diff options
Diffstat (limited to 'gcc/tree-vect-data-refs.cc')
-rw-r--r-- | gcc/tree-vect-data-refs.cc | 6814 |
1 files changed, 6814 insertions, 0 deletions
diff --git a/gcc/tree-vect-data-refs.cc b/gcc/tree-vect-data-refs.cc new file mode 100644 index 0000000..dd20ed9 --- /dev/null +++ b/gcc/tree-vect-data-refs.cc @@ -0,0 +1,6814 @@ +/* Data References Analysis and Manipulation Utilities for Vectorization. + Copyright (C) 2003-2022 Free Software Foundation, Inc. + Contributed by Dorit Naishlos <dorit@il.ibm.com> + and Ira Rosen <irar@il.ibm.com> + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "backend.h" +#include "target.h" +#include "rtl.h" +#include "tree.h" +#include "gimple.h" +#include "predict.h" +#include "memmodel.h" +#include "tm_p.h" +#include "ssa.h" +#include "optabs-tree.h" +#include "cgraph.h" +#include "dumpfile.h" +#include "alias.h" +#include "fold-const.h" +#include "stor-layout.h" +#include "tree-eh.h" +#include "gimplify.h" +#include "gimple-iterator.h" +#include "gimplify-me.h" +#include "tree-ssa-loop-ivopts.h" +#include "tree-ssa-loop-manip.h" +#include "tree-ssa-loop.h" +#include "cfgloop.h" +#include "tree-scalar-evolution.h" +#include "tree-vectorizer.h" +#include "expr.h" +#include "builtins.h" +#include "tree-cfg.h" +#include "tree-hash-traits.h" +#include "vec-perm-indices.h" +#include "internal-fn.h" +#include "gimple-fold.h" + +/* Return true if load- or store-lanes optab OPTAB is implemented for + COUNT vectors of type VECTYPE. NAME is the name of OPTAB. */ + +static bool +vect_lanes_optab_supported_p (const char *name, convert_optab optab, + tree vectype, unsigned HOST_WIDE_INT count) +{ + machine_mode mode, array_mode; + bool limit_p; + + mode = TYPE_MODE (vectype); + if (!targetm.array_mode (mode, count).exists (&array_mode)) + { + poly_uint64 bits = count * GET_MODE_BITSIZE (mode); + limit_p = !targetm.array_mode_supported_p (mode, count); + if (!int_mode_for_size (bits, limit_p).exists (&array_mode)) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "no array mode for %s[%wu]\n", + GET_MODE_NAME (mode), count); + return false; + } + } + + if (convert_optab_handler (optab, array_mode, mode) == CODE_FOR_nothing) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "cannot use %s<%s><%s>\n", name, + GET_MODE_NAME (array_mode), GET_MODE_NAME (mode)); + return false; + } + + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, + "can use %s<%s><%s>\n", name, GET_MODE_NAME (array_mode), + GET_MODE_NAME (mode)); + + return true; +} + + +/* Return the smallest scalar part of STMT_INFO. + This is used to determine the vectype of the stmt. We generally set the + vectype according to the type of the result (lhs). For stmts whose + result-type is different than the type of the arguments (e.g., demotion, + promotion), vectype will be reset appropriately (later). Note that we have + to visit the smallest datatype in this function, because that determines the + VF. If the smallest datatype in the loop is present only as the rhs of a + promotion operation - we'd miss it. + Such a case, where a variable of this datatype does not appear in the lhs + anywhere in the loop, can only occur if it's an invariant: e.g.: + 'int_x = (int) short_inv', which we'd expect to have been optimized away by + invariant motion. However, we cannot rely on invariant motion to always + take invariants out of the loop, and so in the case of promotion we also + have to check the rhs. + LHS_SIZE_UNIT and RHS_SIZE_UNIT contain the sizes of the corresponding + types. */ + +tree +vect_get_smallest_scalar_type (stmt_vec_info stmt_info, tree scalar_type) +{ + HOST_WIDE_INT lhs, rhs; + + /* During the analysis phase, this function is called on arbitrary + statements that might not have scalar results. */ + if (!tree_fits_uhwi_p (TYPE_SIZE_UNIT (scalar_type))) + return scalar_type; + + lhs = rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type)); + + gassign *assign = dyn_cast <gassign *> (stmt_info->stmt); + if (assign) + { + scalar_type = TREE_TYPE (gimple_assign_lhs (assign)); + if (gimple_assign_cast_p (assign) + || gimple_assign_rhs_code (assign) == DOT_PROD_EXPR + || gimple_assign_rhs_code (assign) == WIDEN_SUM_EXPR + || gimple_assign_rhs_code (assign) == WIDEN_MULT_EXPR + || gimple_assign_rhs_code (assign) == WIDEN_LSHIFT_EXPR + || gimple_assign_rhs_code (assign) == WIDEN_PLUS_EXPR + || gimple_assign_rhs_code (assign) == WIDEN_MINUS_EXPR + || gimple_assign_rhs_code (assign) == FLOAT_EXPR) + { + tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (assign)); + + rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (rhs_type)); + if (rhs < lhs) + scalar_type = rhs_type; + } + } + else if (gcall *call = dyn_cast <gcall *> (stmt_info->stmt)) + { + unsigned int i = 0; + if (gimple_call_internal_p (call)) + { + internal_fn ifn = gimple_call_internal_fn (call); + if (internal_load_fn_p (ifn)) + /* For loads the LHS type does the trick. */ + i = ~0U; + else if (internal_store_fn_p (ifn)) + { + /* For stores use the tyep of the stored value. */ + i = internal_fn_stored_value_index (ifn); + scalar_type = TREE_TYPE (gimple_call_arg (call, i)); + i = ~0U; + } + else if (internal_fn_mask_index (ifn) == 0) + i = 1; + } + if (i < gimple_call_num_args (call)) + { + tree rhs_type = TREE_TYPE (gimple_call_arg (call, i)); + if (tree_fits_uhwi_p (TYPE_SIZE_UNIT (rhs_type))) + { + rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (rhs_type)); + if (rhs < lhs) + scalar_type = rhs_type; + } + } + } + + return scalar_type; +} + + +/* Insert DDR into LOOP_VINFO list of ddrs that may alias and need to be + tested at run-time. Return TRUE if DDR was successfully inserted. + Return false if versioning is not supported. */ + +static opt_result +vect_mark_for_runtime_alias_test (ddr_p ddr, loop_vec_info loop_vinfo) +{ + class loop *loop = LOOP_VINFO_LOOP (loop_vinfo); + + if ((unsigned) param_vect_max_version_for_alias_checks == 0) + return opt_result::failure_at (vect_location, + "will not create alias checks, as" + " --param vect-max-version-for-alias-checks" + " == 0\n"); + + opt_result res + = runtime_alias_check_p (ddr, loop, + optimize_loop_nest_for_speed_p (loop)); + if (!res) + return res; + + LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).safe_push (ddr); + return opt_result::success (); +} + +/* Record that loop LOOP_VINFO needs to check that VALUE is nonzero. */ + +static void +vect_check_nonzero_value (loop_vec_info loop_vinfo, tree value) +{ + const vec<tree> &checks = LOOP_VINFO_CHECK_NONZERO (loop_vinfo); + for (unsigned int i = 0; i < checks.length(); ++i) + if (checks[i] == value) + return; + + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, + "need run-time check that %T is nonzero\n", + value); + LOOP_VINFO_CHECK_NONZERO (loop_vinfo).safe_push (value); +} + +/* Return true if we know that the order of vectorized DR_INFO_A and + vectorized DR_INFO_B will be the same as the order of DR_INFO_A and + DR_INFO_B. At least one of the accesses is a write. */ + +static bool +vect_preserves_scalar_order_p (dr_vec_info *dr_info_a, dr_vec_info *dr_info_b) +{ + stmt_vec_info stmtinfo_a = dr_info_a->stmt; + stmt_vec_info stmtinfo_b = dr_info_b->stmt; + + /* Single statements are always kept in their original order. */ + if (!STMT_VINFO_GROUPED_ACCESS (stmtinfo_a) + && !STMT_VINFO_GROUPED_ACCESS (stmtinfo_b)) + return true; + + /* STMT_A and STMT_B belong to overlapping groups. All loads are + emitted at the position of the first scalar load. + Stores in a group are emitted at the position of the last scalar store. + Compute that position and check whether the resulting order matches + the current one. */ + stmt_vec_info il_a = DR_GROUP_FIRST_ELEMENT (stmtinfo_a); + if (il_a) + { + if (DR_IS_WRITE (STMT_VINFO_DATA_REF (stmtinfo_a))) + for (stmt_vec_info s = DR_GROUP_NEXT_ELEMENT (il_a); s; + s = DR_GROUP_NEXT_ELEMENT (s)) + il_a = get_later_stmt (il_a, s); + else /* DR_IS_READ */ + for (stmt_vec_info s = DR_GROUP_NEXT_ELEMENT (il_a); s; + s = DR_GROUP_NEXT_ELEMENT (s)) + if (get_later_stmt (il_a, s) == il_a) + il_a = s; + } + else + il_a = stmtinfo_a; + stmt_vec_info il_b = DR_GROUP_FIRST_ELEMENT (stmtinfo_b); + if (il_b) + { + if (DR_IS_WRITE (STMT_VINFO_DATA_REF (stmtinfo_b))) + for (stmt_vec_info s = DR_GROUP_NEXT_ELEMENT (il_b); s; + s = DR_GROUP_NEXT_ELEMENT (s)) + il_b = get_later_stmt (il_b, s); + else /* DR_IS_READ */ + for (stmt_vec_info s = DR_GROUP_NEXT_ELEMENT (il_b); s; + s = DR_GROUP_NEXT_ELEMENT (s)) + if (get_later_stmt (il_b, s) == il_b) + il_b = s; + } + else + il_b = stmtinfo_b; + bool a_after_b = (get_later_stmt (stmtinfo_a, stmtinfo_b) == stmtinfo_a); + return (get_later_stmt (il_a, il_b) == il_a) == a_after_b; +} + +/* A subroutine of vect_analyze_data_ref_dependence. Handle + DDR_COULD_BE_INDEPENDENT_P ddr DDR that has a known set of dependence + distances. These distances are conservatively correct but they don't + reflect a guaranteed dependence. + + Return true if this function does all the work necessary to avoid + an alias or false if the caller should use the dependence distances + to limit the vectorization factor in the usual way. LOOP_DEPTH is + the depth of the loop described by LOOP_VINFO and the other arguments + are as for vect_analyze_data_ref_dependence. */ + +static bool +vect_analyze_possibly_independent_ddr (data_dependence_relation *ddr, + loop_vec_info loop_vinfo, + int loop_depth, unsigned int *max_vf) +{ + class loop *loop = LOOP_VINFO_LOOP (loop_vinfo); + for (lambda_vector &dist_v : DDR_DIST_VECTS (ddr)) + { + int dist = dist_v[loop_depth]; + if (dist != 0 && !(dist > 0 && DDR_REVERSED_P (ddr))) + { + /* If the user asserted safelen >= DIST consecutive iterations + can be executed concurrently, assume independence. + + ??? An alternative would be to add the alias check even + in this case, and vectorize the fallback loop with the + maximum VF set to safelen. However, if the user has + explicitly given a length, it's less likely that that + would be a win. */ + if (loop->safelen >= 2 && abs_hwi (dist) <= loop->safelen) + { + if ((unsigned int) loop->safelen < *max_vf) + *max_vf = loop->safelen; + LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false; + continue; + } + + /* For dependence distances of 2 or more, we have the option + of limiting VF or checking for an alias at runtime. + Prefer to check at runtime if we can, to avoid limiting + the VF unnecessarily when the bases are in fact independent. + + Note that the alias checks will be removed if the VF ends up + being small enough. */ + dr_vec_info *dr_info_a = loop_vinfo->lookup_dr (DDR_A (ddr)); + dr_vec_info *dr_info_b = loop_vinfo->lookup_dr (DDR_B (ddr)); + return (!STMT_VINFO_GATHER_SCATTER_P (dr_info_a->stmt) + && !STMT_VINFO_GATHER_SCATTER_P (dr_info_b->stmt) + && vect_mark_for_runtime_alias_test (ddr, loop_vinfo)); + } + } + return true; +} + + +/* Function vect_analyze_data_ref_dependence. + + FIXME: I needed to change the sense of the returned flag. + + Return FALSE if there (might) exist a dependence between a memory-reference + DRA and a memory-reference DRB. When versioning for alias may check a + dependence at run-time, return TRUE. Adjust *MAX_VF according to + the data dependence. */ + +static opt_result +vect_analyze_data_ref_dependence (struct data_dependence_relation *ddr, + loop_vec_info loop_vinfo, + unsigned int *max_vf) +{ + unsigned int i; + class loop *loop = LOOP_VINFO_LOOP (loop_vinfo); + struct data_reference *dra = DDR_A (ddr); + struct data_reference *drb = DDR_B (ddr); + dr_vec_info *dr_info_a = loop_vinfo->lookup_dr (dra); + dr_vec_info *dr_info_b = loop_vinfo->lookup_dr (drb); + stmt_vec_info stmtinfo_a = dr_info_a->stmt; + stmt_vec_info stmtinfo_b = dr_info_b->stmt; + lambda_vector dist_v; + unsigned int loop_depth; + + /* If user asserted safelen consecutive iterations can be + executed concurrently, assume independence. */ + auto apply_safelen = [&]() + { + if (loop->safelen >= 2) + { + if ((unsigned int) loop->safelen < *max_vf) + *max_vf = loop->safelen; + LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false; + return true; + } + return false; + }; + + /* In loop analysis all data references should be vectorizable. */ + if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a) + || !STMT_VINFO_VECTORIZABLE (stmtinfo_b)) + gcc_unreachable (); + + /* Independent data accesses. */ + if (DDR_ARE_DEPENDENT (ddr) == chrec_known) + return opt_result::success (); + + if (dra == drb + || (DR_IS_READ (dra) && DR_IS_READ (drb))) + return opt_result::success (); + + /* We do not have to consider dependences between accesses that belong + to the same group, unless the stride could be smaller than the + group size. */ + if (DR_GROUP_FIRST_ELEMENT (stmtinfo_a) + && (DR_GROUP_FIRST_ELEMENT (stmtinfo_a) + == DR_GROUP_FIRST_ELEMENT (stmtinfo_b)) + && !STMT_VINFO_STRIDED_P (stmtinfo_a)) + return opt_result::success (); + + /* Even if we have an anti-dependence then, as the vectorized loop covers at + least two scalar iterations, there is always also a true dependence. + As the vectorizer does not re-order loads and stores we can ignore + the anti-dependence if TBAA can disambiguate both DRs similar to the + case with known negative distance anti-dependences (positive + distance anti-dependences would violate TBAA constraints). */ + if (((DR_IS_READ (dra) && DR_IS_WRITE (drb)) + || (DR_IS_WRITE (dra) && DR_IS_READ (drb))) + && !alias_sets_conflict_p (get_alias_set (DR_REF (dra)), + get_alias_set (DR_REF (drb)))) + return opt_result::success (); + + if (STMT_VINFO_GATHER_SCATTER_P (stmtinfo_a) + || STMT_VINFO_GATHER_SCATTER_P (stmtinfo_b)) + { + if (apply_safelen ()) + return opt_result::success (); + + return opt_result::failure_at + (stmtinfo_a->stmt, + "possible alias involving gather/scatter between %T and %T\n", + DR_REF (dra), DR_REF (drb)); + } + + /* Unknown data dependence. */ + if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know) + { + if (apply_safelen ()) + return opt_result::success (); + + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, stmtinfo_a->stmt, + "versioning for alias required: " + "can't determine dependence between %T and %T\n", + DR_REF (dra), DR_REF (drb)); + + /* Add to list of ddrs that need to be tested at run-time. */ + return vect_mark_for_runtime_alias_test (ddr, loop_vinfo); + } + + /* Known data dependence. */ + if (DDR_NUM_DIST_VECTS (ddr) == 0) + { + if (apply_safelen ()) + return opt_result::success (); + + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, stmtinfo_a->stmt, + "versioning for alias required: " + "bad dist vector for %T and %T\n", + DR_REF (dra), DR_REF (drb)); + /* Add to list of ddrs that need to be tested at run-time. */ + return vect_mark_for_runtime_alias_test (ddr, loop_vinfo); + } + + loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr)); + + if (DDR_COULD_BE_INDEPENDENT_P (ddr) + && vect_analyze_possibly_independent_ddr (ddr, loop_vinfo, + loop_depth, max_vf)) + return opt_result::success (); + + FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v) + { + int dist = dist_v[loop_depth]; + + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, + "dependence distance = %d.\n", dist); + + if (dist == 0) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, + "dependence distance == 0 between %T and %T\n", + DR_REF (dra), DR_REF (drb)); + + /* When we perform grouped accesses and perform implicit CSE + by detecting equal accesses and doing disambiguation with + runtime alias tests like for + .. = a[i]; + .. = a[i+1]; + a[i] = ..; + a[i+1] = ..; + *p = ..; + .. = a[i]; + .. = a[i+1]; + where we will end up loading { a[i], a[i+1] } once, make + sure that inserting group loads before the first load and + stores after the last store will do the right thing. + Similar for groups like + a[i] = ...; + ... = a[i]; + a[i+1] = ...; + where loads from the group interleave with the store. */ + if (!vect_preserves_scalar_order_p (dr_info_a, dr_info_b)) + return opt_result::failure_at (stmtinfo_a->stmt, + "READ_WRITE dependence" + " in interleaving.\n"); + + if (loop->safelen < 2) + { + tree indicator = dr_zero_step_indicator (dra); + if (!indicator || integer_zerop (indicator)) + return opt_result::failure_at (stmtinfo_a->stmt, + "access also has a zero step\n"); + else if (TREE_CODE (indicator) != INTEGER_CST) + vect_check_nonzero_value (loop_vinfo, indicator); + } + continue; + } + + if (dist > 0 && DDR_REVERSED_P (ddr)) + { + /* If DDR_REVERSED_P the order of the data-refs in DDR was + reversed (to make distance vector positive), and the actual + distance is negative. */ + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, + "dependence distance negative.\n"); + /* When doing outer loop vectorization, we need to check if there is + a backward dependence at the inner loop level if the dependence + at the outer loop is reversed. See PR81740. */ + if (nested_in_vect_loop_p (loop, stmtinfo_a) + || nested_in_vect_loop_p (loop, stmtinfo_b)) + { + unsigned inner_depth = index_in_loop_nest (loop->inner->num, + DDR_LOOP_NEST (ddr)); + if (dist_v[inner_depth] < 0) + return opt_result::failure_at (stmtinfo_a->stmt, + "not vectorized, dependence " + "between data-refs %T and %T\n", + DR_REF (dra), DR_REF (drb)); + } + /* Record a negative dependence distance to later limit the + amount of stmt copying / unrolling we can perform. + Only need to handle read-after-write dependence. */ + if (DR_IS_READ (drb) + && (STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) == 0 + || STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) > (unsigned)dist)) + STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) = dist; + continue; + } + + unsigned int abs_dist = abs (dist); + if (abs_dist >= 2 && abs_dist < *max_vf) + { + /* The dependence distance requires reduction of the maximal + vectorization factor. */ + *max_vf = abs_dist; + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, + "adjusting maximal vectorization factor to %i\n", + *max_vf); + } + + if (abs_dist >= *max_vf) + { + /* Dependence distance does not create dependence, as far as + vectorization is concerned, in this case. */ + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, + "dependence distance >= VF.