDER_EXPR
+ && TYPE_SIZE_UNIT (t) != TYPE_SIZE_UNIT (tv))
+ {
+ gcc_assert (!operand_equal_p (TYPE_SIZE_UNIT (t),
+ TYPE_SIZE_UNIT (tv), 0));
+ error ("type variant has different %<TYPE_SIZE_UNIT%>");
+ debug_tree (tv);
+ error ("type variant%'s %<TYPE_SIZE_UNIT%>");
+ debug_tree (TYPE_SIZE_UNIT (tv));
+ error ("type%'s %<TYPE_SIZE_UNIT%>");
+ debug_tree (TYPE_SIZE_UNIT (t));
+ return false;
+ }
+ verify_variant_match (TYPE_NEEDS_CONSTRUCTING);
+ }
+ verify_variant_match (TYPE_PRECISION);
+ if (RECORD_OR_UNION_TYPE_P (t))
+ verify_variant_match (TYPE_TRANSPARENT_AGGR);
+ else if (TREE_CODE (t) == ARRAY_TYPE)
+ verify_variant_match (TYPE_NONALIASED_COMPONENT);
+ /* During LTO we merge variant lists from diferent translation units
+ that may differ BY TYPE_CONTEXT that in turn may point
+ to TRANSLATION_UNIT_DECL.
+ Ada also builds variants of types with different TYPE_CONTEXT. */
+#if 0
+ if (!in_lto_p || !TYPE_FILE_SCOPE_P (t))
+ verify_variant_match (TYPE_CONTEXT);
+#endif
+ if (TREE_CODE (t) == ARRAY_TYPE || TREE_CODE (t) == INTEGER_TYPE)
+ verify_variant_match (TYPE_STRING_FLAG);
+ if (TREE_CODE (t) == RECORD_TYPE || TREE_CODE (t) == UNION_TYPE)
+ verify_variant_match (TYPE_CXX_ODR_P);
+ if (TYPE_ALIAS_SET_KNOWN_P (t))
+ {
+ error ("type variant with %<TYPE_ALIAS_SET_KNOWN_P%>");
+ debug_tree (tv);
+ return false;
+ }
+
+ /* tree_type_non_common checks. */
+
+ /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
+ and dangle the pointer from time to time. */
+ if (RECORD_OR_UNION_TYPE_P (t) && TYPE_VFIELD (t) != TYPE_VFIELD (tv)
+ && (in_lto_p || !TYPE_VFIELD (tv)
+ || TREE_CODE (TYPE_VFIELD (tv)) != TREE_LIST))
+ {
+ error ("type variant has different %<TYPE_VFIELD%>");
+ debug_tree (tv);
+ return false;
+ }
+ if ((TREE_CODE (t) == ENUMERAL_TYPE && COMPLETE_TYPE_P (t))
+ || TREE_CODE (t) == INTEGER_TYPE
+ || TREE_CODE (t) == BOOLEAN_TYPE
+ || TREE_CODE (t) == REAL_TYPE
+ || TREE_CODE (t) == FIXED_POINT_TYPE)
+ {
+ verify_variant_match (TYPE_MAX_VALUE);
+ verify_variant_match (TYPE_MIN_VALUE);
+ }
+ if (TREE_CODE (t) == METHOD_TYPE)
+ verify_variant_match (TYPE_METHOD_BASETYPE);
+ if (TREE_CODE (t) == OFFSET_TYPE)
+ verify_variant_match (TYPE_OFFSET_BASETYPE);
+ if (TREE_CODE (t) == ARRAY_TYPE)
+ verify_variant_match (TYPE_ARRAY_MAX_SIZE);
+ /* FIXME: Be lax and allow TYPE_BINFO to be missing in variant types
+ or even type's main variant. This is needed to make bootstrap pass
+ and the bug seems new in GCC 5.
+ C++ FE should be updated to make this consistent and we should check
+ that TYPE_BINFO is always NULL for !COMPLETE_TYPE_P and otherwise there
+ is a match with main variant.
+
+ Also disable the check for Java for now because of parser hack that builds
+ first an dummy BINFO and then sometimes replace it by real BINFO in some
+ of the copies. */
+ if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t) && TYPE_BINFO (tv)
+ && TYPE_BINFO (t) != TYPE_BINFO (tv)
+ /* FIXME: Java sometimes keep dump TYPE_BINFOs on variant types.
+ Since there is no cheap way to tell C++/Java type w/o LTO, do checking
+ at LTO time only. */
+ && (in_lto_p && odr_type_p (t)))
+ {
+ error ("type variant has different %<TYPE_BINFO%>");
+ debug_tree (tv);
+ error ("type variant%'s %<TYPE_BINFO%>");
+ debug_tree (TYPE_BINFO (tv));
+ error ("type%'s %<TYPE_BINFO%>");
+ debug_tree (TYPE_BINFO (t));
+ return false;
+ }
+
+ /* Check various uses of TYPE_VALUES_RAW. */
+ if (TREE_CODE (t) == ENUMERAL_TYPE
+ && TYPE_VALUES (t))
+ verify_variant_match (TYPE_VALUES);
+ else if (TREE_CODE (t) == ARRAY_TYPE)
+ verify_variant_match (TYPE_DOMAIN);
+ /* Permit incomplete variants of complete type. While FEs may complete
+ all variants, this does not happen for C++ templates in all cases. */
+ else if (RECORD_OR_UNION_TYPE_P (t)
+ && COMPLETE_TYPE_P (t)
+ && TYPE_FIELDS (t) != TYPE_FIELDS (tv))
+ {
+ tree f1, f2;
+
+ /* Fortran builds qualified variants as new records with items of
+ qualified type. Verify that they looks same. */
+ for (f1 = TYPE_FIELDS (t), f2 = TYPE_FIELDS (tv);
+ f1 && f2;
+ f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
+ if (TREE_CODE (f1) != FIELD_DECL || TREE_CODE (f2) != FIELD_DECL
+ || (TYPE_MAIN_VARIANT (TREE_TYPE (f1))
+ != TYPE_MAIN_VARIANT (TREE_TYPE (f2))
+ /* FIXME: gfc_nonrestricted_type builds all types as variants
+ with exception of pointer types. It deeply copies the type
+ which means that we may end up with a variant type
+ referring non-variant pointer. We may change it to
+ produce types as variants, too, like
+ objc_get_protocol_qualified_type does. */
+ && !POINTER_TYPE_P (TREE_TYPE (f1)))
+ || DECL_FIELD_OFFSET (f1) != DECL_FIELD_OFFSET (f2)
+ || DECL_FIELD_BIT_OFFSET (f1) != DECL_FIELD_BIT_OFFSET (f2))
+ break;
+ if (f1 || f2)
+ {
+ error ("type variant has different %<TYPE_FIELDS%>");
+ debug_tree (tv);
+ error ("first mismatch is field");
+ debug_tree (f1);
+ error ("and field");
+ debug_tree (f2);
+ return false;
+ }
+ }
+ else if ((TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE))
+ verify_variant_match (TYPE_ARG_TYPES);
+ /* For C++ the qualified variant of array type is really an array type
+ of qualified TREE_TYPE.
+ objc builds variants of pointer where pointer to type is a variant, too
+ in objc_get_protocol_qualified_type. */
+ if (TREE_TYPE (t) != TREE_TYPE (tv)
+ && ((TREE_CODE (t) != ARRAY_TYPE
+ && !POINTER_TYPE_P (t))
+ || TYPE_MAIN_VARIANT (TREE_TYPE (t))
+ != TYPE_MAIN_VARIANT (TREE_TYPE (tv))))
+ {
+ error ("type variant has different %<TREE_TYPE%>");
+ debug_tree (tv);
+ error ("type variant%'s %<TREE_TYPE%>");
+ debug_tree (TREE_TYPE (tv));
+ error ("type%'s %<TREE_TYPE%>");
+ debug_tree (TREE_TYPE (t));
+ return false;
+ }
+ if (type_with_alias_set_p (t)
+ && !gimple_canonical_types_compatible_p (t, tv, false))
+ {
+ error ("type is not compatible with its variant");
+ debug_tree (tv);
+ error ("type variant%'s %<TREE_TYPE%>");
+ debug_tree (TREE_TYPE (tv));
+ error ("type%'s %<TREE_TYPE%>");
+ debug_tree (TREE_TYPE (t));
+ return false;
+ }
+ return true;
+#undef verify_variant_match
+}
+
+
+/* The TYPE_CANONICAL merging machinery. It should closely resemble
+ the middle-end types_compatible_p function. It needs to avoid
+ claiming types are different for types that should be treated
+ the same with respect to TBAA. Canonical types are also used
+ for IL consistency checks via the useless_type_conversion_p
+ predicate which does not handle all type kinds itself but falls
+ back to pointer-comparison of TYPE_CANONICAL for aggregates
+ for example. */
+
+/* Return true if TYPE_UNSIGNED of TYPE should be ignored for canonical
+ type calculation because we need to allow inter-operability between signed
+ and unsigned variants. */
+
+bool
+type_with_interoperable_signedness (const_tree type)
+{
+ /* Fortran standard require C_SIGNED_CHAR to be interoperable with both
+ signed char and unsigned char. Similarly fortran FE builds
+ C_SIZE_T as signed type, while C defines it unsigned. */
+
+ return tree_code_for_canonical_type_merging (TREE_CODE (type))
+ == INTEGER_TYPE
+ && (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node)
+ || TYPE_PRECISION (type) == TYPE_PRECISION (size_type_node));
+}
+
+/* Return true iff T1 and T2 are structurally identical for what
+ TBAA is concerned.
+ This function is used both by lto.c canonical type merging and by the
+ verifier. If TRUST_TYPE_CANONICAL we do not look into structure of types
+ that have TYPE_CANONICAL defined and assume them equivalent. This is useful
+ only for LTO because only in these cases TYPE_CANONICAL equivalence
+ correspond to one defined by gimple_canonical_types_compatible_p. */
+
+bool
+gimple_canonical_types_compatible_p (const_tree t1, const_tree t2,
+ bool trust_type_canonical)
+{
+ /* Type variants should be same as the main variant. When not doing sanity
+ checking to verify this fact, go to main variants and save some work. */
+ if (trust_type_canonical)
+ {
+ t1 = TYPE_MAIN_VARIANT (t1);
+ t2 = TYPE_MAIN_VARIANT (t2);
+ }
+
+ /* Check first for the obvious case of pointer identity. */
+ if (t1 == t2)
+ return true;
+
+ /* Check that we have two types to compare. */
+ if (t1 == NULL_TREE || t2 == NULL_TREE)
+ return false;
+
+ /* We consider complete types always compatible with incomplete type.
+ This does not make sense for canonical type calculation and thus we
+ need to ensure that we are never called on it.
+
+ FIXME: For more correctness the function probably should have three modes
+ 1) mode assuming that types are complete mathcing their structure
+ 2) mode allowing incomplete types but producing equivalence classes
+ and thus ignoring all info from complete types
+ 3) mode allowing incomplete types to match complete but checking
+ compatibility between complete types.
