diff options
Diffstat (limited to 'gcc/tree-vectorizer.c')
| -rw-r--r-- | gcc/tree-vectorizer.c | 2738 | 
1 files changed, 68 insertions, 2670 deletions
diff --git a/gcc/tree-vectorizer.c b/gcc/tree-vectorizer.c index 2c5d9cc..0636c6a 100644 --- a/gcc/tree-vectorizer.c +++ b/gcc/tree-vectorizer.c @@ -1,7 +1,7 @@ -/* Loop Vectorization -   Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 Free Software +/* Vectorizer +   Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software     Foundation, Inc. -   Contributed by Dorit Naishlos <dorit@il.ibm.com> +   Contributed by Dorit Naishlos <dorit@il.ibm.com>   This file is part of GCC. @@ -19,105 +19,40 @@ You should have received a copy of the GNU General Public License  along with GCC; see the file COPYING3.  If not see  <http://www.gnu.org/licenses/>.  */ -/* Loop Vectorization Pass. - -   This pass tries to vectorize loops. This first implementation focuses on -   simple inner-most loops, with no conditional control flow, and a set of -   simple operations which vector form can be expressed using existing -   tree codes (PLUS, MULT etc). - -   For example, the vectorizer transforms the following simple loop: - -	short a[N]; short b[N]; short c[N]; int i; - -	for (i=0; i<N; i++){ -	  a[i] = b[i] + c[i]; -	} - -   as if it was manually vectorized by rewriting the source code into: - -	typedef int __attribute__((mode(V8HI))) v8hi; -	short a[N];  short b[N]; short c[N];   int i; -	v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c; -	v8hi va, vb, vc; - -	for (i=0; i<N/8; i++){ -	  vb = pb[i]; -	  vc = pc[i]; -	  va = vb + vc; -	  pa[i] = va; -	} - -	The main entry to this pass is vectorize_loops(), in which -   the vectorizer applies a set of analyses on a given set of loops, -   followed by the actual vectorization transformation for the loops that -   had successfully passed the analysis phase. - -	Throughout this pass we make a distinction between two types of -   data: scalars (which are represented by SSA_NAMES), and memory references -   ("data-refs"). These two types of data require different handling both  -   during analysis and transformation. The types of data-refs that the  -   vectorizer currently supports are ARRAY_REFS which base is an array DECL  -   (not a pointer), and INDIRECT_REFS through pointers; both array and pointer -   accesses are required to have a  simple (consecutive) access pattern. - -   Analysis phase: -   =============== -	The driver for the analysis phase is vect_analyze_loop_nest(). -   It applies a set of analyses, some of which rely on the scalar evolution  -   analyzer (scev) developed by Sebastian Pop. - -	During the analysis phase the vectorizer records some information -   per stmt in a "stmt_vec_info" struct which is attached to each stmt in the  -   loop, as well as general information about the loop as a whole, which is -   recorded in a "loop_vec_info" struct attached to each loop. - -   Transformation phase: -   ===================== -	The loop transformation phase scans all the stmts in the loop, and -   creates a vector stmt (or a sequence of stmts) for each scalar stmt S in -   the loop that needs to be vectorized. It insert the vector code sequence -   just before the scalar stmt S, and records a pointer to the vector code -   in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct  -   attached to S). This pointer will be used for the vectorization of following -   stmts which use the def of stmt S. Stmt S is removed if it writes to memory; -   otherwise, we rely on dead code elimination for removing it. - -	For example, say stmt S1 was vectorized into stmt VS1: - -   VS1: vb = px[i]; -   S1:	b = x[i];    STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1 -   S2:  a = b; - -   To vectorize stmt S2, the vectorizer first finds the stmt that defines -   the operand 'b' (S1), and gets the relevant vector def 'vb' from the -   vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The -   resulting sequence would be: - -   VS1: vb = px[i]; -   S1:	b = x[i];	STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1 -   VS2: va = vb; -   S2:  a = b;          STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2 - -	Operands that are not SSA_NAMEs, are data-refs that appear in  -   load/store operations (like 'x[i]' in S1), and are handled differently. - -   Target modeling: -   ================= -	Currently the only target specific information that is used is the -   size of the vector (in bytes) - "UNITS_PER_SIMD_WORD". Targets that can  -   support different sizes of vectors, for now will need to specify one value  -   for "UNITS_PER_SIMD_WORD". More flexibility will be added in the future. - -	Since we only vectorize operations which vector form can be -   expressed using existing tree codes, to verify that an operation is -   supported, the vectorizer checks the relevant optab at the relevant -   machine_mode (e.g, optab_handler (add_optab, V8HImode)->insn_code). If -   the value found is CODE_FOR_nothing, then there's no target support, and -   we can't vectorize the stmt. - -   For additional information on this project see: -   http://gcc.gnu.org/projects/tree-ssa/vectorization.html +/* Loop and basic block vectorizer. + +  This file contains drivers for the three vectorizers:  +  (1) loop vectorizer (inter-iteration parallelism),  +  (2) loop-aware SLP (intra-iteration parallelism) (invoked by the loop +      vectorizer) +  (3) BB vectorizer (out-of-loops), aka SLP +   +  The rest of the vectorizer's code is organized as follows: +  - tree-vect-loop.c - loop specific parts such as reductions, etc. These are  +    used by drivers (1) and (2).  +  - tree-vect-loop-manip.c - vectorizer's loop control-flow utilities, used by  +    drivers (1) and (2).  +  - tree-vect-slp.c - BB vectorization specific analysis and transformation,  +    used by drivers (2) and (3). +  - tree-vect-stmts.c - statements analysis and transformation (used by all). +  - tree-vect-data-refs.c - vectorizer specific data-refs analysis and  +    manipulations (used by all). +  - tree-vect-patterns.c - vectorizable code patterns detector (used by all) + +  Here's a poor attempt at illustrating that: + +     tree-vectorizer.c: +     loop_vect()  loop_aware_slp()  slp_vect() +          |        /           \          / +          |       /             \        / +          tree-vect-loop.c  tree-vect-slp.c +                | \      \  /      /   | +                |  \      \/      /    | +                |   \     /\     /     | +                |    \   /  \   /      | +         tree-vect-stmts.c  tree-vect-data-refs.c +                       \      / +                    tree-vect-patterns.c  */  #include "config.h" @@ -126,32 +61,13 @@ along with GCC; see the file COPYING3.  If not see  #include "tm.h"  #include "ggc.h"  #include "tree.h" -#include "target.h" -#include "rtl.h" -#include "basic-block.h"  #include "diagnostic.h"  #include "tree-flow.h"  #include "tree-dump.h" -#include "timevar.h"  #include "cfgloop.h"  #include "cfglayout.h" -#include "expr.h" -#include "recog.h" -#include "optabs.h" -#include "params.h" -#include "toplev.h" -#include "tree-chrec.h" -#include "tree-data-ref.h" -#include "tree-scalar-evolution.h" -#include "input.h" -#include "hashtab.h"  #include "tree-vectorizer.h"  #include "tree-pass.h" -#include "langhooks.h" - -/************************************************************************* -  General Vectorization Utilities - *************************************************************************/  /* vect_dump will be set to stderr or dump_file if exist.  */  FILE *vect_dump; @@ -161,7 +77,7 @@ FILE *vect_dump;  enum verbosity_levels vect_verbosity_level = MAX_VERBOSITY_LEVEL;  /* Loop location.  */ -static LOC vect_loop_location; +LOC vect_loop_location;  /* Bitmap of virtual variables to be renamed.  */  bitmap vect_memsyms_to_rename; @@ -170,1273 +86,6 @@ bitmap vect_memsyms_to_rename;  VEC(vec_void_p,heap) *stmt_vec_info_vec; -/************************************************************************* -  Simple Loop Peeling Utilities - -  Utilities to support loop peeling for vectorization purposes. - *************************************************************************/ - - -/* Renames the use *OP_P.  */ - -static void -rename_use_op (use_operand_p op_p) -{ -  tree new_name; - -  if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME) -    return; - -  new_name = get_current_def (USE_FROM_PTR (op_p)); - -  /* Something defined outside of the loop.  */ -  if (!new_name) -    return; - -  /* An ordinary ssa name defined in the loop.  */ - -  SET_USE (op_p, new_name); -} - - -/* Renames the variables in basic block BB.  */ - -void -rename_variables_in_bb (basic_block bb) -{ -  gimple_stmt_iterator gsi; -  gimple stmt; -  use_operand_p use_p; -  ssa_op_iter iter; -  edge e; -  edge_iterator ei; -  struct loop *loop = bb->loop_father; - -  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) -    { -      stmt = gsi_stmt (gsi); -      FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES) -	rename_use_op (use_p); -    } - -  FOR_EACH_EDGE (e, ei, bb->succs) -    { -      if (!flow_bb_inside_loop_p (loop, e->dest)) -	continue; -      for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi)) -        rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi_stmt (gsi), e)); -    } -} - - -/* Renames variables in new generated LOOP.  */ - -void -rename_variables_in_loop (struct loop *loop) -{ -  unsigned i; -  basic_block *bbs; - -  bbs = get_loop_body (loop); - -  for (i = 0; i < loop->num_nodes; i++) -    rename_variables_in_bb (bbs[i]); - -  free (bbs); -} - - -/* Update the PHI nodes of NEW_LOOP. - -   NEW_LOOP is a duplicate of ORIG_LOOP. -   AFTER indicates whether NEW_LOOP executes before or after ORIG_LOOP: -   AFTER is true if NEW_LOOP executes after ORIG_LOOP, and false if it -   executes before it.  */ - -static void -slpeel_update_phis_for_duplicate_loop (struct loop *orig_loop, -				       struct loop *new_loop, bool after) -{ -  tree new_ssa_name; -  gimple phi_new, phi_orig; -  tree def; -  edge orig_loop_latch = loop_latch_edge (orig_loop); -  edge orig_entry_e = loop_preheader_edge (orig_loop); -  edge new_loop_exit_e = single_exit (new_loop); -  edge new_loop_entry_e = loop_preheader_edge (new_loop); -  edge entry_arg_e = (after ? orig_loop_latch : orig_entry_e); -  gimple_stmt_iterator gsi_new, gsi_orig; - -  /* -     step 1. For each loop-header-phi: -             Add the first phi argument for the phi in NEW_LOOP -            (the one associated with the entry of NEW_LOOP) - -     step 2. For each loop-header-phi: -             Add the second phi argument for the phi in NEW_LOOP -            (the one associated with the latch of NEW_LOOP) - -     step 3. Update the phis in the successor block of NEW_LOOP. - -        case 1: NEW_LOOP was placed before ORIG_LOOP: -                The successor block of NEW_LOOP is the header of ORIG_LOOP. -                Updating the phis in the successor block can therefore be done -                along with the scanning of the loop header phis, because the -                header blocks of ORIG_LOOP and NEW_LOOP have exactly the same -                phi nodes, organized in the same order. - -        case 2: NEW_LOOP was placed after ORIG_LOOP: -                The successor block of NEW_LOOP is the original exit block of  -                ORIG_LOOP - the phis to be updated are the loop-closed-ssa phis. -                We postpone updating these phis to a later stage (when -                loop guards are added). -   */ - - -  /* Scan the phis in the headers of the old and new loops -     (they are organized in exactly the same order).  */ - -  for (gsi_new = gsi_start_phis (new_loop->header), -       gsi_orig = gsi_start_phis (orig_loop->header); -       !gsi_end_p (gsi_new) && !gsi_end_p (gsi_orig); -       gsi_next (&gsi_new), gsi_next (&gsi_orig)) -    { -      phi_new = gsi_stmt (gsi_new); -      phi_orig = gsi_stmt (gsi_orig); - -      /* step 1.  */ -      def = PHI_ARG_DEF_FROM_EDGE (phi_orig, entry_arg_e); -      add_phi_arg (phi_new, def, new_loop_entry_e); - -      /* step 2.  */ -      def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch); -      if (TREE_CODE (def) != SSA_NAME) -        continue; - -      new_ssa_name = get_current_def (def); -      if (!new_ssa_name) -	{ -	  /* This only happens if there are no definitions -	     inside the loop. use the phi_result in this case.  */ -	  new_ssa_name = PHI_RESULT (phi_new); -	} - -      /* An ordinary ssa name defined in the loop.  */ -      add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop)); - -      /* step 3 (case 1).  */ -      if (!after) -        { -          gcc_assert (new_loop_exit_e == orig_entry_e); -          SET_PHI_ARG_DEF (phi_orig, -                           new_loop_exit_e->dest_idx, -                           new_ssa_name); -        } -    } -} - - -/* Update PHI nodes for a guard of the LOOP. - -   Input: -   - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that -        controls whether LOOP is to be executed.  GUARD_EDGE is the edge that -        originates from the guard-bb, skips LOOP and reaches the (unique) exit -        bb of LOOP.  This loop-exit-bb is an empty bb with one successor. -        We denote this bb NEW_MERGE_BB because before the guard code was added -        it had a single predecessor (the LOOP header), and now it became a merge -        point of two paths - the path that ends with the LOOP exit-edge, and -        the path that ends with GUARD_EDGE. -   - NEW_EXIT_BB: New basic block that is added by this function between LOOP -        and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis. - -   ===> The CFG before the guard-code was added: -        LOOP_header_bb: -          loop_body -          if (exit_loop) goto update_bb -          else           goto LOOP_header_bb -        update_bb: - -   ==> The CFG after the guard-code was added: -        guard_bb: -          if (LOOP_guard_condition) goto new_merge_bb -          else                      goto LOOP_header_bb -        LOOP_header_bb: -          loop_body -          if (exit_loop_condition) goto new_merge_bb -          else                     goto LOOP_header_bb -        new_merge_bb: -          goto update_bb -        update_bb: - -   ==> The CFG after this function: -        guard_bb: -          if (LOOP_guard_condition) goto new_merge_bb -          else                      goto LOOP_header_bb -        LOOP_header_bb: -          loop_body -          if (exit_loop_condition) goto new_exit_bb -          else                     goto LOOP_header_bb -        new_exit_bb: -        new_merge_bb: -          goto update_bb -        update_bb: - -   This function: -   1. creates and updates the relevant phi nodes to account for the new -      incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves: -      1.1. Create phi nodes at NEW_MERGE_BB. -      1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted -           UPDATE_BB).  UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB -   2. preserves loop-closed-ssa-form by creating the required phi nodes -      at the exit of LOOP (i.e, in NEW_EXIT_BB). - -   There are two flavors to this function: - -   slpeel_update_phi_nodes_for_guard1: -     Here the guard controls whether we enter or skip LOOP, where LOOP is a -     prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are -     for variables that have phis in the loop header. - -   slpeel_update_phi_nodes_for_guard2: -     Here the guard controls whether we enter or skip LOOP, where LOOP is an -     epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are -     for variables that have phis in the loop exit. - -   I.E., the overall structure is: - -        loop1_preheader_bb: -                guard1 (goto loop1/merge1_bb) -        loop1 -        loop1_exit_bb: -                guard2 (goto merge1_bb/merge2_bb) -        merge1_bb -        loop2 -        loop2_exit_bb -        merge2_bb -        next_bb - -   slpeel_update_phi_nodes_for_guard1 takes care of creating phis in -   loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars -   that have phis in loop1->header). - -   slpeel_update_phi_nodes_for_guard2 takes care of creating phis in -   loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars -   that have phis in next_bb). It also adds some of these phis to -   loop1_exit_bb. - -   slpeel_update_phi_nodes_for_guard1 is always called before -   slpeel_update_phi_nodes_for_guard2. They are both needed in order -   to create correct data-flow and loop-closed-ssa-form. - -   Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables -   that change between iterations of a loop (and therefore have a phi-node -   at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates -   phis for variables that are used out of the loop (and therefore have  -   loop-closed exit phis). Some variables may be both updated between  -   iterations and used after the loop. This is why in loop1_exit_bb we -   may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1) -   and exit phis (created by slpeel_update_phi_nodes_for_guard2). - -   - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of -     an original loop. i.e., we have: - -           orig_loop -           guard_bb (goto LOOP/new_merge) -           new_loop <-- LOOP -           new_exit -           new_merge -           next_bb - -     If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we -     have: - -           new_loop -           guard_bb (goto LOOP/new_merge) -           orig_loop <-- LOOP -           new_exit -           new_merge -           next_bb - -     The SSA names defined in the original loop have a current -     reaching definition that that records the corresponding new -     ssa-name used in the new duplicated loop copy. -  */ - -/* Function slpeel_update_phi_nodes_for_guard1 -    -   Input: -   - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above. -   - DEFS - a bitmap of ssa names to mark new names for which we recorded -            information.  -    -   In the context of the overall structure, we have: - -        loop1_preheader_bb:  -                guard1 (goto loop1/merge1_bb) -LOOP->  loop1 -        loop1_exit_bb: -                guard2 (goto merge1_bb/merge2_bb) -        merge1_bb -        loop2 -        loop2_exit_bb -        merge2_bb -        next_bb - -   For each name updated between loop iterations (i.e - for each name that has -   an entry (loop-header) phi in LOOP) we create a new phi in: -   1. merge1_bb (to account for the edge from guard1) -   2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form) -*/ - -static void -slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop, -                                    bool is_new_loop, basic_block *new_exit_bb, -                                    bitmap *defs) -{ -  gimple orig_phi, new_phi; -  gimple update_phi, update_phi2; -  tree guard_arg, loop_arg; -  basic_block new_merge_bb = guard_edge->dest; -  edge e = EDGE_SUCC (new_merge_bb, 0); -  basic_block update_bb = e->dest; -  basic_block orig_bb = loop->header; -  edge new_exit_e; -  tree current_new_name; -  tree name; -  gimple_stmt_iterator gsi_orig, gsi_update; - -  /* Create new bb between loop and new_merge_bb.  */ -  *new_exit_bb = split_edge (single_exit (loop)); - -  new_exit_e = EDGE_SUCC (*new_exit_bb, 0); - -  for (gsi_orig = gsi_start_phis (orig_bb), -       gsi_update = gsi_start_phis (update_bb); -       !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update); -       gsi_next (&gsi_orig), gsi_next (&gsi_update)) -    { -      orig_phi = gsi_stmt (gsi_orig); -      update_phi = gsi_stmt (gsi_update); - -      /* Virtual phi; Mark it for renaming. We actually want to call -	 mar_sym_for_renaming, but since all ssa renaming datastructures -	 are going to be freed before we get to call ssa_update, we just -	 record this name for now in a bitmap, and will mark it for -	 renaming later.  */ -      name = PHI_RESULT (orig_phi); -      if (!is_gimple_reg (SSA_NAME_VAR (name))) -        bitmap_set_bit (vect_memsyms_to_rename, DECL_UID (SSA_NAME_VAR (name))); - -      /** 1. Handle new-merge-point phis  **/ - -      /* 1.1. Generate new phi node in NEW_MERGE_BB:  */ -      new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)), -                                 new_merge_bb); - -      /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge -            of LOOP. Set the two phi args in NEW_PHI for these edges:  */ -      loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0)); -      guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop)); - -      add_phi_arg (new_phi, loop_arg, new_exit_e); -      add_phi_arg (new_phi, guard_arg, guard_edge); - -      /* 1.3. Update phi in successor block.  */ -      gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg -                  || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg); -      SET_PHI_ARG_DEF (update_phi, e->dest_idx, PHI_RESULT (new_phi)); -      update_phi2 = new_phi; - - -      /** 2. Handle loop-closed-ssa-form phis  **/ - -      if (!is_gimple_reg (PHI_RESULT (orig_phi))) -	continue; - -      /* 2.1. Generate new phi node in NEW_EXIT_BB:  */ -      new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)), -                                 *new_exit_bb); - -      /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop.  */ -      add_phi_arg (new_phi, loop_arg, single_exit (loop)); - -      /* 2.3. Update phi in successor of NEW_EXIT_BB:  */ -      gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg); -      SET_PHI_ARG_DEF (update_phi2, new_exit_e->dest_idx, PHI_RESULT (new_phi)); - -      /* 2.4. Record the newly created name with set_current_def. -         We want to find a name such that -                name = get_current_def (orig_loop_name) -         and to set its current definition as follows: -                set_current_def (name, new_phi_name) - -         If LOOP is a new loop then loop_arg is already the name we're -         looking for. If LOOP is the original loop, then loop_arg is -         the orig_loop_name and the relevant name is recorded in its -         current reaching definition.  */ -      if (is_new_loop) -        current_new_name = loop_arg; -      else -        { -          current_new_name = get_current_def (loop_arg); -	  /* current_def is not available only if the variable does not -	     change inside the loop, in which case we also don't care -	     about recording a current_def for it because we won't be -	     trying to create loop-exit-phis for it.  */ -	  if (!current_new_name) -	    continue; -        } -      gcc_assert (get_current_def (current_new_name) == NULL_TREE); - -      set_current_def (current_new_name, PHI_RESULT (new_phi)); -      bitmap_set_bit (*defs, SSA_NAME_VERSION (current_new_name)); -    } -} - - -/* Function slpeel_update_phi_nodes_for_guard2 - -   Input: -   - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above. - -   In the context of the overall structure, we have: - -        loop1_preheader_bb:  -                guard1 (goto loop1/merge1_bb) -        loop1 -        loop1_exit_bb:  -                guard2 (goto merge1_bb/merge2_bb) -        merge1_bb -LOOP->  loop2 -        loop2_exit_bb -        merge2_bb -        next_bb - -   For each name used out side the loop (i.e - for each name that has an exit -   phi in next_bb) we create a new phi in: -   1. merge2_bb (to account for the edge from guard_bb)  -   2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form) -   3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form), -      if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1). -*/ - -static void -slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop, -                                    bool is_new_loop, basic_block *new_exit_bb) -{ -  gimple orig_phi, new_phi; -  gimple update_phi, update_phi2; -  tree guard_arg, loop_arg; -  basic_block new_merge_bb = guard_edge->dest; -  edge e = EDGE_SUCC (new_merge_bb, 0); -  basic_block update_bb = e->dest; -  edge new_exit_e; -  tree orig_def, orig_def_new_name; -  tree new_name, new_name2; -  tree arg; -  gimple_stmt_iterator gsi; - -  /* Create new bb between loop and new_merge_bb.  */ -  *new_exit_bb = split_edge (single_exit (loop)); - -  new_exit_e = EDGE_SUCC (*new_exit_bb, 0); - -  for (gsi = gsi_start_phis (update_bb); !gsi_end_p (gsi); gsi_next (&gsi)) -    { -      update_phi = gsi_stmt (gsi); -      orig_phi = update_phi; -      orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e); -      /* This loop-closed-phi actually doesn't represent a use -         out of the loop - the phi arg is a constant.  */  -      if (TREE_CODE (orig_def) != SSA_NAME) -        continue; -      orig_def_new_name = get_current_def (orig_def); -      arg = NULL_TREE; - -      /** 1. Handle new-merge-point phis  **/ - -      /* 1.1. Generate new phi node in NEW_MERGE_BB:  */ -      new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)), -                                 new_merge_bb); - -      /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge -            of LOOP. Set the two PHI args in NEW_PHI for these edges:  */ -      new_name = orig_def; -      new_name2 = NULL_TREE; -      if (orig_def_new_name) -        { -          new_name = orig_def_new_name; -	  /* Some variables have both loop-entry-phis and loop-exit-phis. -	     Such variables were given yet newer names by phis placed in -	     guard_bb by slpeel_update_phi_nodes_for_guard1. I.e: -	     new_name2 = get_current_def (get_current_def (orig_name)).  */ -          new_name2 = get_current_def (new_name); -        } -   -      if (is_new_loop) -        { -          guard_arg = orig_def; -          loop_arg = new_name; -        } -      else -        { -          guard_arg = new_name; -          loop_arg = orig_def; -        } -      if (new_name2) -        guard_arg = new_name2; -   -      add_phi_arg (new_phi, loop_arg, new_exit_e); -      add_phi_arg (new_phi, guard_arg, guard_edge); - -      /* 1.3. Update phi in successor block.  */ -      gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def); -      SET_PHI_ARG_DEF (update_phi, e->dest_idx, PHI_RESULT (new_phi)); -      update_phi2 = new_phi; - - -      /** 2. Handle loop-closed-ssa-form phis  **/ - -      /* 2.1. Generate new phi node in NEW_EXIT_BB:  */ -      new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)), -                                 *new_exit_bb); - -      /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop.  */ -      add_phi_arg (new_phi, loop_arg, single_exit (loop)); - -      /* 2.3. Update phi in successor of NEW_EXIT_BB:  */ -      gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg); -      SET_PHI_ARG_DEF (update_phi2, new_exit_e->dest_idx, PHI_RESULT (new_phi)); - - -      /** 3. Handle loop-closed-ssa-form phis for first loop  **/ - -      /* 3.1. Find the relevant names that need an exit-phi in -	 GUARD_BB, i.e. names for which -	 slpeel_update_phi_nodes_for_guard1 had not already created a -	 phi node. This is the case for names that are used outside -	 the loop (and therefore need an exit phi) but are not updated -	 across loop iterations (and therefore don't have a -	 loop-header-phi). - -	 slpeel_update_phi_nodes_for_guard1 is responsible for -	 creating loop-exit phis in GUARD_BB for names that have a -	 loop-header-phi.  When such a phi is created we also record -	 the new name in its current definition.  If this new name -	 exists, then guard_arg was set to this new name (see 1.2 -	 above).  Therefore, if guard_arg is not this new name, this -	 is an indication that an exit-phi in GUARD_BB was not yet -	 created, so we take care of it here.  */ -      if (guard_arg == new_name2) -	continue; -      arg = guard_arg; - -      /* 3.2. Generate new phi node in GUARD_BB:  */ -      new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)), -                                 guard_edge->src); - -      /* 3.3. GUARD_BB has one incoming edge:  */ -      gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1); -      add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0)); - -      /* 3.4. Update phi in successor of GUARD_BB:  */ -      gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge) -                                                                == guard_arg); -      SET_PHI_ARG_DEF (update_phi2, guard_edge->dest_idx, PHI_RESULT (new_phi)); -    } -} - - -/* Make the LOOP iterate NITERS times. This is done by adding a new IV -   that starts at zero, increases by one and its limit is NITERS. - -   Assumption: the exit-condition of LOOP is the last stmt in the loop.  */ - -void -slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters) -{ -  tree indx_before_incr, indx_after_incr; -  gimple cond_stmt; -  gimple orig_cond; -  edge exit_edge = single_exit (loop); -  gimple_stmt_iterator loop_cond_gsi; -  gimple_stmt_iterator incr_gsi; -  bool insert_after; -  tree init = build_int_cst (TREE_TYPE (niters), 0); -  tree step = build_int_cst (TREE_TYPE (niters), 1); -  LOC loop_loc; -  enum tree_code code; - -  orig_cond = get_loop_exit_condition (loop); -  gcc_assert (orig_cond); -  loop_cond_gsi = gsi_for_stmt (orig_cond); - -  standard_iv_increment_position (loop, &incr_gsi, &insert_after); -  create_iv (init, step, NULL_TREE, loop, -             &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr); - -  indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr, -					      true, NULL_TREE, true, -					      GSI_SAME_STMT); -  niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE, -				     true, GSI_SAME_STMT); - -  code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR; -  cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE, -				 NULL_TREE); - -  gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT); - -  /* Remove old loop exit test:  */ -  gsi_remove (&loop_cond_gsi, true); - -  loop_loc = find_loop_location (loop); -  if (dump_file && (dump_flags & TDF_DETAILS)) -    { -      if (loop_loc != UNKNOWN_LOC) -        fprintf (dump_file, "\nloop at %s:%d: ", -                 LOC_FILE (loop_loc), LOC_LINE (loop_loc)); -      print_gimple_stmt (dump_file, cond_stmt, 0, TDF_SLIM); -    } - -  loop->nb_iterations = niters; -} - - -/* Given LOOP this function generates a new copy of it and puts it  -   on E which is either the entry or exit of LOOP.  */ - -struct loop * -slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, edge e) -{ -  struct loop *new_loop; -  basic_block *new_bbs, *bbs; -  bool at_exit; -  bool was_imm_dom; -  basic_block exit_dest;  -  gimple phi; -  tree phi_arg; -  edge exit, new_exit; -  gimple_stmt_iterator gsi; - -  at_exit = (e == single_exit (loop));  -  if (!at_exit && e != loop_preheader_edge (loop)) -    return NULL; - -  bbs = get_loop_body (loop); - -  /* Check whether duplication is possible.  */ -  if (!can_copy_bbs_p (bbs, loop->num_nodes)) -    { -      free (bbs); -      return NULL; -    } - -  /* Generate new loop structure.  */ -  new_loop = duplicate_loop (loop, loop_outer (loop)); -  if (!new_loop) -    { -      free (bbs); -      return NULL; -    } - -  exit_dest = single_exit (loop)->dest; -  was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,  -					  exit_dest) == loop->header ?  -		 true : false); - -  new_bbs = XNEWVEC (basic_block, loop->num_nodes); - -  exit = single_exit (loop); -  copy_bbs (bbs, loop->num_nodes, new_bbs, -	    &exit, 1, &new_exit, NULL, -	    e->src); - -  /* Duplicating phi args at exit bbs as coming  -     also from exit of duplicated loop.  */ -  for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi); gsi_next (&gsi)) -    { -      phi = gsi_stmt (gsi); -      phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, single_exit (loop)); -      if (phi_arg) -	{ -	  edge new_loop_exit_edge; - -	  if (EDGE_SUCC (new_loop->header, 0)->dest == new_loop->latch) -	    new_loop_exit_edge = EDGE_SUCC (new_loop->header, 1); -	  else -	    new_loop_exit_edge = EDGE_SUCC (new_loop->header, 0); -   -	  add_phi_arg (phi, phi_arg, new_loop_exit_edge);	 -	} -    }     -    -  if (at_exit) /* Add the loop copy at exit.  */ -    { -      redirect_edge_and_branch_force (e, new_loop->header); -      PENDING_STMT (e) = NULL; -      set_immediate_dominator (CDI_DOMINATORS, new_loop->header, e->src); -      if (was_imm_dom) -	set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_loop->header); -    } -  else /* Add the copy at entry.  */ -    { -      edge new_exit_e; -      edge entry_e = loop_preheader_edge (loop); -      basic_block preheader = entry_e->src; -            -      if (!flow_bb_inside_loop_p (new_loop,  -				  EDGE_SUCC (new_loop->header, 0)->dest)) -        new_exit_e = EDGE_SUCC (new_loop->header, 0); -      else -	new_exit_e = EDGE_SUCC (new_loop->header, 1);  - -      redirect_edge_and_branch_force (new_exit_e, loop->header); -      PENDING_STMT (new_exit_e) = NULL; -      set_immediate_dominator (CDI_DOMINATORS, loop->header, -			       new_exit_e->src); - -      /* We have to add phi args to the loop->header here as coming  -	 from new_exit_e edge.  */ -      for (gsi = gsi_start_phis (loop->header); -           !gsi_end_p (gsi); -           gsi_next (&gsi)) -	{ -	  phi = gsi_stmt (gsi); -	  phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, entry_e); -	  if (phi_arg) -	    add_phi_arg (phi, phi_arg, new_exit_e);	 -	}     - -      redirect_edge_and_branch_force (entry_e, new_loop->header); -      PENDING_STMT (entry_e) = NULL; -      set_immediate_dominator (CDI_DOMINATORS, new_loop->header, preheader); -    } - -  free (new_bbs); -  free (bbs); - -  return new_loop; -} - - -/* Given the condition statement COND, put it as the last statement -   of GUARD_BB; EXIT_BB is the basic block to skip the loop; -   Assumes that this is the single exit of the guarded loop.   -   Returns the skip edge.  */ - -static edge -slpeel_add_loop_guard (basic_block guard_bb, tree cond, basic_block exit_bb, -		       basic_block dom_bb) -{ -  gimple_stmt_iterator gsi; -  edge new_e, enter_e; -  gimple cond_stmt; -  gimple_seq gimplify_stmt_list = NULL; - -  enter_e = EDGE_SUCC (guard_bb, 0); -  enter_e->flags &= ~EDGE_FALLTHRU; -  enter_e->flags |= EDGE_FALSE_VALUE; -  gsi = gsi_last_bb (guard_bb); - -  cond = force_gimple_operand (cond, &gimplify_stmt_list, true, NULL_TREE); -  cond_stmt = gimple_build_cond (NE_EXPR, -				 cond, build_int_cst (TREE_TYPE (cond), 0), -				 NULL_TREE, NULL_TREE); -  if (gimplify_stmt_list) -    gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT); - -  gsi = gsi_last_bb (guard_bb); -  gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT); - -  /* Add new edge to connect guard block to the merge/loop-exit block.  */ -  new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE); -  set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb); -  return new_e; -} - - -/* This function verifies that the following restrictions apply to LOOP: -   (1) it is innermost -   (2) it consists of exactly 2 basic blocks - header, and an empty latch. -   (3) it is single entry, single exit -   (4) its exit condition is the last stmt in the header -   (5) E is the entry/exit edge of LOOP. - */ - -bool -slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e) -{ -  edge exit_e = single_exit (loop); -  edge entry_e = loop_preheader_edge (loop); -  gimple orig_cond = get_loop_exit_condition (loop); -  gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src); - -  if (need_ssa_update_p ()) -    return false; - -  if (loop->inner -      /* All loops have an outer scope; the only case loop->outer is NULL is for -         the function itself.  */ -      || !loop_outer (loop) -      || loop->num_nodes != 2 -      || !empty_block_p (loop->latch) -      || !single_exit (loop) -      /* Verify that new loop exit condition can be trivially modified.  */ -      || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi)) -      || (e != exit_e && e != entry_e)) -    return false; - -  return true; -} - -#ifdef ENABLE_CHECKING -void -slpeel_verify_cfg_after_peeling (struct loop *first_loop, -                                 struct loop *second_loop) -{ -  basic_block loop1_exit_bb = single_exit (first_loop)->dest; -  basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src; -  basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src; - -  /* A guard that controls whether the second_loop is to be executed or skipped -     is placed in first_loop->exit.  first_loop->exit therefore has two -     successors - one is the preheader of second_loop, and the other is a bb -     after second_loop. -   */ -  gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2); -    -  /* 1. Verify that one of the successors of first_loop->exit is the preheader -        of second_loop.  */ -    -  /* The preheader of new_loop is expected to have two predecessors: -     first_loop->exit and the block that precedes first_loop.  */ - -  gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2  -              && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb -                   && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb) -               || (EDGE_PRED (loop2_entry_bb, 1)->src ==  loop1_exit_bb -                   && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb))); -   -  /* Verify that the other successor of first_loop->exit is after the -     second_loop.  */ -  /* TODO */ -} -#endif - -/* If the run time cost model check determines that vectorization is -   not profitable and hence scalar loop should be generated then set -   FIRST_NITERS to prologue peeled iterations. This will allow all the -   iterations to be executed in the prologue peeled scalar loop.  */ - -void -set_prologue_iterations (basic_block bb_before_first_loop, -			 tree first_niters, -			 struct loop *loop, -			 unsigned int th) -{ -  edge e; -  basic_block cond_bb, then_bb; -  tree var, prologue_after_cost_adjust_name; -  gimple_stmt_iterator gsi; -  gimple newphi; -  edge e_true, e_false, e_fallthru; -  gimple cond_stmt; -  gimple_seq gimplify_stmt_list = NULL, stmts = NULL; -  tree cost_pre_condition = NULL_TREE; -  tree scalar_loop_iters =  -    unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop))); - -  e = single_pred_edge (bb_before_first_loop); -  cond_bb = split_edge(e); - -  e = single_pred_edge (bb_before_first_loop); -  then_bb = split_edge(e); -  set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb); - -  e_false = make_single_succ_edge (cond_bb, bb_before_first_loop, -				   EDGE_FALSE_VALUE); -  set_immediate_dominator (CDI_DOMINATORS, bb_before_first_loop, cond_bb); - -  e_true = EDGE_PRED (then_bb, 0); -  e_true->flags &= ~EDGE_FALLTHRU; -  e_true->flags |= EDGE_TRUE_VALUE; - -  e_fallthru = EDGE_SUCC (then_bb, 0); - -  cost_pre_condition = -    fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,  -		 build_int_cst (TREE_TYPE (scalar_loop_iters), th)); -  cost_pre_condition = -    force_gimple_operand (cost_pre_condition, &gimplify_stmt_list, -			  true, NULL_TREE); -  cond_stmt = gimple_build_cond (NE_EXPR, cost_pre_condition, -				 build_int_cst (TREE_TYPE (cost_pre_condition), -						0), NULL_TREE, NULL_TREE); - -  gsi = gsi_last_bb (cond_bb); -  if (gimplify_stmt_list) -    gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT); - -  gsi = gsi_last_bb (cond_bb); -  gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT); -					   -  var = create_tmp_var (TREE_TYPE (scalar_loop_iters), -			"prologue_after_cost_adjust"); -  add_referenced_var (var); -  prologue_after_cost_adjust_name =  -    force_gimple_operand (scalar_loop_iters, &stmts, false, var); - -  gsi = gsi_last_bb (then_bb); -  if (stmts) -    gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT); - -  newphi = create_phi_node (var, bb_before_first_loop); -  add_phi_arg (newphi, prologue_after_cost_adjust_name, e_fallthru); -  add_phi_arg (newphi, first_niters, e_false); - -  first_niters = PHI_RESULT (newphi); -} - - -/* Function slpeel_tree_peel_loop_to_edge. - -   Peel the first (last) iterations of LOOP into a new prolog (epilog) loop -   that is placed on the entry (exit) edge E of LOOP. After this transformation -   we have two loops one after the other - first-loop iterates FIRST_NITERS -   times, and second-loop iterates the remainder NITERS - FIRST_NITERS times. -   If the cost model indicates that it is profitable to emit a scalar  -   loop instead of the vector one, then the prolog (epilog) loop will iterate -   for the entire unchanged scalar iterations of the loop. - -   Input: -   - LOOP: the loop to be peeled. -   - E: the exit or entry edge of LOOP. -        If it is the entry edge, we peel the first iterations of LOOP. In this -        case first-loop is LOOP, and second-loop is the newly created loop. -        If it is the exit edge, we peel the last iterations of LOOP. In this -        case, first-loop is the newly created loop, and second-loop is LOOP. -   - NITERS: the number of iterations that LOOP iterates. -   - FIRST_NITERS: the number of iterations that the first-loop should iterate. -   - UPDATE_FIRST_LOOP_COUNT:  specified whether this function is responsible -        for updating the loop bound of the first-loop to FIRST_NITERS.  If it -        is false, the caller of this function may want to take care of this -        (this can be useful if we don't want new stmts added to first-loop). -   - TH: cost model profitability threshold of iterations for vectorization. -   - CHECK_PROFITABILITY: specify whether cost model check has not occurred -                          during versioning and hence needs to occur during -			  prologue generation or whether cost model check  -			  has not occurred during prologue generation and hence -			  needs to occur during epilogue generation. -	     - -   Output: -   The function returns a pointer to the new loop-copy, or NULL if it failed -   to perform the transformation. - -   The function generates two if-then-else guards: one before the first loop, -   and the other before the second loop: -   The first guard is: -     if (FIRST_NITERS == 0) then skip the first loop, -     and go directly to the second loop. -   The second guard is: -     if (FIRST_NITERS == NITERS) then skip the second loop. - -   FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p). -   FORNOW the resulting code will not be in loop-closed-ssa form. -*/ - -struct loop* -slpeel_tree_peel_loop_to_edge (struct loop *loop,  -			       edge e, tree first_niters,  -			       tree niters, bool update_first_loop_count, -			       unsigned int th, bool check_profitability) -{ -  struct loop *new_loop = NULL, *first_loop, *second_loop; -  edge skip_e; -  tree pre_condition = NULL_TREE; -  bitmap definitions; -  basic_block bb_before_second_loop, bb_after_second_loop; -  basic_block bb_before_first_loop; -  basic_block bb_between_loops; -  basic_block new_exit_bb; -  edge exit_e = single_exit (loop); -  LOC loop_loc; -  tree cost_pre_condition = NULL_TREE; -   -  if (!slpeel_can_duplicate_loop_p (loop, e)) -    return NULL; -   -  /* We have to initialize cfg_hooks. Then, when calling -   cfg_hooks->split_edge, the function tree_split_edge  -   is actually called and, when calling cfg_hooks->duplicate_block, -   the function tree_duplicate_bb is called.  */ -  gimple_register_cfg_hooks (); - - -  /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP). -        Resulting CFG would be: - -        first_loop: -        do { -        } while ... - -        second_loop: -        do { -        } while ... - -        orig_exit_bb: -   */ -   -  if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, e))) -    { -      loop_loc = find_loop_location (loop); -      if (dump_file && (dump_flags & TDF_DETAILS)) -        { -          if (loop_loc != UNKNOWN_LOC) -            fprintf (dump_file, "\n%s:%d: note: ", -                     LOC_FILE (loop_loc), LOC_LINE (loop_loc)); -          fprintf (dump_file, "tree_duplicate_loop_to_edge_cfg failed.\n"); -        } -      return NULL; -    } -   -  if (e == exit_e) -    { -      /* NEW_LOOP was placed after LOOP.  */ -      first_loop = loop; -      second_loop = new_loop; -    } -  else -    { -      /* NEW_LOOP was placed before LOOP.  */ -      first_loop = new_loop; -      second_loop = loop; -    } - -  definitions = ssa_names_to_replace (); -  slpeel_update_phis_for_duplicate_loop (loop, new_loop, e == exit_e); -  rename_variables_in_loop (new_loop); - - -  /* 2.  Add the guard code in one of the following ways: - -     2.a Add the guard that controls whether the first loop is executed. -         This occurs when this function is invoked for prologue or epilogue -	 generation and when the cost model check can be done at compile time. - -         Resulting CFG would be: - -         bb_before_first_loop: -         if (FIRST_NITERS == 0) GOTO bb_before_second_loop -                                GOTO first-loop - -         first_loop: -         do { -         } while ... - -         bb_before_second_loop: - -         second_loop: -         do { -         } while ... - -         orig_exit_bb: - -     2.b Add the cost model check that allows the prologue -         to iterate for the entire unchanged scalar -         iterations of the loop in the event that the cost -         model indicates that the scalar loop is more -         profitable than the vector one. This occurs when -	 this function is invoked for prologue generation -	 and the cost model check needs to be done at run -	 time. - -         Resulting CFG after prologue peeling would be: - -         if (scalar_loop_iterations <= th) -           FIRST_NITERS = scalar_loop_iterations - -         bb_before_first_loop: -         if (FIRST_NITERS == 0) GOTO bb_before_second_loop -                                GOTO first-loop - -         first_loop: -         do { -         } while ... - -         bb_before_second_loop: - -         second_loop: -         do { -         } while ... - -         orig_exit_bb: - -     2.c Add the cost model check that allows the epilogue -         to iterate for the entire unchanged scalar -         iterations of the loop in the event that the cost -         model indicates that the scalar loop is more -         profitable than the vector one. This occurs when -	 this function is invoked for epilogue generation -	 and the cost model check needs to be done at run -	 time. - -         Resulting CFG after prologue peeling would be: - -         bb_before_first_loop: -         if ((scalar_loop_iterations <= th) -             || -             FIRST_NITERS == 0) GOTO bb_before_second_loop -                                GOTO first-loop - -         first_loop: -         do { -         } while ... - -         bb_before_second_loop: - -         second_loop: -         do { -         } while ... - -         orig_exit_bb: -  */ - -  bb_before_first_loop = split_edge (loop_preheader_edge (first_loop)); -  bb_before_second_loop = split_edge (single_exit (first_loop)); - -  /* Epilogue peeling.  */ -  if (!update_first_loop_count) -    { -      pre_condition = -	fold_build2 (LE_EXPR, boolean_type_node, first_niters,  -		     build_int_cst (TREE_TYPE (first_niters), 0)); -      if (check_profitability) -	{ -	  tree scalar_loop_iters -	    = unshare_expr (LOOP_VINFO_NITERS_UNCHANGED -					(loop_vec_info_for_loop (loop))); -	  cost_pre_condition =  -	    fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,  -			 build_int_cst (TREE_TYPE (scalar_loop_iters), th)); - -	  pre_condition = fold_build2 (TRUTH_OR_EXPR, boolean_type_node, -				       cost_pre_condition, pre_condition); -	} -    } - -  /* Prologue peeling.  */   -  else -    { -      if (check_profitability) -	set_prologue_iterations (bb_before_first_loop, first_niters, -				 loop, th); - -      pre_condition = -	fold_build2 (LE_EXPR, boolean_type_node, first_niters,  -		     build_int_cst (TREE_TYPE (first_niters), 0)); -    } - -  skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition, -                                  bb_before_second_loop, bb_before_first_loop); -  slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop, -				      first_loop == new_loop, -				      &new_exit_bb, &definitions); - - -  /* 3. Add the guard that controls whether the second loop is executed. -        Resulting CFG would be: - -        bb_before_first_loop: -        if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop) -                               GOTO first-loop - -        first_loop: -        do { -        } while ... - -        bb_between_loops: -        if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop) -                                    GOTO bb_before_second_loop - -        bb_before_second_loop: - -        second_loop: -        do { -        } while ... - -        bb_after_second_loop: - -        orig_exit_bb: -   */ - -  bb_between_loops = new_exit_bb; -  bb_after_second_loop = split_edge (single_exit (second_loop)); - -  pre_condition =  -	fold_build2 (EQ_EXPR, boolean_type_node, first_niters, niters); -  skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition, -                                  bb_after_second_loop, bb_before_first_loop); -  slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop, -                                     second_loop == new_loop, &new_exit_bb); - -  /* 4. Make first-loop iterate FIRST_NITERS times, if requested. -   */ -  if (update_first_loop_count) -    slpeel_make_loop_iterate_ntimes (first_loop, first_niters); - -  BITMAP_FREE (definitions); -  delete_update_ssa (); - -  return new_loop; -} - -/* Function vect_get_loop_location. - -   Extract the location of the loop in the source code. -   If the loop is not well formed for vectorization, an estimated -   location is calculated. -   Return the loop location if succeed and NULL if not.  */ - -LOC -find_loop_location (struct loop *loop) -{ -  gimple stmt = NULL; -  basic_block bb; -  gimple_stmt_iterator si; - -  if (!loop) -    return UNKNOWN_LOC; - -  stmt = get_loop_exit_condition (loop); - -  if (stmt && gimple_location (stmt) != UNKNOWN_LOC) -    return gimple_location (stmt); - -  /* If we got here the loop is probably not "well formed", -     try to estimate the loop location */ - -  if (!loop->header) -    return UNKNOWN_LOC; - -  bb = loop->header; - -  for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si)) -    { -      stmt = gsi_stmt (si); -      if (gimple_location (stmt) != UNKNOWN_LOC) -        return gimple_location (stmt); -    } - -  return UNKNOWN_LOC; -} - - -/************************************************************************* -  Vectorization Debug Information. - *************************************************************************/  /* Function vect_set_verbosity_level. @@ -1516,1262 +165,6 @@ vect_print_dump_info (enum verbosity_levels vl)  } -/************************************************************************* -  Vectorization Utilities. - *************************************************************************/ - -/* Function new_stmt_vec_info. - -   Create and initialize a new stmt_vec_info struct for STMT.  */ - -stmt_vec_info -new_stmt_vec_info (gimple stmt, loop_vec_info loop_vinfo) -{ -  stmt_vec_info res; -  res = (stmt_vec_info) xcalloc (1, sizeof (struct _stmt_vec_info)); - -  STMT_VINFO_TYPE (res) = undef_vec_info_type; -  STMT_VINFO_STMT (res) = stmt; -  STMT_VINFO_LOOP_VINFO (res) = loop_vinfo; -  STMT_VINFO_RELEVANT (res) = 0; -  STMT_VINFO_LIVE_P (res) = false; -  STMT_VINFO_VECTYPE (res) = NULL; -  STMT_VINFO_VEC_STMT (res) = NULL; -  STMT_VINFO_IN_PATTERN_P (res) = false; -  STMT_VINFO_RELATED_STMT (res) = NULL; -  STMT_VINFO_DATA_REF (res) = NULL; - -  STMT_VINFO_DR_BASE_ADDRESS (res) = NULL; -  STMT_VINFO_DR_OFFSET (res) = NULL; -  STMT_VINFO_DR_INIT (res) = NULL; -  STMT_VINFO_DR_STEP (res) = NULL; -  STMT_VINFO_DR_ALIGNED_TO (res) = NULL; - -  if (gimple_code (stmt) == GIMPLE_PHI -      && is_loop_header_bb_p (gimple_bb (stmt))) -    STMT_VINFO_DEF_TYPE (res) = vect_unknown_def_type; -  else -    STMT_VINFO_DEF_TYPE (res) = vect_loop_def; -  STMT_VINFO_SAME_ALIGN_REFS (res) = VEC_alloc (dr_p, heap, 5); -  STMT_VINFO_INSIDE_OF_LOOP_COST (res) = 0; -  STMT_VINFO_OUTSIDE_OF_LOOP_COST (res) = 0; -  STMT_SLP_TYPE (res) = 0; -  DR_GROUP_FIRST_DR (res) = NULL; -  DR_GROUP_NEXT_DR (res) = NULL; -  DR_GROUP_SIZE (res) = 0; -  DR_GROUP_STORE_COUNT (res) = 0; -  DR_GROUP_GAP (res) = 0; -  DR_GROUP_SAME_DR_STMT (res) = NULL; -  DR_GROUP_READ_WRITE_DEPENDENCE (res) = false; - -  return res; -} - -/* Create a hash table for stmt_vec_info. */ - -void -init_stmt_vec_info_vec (void) -{ -  gcc_assert (!stmt_vec_info_vec); -  stmt_vec_info_vec = VEC_alloc (vec_void_p, heap, 50); -} - -/* Free hash table for stmt_vec_info. */ - -void -free_stmt_vec_info_vec (void) -{ -  gcc_assert (stmt_vec_info_vec); -  VEC_free (vec_void_p, heap, stmt_vec_info_vec); -} - -/* Free stmt vectorization related info.  */ - -void -free_stmt_vec_info (gimple stmt) -{ -  stmt_vec_info stmt_info = vinfo_for_stmt (stmt); - -  if (!stmt_info) -    return; - -  VEC_free (dr_p, heap, STMT_VINFO_SAME_ALIGN_REFS (stmt_info)); -  set_vinfo_for_stmt (stmt, NULL); -  free (stmt_info); -} - - -/* Function bb_in_loop_p - -   Used as predicate for dfs order traversal of the loop bbs.  */ - -static bool -bb_in_loop_p (const_basic_block bb, const void *data) -{ -  const struct loop *const loop = (const struct loop *)data; -  if (flow_bb_inside_loop_p (loop, bb)) -    return true; -  return false; -} - - -/* Function new_loop_vec_info. - -   Create and initialize a new loop_vec_info struct for LOOP, as well as -   stmt_vec_info structs for all the stmts in LOOP.  */ - -loop_vec_info -new_loop_vec_info (struct loop *loop) -{ -  loop_vec_info res; -  basic_block *bbs; -  gimple_stmt_iterator si; -  unsigned int i, nbbs; - -  res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info)); -  LOOP_VINFO_LOOP (res) = loop; - -  bbs = get_loop_body (loop); - -  /* Create/Update stmt_info for all stmts in the loop.  */ -  for (i = 0; i < loop->num_nodes; i++) -    { -      basic_block bb = bbs[i]; - -      /* BBs in a nested inner-loop will have been already processed (because  -	 we will have called vect_analyze_loop_form for any nested inner-loop). -	 Therefore, for stmts in an inner-loop we just want to update the  -	 STMT_VINFO_LOOP_VINFO field of their stmt_info to point to the new  -	 loop_info of the outer-loop we are currently considering to vectorize  -	 (instead of the loop_info of the inner-loop). -	 For stmts in other BBs we need to create a stmt_info from scratch.  */ -      if (bb->loop_father != loop) -	{ -	  /* Inner-loop bb.  */ -	  gcc_assert (loop->inner && bb->loop_father == loop->inner); -	  for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si)) -	    { -	      gimple phi = gsi_stmt (si); -	      stmt_vec_info stmt_info = vinfo_for_stmt (phi); -	      loop_vec_info inner_loop_vinfo = -		STMT_VINFO_LOOP_VINFO (stmt_info); -	      gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo)); -	      STMT_VINFO_LOOP_VINFO (stmt_info) = res; -	    } -	  for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si)) -	   { -	      gimple stmt = gsi_stmt (si); -	      stmt_vec_info stmt_info = vinfo_for_stmt (stmt); -	      loop_vec_info inner_loop_vinfo = -		 STMT_VINFO_LOOP_VINFO (stmt_info); -	      gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo)); -	      STMT_VINFO_LOOP_VINFO (stmt_info) = res; -	   } -	} -      else -	{ -	  /* bb in current nest.  */ -	  for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si)) -	    { -	      gimple phi = gsi_stmt (si); -	      gimple_set_uid (phi, 0); -	      set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res)); -	    } - -	  for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si)) -	    { -	      gimple stmt = gsi_stmt (si); -	      gimple_set_uid (stmt, 0); -	      set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res)); -	    } -	} -    } - -  /* CHECKME: We want to visit all BBs before their successors (except for  -     latch blocks, for which this assertion wouldn't hold).  In the simple  -     case of the loop forms we allow, a dfs order of the BBs would the same  -     as reversed postorder traversal, so we are safe.  */ - -   free (bbs); -   bbs = XCNEWVEC (basic_block, loop->num_nodes); -   nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,  -			      bbs, loop->num_nodes, loop); -   gcc_assert (nbbs == loop->num_nodes); - -  LOOP_VINFO_BBS (res) = bbs; -  LOOP_VINFO_NITERS (res) = NULL; -  LOOP_VINFO_NITERS_UNCHANGED (res) = NULL; -  LOOP_VINFO_COST_MODEL_MIN_ITERS (res) = 0; -  LOOP_VINFO_VECTORIZABLE_P (res) = 0; -  LOOP_PEELING_FOR_ALIGNMENT (res) = 0; -  LOOP_VINFO_VECT_FACTOR (res) = 0; -  LOOP_VINFO_DATAREFS (res) = VEC_alloc (data_reference_p, heap, 10); -  LOOP_VINFO_DDRS (res) = VEC_alloc (ddr_p, heap, 10 * 10); -  LOOP_VINFO_UNALIGNED_DR (res) = NULL; -  LOOP_VINFO_MAY_MISALIGN_STMTS (res) = -    VEC_alloc (gimple, heap, -	       PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS)); -  LOOP_VINFO_MAY_ALIAS_DDRS (res) = -    VEC_alloc (ddr_p, heap, -	       PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS)); -  LOOP_VINFO_STRIDED_STORES (res) = VEC_alloc (gimple, heap, 10); -  LOOP_VINFO_SLP_INSTANCES (res) = VEC_alloc (slp_instance, heap, 10); -  LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1; - -  return res; -} - - -/* Function destroy_loop_vec_info. -  -   Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the  -   stmts in the loop.  */ - -void -destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts) -{ -  struct loop *loop; -  basic_block *bbs; -  int nbbs; -  gimple_stmt_iterator si; -  int j; -  VEC (slp_instance, heap) *slp_instances; -  slp_instance instance; - -  if (!loop_vinfo) -    return; - -  loop = LOOP_VINFO_LOOP (loop_vinfo); - -  bbs = LOOP_VINFO_BBS (loop_vinfo); -  nbbs = loop->num_nodes; - -  if (!clean_stmts) -    { -      free (LOOP_VINFO_BBS (loop_vinfo)); -      free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo)); -      free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo)); -      VEC_free (gimple, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo)); - -      free (loop_vinfo); -      loop->aux = NULL; -      return; -    } - -  for (j = 0; j < nbbs; j++) -    { -      basic_block bb = bbs[j]; - -      for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si)) -        free_stmt_vec_info (gsi_stmt (si)); - -      for (si = gsi_start_bb (bb); !gsi_end_p (si); ) -	{ -	  gimple stmt = gsi_stmt (si); -	  stmt_vec_info stmt_info = vinfo_for_stmt (stmt); - -	  if (stmt_info) -	    { -	      /* Check if this is a "pattern stmt" (introduced by the  -		 vectorizer during the pattern recognition pass).  */ -	      bool remove_stmt_p = false; -	      gimple orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info); -	      if (orig_stmt) -		{ -		  stmt_vec_info orig_stmt_info = vinfo_for_stmt (orig_stmt); -		  if (orig_stmt_info -		      && STMT_VINFO_IN_PATTERN_P (orig_stmt_info)) -		    remove_stmt_p = true;  -		} -			 -	      /* Free stmt_vec_info.  */ -	      free_stmt_vec_info (stmt); - -	      /* Remove dead "pattern stmts".  */ -	      if (remove_stmt_p) -	        gsi_remove (&si, true); -	    } -	  gsi_next (&si); -	} -    } - -  free (LOOP_VINFO_BBS (loop_vinfo)); -  free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo)); -  free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo)); -  VEC_free (gimple, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo)); -  VEC_free (ddr_p, heap, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo)); -  slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo); -  for (j = 0; VEC_iterate (slp_instance, slp_instances, j, instance); j++) -    vect_free_slp_instance (instance); - -  VEC_free (slp_instance, heap, LOOP_VINFO_SLP_INSTANCES (loop_vinfo)); -  VEC_free (gimple, heap, LOOP_VINFO_STRIDED_STORES (loop_vinfo)); - -  free (loop_vinfo); -  loop->aux = NULL; -} - - -/* Function vect_force_dr_alignment_p. - -   Returns whether the alignment of a DECL can be forced to be aligned -   on ALIGNMENT bit boundary.  */ - -bool  -vect_can_force_dr_alignment_p (const_tree decl, unsigned int alignment) -{ -  if (TREE_CODE (decl) != VAR_DECL) -    return false; - -  if (DECL_EXTERNAL (decl)) -    return false; - -  if (TREE_ASM_WRITTEN (decl)) -    return false; - -  if (TREE_STATIC (decl)) -    return (alignment <= MAX_OFILE_ALIGNMENT); -  else -    return (alignment <= MAX_STACK_ALIGNMENT); -} - - -/* Function get_vectype_for_scalar_type. - -   Returns the vector type corresponding to SCALAR_TYPE as supported -   by the target.  */ - -tree -get_vectype_for_scalar_type (tree scalar_type) -{ -  enum machine_mode inner_mode = TYPE_MODE (scalar_type); -  int nbytes = GET_MODE_SIZE (inner_mode); -  int nunits; -  tree vectype; - -  if (nbytes == 0 || nbytes >= UNITS_PER_SIMD_WORD (inner_mode)) -    return NULL_TREE; - -  /* FORNOW: Only a single vector size per mode (UNITS_PER_SIMD_WORD) -     is expected.  */ -  nunits = UNITS_PER_SIMD_WORD (inner_mode) / nbytes; - -  vectype = build_vector_type (scalar_type, nunits); -  if (vect_print_dump_info (REPORT_DETAILS)) -    { -      fprintf (vect_dump, "get vectype with %d units of type ", nunits); -      print_generic_expr (vect_dump, scalar_type, TDF_SLIM); -    } - -  if (!vectype) -    return NULL_TREE; - -  if (vect_print_dump_info (REPORT_DETAILS)) -    { -      fprintf (vect_dump, "vectype: "); -      print_generic_expr (vect_dump, vectype, TDF_SLIM); -    } - -  if (!VECTOR_MODE_P (TYPE_MODE (vectype)) -      && !INTEGRAL_MODE_P (TYPE_MODE (vectype))) -    { -      if (vect_print_dump_info (REPORT_DETAILS)) -        fprintf (vect_dump, "mode not supported by target."); -      return NULL_TREE; -    } - -  return vectype; -} - - -/* Function vect_supportable_dr_alignment - -   Return whether the data reference DR is supported with respect to its -   alignment.  */ - -enum dr_alignment_support -vect_supportable_dr_alignment (struct data_reference *dr) -{ -  gimple stmt = DR_STMT (dr); -  stmt_vec_info stmt_info = vinfo_for_stmt (stmt); -  tree vectype = STMT_VINFO_VECTYPE (stmt_info); -  enum machine_mode mode = (int) TYPE_MODE (vectype); -  struct loop *vect_loop = LOOP_VINFO_LOOP (STMT_VINFO_LOOP_VINFO (stmt_info)); -  bool nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt); -  bool invariant_in_outerloop = false; - -  if (aligned_access_p (dr)) -    return dr_aligned; - -  if (nested_in_vect_loop) -    { -      tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info); -      invariant_in_outerloop = -	(tree_int_cst_compare (outerloop_step, size_zero_node) == 0); -    } - -  /* Possibly unaligned access.  */ - -  /* We can choose between using the implicit realignment scheme (generating -     a misaligned_move stmt) and the explicit realignment scheme (generating -     aligned loads with a REALIGN_LOAD). There are two variants to the explicit -     realignment scheme: optimized, and unoptimized. -     We can optimize the realignment only if the step between consecutive -     vector loads is equal to the vector size.  Since the vector memory -     accesses advance in steps of VS (Vector Size) in the vectorized loop, it -     is guaranteed that the misalignment amount remains the same throughout the -     execution of the vectorized loop.  Therefore, we can create the -     "realignment token" (the permutation mask that is passed to REALIGN_LOAD) -     at the loop preheader. - -     However, in the case of outer-loop vectorization, when vectorizing a -     memory access in the inner-loop nested within the LOOP that is now being -     vectorized, while it is guaranteed that the misalignment of the -     vectorized memory access will remain the same in different outer-loop -     iterations, it is *not* guaranteed that is will remain the same throughout -     the execution of the inner-loop.  This is because the inner-loop advances -     with the original scalar step (and not in steps of VS).  If the inner-loop -     step happens to be a multiple of VS, then the misalignment remains fixed -     and we can use the optimized realignment scheme.  For example: - -      for (i=0; i<N; i++) -        for (j=0; j<M; j++) -          s += a[i+j]; - -     When vectorizing the i-loop in the above example, the step between -     consecutive vector loads is 1, and so the misalignment does not remain -     fixed across the execution of the inner-loop, and the realignment cannot -     be optimized (as illustrated in the following pseudo vectorized loop): - -      for (i=0; i<N; i+=4) -        for (j=0; j<M; j++){ -          vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...} -                         // when j is {0,1,2,3,4,5,6,7,...} respectively. -                         // (assuming that we start from an aligned address). -          } - -     We therefore have to use the unoptimized realignment scheme: - -      for (i=0; i<N; i+=4) -          for (j=k; j<M; j+=4) -          vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming -                           // that the misalignment of the initial address is -                           // 0). - -     The loop can then be vectorized as follows: - -      for (k=0; k<4; k++){ -        rt = get_realignment_token (&vp[k]); -        for (i=0; i<N; i+=4){ -          v1 = vp[i+k]; -          for (j=k; j<M; j+=4){ -            v2 = vp[i+j+VS-1]; -            va = REALIGN_LOAD <v1,v2,rt>; -            vs += va; -            v1 = v2; -          } -        } -    } */ - -  if (DR_IS_READ (dr)) -    { -      if (optab_handler (vec_realign_load_optab, mode)->insn_code !=  -						   	     CODE_FOR_nothing -	  && (!targetm.vectorize.builtin_mask_for_load -	      || targetm.vectorize.builtin_mask_for_load ())) -	{ -	  tree vectype = STMT_VINFO_VECTYPE (stmt_info); -	  if (nested_in_vect_loop -	      && (TREE_INT_CST_LOW (DR_STEP (dr)) -		  != GET_MODE_SIZE (TYPE_MODE (vectype)))) -	    return dr_explicit_realign; -	  else -	    return dr_explicit_realign_optimized; -	} - -      if (optab_handler (movmisalign_optab, mode)->insn_code !=  -							     CODE_FOR_nothing) -	/* Can't software pipeline the loads, but can at least do them.  */ -	return dr_unaligned_supported; -    } - -  /* Unsupported.  */ -  return dr_unaligned_unsupported; -} - - -/* Function vect_is_simple_use. - -   Input: -   LOOP - the loop that is being vectorized. -   OPERAND - operand of a stmt in LOOP. -   DEF - the defining stmt in case OPERAND is an SSA_NAME. - -   Returns whether a stmt with OPERAND can be vectorized. -   Supportable operands are constants, loop invariants, and operands that are -   defined by the current iteration of the loop. Unsupportable operands are  -   those that are defined by a previous iteration of the loop (as is the case -   in reduction/induction computations).  */ - -bool -vect_is_simple_use (tree operand, loop_vec_info loop_vinfo, gimple *def_stmt, -		    tree *def, enum vect_def_type *dt) -{  -  basic_block bb; -  stmt_vec_info stmt_vinfo; -  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo); - -  *def_stmt = NULL; -  *def = NULL_TREE; -   -  if (vect_print_dump_info (REPORT_DETAILS)) -    { -      fprintf (vect_dump, "vect_is_simple_use: operand "); -      print_generic_expr (vect_dump, operand, TDF_SLIM); -    } -     -  if (TREE_CODE (operand) == INTEGER_CST || TREE_CODE (operand) == REAL_CST) -    { -      *dt = vect_constant_def; -      return true; -    } -  if (is_gimple_min_invariant (operand)) -    { -      *def = operand; -      *dt = vect_invariant_def; -      return true; -    } - -  if (TREE_CODE (operand) == PAREN_EXPR) -    { -      if (vect_print_dump_info (REPORT_DETAILS)) -        fprintf (vect_dump, "non-associatable copy."); -      operand = TREE_OPERAND (operand, 0); -    } -  if (TREE_CODE (operand) != SSA_NAME) -    { -      if (vect_print_dump_info (REPORT_DETAILS)) -        fprintf (vect_dump, "not ssa-name."); -      return false; -    } -     -  *def_stmt = SSA_NAME_DEF_STMT (operand); -  if (*def_stmt == NULL) -    { -      if (vect_print_dump_info (REPORT_DETAILS)) -        fprintf (vect_dump, "no def_stmt."); -      return false; -    } - -  if (vect_print_dump_info (REPORT_DETAILS)) -    { -      fprintf (vect_dump, "def_stmt: "); -      print_gimple_stmt (vect_dump, *def_stmt, 0, TDF_SLIM); -    } - -  /* empty stmt is expected only in case of a function argument. -     (Otherwise - we expect a phi_node or a GIMPLE_ASSIGN).  */ -  if (gimple_nop_p (*def_stmt)) -    { -      *def = operand; -      *dt = vect_invariant_def; -      return true; -    } - -  bb = gimple_bb (*def_stmt); -  if (!flow_bb_inside_loop_p (loop, bb)) -    *dt = vect_invariant_def; -  else -    { -      stmt_vinfo = vinfo_for_stmt (*def_stmt); -      *dt = STMT_VINFO_DEF_TYPE (stmt_vinfo); -    } - -  if (*dt == vect_unknown_def_type) -    { -      if (vect_print_dump_info (REPORT_DETAILS)) -        fprintf (vect_dump, "Unsupported pattern."); -      return false; -    } - -  if (vect_print_dump_info (REPORT_DETAILS)) -    fprintf (vect_dump, "type of def: %d.",*dt); - -  switch (gimple_code (*def_stmt)) -    { -    case GIMPLE_PHI: -      *def = gimple_phi_result (*def_stmt); -      break; - -    case GIMPLE_ASSIGN: -      *def = gimple_assign_lhs (*def_stmt); -      break; - -    case GIMPLE_CALL: -      *def = gimple_call_lhs (*def_stmt); -      if (*def != NULL) -	break; -      /* FALLTHRU */ -    default: -      if (vect_print_dump_info (REPORT_DETAILS)) -        fprintf (vect_dump, "unsupported defining stmt: "); -      return false; -    } - -  return true; -} - - -/* Function supportable_widening_operation - -   Check whether an operation represented by the code CODE is a  -   widening operation that is supported by the target platform in  -   vector form (i.e., when operating on arguments of type VECTYPE). -     -   Widening operations we currently support are NOP (CONVERT), FLOAT -   and WIDEN_MULT.  This function checks if these operations are supported -   by the target platform either directly (via vector tree-codes), or via -   target builtins. - -   Output: -   - CODE1 and CODE2 are codes of vector operations to be used when  -   vectorizing the operation, if available.  -   - DECL1 and DECL2 are decls of target builtin functions to be used -   when vectorizing the operation, if available. In this case, -   CODE1 and CODE2 are CALL_EXPR.   -   - MULTI_STEP_CVT determines the number of required intermediate steps in -   case of multi-step conversion (like char->short->int - in that case -   MULTI_STEP_CVT will be 1). -   - INTERM_TYPES contains the intermediate type required to perform the  -   widening operation (short in the above example).  */    - -bool -supportable_widening_operation (enum tree_code code, gimple stmt, tree vectype, -                                tree *decl1, tree *decl2, -                                enum tree_code *code1, enum tree_code *code2, -                                int *multi_step_cvt, -                                VEC (tree, heap) **interm_types) -{ -  stmt_vec_info stmt_info = vinfo_for_stmt (stmt); -  loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_info); -  struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info); -  bool ordered_p; -  enum machine_mode vec_mode; -  enum insn_code icode1 = 0, icode2 = 0; -  optab optab1, optab2; -  tree type = gimple_expr_type (stmt); -  tree wide_vectype = get_vectype_for_scalar_type (type); -  enum tree_code c1, c2; - -  /* The result of a vectorized widening operation usually requires two vectors -     (because the widened results do not fit int one vector). The generated  -     vector results would normally be expected to be generated in the same  -     order as in the original scalar computation, i.e. if 8 results are -     generated in each vector iteration, they are to be organized as follows: -        vect1: [res1,res2,res3,res4], vect2: [res5,res6,res7,res8].  - -     However, in the special case that the result of the widening operation is  -     used in a reduction computation only, the order doesn't matter (because -     when vectorizing a reduction we change the order of the computation).  -     Some targets can take advantage of this and generate more efficient code. -     For example, targets like Altivec, that support widen_mult using a sequence -     of {mult_even,mult_odd} generate the following vectors: -        vect1: [res1,res3,res5,res7], vect2: [res2,res4,res6,res8]. - -     When vectorizing outer-loops, we execute the inner-loop sequentially -     (each vectorized inner-loop iteration contributes to VF outer-loop  -     iterations in parallel). We therefore don't allow to change the order  -     of the computation in the inner-loop during outer-loop vectorization.  */ - -   if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_by_reduction -       && !nested_in_vect_loop_p (vect_loop, stmt)) -     ordered_p = false; -   else -     ordered_p = true; - -  if (!ordered_p -      && code == WIDEN_MULT_EXPR -      && targetm.vectorize.builtin_mul_widen_even -      && targetm.vectorize.builtin_mul_widen_even (vectype) -      && targetm.vectorize.builtin_mul_widen_odd -      && targetm.vectorize.builtin_mul_widen_odd (vectype)) -    { -      if (vect_print_dump_info (REPORT_DETAILS)) -        fprintf (vect_dump, "Unordered widening operation detected."); - -      *code1 = *code2 = CALL_EXPR; -      *decl1 = targetm.vectorize.builtin_mul_widen_even (vectype); -      *decl2 = targetm.vectorize.builtin_mul_widen_odd (vectype); -      return true; -    } - -  switch (code) -    { -    case WIDEN_MULT_EXPR: -      if (BYTES_BIG_ENDIAN) -        { -          c1 = VEC_WIDEN_MULT_HI_EXPR; -          c2 = VEC_WIDEN_MULT_LO_EXPR; -        } -      else -        { -          c2 = VEC_WIDEN_MULT_HI_EXPR; -          c1 = VEC_WIDEN_MULT_LO_EXPR; -        } -      break; - -    CASE_CONVERT: -      if (BYTES_BIG_ENDIAN) -        { -          c1 = VEC_UNPACK_HI_EXPR; -          c2 = VEC_UNPACK_LO_EXPR; -        } -      else -        { -          c2 = VEC_UNPACK_HI_EXPR; -          c1 = VEC_UNPACK_LO_EXPR; -        } -      break; - -    case FLOAT_EXPR: -      if (BYTES_BIG_ENDIAN) -        { -          c1 = VEC_UNPACK_FLOAT_HI_EXPR; -          c2 = VEC_UNPACK_FLOAT_LO_EXPR; -        } -      else -        { -          c2 = VEC_UNPACK_FLOAT_HI_EXPR; -          c1 = VEC_UNPACK_FLOAT_LO_EXPR; -        } -      break; - -    case FIX_TRUNC_EXPR: -      /* ??? Not yet implemented due to missing VEC_UNPACK_FIX_TRUNC_HI_EXPR/ -	 VEC_UNPACK_FIX_TRUNC_LO_EXPR tree codes and optabs used for -	 computing the operation.  */ -      return false; - -    default: -      gcc_unreachable (); -    } - -  if (code == FIX_TRUNC_EXPR) -    { -      /* The signedness is determined from output operand.  */ -      optab1 = optab_for_tree_code (c1, type, optab_default); -      optab2 = optab_for_tree_code (c2, type, optab_default); -    } -  else -    { -      optab1 = optab_for_tree_code (c1, vectype, optab_default); -      optab2 = optab_for_tree_code (c2, vectype, optab_default); -    } - -  if (!optab1 || !optab2) -    return false; - -  vec_mode = TYPE_MODE (vectype); -  if ((icode1 = optab_handler (optab1, vec_mode)->insn_code) == CODE_FOR_nothing -       || (icode2 = optab_handler (optab2, vec_mode)->insn_code) -                                                       == CODE_FOR_nothing) -    return false; - -  /* Check if it's a multi-step conversion that can be done using intermediate  -     types.  */ -  if (insn_data[icode1].operand[0].mode != TYPE_MODE (wide_vectype) -       || insn_data[icode2].operand[0].mode != TYPE_MODE (wide_vectype)) -    { -      int i; -      tree prev_type = vectype, intermediate_type; -      enum machine_mode intermediate_mode, prev_mode = vec_mode; -      optab optab3, optab4; - -      if (!CONVERT_EXPR_CODE_P (code)) -        return false; -       -      *code1 = c1; -      *code2 = c2; -     -      /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS -         intermediate  steps in promotion sequence. We try MAX_INTERM_CVT_STEPS -         to get to NARROW_VECTYPE, and fail if we do not.  */ -      *interm_types = VEC_alloc (tree, heap, MAX_INTERM_CVT_STEPS); -      for (i = 0; i < 3; i++) -        { -          intermediate_mode = insn_data[icode1].operand[0].mode; -          intermediate_type = lang_hooks.types.type_for_mode (intermediate_mode, -                                                     TYPE_UNSIGNED (prev_type)); -          optab3 = optab_for_tree_code (c1, intermediate_type, optab_default); -          optab4 = optab_for_tree_code (c2, intermediate_type, optab_default); - -          if (!optab3 || !optab4 -              || (icode1 = optab1->handlers[(int) prev_mode].insn_code) -                                                        == CODE_FOR_nothing -              || insn_data[icode1].operand[0].mode != intermediate_mode -              || (icode2 = optab2->handlers[(int) prev_mode].insn_code) -                                                        == CODE_FOR_nothing -              || insn_data[icode2].operand[0].mode != intermediate_mode -              || (icode1 = optab3->handlers[(int) intermediate_mode].insn_code)  -                                                        == CODE_FOR_nothing -              || (icode2 = optab4->handlers[(int) intermediate_mode].insn_code) -                                                        == CODE_FOR_nothing) -            return false; - -          VEC_quick_push (tree, *interm_types, intermediate_type); -          (*multi_step_cvt)++; - -          if (insn_data[icode1].operand[0].mode == TYPE_MODE (wide_vectype) -              && insn_data[icode2].operand[0].mode == TYPE_MODE (wide_vectype)) -            return true; - -          prev_type = intermediate_type; -          prev_mode = intermediate_mode; -        } - -       return false; -    } - -  *code1 = c1; -  *code2 = c2; -  return true; -} - - -/* Function supportable_narrowing_operation - -   Check whether an operation represented by the code CODE is a  -   narrowing operation that is supported by the target platform in  -   vector form (i.e., when operating on arguments of type VECTYPE). -     -   Narrowing operations we currently support are NOP (CONVERT) and -   FIX_TRUNC. This function checks if these operations are supported by -   the target platform directly via vector tree-codes. - -   Output: -   - CODE1 is the code of a vector operation to be used when  -   vectorizing the operation, if available.  -   - MULTI_STEP_CVT determines the number of required intermediate steps in -   case of multi-step conversion (like int->short->char - in that case -   MULTI_STEP_CVT will be 1). -   - INTERM_TYPES contains the intermediate type required to perform the -   narrowing operation (short in the above example).   */  - -bool -supportable_narrowing_operation (enum tree_code code, -				 const_gimple stmt, tree vectype, -				 enum tree_code *code1, int *multi_step_cvt, -                                 VEC (tree, heap) **interm_types) -{ -  enum machine_mode vec_mode; -  enum insn_code icode1; -  optab optab1, interm_optab; -  tree type = gimple_expr_type (stmt); -  tree narrow_vectype = get_vectype_for_scalar_type (type); -  enum tree_code c1; -  tree intermediate_type, prev_type; -  int i; - -  switch (code) -    { -    CASE_CONVERT: -      c1 = VEC_PACK_TRUNC_EXPR; -      break; - -    case FIX_TRUNC_EXPR: -      c1 = VEC_PACK_FIX_TRUNC_EXPR; -      break; - -    case FLOAT_EXPR: -      /* ??? Not yet implemented due to missing VEC_PACK_FLOAT_EXPR -	 tree code and optabs used for computing the operation.  */ -      return false; - -    default: -      gcc_unreachable (); -    } - -  if (code == FIX_TRUNC_EXPR) -    /* The signedness is determined from output operand.  */ -    optab1 = optab_for_tree_code (c1, type, optab_default); -  else -    optab1 = optab_for_tree_code (c1, vectype, optab_default); - -  if (!optab1) -    return false; - -  vec_mode = TYPE_MODE (vectype); -  if ((icode1 = optab_handler (optab1, vec_mode)->insn_code)  -       == CODE_FOR_nothing) -    return false; - -  /* Check if it's a multi-step conversion that can be done using intermediate -     types.  */ -  if (insn_data[icode1].operand[0].mode != TYPE_MODE (narrow_vectype)) -    { -      enum machine_mode intermediate_mode, prev_mode = vec_mode; - -      *code1 = c1; -      prev_type = vectype; -      /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS -         intermediate  steps in promotion sequence. We try MAX_INTERM_CVT_STEPS -         to get to NARROW_VECTYPE, and fail if we do not.  */ -      *interm_types = VEC_alloc (tree, heap, MAX_INTERM_CVT_STEPS); -      for (i = 0; i < 3; i++) -        { -          intermediate_mode = insn_data[icode1].operand[0].mode; -          intermediate_type = lang_hooks.types.type_for_mode (intermediate_mode, -                                                     TYPE_UNSIGNED (prev_type)); -          interm_optab = optab_for_tree_code (c1, intermediate_type,  -                                              optab_default); -          if (!interm_optab   -              || (icode1 = optab1->handlers[(int) prev_mode].insn_code) -                                                        == CODE_FOR_nothing -              || insn_data[icode1].operand[0].mode != intermediate_mode -              || (icode1  -                  = interm_optab->handlers[(int) intermediate_mode].insn_code) -                 == CODE_FOR_nothing) -            return false; - -          VEC_quick_push (tree, *interm_types, intermediate_type); -          (*multi_step_cvt)++; - -          if (insn_data[icode1].operand[0].mode == TYPE_MODE (narrow_vectype)) -            return true; - -          prev_type = intermediate_type; -          prev_mode = intermediate_mode; -        } - -      return false; -    } - -  *code1 = c1; -  return true; -} - - -/* Function reduction_code_for_scalar_code - -   Input: -   CODE - tree_code of a reduction operations. - -   Output: -   REDUC_CODE - the corresponding tree-code to be used to reduce the -      vector of partial results into a single scalar result (which -      will also reside in a vector). - -   Return TRUE if a corresponding REDUC_CODE was found, FALSE otherwise.  */ - -bool -reduction_code_for_scalar_code (enum tree_code code, -                                enum tree_code *reduc_code) -{ -  switch (code) -  { -  case MAX_EXPR: -    *reduc_code = REDUC_MAX_EXPR; -    return true; - -  case MIN_EXPR: -    *reduc_code = REDUC_MIN_EXPR; -    return true; - -  case PLUS_EXPR: -    *reduc_code = REDUC_PLUS_EXPR; -    return true; - -  default: -    return false; -  } -} - -/* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement -   STMT is printed with a message MSG. */ - -static void -report_vect_op (gimple stmt, const char *msg) -{ -  fprintf (vect_dump, "%s", msg); -  print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM); -} - -/* Function vect_is_simple_reduction - -   Detect a cross-iteration def-use cycle that represents a simple -   reduction computation. We look for the following pattern: - -   loop_header: -     a1 = phi < a0, a2 > -     a3 = ... -     a2 = operation (a3, a1) -   -   such that: -   1. operation is commutative and associative and it is safe to  -      change the order of the computation. -   2. no uses for a2 in the loop (a2 is used out of the loop) -   3. no uses of a1 in the loop besides the reduction operation. - -   Condition 1 is tested here. -   Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.  */ - -gimple -vect_is_simple_reduction (loop_vec_info loop_info, gimple phi) -{ -  struct loop *loop = (gimple_bb (phi))->loop_father; -  struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info); -  edge latch_e = loop_latch_edge (loop); -  tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e); -  gimple def_stmt, def1, def2; -  enum tree_code code; -  tree op1, op2; -  tree type; -  int nloop_uses; -  tree name; -  imm_use_iterator imm_iter; -  use_operand_p use_p; - -  gcc_assert (loop == vect_loop || flow_loop_nested_p (vect_loop, loop)); - -  name = PHI_RESULT (phi); -  nloop_uses = 0; -  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name) -    { -      gimple use_stmt = USE_STMT (use_p); -      if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)) -	  && vinfo_for_stmt (use_stmt) -	  && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt))) -        nloop_uses++; -      if (nloop_uses > 1) -        { -          if (vect_print_dump_info (REPORT_DETAILS)) -            fprintf (vect_dump, "reduction used in loop."); -          return NULL; -        } -    } - -  if (TREE_CODE (loop_arg) != SSA_NAME) -    { -      if (vect_print_dump_info (REPORT_DETAILS)) -	{ -	  fprintf (vect_dump, "reduction: not ssa_name: "); -	  print_generic_expr (vect_dump, loop_arg, TDF_SLIM); -	} -      return NULL; -    } - -  def_stmt = SSA_NAME_DEF_STMT (loop_arg); -  if (!def_stmt) -    { -      if (vect_print_dump_info (REPORT_DETAILS)) -	fprintf (vect_dump, "reduction: no def_stmt."); -      return NULL; -    } - -  if (!is_gimple_assign (def_stmt)) -    { -      if (vect_print_dump_info (REPORT_DETAILS)) -        print_gimple_stmt (vect_dump, def_stmt, 0, TDF_SLIM); -      return NULL; -    } - -  name = gimple_assign_lhs (def_stmt); -  nloop_uses = 0; -  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name) -    { -      gimple use_stmt = USE_STMT (use_p); -      if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)) -	  && vinfo_for_stmt (use_stmt) -	  && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt))) -	nloop_uses++; -      if (nloop_uses > 1) -	{ -	  if (vect_print_dump_info (REPORT_DETAILS)) -	    fprintf (vect_dump, "reduction used in loop."); -	  return NULL; -	} -    } - -  code = gimple_assign_rhs_code (def_stmt); - -  if (!commutative_tree_code (code) || !associative_tree_code (code)) -    { -      if (vect_print_dump_info (REPORT_DETAILS)) -        report_vect_op (def_stmt, "reduction: not commutative/associative: "); -      return NULL; -    } - -  if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS) -    { -      if (vect_print_dump_info (REPORT_DETAILS)) -	report_vect_op (def_stmt, "reduction: not binary operation: "); -      return NULL; -    } - -  op1 = gimple_assign_rhs1 (def_stmt); -  op2 = gimple_assign_rhs2 (def_stmt); -  if (TREE_CODE (op1) != SSA_NAME || TREE_CODE (op2) != SSA_NAME) -    { -      if (vect_print_dump_info (REPORT_DETAILS)) -	report_vect_op (def_stmt, "reduction: uses not ssa_names: "); -      return NULL; -    } - -  /* Check that it's ok to change the order of the computation.  */ -  type = TREE_TYPE (gimple_assign_lhs (def_stmt)); -  if (TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (TREE_TYPE (op1)) -      || TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (TREE_TYPE (op2))) -    { -      if (vect_print_dump_info (REPORT_DETAILS)) -        { -          fprintf (vect_dump, "reduction: multiple types: operation type: "); -          print_generic_expr (vect_dump, type, TDF_SLIM); -          fprintf (vect_dump, ", operands types: "); -          print_generic_expr (vect_dump, TREE_TYPE (op1), TDF_SLIM); -          fprintf (vect_dump, ","); -          print_generic_expr (vect_dump, TREE_TYPE (op2), TDF_SLIM); -        } -      return NULL; -    } - -  /* Generally, when vectorizing a reduction we change the order of the -     computation.  This may change the behavior of the program in some -     cases, so we need to check that this is ok.  One exception is when  -     vectorizing an outer-loop: the inner-loop is executed sequentially, -     and therefore vectorizing reductions in the inner-loop during -     outer-loop vectorization is safe.  */ - -  /* CHECKME: check for !flag_finite_math_only too?  */ -  if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math -      && !nested_in_vect_loop_p (vect_loop, def_stmt))  -    { -      /* Changing the order of operations changes the semantics.  */ -      if (vect_print_dump_info (REPORT_DETAILS)) -	report_vect_op (def_stmt, "reduction: unsafe fp math optimization: "); -      return NULL; -    } -  else if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type) -	   && !nested_in_vect_loop_p (vect_loop, def_stmt)) -    { -      /* Changing the order of operations changes the semantics.  */ -      if (vect_print_dump_info (REPORT_DETAILS)) -	report_vect_op (def_stmt, "reduction: unsafe int math optimization: "); -      return NULL; -    } -  else if (SAT_FIXED_POINT_TYPE_P (type)) -    { -      /* Changing the order of operations changes the semantics.  */ -      if (vect_print_dump_info (REPORT_DETAILS)) -	report_vect_op (def_stmt,  -			"reduction: unsafe fixed-point math optimization: "); -      return NULL; -    } - -  /* reduction is safe. we're dealing with one of the following: -     1) integer arithmetic and no trapv -     2) floating point arithmetic, and special flags permit this optimization. -   */ -  def1 = SSA_NAME_DEF_STMT (op1); -  def2 = SSA_NAME_DEF_STMT (op2); -  if (!def1 || !def2 || gimple_nop_p (def1) || gimple_nop_p (def2)) -    { -      if (vect_print_dump_info (REPORT_DETAILS)) -	report_vect_op (def_stmt, "reduction: no defs for operands: "); -      return NULL; -    } - - -  /* Check that one def is the reduction def, defined by PHI, -     the other def is either defined in the loop ("vect_loop_def"), -     or it's an induction (defined by a loop-header phi-node).  */ - -  if (def2 == phi -      && flow_bb_inside_loop_p (loop, gimple_bb (def1)) -      && (is_gimple_assign (def1) -	  || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1)) == vect_induction_def -	  || (gimple_code (def1) == GIMPLE_PHI -	      && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1)) == vect_loop_def -	      && !is_loop_header_bb_p (gimple_bb (def1))))) -    { -      if (vect_print_dump_info (REPORT_DETAILS)) -	report_vect_op (def_stmt, "detected reduction:"); -      return def_stmt; -    } -  else if (def1 == phi -	   && flow_bb_inside_loop_p (loop, gimple_bb (def2)) -	   && (is_gimple_assign (def2) -	       || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2)) == vect_induction_def -	       || (gimple_code (def2) == GIMPLE_PHI -		   && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2)) == vect_loop_def -		   && !is_loop_header_bb_p (gimple_bb (def2))))) -    { -      /* Swap operands (just for simplicity - so that the rest of the code -	 can assume that the reduction variable is always the last (second) -	 argument).  */ -      if (vect_print_dump_info (REPORT_DETAILS)) -	report_vect_op (def_stmt , -		        "detected reduction: need to swap operands:"); -      swap_tree_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt), -			  gimple_assign_rhs2_ptr (def_stmt)); -      return def_stmt; -    } -  else -    { -      if (vect_print_dump_info (REPORT_DETAILS)) -	report_vect_op (def_stmt, "reduction: unknown pattern."); -      return NULL; -    } -} - - -/* Function vect_is_simple_iv_evolution. - -   FORNOW: A simple evolution of an induction variables in the loop is -   considered a polynomial evolution with constant step.  */ - -bool -vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,  -			     tree * step) -{ -  tree init_expr; -  tree step_expr; -  tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb); - -  /* When there is no evolution in this loop, the evolution function -     is not "simple".  */   -  if (evolution_part == NULL_TREE) -    return false; -   -  /* When the evolution is a polynomial of degree >= 2 -     the evolution function is not "simple".  */ -  if (tree_is_chrec (evolution_part)) -    return false; -   -  step_expr = evolution_part; -  init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb)); - -  if (vect_print_dump_info (REPORT_DETAILS)) -    { -      fprintf (vect_dump, "step: "); -      print_generic_expr (vect_dump, step_expr, TDF_SLIM); -      fprintf (vect_dump, ",  init: "); -      print_generic_expr (vect_dump, init_expr, TDF_SLIM); -    } - -  *init = init_expr; -  *step = step_expr; - -  if (TREE_CODE (step_expr) != INTEGER_CST) -    {  -      if (vect_print_dump_info (REPORT_DETAILS)) -        fprintf (vect_dump, "step unknown."); -      return false; -    } - -  return true; -} - -  /* Function vectorize_loops.     Entry Point to loop vectorization phase.  */ @@ -2849,6 +242,7 @@ vectorize_loops (void)    return num_vectorized_loops > 0 ? TODO_cleanup_cfg : 0;  } +   /* Increase alignment of global arrays to improve vectorization potential.     TODO: @@ -2871,49 +265,53 @@ increase_alignment (void)        unsigned int alignment;        if (TREE_CODE (TREE_TYPE (decl)) != ARRAY_TYPE) -	continue; +        continue;        vectype = get_vectype_for_scalar_type (TREE_TYPE (TREE_TYPE (decl)));        if (!vectype) -	continue; +        continue;        alignment = TYPE_ALIGN (vectype);        if (DECL_ALIGN (decl) >= alignment) -	continue; +        continue;        if (vect_can_force_dr_alignment_p (decl, alignment)) -	{  -	  DECL_ALIGN (decl) = TYPE_ALIGN (vectype); -	  DECL_USER_ALIGN (decl) = 1; -	  if (dump_file) -	    {  -	      fprintf (dump_file, "Increasing alignment of decl: "); -	      print_generic_expr (dump_file, decl, TDF_SLIM); -	    } -	} +        { +          DECL_ALIGN (decl) = TYPE_ALIGN (vectype); +          DECL_USER_ALIGN (decl) = 1; +          if (dump_file) +            { +              fprintf (dump_file, "Increasing alignment of decl: "); +              print_generic_expr (dump_file, decl, TDF_SLIM); +            } +        }      }    return 0;  } +  static bool  gate_increase_alignment (void)  {    return flag_section_anchors && flag_tree_vectorize;  } -struct simple_ipa_opt_pass pass_ipa_increase_alignment =  + +struct simple_ipa_opt_pass pass_ipa_increase_alignment =  {   {    SIMPLE_IPA_PASS, -  "increase_alignment",			/* name */ -  gate_increase_alignment,		/* gate */ -  increase_alignment,			/* execute */ -  NULL,					/* sub */ -  NULL,					/* next */ -  0,					/* static_pass_number */ -  0,					/* tv_id */ -  0,					/* properties_required */ -  0,					/* properties_provided */ -  0,					/* properties_destroyed */ -  0,					/* todo_flags_start */ -  0 					/* todo_flags_finish */ +  "increase_alignment",                 /* name */ +  gate_increase_alignment,              /* gate */ +  increase_alignment,                   /* execute */ +  NULL,                                 /* sub */ +  NULL,                                 /* next */ +  0,                                    /* static_pass_number */ +  0,                                    /* tv_id */ +  0,                                    /* properties_required */ +  0,                                    /* properties_provided */ +  0,                                    /* properties_destroyed */ +  0,                                    /* todo_flags_start */ +  0                                     /* todo_flags_finish */   }  }; + +  | 