\n"); + continue; + } + + return opt_result::failure_at (stmtinfo_a->stmt, + "not vectorized, possible dependence " + "between data-refs %T and %T\n", + DR_REF (dra), DR_REF (drb)); + } + + return opt_result::success (); +} + +/* Function vect_analyze_data_ref_dependences. + + Examine all the data references in the loop, and make sure there do not + exist any data dependences between them. Set *MAX_VF according to + the maximum vectorization factor the data dependences allow. */ + +opt_result +vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo, + unsigned int *max_vf) +{ + unsigned int i; + struct data_dependence_relation *ddr; + + DUMP_VECT_SCOPE ("vect_analyze_data_ref_dependences"); + + if (!LOOP_VINFO_DDRS (loop_vinfo).exists ()) + { + LOOP_VINFO_DDRS (loop_vinfo) + .create (LOOP_VINFO_DATAREFS (loop_vinfo).length () + * LOOP_VINFO_DATAREFS (loop_vinfo).length ()); + /* We do not need read-read dependences. */ + bool res = compute_all_dependences (LOOP_VINFO_DATAREFS (loop_vinfo), + &LOOP_VINFO_DDRS (loop_vinfo), + LOOP_VINFO_LOOP_NEST (loop_vinfo), + false); + gcc_assert (res); + } + + LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = true; + + /* For epilogues we either have no aliases or alias versioning + was applied to original loop. Therefore we may just get max_vf + using VF of original loop. */ + if (LOOP_VINFO_EPILOGUE_P (loop_vinfo)) + *max_vf = LOOP_VINFO_ORIG_MAX_VECT_FACTOR (loop_vinfo); + else + FOR_EACH_VEC_ELT (LOOP_VINFO_DDRS (loop_vinfo), i, ddr) + { + opt_result res + = vect_analyze_data_ref_dependence (ddr, loop_vinfo, max_vf); + if (!res) + return res; + } + + return opt_result::success (); +} + + +/* Function vect_slp_analyze_data_ref_dependence. + + Return TRUE if there (might) exist a dependence between a memory-reference + DRA and a memory-reference DRB for VINFO. When versioning for alias + may check a dependence at run-time, return FALSE. Adjust *MAX_VF + according to the data dependence. */ + +static bool +vect_slp_analyze_data_ref_dependence (vec_info *vinfo, + struct data_dependence_relation *ddr) +{ + struct data_reference *dra = DDR_A (ddr); + struct data_reference *drb = DDR_B (ddr); + dr_vec_info *dr_info_a = vinfo->lookup_dr (dra); + dr_vec_info *dr_info_b = vinfo->lookup_dr (drb); + + /* We need to check dependences of statements marked as unvectorizable + as well, they still can prohibit vectorization. */ + + /* Independent data accesses. */ + if (DDR_ARE_DEPENDENT (ddr) == chrec_known) + return false; + + if (dra == drb) + return false; + + /* Read-read is OK. */ + if (DR_IS_READ (dra) && DR_IS_READ (drb)) + return false; + + /* If dra and drb are part of the same interleaving chain consider + them independent. */ + if (STMT_VINFO_GROUPED_ACCESS (dr_info_a->stmt) + && (DR_GROUP_FIRST_ELEMENT (dr_info_a->stmt) + == DR_GROUP_FIRST_ELEMENT (dr_info_b->stmt))) + return false; + + /* Unknown data dependence. */ + if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "can't determine dependence between %T and %T\n", + DR_REF (dra), DR_REF (drb)); + } + else if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, + "determined dependence between %T and %T\n", + DR_REF (dra), DR_REF (drb)); + + return true; +} + + +/* Analyze dependences involved in the transform of SLP NODE. STORES + contain the vector of scalar stores of this instance if we are + disambiguating the loads. */ + +static bool +vect_slp_analyze_node_dependences (vec_info *vinfo, slp_tree node, + vec<stmt_vec_info> stores, + stmt_vec_info last_store_info) +{ + /* This walks over all stmts involved in the SLP load/store done + in NODE verifying we can sink them up to the last stmt in the + group. */ + if (DR_IS_WRITE (STMT_VINFO_DATA_REF (SLP_TREE_REPRESENTATIVE (node)))) + { + stmt_vec_info last_access_info = vect_find_last_scalar_stmt_in_slp (node); + for (unsigned k = 0; k < SLP_TREE_SCALAR_STMTS (node).length (); ++k) + { + stmt_vec_info access_info + = vect_orig_stmt (SLP_TREE_SCALAR_STMTS (node)[k]); + if (access_info == last_access_info) + continue; + data_reference *dr_a = STMT_VINFO_DATA_REF (access_info); + ao_ref ref; + bool ref_initialized_p = false; + for (gimple_stmt_iterator gsi = gsi_for_stmt (access_info->stmt); + gsi_stmt (gsi) != last_access_info->stmt; gsi_next (&gsi)) + { + gimple *stmt = gsi_stmt (gsi); + if (! gimple_vuse (stmt)) + continue; + + /* If we couldn't record a (single) data reference for this + stmt we have to resort to the alias oracle. */ + stmt_vec_info stmt_info = vinfo->lookup_stmt (stmt); + data_reference *dr_b = STMT_VINFO_DATA_REF (stmt_info); + if (!dr_b) + { + /* We are moving a store - this means + we cannot use TBAA for disambiguation. */ + if (!ref_initialized_p) + ao_ref_init (&ref, DR_REF (dr_a)); + if (stmt_may_clobber_ref_p_1 (stmt, &ref, false) + || ref_maybe_used_by_stmt_p (stmt, &ref, false)) + return false; + continue; + } + + bool dependent = false; + /* If we run into a store of this same instance (we've just + marked those) then delay dependence checking until we run + into the last store because this is where it will have + been sunk to (and we verify if we can do that as well). */ + if (gimple_visited_p (stmt)) + { + if (stmt_info != last_store_info) + continue; + + for (stmt_vec_info &store_info : stores) + { + data_reference *store_dr + = STMT_VINFO_DATA_REF (store_info); + ddr_p ddr = initialize_data_dependence_relation + (dr_a, store_dr, vNULL); + dependent + = vect_slp_analyze_data_ref_dependence (vinfo, ddr); + free_dependence_relation (ddr); + if (dependent) + break; + } + } + else + { + ddr_p ddr = initialize_data_dependence_relation (dr_a, + dr_b, vNULL); + dependent = vect_slp_analyze_data_ref_dependence (vinfo, ddr); + free_dependence_relation (ddr); + } + if (dependent) + return false; + } + } + } + else /* DR_IS_READ */ + { + stmt_vec_info first_access_info + = vect_find_first_scalar_stmt_in_slp (node); + for (unsigned k = 0; k < SLP_TREE_SCALAR_STMTS (node).length (); ++k) + { + stmt_vec_info access_info + = vect_orig_stmt (SLP_TREE_SCALAR_STMTS (node)[k]); + if (access_info == first_access_info) + continue; + data_reference *dr_a = STMT_VINFO_DATA_REF (access_info); + ao_ref ref; + bool ref_initialized_p = false; + for (gimple_stmt_iterator gsi = gsi_for_stmt (access_info->stmt); + gsi_stmt (gsi) != first_access_info->stmt; gsi_prev (&gsi)) + { + gimple *stmt = gsi_stmt (gsi); + if (! gimple_vdef (stmt)) + continue; + + /* If we couldn't record a (single) data reference for this + stmt we have to resort to the alias oracle. */ + stmt_vec_info stmt_info = vinfo->lookup_stmt (stmt); + data_reference *dr_b = STMT_VINFO_DATA_REF (stmt_info); + + /* We are hoisting a load - this means we can use + TBAA for disambiguation. */ + if (!ref_initialized_p) + ao_ref_init (&ref, DR_REF (dr_a)); + if (stmt_may_clobber_ref_p_1 (stmt, &ref, true)) + { + if (!dr_b) + return false; + /* Resort to dependence checking below. */ + } + else + /* No dependence. */ + continue; + + bool dependent = false; + /* If we run into a store of this same instance (we've just + marked those) then delay dependence checking until we run + into the last store because this is where it will have + been sunk to (and we verify if we can do that as well). */ + if (gimple_visited_p (stmt)) + { + if (stmt_info != last_store_info) + continue; + + for (stmt_vec_info &store_info : stores) + { + data_reference *store_dr + = STMT_VINFO_DATA_REF (store_info); + ddr_p ddr = initialize_data_dependence_relation + (dr_a, store_dr, vNULL); + dependent + = vect_slp_analyze_data_ref_dependence (vinfo, ddr); + free_dependence_relation (ddr); + if (dependent) + break; + } + } + else + { + ddr_p ddr = initialize_data_dependence_relation (dr_a, + dr_b, vNULL); + dependent = vect_slp_analyze_data_ref_dependence (vinfo, ddr); + free_dependence_relation (ddr); + } + if (dependent) + return false; + } + } + } + return true; +} + + +/* Function vect_analyze_data_ref_dependences. + + Examine all the data references in the basic-block, and make sure there + do not exist any data dependences between them. Set *MAX_VF according to + the maximum vectorization factor the data dependences allow. */ + +bool +vect_slp_analyze_instance_dependence (vec_info *vinfo, slp_instance instance) +{ + DUMP_VECT_SCOPE ("vect_slp_analyze_instance_dependence"); + + /* The stores of this instance are at the root of the SLP tree. */ + slp_tree store = NULL; + if (SLP_INSTANCE_KIND (instance) == slp_inst_kind_store) + store = SLP_INSTANCE_TREE (instance); + + /* Verify we can sink stores to the vectorized stmt insert location. */ + stmt_vec_info last_store_info = NULL; + if (store) + { + if (! vect_slp_analyze_node_dependences (vinfo, store, vNULL, NULL)) + return false; + + /* Mark stores in this instance and remember the last one. */ + last_store_info = vect_find_last_scalar_stmt_in_slp (store); + for (unsigned k = 0; k < SLP_TREE_SCALAR_STMTS (store).length (); ++k) + gimple_set_visited (SLP_TREE_SCALAR_STMTS (store)[k]->stmt, true); + } + + bool res = true; + + /* Verify we can sink loads to the vectorized stmt insert location, + special-casing stores of this instance. */ + for (slp_tree &load : SLP_INSTANCE_LOADS (instance)) + if (! vect_slp_analyze_node_dependences (vinfo, load, + store + ? SLP_TREE_SCALAR_STMTS (store) + : vNULL, last_store_info)) + { + res = false; + break; + } + + /* Unset the visited flag. */ + if (store) + for (unsigned k = 0; k < SLP_TREE_SCALAR_STMTS (store).length (); ++k) + gimple_set_visited (SLP_TREE_SCALAR_STMTS (store)[k]->stmt, false); + + return res; +} + +/* Return the misalignment of DR_INFO accessed in VECTYPE with OFFSET + applied. */ + +int +dr_misalignment (dr_vec_info *dr_info, tree vectype, poly_int64 offset) +{ + HOST_WIDE_INT diff = 0; + /* Alignment is only analyzed for the first element of a DR group, + use that but adjust misalignment by the offset of the access. */ + if (STMT_VINFO_GROUPED_ACCESS (dr_info->stmt)) + { + dr_vec_info *first_dr + = STMT_VINFO_DR_INFO (DR_GROUP_FIRST_ELEMENT (dr_info->stmt)); + /* vect_analyze_data_ref_accesses guarantees that DR_INIT are + INTEGER_CSTs and the first element in the group has the lowest + address. */ + diff = (TREE_INT_CST_LOW (DR_INIT (dr_info->dr)) + - TREE_INT_CST_LOW (DR_INIT (first_dr->dr))); + gcc_assert (diff >= 0); + dr_info = first_dr; + } + + int misalign = dr_info->misalignment; + gcc_assert (misalign != DR_MISALIGNMENT_UNINITIALIZED); + if (misalign == DR_MISALIGNMENT_UNKNOWN) + return misalign; + + /* If the access is only aligned for a vector type with smaller alignment + requirement the access has unknown misalignment. */ + if (maybe_lt (dr_info->target_alignment * BITS_PER_UNIT, + targetm.vectorize.preferred_vector_alignment (vectype))) + return DR_MISALIGNMENT_UNKNOWN; + + /* Apply the offset from the DR group start and the externally supplied + offset which can for example result from a negative stride access. */ + poly_int64 misalignment = misalign + diff + offset; + + /* vect_compute_data_ref_alignment will have ensured that target_alignment + is constant and otherwise set misalign to DR_MISALIGNMENT_UNKNOWN. */ + unsigned HOST_WIDE_INT target_alignment_c + = dr_info->target_alignment.to_constant (); + if (!known_misalignment (misalignment, target_alignment_c, &misalign)) + return DR_MISALIGNMENT_UNKNOWN; + return misalign; +} + +/* Record the base alignment guarantee given by DRB, which occurs + in STMT_INFO. */ + +static void +vect_record_base_alignment (vec_info *vinfo, stmt_vec_info stmt_info, + innermost_loop_behavior *drb) +{ + bool existed; + std::pair<stmt_vec_info, innermost_loop_behavior *> &entry + = vinfo->base_alignments.get_or_insert (drb->base_address, &existed); + if (!existed || entry.second->base_alignment < drb->base_alignment) + { + entry = std::make_pair (stmt_info, drb); + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, + "recording new base alignment for %T\n" + " alignment: %d\n" + " misalignment: %d\n" + " based on: %G", + drb->base_address, + drb->base_alignment, + drb->base_misalignment, + stmt_info->stmt); + } +} + +/* If the region we're going to vectorize is reached, all unconditional + data references occur at least once. We can therefore pool the base + alignment guarantees from each unconditional reference. Do this by + going through all the data references in VINFO and checking whether + the containing statement makes the reference unconditionally. If so, + record the alignment of the base address in VINFO so that it can be + used for all other references with the same base. */ + +void +vect_record_base_alignments (vec_info *vinfo) +{ + loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo); + class loop *loop = loop_vinfo ? LOOP_VINFO_LOOP (loop_vinfo) : NULL; + for (data_reference *dr : vinfo->shared->datarefs) + { + dr_vec_info *dr_info = vinfo->lookup_dr (dr); + stmt_vec_info stmt_info = dr_info->stmt; + if (!DR_IS_CONDITIONAL_IN_STMT (dr) + && STMT_VINFO_VECTORIZABLE (stmt_info) + && !STMT_VINFO_GATHER_SCATTER_P (stmt_info)) + { + vect_record_base_alignment (vinfo, stmt_info, &DR_INNERMOST (dr)); + + /* If DR is nested in the loop that is being vectorized, we can also + record the alignment of the base wrt the outer loop. */ + if (loop && nested_in_vect_loop_p (loop, stmt_info)) + vect_record_base_alignment + (vinfo, stmt_info, &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info)); + } + } +} + +/* Function vect_compute_data_ref_alignment + + Compute the misalignment of the data reference DR_INFO when vectorizing + with VECTYPE. + + Output: + 1. initialized misalignment info for DR_INFO + + FOR NOW: No analysis is actually performed. Misalignment is calculated + only for trivial cases. TODO. */ + +static void +vect_compute_data_ref_alignment (vec_info *vinfo, dr_vec_info *dr_info, + tree vectype) +{ + stmt_vec_info stmt_info = dr_info->stmt; + vec_base_alignments *base_alignments = &vinfo->base_alignments; + loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo); + class loop *loop = NULL; + tree ref = DR_REF (dr_info->dr); + + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, + "vect_compute_data_ref_alignment:\n"); + + if (loop_vinfo) + loop = LOOP_VINFO_LOOP (loop_vinfo); + + /* Initialize misalignment to unknown. */ + SET_DR_MISALIGNMENT (dr_info, DR_MISALIGNMENT_UNKNOWN); + + if (STMT_VINFO_GATHER_SCATTER_P (stmt_info)) + return; + + innermost_loop_behavior *drb = vect_dr_behavior (vinfo, dr_info); + bool step_preserves_misalignment_p; + + poly_uint64 vector_alignment + = exact_div (targetm.vectorize.preferred_vector_alignment (vectype), + BITS_PER_UNIT); + SET_DR_TARGET_ALIGNMENT (dr_info, vector_alignment); + + /* If the main loop has peeled for alignment we have no way of knowing + whether the data accesses in the epilogues are aligned. We can't at + compile time answer the question whether we have entered the main loop or + not. Fixes PR 92351. */ + if (loop_vinfo) + { + loop_vec_info orig_loop_vinfo = LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo); + if (orig_loop_vinfo + && LOOP_VINFO_PEELING_FOR_ALIGNMENT (orig_loop_vinfo) != 0) + return; + } + + unsigned HOST_WIDE_INT vect_align_c; + if (!vector_alignment.is_constant (&vect_align_c)) + return; + + /* No step for BB vectorization. */ + if (!loop) + { + gcc_assert (integer_zerop (drb->step)); + step_preserves_misalignment_p = true; + } + + /* In case the dataref is in an inner-loop of the loop that is being + vectorized (LOOP), we use the base and misalignment information + relative to the outer-loop (LOOP). This is ok only if the misalignment + stays the same throughout the execution of the inner-loop, which is why + we have to check that the stride of the dataref in the inner-loop evenly + divides by the vector alignment. */ + else if (nested_in_vect_loop_p (loop, stmt_info)) + { + step_preserves_misalignment_p + = (DR_STEP_ALIGNMENT (dr_info->dr) % vect_align_c) == 0; + + if (dump_enabled_p ()) + { + if (step_preserves_misalignment_p) + dump_printf_loc (MSG_NOTE, vect_location, + "inner step divides the vector alignment.\n"); + else + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "inner step doesn't divide the vector" + " alignment.\n"); + } + } + + /* Similarly we can only use base and misalignment information relative to + an innermost loop if the misalignment stays the same throughout the + execution of the loop. As above, this is the case if the stride of + the dataref evenly divides by the alignment. */ + else + { + poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo); + step_preserves_misalignment_p + = multiple_p (DR_STEP_ALIGNMENT (dr_info->dr) * vf, vect_align_c); + + if (!step_preserves_misalignment_p && dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "step doesn't divide the vector alignment.\n"); + } + + unsigned int base_alignment = drb->base_alignment; + unsigned int base_misalignment = drb->base_misalignment; + + /* Calculate the maximum of the pooled base address alignment and the + alignment that we can compute for DR itself. */ + std::pair<stmt_vec_info, innermost_loop_behavior *> *entry + = base_alignments->get (drb->base_address); + if (entry + && base_alignment < (*entry).second->base_alignment + && (loop_vinfo + || (dominated_by_p (CDI_DOMINATORS, gimple_bb (stmt_info->stmt), + gimple_bb (entry->first->stmt)) + && (gimple_bb (stmt_info->stmt) != gimple_bb (entry->first->stmt) + || (entry->first->dr_aux.group <= dr_info->group))))) + { + base_alignment = entry->second->base_alignment; + base_misalignment = entry->second->base_misalignment; + } + + if (drb->offset_alignment < vect_align_c + || !step_preserves_misalignment_p + /* We need to know whether the step wrt the vectorized loop is + negative when computing the starting misalignment below. */ + || TREE_CODE (drb->step) != INTEGER_CST) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "Unknown alignment for access: %T\n", ref); + return; + } + + if (base_alignment < vect_align_c) + { + unsigned int max_alignment; + tree base = get_base_for_alignment (drb->base_address, &max_alignment); + if (max_alignment < vect_align_c + || !vect_can_force_dr_alignment_p (base, + vect_align_c * BITS_PER_UNIT)) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, + "can't force alignment of ref: %T\n", ref); + return; + } + + /* Force the alignment of the decl. + NOTE: This is the only change to the code we make during + the analysis phase, before deciding to vectorize the loop. */ + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, + "force alignment of %T\n", ref); + + dr_info->base_decl = base; + dr_info->base_misaligned = true; + base_misalignment = 0; + } + poly_int64 misalignment + = base_misalignment + wi::to_poly_offset (drb->init).force_shwi (); + + unsigned int const_misalignment; + if (!known_misalignment (misalignment, vect_align_c, &const_misalignment)) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "Non-constant misalignment for access: %T\n", ref); + return; + } + + SET_DR_MISALIGNMENT (dr_info, const_misalignment); + + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "misalign = %d bytes of ref %T\n", + const_misalignment, ref); + + return; +} + +/* Return whether DR_INFO, which is related to DR_PEEL_INFO in + that it only differs in DR_INIT, is aligned if DR_PEEL_INFO + is made aligned via peeling. */ + +static bool +vect_dr_aligned_if_related_peeled_dr_is (dr_vec_info *dr_info, + dr_vec_info *dr_peel_info) +{ + if (multiple_p (DR_TARGET_ALIGNMENT (dr_peel_info), + DR_TARGET_ALIGNMENT (dr_info))) + { + poly_offset_int diff + = (wi::to_poly_offset (DR_INIT (dr_peel_info->dr)) + - wi::to_poly_offset (DR_INIT (dr_info->dr))); + if (known_eq (diff, 0) + || multiple_p (diff, DR_TARGET_ALIGNMENT (dr_info))) + return true; + } + return false; +} + +/* Return whether DR_INFO is aligned if DR_PEEL_INFO is made + aligned via peeling. */ + +static bool +vect_dr_aligned_if_peeled_dr_is (dr_vec_info *dr_info, + dr_vec_info *dr_peel_info) +{ + if (!operand_equal_p (DR_BASE_ADDRESS (dr_info->dr), + DR_BASE_ADDRESS (dr_peel_info->dr), 0) + || !operand_equal_p (DR_OFFSET (dr_info->dr), + DR_OFFSET (dr_peel_info->dr), 0) + || !operand_equal_p (DR_STEP (dr_info->dr), + DR_STEP (dr_peel_info->dr), 0)) + return false; + + return vect_dr_aligned_if_related_peeled_dr_is (dr_info, dr_peel_info); +} + +/* Compute the value for dr_info->misalign so that the access appears + aligned. This is used by peeling to compensate for dr_misalignment + applying the offset for negative step. */ + +int +vect_dr_misalign_for_aligned_access (dr_vec_info *dr_info) +{ + if (tree_int_cst_sgn (DR_STEP (dr_info->dr)) >= 0) + return 0; + + tree vectype = STMT_VINFO_VECTYPE (dr_info->stmt); + poly_int64 misalignment + = ((TYPE_VECTOR_SUBPARTS (vectype) - 1) + * TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (vectype)))); + + unsigned HOST_WIDE_INT target_alignment_c; + int misalign; + if (!dr_info->target_alignment.is_constant (&target_alignment_c) + || !known_misalignment (misalignment, target_alignment_c, &misalign)) + return DR_MISALIGNMENT_UNKNOWN; + return misalign; +} + +/* Function vect_update_misalignment_for_peel. + Sets DR_INFO's misalignment + - to 0 if it has the same alignment as DR_PEEL_INFO, + - to the misalignment computed using NPEEL if DR_INFO's salignment is known, + - to -1 (unknown) otherwise. + + DR_INFO - the data reference whose misalignment is to be adjusted. + DR_PEEL_INFO - the data reference whose misalignment is being made + zero in the vector loop by the peel. + NPEEL - the number of iterations in the peel loop if the misalignment + of DR_PEEL_INFO is known at compile time. */ + +static void +vect_update_misalignment_for_peel (dr_vec_info *dr_info, + dr_vec_info *dr_peel_info, int npeel) +{ + /* If dr_info is aligned of dr_peel_info is, then mark it so. */ + if (vect_dr_aligned_if_peeled_dr_is (dr_info, dr_peel_info)) + { + SET_DR_MISALIGNMENT (dr_info, + vect_dr_misalign_for_aligned_access (dr_peel_info)); + return; + } + + unsigned HOST_WIDE_INT alignment; + if (DR_TARGET_ALIGNMENT (dr_info).is_constant (&alignment) + && known_alignment_for_access_p (dr_info, + STMT_VINFO_VECTYPE (dr_info->stmt)) + && known_alignment_for_access_p (dr_peel_info, + STMT_VINFO_VECTYPE (dr_peel_info->stmt))) + { + int misal = dr_info->misalignment; + misal += npeel * TREE_INT_CST_LOW (DR_STEP (dr_info->dr)); + misal &= alignment - 1; + set_dr_misalignment (dr_info, misal); + return; + } + + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, "Setting misalignment " \ + "to unknown (-1).