+
+ 1 and 2 can be used for canonical type calculation. 3 is the real
+ definition of type compatibility that can be used i.e. for warnings during
+ declaration merging. */
+
+ gcc_assert (!trust_type_canonical
+ || (type_with_alias_set_p (t1) && type_with_alias_set_p (t2)));
+
+ /* If the types have been previously registered and found equal
+ they still are. */
+
+ if (TYPE_CANONICAL (t1) && TYPE_CANONICAL (t2)
+ && trust_type_canonical)
+ {
+ /* Do not use TYPE_CANONICAL of pointer types. For LTO streamed types
+ they are always NULL, but they are set to non-NULL for types
+ constructed by build_pointer_type and variants. In this case the
+ TYPE_CANONICAL is more fine grained than the equivalnce we test (where
+ all pointers are considered equal. Be sure to not return false
+ negatives. */
+ gcc_checking_assert (canonical_type_used_p (t1)
+ && canonical_type_used_p (t2));
+ return TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2);
+ }
+
+ /* For types where we do ODR based TBAA the canonical type is always
+ set correctly, so we know that types are different if their
+ canonical types does not match. */
+ if (trust_type_canonical
+ && (odr_type_p (t1) && odr_based_tbaa_p (t1))
+ != (odr_type_p (t2) && odr_based_tbaa_p (t2)))
+ return false;
+
+ /* Can't be the same type if the types don't have the same code. */
+ enum tree_code code = tree_code_for_canonical_type_merging (TREE_CODE (t1));
+ if (code != tree_code_for_canonical_type_merging (TREE_CODE (t2)))
+ return false;
+
+ /* Qualifiers do not matter for canonical type comparison purposes. */
+
+ /* Void types and nullptr types are always the same. */
+ if (TREE_CODE (t1) == VOID_TYPE
+ || TREE_CODE (t1) == NULLPTR_TYPE)
+ return true;
+
+ /* Can't be the same type if they have different mode. */
+ if (TYPE_MODE (t1) != TYPE_MODE (t2))
+ return false;
+
+ /* Non-aggregate types can be handled cheaply. */
+ if (INTEGRAL_TYPE_P (t1)
+ || SCALAR_FLOAT_TYPE_P (t1)
+ || FIXED_POINT_TYPE_P (t1)
+ || TREE_CODE (t1) == VECTOR_TYPE
+ || TREE_CODE (t1) == COMPLEX_TYPE
+ || TREE_CODE (t1) == OFFSET_TYPE
+ || POINTER_TYPE_P (t1))
+ {
+ /* Can't be the same type if they have different recision. */
+ if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2))
+ return false;
+
+ /* In some cases the signed and unsigned types are required to be
+ inter-operable. */
+ if (TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2)
+ && !type_with_interoperable_signedness (t1))
+ return false;
+
+ /* Fortran's C_SIGNED_CHAR is !TYPE_STRING_FLAG but needs to be
+ interoperable with "signed char". Unless all frontends are revisited
+ to agree on these types, we must ignore the flag completely. */
+
+ /* Fortran standard define C_PTR type that is compatible with every
+ C pointer. For this reason we need to glob all pointers into one.
+ Still pointers in different address spaces are not compatible. */
+ if (POINTER_TYPE_P (t1))
+ {
+ if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
+ != TYPE_ADDR_SPACE (TREE_TYPE (t2)))
+ return false;
+ }
+
+ /* Tail-recurse to components. */
+ if (TREE_CODE (t1) == VECTOR_TYPE
+ || TREE_CODE (t1) == COMPLEX_TYPE)
+ return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
+ TREE_TYPE (t2),
+ trust_type_canonical);
+
+ return true;
+ }
+
+ /* Do type-specific comparisons. */
+ switch (TREE_CODE (t1))
+ {
+ case ARRAY_TYPE:
+ /* Array types are the same if the element types are the same and
+ the number of elements are the same. */
+ if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
+ trust_type_canonical)
+ || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
+ || TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2)
+ || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
+ return false;
+ else
+ {
+ tree i1 = TYPE_DOMAIN (t1);
+ tree i2 = TYPE_DOMAIN (t2);
+
+ /* For an incomplete external array, the type domain can be
+ NULL_TREE. Check this condition also. */
+ if (i1 == NULL_TREE && i2 == NULL_TREE)
+ return true;
+ else if (i1 == NULL_TREE || i2 == NULL_TREE)
+ return false;
+ else
+ {
+ tree min1 = TYPE_MIN_VALUE (i1);
+ tree min2 = TYPE_MIN_VALUE (i2);
+ tree max1 = TYPE_MAX_VALUE (i1);
+ tree max2 = TYPE_MAX_VALUE (i2);
+
+ /* The minimum/maximum values have to be the same. */
+ if ((min1 == min2
+ || (min1 && min2
+ && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
+ && TREE_CODE (min2) == PLACEHOLDER_EXPR)
+ || operand_equal_p (min1, min2, 0))))
+ && (max1 == max2
+ || (max1 && max2
+ && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
+ && TREE_CODE (max2) == PLACEHOLDER_EXPR)
+ || operand_equal_p (max1, max2, 0)))))
+ return true;
+ else
+ return false;
+ }
+ }
+
+ case METHOD_TYPE:
+ case FUNCTION_TYPE:
+ /* Function types are the same if the return type and arguments types
+ are the same. */
+ if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
+ trust_type_canonical))
+ return false;
+
+ if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
+ return true;
+ else
+ {
+ tree parms1, parms2;
+
+ for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
+ parms1 && parms2;
+ parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
+ {
+ if (!gimple_canonical_types_compatible_p
+ (TREE_VALUE (parms1), TREE_VALUE (parms2),
+ trust_type_canonical))
+ return false;
+ }
+
+ if (parms1 || parms2)
+ return false;
+
+ return true;
+ }
+
+ case RECORD_TYPE:
+ case UNION_TYPE:
+ case QUAL_UNION_TYPE:
+ {
+ tree f1, f2;
+
+ /* Don't try to compare variants of an incomplete type, before
+ TYPE_FIELDS has been copied around. */
+ if (!COMPLETE_TYPE_P (t1) && !COMPLETE_TYPE_P (t2))
+ return true;
+
+
+ if (TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2))
+ return false;
+
+ /* For aggregate types, all the fields must be the same. */
+ for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
+ f1 || f2;
+ f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
+ {
+ /* Skip non-fields and zero-sized fields. */
+ while (f1 && (TREE_CODE (f1) != FIELD_DECL
+ || (DECL_SIZE (f1)
+ && integer_zerop (DECL_SIZE (f1)))))
+ f1 = TREE_CHAIN (f1);
+ while (f2 && (TREE_CODE (f2) != FIELD_DECL
+ || (DECL_SIZE (f2)
+ && integer_zerop (DECL_SIZE (f2)))))
+ f2 = TREE_CHAIN (f2);
+ if (!f1 || !f2)
+ break;
+ /* The fields must have the same name, offset and type. */
+ if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
+ || !gimple_compare_field_offset (f1, f2)
+ || !gimple_canonical_types_compatible_p
+ (TREE_TYPE (f1), TREE_TYPE (f2),
+ trust_type_canonical))
+ return false;
+ }
+
+ /* If one aggregate has more fields than the other, they
+ are not the same. */
+ if (f1 || f2)
+ return false;
+
+ return true;
+ }
+
+ default:
+ /* Consider all types with language specific trees in them mutually
+ compatible. This is executed only from verify_type and false
+ positives can be tolerated. */
+ gcc_assert (!in_lto_p);
+ return true;
+ }
+}
+
+/* Verify type T. */
+
+void
+verify_type (const_tree t)
+{
+ bool error_found = false;
+ tree mv = TYPE_MAIN_VARIANT (t);
+ if (!mv)
+ {
+ error ("main variant is not defined");
+ error_found = true;
+ }
+ else if (mv != TYPE_MAIN_VARIANT (mv))
+ {
+ error ("%<TYPE_MAIN_VARIANT%> has different %<TYPE_MAIN_VARIANT%>");
+ debug_tree (mv);
+ error_found = true;
+ }
+ else if (t != mv && !verify_type_variant (t, mv))
+ error_found = true;
+
+ tree ct = TYPE_CANONICAL (t);
+ if (!ct)
+ ;
+ else if (TYPE_CANONICAL (ct) != ct)
+ {
+ error ("%<TYPE_CANONICAL%> has different %<TYPE_CANONICAL%>");
+ debug_tree (ct);
+ error_found = true;
+ }
+ /* Method and function types cannot be used to address memory and thus
+ TYPE_CANONICAL really matters only for determining useless conversions.