\n"); + SET_DR_MISALIGNMENT (dr_info, DR_MISALIGNMENT_UNKNOWN); +} + +/* Return true if alignment is relevant for DR_INFO. */ + +static bool +vect_relevant_for_alignment_p (dr_vec_info *dr_info) +{ + stmt_vec_info stmt_info = dr_info->stmt; + + if (!STMT_VINFO_RELEVANT_P (stmt_info)) + return false; + + /* For interleaving, only the alignment of the first access matters. */ + if (STMT_VINFO_GROUPED_ACCESS (stmt_info) + && DR_GROUP_FIRST_ELEMENT (stmt_info) != stmt_info) + return false; + + /* Scatter-gather and invariant accesses continue to address individual + scalars, so vector-level alignment is irrelevant. */ + if (STMT_VINFO_GATHER_SCATTER_P (stmt_info) + || integer_zerop (DR_STEP (dr_info->dr))) + return false; + + /* Strided accesses perform only component accesses, alignment is + irrelevant for them. */ + if (STMT_VINFO_STRIDED_P (stmt_info) + && !STMT_VINFO_GROUPED_ACCESS (stmt_info)) + return false; + + return true; +} + +/* Given an memory reference EXP return whether its alignment is less + than its size. */ + +static bool +not_size_aligned (tree exp) +{ + if (!tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (exp)))) + return true; + + return (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (exp))) + > get_object_alignment (exp)); +} + +/* Function vector_alignment_reachable_p + + Return true if vector alignment for DR_INFO is reachable by peeling + a few loop iterations. Return false otherwise. */ + +static bool +vector_alignment_reachable_p (dr_vec_info *dr_info) +{ + stmt_vec_info stmt_info = dr_info->stmt; + tree vectype = STMT_VINFO_VECTYPE (stmt_info); + + if (STMT_VINFO_GROUPED_ACCESS (stmt_info)) + { + /* For interleaved access we peel only if number of iterations in + the prolog loop ({VF - misalignment}), is a multiple of the + number of the interleaved accesses. */ + int elem_size, mis_in_elements; + + /* FORNOW: handle only known alignment. */ + if (!known_alignment_for_access_p (dr_info, vectype)) + return false; + + poly_uint64 nelements = TYPE_VECTOR_SUBPARTS (vectype); + poly_uint64 vector_size = GET_MODE_SIZE (TYPE_MODE (vectype)); + elem_size = vector_element_size (vector_size, nelements); + mis_in_elements = dr_misalignment (dr_info, vectype) / elem_size; + + if (!multiple_p (nelements - mis_in_elements, DR_GROUP_SIZE (stmt_info))) + return false; + } + + /* If misalignment is known at the compile time then allow peeling + only if natural alignment is reachable through peeling. */ + if (known_alignment_for_access_p (dr_info, vectype) + && !aligned_access_p (dr_info, vectype)) + { + HOST_WIDE_INT elmsize = + int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype))); + if (dump_enabled_p ()) + { + dump_printf_loc (MSG_NOTE, vect_location, + "data size = %wd. misalignment = %d.\n", elmsize, + dr_misalignment (dr_info, vectype)); + } + if (dr_misalignment (dr_info, vectype) % elmsize) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "data size does not divide the misalignment.\n"); + return false; + } + } + + if (!known_alignment_for_access_p (dr_info, vectype)) + { + tree type = TREE_TYPE (DR_REF (dr_info->dr)); + bool is_packed = not_size_aligned (DR_REF (dr_info->dr)); + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "Unknown misalignment, %snaturally aligned\n", + is_packed ? "not " : ""); + return targetm.vectorize.vector_alignment_reachable (type, is_packed); + } + + return true; +} + + +/* Calculate the cost of the memory access represented by DR_INFO. */ + +static void +vect_get_data_access_cost (vec_info *vinfo, dr_vec_info *dr_info, + dr_alignment_support alignment_support_scheme, + int misalignment, + unsigned int *inside_cost, + unsigned int *outside_cost, + stmt_vector_for_cost *body_cost_vec, + stmt_vector_for_cost *prologue_cost_vec) +{ + stmt_vec_info stmt_info = dr_info->stmt; + loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo); + int ncopies; + + if (PURE_SLP_STMT (stmt_info)) + ncopies = 1; + else + ncopies = vect_get_num_copies (loop_vinfo, STMT_VINFO_VECTYPE (stmt_info)); + + if (DR_IS_READ (dr_info->dr)) + vect_get_load_cost (vinfo, stmt_info, ncopies, alignment_support_scheme, + misalignment, true, inside_cost, + outside_cost, prologue_cost_vec, body_cost_vec, false); + else + vect_get_store_cost (vinfo,stmt_info, ncopies, alignment_support_scheme, + misalignment, inside_cost, body_cost_vec); + + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, + "vect_get_data_access_cost: inside_cost = %d, " + "outside_cost = %d.\n", *inside_cost, *outside_cost); +} + + +typedef struct _vect_peel_info +{ + dr_vec_info *dr_info; + int npeel; + unsigned int count; +} *vect_peel_info; + +typedef struct _vect_peel_extended_info +{ + vec_info *vinfo; + struct _vect_peel_info peel_info; + unsigned int inside_cost; + unsigned int outside_cost; +} *vect_peel_extended_info; + + +/* Peeling hashtable helpers. */ + +struct peel_info_hasher : free_ptr_hash <_vect_peel_info> +{ + static inline hashval_t hash (const _vect_peel_info *); + static inline bool equal (const _vect_peel_info *, const _vect_peel_info *); +}; + +inline hashval_t +peel_info_hasher::hash (const _vect_peel_info *peel_info) +{ + return (hashval_t) peel_info->npeel; +} + +inline bool +peel_info_hasher::equal (const _vect_peel_info *a, const _vect_peel_info *b) +{ + return (a->npeel == b->npeel); +} + + +/* Insert DR_INFO into peeling hash table with NPEEL as key. */ + +static void +vect_peeling_hash_insert (hash_table<peel_info_hasher> *peeling_htab, + loop_vec_info loop_vinfo, dr_vec_info *dr_info, + int npeel, bool supportable_if_not_aligned) +{ + struct _vect_peel_info elem, *slot; + _vect_peel_info **new_slot; + + elem.npeel = npeel; + slot = peeling_htab->find (&elem); + if (slot) + slot->count++; + else + { + slot = XNEW (struct _vect_peel_info); + slot->npeel = npeel; + slot->dr_info = dr_info; + slot->count = 1; + new_slot = peeling_htab->find_slot (slot, INSERT); + *new_slot = slot; + } + + /* If this DR is not supported with unknown misalignment then bias + this slot when the cost model is disabled. */ + if (!supportable_if_not_aligned + && unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo))) + slot->count += VECT_MAX_COST; +} + + +/* Traverse peeling hash table to find peeling option that aligns maximum + number of data accesses. */ + +int +vect_peeling_hash_get_most_frequent (_vect_peel_info **slot, + _vect_peel_extended_info *max) +{ + vect_peel_info elem = *slot; + + if (elem->count > max->peel_info.count + || (elem->count == max->peel_info.count + && max->peel_info.npeel > elem->npeel)) + { + max->peel_info.npeel = elem->npeel; + max->peel_info.count = elem->count; + max->peel_info.dr_info = elem->dr_info; + } + + return 1; +} + +/* Get the costs of peeling NPEEL iterations for LOOP_VINFO, checking + data access costs for all data refs. If UNKNOWN_MISALIGNMENT is true, + npeel is computed at runtime but DR0_INFO's misalignment will be zero + after peeling. */ + +static void +vect_get_peeling_costs_all_drs (loop_vec_info loop_vinfo, + dr_vec_info *dr0_info, + unsigned int *inside_cost, + unsigned int *outside_cost, + stmt_vector_for_cost *body_cost_vec, + stmt_vector_for_cost *prologue_cost_vec, + unsigned int npeel) +{ + vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo); + + bool dr0_alignment_known_p + = (dr0_info + && known_alignment_for_access_p (dr0_info, + STMT_VINFO_VECTYPE (dr0_info->stmt))); + + for (data_reference *dr : datarefs) + { + dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr); + if (!vect_relevant_for_alignment_p (dr_info)) + continue; + + tree vectype = STMT_VINFO_VECTYPE (dr_info->stmt); + dr_alignment_support alignment_support_scheme; + int misalignment; + unsigned HOST_WIDE_INT alignment; + + bool negative = tree_int_cst_compare (DR_STEP (dr_info->dr), + size_zero_node) < 0; + poly_int64 off = 0; + if (negative) + off = ((TYPE_VECTOR_SUBPARTS (vectype) - 1) + * -TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (vectype)))); + + if (npeel == 0) + misalignment = dr_misalignment (dr_info, vectype, off); + else if (dr_info == dr0_info + || vect_dr_aligned_if_peeled_dr_is (dr_info, dr0_info)) + misalignment = 0; + else if (!dr0_alignment_known_p + || !known_alignment_for_access_p (dr_info, vectype) + || !DR_TARGET_ALIGNMENT (dr_info).is_constant (&alignment)) + misalignment = DR_MISALIGNMENT_UNKNOWN; + else + { + misalignment = dr_misalignment (dr_info, vectype, off); + misalignment += npeel * TREE_INT_CST_LOW (DR_STEP (dr_info->dr)); + misalignment &= alignment - 1; + } + alignment_support_scheme + = vect_supportable_dr_alignment (loop_vinfo, dr_info, vectype, + misalignment); + + vect_get_data_access_cost (loop_vinfo, dr_info, + alignment_support_scheme, misalignment, + inside_cost, outside_cost, + body_cost_vec, prologue_cost_vec); + } +} + +/* Traverse peeling hash table and calculate cost for each peeling option. + Find the one with the lowest cost. */ + +int +vect_peeling_hash_get_lowest_cost (_vect_peel_info **slot, + _vect_peel_extended_info *min) +{ + vect_peel_info elem = *slot; + int dummy; + unsigned int inside_cost = 0, outside_cost = 0; + loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (min->vinfo); + stmt_vector_for_cost prologue_cost_vec, body_cost_vec, + epilogue_cost_vec; + + prologue_cost_vec.create (2); + body_cost_vec.create (2); + epilogue_cost_vec.create (2); + + vect_get_peeling_costs_all_drs (loop_vinfo, elem->dr_info, &inside_cost, + &outside_cost, &body_cost_vec, + &prologue_cost_vec, elem->npeel); + + body_cost_vec.release (); + + outside_cost += vect_get_known_peeling_cost + (loop_vinfo, elem->npeel, &dummy, + &LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo), + &prologue_cost_vec, &epilogue_cost_vec); + + /* Prologue and epilogue costs are added to the target model later. + These costs depend only on the scalar iteration cost, the + number of peeling iterations finally chosen, and the number of + misaligned statements. So discard the information found here. */ + prologue_cost_vec.release (); + epilogue_cost_vec.release (); + + if (inside_cost < min->inside_cost + || (inside_cost == min->inside_cost + && outside_cost < min->outside_cost)) + { + min->inside_cost = inside_cost; + min->outside_cost = outside_cost; + min->peel_info.dr_info = elem->dr_info; + min->peel_info.npeel = elem->npeel; + min->peel_info.count = elem->count; + } + + return 1; +} + + +/* Choose best peeling option by traversing peeling hash table and either + choosing an option with the lowest cost (if cost model is enabled) or the + option that aligns as many accesses as possible. */ + +static struct _vect_peel_extended_info +vect_peeling_hash_choose_best_peeling (hash_table<peel_info_hasher> *peeling_htab, + loop_vec_info loop_vinfo) +{ + struct _vect_peel_extended_info res; + + res.peel_info.dr_info = NULL; + res.vinfo = loop_vinfo; + + if (!unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo))) + { + res.inside_cost = INT_MAX; + res.outside_cost = INT_MAX; + peeling_htab->traverse <_vect_peel_extended_info *, + vect_peeling_hash_get_lowest_cost> (&res); + } + else + { + res.peel_info.count = 0; + peeling_htab->traverse <_vect_peel_extended_info *, + vect_peeling_hash_get_most_frequent> (&res); + res.inside_cost = 0; + res.outside_cost = 0; + } + + return res; +} + +/* Return true if the new peeling NPEEL is supported. */ + +static bool +vect_peeling_supportable (loop_vec_info loop_vinfo, dr_vec_info *dr0_info, + unsigned npeel) +{ + vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo); + enum dr_alignment_support supportable_dr_alignment; + + bool dr0_alignment_known_p + = known_alignment_for_access_p (dr0_info, + STMT_VINFO_VECTYPE (dr0_info->stmt)); + + /* Ensure that all data refs can be vectorized after the peel. */ + for (data_reference *dr : datarefs) + { + if (dr == dr0_info->dr) + continue; + + dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr); + if (!vect_relevant_for_alignment_p (dr_info) + || vect_dr_aligned_if_peeled_dr_is (dr_info, dr0_info)) + continue; + + tree vectype = STMT_VINFO_VECTYPE (dr_info->stmt); + int misalignment; + unsigned HOST_WIDE_INT alignment; + if (!dr0_alignment_known_p + || !known_alignment_for_access_p (dr_info, vectype) + || !DR_TARGET_ALIGNMENT (dr_info).is_constant (&alignment)) + misalignment = DR_MISALIGNMENT_UNKNOWN; + else + { + misalignment = dr_misalignment (dr_info, vectype); + misalignment += npeel * TREE_INT_CST_LOW (DR_STEP (dr_info->dr)); + misalignment &= alignment - 1; + } + supportable_dr_alignment + = vect_supportable_dr_alignment (loop_vinfo, dr_info, vectype, + misalignment); + if (supportable_dr_alignment == dr_unaligned_unsupported) + return false; + } + + return true; +} + +/* Compare two data-references DRA and DRB to group them into chunks + with related alignment. */ + +static int +dr_align_group_sort_cmp (const void *dra_, const void *drb_) +{ + data_reference_p dra = *(data_reference_p *)const_cast<void *>(dra_); + data_reference_p drb = *(data_reference_p *)const_cast<void *>(drb_); + int cmp; + + /* Stabilize sort. */ + if (dra == drb) + return 0; + + /* Ordering of DRs according to base. */ + cmp = data_ref_compare_tree (DR_BASE_ADDRESS (dra), + DR_BASE_ADDRESS (drb)); + if (cmp != 0) + return cmp; + + /* And according to DR_OFFSET. */ + cmp = data_ref_compare_tree (DR_OFFSET (dra), DR_OFFSET (drb)); + if (cmp != 0) + return cmp; + + /* And after step. */ + cmp = data_ref_compare_tree (DR_STEP (dra), DR_STEP (drb)); + if (cmp != 0) + return cmp; + + /* Then sort after DR_INIT. In case of identical DRs sort after stmt UID. */ + cmp = data_ref_compare_tree (DR_INIT (dra), DR_INIT (drb)); + if (cmp == 0) + return gimple_uid (DR_STMT (dra)) < gimple_uid (DR_STMT (drb)) ? -1 : 1; + return cmp; +} + +/* Function vect_enhance_data_refs_alignment + + This pass will use loop versioning and loop peeling in order to enhance + the alignment of data references in the loop. + + FOR NOW: we assume that whatever versioning/peeling takes place, only the + original loop is to be vectorized. Any other loops that are created by + the transformations performed in this pass - are not supposed to be + vectorized. This restriction will be relaxed. + + This pass will require a cost model to guide it whether to apply peeling + or versioning or a combination of the two. For example, the scheme that + intel uses when given a loop with several memory accesses, is as follows: + choose one memory access ('p') which alignment you want to force by doing + peeling. Then, either (1) generate a loop in which 'p' is aligned and all + other accesses are not necessarily aligned, or (2) use loop versioning to + generate one loop in which all accesses are aligned, and another loop in + which only 'p' is necessarily aligned. + + ("Automatic Intra-Register Vectorization for the Intel Architecture", + Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International + Journal of Parallel Programming, Vol. 30, No. 2, April 2002.) + + Devising a cost model is the most critical aspect of this work. It will + guide us on which access to peel for, whether to use loop versioning, how + many versions to create, etc. The cost model will probably consist of + generic considerations as well as target specific considerations (on + powerpc for example, misaligned stores are more painful than misaligned + loads). + + Here are the general steps involved in alignment enhancements: + + -- original loop, before alignment analysis: + for (i=0; i<N; i++){ + x = q[i]; # DR_MISALIGNMENT(q) = unknown + p[i] = y; # DR_MISALIGNMENT(p) = unknown + } + + -- After vect_compute_data_refs_alignment: + for (i=0; i<N; i++){ + x = q[i]; # DR_MISALIGNMENT(q) = 3 + p[i] = y; # DR_MISALIGNMENT(p) = unknown + } + + -- Possibility 1: we do loop versioning: + if (p is aligned) { + for (i=0; i<N; i++){ # loop 1A + x = q[i]; # DR_MISALIGNMENT(q) = 3 + p[i] = y; # DR_MISALIGNMENT(p) = 0 + } + } + else { + for (i=0; i<N; i++){ # loop 1B + x = q[i]; # DR_MISALIGNMENT(q) = 3 + p[i] = y; # DR_MISALIGNMENT(p) = unaligned + } + } + + -- Possibility 2: we do loop peeling: + for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized). + x = q[i]; + p[i] = y; + } + for (i = 3; i < N; i++){ # loop 2A + x = q[i]; # DR_MISALIGNMENT(q) = 0 + p[i] = y; # DR_MISALIGNMENT(p) = unknown + } + + -- Possibility 3: combination of loop peeling and versioning: + for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized). + x = q[i]; + p[i] = y; + } + if (p is aligned) { + for (i = 3; i<N; i++){ # loop 3A + x = q[i]; # DR_MISALIGNMENT(q) = 0 + p[i] = y; # DR_MISALIGNMENT(p) = 0 + } + } + else { + for (i = 3; i<N; i++){ # loop 3B + x = q[i]; # DR_MISALIGNMENT(q) = 0 + p[i] = y; # DR_MISALIGNMENT(p) = unaligned + } + } + + These loops are later passed to loop_transform to be vectorized. The + vectorizer will use the alignment information to guide the transformation + (whether to generate regular loads/stores, or with special handling for + misalignment). */ + +opt_result +vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo) +{ + class loop *loop = LOOP_VINFO_LOOP (loop_vinfo); + dr_vec_info *first_store = NULL; + dr_vec_info *dr0_info = NULL; + struct data_reference *dr; + unsigned int i; + bool do_peeling = false; + bool do_versioning = false; + unsigned int npeel = 0; + bool one_misalignment_known = false; + bool one_misalignment_unknown = false; + bool one_dr_unsupportable = false; + dr_vec_info *unsupportable_dr_info = NULL; + unsigned int dr0_same_align_drs = 0, first_store_same_align_drs = 0; + hash_table<peel_info_hasher> peeling_htab (1); + + DUMP_VECT_SCOPE ("vect_enhance_data_refs_alignment"); + + /* Reset data so we can safely be called multiple times. */ + LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).truncate (0); + LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = 0; + + if (LOOP_VINFO_DATAREFS (loop_vinfo).is_empty ()) + return opt_result::success (); + + /* Sort the vector of datarefs so DRs that have the same or dependent + alignment are next to each other. */ + auto_vec<data_reference_p> datarefs + = LOOP_VINFO_DATAREFS (loop_vinfo).copy (); + datarefs.qsort (dr_align_group_sort_cmp); + + /* Compute the number of DRs that become aligned when we peel + a dataref so it becomes aligned. */ + auto_vec<unsigned> n_same_align_refs (datarefs.length ()); + n_same_align_refs.quick_grow_cleared (datarefs.length ()); + unsigned i0; + for (i0 = 0; i0 < datarefs.length (); ++i0) + if (DR_BASE_ADDRESS (datarefs[i0])) + break; + for (i = i0 + 1; i <= datarefs.length (); ++i) + { + if (i == datarefs.length () + || !operand_equal_p (DR_BASE_ADDRESS (datarefs[i0]), + DR_BASE_ADDRESS (datarefs[i]), 0) + || !operand_equal_p (DR_OFFSET (datarefs[i0]), + DR_OFFSET (datarefs[i]), 0) + || !operand_equal_p (DR_STEP (datarefs[i0]), + DR_STEP (datarefs[i]), 0)) + { + /* The subgroup [i0, i-1] now only differs in DR_INIT and + possibly DR_TARGET_ALIGNMENT. Still the whole subgroup + will get known misalignment if we align one of the refs + with the largest DR_TARGET_ALIGNMENT. */ + for (unsigned j = i0; j < i; ++j) + { + dr_vec_info *dr_infoj = loop_vinfo->lookup_dr (datarefs[j]); + for (unsigned k = i0; k < i; ++k) + { + if (k == j) + continue; + dr_vec_info *dr_infok = loop_vinfo->lookup_dr (datarefs[k]); + if (vect_dr_aligned_if_related_peeled_dr_is (dr_infok, + dr_infoj)) + n_same_align_refs[j]++; + } + } + i0 = i; + } + } + + /* While cost model enhancements are expected in the future, the high level + view of the code at this time is as follows: + + A) If there is a misaligned access then see if peeling to align + this access can make all data references satisfy + vect_supportable_dr_alignment. If so, update data structures + as needed and return true. + + B) If peeling wasn't possible and there is a data reference with an + unknown misalignment that does not satisfy vect_supportable_dr_alignment + then see if loop versioning checks can be used to make all data + references satisfy vect_supportable_dr_alignment. If so, update + data structures as needed and return true. + + C) If neither peeling nor versioning were successful then return false if + any data reference does not satisfy vect_supportable_dr_alignment. + + D) Return true (all data references satisfy vect_supportable_dr_alignment). + + Note, Possibility 3 above (which is peeling and versioning together) is not + being done at this time. */ + + /* (1) Peeling to force alignment. */ + + /* (1.1) Decide whether to perform peeling, and how many iterations to peel: + Considerations: + + How many accesses will become aligned due to the peeling + - How many accesses will become unaligned due to the peeling, + and the cost of misaligned accesses. + - The cost of peeling (the extra runtime checks, the increase + in code size). */ + + FOR_EACH_VEC_ELT (datarefs, i, dr) + { + dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr); + if (!vect_relevant_for_alignment_p (dr_info)) + continue; + + stmt_vec_info stmt_info = dr_info->stmt; + tree vectype = STMT_VINFO_VECTYPE (stmt_info); + do_peeling = vector_alignment_reachable_p (dr_info); + if (do_peeling) + { + if (known_alignment_for_access_p (dr_info, vectype)) + { + unsigned int npeel_tmp = 0; + bool negative = tree_int_cst_compare (DR_STEP (dr), + size_zero_node) < 0; + + /* If known_alignment_for_access_p then we have set + DR_MISALIGNMENT which is only done if we know it at compiler + time, so it is safe to assume target alignment is constant. + */ + unsigned int target_align = + DR_TARGET_ALIGNMENT (dr_info).to_constant (); + unsigned HOST_WIDE_INT dr_size = vect_get_scalar_dr_size (dr_info); + poly_int64 off = 0; + if (negative) + off = (TYPE_VECTOR_SUBPARTS (vectype) - 1) * -dr_size; + unsigned int mis = dr_misalignment (dr_info, vectype, off); + mis = negative ? mis : -mis; + if (mis != 0) + npeel_tmp = (mis & (target_align - 1)) / dr_size; + + /* For multiple types, it is possible that the bigger type access + will have more than one peeling option. E.g., a loop with two + types: one of size (vector size / 4), and the other one of + size (vector size / 8). Vectorization factor will 8. If both + accesses are misaligned by 3, the first one needs one scalar + iteration to be aligned, and the second one needs 5. But the + first one will be aligned also by peeling 5 scalar + iterations, and in that case both accesses will be aligned. + Hence, except for the immediate peeling amount, we also want + to try to add full vector size, while we don't exceed + vectorization factor. + We do this automatically for cost model, since we calculate + cost for every peeling option. */ + poly_uint64 nscalars = npeel_tmp; + if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo))) + { + poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo); + nscalars = (STMT_SLP_TYPE (stmt_info) + ? vf * DR_GROUP_SIZE (stmt_info) : vf); + } + + /* Save info about DR in the hash table. Also include peeling + amounts according to the explanation above. Indicate + the alignment status when the ref is not aligned. + ??? Rather than using unknown alignment here we should + prune all entries from the peeling hashtable which cause + DRs to be not supported. */ + bool supportable_if_not_aligned + = vect_supportable_dr_alignment + (loop_vinfo, dr_info, vectype, DR_MISALIGNMENT_UNKNOWN); + while (known_le (npeel_tmp, nscalars)) + { + vect_peeling_hash_insert (&peeling_htab, loop_vinfo, + dr_info, npeel_tmp, + supportable_if_not_aligned); + npeel_tmp += MAX (1, target_align / dr_size); + } + + one_misalignment_known = true; + } + else + { + /* If we don't know any misalignment values, we prefer + peeling for data-ref that has the maximum number of data-refs + with the same alignment, unless the target prefers to align + stores over load. */ + unsigned same_align_drs = n_same_align_refs[i]; + if (!dr0_info + || dr0_same_align_drs < same_align_drs) + { + dr0_same_align_drs = same_align_drs; + dr0_info = dr_info; + } + /* For data-refs with the same number of related + accesses prefer the one where the misalign + computation will be invariant in the outermost loop. */ + else if (dr0_same_align_drs == same_align_drs) + { + class loop *ivloop0, *ivloop; + ivloop0 = outermost_invariant_loop_for_expr + (loop, DR_BASE_ADDRESS (dr0_info->dr)); + ivloop = outermost_invariant_loop_for_expr + (loop, DR_BASE_ADDRESS (dr)); + if ((ivloop && !ivloop0) + || (ivloop && ivloop0 + && flow_loop_nested_p (ivloop, ivloop0))) + dr0_info = dr_info; + } + + one_misalignment_unknown = true; + + /* Check for data refs with unsupportable alignment that + can be peeled. */ + enum dr_alignment_support supportable_dr_alignment + = vect_supportable_dr_alignment (loop_vinfo, dr_info, vectype, + DR_MISALIGNMENT_UNKNOWN); + if (supportable_dr_alignment == dr_unaligned_unsupported) + { + one_dr_unsupportable = true; + unsupportable_dr_info = dr_info; + } + + if (!first_store && DR_IS_WRITE (dr)) + { + first_store = dr_info; + first_store_same_align_drs = same_align_drs; + } + } + } + else + { + if (!aligned_access_p (dr_info, vectype)) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "vector alignment may not be reachable\n"); + break; + } + } + } + + /* Check if we can possibly peel the loop. */ + if (!vect_can_advance_ivs_p (loop_vinfo) + || !slpeel_can_duplicate_loop_p (loop, single_exit (loop)) + || loop->inner) + do_peeling = false; + + struct _vect_peel_extended_info peel_for_known_alignment; + struct _vect_peel_extended_info peel_for_unknown_alignment; + struct _vect_peel_extended_info best_peel; + + peel_for_unknown_alignment.inside_cost = INT_MAX; + peel_for_unknown_alignment.outside_cost = INT_MAX; + peel_for_unknown_alignment.peel_info.count = 0; + + if (do_peeling + && one_misalignment_unknown) + { + /* Check if the target requires to prefer stores over loads, i.e., if + misaligned stores are more expensive than misaligned loads (taking + drs with same alignment into account). */ + unsigned int load_inside_cost = 0; + unsigned int load_outside_cost = 0; + unsigned int store_inside_cost = 0; + unsigned int store_outside_cost = 0; + unsigned int estimated_npeels = vect_vf_for_cost (loop_vinfo) / 2; + + stmt_vector_for_cost dummy; + dummy.create (2); + vect_get_peeling_costs_all_drs (loop_vinfo, dr0_info, + &load_inside_cost, + &load_outside_cost, + &dummy, &dummy, estimated_npeels); + dummy.release (); + + if (first_store) + { + dummy.create (2); + vect_get_peeling_costs_all_drs (loop_vinfo, first_store, + &store_inside_cost, + &store_outside_cost, + &dummy, &dummy, + estimated_npeels); + dummy.release (); + } + else + { + store_inside_cost = INT_MAX; + store_outside_cost = INT_MAX; + } + + if (load_inside_cost > store_inside_cost + || (load_inside_cost == store_inside_cost + && load_outside_cost > store_outside_cost)) + { + dr0_info = first_store; + dr0_same_align_drs = first_store_same_align_drs; + peel_for_unknown_alignment.inside_cost = store_inside_cost; + peel_for_unknown_alignment.outside_cost = store_outside_cost; + } + else + { + peel_for_unknown_alignment.inside_cost = load_inside_cost; + peel_for_unknown_alignment.outside_cost = load_outside_cost; + } + + stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec; + prologue_cost_vec.create (2); + epilogue_cost_vec.create (2); + + int dummy2; + peel_for_unknown_alignment.outside_cost += vect_get_known_peeling_cost + (loop_vinfo, estimated_npeels, &dummy2, + &LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo), + &prologue_cost_vec, &epilogue_cost_vec); + + prologue_cost_vec.release (); + epilogue_cost_vec.release (); + + peel_for_unknown_alignment.peel_info.count = dr0_same_align_drs + 1; + } + + peel_for_unknown_alignment.peel_info.npeel = 0; + peel_for_unknown_alignment.peel_info.dr_info = dr0_info; + + best_peel = peel_for_unknown_alignment; + + peel_for_known_alignment.inside_cost = INT_MAX; + peel_for_known_alignment.outside_cost = INT_MAX; + peel_for_known_alignment.peel_info.count = 0; + peel_for_known_alignment.peel_info.dr_info = NULL; + + if (do_peeling && one_misalignment_known) + { + /* Peeling is possible, but there is no data access that is not supported + unless aligned. So we try to choose the best possible peeling from + the hash table. */ + peel_for_known_alignment = vect_peeling_hash_choose_best_peeling + (&peeling_htab, loop_vinfo); + } + + /* Compare costs of peeling for known and unknown alignment. */ + if (peel_for_known_alignment.peel_info.dr_info != NULL + && peel_for_unknown_alignment.inside_cost + >= peel_for_known_alignment.inside_cost) + { + best_peel = peel_for_known_alignment; + + /* If the best peeling for known alignment has NPEEL == 0, perform no + peeling at all except if there is an unsupportable dr that we can + align. */ + if (best_peel.peel_info.npeel == 0 && !one_dr_unsupportable) + do_peeling = false; + } + + /* If there is an unsupportable data ref, prefer this over all choices so far + since we'd have to discard a chosen peeling except when it accidentally + aligned the unsupportable data ref. */ + if (one_dr_unsupportable) + dr0_info = unsupportable_dr_info; + else if (do_peeling) + { + /* Calculate the penalty for no peeling, i.e. leaving everything as-is. + TODO: Use nopeel_outside_cost or get rid of it? */ + unsigned nopeel_inside_cost = 0; + unsigned nopeel_outside_cost = 0; + + stmt_vector_for_cost dummy; + dummy.create (2); + vect_get_peeling_costs_all_drs (loop_vinfo, NULL, &nopeel_inside_cost, + &nopeel_outside_cost, &dummy, &dummy, 0); + dummy.release (); + + /* Add epilogue costs. As we do not peel for alignment here, no prologue + costs will be recorded. */ + stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec; + prologue_cost_vec.create (2); + epilogue_cost_vec.create (2); + + int dummy2; + nopeel_outside_cost += vect_get_known_peeling_cost + (loop_vinfo, 0, &dummy2, + &LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo), + &prologue_cost_vec, &epilogue_cost_vec); + + prologue_cost_vec.release (); + epilogue_cost_vec.release (); + + npeel = best_peel.peel_info.npeel; + dr0_info = best_peel.peel_info.dr_info; + + /* If no peeling is not more expensive than the best peeling we + have so far, don't perform any peeling. */ + if (nopeel_inside_cost <= best_peel.inside_cost) + do_peeling = false; + } + + if (do_peeling) + { + stmt_vec_info stmt_info = dr0_info->stmt; + if (known_alignment_for_access_p (dr0_info, + STMT_VINFO_VECTYPE (stmt_info))) + { + bool negative = tree_int_cst_compare (DR_STEP (dr0_info->dr), + size_zero_node) < 0; + if (!npeel) + { + /* Since it's known at compile time, compute the number of + iterations in the peeled loop (the peeling factor) for use in + updating DR_MISALIGNMENT values. The peeling factor is the + vectorization factor minus the misalignment as an element + count. */ + tree vectype = STMT_VINFO_VECTYPE (stmt_info); + poly_int64 off = 0; + if (negative) + off = ((TYPE_VECTOR_SUBPARTS (vectype) - 1) + * -TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (vectype)))); + unsigned int mis + = dr_misalignment (dr0_info, vectype, off); + mis = negative ? mis : -mis; + /* If known_alignment_for_access_p then we have set + DR_MISALIGNMENT which is only done if we know it at compiler + time, so it is safe to assume target alignment is constant. + */ + unsigned int target_align = + DR_TARGET_ALIGNMENT (dr0_info).to_constant (); + npeel = ((mis & (target_align - 1)) + / vect_get_scalar_dr_size (dr0_info)); + } + + /* For interleaved data access every iteration accesses all the + members of the group, therefore we divide the number of iterations + by the group size. */ + if (STMT_VINFO_GROUPED_ACCESS (stmt_info)) + npeel /= DR_GROUP_SIZE (stmt_info); + + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, + "Try peeling by %d\n", npeel); + } + + /* Ensure that all datarefs can be vectorized after the peel. */ + if (!vect_peeling_supportable (loop_vinfo, dr0_info, npeel)) + do_peeling = false; + + /* Check if all datarefs are supportable and log. */ + if (do_peeling + && npeel == 0 + && known_alignment_for_access_p (dr0_info, + STMT_VINFO_VECTYPE (stmt_info))) + return opt_result::success (); + + /* Cost model #1 - honor --param vect-max-peeling-for-alignment. */ + if (do_peeling) + { + unsigned max_allowed_peel + = param_vect_max_peeling_for_alignment; + if (loop_cost_model (loop) <= VECT_COST_MODEL_CHEAP) + max_allowed_peel = 0; + if (max_allowed_peel != (unsigned)-1) + { + unsigned max_peel = npeel; + if (max_peel == 0) + { + poly_uint64 target_align = DR_TARGET_ALIGNMENT (dr0_info); + unsigned HOST_WIDE_INT target_align_c; + if (target_align.is_constant (&target_align_c)) + max_peel = + target_align_c / vect_get_scalar_dr_size (dr0_info) - 1; + else + { + do_peeling = false; + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, + "Disable peeling, max peels set and vector" + " alignment unknown\n"); + } + } + if (max_peel > max_allowed_peel) + { + do_peeling = false; + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, + "Disable peeling, max peels reached: %d\n", max_peel); + } + } + } + + /* Cost model #2 - if peeling may result in a remaining loop not + iterating enough to be vectorized then do not peel. Since this + is a cost heuristic rather than a correctness decision, use the + most likely runtime value for variable vectorization factors. */ + if (do_peeling + && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)) + { + unsigned int assumed_vf = vect_vf_for_cost (loop_vinfo); + unsigned int max_peel = npeel == 0 ? assumed_vf - 1 : npeel; + if ((unsigned HOST_WIDE_INT) LOOP_VINFO_INT_NITERS (loop_vinfo) + < assumed_vf + max_peel) + do_peeling = false; + } + + if (do_peeling) + { + /* (1.2) Update the DR_MISALIGNMENT of each data reference DR_i. + If the misalignment of DR_i is identical to that of dr0 then set + DR_MISALIGNMENT (DR_i) to zero. If the misalignment of DR_i and + dr0 are known at compile time then increment DR_MISALIGNMENT (DR_i) + by the peeling factor times the element size of DR_i (MOD the + vectorization factor times the size). Otherwise, the + misalignment of DR_i must be set to unknown. */ + FOR_EACH_VEC_ELT (datarefs, i, dr) + if (dr != dr0_info->dr) + { + dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr); + if (!vect_relevant_for_alignment_p (dr_info)) + continue; + + vect_update_misalignment_for_peel (dr_info, dr0_info, npeel); + } + + LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr0_info; + if (npeel) + LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = npeel; + else + LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = -1; + SET_DR_MISALIGNMENT (dr0_info, + vect_dr_misalign_for_aligned_access (dr0_info)); + if (dump_enabled_p ()) + { + dump_printf_loc (MSG_NOTE, vect_location, + "Alignment of access forced using peeling.\n"); + dump_printf_loc (MSG_NOTE, vect_location, + "Peeling for alignment will be applied.\n"); + } + + /* The inside-loop cost will be accounted for in vectorizable_load + and vectorizable_store correctly with adjusted alignments. + Drop the body_cst_vec on the floor here. */ + return opt_result::success (); + } + } + + /* (2) Versioning to force alignment. */ + + /* Try versioning if: + 1) optimize loop for speed and the cost-model is not cheap + 2) there is at least one unsupported misaligned data ref with an unknown + misalignment, and + 3) all misaligned data refs with a known misalignment are supported, and + 4) the number of runtime alignment checks is within reason. */ + + do_versioning + = (optimize_loop_nest_for_speed_p (loop) + && !loop->inner /* FORNOW */ + && loop_cost_model (loop) > VECT_COST_MODEL_CHEAP); + + if (do_versioning) + { + FOR_EACH_VEC_ELT (datarefs, i, dr) + { + dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr); + if (!vect_relevant_for_alignment_p (dr_info)) + continue; + + stmt_vec_info stmt_info = dr_info->stmt; + if (STMT_VINFO_STRIDED_P (stmt_info)) + { + do_versioning = false; + break; + } + + tree vectype = STMT_VINFO_VECTYPE (stmt_info); + bool negative = tree_int_cst_compare (DR_STEP (dr), + size_zero_node) < 0; + poly_int64 off = 0; + if (negative) + off = ((TYPE_VECTOR_SUBPARTS (vectype) - 1) + * -TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (vectype)))); + int misalignment; + if ((misalignment = dr_misalignment (dr_info, vectype, off)) == 0) + continue; + + enum dr_alignment_support supportable_dr_alignment + = vect_supportable_dr_alignment (loop_vinfo, dr_info, vectype, + misalignment); + if (supportable_dr_alignment == dr_unaligned_unsupported) + { + if (misalignment != DR_MISALIGNMENT_UNKNOWN + || (LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length () + >= (unsigned) param_vect_max_version_for_alignment_checks)) + { + do_versioning = false; + break; + } + + /* At present we don't support versioning for alignment + with variable VF, since there's no guarantee that the + VF is a power of two. We could relax this if we added + a way of enforcing a power-of-two size. */ + unsigned HOST_WIDE_INT size; + if (!GET_MODE_SIZE (TYPE_MODE (vectype)).is_constant (&size)) + { + do_versioning = false; + break; + } + + /* Forcing alignment in the first iteration is no good if + we don't keep it across iterations. For now, just disable + versioning in this case. + ?? We could actually unroll the loop to achieve the required + overall step alignment, and forcing the alignment could be + done by doing some iterations of the non-vectorized loop. */ + if (!multiple_p (LOOP_VINFO_VECT_FACTOR (loop_vinfo) + * DR_STEP_ALIGNMENT (dr), + DR_TARGET_ALIGNMENT (dr_info))) + { + do_versioning = false; + break; + } + + /* The rightmost bits of an aligned address must be zeros. + Construct the mask needed for this test. For example, + GET_MODE_SIZE for the vector mode V4SI is 16 bytes so the + mask must be 15 = 0xf. */ + int mask = size - 1; + + /* FORNOW: use the same mask to test all potentially unaligned + references in the loop. */ + if (LOOP_VINFO_PTR_MASK (loop_vinfo) + && LOOP_VINFO_PTR_MASK (loop_vinfo) != mask) + { + do_versioning = false; + break; + } + + LOOP_VINFO_PTR_MASK (loop_vinfo) = mask; + LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).safe_push (stmt_info); + } + } + + /* Versioning requires at least one misaligned data reference. */ + if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)) + do_versioning = false; + else if (!do_versioning) + LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).truncate (0); + } + + if (do_versioning) + { + const vec<stmt_vec_info> &may_misalign_stmts + = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo); + stmt_vec_info stmt_info; + + /* It can now be assumed that the data references in the statements + in LOOP_VINFO_MAY_MISALIGN_STMTS will be aligned in the version + of the loop being vectorized. */ + FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt_info) + { + dr_vec_info *dr_info = STMT_VINFO_DR_INFO (stmt_info); + SET_DR_MISALIGNMENT (dr_info, + vect_dr_misalign_for_aligned_access (dr_info)); + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, + "Alignment of access forced using versioning.\n"); + } + + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, + "Versioning for alignment will be applied.