+
+ FIXME: C++ FE produce declarations of builtin functions that are not
+ compatible with main variants. */
+ else if (TREE_CODE (t) == FUNCTION_TYPE)
+ ;
+ else if (t != ct
+ /* FIXME: gimple_canonical_types_compatible_p cannot compare types
+ with variably sized arrays because their sizes possibly
+ gimplified to different variables. */
+ && !variably_modified_type_p (ct, NULL)
+ && !gimple_canonical_types_compatible_p (t, ct, false)
+ && COMPLETE_TYPE_P (t))
+ {
+ error ("%<TYPE_CANONICAL%> is not compatible");
+ debug_tree (ct);
+ error_found = true;
+ }
+
+ if (COMPLETE_TYPE_P (t) && TYPE_CANONICAL (t)
+ && TYPE_MODE (t) != TYPE_MODE (TYPE_CANONICAL (t)))
+ {
+ error ("%<TYPE_MODE%> of %<TYPE_CANONICAL%> is not compatible");
+ debug_tree (ct);
+ error_found = true;
+ }
+ if (TYPE_MAIN_VARIANT (t) == t && ct && TYPE_MAIN_VARIANT (ct) != ct)
+ {
+ error ("%<TYPE_CANONICAL%> of main variant is not main variant");
+ debug_tree (ct);
+ debug_tree (TYPE_MAIN_VARIANT (ct));
+ error_found = true;
+ }
+
+
+ /* Check various uses of TYPE_MIN_VALUE_RAW. */
+ if (RECORD_OR_UNION_TYPE_P (t))
+ {
+ /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
+ and danagle the pointer from time to time. */
+ if (TYPE_VFIELD (t)
+ && TREE_CODE (TYPE_VFIELD (t)) != FIELD_DECL
+ && TREE_CODE (TYPE_VFIELD (t)) != TREE_LIST)
+ {
+ error ("%<TYPE_VFIELD%> is not %<FIELD_DECL%> nor %<TREE_LIST%>");
+ debug_tree (TYPE_VFIELD (t));
+ error_found = true;
+ }
+ }
+ else if (TREE_CODE (t) == POINTER_TYPE)
+ {
+ if (TYPE_NEXT_PTR_TO (t)
+ && TREE_CODE (TYPE_NEXT_PTR_TO (t)) != POINTER_TYPE)
+ {
+ error ("%<TYPE_NEXT_PTR_TO%> is not %<POINTER_TYPE%>");
+ debug_tree (TYPE_NEXT_PTR_TO (t));
+ error_found = true;
+ }
+ }
+ else if (TREE_CODE (t) == REFERENCE_TYPE)
+ {
+ if (TYPE_NEXT_REF_TO (t)
+ && TREE_CODE (TYPE_NEXT_REF_TO (t)) != REFERENCE_TYPE)
+ {
+ error ("%<TYPE_NEXT_REF_TO%> is not %<REFERENCE_TYPE%>");
+ debug_tree (TYPE_NEXT_REF_TO (t));
+ error_found = true;
+ }
+ }
+ else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
+ || TREE_CODE (t) == FIXED_POINT_TYPE)
+ {
+ /* FIXME: The following check should pass:
+ useless_type_conversion_p (const_cast <tree> (t),
+ TREE_TYPE (TYPE_MIN_VALUE (t))
+ but does not for C sizetypes in LTO. */
+ }
+
+ /* Check various uses of TYPE_MAXVAL_RAW. */
+ if (RECORD_OR_UNION_TYPE_P (t))
+ {
+ if (!TYPE_BINFO (t))
+ ;
+ else if (TREE_CODE (TYPE_BINFO (t)) != TREE_BINFO)
+ {
+ error ("%<TYPE_BINFO%> is not %<TREE_BINFO%>");
+ debug_tree (TYPE_BINFO (t));
+ error_found = true;
+ }
+ else if (TREE_TYPE (TYPE_BINFO (t)) != TYPE_MAIN_VARIANT (t))
+ {
+ error ("%<TYPE_BINFO%> type is not %<TYPE_MAIN_VARIANT%>");
+ debug_tree (TREE_TYPE (TYPE_BINFO (t)));
+ error_found = true;
+ }
+ }
+ else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
+ {
+ if (TYPE_METHOD_BASETYPE (t)
+ && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != RECORD_TYPE
+ && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != UNION_TYPE)
+ {
+ error ("%<TYPE_METHOD_BASETYPE%> is not record nor union");
+ debug_tree (TYPE_METHOD_BASETYPE (t));
+ error_found = true;
+ }
+ }
+ else if (TREE_CODE (t) == OFFSET_TYPE)
+ {
+ if (TYPE_OFFSET_BASETYPE (t)
+ && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != RECORD_TYPE
+ && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != UNION_TYPE)
+ {
+ error ("%<TYPE_OFFSET_BASETYPE%> is not record nor union");
+ debug_tree (TYPE_OFFSET_BASETYPE (t));
+ error_found = true;
+ }
+ }
+ else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
+ || TREE_CODE (t) == FIXED_POINT_TYPE)
+ {
+ /* FIXME: The following check should pass:
+ useless_type_conversion_p (const_cast <tree> (t),
+ TREE_TYPE (TYPE_MAX_VALUE (t))
+ but does not for C sizetypes in LTO. */
+ }
+ else if (TREE_CODE (t) == ARRAY_TYPE)
+ {
+ if (TYPE_ARRAY_MAX_SIZE (t)
+ && TREE_CODE (TYPE_ARRAY_MAX_SIZE (t)) != INTEGER_CST)
+ {
+ error ("%<TYPE_ARRAY_MAX_SIZE%> not %<INTEGER_CST%>");
+ debug_tree (TYPE_ARRAY_MAX_SIZE (t));
+ error_found = true;
+ }
+ }
+ else if (TYPE_MAX_VALUE_RAW (t))
+ {
+ error ("%<TYPE_MAX_VALUE_RAW%> non-NULL");
+ debug_tree (TYPE_MAX_VALUE_RAW (t));
+ error_found = true;
+ }
+
+ if (TYPE_LANG_SLOT_1 (t) && in_lto_p)
+ {
+ error ("%<TYPE_LANG_SLOT_1 (binfo)%> field is non-NULL");
+ debug_tree (TYPE_LANG_SLOT_1 (t));
+ error_found = true;
+ }
+
+ /* Check various uses of TYPE_VALUES_RAW. */
+ if (TREE_CODE (t) == ENUMERAL_TYPE)
+ for (tree l = TYPE_VALUES (t); l; l = TREE_CHAIN (l))
+ {
+ tree value = TREE_VALUE (l);
+ tree name = TREE_PURPOSE (l);
+
+ /* C FE porduce INTEGER_CST of INTEGER_TYPE, while C++ FE uses
+ CONST_DECL of ENUMERAL TYPE. */
+ if (TREE_CODE (value) != INTEGER_CST && TREE_CODE (value) != CONST_DECL)
+ {
+ error ("enum value is not %<CONST_DECL%> or %<INTEGER_CST%>");
+ debug_tree (value);
+ debug_tree (name);
+ error_found = true;
+ }
+ if (TREE_CODE (TREE_TYPE (value)) != INTEGER_TYPE
+ && TREE_CODE (TREE_TYPE (value)) != BOOLEAN_TYPE
+ && !useless_type_conversion_p (const_cast <tree> (t), TREE_TYPE (value)))
+ {
+ error ("enum value type is not %<INTEGER_TYPE%> nor convertible "
+ "to the enum");
+ debug_tree (value);
+ debug_tree (name);
+ error_found = true;
+ }
+ if (TREE_CODE (name) != IDENTIFIER_NODE)
+ {
+ error ("enum value name is not %<IDENTIFIER_NODE%>");
+ debug_tree (value);
+ debug_tree (name);
+ error_found = true;
+ }
+ }
+ else if (TREE_CODE (t) == ARRAY_TYPE)
+ {
+ if (TYPE_DOMAIN (t) && TREE_CODE (TYPE_DOMAIN (t)) != INTEGER_TYPE)
+ {
+ error ("array %<TYPE_DOMAIN%> is not integer type");
+ debug_tree (TYPE_DOMAIN (t));
+ error_found = true;
+ }
+ }
+ else if (RECORD_OR_UNION_TYPE_P (t))
+ {
+ if (TYPE_FIELDS (t) && !COMPLETE_TYPE_P (t) && in_lto_p)
+ {
+ error ("%<TYPE_FIELDS%> defined in incomplete type");
+ error_found = true;
+ }
+ for (tree fld = TYPE_FIELDS (t); fld; fld = TREE_CHAIN (fld))
+ {
+ /* TODO: verify properties of decls. */
+ if (TREE_CODE (fld) == FIELD_DECL)
+ ;
+ else if (TREE_CODE (fld) == TYPE_DECL)
+ ;
+ else if (TREE_CODE (fld) == CONST_DECL)
+ ;
+ else if (VAR_P (fld))
+ ;
+ else if (TREE_CODE (fld) == TEMPLATE_DECL)
+ ;
+ else if (TREE_CODE (fld) == USING_DECL)
+ ;
+ else if (TREE_CODE (fld) == FUNCTION_DECL)
+ ;
+ else
+ {
+ error ("wrong tree in %<TYPE_FIELDS%> list");
+ debug_tree (fld);
+ error_found = true;
+ }
+ }
+ }
+ else if (TREE_CODE (t) == INTEGER_TYPE
+ || TREE_CODE (t) == BOOLEAN_TYPE
+ || TREE_CODE (t) == OFFSET_TYPE
+ || TREE_CODE (t) == REFERENCE_TYPE
+ || TREE_CODE (t) == NULLPTR_TYPE
+ || TREE_CODE (t) == POINTER_TYPE)
+ {
+ if (TYPE_CACHED_VALUES_P (t) != (TYPE_CACHED_VALUES (t) != NULL))
+ {
+ error ("%<TYPE_CACHED_VALUES_P%> is %i while %<TYPE_CACHED_VALUES%> "
+ "is %p",
+ TYPE_CACHED_VALUES_P (t), (void *)TYPE_CACHED_VALUES (t));
+ error_found = true;
+ }
+ else if (TYPE_CACHED_VALUES_P (t) && TREE_CODE (TYPE_CACHED_VALUES (t)) != TREE_VEC)
+ {
+ error ("%<TYPE_CACHED_VALUES%> is not %<TREE_VEC%>");
+ debug_tree (TYPE_CACHED_VALUES (t));
+ error_found = true;
+ }
+ /* Verify just enough of cache to ensure that no one copied it to new type.
+ All copying should go by copy_node that should clear it. */
+ else if (TYPE_CACHED_VALUES_P (t))
+ {
+ int i;
+ for (i = 0; i < TREE_VEC_LENGTH (TYPE_CACHED_VALUES (t)); i++)
+ if (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)
+ && TREE_TYPE (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)) != t)
+ {
+ error ("wrong %<TYPE_CACHED_VALUES%> entry");
+ debug_tree (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i));
+ error_found = true;
+ break;
+ }
+ }
+ }
+ else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
+ for (tree l = TYPE_ARG_TYPES (t); l; l = TREE_CHAIN (l))
+ {
+ /* C++ FE uses TREE_PURPOSE to store initial values. */
+ if (TREE_PURPOSE (l) && in_lto_p)
+ {
+ error ("%<TREE_PURPOSE%> is non-NULL in %<TYPE_ARG_TYPES%> list");
+ debug_tree (l);
+ error_found = true;
+ }
+ if (!TYPE_P (TREE_VALUE (l)))
+ {
+ error ("wrong entry in %<TYPE_ARG_TYPES%> list");
+ debug_tree (l);
+ error_found = true;
+ }
+ }
+ else if (!is_lang_specific (t) && TYPE_VALUES_RAW (t))
+ {
+ error ("%<TYPE_VALUES_RAW%> field is non-NULL");
+ debug_tree (TYPE_VALUES_RAW (t));
+ error_found = true;
+ }
+ if (TREE_CODE (t) != INTEGER_TYPE
+ && TREE_CODE (t) != BOOLEAN_TYPE
+ && TREE_CODE (t) != OFFSET_TYPE
+ && TREE_CODE (t) != REFERENCE_TYPE
+ && TREE_CODE (t) != NULLPTR_TYPE
+ && TREE_CODE (t) != POINTER_TYPE
+ && TYPE_CACHED_VALUES_P (t))
+ {
+ error ("%<TYPE_CACHED_VALUES_P%> is set while it should not be");
+ error_found = true;
+ }
+
+ /* ipa-devirt makes an assumption that TYPE_METHOD_BASETYPE is always
+ TYPE_MAIN_VARIANT and it would be odd to add methods only to variatns
+ of a type. */
+ if (TREE_CODE (t) == METHOD_TYPE
+ && TYPE_MAIN_VARIANT (TYPE_METHOD_BASETYPE (t)) != TYPE_METHOD_BASETYPE (t))
+ {
+ error ("%<TYPE_METHOD_BASETYPE%> is not main variant");
+ error_found = true;
+ }
+
+ if (error_found)
+ {
+ debug_tree (const_cast <tree> (t));
+ internal_error ("%qs failed", __func__);
+ }
+}
+
+
+/* Return 1 if ARG interpreted as signed in its precision is known to be
+ always positive or 2 if ARG is known to be always negative, or 3 if
+ ARG may be positive or negative. */
+
+int
+get_range_pos_neg (tree arg)
+{
+ if (arg == error_mark_node)
+ return 3;
+
+ int prec = TYPE_PRECISION (TREE_TYPE (arg));
+ int cnt = 0;
+ if (TREE_CODE (arg) == INTEGER_CST)
+ {
+ wide_int w = wi::sext (wi::to_wide (arg), prec);
+ if (wi::neg_p (w))
+ return 2;
+ else
+ return 1;
+ }
+ while (CONVERT_EXPR_P (arg)
+ && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
+ && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec)
+ {
+ arg = TREE_OPERAND (arg, 0);
+ /* Narrower value zero extended into wider type
+ will always result in positive values. */
+ if (TYPE_UNSIGNED (TREE_TYPE (arg))
+ && TYPE_PRECISION (TREE_TYPE (arg)) < prec)
+ return 1;
+ prec = TYPE_PRECISION (TREE_TYPE (arg));
+ if (++cnt > 30)
+ return 3;
+ }
+
+ if (TREE_CODE (arg) != SSA_NAME)
+ return 3;
+ value_range r;
+ while (!get_global_range_query ()->range_of_expr (r, arg) || r.kind () != VR_RANGE)
+ {
+ gimple *g = SSA_NAME_DEF_STMT (arg);
+ if (is_gimple_assign (g)
+ && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g)))
+ {
+ tree t = gimple_assign_rhs1 (g);
+ if (INTEGRAL_TYPE_P (TREE_TYPE (t))
+ && TYPE_PRECISION (TREE_TYPE (t)) <= prec)
+ {
+ if (TYPE_UNSIGNED (TREE_TYPE (t))
+ && TYPE_PRECISION (TREE_TYPE (t)) < prec)
+ return 1;
+ prec = TYPE_PRECISION (TREE_TYPE (t));
+ arg = t;
+ if (++cnt > 30)
+ return 3;
+ continue;
+ }
+ }
+ return 3;
+ }
+ if (TYPE_UNSIGNED (TREE_TYPE (arg)))
+ {
+ /* For unsigned values, the "positive" range comes
+ below the "negative" range. */
+ if (!wi::neg_p (wi::sext (r.upper_bound (), prec), SIGNED))
+ return 1;
+ if (wi::neg_p (wi::sext (r.lower_bound (), prec), SIGNED))
+ return 2;
+ }
+ else
+ {
+ if (!wi::neg_p (wi::sext (r.lower_bound (), prec), SIGNED))
+ return 1;
+ if (wi::neg_p (wi::sext (r.upper_bound (), prec), SIGNED))
+ return 2;
+ }
+ return 3;
+}
+
+
+
+
+/* Return true if ARG is marked with the nonnull attribute in the
+ current function signature. */
+
+bool
+nonnull_arg_p (const_tree arg)
+{
+ tree t, attrs, fntype;
+ unsigned HOST_WIDE_INT arg_num;
+
+ gcc_assert (TREE_CODE (arg) == PARM_DECL
+ && (POINTER_TYPE_P (TREE_TYPE (arg))
+ || TREE_CODE (TREE_TYPE (arg)) == OFFSET_TYPE));
+
+ /* The static chain decl is always non null. */
+ if (arg == cfun->static_chain_decl)
+ return true;
+
+ /* THIS argument of method is always non-NULL. */
+ if (TREE_CODE (TREE_TYPE (cfun->decl)) == METHOD_TYPE
+ && arg == DECL_ARGUMENTS (cfun->decl)
+ && flag_delete_null_pointer_checks)
+ return true;
+
+ /* Values passed by reference are always non-NULL. */
+ if (TREE_CODE (TREE_TYPE (arg)) == REFERENCE_TYPE
+ && flag_delete_null_pointer_checks)
+ return true;
+
+ fntype = TREE_TYPE (cfun->decl);
+ for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
+ {
+ attrs = lookup_attribute ("nonnull", attrs);
+
+ /* If "nonnull" wasn't specified, we know nothing about the argument. */
+ if (attrs == NULL_TREE)
+ return false;
+
+ /* If "nonnull" applies to all the arguments, then ARG is non-null. */
+ if (TREE_VALUE (attrs) == NULL_TREE)
+ return true;
+
+ /* Get the position number for ARG in the function signature. */
+ for (arg_num = 1, t = DECL_ARGUMENTS (cfun->decl);
+ t;
+ t = DECL_CHAIN (t), arg_num++)
+ {
+ if (t == arg)
+ break;
+ }
+
+ gcc_assert (t == arg);
+
+ /* Now see if ARG_NUM is mentioned in the nonnull list. */
+ for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
+ {
+ if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/* Combine LOC and BLOCK to a combined adhoc loc, retaining any range
+ information. */
+
+location_t
+set_block (location_t loc, tree block)
+{
+ location_t pure_loc = get_pure_location (loc);
+ source_range src_range = get_range_from_loc (line_table, loc);
+ return COMBINE_LOCATION_DATA (line_table, pure_loc, src_range, block);
+}
+
+location_t
+set_source_range (tree expr, location_t start, location_t finish)
+{
+ source_range src_range;
+ src_range.m_start = start;
+ src_range.m_finish = finish;
+ return set_source_range (expr, src_range);
+}
+
+location_t
+set_source_range (tree expr, source_range src_range)
+{
+ if (!EXPR_P (expr))
+ return UNKNOWN_LOCATION;
+
+ location_t pure_loc = get_pure_location (EXPR_LOCATION (expr));
+ location_t adhoc = COMBINE_LOCATION_DATA (line_table,
+ pure_loc,
+ src_range,
+ NULL);
+ SET_EXPR_LOCATION (expr, adhoc);
+ return adhoc;
+}
+
+/* Return EXPR, potentially wrapped with a node expression LOC,
+ if !CAN_HAVE_LOCATION_P (expr).
+
+ NON_LVALUE_EXPR is used for wrapping constants, apart from STRING_CST.
+ VIEW_CONVERT_EXPR is used for wrapping non-constants and STRING_CST.
+
+ Wrapper nodes can be identified using location_wrapper_p. */
+
+tree
+maybe_wrap_with_location (tree expr, location_t loc)
+{
+ if (expr == NULL)
+ return NULL;
+ if (loc == UNKNOWN_LOCATION)
+ return expr;
+ if (CAN_HAVE_LOCATION_P (expr))
+ return expr;
+ /* We should only be adding wrappers for constants and for decls,
+ or for some exceptional tree nodes (e.g. BASELINK in the C++ FE). */
+ gcc_assert (CONSTANT_CLASS_P (expr)
+ || DECL_P (expr)
+ || EXCEPTIONAL_CLASS_P (expr));
+
+ /* For now, don't add wrappers to exceptional tree nodes, to minimize
+ any impact of the wrapper nodes. */
+ if (EXCEPTIONAL_CLASS_P (expr))
+ return expr;
+
+ /* Compiler-generated temporary variables don't need a wrapper. */
+ if (DECL_P (expr) && DECL_ARTIFICIAL (expr) && DECL_IGNORED_P (expr))
+ return expr;
+
+ /* If any auto_suppress_location_wrappers are active, don't create
+ wrappers. */
+ if (suppress_location_wrappers > 0)
+ return expr;
+
+ tree_code code
+ = (((CONSTANT_CLASS_P (expr) && TREE_CODE (expr) != STRING_CST)
+ || (TREE_CODE (expr) == CONST_DECL && !TREE_STATIC (expr)))
+ ? NON_LVALUE_EXPR : VIEW_CONVERT_EXPR);
+ tree wrapper = build1_loc (loc, code, TREE_TYPE (expr), expr);
+ /* Mark this node as being a wrapper. */
+ EXPR_LOCATION_WRAPPER_P (wrapper) = 1;
+ return wrapper;
+}
+
+int suppress_location_wrappers;
+
+/* Return the name of combined function FN, for debugging purposes. */
+
+const char *
+combined_fn_name (combined_fn fn)
+{
+ if (builtin_fn_p (fn))
+ {
+ tree fndecl = builtin_decl_explicit (as_builtin_fn (fn));
+ return IDENTIFIER_POINTER (DECL_NAME (fndecl));
+ }
+ else
+ return internal_fn_name (as_internal_fn (fn));
+}
+
+/* Return a bitmap with a bit set corresponding to each argument in
+ a function call type FNTYPE declared with attribute nonnull,
+ or null if none of the function's argument are nonnull. The caller
+ must free the bitmap. */
+
+bitmap
+get_nonnull_args (const_tree fntype)
+{
+ if (fntype == NULL_TREE)
+ return NULL;
+
+ bitmap argmap = NULL;
+ if (TREE_CODE (fntype) == METHOD_TYPE)
+ {
+ /* The this pointer in C++ non-static member functions is
+ implicitly nonnull whether or not it's declared as such. */
+ argmap = BITMAP_ALLOC (NULL);
+ bitmap_set_bit (argmap, 0);
+ }
+
+ tree attrs = TYPE_ATTRIBUTES (fntype);
+ if (!attrs)
+ return argmap;
+
+ /* A function declaration can specify multiple attribute nonnull,
+ each with zero or more arguments. The loop below creates a bitmap
+ representing a union of all the arguments. An empty (but non-null)
+ bitmap means that all arguments have been declaraed nonnull. */
+ for ( ; attrs; attrs = TREE_CHAIN (attrs))
+ {
+ attrs = lookup_attribute ("nonnull", attrs);
+ if (!attrs)
+ break;
+
+ if (!argmap)
+ argmap = BITMAP_ALLOC (NULL);
+
+ if (!TREE_VALUE (attrs))
+ {
+ /* Clear the bitmap in case a previous attribute nonnull
+ set it and this one overrides it for all arguments. */
+ bitmap_clear (argmap);
+ return argmap;
+ }
+
+ /* Iterate over the indices of the format arguments declared nonnull
+ and set a bit for each. */
+ for (tree idx = TREE_VALUE (attrs); idx; idx = TREE_CHAIN (idx))
+ {
+ unsigned int val = TREE_INT_CST_LOW (TREE_VALUE (idx)) - 1;
+ bitmap_set_bit (argmap, val);
+ }
+ }
+
+ return argmap;
+}
+
+/* Returns true if TYPE is a type where it and all of its subobjects
+ (recursively) are of structure, union, or array type. */
+
+bool
+is_empty_type (const_tree type)
+{
+ if (RECORD_OR_UNION_TYPE_P (type))
+ {
+ for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
+ if (TREE_CODE (field) == FIELD_DECL
+ && !DECL_PADDING_P (field)
+ && !is_empty_type (TREE_TYPE (field)))
+ return false;
+ return true;
+ }
+ else if (TREE_CODE (type) == ARRAY_TYPE)
+ return (integer_minus_onep (array_type_nelts (type))
+ || TYPE_DOMAIN (type) == NULL_TREE
+ || is_empty_type (TREE_TYPE (type)));
+ return false;
+}
+
+/* Implement TARGET_EMPTY_RECORD_P. Return true if TYPE is an empty type
+ that shouldn't be passed via stack. */
+
+bool
+default_is_empty_record (const_tree type)
+{
+ if (!abi_version_at_least (12))
+ return false;
+
+ if (type == error_mark_node)
+ return false;
+
+ if (TREE_ADDRESSABLE (type))
+ return false;
+
+ return is_empty_type (TYPE_MAIN_VARIANT (type));
+}
+
+/* Determine whether TYPE is a structure with a flexible array member,
+ or a union containing such a structure (possibly recursively). */
+
+bool
+flexible_array_type_p (const_tree type)
+{
+ tree x, last;
+ switch (TREE_CODE (type))
+ {
+ case RECORD_TYPE:
+ last = NULL_TREE;
+ for (x = TYPE_FIELDS (type); x != NULL_TREE; x = DECL_CHAIN (x))
+ if (TREE_CODE (x) == FIELD_DECL)
+ last = x;
+ if (last == NULL_TREE)
+ return false;
+ if (TREE_CODE (TREE_TYPE (last)) == ARRAY_TYPE
+ && TYPE_SIZE (TREE_TYPE (last)) == NULL_TREE
+ && TYPE_DOMAIN (TREE_TYPE (last)) != NULL_TREE
+ && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (last))) == NULL_TREE)
+ return true;
+ return false;
+ case UNION_TYPE:
+ for (x = TYPE_FIELDS (type); x != NULL_TREE; x = DECL_CHAIN (x))
+ {
+ if (TREE_CODE (x) == FIELD_DECL
+ && flexible_array_type_p (TREE_TYPE (x)))
+ return true;
+ }
+ return false;
+ default:
+ return false;
+ }
+}
+
+/* Like int_size_in_bytes, but handle empty records specially. */
+
+HOST_WIDE_INT
+arg_int_size_in_bytes (const_tree type)
+{
+ return TYPE_EMPTY_P (type) ? 0 : int_size_in_bytes (type);
+}
+
+/* Like size_in_bytes, but handle empty records specially. */
+
+tree
+arg_size_in_bytes (const_tree type)
+{
+ return TYPE_EMPTY_P (type) ? size_zero_node : size_in_bytes (type);
+}
+
+/* Return true if an expression with CODE has to have the same result type as
+ its first operand. */
+
+bool
+expr_type_first_operand_type_p (tree_code code)
+{
+ switch (code)
+ {
+ case NEGATE_EXPR:
+ case ABS_EXPR:
+ case BIT_NOT_EXPR:
+ case PAREN_EXPR:
+ case CONJ_EXPR:
+
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ case MULT_EXPR:
+ case TRUNC_DIV_EXPR:
+ case CEIL_DIV_EXPR:
+ case FLOOR_DIV_EXPR:
+ case ROUND_DIV_EXPR:
+ case TRUNC_MOD_EXPR:
+ case CEIL_MOD_EXPR:
+ case FLOOR_MOD_EXPR:
+ case ROUND_MOD_EXPR:
+ case RDIV_EXPR:
+ case EXACT_DIV_EXPR:
+ case MIN_EXPR:
+ case MAX_EXPR:
+ case BIT_IOR_EXPR:
+ case BIT_XOR_EXPR:
+ case BIT_AND_EXPR:
+
+ case LSHIFT_EXPR:
+ case RSHIFT_EXPR:
+ case LROTATE_EXPR:
+ case RROTATE_EXPR:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+/* Return a typenode for the "standard" C type with a given name. */
+tree
+get_typenode_from_name (const char *name)
+{
+ if (name == NULL || *name == '\0')
+ return NULL_TREE;
+
+ if (strcmp (name, "char") == 0)
+ return char_type_node;
+ if (strcmp (name, "unsigned char") == 0)
+ return unsigned_char_type_node;
+ if (strcmp (name, "signed char") == 0)
+ return signed_char_type_node;
+
+ if (strcmp (name, "short int") == 0)
+ return short_integer_type_node;
+ if (strcmp (name, "short unsigned int") == 0)
+ return short_unsigned_type_node;
+
+ if (strcmp (name, "int") == 0)
+ return integer_type_node;
+ if (strcmp (name, "unsigned int") == 0)
+ return unsigned_type_node;
+
+ if (strcmp (name, "long int") == 0)
+ return long_integer_type_node;
+ if (strcmp (name, "long unsigned int") == 0)
+ return long_unsigned_type_node;
+
+ if (strcmp (name, "long long int") == 0)
+ return long_long_integer_type_node;
+ if (strcmp (name, "long long unsigned int") == 0)
+ return long_long_unsigned_type_node;
+
+ gcc_unreachable ();
+}
+
+/* List of pointer types used to declare builtins before we have seen their
+ real declaration.