\n"); + + /* Peeling and versioning can't be done together at this time. */ + gcc_assert (! (do_peeling && do_versioning)); + + return opt_result::success (); + } + + /* This point is reached if neither peeling nor versioning is being done. */ + gcc_assert (! (do_peeling || do_versioning)); + + return opt_result::success (); +} + + +/* Function vect_analyze_data_refs_alignment + + Analyze the alignment of the data-references in the loop. + Return FALSE if a data reference is found that cannot be vectorized. */ + +opt_result +vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo) +{ + DUMP_VECT_SCOPE ("vect_analyze_data_refs_alignment"); + + vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo); + struct data_reference *dr; + unsigned int i; + + vect_record_base_alignments (loop_vinfo); + FOR_EACH_VEC_ELT (datarefs, i, dr) + { + dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr); + if (STMT_VINFO_VECTORIZABLE (dr_info->stmt)) + { + if (STMT_VINFO_GROUPED_ACCESS (dr_info->stmt) + && DR_GROUP_FIRST_ELEMENT (dr_info->stmt) != dr_info->stmt) + continue; + vect_compute_data_ref_alignment (loop_vinfo, dr_info, + STMT_VINFO_VECTYPE (dr_info->stmt)); + } + } + + return opt_result::success (); +} + + +/* Analyze alignment of DRs of stmts in NODE. */ + +static bool +vect_slp_analyze_node_alignment (vec_info *vinfo, slp_tree node) +{ + /* Alignment is maintained in the first element of the group. */ + stmt_vec_info first_stmt_info = SLP_TREE_SCALAR_STMTS (node)[0]; + first_stmt_info = DR_GROUP_FIRST_ELEMENT (first_stmt_info); + dr_vec_info *dr_info = STMT_VINFO_DR_INFO (first_stmt_info); + tree vectype = SLP_TREE_VECTYPE (node); + poly_uint64 vector_alignment + = exact_div (targetm.vectorize.preferred_vector_alignment (vectype), + BITS_PER_UNIT); + if (dr_info->misalignment == DR_MISALIGNMENT_UNINITIALIZED) + vect_compute_data_ref_alignment (vinfo, dr_info, SLP_TREE_VECTYPE (node)); + /* Re-analyze alignment when we're facing a vectorization with a bigger + alignment requirement. */ + else if (known_lt (dr_info->target_alignment, vector_alignment)) + { + poly_uint64 old_target_alignment = dr_info->target_alignment; + int old_misalignment = dr_info->misalignment; + vect_compute_data_ref_alignment (vinfo, dr_info, SLP_TREE_VECTYPE (node)); + /* But keep knowledge about a smaller alignment. */ + if (old_misalignment != DR_MISALIGNMENT_UNKNOWN + && dr_info->misalignment == DR_MISALIGNMENT_UNKNOWN) + { + dr_info->target_alignment = old_target_alignment; + dr_info->misalignment = old_misalignment; + } + } + /* When we ever face unordered target alignments the first one wins in terms + of analyzing and the other will become unknown in dr_misalignment. */ + return true; +} + +/* Function vect_slp_analyze_instance_alignment + + Analyze the alignment of the data-references in the SLP instance. + Return FALSE if a data reference is found that cannot be vectorized. */ + +bool +vect_slp_analyze_instance_alignment (vec_info *vinfo, + slp_instance instance) +{ + DUMP_VECT_SCOPE ("vect_slp_analyze_instance_alignment"); + + slp_tree node; + unsigned i; + FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), i, node) + if (! vect_slp_analyze_node_alignment (vinfo, node)) + return false; + + if (SLP_INSTANCE_KIND (instance) == slp_inst_kind_store + && ! vect_slp_analyze_node_alignment + (vinfo, SLP_INSTANCE_TREE (instance))) + return false; + + return true; +} + + +/* Analyze groups of accesses: check that DR_INFO belongs to a group of + accesses of legal size, step, etc. Detect gaps, single element + interleaving, and other special cases. Set grouped access info. + Collect groups of strided stores for further use in SLP analysis. + Worker for vect_analyze_group_access. */ + +static bool +vect_analyze_group_access_1 (vec_info *vinfo, dr_vec_info *dr_info) +{ + data_reference *dr = dr_info->dr; + tree step = DR_STEP (dr); + tree scalar_type = TREE_TYPE (DR_REF (dr)); + HOST_WIDE_INT type_size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type)); + stmt_vec_info stmt_info = dr_info->stmt; + loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo); + bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (vinfo); + HOST_WIDE_INT dr_step = -1; + HOST_WIDE_INT groupsize, last_accessed_element = 1; + bool slp_impossible = false; + + /* For interleaving, GROUPSIZE is STEP counted in elements, i.e., the + size of the interleaving group (including gaps). */ + if (tree_fits_shwi_p (step)) + { + dr_step = tree_to_shwi (step); + /* Check that STEP is a multiple of type size. Otherwise there is + a non-element-sized gap at the end of the group which we + cannot represent in DR_GROUP_GAP or DR_GROUP_SIZE. + ??? As we can handle non-constant step fine here we should + simply remove uses of DR_GROUP_GAP between the last and first + element and instead rely on DR_STEP. DR_GROUP_SIZE then would + simply not include that gap. */ + if ((dr_step % type_size) != 0) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, + "Step %T is not a multiple of the element size" + " for %T\n", + step, DR_REF (dr)); + return false; + } + groupsize = absu_hwi (dr_step) / type_size; + } + else + groupsize = 0; + + /* Not consecutive access is possible only if it is a part of interleaving. */ + if (!DR_GROUP_FIRST_ELEMENT (stmt_info)) + { + /* Check if it this DR is a part of interleaving, and is a single + element of the group that is accessed in the loop. */ + + /* Gaps are supported only for loads. STEP must be a multiple of the type + size. */ + if (DR_IS_READ (dr) + && (dr_step % type_size) == 0 + && groupsize > 0 + /* This could be UINT_MAX but as we are generating code in a very + inefficient way we have to cap earlier. + See PR91403 for example. */ + && groupsize <= 4096) + { + DR_GROUP_FIRST_ELEMENT (stmt_info) = stmt_info; + DR_GROUP_SIZE (stmt_info) = groupsize; + DR_GROUP_GAP (stmt_info) = groupsize - 1; + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, + "Detected single element interleaving %T" + " step %T\n", + DR_REF (dr), step); + + return true; + } + + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "not consecutive access %G", stmt_info->stmt); + + if (bb_vinfo) + { + /* Mark the statement as unvectorizable. */ + STMT_VINFO_VECTORIZABLE (stmt_info) = false; + return true; + } + + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, "using strided accesses\n"); + STMT_VINFO_STRIDED_P (stmt_info) = true; + return true; + } + + if (DR_GROUP_FIRST_ELEMENT (stmt_info) == stmt_info) + { + /* First stmt in the interleaving chain. Check the chain. */ + stmt_vec_info next = DR_GROUP_NEXT_ELEMENT (stmt_info); + struct data_reference *data_ref = dr; + unsigned int count = 1; + tree prev_init = DR_INIT (data_ref); + HOST_WIDE_INT diff, gaps = 0; + + /* By construction, all group members have INTEGER_CST DR_INITs. */ + while (next) + { + /* We never have the same DR multiple times. */ + gcc_assert (tree_int_cst_compare (DR_INIT (data_ref), + DR_INIT (STMT_VINFO_DATA_REF (next))) != 0); + + data_ref = STMT_VINFO_DATA_REF (next); + + /* All group members have the same STEP by construction. */ + gcc_checking_assert (operand_equal_p (DR_STEP (data_ref), step, 0)); + + /* Check that the distance between two accesses is equal to the type + size. Otherwise, we have gaps. */ + diff = (TREE_INT_CST_LOW (DR_INIT (data_ref)) + - TREE_INT_CST_LOW (prev_init)) / type_size; + if (diff < 1 || diff > UINT_MAX) + { + /* For artificial testcases with array accesses with large + constant indices we can run into overflow issues which + can end up fooling the groupsize constraint below so + check the individual gaps (which are represented as + unsigned int) as well. */ + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "interleaved access with gap larger " + "than representable\n"); + return false; + } + if (diff != 1) + { + /* FORNOW: SLP of accesses with gaps is not supported. */ + slp_impossible = true; + if (DR_IS_WRITE (data_ref)) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "interleaved store with gaps\n"); + return false; + } + + gaps += diff - 1; + } + + last_accessed_element += diff; + + /* Store the gap from the previous member of the group. If there is no + gap in the access, DR_GROUP_GAP is always 1. */ + DR_GROUP_GAP (next) = diff; + + prev_init = DR_INIT (data_ref); + next = DR_GROUP_NEXT_ELEMENT (next); + /* Count the number of data-refs in the chain. */ + count++; + } + + if (groupsize == 0) + groupsize = count + gaps; + + /* This could be UINT_MAX but as we are generating code in a very + inefficient way we have to cap earlier. See PR78699 for example. */ + if (groupsize > 4096) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "group is too large\n"); + return false; + } + + /* Check that the size of the interleaving is equal to count for stores, + i.e., that there are no gaps. */ + if (groupsize != count + && !DR_IS_READ (dr)) + { + groupsize = count; + STMT_VINFO_STRIDED_P (stmt_info) = true; + } + + /* If there is a gap after the last load in the group it is the + difference between the groupsize and the last accessed + element. + When there is no gap, this difference should be 0. */ + DR_GROUP_GAP (stmt_info) = groupsize - last_accessed_element; + + DR_GROUP_SIZE (stmt_info) = groupsize; + if (dump_enabled_p ()) + { + dump_printf_loc (MSG_NOTE, vect_location, + "Detected interleaving "); + if (DR_IS_READ (dr)) + dump_printf (MSG_NOTE, "load "); + else if (STMT_VINFO_STRIDED_P (stmt_info)) + dump_printf (MSG_NOTE, "strided store "); + else + dump_printf (MSG_NOTE, "store "); + dump_printf (MSG_NOTE, "of size %u\n", + (unsigned)groupsize); + dump_printf_loc (MSG_NOTE, vect_location, "\t%G", stmt_info->stmt); + next = DR_GROUP_NEXT_ELEMENT (stmt_info); + while (next) + { + if (DR_GROUP_GAP (next) != 1) + dump_printf_loc (MSG_NOTE, vect_location, + "\t<gap of %d elements>\n", + DR_GROUP_GAP (next) - 1); + dump_printf_loc (MSG_NOTE, vect_location, "\t%G", next->stmt); + next = DR_GROUP_NEXT_ELEMENT (next); + } + if (DR_GROUP_GAP (stmt_info) != 0) + dump_printf_loc (MSG_NOTE, vect_location, + "\t<gap of %d elements>\n", + DR_GROUP_GAP (stmt_info)); + } + + /* SLP: create an SLP data structure for every interleaving group of + stores for further analysis in vect_analyse_slp. */ + if (DR_IS_WRITE (dr) && !slp_impossible) + { + if (loop_vinfo) + LOOP_VINFO_GROUPED_STORES (loop_vinfo).safe_push (stmt_info); + if (bb_vinfo) + BB_VINFO_GROUPED_STORES (bb_vinfo).safe_push (stmt_info); + } + } + + return true; +} + +/* Analyze groups of accesses: check that DR_INFO belongs to a group of + accesses of legal size, step, etc. Detect gaps, single element + interleaving, and other special cases. Set grouped access info. + Collect groups of strided stores for further use in SLP analysis. */ + +static bool +vect_analyze_group_access (vec_info *vinfo, dr_vec_info *dr_info) +{ + if (!vect_analyze_group_access_1 (vinfo, dr_info)) + { + /* Dissolve the group if present. */ + stmt_vec_info stmt_info = DR_GROUP_FIRST_ELEMENT (dr_info->stmt); + while (stmt_info) + { + stmt_vec_info next = DR_GROUP_NEXT_ELEMENT (stmt_info); + DR_GROUP_FIRST_ELEMENT (stmt_info) = NULL; + DR_GROUP_NEXT_ELEMENT (stmt_info) = NULL; + stmt_info = next; + } + return false; + } + return true; +} + +/* Analyze the access pattern of the data-reference DR_INFO. + In case of non-consecutive accesses call vect_analyze_group_access() to + analyze groups of accesses. */ + +static bool +vect_analyze_data_ref_access (vec_info *vinfo, dr_vec_info *dr_info) +{ + data_reference *dr = dr_info->dr; + tree step = DR_STEP (dr); + tree scalar_type = TREE_TYPE (DR_REF (dr)); + stmt_vec_info stmt_info = dr_info->stmt; + loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo); + class loop *loop = NULL; + + if (STMT_VINFO_GATHER_SCATTER_P (stmt_info)) + return true; + + if (loop_vinfo) + loop = LOOP_VINFO_LOOP (loop_vinfo); + + if (loop_vinfo && !step) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "bad data-ref access in loop\n"); + return false; + } + + /* Allow loads with zero step in inner-loop vectorization. */ + if (loop_vinfo && integer_zerop (step)) + { + DR_GROUP_FIRST_ELEMENT (stmt_info) = NULL; + if (!nested_in_vect_loop_p (loop, stmt_info)) + return DR_IS_READ (dr); + /* Allow references with zero step for outer loops marked + with pragma omp simd only - it guarantees absence of + loop-carried dependencies between inner loop iterations. */ + if (loop->safelen < 2) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, + "zero step in inner loop of nest\n"); + return false; + } + } + + if (loop && nested_in_vect_loop_p (loop, stmt_info)) + { + /* Interleaved accesses are not yet supported within outer-loop + vectorization for references in the inner-loop. */ + DR_GROUP_FIRST_ELEMENT (stmt_info) = NULL; + + /* For the rest of the analysis we use the outer-loop step. */ + step = STMT_VINFO_DR_STEP (stmt_info); + if (integer_zerop (step)) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, + "zero step in outer loop.\n"); + return DR_IS_READ (dr); + } + } + + /* Consecutive? */ + if (TREE_CODE (step) == INTEGER_CST) + { + HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step); + if (!tree_int_cst_compare (step, TYPE_SIZE_UNIT (scalar_type)) + || (dr_step < 0 + && !compare_tree_int (TYPE_SIZE_UNIT (scalar_type), -dr_step))) + { + /* Mark that it is not interleaving. */ + DR_GROUP_FIRST_ELEMENT (stmt_info) = NULL; + return true; + } + } + + if (loop && nested_in_vect_loop_p (loop, stmt_info)) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, + "grouped access in outer loop.\n"); + return false; + } + + + /* Assume this is a DR handled by non-constant strided load case. */ + if (TREE_CODE (step) != INTEGER_CST) + return (STMT_VINFO_STRIDED_P (stmt_info) + && (!STMT_VINFO_GROUPED_ACCESS (stmt_info) + || vect_analyze_group_access (vinfo, dr_info))); + + /* Not consecutive access - check if it's a part of interleaving group. */ + return vect_analyze_group_access (vinfo, dr_info); +} + +/* Compare two data-references DRA and DRB to group them into chunks + suitable for grouping. */ + +static int +dr_group_sort_cmp (const void *dra_, const void *drb_) +{ + dr_vec_info *dra_info = *(dr_vec_info **)const_cast<void *>(dra_); + dr_vec_info *drb_info = *(dr_vec_info **)const_cast<void *>(drb_); + data_reference_p dra = dra_info->dr; + data_reference_p drb = drb_info->dr; + int cmp; + + /* Stabilize sort. */ + if (dra == drb) + return 0; + + /* Different group IDs lead never belong to the same group. */ + if (dra_info->group != drb_info->group) + return dra_info->group < drb_info->group ? -1 : 1; + + /* Ordering of DRs according to base. */ + cmp = data_ref_compare_tree (DR_BASE_ADDRESS (dra), + DR_BASE_ADDRESS (drb)); + if (cmp != 0) + return cmp; + + /* And according to DR_OFFSET. */ + cmp = data_ref_compare_tree (DR_OFFSET (dra), DR_OFFSET (drb)); + if (cmp != 0) + return cmp; + + /* Put reads before writes. */ + if (DR_IS_READ (dra) != DR_IS_READ (drb)) + return DR_IS_READ (dra) ? -1 : 1; + + /* Then sort after access size. */ + cmp = data_ref_compare_tree (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))), + TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb)))); + if (cmp != 0) + return cmp; + + /* And after step. */ + cmp = data_ref_compare_tree (DR_STEP (dra), DR_STEP (drb)); + if (cmp != 0) + return cmp; + + /* Then sort after DR_INIT. In case of identical DRs sort after stmt UID. */ + cmp = data_ref_compare_tree (DR_INIT (dra), DR_INIT (drb)); + if (cmp == 0) + return gimple_uid (DR_STMT (dra)) < gimple_uid (DR_STMT (drb)) ? -1 : 1; + return cmp; +} + +/* If OP is the result of a conversion, return the unconverted value, + otherwise return null. */ + +static tree +strip_conversion (tree op) +{ + if (TREE_CODE (op) != SSA_NAME) + return NULL_TREE; + gimple *stmt = SSA_NAME_DEF_STMT (op); + if (!is_gimple_assign (stmt) + || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt))) + return NULL_TREE; + return gimple_assign_rhs1 (stmt); +} + +/* Return true if vectorizable_* routines can handle statements STMT1_INFO + and STMT2_INFO being in a single group. When ALLOW_SLP_P, masked loads can + be grouped in SLP mode. */ + +static bool +can_group_stmts_p (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info, + bool allow_slp_p) +{ + if (gimple_assign_single_p (stmt1_info->stmt)) + return gimple_assign_single_p (stmt2_info->stmt); + + gcall *call1 = dyn_cast <gcall *> (stmt1_info->stmt); + if (call1 && gimple_call_internal_p (call1)) + { + /* Check for two masked loads or two masked stores. */ + gcall *call2 = dyn_cast <gcall *> (stmt2_info->stmt); + if (!call2 || !gimple_call_internal_p (call2)) + return false; + internal_fn ifn = gimple_call_internal_fn (call1); + if (ifn != IFN_MASK_LOAD && ifn != IFN_MASK_STORE) + return false; + if (ifn != gimple_call_internal_fn (call2)) + return false; + + /* Check that the masks are the same. Cope with casts of masks, + like those created by build_mask_conversion. */ + tree mask1 = gimple_call_arg (call1, 2); + tree mask2 = gimple_call_arg (call2, 2); + if (!operand_equal_p (mask1, mask2, 0) + && (ifn == IFN_MASK_STORE || !allow_slp_p)) + { + mask1 = strip_conversion (mask1); + if (!mask1) + return false; + mask2 = strip_conversion (mask2); + if (!mask2) + return false; + if (!operand_equal_p (mask1, mask2, 0)) + return false; + } + return true; + } + + return false; +} + +/* Function vect_analyze_data_ref_accesses. + + Analyze the access pattern of all the data references in the loop. + + FORNOW: the only access pattern that is considered vectorizable is a + simple step 1 (consecutive) access. + + FORNOW: handle only arrays and pointer accesses. */ + +opt_result +vect_analyze_data_ref_accesses (vec_info *vinfo, + vec<int> *dataref_groups) +{ + unsigned int i; + vec<data_reference_p> datarefs = vinfo->shared->datarefs; + + DUMP_VECT_SCOPE ("vect_analyze_data_ref_accesses"); + + if (datarefs.is_empty ()) + return opt_result::success (); + + /* Sort the array of datarefs to make building the interleaving chains + linear. Don't modify the original vector's order, it is needed for + determining what dependencies are reversed. */ + vec<dr_vec_info *> datarefs_copy; + datarefs_copy.create (datarefs.length ()); + for (unsigned i = 0; i < datarefs.length (); i++) + { + dr_vec_info *dr_info = vinfo->lookup_dr (datarefs[i]); + /* If the caller computed DR grouping use that, otherwise group by + basic blocks. */ + if (dataref_groups) + dr_info->group = (*dataref_groups)[i]; + else + dr_info->group = gimple_bb (DR_STMT (datarefs[i]))->index; + datarefs_copy.quick_push (dr_info); + } + datarefs_copy.qsort (dr_group_sort_cmp); + hash_set<stmt_vec_info> to_fixup; + + /* Build the interleaving chains. */ + for (i = 0; i < datarefs_copy.length () - 1;) + { + dr_vec_info *dr_info_a = datarefs_copy[i]; + data_reference_p dra = dr_info_a->dr; + int dra_group_id = dr_info_a->group; + stmt_vec_info stmtinfo_a = dr_info_a->stmt; + stmt_vec_info lastinfo = NULL; + if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a) + || STMT_VINFO_GATHER_SCATTER_P (stmtinfo_a)) + { + ++i; + continue; + } + for (i = i + 1; i < datarefs_copy.length (); ++i) + { + dr_vec_info *dr_info_b = datarefs_copy[i]; + data_reference_p drb = dr_info_b->dr; + int drb_group_id = dr_info_b->group; + stmt_vec_info stmtinfo_b = dr_info_b->stmt; + if (!STMT_VINFO_VECTORIZABLE (stmtinfo_b) + || STMT_VINFO_GATHER_SCATTER_P (stmtinfo_b)) + break; + + /* ??? Imperfect sorting (non-compatible types, non-modulo + accesses, same accesses) can lead to a group to be artificially + split here as we don't just skip over those. If it really + matters we can push those to a worklist and re-iterate + over them. The we can just skip ahead to the next DR here. */ + + /* DRs in a different DR group should not be put into the same + interleaving group. */ + if (dra_group_id != drb_group_id) + break; + + /* Check that the data-refs have same first location (except init) + and they are both either store or load (not load and store, + not masked loads or stores). */ + if (DR_IS_READ (dra) != DR_IS_READ (drb) + || data_ref_compare_tree (DR_BASE_ADDRESS (dra), + DR_BASE_ADDRESS (drb)) != 0 + || data_ref_compare_tree (DR_OFFSET (dra), DR_OFFSET (drb)) != 0 + || !can_group_stmts_p (stmtinfo_a, stmtinfo_b, true)) + break; + + /* Check that the data-refs have the same constant size. */ + tree sza = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))); + tree szb = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))); + if (!tree_fits_uhwi_p (sza) + || !tree_fits_uhwi_p (szb) + || !tree_int_cst_equal (sza, szb)) + break; + + /* Check that the data-refs have the same step. */ + if (data_ref_compare_tree (DR_STEP (dra), DR_STEP (drb)) != 0) + break; + + /* Check the types are compatible. + ??? We don't distinguish this during sorting. */ + if (!types_compatible_p (TREE_TYPE (DR_REF (dra)), + TREE_TYPE (DR_REF (drb)))) + break; + + /* Check that the DR_INITs are compile-time constants. */ + if (TREE_CODE (DR_INIT (dra)) != INTEGER_CST + || TREE_CODE (DR_INIT (drb)) != INTEGER_CST) + break; + + /* Different .GOMP_SIMD_LANE calls still give the same lane, + just hold extra information. */ + if (STMT_VINFO_SIMD_LANE_ACCESS_P (stmtinfo_a) + && STMT_VINFO_SIMD_LANE_ACCESS_P (stmtinfo_b) + && data_ref_compare_tree (DR_INIT (dra), DR_INIT (drb)) == 0) + break; + + /* Sorting has ensured that DR_INIT (dra) <= DR_INIT (drb). */ + HOST_WIDE_INT init_a = TREE_INT_CST_LOW (DR_INIT (dra)); + HOST_WIDE_INT init_b = TREE_INT_CST_LOW (DR_INIT (drb)); + HOST_WIDE_INT init_prev + = TREE_INT_CST_LOW (DR_INIT (datarefs_copy[i-1]->dr)); + gcc_assert (init_a <= init_b + && init_a <= init_prev + && init_prev <= init_b); + + /* Do not place the same access in the interleaving chain twice. */ + if (init_b == init_prev) + { + gcc_assert (gimple_uid (DR_STMT (datarefs_copy[i-1]->dr)) + < gimple_uid (DR_STMT (drb))); + /* Simply link in duplicates and fix up the chain below. */ + } + else + { + /* If init_b == init_a + the size of the type * k, we have an + interleaving, and DRA is accessed before DRB. */ + HOST_WIDE_INT type_size_a = tree_to_uhwi (sza); + if (type_size_a == 0 + || (init_b - init_a) % type_size_a != 0) + break; + + /* If we have a store, the accesses are adjacent. This splits + groups into chunks we support (we don't support vectorization + of stores with gaps). */ + if (!DR_IS_READ (dra) && init_b - init_prev != type_size_a) + break; + + /* If the step (if not zero or non-constant) is smaller than the + difference between data-refs' inits this splits groups into + suitable sizes. */ + if (tree_fits_shwi_p (DR_STEP (dra))) + { + unsigned HOST_WIDE_INT step + = absu_hwi (tree_to_shwi (DR_STEP (dra))); + if (step != 0 + && step <= (unsigned HOST_WIDE_INT)(init_b - init_a)) + break; + } + } + + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, + DR_IS_READ (dra) + ? "Detected interleaving load %T and %T\n" + : "Detected interleaving store %T and %T\n", + DR_REF (dra), DR_REF (drb)); + + /* Link the found element into the group list. */ + if (!DR_GROUP_FIRST_ELEMENT (stmtinfo_a)) + { + DR_GROUP_FIRST_ELEMENT (stmtinfo_a) = stmtinfo_a; + lastinfo = stmtinfo_a; + } + DR_GROUP_FIRST_ELEMENT (stmtinfo_b) = stmtinfo_a; + DR_GROUP_NEXT_ELEMENT (lastinfo) = stmtinfo_b; + lastinfo = stmtinfo_b; + + STMT_VINFO_SLP_VECT_ONLY (stmtinfo_a) + = !can_group_stmts_p (stmtinfo_a, stmtinfo_b, false); + + if (dump_enabled_p () && STMT_VINFO_SLP_VECT_ONLY (stmtinfo_a)) + dump_printf_loc (MSG_NOTE, vect_location, + "Load suitable for SLP vectorization only.\n"); + + if (init_b == init_prev + && !to_fixup.add (DR_GROUP_FIRST_ELEMENT (stmtinfo_a)) + && dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, + "Queuing group with duplicate access for fixup\n"); + } + } + + /* Fixup groups with duplicate entries by splitting it. */ + while (1) + { + hash_set<stmt_vec_info>::iterator it = to_fixup.begin (); + if (!(it != to_fixup.end ())) + break; + stmt_vec_info grp = *it; + to_fixup.remove (grp); + + /* Find the earliest duplicate group member. */ + unsigned first_duplicate = -1u; + stmt_vec_info next, g = grp; + while ((next = DR_GROUP_NEXT_ELEMENT (g))) + { + if (tree_int_cst_equal (DR_INIT (STMT_VINFO_DR_INFO (next)->dr), + DR_INIT (STMT_VINFO_DR_INFO (g)->dr)) + && gimple_uid (STMT_VINFO_STMT (next)) < first_duplicate) + first_duplicate = gimple_uid (STMT_VINFO_STMT (next)); + g = next; + } + if (first_duplicate == -1U) + continue; + + /* Then move all stmts after the first duplicate to a new group. + Note this is a heuristic but one with the property that *it + is fixed up completely. */ + g = grp; + stmt_vec_info newgroup = NULL, ng = grp; + while ((next = DR_GROUP_NEXT_ELEMENT (g))) + { + if (gimple_uid (STMT_VINFO_STMT (next)) >= first_duplicate) + { + DR_GROUP_NEXT_ELEMENT (g) = DR_GROUP_NEXT_ELEMENT (next); + if (!newgroup) + newgroup = next; + else + DR_GROUP_NEXT_ELEMENT (ng) = next; + ng = next; + DR_GROUP_FIRST_ELEMENT (ng) = newgroup; + } + else + g = DR_GROUP_NEXT_ELEMENT (g); + } + DR_GROUP_NEXT_ELEMENT (ng) = NULL; + + /* Fixup the new group which still may contain duplicates. */ + to_fixup.add (newgroup); + } + + dr_vec_info *dr_info; + FOR_EACH_VEC_ELT (datarefs_copy, i, dr_info) + { + if (STMT_VINFO_VECTORIZABLE (dr_info->stmt) + && !vect_analyze_data_ref_access (vinfo, dr_info)) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "not vectorized: complicated access pattern.\n"); + + if (is_a <bb_vec_info> (vinfo)) + { + /* Mark the statement as not vectorizable. */ + STMT_VINFO_VECTORIZABLE (dr_info->stmt) = false; + continue; + } + else + { + datarefs_copy.release (); + return opt_result::failure_at (dr_info->stmt->stmt, + "not vectorized:" + " complicated access pattern.\n"); + } + } + } + + datarefs_copy.release (); + return opt_result::success (); +} + +/* Function vect_vfa_segment_size. + + Input: + DR_INFO: The data reference. + LENGTH_FACTOR: segment length to consider. + + Return a value suitable for the dr_with_seg_len::seg_len field. + This is the "distance travelled" by the pointer from the first + iteration in the segment to the last. Note that it does not include + the size of the access; in effect it only describes the first byte. */ + +static tree +vect_vfa_segment_size (dr_vec_info *dr_info, tree length_factor) +{ + length_factor = size_binop (MINUS_EXPR, + fold_convert (sizetype, length_factor), + size_one_node); + return size_binop (MULT_EXPR, fold_convert (sizetype, DR_STEP (dr_info->dr)), + length_factor); +} + +/* Return a value that, when added to abs (vect_vfa_segment_size (DR_INFO)), + gives the worst-case number of bytes covered by the segment. */ + +static unsigned HOST_WIDE_INT +vect_vfa_access_size (vec_info *vinfo, dr_vec_info *dr_info) +{ + stmt_vec_info stmt_vinfo = dr_info->stmt; + tree ref_type = TREE_TYPE (DR_REF (dr_info->dr)); + unsigned HOST_WIDE_INT ref_size = tree_to_uhwi (TYPE_SIZE_UNIT (ref_type)); + unsigned HOST_WIDE_INT access_size = ref_size; + if (DR_GROUP_FIRST_ELEMENT (stmt_vinfo)) + { + gcc_assert (DR_GROUP_FIRST_ELEMENT (stmt_vinfo) == stmt_vinfo); + access_size *= DR_GROUP_SIZE (stmt_vinfo) - DR_GROUP_GAP (stmt_vinfo); + } + tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo); + int misalignment; + if (STMT_VINFO_VEC_STMTS (stmt_vinfo).exists () + && ((misalignment = dr_misalignment (dr_info, vectype)), true) + && (vect_supportable_dr_alignment (vinfo, dr_info, vectype, misalignment) + == dr_explicit_realign_optimized)) + { + /* We might access a full vector's worth. */ + access_size += tree_to_uhwi (TYPE_SIZE_UNIT (vectype)) - ref_size; + } + return access_size; +} + +/* Get the minimum alignment for all the scalar accesses that DR_INFO + describes. */ + +static unsigned int +vect_vfa_align (dr_vec_info *dr_info) +{ + return dr_alignment (dr_info->dr); +} + +/* Function vect_no_alias_p. + + Given data references A and B with equal base and offset, see whether + the alias relation can be decided at compilation time. Return 1 if + it can and the references alias, 0 if it can and the references do + not alias, and -1 if we cannot decide at compile time. SEGMENT_LENGTH_A, + SEGMENT_LENGTH_B, ACCESS_SIZE_A and ACCESS_SIZE_B are the equivalent + of dr_with_seg_len::{seg_len,access_size} for A and B. */ + +static int +vect_compile_time_alias (dr_vec_info *a, dr_vec_info *b, + tree segment_length_a, tree segment_length_b, + unsigned HOST_WIDE_INT access_size_a, + unsigned HOST_WIDE_INT access_size_b) +{ + poly_offset_int offset_a = wi::to_poly_offset (DR_INIT (a->dr)); + poly_offset_int offset_b = wi::to_poly_offset (DR_INIT (b->dr)); + poly_uint64 const_length_a; + poly_uint64 const_length_b; + + /* For negative step, we need to adjust address range by TYPE_SIZE_UNIT + bytes, e.g., int a[3] -> a[1] range is [a+4, a+16) instead of + [a, a+12) */ + if (tree_int_cst_compare (DR_STEP (a->dr), size_zero_node) < 0) + { + const_length_a = (-wi::to_poly_wide (segment_length_a)).force_uhwi (); + offset_a -= const_length_a; + } + else + const_length_a = tree_to_poly_uint64 (segment_length_a); + if (tree_int_cst_compare (DR_STEP (b->dr), size_zero_node) < 0) + { + const_length_b = (-wi::to_poly_wide (segment_length_b)).force_uhwi (); + offset_b -= const_length_b; + } + else + const_length_b = tree_to_poly_uint64 (segment_length_b); + + const_length_a += access_size_a; + const_length_b += access_size_b; + + if (ranges_known_overlap_p (offset_a, const_length_a, + offset_b, const_length_b)) + return 1; + + if (!ranges_maybe_overlap_p (offset_a, const_length_a, + offset_b, const_length_b)) + return 0; + + return -1; +} + +/* Return true if the minimum nonzero dependence distance for loop LOOP_DEPTH + in DDR is >= VF. */ + +static bool +dependence_distance_ge_vf (data_dependence_relation *ddr, + unsigned int loop_depth, poly_uint64 vf) +{ + if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE + || DDR_NUM_DIST_VECTS (ddr) == 0) + return false; + + /* If the dependence is exact, we should have limited the VF instead. */ + gcc_checking_assert (DDR_COULD_BE_INDEPENDENT_P (ddr)); + + unsigned int i; + lambda_vector dist_v; + FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v) + { + HOST_WIDE_INT dist = dist_v[loop_depth]; + if (dist != 0 + && !(dist > 0 && DDR_REVERSED_P (ddr)) + && maybe_lt ((unsigned HOST_WIDE_INT) abs_hwi (dist), vf)) + return false; + } + + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, + "dependence distance between %T and %T is >= VF\n", + DR_REF (DDR_A (ddr)), DR_REF (DDR_B (ddr))); + + return true; +} + +/* Dump LOWER_BOUND using flags DUMP_KIND. Dumps are known to be enabled. */ + +static void +dump_lower_bound (dump_flags_t dump_kind, const vec_lower_bound &lower_bound) +{ + dump_printf (dump_kind, "%s (%T) >= ", + lower_bound.unsigned_p ? "unsigned" : "abs", + lower_bound.expr); + dump_dec (dump_kind, lower_bound.min_value); +} + +/* Record that the vectorized loop requires the vec_lower_bound described + by EXPR, UNSIGNED_P and MIN_VALUE. */ + +static void +vect_check_lower_bound (loop_vec_info loop_vinfo, tree expr, bool unsigned_p, + poly_uint64 min_value) +{ + vec<vec_lower_bound> &lower_bounds + = LOOP_VINFO_LOWER_BOUNDS (loop_vinfo); + for (unsigned int i = 0; i < lower_bounds.length (); ++i) + if (operand_equal_p (lower_bounds[i].expr, expr, 0)) + { + unsigned_p &= lower_bounds[i].unsigned_p; + min_value = upper_bound (lower_bounds[i].min_value, min_value); + if (lower_bounds[i].unsigned_p != unsigned_p + || maybe_lt (lower_bounds[i].min_value, min_value)) + { + lower_bounds[i].unsigned_p = unsigned_p; + lower_bounds[i].min_value = min_value; + if (dump_enabled_p ()) + { + dump_printf_loc (MSG_NOTE, vect_location, + "updating run-time check to "); + dump_lower_bound (MSG_NOTE, lower_bounds[i]); + dump_printf (MSG_NOTE, "\n"); + } + } + return; + } + + vec_lower_bound lower_bound (expr, unsigned_p, min_value); + if (dump_enabled_p ()) + { + dump_printf_loc (MSG_NOTE, vect_location, "need a run-time check that "); + dump_lower_bound (MSG_NOTE, lower_bound); + dump_printf (MSG_NOTE, "\n"); + } + LOOP_VINFO_LOWER_BOUNDS (loop_vinfo).safe_push (lower_bound); +} + +/* Return true if it's unlikely that the step of the vectorized form of DR_INFO + will span fewer than GAP bytes. */ + +static bool +vect_small_gap_p (loop_vec_info loop_vinfo, dr_vec_info *dr_info, + poly_int64 gap) +{ + stmt_vec_info stmt_info = dr_info->stmt; + HOST_WIDE_INT count + = estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo)); + if (DR_GROUP_FIRST_ELEMENT (stmt_info)) + count *= DR_GROUP_SIZE (DR_GROUP_FIRST_ELEMENT (stmt_info)); + return (estimated_poly_value (gap) + <= count * vect_get_scalar_dr_size (dr_info)); +} + +/* Return true if we know that there is no alias between DR_INFO_A and + DR_INFO_B when abs (DR_STEP (DR_INFO_A->dr)) >= N for some N. + When returning true, set *LOWER_BOUND_OUT to this N. */ + +static bool +vectorizable_with_step_bound_p (dr_vec_info *dr_info_a, dr_vec_info *dr_info_b, + poly_uint64 *lower_bound_out) +{ + /* Check that there is a constant gap of known sign between DR_A + and DR_B. */ + data_reference *dr_a = dr_info_a->dr; + data_reference *dr_b = dr_info_b->dr; + poly_int64 init_a, init_b; + if (!operand_equal_p (DR_BASE_ADDRESS (dr_a), DR_BASE_ADDRESS (dr_b), 0) + || !operand_equal_p (DR_OFFSET (dr_a), DR_OFFSET (dr_b), 0) + || !operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0) + || !poly_int_tree_p (DR_INIT (dr_a), &init_a) + || !poly_int_tree_p (DR_INIT (dr_b), &init_b) + || !ordered_p (init_a, init_b)) + return false; + + /* Sort DR_A and DR_B by the address they access. */ + if (maybe_lt (init_b, init_a)) + { + std::swap (init_a, init_b); + std::swap (dr_info_a, dr_info_b); + std::swap (dr_a, dr_b); + } + + /* If the two accesses could be dependent within a scalar iteration, + make sure that we'd retain their order. */ + if (maybe_gt (init_a + vect_get_scalar_dr_size (dr_info_a), init_b) + && !vect_preserves_scalar_order_p (dr_info_a, dr_info_b)) + return false; + + /* There is no alias if abs (DR_STEP) is greater than or equal to + the bytes spanned by the combination of the two accesses. */ + *lower_bound_out = init_b + vect_get_scalar_dr_size (dr_info_b) - init_a; + return true; +} + +/* Function vect_prune_runtime_alias_test_list. + + Prune a list of ddrs to be tested at run-time by versioning for alias. + Merge several alias checks into one if possible. + Return FALSE if resulting list of ddrs is longer then allowed by + PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS, otherwise return TRUE. */ + +opt_result +vect_prune_runtime_alias_test_list (loop_vec_info loop_vinfo) +{ + typedef pair_hash <tree_operand_hash, tree_operand_hash> tree_pair_hash; + hash_set <tree_pair_hash> compared_objects; + + const vec<ddr_p> &may_alias_ddrs = LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo); + vec<dr_with_seg_len_pair_t> &comp_alias_ddrs + = LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo); + const vec<vec_object_pair> &check_unequal_addrs + = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo); + poly_uint64 vect_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo); + tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo); + + ddr_p ddr; + unsigned int i; + tree length_factor; + + DUMP_VECT_SCOPE ("vect_prune_runtime_alias_test_list"); + + /* Step values are irrelevant for aliasing if the number of vector + iterations is equal to the number of scalar iterations (which can + happen for fully-SLP loops). */ + bool vf_one_p = known_eq (LOOP_VINFO_VECT_FACTOR (loop_vinfo), 1U); + + if (!vf_one_p) + { + /* Convert the checks for nonzero steps into bound tests. */ + tree value; + FOR_EACH_VEC_ELT (LOOP_VINFO_CHECK_NONZERO (loop_vinfo), i, value) + vect_check_lower_bound (loop_vinfo, value, true, 1); + } + + if (may_alias_ddrs.is_empty ()) + return opt_result::success (); + + comp_alias_ddrs.create (may_alias_ddrs.length ()); + + unsigned int loop_depth + = index_in_loop_nest (LOOP_VINFO_LOOP (loop_vinfo)->num, + LOOP_VINFO_LOOP_NEST (loop_vinfo)); + + /* First, we collect all data ref pairs for aliasing checks. */ + FOR_EACH_VEC_ELT (may_alias_ddrs, i, ddr) + { + poly_uint64 lower_bound; + tree segment_length_a, segment_length_b; + unsigned HOST_WIDE_INT access_size_a, access_size_b; + unsigned int align_a, align_b; + + /* Ignore the alias if the VF we chose ended up being no greater + than the dependence distance. */ + if (dependence_distance_ge_vf (ddr, loop_depth, vect_factor)) + continue; + + if (DDR_OBJECT_A (ddr)) + { + vec_object_pair new_pair (DDR_OBJECT_A (ddr), DDR_OBJECT_B (ddr)); + if (!compared_objects.add (new_pair)) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, + "checking that %T and %T" + " have different addresses\n", + new_pair.first, new_pair.second); + LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo).safe_push (new_pair); + } + continue; + } + + dr_vec_info *dr_info_a = loop_vinfo->lookup_dr (DDR_A (ddr)); + stmt_vec_info stmt_info_a = dr_info_a->stmt; + + dr_vec_info *dr_info_b = loop_vinfo->lookup_dr (DDR_B (ddr)); + stmt_vec_info stmt_info_b = dr_info_b->stmt; + + bool preserves_scalar_order_p + = vect_preserves_scalar_order_p (dr_info_a, dr_info_b); + bool ignore_step_p + = (vf_one_p + && (preserves_scalar_order_p + || operand_equal_p (DR_STEP (dr_info_a->dr), + DR_STEP (dr_info_b->dr)))); + + /* Skip the pair if inter-iteration dependencies are irrelevant + and intra-iteration dependencies are guaranteed to be honored. */ + if (ignore_step_p + && (preserves_scalar_order_p + || vectorizable_with_step_bound_p (dr_info_a, dr_info_b, + &lower_bound))) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, + "no need for alias check between " + "%T and %T when VF is 1\n", + DR_REF (dr_info_a->dr), DR_REF (dr_info_b->dr)); + continue; + } + + /* See whether we can handle the alias using a bounds check on + the step, and whether that's likely to be the best approach. + (It might not be, for example, if the minimum step is much larger + than the number of bytes handled by one vector iteration.) */ + if (!ignore_step_p + && TREE_CODE (DR_STEP (dr_info_a->dr)) != INTEGER_CST + && vectorizable_with_step_bound_p (dr_info_a, dr_info_b, + &lower_bound) + && (vect_small_gap_p (loop_vinfo, dr_info_a, lower_bound) + || vect_small_gap_p (loop_vinfo, dr_info_b, lower_bound))) + { + bool unsigned_p = dr_known_forward_stride_p (dr_info_a->dr); + if (dump_enabled_p ()) + { + dump_printf_loc (MSG_NOTE, vect_location, "no alias between " + "%T and %T when the step %T is outside ", + DR_REF (dr_info_a->dr), + DR_REF (dr_info_b->dr), + DR_STEP (dr_info_a->dr)); + if (unsigned_p) + dump_printf (MSG_NOTE, "[0"); + else + { + dump_printf (MSG_NOTE, "("); + dump_dec (MSG_NOTE, poly_int64 (-lower_bound)); + } + dump_printf (MSG_NOTE, ", "); + dump_dec (MSG_NOTE, lower_bound); + dump_printf (MSG_NOTE, ")\n"); + } + vect_check_lower_bound (loop_vinfo, DR_STEP (dr_info_a->dr), + unsigned_p, lower_bound); + continue; + } + + stmt_vec_info dr_group_first_a = DR_GROUP_FIRST_ELEMENT (stmt_info_a); + if (dr_group_first_a) + { + stmt_info_a = dr_group_first_a; + dr_info_a = STMT_VINFO_DR_INFO (stmt_info_a); + } + + stmt_vec_info dr_group_first_b = DR_GROUP_FIRST_ELEMENT (stmt_info_b); + if (dr_group_first_b) + { + stmt_info_b = dr_group_first_b; + dr_info_b = STMT_VINFO_DR_INFO (stmt_info_b); + } + + if (ignore_step_p) + { + segment_length_a = size_zero_node; + segment_length_b = size_zero_node; + } + else + { + if (!operand_equal_p (DR_STEP (dr_info_a->dr), + DR_STEP (dr_info_b->dr), 0)) + length_factor = scalar_loop_iters; + else + length_factor = size_int (vect_factor); + segment_length_a = vect_vfa_segment_size (dr_info_a, length_factor); + segment_length_b = vect_vfa_segment_size (dr_info_b, length_factor); + } + access_size_a = vect_vfa_access_size (loop_vinfo, dr_info_a); + access_size_b = vect_vfa_access_size (loop_vinfo, dr_info_b); + align_a = vect_vfa_align (dr_info_a); + align_b = vect_vfa_align (dr_info_b); + + /* See whether the alias is known at compilation time. */ + if (operand_equal_p (DR_BASE_ADDRESS (dr_info_a->dr), + DR_BASE_ADDRESS (dr_info_b->dr), 0) + && operand_equal_p (DR_OFFSET (dr_info_a->dr), + DR_OFFSET (dr_info_b->dr), 0) + && TREE_CODE (DR_STEP (dr_info_a->dr)) == INTEGER_CST + && TREE_CODE (DR_STEP (dr_info_b->dr)) == INTEGER_CST + && poly_int_tree_p (segment_length_a) + && poly_int_tree_p (segment_length_b)) + { + int res = vect_compile_time_alias (dr_info_a, dr_info_b, + segment_length_a, + segment_length_b, + access_size_a, + access_size_b); + if (res >= 0 && dump_enabled_p ()) + { + dump_printf_loc (MSG_NOTE, vect_location, + "can tell at compile time that %T and %T", + DR_REF (dr_info_a->dr), DR_REF (dr_info_b->dr)); + if (res == 0) + dump_printf (MSG_NOTE, " do not alias\n"); + else + dump_printf (MSG_NOTE, " alias\n"); + } + + if (res == 0) + continue; + + if (res == 1) + return opt_result::failure_at (stmt_info_b->stmt, + "not vectorized:" + " compilation time alias: %G%G", + stmt_info_a->stmt, + stmt_info_b->stmt); + } + + dr_with_seg_len dr_a (dr_info_a->dr, segment_length_a, + access_size_a, align_a); + dr_with_seg_len dr_b (dr_info_b->dr, segment_length_b, + access_size_b, align_b); + /* Canonicalize the order to be the one that's needed for accurate + RAW, WAR and WAW flags, in cases where the data references are + well-ordered. The order doesn't really matter otherwise, + but we might as well be consistent. */ + if (get_later_stmt (stmt_info_a, stmt_info_b) == stmt_info_a) + std::swap (dr_a, dr_b); + + dr_with_seg_len_pair_t dr_with_seg_len_pair + (dr_a, dr_b, (preserves_scalar_order_p + ? dr_with_seg_len_pair_t::WELL_ORDERED + : dr_with_seg_len_pair_t::REORDERED)); + + comp_alias_ddrs.safe_push (dr_with_seg_len_pair); + } + + prune_runtime_alias_test_list (&comp_alias_ddrs, vect_factor); + + unsigned int count = (comp_alias_ddrs.length () + + check_unequal_addrs.length ()); + + if (count + && (loop_cost_model (LOOP_VINFO_LOOP (loop_vinfo)) + == VECT_COST_MODEL_VERY_CHEAP)) + return opt_result::failure_at + (vect_location, "would need a runtime alias check\n"); + + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, + "improved number of alias checks from %d to %d\n", + may_alias_ddrs.length (), count); + unsigned limit = param_vect_max_version_for_alias_checks; + if (loop_cost_model (LOOP_VINFO_LOOP (loop_vinfo)) == VECT_COST_MODEL_CHEAP) + limit = param_vect_max_version_for_alias_checks * 6 / 10; + if (count > limit) + return opt_result::failure_at + (vect_location, + "number of versioning for alias run-time tests exceeds %d " + "(--param vect-max-version-for-alias-checks)\n", limit); + + return opt_result::success (); +} + +/* Check whether we can use an internal function for a gather load + or scatter store. READ_P is true for loads and false for stores. + MASKED_P is true if the load or store is conditional. MEMORY_TYPE is + the type of the memory elements being loaded or stored. OFFSET_TYPE + is the type of the offset that is being applied to the invariant + base address. SCALE is the amount by which the offset should + be multiplied *after* it has been converted to address width. + + Return true if the function is supported, storing the function id in + *IFN_OUT and the vector type for the offset in *OFFSET_VECTYPE_OUT. */ + +bool +vect_gather_scatter_fn_p (vec_info *vinfo, bool read_p, bool masked_p, + tree vectype, tree memory_type, tree offset_type, + int scale, internal_fn *ifn_out, + tree *offset_vectype_out) +{ + unsigned int memory_bits = tree_to_uhwi (TYPE_SIZE (memory_type)); + unsigned int element_bits = vector_element_bits (vectype); + if (element_bits != memory_bits) + /* For