+
+ Keep the size up to date in tree.h ! */
+const builtin_structptr_type builtin_structptr_types[6] =
+{
+ { fileptr_type_node, ptr_type_node, "FILE" },
+ { const_tm_ptr_type_node, const_ptr_type_node, "tm" },
+ { fenv_t_ptr_type_node, ptr_type_node, "fenv_t" },
+ { const_fenv_t_ptr_type_node, const_ptr_type_node, "fenv_t" },
+ { fexcept_t_ptr_type_node, ptr_type_node, "fexcept_t" },
+ { const_fexcept_t_ptr_type_node, const_ptr_type_node, "fexcept_t" }
+};
+
+/* Return the maximum object size. */
+
+tree
+max_object_size (void)
+{
+ /* To do: Make this a configurable parameter. */
+ return TYPE_MAX_VALUE (ptrdiff_type_node);
+}
+
+/* A wrapper around TARGET_VERIFY_TYPE_CONTEXT that makes the silent_p
+ parameter default to false and that weeds out error_mark_node. */
+
+bool
+verify_type_context (location_t loc, type_context_kind context,
+ const_tree type, bool silent_p)
+{
+ if (type == error_mark_node)
+ return true;
+
+ gcc_assert (TYPE_P (type));
+ return (!targetm.verify_type_context
+ || targetm.verify_type_context (loc, context, type, silent_p));
+}
+
+/* Return true if NEW_ASM and DELETE_ASM name a valid pair of new and
+ delete operators. Return false if they may or may not name such
+ a pair and, when nonnull, set *PCERTAIN to true if they certainly
+ do not. */
+
+bool
+valid_new_delete_pair_p (tree new_asm, tree delete_asm,
+ bool *pcertain /* = NULL */)
+{
+ bool certain;
+ if (!pcertain)
+ pcertain = &certain;
+
+ const char *new_name = IDENTIFIER_POINTER (new_asm);
+ const char *delete_name = IDENTIFIER_POINTER (delete_asm);
+ unsigned int new_len = IDENTIFIER_LENGTH (new_asm);
+ unsigned int delete_len = IDENTIFIER_LENGTH (delete_asm);
+
+ /* The following failures are due to invalid names so they're not
+ considered certain mismatches. */
+ *pcertain = false;
+
+ if (new_len < 5 || delete_len < 6)
+ return false;
+ if (new_name[0] == '_')
+ ++new_name, --new_len;
+ if (new_name[0] == '_')
+ ++new_name, --new_len;
+ if (delete_name[0] == '_')
+ ++delete_name, --delete_len;
+ if (delete_name[0] == '_')
+ ++delete_name, --delete_len;
+ if (new_len < 4 || delete_len < 5)
+ return false;
+
+ /* The following failures are due to names of user-defined operators
+ so they're also not considered certain mismatches. */
+
+ /* *_len is now just the length after initial underscores. */
+ if (new_name[0] != 'Z' || new_name[1] != 'n')
+ return false;
+ if (delete_name[0] != 'Z' || delete_name[1] != 'd')
+ return false;
+
+ /* The following failures are certain mismatches. */
+ *pcertain = true;
+
+ /* _Znw must match _Zdl, _Zna must match _Zda. */
+ if ((new_name[2] != 'w' || delete_name[2] != 'l')
+ && (new_name[2] != 'a' || delete_name[2] != 'a'))
+ return false;
+ /* 'j', 'm' and 'y' correspond to size_t. */
+ if (new_name[3] != 'j' && new_name[3] != 'm' && new_name[3] != 'y')
+ return false;
+ if (delete_name[3] != 'P' || delete_name[4] != 'v')
+ return false;
+ if (new_len == 4
+ || (new_len == 18 && !memcmp (new_name + 4, "RKSt9nothrow_t", 14)))
+ {
+ /* _ZnXY or _ZnXYRKSt9nothrow_t matches
+ _ZdXPv, _ZdXPvY and _ZdXPvRKSt9nothrow_t. */
+ if (delete_len == 5)
+ return true;
+ if (delete_len == 6 && delete_name[5] == new_name[3])
+ return true;
+ if (delete_len == 19 && !memcmp (delete_name + 5, "RKSt9nothrow_t", 14))
+ return true;
+ }
+ else if ((new_len == 19 && !memcmp (new_name + 4, "St11align_val_t", 15))
+ || (new_len == 33
+ && !memcmp (new_name + 4, "St11align_val_tRKSt9nothrow_t", 29)))
+ {
+ /* _ZnXYSt11align_val_t or _ZnXYSt11align_val_tRKSt9nothrow_t matches
+ _ZdXPvSt11align_val_t or _ZdXPvYSt11align_val_t or or
+ _ZdXPvSt11align_val_tRKSt9nothrow_t. */
+ if (delete_len == 20 && !memcmp (delete_name + 5, "St11align_val_t", 15))
+ return true;
+ if (delete_len == 21
+ && delete_name[5] == new_name[3]
+ && !memcmp (delete_name + 6, "St11align_val_t", 15))
+ return true;
+ if (delete_len == 34
+ && !memcmp (delete_name + 5, "St11align_val_tRKSt9nothrow_t", 29))
+ return true;
+ }
+
+ /* The negative result is conservative. */
+ *pcertain = false;
+ return false;
+}
+
+/* Return the zero-based number corresponding to the argument being
+ deallocated if FNDECL is a deallocation function or an out-of-bounds
+ value if it isn't. */
+
+unsigned
+fndecl_dealloc_argno (tree fndecl)
+{
+ /* A call to operator delete isn't recognized as one to a built-in. */
+ if (DECL_IS_OPERATOR_DELETE_P (fndecl))
+ {
+ if (DECL_IS_REPLACEABLE_OPERATOR (fndecl))
+ return 0;
+
+ /* Avoid placement delete that's not been inlined. */
+ tree fname = DECL_ASSEMBLER_NAME (fndecl);
+ if (id_equal (fname, "_ZdlPvS_") // ordinary form
+ || id_equal (fname, "_ZdaPvS_")) // array form
+ return UINT_MAX;
+ return 0;
+ }
+
+ /* TODO: Handle user-defined functions with attribute malloc? Handle
+ known non-built-ins like fopen? */
+ if (fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
+ {
+ switch (DECL_FUNCTION_CODE (fndecl))
+ {
+ case BUILT_IN_FREE:
+ case BUILT_IN_REALLOC:
+ return 0;
+ default:
+ break;
+ }
+ return UINT_MAX;
+ }
+
+ tree attrs = DECL_ATTRIBUTES (fndecl);
+ if (!attrs)
+ return UINT_MAX;
+
+ for (tree atfree = attrs;
+ (atfree = lookup_attribute ("*dealloc", atfree));
+ atfree = TREE_CHAIN (atfree))
+ {
+ tree alloc = TREE_VALUE (atfree);
+ if (!alloc)
+ continue;
+
+ tree pos = TREE_CHAIN (alloc);
+ if (!pos)
+ return 0;
+
+ pos = TREE_VALUE (pos);
+ return TREE_INT_CST_LOW (pos) - 1;
+ }
+
+ return UINT_MAX;
+}
+
+/* If EXPR refers to a character array or pointer declared attribute
+ nonstring, return a decl for that array or pointer and set *REF
+ to the referenced enclosing object or pointer. Otherwise return
+ null. */
+
+tree
+get_attr_nonstring_decl (tree expr, tree *ref)
+{
+ tree decl = expr;
+ tree var = NULL_TREE;
+ if (TREE_CODE (decl) == SSA_NAME)
+ {
+ gimple *def = SSA_NAME_DEF_STMT (decl);
+
+ if (is_gimple_assign (def))
+ {
+ tree_code code = gimple_assign_rhs_code (def);
+ if (code == ADDR_EXPR
+ || code == COMPONENT_REF
+ || code == VAR_DECL)
+ decl = gimple_assign_rhs1 (def);
+ }
+ else
+ var = SSA_NAME_VAR (decl);
+ }
+
+ if (TREE_CODE (decl) == ADDR_EXPR)
+ decl = TREE_OPERAND (decl, 0);
+
+ /* To simplify calling code, store the referenced DECL regardless of
+ the attribute determined below, but avoid storing the SSA_NAME_VAR
+ obtained above (it's not useful for dataflow purposes). */
+ if (ref)
+ *ref = decl;
+
+ /* Use the SSA_NAME_VAR that was determined above to see if it's
+ declared nonstring. Otherwise drill down into the referenced
+ DECL. */
+ if (var)
+ decl = var;
+ else if (TREE_CODE (decl) == ARRAY_REF)
+ decl = TREE_OPERAND (decl, 0);
+ else if (TREE_CODE (decl) == COMPONENT_REF)
+ decl = TREE_OPERAND (decl, 1);
+ else if (TREE_CODE (decl) == MEM_REF)
+ return get_attr_nonstring_decl (TREE_OPERAND (decl, 0), ref);
+
+ if (DECL_P (decl)
+ && lookup_attribute ("nonstring", DECL_ATTRIBUTES (decl)))
+ return decl;
+
+ return NULL_TREE;
+}
+
+#if CHECKING_P
+
+namespace selftest {
+
+/* Selftests for tree. */
+
+/* Verify that integer constants are sane. */
+
+static void
+test_integer_constants ()
+{
+ ASSERT_TRUE (integer_type_node != NULL);
+ ASSERT_TRUE (build_int_cst (integer_type_node, 0) != NULL);
+
+ tree type = integer_type_node;
+
+ tree zero = build_zero_cst (type);
+ ASSERT_EQ (INTEGER_CST, TREE_CODE (zero));
+ ASSERT_EQ (type, TREE_TYPE (zero));
+
+ tree one = build_int_cst (type, 1);
+ ASSERT_EQ (INTEGER_CST, TREE_CODE (one));
+ ASSERT_EQ (type, TREE_TYPE (zero));
+}
+
+/* Verify identifiers. */
+
+static void
+test_identifiers ()
+{
+ tree identifier = get_identifier ("foo");
+ ASSERT_EQ (3, IDENTIFIER_LENGTH (identifier));
+ ASSERT_STREQ ("foo", IDENTIFIER_POINTER (identifier));
+}
+
+/* Verify LABEL_DECL. */
+
+static void
+test_labels ()
+{
+ tree identifier = get_identifier ("err");
+ tree label_decl = build_decl (UNKNOWN_LOCATION, LABEL_DECL,
+ identifier, void_type_node);
+ ASSERT_EQ (-1, LABEL_DECL_UID (label_decl));
+ ASSERT_FALSE (FORCED_LABEL (label_decl));
+}
+
+/* Return a new VECTOR_CST node whose type is TYPE and whose values
+ are given by VALS. */
+
+static tree
+build_vector (tree type, const vec<tree> &vals MEM_STAT_DECL)
+{
+ gcc_assert (known_eq (vals.length (), TYPE_VECTOR_SUBPARTS (type)));
+ tree_vector_builder builder (type, vals.length (), 1);
+ builder.splice (vals);
+ return builder.build ();
+}
+
+/* Check that VECTOR_CST ACTUAL contains the elements in EXPECTED. */
+
+static void
+check_vector_cst (const vec<tree> &expected, tree actual)
+{
+ ASSERT_KNOWN_EQ (expected.length (),
+ TYPE_VECTOR_SUBPARTS (TREE_TYPE (actual)));
+ for (unsigned int i = 0; i < expected.length (); ++i)
+ ASSERT_EQ (wi::to_wide (expected[i]),
+ wi::to_wide (vector_cst_elt (actual, i)));
+}
+
+/* Check that VECTOR_CST ACTUAL contains NPATTERNS duplicated elements,
+ and that its elements match EXPECTED. */
+
+static void
+check_vector_cst_duplicate (const vec<tree> &expected, tree actual,
+ unsigned int npatterns)
+{
+ ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
+ ASSERT_EQ (1, VECTOR_CST_NELTS_PER_PATTERN (actual));
+ ASSERT_EQ (npatterns, vector_cst_encoded_nelts (actual));
+ ASSERT_TRUE (VECTOR_CST_DUPLICATE_P (actual));
+ ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
+ check_vector_cst (expected, actual);
+}
+
+/* Check that VECTOR_CST ACTUAL contains NPATTERNS foreground elements
+ and NPATTERNS background elements, and that its elements match
+ EXPECTED. */
+
+static void
+check_vector_cst_fill (const vec<tree> &expected, tree actual,
+ unsigned int npatterns)
+{
+ ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
+ ASSERT_EQ (2, VECTOR_CST_NELTS_PER_PATTERN (actual));
+ ASSERT_EQ (2 * npatterns, vector_cst_encoded_nelts (actual));
+ ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
+ ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
+ check_vector_cst (expected, actual);
+}
+
+/* Check that VECTOR_CST ACTUAL contains NPATTERNS stepped patterns,
+ and that its elements match EXPECTED. */
+
+static void
+check_vector_cst_stepped (const vec<tree> &expected, tree actual,
+ unsigned int npatterns)
+{
+ ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
+ ASSERT_EQ (3, VECTOR_CST_NELTS_PER_PATTERN (actual));
+ ASSERT_EQ (3 * npatterns, vector_cst_encoded_nelts (actual));
+ ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
+ ASSERT_TRUE (VECTOR_CST_STEPPED_P (actual));
+ check_vector_cst (expected, actual);
+}
+
+/* Test the creation of VECTOR_CSTs. */
+
+static void
+test_vector_cst_patterns (ALONE_CXX_MEM_STAT_INFO)
+{
+ auto_vec<tree, 8> elements (8);
+ elements.quick_grow (8);
+ tree element_type = build_nonstandard_integer_type (16, true);
+ tree vector_type = build_vector_type (element_type, 8);
+
+ /* Test a simple linear series with a base of 0 and a step of 1:
+ { 0, 1, 2, 3, 4, 5, 6, 7 }. */
+ for (unsigned int i = 0; i < 8; ++i)
+ elements[i] = build_int_cst (element_type, i);
+ tree vector = build_vector (vector_type, elements PASS_MEM_STAT);
+ check_vector_cst_stepped (elements, vector, 1);
+
+ /* Try the same with the first element replaced by 100:
+ { 100, 1, 2, 3, 4, 5, 6, 7 }. */
+ elements[0] = build_int_cst (element_type, 100);
+ vector = build_vector (vector_type, elements PASS_MEM_STAT);
+ check_vector_cst_stepped (elements, vector, 1);
+
+ /* Try a series that wraps around.
+ { 100, 65531, 65532, 65533, 65534, 65535, 0, 1 }. */
+ for (unsigned int i = 1; i < 8; ++i)
+ elements[i] = build_int_cst (element_type, (65530 + i) & 0xffff);
+ vector = build_vector (vector_type, elements PASS_MEM_STAT);
+ check_vector_cst_stepped (elements, vector, 1);
+
+ /* Try a downward series:
+ { 100, 79, 78, 77, 76, 75, 75, 73 }. */
+ for (unsigned int i = 1; i < 8; ++i)
+ elements[i] = build_int_cst (element_type, 80 - i);
+ vector = build_vector (vector_type, elements PASS_MEM_STAT);
+ check_vector_cst_stepped (elements, vector, 1);
+
+ /* Try two interleaved series with different bases and steps:
+ { 100, 53, 66, 206, 62, 212, 58, 218 }. */
+ elements[1] = build_int_cst (element_type, 53);
+ for (unsigned int i = 2; i < 8; i += 2)
+ {
+ elements[i] = build_int_cst (element_type, 70 - i * 2);
+ elements[i + 1] = build_int_cst (element_type, 200 + i * 3);
+ }
+ vector = build_vector (vector_type, elements PASS_MEM_STAT);
+ check_vector_cst_stepped (elements, vector, 2);
+
+ /* Try a duplicated value:
+ { 100, 100, 100, 100, 100, 100, 100, 100 }. */
+ for (unsigned int i = 1; i < 8; ++i)
+ elements[i] = elements[0];
+ vector = build_vector (vector_type, elements PASS_MEM_STAT);
+ check_vector_cst_duplicate (elements, vector, 1);
+
+ /* Try an interleaved duplicated value:
+ { 100, 55, 100, 55, 100, 55, 100, 55 }. */
+ elements[1] = build_int_cst (element_type, 55);
+ for (unsigned int i = 2; i < 8; ++i)
+ elements[i] = elements[i - 2];
+ vector = build_vector (vector_type, elements PASS_MEM_STAT);
+ check_vector_cst_duplicate (elements, vector, 2);
+
+ /* Try a duplicated value with 2 exceptions
+ { 41, 97, 100, 55, 100, 55, 100, 55 }. */
+ elements[0] = build_int_cst (element_type, 41);
+ elements[1] = build_int_cst (element_type, 97);
+ vector = build_vector (vector_type, elements PASS_MEM_STAT);
+ check_vector_cst_fill (elements, vector, 2);
+
+ /* Try with and without a step
+ { 41, 97, 100, 21, 100, 35, 100, 49 }. */
+ for (unsigned int i = 3; i < 8; i += 2)
+ elements[i] = build_int_cst (element_type, i * 7);
+ vector = build_vector (vector_type, elements PASS_MEM_STAT);
+ check_vector_cst_stepped (elements, vector, 2);
+
+ /* Try a fully-general constant:
+ { 41, 97, 100, 21, 100, 9990, 100, 49 }. */
+ elements[5] = build_int_cst (element_type, 9990);
+ vector = build_vector (vector_type, elements PASS_MEM_STAT);
+ check_vector_cst_fill (elements, vector, 4);
+}
+
+/* Verify that STRIP_NOPS (NODE) is EXPECTED.
+ Helper function for test_location_wrappers, to deal with STRIP_NOPS
+ modifying its argument in-place. */
+
+static void
+check_strip_nops (tree node, tree expected)
+{
+ STRIP_NOPS (node);
+ ASSERT_EQ (expected, node);
+}
+
+/* Verify location wrappers. */
+
+static void
+test_location_wrappers ()
+{
+ location_t loc = BUILTINS_LOCATION;
+
+ ASSERT_EQ (NULL_TREE, maybe_wrap_with_location (NULL_TREE, loc));
+
+ /* Wrapping a constant. */
+ tree int_cst = build_int_cst (integer_type_node, 42);
+ ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_cst));
+ ASSERT_FALSE (location_wrapper_p (int_cst));
+
+ tree wrapped_int_cst = maybe_wrap_with_location (int_cst, loc);
+ ASSERT_TRUE (location_wrapper_p (wrapped_int_cst));
+ ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_cst));
+ ASSERT_EQ (int_cst, tree_strip_any_location_wrapper (wrapped_int_cst));
+
+ /* We shouldn't add wrapper nodes for UNKNOWN_LOCATION. */
+ ASSERT_EQ (int_cst, maybe_wrap_with_location (int_cst, UNKNOWN_LOCATION));
+
+ /* We shouldn't add wrapper nodes for nodes that CAN_HAVE_LOCATION_P. */
+ tree cast = build1 (NOP_EXPR, char_type_node, int_cst);
+ ASSERT_TRUE (CAN_HAVE_LOCATION_P (cast));
+ ASSERT_EQ (cast, maybe_wrap_with_location (cast, loc));
+
+ /* Wrapping a STRING_CST. */
+ tree string_cst = build_string (4, "foo");
+ ASSERT_FALSE (CAN_HAVE_LOCATION_P (string_cst));
+ ASSERT_FALSE (location_wrapper_p (string_cst));
+
+ tree wrapped_string_cst = maybe_wrap_with_location (string_cst, loc);
+ ASSERT_TRUE (location_wrapper_p (wrapped_string_cst));
+ ASSERT_EQ (VIEW_CONVERT_EXPR, TREE_CODE (wrapped_string_cst));
+ ASSERT_EQ (loc, EXPR_LOCATION (wrapped_string_cst));
+ ASSERT_EQ (string_cst, tree_strip_any_location_wrapper (wrapped_string_cst));
+
+
+ /* Wrapping a variable. */
+ tree int_var = build_decl (UNKNOWN_LOCATION, VAR_DECL,
+ get_identifier ("some_int_var"),
+ integer_type_node);
+ ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_var));
+ ASSERT_FALSE (location_wrapper_p (int_var));
+
+ tree wrapped_int_var = maybe_wrap_with_location (int_var, loc);
+ ASSERT_TRUE (location_wrapper_p (wrapped_int_var));
+ ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_var));
+ ASSERT_EQ (int_var, tree_strip_any_location_wrapper (wrapped_int_var));
+
+ /* Verify that "reinterpret_cast<int>(some_int_var)" is not a location
+ wrapper. */
+ tree r_cast = build1 (NON_LVALUE_EXPR, integer_type_node, int_var);
+ ASSERT_FALSE (location_wrapper_p (r_cast));
+ ASSERT_EQ (r_cast, tree_strip_any_location_wrapper (r_cast));
+
+ /* Verify that STRIP_NOPS removes wrappers. */
+ check_strip_nops (wrapped_int_cst, int_cst);
+ check_strip_nops (wrapped_string_cst, string_cst);
+ check_strip_nops (wrapped_int_var, int_var);
+}
+
+/* Test various tree predicates. Verify that location wrappers don't
+ affect the results. */
+
+static void
+test_predicates ()
+{
+ /* Build various constants and wrappers around them. */
+
+ location_t loc = BUILTINS_LOCATION;
+
+ tree i_0 = build_int_cst (integer_type_node, 0);
+ tree wr_i_0 = maybe_wrap_with_location (i_0, loc);
+
+ tree i_1 = build_int_cst (integer_type_node, 1);
+ tree wr_i_1 = maybe_wrap_with_location (i_1, loc);
+
+ tree i_m1 = build_int_cst (integer_type_node, -1);
+ tree wr_i_m1 = maybe_wrap_with_location (i_m1, loc);
+
+ tree f_0 = build_real_from_int_cst (float_type_node, i_0);
+ tree wr_f_0 = maybe_wrap_with_location (f_0, loc);
+ tree f_1 = build_real_from_int_cst (float_type_node, i_1);
+ tree wr_f_1 = maybe_wrap_with_location (f_1, loc);
+ tree f_m1 = build_real_from_int_cst (float_type_node, i_m1);
+ tree wr_f_m1 = maybe_wrap_with_location (f_m1, loc);
+
+ tree c_i_0 = build_complex (NULL_TREE, i_0, i_0);
+ tree c_i_1 = build_complex (NULL_TREE, i_1, i_0);
+ tree c_i_m1 = build_complex (NULL_TREE, i_m1, i_0);
+
+ tree c_f_0 = build_complex (NULL_TREE, f_0, f_0);
+ tree c_f_1 = build_complex (NULL_TREE, f_1, f_0);
+ tree c_f_m1 = build_complex (NULL_TREE, f_m1, f_0);
+
+ /* TODO: vector constants. */
+
+ /* Test integer_onep. */
+ ASSERT_FALSE (integer_onep (i_0));
+ ASSERT_FALSE (integer_onep (wr_i_0));
+ ASSERT_TRUE (integer_onep (i_1));
+ ASSERT_TRUE (integer_onep (wr_i_1));
+ ASSERT_FALSE (integer_onep (i_m1));
+ ASSERT_FALSE (integer_onep (wr_i_m1));
+ ASSERT_FALSE (integer_onep (f_0));
+ ASSERT_FALSE (integer_onep (wr_f_0));
+ ASSERT_FALSE (integer_onep (f_1));
+ ASSERT_FALSE (integer_onep (wr_f_1));
+ ASSERT_FALSE (integer_onep (f_m1));
+ ASSERT_FALSE (integer_onep (wr_f_m1));
+ ASSERT_FALSE (integer_onep (c_i_0));
+ ASSERT_TRUE (integer_onep (c_i_1));
+ ASSERT_FALSE (integer_onep (c_i_m1));
+ ASSERT_FALSE (integer_onep (c_f_0));
+ ASSERT_FALSE (integer_onep (c_f_1));
+ ASSERT_FALSE (integer_onep (c_f_m1));
+
+ /* Test integer_zerop. */
+ ASSERT_TRUE (integer_zerop (i_0));
+ ASSERT_TRUE (integer_zerop (wr_i_0));
+ ASSERT_FALSE (integer_zerop (i_1));
+ ASSERT_FALSE (integer_zerop (wr_i_1));
+ ASSERT_FALSE (integer_zerop (i_m1));
+ ASSERT_FALSE (integer_zerop (wr_i_m1));
+ ASSERT_FALSE (integer_zerop (f_0));
+ ASSERT_FALSE (integer_zerop (wr_f_0));
+ ASSERT_FALSE (integer_zerop (f_1));
+ ASSERT_FALSE (integer_zerop (wr_f_1));
+ ASSERT_FALSE (integer_zerop (f_m1));
+ ASSERT_FALSE (integer_zerop (wr_f_m1));
+ ASSERT_TRUE (integer_zerop (c_i_0));
+ ASSERT_FALSE (integer_zerop (c_i_1));
+ ASSERT_FALSE (integer_zerop (c_i_m1));
+ ASSERT_FALSE (integer_zerop (c_f_0));
+ ASSERT_FALSE (integer_zerop (c_f_1));
+ ASSERT_FALSE (integer_zerop (c_f_m1));
+
+ /* Test integer_all_onesp. */
+ ASSERT_FALSE (integer_all_onesp (i_0));
+ ASSERT_FALSE (integer_all_onesp (wr_i_0));
+ ASSERT_FALSE (integer_all_onesp (i_1));
+ ASSERT_FALSE (integer_all_onesp (wr_i_1));
+ ASSERT_TRUE (integer_all_onesp (i_m1));
+ ASSERT_TRUE (integer_all_onesp (wr_i_m1));
+ ASSERT_FALSE (integer_all_onesp (f_0));
+ ASSERT_FALSE (integer_all_onesp (wr_f_0));
+ ASSERT_FALSE (integer_all_onesp (f_1));
+ ASSERT_FALSE (integer_all_onesp (wr_f_1));
+ ASSERT_FALSE (integer_all_onesp (f_m1));
+ ASSERT_FALSE (integer_all_onesp (wr_f_m1));
+ ASSERT_FALSE (integer_all_onesp (c_i_0));
+ ASSERT_FALSE (integer_all_onesp (c_i_1));
+ ASSERT_FALSE (integer_all_onesp (c_i_m1));
+ ASSERT_FALSE (integer_all_onesp (c_f_0));
+ ASSERT_FALSE (integer_all_onesp (c_f_1));
+ ASSERT_FALSE (integer_all_onesp (c_f_m1));
+
+ /* Test integer_minus_onep. */
+ ASSERT_FALSE (integer_minus_onep (i_0));
+ ASSERT_FALSE (integer_minus_onep (wr_i_0));
+ ASSERT_FALSE (integer_minus_onep (i_1));
+ ASSERT_FALSE (integer_minus_onep (wr_i_1));
+ ASSERT_TRUE (integer_minus_onep (i_m1));
+ ASSERT_TRUE (integer_minus_onep (wr_i_m1));
+ ASSERT_FALSE (integer_minus_onep (f_0));
+ ASSERT_FALSE (integer_minus_onep (wr_f_0));
+ ASSERT_FALSE (integer_minus_onep (f_1));
+ ASSERT_FALSE (integer_minus_onep (wr_f_1));
+ ASSERT_FALSE (integer_minus_onep (f_m1));
+ ASSERT_FALSE (integer_minus_onep (wr_f_m1));
+ ASSERT_FALSE (integer_minus_onep (c_i_0));
+ ASSERT_FALSE (integer_minus_onep (c_i_1));
+ ASSERT_TRUE (integer_minus_onep (c_i_m1));
+ ASSERT_FALSE (integer_minus_onep (c_f_0));
+ ASSERT_FALSE (integer_minus_onep (c_f_1));
+ ASSERT_FALSE (integer_minus_onep (c_f_m1));
+
+ /* Test integer_each_onep. */
+ ASSERT_FALSE (integer_each_onep (i_0));
+ ASSERT_FALSE (integer_each_onep (wr_i_0));
+ ASSERT_TRUE (integer_each_onep (i_1));
+ ASSERT_TRUE (integer_each_onep (wr_i_1));
+ ASSERT_FALSE (integer_each_onep (i_m1));
+ ASSERT_FALSE (integer_each_onep (wr_i_m1));
+ ASSERT_FALSE (integer_each_onep (f_0));
+ ASSERT_FALSE (integer_each_onep (wr_f_0));
+ ASSERT_FALSE (integer_each_onep (f_1));
+ ASSERT_FALSE (integer_each_onep (wr_f_1));
+ ASSERT_FALSE (integer_each_onep (f_m1));
+ ASSERT_FALSE (integer_each_onep (wr_f_m1));
+ ASSERT_FALSE (integer_each_onep (c_i_0));
+ ASSERT_FALSE (integer_each_onep (c_i_1));
+ ASSERT_FALSE (integer_each_onep (c_i_m1));
+ ASSERT_FALSE (integer_each_onep (c_f_0));
+ ASSERT_FALSE (integer_each_onep (c_f_1));
+ ASSERT_FALSE (integer_each_onep (c_f_m1));
+
+ /* Test integer_truep. */
+ ASSERT_FALSE (integer_truep (i_0));
+ ASSERT_FALSE (integer_truep (wr_i_0));
+ ASSERT_TRUE (integer_truep (i_1));
+ ASSERT_TRUE (integer_truep (wr_i_1));
+ ASSERT_FALSE (integer_truep (i_m1));
+ ASSERT_FALSE (integer_truep (wr_i_m1));
+ ASSERT_FALSE (integer_truep (f_0));
+ ASSERT_FALSE (integer_truep (wr_f_0));
+ ASSERT_FALSE (integer_truep (f_1));
+ ASSERT_FALSE (integer_truep (wr_f_1));
+ ASSERT_FALSE (integer_truep (f_m1));
+ ASSERT_FALSE (integer_truep (wr_f_m1));
+ ASSERT_FALSE (integer_truep (c_i_0));
+ ASSERT_TRUE (integer_truep (c_i_1));
+ ASSERT_FALSE (integer_truep (c_i_m1));
+ ASSERT_FALSE (integer_truep (c_f_0));
+ ASSERT_FALSE (integer_truep (c_f_1));
+ ASSERT_FALSE (integer_truep (c_f_m1));
+
+ /* Test integer_nonzerop. */
+ ASSERT_FALSE (integer_nonzerop (i_0));
+ ASSERT_FALSE (integer_nonzerop (wr_i_0));
+ ASSERT_TRUE (integer_nonzerop (i_1));
+ ASSERT_TRUE (integer_nonzerop (wr_i_1));
+ ASSERT_TRUE (integer_nonzerop (i_m1));
+ ASSERT_TRUE (integer_nonzerop (wr_i_m1));
+ ASSERT_FALSE (integer_nonzerop (f_0));
+ ASSERT_FALSE (integer_nonzerop (wr_f_0));
+ ASSERT_FALSE (integer_nonzerop (f_1));
+ ASSERT_FALSE (integer_nonzerop (wr_f_1));
+ ASSERT_FALSE (integer_nonzerop (f_m1));
+ ASSERT_FALSE (integer_nonzerop (wr_f_m1));
+ ASSERT_FALSE (integer_nonzerop (c_i_0));
+ ASSERT_TRUE (integer_nonzerop (c_i_1));
+ ASSERT_TRUE (integer_nonzerop (c_i_m1));
+ ASSERT_FALSE (integer_nonzerop (c_f_0));
+ ASSERT_FALSE (integer_nonzerop (c_f_1));
+ ASSERT_FALSE (integer_nonzerop (c_f_m1));
+
+ /* Test real_zerop. */
+ ASSERT_FALSE (real_zerop (i_0));
+ ASSERT_FALSE (real_zerop (wr_i_0));
+ ASSERT_FALSE (real_zerop (i_1));
+ ASSERT_FALSE (real_zerop (wr_i_1));
+ ASSERT_FALSE (real_zerop (i_m1));
+ ASSERT_FALSE (real_zerop (wr_i_m1));
+ ASSERT_TRUE (real_zerop (f_0));
+ ASSERT_TRUE (real_zerop (wr_f_0));
+ ASSERT_FALSE (real_zerop (f_1));
+ ASSERT_FALSE (real_zerop (wr_f_1));
+ ASSERT_FALSE (real_zerop (f_m1));
+ ASSERT_FALSE (real_zerop (wr_f_m1));
+ ASSERT_FALSE (real_zerop (c_i_0));
+ ASSERT_FALSE (real_zerop (c_i_1));
+ ASSERT_FALSE (real_zerop (c_i_m1));
+ ASSERT_TRUE (real_zerop (c_f_0));
+ ASSERT_FALSE (real_zerop (c_f_1));
+ ASSERT_FALSE (real_zerop (c_f_m1));
+
+ /* Test real_onep. */
+ ASSERT_FALSE (real_onep (i_0));
+ ASSERT_FALSE (real_onep (wr_i_0));
+ ASSERT_FALSE (real_onep (i_1));
+ ASSERT_FALSE (real_onep (wr_i_1));
+ ASSERT_FALSE (real_onep (i_m1));
+ ASSERT_FALSE (real_onep (wr_i_m1));
+ ASSERT_FALSE (real_onep (f_0));
+ ASSERT_FALSE (real_onep (wr_f_0));
+ ASSERT_TRUE (real_onep (f_1));
+ ASSERT_TRUE (real_onep (wr_f_1));
+ ASSERT_FALSE (real_onep (f_m1));
+ ASSERT_FALSE (real_onep (wr_f_m1));
+ ASSERT_FALSE (real_onep (c_i_0));
+ ASSERT_FALSE (real_onep (c_i_1));
+ ASSERT_FALSE (real_onep (c_i_m1));
+ ASSERT_FALSE (real_onep (c_f_0));
+ ASSERT_TRUE (real_onep (c_f_1));
+ ASSERT_FALSE (real_onep (c_f_m1));
+
+ /* Test real_minus_onep. */
+ ASSERT_FALSE (real_minus_onep (i_0));
+ ASSERT_FALSE (real_minus_onep (wr_i_0));
+ ASSERT_FALSE (real_minus_onep (i_1));
+ ASSERT_FALSE (real_minus_onep (wr_i_1));
+ ASSERT_FALSE (real_minus_onep (i_m1));
+ ASSERT_FALSE (real_minus_onep (wr_i_m1));
+ ASSERT_FALSE (real_minus_onep (f_0));
+ ASSERT_FALSE (real_minus_onep (wr_f_0));
+ ASSERT_FALSE (real_minus_onep (f_1));
+ ASSERT_FALSE (real_minus_onep (wr_f_1));
+ ASSERT_TRUE (real_minus_onep (f_m1));
+ ASSERT_TRUE (real_minus_onep (wr_f_m1));
+ ASSERT_FALSE (real_minus_onep (c_i_0));
+ ASSERT_FALSE (real_minus_onep (c_i_1));
+ ASSERT_FALSE (real_minus_onep (c_i_m1));
+ ASSERT_FALSE (real_minus_onep (c_f_0));
+ ASSERT_FALSE (real_minus_onep (c_f_1));
+ ASSERT_TRUE (real_minus_onep (c_f_m1));
+
+ /* Test zerop. */
+ ASSERT_TRUE (zerop (i_0));
+ ASSERT_TRUE (zerop (wr_i_0));
+ ASSERT_FALSE (zerop (i_1));
+ ASSERT_FALSE (zerop (wr_i_1));
+ ASSERT_FALSE (zerop (i_m1));
+ ASSERT_FALSE (zerop (wr_i_m1));
+ ASSERT_TRUE (zerop (f_0));
+ ASSERT_TRUE (zerop (wr_f_0));
+ ASSERT_FALSE (zerop (f_1));
+ ASSERT_FALSE (zerop (wr_f_1));
+ ASSERT_FALSE (zerop (f_m1));
+ ASSERT_FALSE (zerop (wr_f_m1));
+ ASSERT_TRUE (zerop (c_i_0));
+ ASSERT_FALSE (zerop (c_i_1));
+ ASSERT_FALSE (zerop (c_i_m1));
+ ASSERT_TRUE (zerop (c_f_0));
+ ASSERT_FALSE (zerop (c_f_1));
+ ASSERT_FALSE (zerop (c_f_m1));
+
+ /* Test tree_expr_nonnegative_p. */
+ ASSERT_TRUE (tree_expr_nonnegative_p (i_0));
+ ASSERT_TRUE (tree_expr_nonnegative_p (wr_i_0));
+ ASSERT_TRUE (tree_expr_nonnegative_p (i_1));
+ ASSERT_TRUE (tree_expr_nonnegative_p (wr_i_1));
+ ASSERT_FALSE (tree_expr_nonnegative_p (i_m1));
+ ASSERT_FALSE (tree_expr_nonnegative_p (wr_i_m1));
+ ASSERT_TRUE (tree_expr_nonnegative_p (f_0));
+ ASSERT_TRUE (tree_expr_nonnegative_p (wr_f_0));
+ ASSERT_TRUE (tree_expr_nonnegative_p (f_1));
+ ASSERT_TRUE (tree_expr_nonnegative_p (wr_f_1));
+ ASSERT_FALSE (tree_expr_nonnegative_p (f_m1));
+ ASSERT_FALSE (tree_expr_nonnegative_p (wr_f_m1));
+ ASSERT_FALSE (tree_expr_nonnegative_p (c_i_0));
+ ASSERT_FALSE (tree_expr_nonnegative_p (c_i_1));
+ ASSERT_FALSE (tree_expr_nonnegative_p (c_i_m1));
+ ASSERT_FALSE (tree_expr_nonnegative_p (c_f_0));
+ ASSERT_FALSE (tree_expr_nonnegative_p (c_f_1));
+ ASSERT_FALSE (tree_expr_nonnegative_p (c_f_m1));
+
+ /* Test tree_expr_nonzero_p. */
+ ASSERT_FALSE (tree_expr_nonzero_p (i_0));
+ ASSERT_FALSE (tree_expr_nonzero_p (wr_i_0));
+ ASSERT_TRUE (tree_expr_nonzero_p (i_1));
+ ASSERT_TRUE (tree_expr_nonzero_p (wr_i_1));
+ ASSERT_TRUE (tree_expr_nonzero_p (i_m1));
+ ASSERT_TRUE (tree_expr_nonzero_p (wr_i_m1));
+
+ /* Test integer_valued_real_p. */
+ ASSERT_FALSE (integer_valued_real_p (i_0));
+ ASSERT_TRUE (integer_valued_real_p (f_0));
+ ASSERT_TRUE (integer_valued_real_p (wr_f_0));
+ ASSERT_TRUE (integer_valued_real_p (f_1));
+ ASSERT_TRUE (integer_valued_real_p (wr_f_1));
+
+ /* Test integer_pow2p. */
+ ASSERT_FALSE (integer_pow2p (i_0));
+ ASSERT_TRUE (integer_pow2p (i_1));
+ ASSERT_TRUE (integer_pow2p (wr_i_1));
+
+ /* Test uniform_integer_cst_p. */
+ ASSERT_TRUE (uniform_integer_cst_p (i_0));
+ ASSERT_TRUE (uniform_integer_cst_p (wr_i_0));
+ ASSERT_TRUE (uniform_integer_cst_p (i_1));
+ ASSERT_TRUE (uniform_integer_cst_p (wr_i_1));
+ ASSERT_TRUE (uniform_integer_cst_p (i_m1));
+ ASSERT_TRUE (uniform_integer_cst_p (wr_i_m1));
+ ASSERT_FALSE (uniform_integer_cst_p (f_0));
+ ASSERT_FALSE (uniform_integer_cst_p (wr_f_0));
+ ASSERT_FALSE (uniform_integer_cst_p (f_1));
+ ASSERT_FALSE (uniform_integer_cst_p (wr_f_1));
+ ASSERT_FALSE (uniform_integer_cst_p (f_m1));
+ ASSERT_FALSE (uniform_integer_cst_p (wr_f_m1));
+ ASSERT_FALSE (uniform_integer_cst_p (c_i_0));
+ ASSERT_FALSE (uniform_integer_cst_p (c_i_1));
+ ASSERT_FALSE (uniform_integer_cst_p (c_i_m1));
+ ASSERT_FALSE (uniform_integer_cst_p (c_f_0));
+ ASSERT_FALSE (uniform_integer_cst_p (c_f_1));
+ ASSERT_FALSE (uniform_integer_cst_p (c_f_m1));
+}
+
+/* Check that string escaping works correctly. */
+
+static void
+test_escaped_strings (void)
+{
+ int saved_cutoff;
+ escaped_string msg;
+
+ msg.escape (NULL);
+ /* ASSERT_STREQ does not accept NULL as a valid test
+ result, so we have to use ASSERT_EQ instead. */
+ ASSERT_EQ (NULL, (const char *) msg);
+
+ msg.escape ("");
+ ASSERT_STREQ ("", (const char *) msg);
+
+ msg.escape ("foobar");
+ ASSERT_STREQ ("foobar", (const char *) msg);
+
+ /* Ensure that we have -fmessage-length set to 0. */
+ saved_cutoff = pp_line_cutoff (global_dc->printer);
+ pp_line_cutoff (global_dc->printer) = 0;
+
+ msg.escape ("foo\nbar");
+ ASSERT_STREQ ("foo\\nbar", (const char *) msg);
+
+ msg.escape ("\a\b\f\n\r\t\v");
+ ASSERT_STREQ ("\\a\\b\\f\\n\\r\\t\\v", (const char *) msg);
+
+ /* Now repeat the tests with -fmessage-length set to 5. */
+ pp_line_cutoff (global_dc->printer) = 5;
+
+ /* Note that the newline is not translated into an escape. */
+ msg.escape ("foo\nbar");
+ ASSERT_STREQ ("foo\nbar", (const char *) msg);
+
+ msg.escape ("\a\b\f\n\r\t\v");
+ ASSERT_STREQ ("\\a\\b\\f\n\\r\\t\\v", (const char *) msg);
+
+ /* Restore the original message length setting. */
+ pp_line_cutoff (global_dc->printer) = saved_cutoff;
+}
+
+/* Run all of the selftests within this file. */
+
+void
+tree_c_tests ()
+{
+ test_integer_constants ();
+ test_identifiers ();
+ test_labels ();
+ test_vector_cst_patterns ();
+ test_location_wrappers ();
+ test_predicates ();
+ test_escaped_strings ();
+}
+
+} // namespace selftest
+
+#endif /* CHECKING_P */
+
+#include "gt-tree.h"