now the vector elements must be the same width as the + memory elements. */ + return false; + + /* Work out which function we need. */ + internal_fn ifn, alt_ifn; + if (read_p) + { + ifn = masked_p ? IFN_MASK_GATHER_LOAD : IFN_GATHER_LOAD; + alt_ifn = IFN_MASK_GATHER_LOAD; + } + else + { + ifn = masked_p ? IFN_MASK_SCATTER_STORE : IFN_SCATTER_STORE; + alt_ifn = IFN_MASK_SCATTER_STORE; + } + + for (;;) + { + tree offset_vectype = get_vectype_for_scalar_type (vinfo, offset_type); + if (!offset_vectype) + return false; + + /* Test whether the target supports this combination. */ + if (internal_gather_scatter_fn_supported_p (ifn, vectype, memory_type, + offset_vectype, scale)) + { + *ifn_out = ifn; + *offset_vectype_out = offset_vectype; + return true; + } + else if (!masked_p + && internal_gather_scatter_fn_supported_p (alt_ifn, vectype, + memory_type, + offset_vectype, + scale)) + { + *ifn_out = alt_ifn; + *offset_vectype_out = offset_vectype; + return true; + } + + if (TYPE_PRECISION (offset_type) >= POINTER_SIZE + && TYPE_PRECISION (offset_type) >= element_bits) + return false; + + offset_type = build_nonstandard_integer_type + (TYPE_PRECISION (offset_type) * 2, TYPE_UNSIGNED (offset_type)); + } +} + +/* STMT_INFO is a call to an internal gather load or scatter store function. + Describe the operation in INFO. */ + +static void +vect_describe_gather_scatter_call (stmt_vec_info stmt_info, + gather_scatter_info *info) +{ + gcall *call = as_a <gcall *> (stmt_info->stmt); + tree vectype = STMT_VINFO_VECTYPE (stmt_info); + data_reference *dr = STMT_VINFO_DATA_REF (stmt_info); + + info->ifn = gimple_call_internal_fn (call); + info->decl = NULL_TREE; + info->base = gimple_call_arg (call, 0); + info->offset = gimple_call_arg (call, 1); + info->offset_dt = vect_unknown_def_type; + info->offset_vectype = NULL_TREE; + info->scale = TREE_INT_CST_LOW (gimple_call_arg (call, 2)); + info->element_type = TREE_TYPE (vectype); + info->memory_type = TREE_TYPE (DR_REF (dr)); +} + +/* Return true if a non-affine read or write in STMT_INFO is suitable for a + gather load or scatter store. Describe the operation in *INFO if so. */ + +bool +vect_check_gather_scatter (stmt_vec_info stmt_info, loop_vec_info loop_vinfo, + gather_scatter_info *info) +{ + HOST_WIDE_INT scale = 1; + poly_int64 pbitpos, pbitsize; + class loop *loop = LOOP_VINFO_LOOP (loop_vinfo); + struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info); + tree offtype = NULL_TREE; + tree decl = NULL_TREE, base, off; + tree vectype = STMT_VINFO_VECTYPE (stmt_info); + tree memory_type = TREE_TYPE (DR_REF (dr)); + machine_mode pmode; + int punsignedp, reversep, pvolatilep = 0; + internal_fn ifn; + tree offset_vectype; + bool masked_p = false; + + /* See whether this is already a call to a gather/scatter internal function. + If not, see whether it's a masked load or store. */ + gcall *call = dyn_cast <gcall *> (stmt_info->stmt); + if (call && gimple_call_internal_p (call)) + { + ifn = gimple_call_internal_fn (call); + if (internal_gather_scatter_fn_p (ifn)) + { + vect_describe_gather_scatter_call (stmt_info, info); + return true; + } + masked_p = (ifn == IFN_MASK_LOAD || ifn == IFN_MASK_STORE); + } + + /* True if we should aim to use internal functions rather than + built-in functions. */ + bool use_ifn_p = (DR_IS_READ (dr) + ? supports_vec_gather_load_p (TYPE_MODE (vectype)) + : supports_vec_scatter_store_p (TYPE_MODE (vectype))); + + base = DR_REF (dr); + /* For masked loads/stores, DR_REF (dr) is an artificial MEM_REF, + see if we can use the def stmt of the address. */ + if (masked_p + && TREE_CODE (base) == MEM_REF + && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME + && integer_zerop (TREE_OPERAND (base, 1)) + && !expr_invariant_in_loop_p (loop, TREE_OPERAND (base, 0))) + { + gimple *def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (base, 0)); + if (is_gimple_assign (def_stmt) + && gimple_assign_rhs_code (def_stmt) == ADDR_EXPR) + base = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0); + } + + /* The gather and scatter builtins need address of the form + loop_invariant + vector * {1, 2, 4, 8} + or + loop_invariant + sign_extend (vector) * { 1, 2, 4, 8 }. + Unfortunately DR_BASE_ADDRESS/DR_OFFSET can be a mixture + of loop invariants/SSA_NAMEs defined in the loop, with casts, + multiplications and additions in it. To get a vector, we need + a single SSA_NAME that will be defined in the loop and will + contain everything that is not loop invariant and that can be + vectorized. The following code attempts to find such a preexistng + SSA_NAME OFF and put the loop invariants into a tree BASE + that can be gimplified before the loop. */ + base = get_inner_reference (base, &pbitsize, &pbitpos, &off, &pmode, + &punsignedp, &reversep, &pvolatilep); + if (reversep) + return false; + + poly_int64 pbytepos = exact_div (pbitpos, BITS_PER_UNIT); + + if (TREE_CODE (base) == MEM_REF) + { + if (!integer_zerop (TREE_OPERAND (base, 1))) + { + if (off == NULL_TREE) + off = wide_int_to_tree (sizetype, mem_ref_offset (base)); + else + off = size_binop (PLUS_EXPR, off, + fold_convert (sizetype, TREE_OPERAND (base, 1))); + } + base = TREE_OPERAND (base, 0); + } + else + base = build_fold_addr_expr (base); + + if (off == NULL_TREE) + off = size_zero_node; + + /* If base is not loop invariant, either off is 0, then we start with just + the constant offset in the loop invariant BASE and continue with base + as OFF, otherwise give up. + We could handle that case by gimplifying the addition of base + off + into some SSA_NAME and use that as off, but for now punt. */ + if (!expr_invariant_in_loop_p (loop, base)) + { + if (!integer_zerop (off)) + return false; + off = base; + base = size_int (pbytepos); + } + /* Otherwise put base + constant offset into the loop invariant BASE + and continue with OFF. */ + else + { + base = fold_convert (sizetype, base); + base = size_binop (PLUS_EXPR, base, size_int (pbytepos)); + } + + /* OFF at this point may be either a SSA_NAME or some tree expression + from get_inner_reference. Try to peel off loop invariants from it + into BASE as long as possible. */ + STRIP_NOPS (off); + while (offtype == NULL_TREE) + { + enum tree_code code; + tree op0, op1, add = NULL_TREE; + + if (TREE_CODE (off) == SSA_NAME) + { + gimple *def_stmt = SSA_NAME_DEF_STMT (off); + + if (expr_invariant_in_loop_p (loop, off)) + return false; + + if (gimple_code (def_stmt) != GIMPLE_ASSIGN) + break; + + op0 = gimple_assign_rhs1 (def_stmt); + code = gimple_assign_rhs_code (def_stmt); + op1 = gimple_assign_rhs2 (def_stmt); + } + else + { + if (get_gimple_rhs_class (TREE_CODE (off)) == GIMPLE_TERNARY_RHS) + return false; + code = TREE_CODE (off); + extract_ops_from_tree (off, &code, &op0, &op1); + } + switch (code) + { + case POINTER_PLUS_EXPR: + case PLUS_EXPR: + if (expr_invariant_in_loop_p (loop, op0)) + { + add = op0; + off = op1; + do_add: + add = fold_convert (sizetype, add); + if (scale != 1) + add = size_binop (MULT_EXPR, add, size_int (scale)); + base = size_binop (PLUS_EXPR, base, add); + continue; + } + if (expr_invariant_in_loop_p (loop, op1)) + { + add = op1; + off = op0; + goto do_add; + } + break; + case MINUS_EXPR: + if (expr_invariant_in_loop_p (loop, op1)) + { + add = fold_convert (sizetype, op1); + add = size_binop (MINUS_EXPR, size_zero_node, add); + off = op0; + goto do_add; + } + break; + case MULT_EXPR: + if (scale == 1 && tree_fits_shwi_p (op1)) + { + int new_scale = tree_to_shwi (op1); + /* Only treat this as a scaling operation if the target + supports it for at least some offset type. */ + if (use_ifn_p + && !vect_gather_scatter_fn_p (loop_vinfo, DR_IS_READ (dr), + masked_p, vectype, memory_type, + signed_char_type_node, + new_scale, &ifn, + &offset_vectype) + && !vect_gather_scatter_fn_p (loop_vinfo, DR_IS_READ (dr), + masked_p, vectype, memory_type, + unsigned_char_type_node, + new_scale, &ifn, + &offset_vectype)) + break; + scale = new_scale; + off = op0; + continue; + } + break; + case SSA_NAME: + off = op0; + continue; + CASE_CONVERT: + if (!POINTER_TYPE_P (TREE_TYPE (op0)) + && !INTEGRAL_TYPE_P (TREE_TYPE (op0))) + break; + + /* Don't include the conversion if the target is happy with + the current offset type. */ + if (use_ifn_p + && !POINTER_TYPE_P (TREE_TYPE (off)) + && vect_gather_scatter_fn_p (loop_vinfo, DR_IS_READ (dr), + masked_p, vectype, memory_type, + TREE_TYPE (off), scale, &ifn, + &offset_vectype)) + break; + + if (TYPE_PRECISION (TREE_TYPE (op0)) + == TYPE_PRECISION (TREE_TYPE (off))) + { + off = op0; + continue; + } + + /* Include the conversion if it is widening and we're using + the IFN path or the target can handle the converted from + offset or the current size is not already the same as the + data vector element size. */ + if ((TYPE_PRECISION (TREE_TYPE (op0)) + < TYPE_PRECISION (TREE_TYPE (off))) + && (use_ifn_p + || (DR_IS_READ (dr) + ? (targetm.vectorize.builtin_gather + && targetm.vectorize.builtin_gather (vectype, + TREE_TYPE (op0), + scale)) + : (targetm.vectorize.builtin_scatter + && targetm.vectorize.builtin_scatter (vectype, + TREE_TYPE (op0), + scale))) + || !operand_equal_p (TYPE_SIZE (TREE_TYPE (off)), + TYPE_SIZE (TREE_TYPE (vectype)), 0))) + { + off = op0; + offtype = TREE_TYPE (off); + STRIP_NOPS (off); + continue; + } + break; + default: + break; + } + break; + } + + /* If at the end OFF still isn't a SSA_NAME or isn't + defined in the loop, punt. */ + if (TREE_CODE (off) != SSA_NAME + || expr_invariant_in_loop_p (loop, off)) + return false; + + if (offtype == NULL_TREE) + offtype = TREE_TYPE (off); + + if (use_ifn_p) + { + if (!vect_gather_scatter_fn_p (loop_vinfo, DR_IS_READ (dr), masked_p, + vectype, memory_type, offtype, scale, + &ifn, &offset_vectype)) + ifn = IFN_LAST; + decl = NULL_TREE; + } + else + { + if (DR_IS_READ (dr)) + { + if (targetm.vectorize.builtin_gather) + decl = targetm.vectorize.builtin_gather (vectype, offtype, scale); + } + else + { + if (targetm.vectorize.builtin_scatter) + decl = targetm.vectorize.builtin_scatter (vectype, offtype, scale); + } + ifn = IFN_LAST; + /* The offset vector type will be read from DECL when needed. */ + offset_vectype = NULL_TREE; + } + + info->ifn = ifn; + info->decl = decl; + info->base = base; + info->offset = off; + info->offset_dt = vect_unknown_def_type; + info->offset_vectype = offset_vectype; + info->scale = scale; + info->element_type = TREE_TYPE (vectype); + info->memory_type = memory_type; + return true; +} + +/* Find the data references in STMT, analyze them with respect to LOOP and + append them to DATAREFS. Return false if datarefs in this stmt cannot + be handled. */ + +opt_result +vect_find_stmt_data_reference (loop_p loop, gimple *stmt, + vec<data_reference_p> *datarefs, + vec<int> *dataref_groups, int group_id) +{ + /* We can ignore clobbers for dataref analysis - they are removed during + loop vectorization and BB vectorization checks dependences with a + stmt walk. */ + if (gimple_clobber_p (stmt)) + return opt_result::success (); + + if (gimple_has_volatile_ops (stmt)) + return opt_result::failure_at (stmt, "not vectorized: volatile type: %G", + stmt); + + if (stmt_can_throw_internal (cfun, stmt)) + return opt_result::failure_at (stmt, + "not vectorized:" + " statement can throw an exception: %G", + stmt); + + auto_vec<data_reference_p, 2> refs; + opt_result res = find_data_references_in_stmt (loop, stmt, &refs); + if (!res) + return res; + + if (refs.is_empty ()) + return opt_result::success (); + + if (refs.length () > 1) + { + while (!refs.is_empty ()) + free_data_ref (refs.pop ()); + return opt_result::failure_at (stmt, + "not vectorized: more than one " + "data ref in stmt: %G", stmt); + } + + data_reference_p dr = refs.pop (); + if (gcall *call = dyn_cast <gcall *> (stmt)) + if (!gimple_call_internal_p (call) + || (gimple_call_internal_fn (call) != IFN_MASK_LOAD + && gimple_call_internal_fn (call) != IFN_MASK_STORE)) + { + free_data_ref (dr); + return opt_result::failure_at (stmt, + "not vectorized: dr in a call %G", stmt); + } + + if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF + && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1))) + { + free_data_ref (dr); + return opt_result::failure_at (stmt, + "not vectorized:" + " statement is bitfield access %G", stmt); + } + + if (DR_BASE_ADDRESS (dr) + && TREE_CODE (DR_BASE_ADDRESS (dr)) == INTEGER_CST) + { + free_data_ref (dr); + return opt_result::failure_at (stmt, + "not vectorized:" + " base addr of dr is a constant\n"); + } + + /* Check whether this may be a SIMD lane access and adjust the + DR to make it easier for us to handle it. */ + if (loop + && loop->simduid + && (!DR_BASE_ADDRESS (dr) + || !DR_OFFSET (dr) + || !DR_INIT (dr) + || !DR_STEP (dr))) + { + struct data_reference *newdr + = create_data_ref (NULL, loop_containing_stmt (stmt), DR_REF (dr), stmt, + DR_IS_READ (dr), DR_IS_CONDITIONAL_IN_STMT (dr)); + if (DR_BASE_ADDRESS (newdr) + && DR_OFFSET (newdr) + && DR_INIT (newdr) + && DR_STEP (newdr) + && TREE_CODE (DR_INIT (newdr)) == INTEGER_CST + && integer_zerop (DR_STEP (newdr))) + { + tree base_address = DR_BASE_ADDRESS (newdr); + tree off = DR_OFFSET (newdr); + tree step = ssize_int (1); + if (integer_zerop (off) + && TREE_CODE (base_address) == POINTER_PLUS_EXPR) + { + off = TREE_OPERAND (base_address, 1); + base_address = TREE_OPERAND (base_address, 0); + } + STRIP_NOPS (off); + if (TREE_CODE (off) == MULT_EXPR + && tree_fits_uhwi_p (TREE_OPERAND (off, 1))) + { + step = TREE_OPERAND (off, 1); + off = TREE_OPERAND (off, 0); + STRIP_NOPS (off); + } + if (CONVERT_EXPR_P (off) + && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (off, 0))) + < TYPE_PRECISION (TREE_TYPE (off)))) + off = TREE_OPERAND (off, 0); + if (TREE_CODE (off) == SSA_NAME) + { + gimple *def = SSA_NAME_DEF_STMT (off); + /* Look through widening conversion. */ + if (is_gimple_assign (def) + && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def))) + { + tree rhs1 = gimple_assign_rhs1 (def); + if (TREE_CODE (rhs1) == SSA_NAME + && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)) + && (TYPE_PRECISION (TREE_TYPE (off)) + > TYPE_PRECISION (TREE_TYPE (rhs1)))) + def = SSA_NAME_DEF_STMT (rhs1); + } + if (is_gimple_call (def) + && gimple_call_internal_p (def) + && (gimple_call_internal_fn (def) == IFN_GOMP_SIMD_LANE)) + { + tree arg = gimple_call_arg (def, 0); + tree reft = TREE_TYPE (DR_REF (newdr)); + gcc_assert (TREE_CODE (arg) == SSA_NAME); + arg = SSA_NAME_VAR (arg); + if (arg == loop->simduid + /* For now. */ + && tree_int_cst_equal (TYPE_SIZE_UNIT (reft), step)) + { + DR_BASE_ADDRESS (newdr) = base_address; + DR_OFFSET (newdr) = ssize_int (0); + DR_STEP (newdr) = step; + DR_OFFSET_ALIGNMENT (newdr) = BIGGEST_ALIGNMENT; + DR_STEP_ALIGNMENT (newdr) = highest_pow2_factor (step); + /* Mark as simd-lane access. */ + tree arg2 = gimple_call_arg (def, 1); + newdr->aux = (void *) (-1 - tree_to_uhwi (arg2)); + free_data_ref (dr); + datarefs->safe_push (newdr); + if (dataref_groups) + dataref_groups->safe_push (group_id); + return opt_result::success (); + } + } + } + } + free_data_ref (newdr); + } + + datarefs->safe_push (dr); + if (dataref_groups) + dataref_groups->safe_push (group_id); + return opt_result::success (); +} + +/* Function vect_analyze_data_refs. + + Find all the data references in the loop or basic block. + + The general structure of the analysis of data refs in the vectorizer is as + follows: + 1- vect_analyze_data_refs(loop/bb): call + compute_data_dependences_for_loop/bb to find and analyze all data-refs + in the loop/bb and their dependences. + 2- vect_analyze_dependences(): apply dependence testing using ddrs. + 3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok. + 4- vect_analyze_drs_access(): check that ref_stmt.step is ok. + +*/ + +opt_result +vect_analyze_data_refs (vec_info *vinfo, poly_uint64 *min_vf, bool *fatal) +{ + class loop *loop = NULL; + unsigned int i; + struct data_reference *dr; + tree scalar_type; + + DUMP_VECT_SCOPE ("vect_analyze_data_refs"); + + if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo)) + loop = LOOP_VINFO_LOOP (loop_vinfo); + + /* Go through the data-refs, check that the analysis succeeded. Update + pointer from stmt_vec_info struct to DR and vectype. */ + + vec<data_reference_p> datarefs = vinfo->shared->datarefs; + FOR_EACH_VEC_ELT (datarefs, i, dr) + { + enum { SG_NONE, GATHER, SCATTER } gatherscatter = SG_NONE; + poly_uint64 vf; + + gcc_assert (DR_REF (dr)); + stmt_vec_info stmt_info = vinfo->lookup_stmt (DR_STMT (dr)); + gcc_assert (!stmt_info->dr_aux.dr); + stmt_info->dr_aux.dr = dr; + stmt_info->dr_aux.stmt = stmt_info; + + /* Check that analysis of the data-ref succeeded. */ + if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr) || !DR_INIT (dr) + || !DR_STEP (dr)) + { + bool maybe_gather + = DR_IS_READ (dr) + && !TREE_THIS_VOLATILE (DR_REF (dr)); + bool maybe_scatter + = DR_IS_WRITE (dr) + && !TREE_THIS_VOLATILE (DR_REF (dr)) + && (targetm.vectorize.builtin_scatter != NULL + || supports_vec_scatter_store_p ()); + + /* If target supports vector gather loads or scatter stores, + see if they can't be used. */ + if (is_a <loop_vec_info> (vinfo) + && !nested_in_vect_loop_p (loop, stmt_info)) + { + if (maybe_gather || maybe_scatter) + { + if (maybe_gather) + gatherscatter = GATHER; + else + gatherscatter = SCATTER; + } + } + + if (gatherscatter == SG_NONE) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "not vectorized: data ref analysis " + "failed %G", stmt_info->stmt); + if (is_a <bb_vec_info> (vinfo)) + { + /* In BB vectorization the ref can still participate + in dependence analysis, we just can't vectorize it. */ + STMT_VINFO_VECTORIZABLE (stmt_info) = false; + continue; + } + return opt_result::failure_at (stmt_info->stmt, + "not vectorized:" + " data ref analysis failed: %G", + stmt_info->stmt); + } + } + + /* See if this was detected as SIMD lane access. */ + if (dr->aux == (void *)-1 + || dr->aux == (void *)-2 + || dr->aux == (void *)-3 + || dr->aux == (void *)-4) + { + if (nested_in_vect_loop_p (loop, stmt_info)) + return opt_result::failure_at (stmt_info->stmt, + "not vectorized:" + " data ref analysis failed: %G", + stmt_info->stmt); + STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info) + = -(uintptr_t) dr->aux; + } + + tree base = get_base_address (DR_REF (dr)); + if (base && VAR_P (base) && DECL_NONALIASED (base)) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "not vectorized: base object not addressable " + "for stmt: %G", stmt_info->stmt); + if (is_a <bb_vec_info> (vinfo)) + { + /* In BB vectorization the ref can still participate + in dependence analysis, we just can't vectorize it. */ + STMT_VINFO_VECTORIZABLE (stmt_info) = false; + continue; + } + return opt_result::failure_at (stmt_info->stmt, + "not vectorized: base object not" + " addressable for stmt: %G", + stmt_info->stmt); + } + + if (is_a <loop_vec_info> (vinfo) + && DR_STEP (dr) + && TREE_CODE (DR_STEP (dr)) != INTEGER_CST) + { + if (nested_in_vect_loop_p (loop, stmt_info)) + return opt_result::failure_at (stmt_info->stmt, + "not vectorized: " + "not suitable for strided load %G", + stmt_info->stmt); + STMT_VINFO_STRIDED_P (stmt_info) = true; + } + + /* Update DR field in stmt_vec_info struct. */ + + /* If the dataref is in an inner-loop of the loop that is considered for + for vectorization, we also want to analyze the access relative to + the outer-loop (DR contains information only relative to the + inner-most enclosing loop). We do that by building a reference to the + first location accessed by the inner-loop, and analyze it relative to + the outer-loop. */ + if (loop && nested_in_vect_loop_p (loop, stmt_info)) + { + /* Build a reference to the first location accessed by the + inner loop: *(BASE + INIT + OFFSET). By construction, + this address must be invariant in the inner loop, so we + can consider it as being used in the outer loop. */ + tree base = unshare_expr (DR_BASE_ADDRESS (dr)); + tree offset = unshare_expr (DR_OFFSET (dr)); + tree init = unshare_expr (DR_INIT (dr)); + tree init_offset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), + init, offset); + tree init_addr = fold_build_pointer_plus (base, init_offset); + tree init_ref = build_fold_indirect_ref (init_addr); + + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, + "analyze in outer loop: %T\n", init_ref); + + opt_result res + = dr_analyze_innermost (&STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info), + init_ref, loop, stmt_info->stmt); + if (!res) + /* dr_analyze_innermost already explained the failure. */ + return res; + + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, + "\touter base_address: %T\n" + "\touter offset from base address: %T\n" + "\touter constant offset from base address: %T\n" + "\touter step: %T\n" + "\touter base alignment: %d\n\n" + "\touter base misalignment: %d\n" + "\touter offset alignment: %d\n" + "\touter step alignment: %d\n", + STMT_VINFO_DR_BASE_ADDRESS (stmt_info), + STMT_VINFO_DR_OFFSET (stmt_info), + STMT_VINFO_DR_INIT (stmt_info), + STMT_VINFO_DR_STEP (stmt_info), + STMT_VINFO_DR_BASE_ALIGNMENT (stmt_info), + STMT_VINFO_DR_BASE_MISALIGNMENT (stmt_info), + STMT_VINFO_DR_OFFSET_ALIGNMENT (stmt_info), + STMT_VINFO_DR_STEP_ALIGNMENT (stmt_info)); + } + + /* Set vectype for STMT. */ + scalar_type = TREE_TYPE (DR_REF (dr)); + tree vectype = get_vectype_for_scalar_type (vinfo, scalar_type); + if (!vectype) + { + if (dump_enabled_p ()) + { + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "not vectorized: no vectype for stmt: %G", + stmt_info->stmt); + dump_printf (MSG_MISSED_OPTIMIZATION, " scalar_type: "); + dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_DETAILS, + scalar_type); + dump_printf (MSG_MISSED_OPTIMIZATION, "\n"); + } + + if (is_a <bb_vec_info> (vinfo)) + { + /* No vector type is fine, the ref can still participate + in dependence analysis, we just can't vectorize it. */ + STMT_VINFO_VECTORIZABLE (stmt_info) = false; + continue; + } + if (fatal) + *fatal = false; + return opt_result::failure_at (stmt_info->stmt, + "not vectorized:" + " no vectype for stmt: %G" + " scalar_type: %T\n", + stmt_info->stmt, scalar_type); + } + else + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, + "got vectype for stmt: %G%T\n", + stmt_info->stmt, vectype); + } + + /* Adjust the minimal vectorization factor according to the + vector type. */ + vf = TYPE_VECTOR_SUBPARTS (vectype); + *min_vf = upper_bound (*min_vf, vf); + + /* Leave the BB vectorizer to pick the vector type later, based on + the final dataref group size and SLP node size. */ + if (is_a <loop_vec_info> (vinfo)) + STMT_VINFO_VECTYPE (stmt_info) = vectype; + + if (gatherscatter != SG_NONE) + { + gather_scatter_info gs_info; + if (!vect_check_gather_scatter (stmt_info, + as_a <loop_vec_info> (vinfo), + &gs_info) + || !get_vectype_for_scalar_type (vinfo, + TREE_TYPE (gs_info.offset))) + { + if (fatal) + *fatal = false; + return opt_result::failure_at + (stmt_info->stmt, + (gatherscatter == GATHER) + ? "not vectorized: not suitable for gather load %G" + : "not vectorized: not suitable for scatter store %G", + stmt_info->stmt); + } + STMT_VINFO_GATHER_SCATTER_P (stmt_info) = gatherscatter; + } + } + + /* We used to stop processing and prune the list here. Verify we no + longer need to. */ + gcc_assert (i == datarefs.length ()); + + return opt_result::success (); +} + + +/* Function vect_get_new_vect_var. + + Returns a name for a new variable. The current naming scheme appends the + prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to + the name of vectorizer generated variables, and appends that to NAME if + provided. */ + +tree +vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name) +{ + const char *prefix; + tree new_vect_var; + + switch (var_kind) + { + case vect_simple_var: + prefix = "vect"; + break; + case vect_scalar_var: + prefix = "stmp"; + break; + case vect_mask_var: + prefix = "mask"; + break; + case vect_pointer_var: + prefix = "vectp"; + break; + default: + gcc_unreachable (); + } + + if (name) + { + char* tmp = concat (prefix, "_", name, NULL); + new_vect_var = create_tmp_reg (type, tmp); + free (tmp); + } + else + new_vect_var = create_tmp_reg (type, prefix); + + return new_vect_var; +} + +/* Like vect_get_new_vect_var but return an SSA name. */ + +tree +vect_get_new_ssa_name (tree type, enum vect_var_kind var_kind, const char *name) +{ + const char *prefix; + tree new_vect_var; + + switch (var_kind) + { + case vect_simple_var: + prefix = "vect"; + break; + case vect_scalar_var: + prefix = "stmp"; + break; + case vect_pointer_var: + prefix = "vectp"; + break; + default: + gcc_unreachable (); + } + + if (name) + { + char* tmp = concat (prefix, "_", name, NULL); + new_vect_var = make_temp_ssa_name (type, NULL, tmp); + free (tmp); + } + else + new_vect_var = make_temp_ssa_name (type, NULL, prefix); + + return new_vect_var; +} + +/* Duplicate points-to info on NAME from DR_INFO. */ + +static void +vect_duplicate_ssa_name_ptr_info (tree name, dr_vec_info *dr_info) +{ + duplicate_ssa_name_ptr_info (name, DR_PTR_INFO (dr_info->dr)); + /* DR_PTR_INFO is for a base SSA name, not including constant or + variable offsets in the ref so its alignment info does not apply. */ + mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (name)); +} + +/* Function vect_create_addr_base_for_vector_ref. + + Create an expression that computes the address of the first memory location + that will be accessed for a data reference. + + Input: + STMT_INFO: The statement containing the data reference. + NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list. + OFFSET: Optional. If supplied, it is be added to the initial address. + LOOP: Specify relative to which loop-nest should the address be computed. + For example, when the dataref is in an inner-loop nested in an + outer-loop that is now being vectorized, LOOP can be either the + outer-loop, or the inner-loop. The first memory location accessed + by the following dataref ('in' points to short): + + for (i=0; i<N; i++) + for (j=0; j<M; j++) + s += in[i+j] + + is as follows: + if LOOP=i_loop: &in (relative to i_loop) + if LOOP=j_loop: &in+i*2B (relative to j_loop) + + Output: + 1. Return an SSA_NAME whose value is the address of the memory location of + the first vector of the data reference. + 2. If new_stmt_list is not NULL_TREE after return then the caller must insert + these statement(s) which define the returned SSA_NAME. + + FORNOW: We are only handling array accesses with step 1. */ + +tree +vect_create_addr_base_for_vector_ref (vec_info *vinfo, stmt_vec_info stmt_info, + gimple_seq *new_stmt_list, + tree offset) +{ + dr_vec_info *dr_info = STMT_VINFO_DR_INFO (stmt_info); + struct data_reference *dr = dr_info->dr; + const char *base_name; + tree addr_base; + tree dest; + gimple_seq seq = NULL; + tree vect_ptr_type; + loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo); + innermost_loop_behavior *drb = vect_dr_behavior (vinfo, dr_info); + + tree data_ref_base = unshare_expr (drb->base_address); + tree base_offset = unshare_expr (get_dr_vinfo_offset (vinfo, dr_info, true)); + tree init = unshare_expr (drb->init); + + if (loop_vinfo) + base_name = get_name (data_ref_base); + else + { + base_offset = ssize_int (0); + init = ssize_int (0); + base_name = get_name (DR_REF (dr)); + } + + /* Create base_offset */ + base_offset = size_binop (PLUS_EXPR, + fold_convert (sizetype, base_offset), + fold_convert (sizetype, init)); + + if (offset) + { + offset = fold_convert (sizetype, offset); + base_offset = fold_build2 (PLUS_EXPR, sizetype, + base_offset, offset); + } + + /* base + base_offset */ + if (loop_vinfo) + addr_base = fold_build_pointer_plus (data_ref_base, base_offset); + else + { + addr_base = build1 (ADDR_EXPR, + build_pointer_type (TREE_TYPE (DR_REF (dr))), + unshare_expr (DR_REF (dr))); + } + + vect_ptr_type = build_pointer_type (TREE_TYPE (DR_REF (dr))); + dest = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var, base_name); + addr_base = force_gimple_operand (addr_base, &seq, true, dest); + gimple_seq_add_seq (new_stmt_list, seq); + + if (DR_PTR_INFO (dr) + && TREE_CODE (addr_base) == SSA_NAME + /* We should only duplicate pointer info to newly created SSA names. */ + && SSA_NAME_VAR (addr_base) == dest) + { + gcc_assert (!SSA_NAME_PTR_INFO (addr_base)); + vect_duplicate_ssa_name_ptr_info (addr_base, dr_info); + } + + if (dump_enabled_p ()) + dump_printf_loc (MSG_NOTE, vect_location, "created %T\n", addr_base); + + return addr_base; +} + + +/* Function vect_create_data_ref_ptr. + + Create a new pointer-to-AGGR_TYPE variable (ap), that points to the first + location accessed in the loop by STMT_INFO, along with the def-use update + chain to appropriately advance the pointer through the loop iterations. + Also set aliasing information for the pointer. This pointer is used by + the callers to this function to create a memory reference expression for + vector load/store access. + + Input: + 1. STMT_INFO: a stmt that references memory. Expected to be of the form + GIMPLE_ASSIGN <name, data-ref> or + GIMPLE_ASSIGN <data-ref, name>. + 2. AGGR_TYPE: the type of the reference, which should be either a vector + or an array. + 3. AT_LOOP: the loop where the vector memref is to be created. + 4. OFFSET (optional): a byte offset to be added to the initial address + accessed by the data-ref in STMT_INFO. + 5. BSI: location where the new stmts are to be placed if there is no loop + 6. ONLY_INIT: indicate if ap is to be updated in the loop, or remain + pointing to the initial address. + 8. IV_STEP (optional, defaults to NULL): the amount that should be added + to the IV during each iteration of the loop. NULL says to move + by one copy of AGGR_TYPE up or down, depending on the step of the + data reference. + + Output: + 1. Declare a new ptr to vector_type, and have it point to the base of the + data reference (initial addressed accessed by the data reference). + For example, for vector of type V8HI, the following code is generated: + + v8hi *ap; + ap = (v8hi *)initial_address; + + if OFFSET is not supplied: + initial_address = &a[init]; + if OFFSET is supplied: + initial_address = &a[init] + OFFSET; + if BYTE_OFFSET is supplied: + initial_address = &a[init] + BYTE_OFFSET; + + Return the initial_address in INITIAL_ADDRESS. + + 2. If ONLY_INIT is true, just return the initial pointer. Otherwise, also + update the pointer in each iteration of the loop. + + Return the increment stmt that updates the pointer in PTR_INCR. + + 3. Return the pointer. */ + +tree +vect_create_data_ref_ptr (vec_info *vinfo, stmt_vec_info stmt_info, + tree aggr_type, class loop *at_loop, tree offset, + tree *initial_address, gimple_stmt_iterator *gsi, + gimple **ptr_incr, bool only_init, + tree iv_step) +{ + const char *base_name; + loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo); + class loop *loop = NULL; + bool nested_in_vect_loop = false; + class loop *containing_loop = NULL; + tree aggr_ptr_type; + tree aggr_ptr; + tree new_temp; + gimple_seq new_stmt_list = NULL; + edge pe = NULL; + basic_block new_bb; + tree aggr_ptr_init; + dr_vec_info *dr_info = STMT_VINFO_DR_INFO (stmt_info); + struct data_reference *dr = dr_info->dr; + tree aptr; + gimple_stmt_iterator incr_gsi; + bool insert_after; + tree indx_before_incr, indx_after_incr; + gimple *incr; + bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (vinfo); + + gcc_assert (iv_step != NULL_TREE + || TREE_CODE (aggr_type) == ARRAY_TYPE + || TREE_CODE (aggr_type) == VECTOR_TYPE); + + if (loop_vinfo) + { + loop = LOOP_VINFO_LOOP (loop_vinfo); + nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt_info); + containing_loop = (gimple_bb (stmt_info->stmt))->loop_father; + pe = loop_preheader_edge (loop); + } + else + { + gcc_assert (bb_vinfo); + only_init = true; + *ptr_incr = NULL; + } + + /* Create an expression for the first address accessed by this load + in LOOP. */ + base_name = get_name (DR_BASE_ADDRESS (dr)); + + if (dump_enabled_p ()) + { + tree dr_base_type = TREE_TYPE (DR_BASE_OBJECT (dr)); + dump_printf_loc (MSG_NOTE, vect_location, + "create %s-pointer variable to type: %T", + get_tree_code_name (TREE_CODE (aggr_type)), + aggr_type); + if (TREE_CODE (dr_base_type) == ARRAY_TYPE) + dump_printf (MSG_NOTE, " vectorizing an array ref: "); + else if (TREE_CODE (dr_base_type) == VECTOR_TYPE) + dump_printf (MSG_NOTE, " vectorizing a vector ref: "); + else if (TREE_CODE (dr_base_type) == RECORD_TYPE) + dump_printf (MSG_NOTE, " vectorizing a record based array ref: "); + else + dump_printf (MSG_NOTE, " vectorizing a pointer ref: "); + dump_printf (MSG_NOTE, "%T\n", DR_BASE_OBJECT (dr)); + } + + /* (1) Create the new aggregate-pointer variable. + Vector and array types inherit the alias set of their component + type by default so we need to use a ref-all pointer if the data + reference does not conflict with the created aggregated data + reference because it is not addressable. */ + bool need_ref_all = false; + if (!alias_sets_conflict_p (get_alias_set (aggr_type), + get_alias_set (DR_REF (dr)))) + need_ref_all = true; + /* Likewise for any of the data references in the stmt group. */ + else if (DR_GROUP_SIZE (stmt_info) > 1) + { + stmt_vec_info sinfo = DR_GROUP_FIRST_ELEMENT (stmt_info); + do + { + struct data_reference *sdr = STMT_VINFO_DATA_REF (sinfo); + if (!alias_sets_conflict_p (get_alias_set (aggr_type), + get_alias_set (DR_REF (sdr)))) + { + need_ref_all = true; + break; + } + sinfo = DR_GROUP_NEXT_ELEMENT (sinfo); + } + while (sinfo); + } + aggr_ptr_type = build_pointer_type_for_mode (aggr_type, ptr_mode, + need_ref_all); + aggr_ptr = vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var, base_name); + + + /* Note: If the dataref is in an inner-loop nested in LOOP, and we are + vectorizing LOOP (i.e., outer-loop vectorization), we need to create two + def-use update cycles for the pointer: one relative to the outer-loop + (LOOP), which is what steps (3) and (4) below do. The other is relative + to the inner-loop (which is the inner-most loop containing the dataref), + and this is done be step (5) below. + + When vectorizing inner-most loops, the vectorized loop (LOOP) is also the + inner-most loop, and so steps (3),(4) work the same, and step (5) is + redundant. Steps (3),(4) create the following: + + vp0 = &base_addr; + LOOP: vp1 = phi(vp0,vp2) + ... + ... + vp2 = vp1 + step + goto LOOP + + If there is an inner-loop nested in loop, then step (5) will also be + applied, and an additional update in the inner-loop will be created: + + vp0 = &base_addr; + LOOP: vp1 = phi(vp0,vp2) + ... + inner: vp3 = phi(vp1,vp4) + vp4 = vp3 + inner_step + if () goto inner + ... + vp2 = vp1 + step + if () goto LOOP */ + + /* (2) Calculate the initial address of the aggregate-pointer, and set + the aggregate-pointer to point to it before the loop. */ + + /* Create: (&(base[init_val]+offset) in the loop preheader. */ + + new_temp = vect_create_addr_base_for_vector_ref (vinfo, + stmt_info, &new_stmt_list, + offset); + if (new_stmt_list) + { + if (pe) + { + new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmt_list); + gcc_assert (!new_bb); + } + else + gsi_insert_seq_before (gsi, new_stmt_list, GSI_SAME_STMT); + } + + *initial_address = new_temp; + aggr_ptr_init = new_temp; + + /* (3) Handle the updating of the aggregate-pointer inside the loop. + This is needed when ONLY_INIT is false, and also when AT_LOOP is the + inner-loop nested in LOOP (during outer-loop vectorization). */ + + /* No update in loop is required. */ + if (only_init && (!loop_vinfo || at_loop == loop)) + aptr = aggr_ptr_init; + else + { + /* Accesses to invariant addresses should be handled specially + by the caller. */ + tree step = vect_dr_behavior (vinfo, dr_info)->step; + gcc_assert (!integer_zerop (step)); + + if (iv_step == NULL_TREE) + { + /* The step of the aggregate pointer is the type size, + negated for downward accesses. */ + iv_step = TYPE_SIZE_UNIT (aggr_type); + if (tree_int_cst_sgn (step) == -1) + iv_step = fold_build1 (NEGATE_EXPR, TREE_TYPE (iv_step), iv_step); + } + + standard_iv_increment_position (loop, &incr_gsi, &insert_after); + + create_iv (aggr_ptr_init, + fold_convert (aggr_ptr_type, iv_step), + aggr_ptr, loop, &incr_gsi, insert_after, + &indx_before_incr, &indx_after_incr); + incr = gsi_stmt (incr_gsi); + + /* Copy the points-to information if it exists. */ + if (DR_PTR_INFO (dr)) + { + vect_duplicate_ssa_name_ptr_info (indx_before_incr, dr_info); + vect_duplicate_ssa_name_ptr_info (indx_after_incr, dr_info); + } + if (ptr_incr) + *ptr_incr = incr; + + aptr = indx_before_incr; + } + + if (!nested_in_vect_loop || only_init) + return aptr; + + + /* (4) Handle the updating of the aggregate-pointer inside the inner-loop + nested in LOOP, if exists. */ + + gcc_assert (nested_in_vect_loop); + if (!only_init) + { + standard_iv_increment_position (containing_loop, &incr_gsi, + &insert_after); + create_iv (aptr, fold_convert (aggr_ptr_type, DR_STEP (dr)), aggr_ptr, + containing_loop, &incr_gsi, insert_after, &indx_before_incr, + &indx_after_incr); + incr = gsi_stmt (incr_gsi); + + /* Copy the points-to information if it exists. */ + if (DR_PTR_INFO (dr)) + { + vect_duplicate_ssa_name_ptr_info (indx_before_incr, dr_info); + vect_duplicate_ssa_name_ptr_info (indx_after_incr, dr_info); + } + if (ptr_incr) + *ptr_incr = incr; + + return indx_before_incr; + } + else + gcc_unreachable (); +} + + +/* Function bump_vector_ptr + + Increment a pointer (to a vector type) by vector-size. If requested, + i.e. if PTR-INCR is given, then also connect the new increment stmt + to the existing def-use update-chain of the pointer, by modifying + the PTR_INCR as illustrated below: + + The pointer def-use update-chain before this function: + DATAREF_PTR = phi (p_0, p_2) + .... + PTR_INCR: p_2 = DATAREF_PTR + step + + The pointer def-use update-chain after this function: + DATAREF_PTR = phi (p_0, p_2) + .... + NEW_DATAREF_PTR = DATAREF_PTR + BUMP + .... + PTR_INCR: p_2 = NEW_DATAREF_PTR + step + + Input: + DATAREF_PTR - ssa_name of a pointer (to vector type) that is being updated + in the loop. + PTR_INCR - optional. The stmt that updates the pointer in each iteration of + the loop. The increment amount across iterations is expected + to be vector_size. + BSI - location where the new update stmt is to be placed. + STMT_INFO - the original scalar memory-access stmt that is being vectorized. + BUMP - optional. The offset by which to bump the pointer. If not given, + the offset is assumed to be vector_size. + + Output: Return NEW_DATAREF_PTR as illustrated above. + +*/ + +tree +bump_vector_ptr (vec_info *vinfo, + tree dataref_ptr, gimple *ptr_incr, gimple_stmt_iterator *gsi, + stmt_vec_info stmt_info, tree bump) +{ + struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info); + tree vectype = STMT_VINFO_VECTYPE (stmt_info); + tree update = TYPE_SIZE_UNIT (vectype); + gimple *incr_stmt; + ssa_op_iter iter; + use_operand_p use_p; + tree new_dataref_ptr; + + if (bump) + update = bump; + + if (TREE_CODE (dataref_ptr) == SSA_NAME) + new_dataref_ptr = copy_ssa_name (dataref_ptr); + else + new_dataref_ptr = make_ssa_name (TREE_TYPE (dataref_ptr)); + incr_stmt = gimple_build_assign (new_dataref_ptr, POINTER_PLUS_EXPR, + dataref_ptr, update); + vect_finish_stmt_generation (vinfo, stmt_info, incr_stmt, gsi); + /* Fold the increment, avoiding excessive chains use-def chains of + those, leading to compile-time issues for passes until the next + forwprop pass which would do this as well. */ + gimple_stmt_iterator fold_gsi = gsi_for_stmt (incr_stmt); + if (fold_stmt (&fold_gsi, follow_all_ssa_edges)) + { + incr_stmt = gsi_stmt (fold_gsi); + update_stmt (incr_stmt); + } + + /* Copy the points-to information if it exists. */ + if (DR_PTR_INFO (dr)) + { + duplicate_ssa_name_ptr_info (new_dataref_ptr, DR_PTR_INFO (dr)); + mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (new_dataref_ptr)); + } + + if (!ptr_incr) + return new_dataref_ptr; + + /* Update the vector-pointer's cross-iteration increment. */ + FOR_EACH_SSA_USE_OPERAND (use_p, ptr_incr, iter, SSA_OP_USE) + { + tree use = USE_FROM_PTR (use_p); + + if (use == dataref_ptr) + SET_USE (use_p, new_dataref_ptr); + else + gcc_assert (operand_equal_p (use, update, 0)); + } + + return new_dataref_ptr; +} + + +/* Copy memory reference info such as base/clique from the SRC reference + to the DEST MEM_REF. */ + +void +vect_copy_ref_info (tree dest, tree src) +{ + if (TREE_CODE (dest) != MEM_REF) + return; + + tree src_base = src; + while (handled_component_p (src_base)) + src_base = TREE_OPERAND (src_base, 0); + if (TREE_CODE (src_base) != MEM_REF + && TREE_CODE (src_base) != TARGET_MEM_REF) + return; + + MR_DEPENDENCE_CLIQUE (dest) = MR_DEPENDENCE_CLIQUE (src_base); + MR_DEPENDENCE_BASE (dest) = MR_DEPENDENCE_BASE (src_base); +} + + +/* Function vect_create_destination_var. + + Create a new temporary of type VECTYPE. */ + +tree +vect_create_destination_var (tree scalar_dest, tree vectype) +{ + tree vec_dest; + const char *name; + char *new_name; + tree type; + enum vect_var_kind kind; + + kind = vectype + ? VECTOR_BOOLEAN_TYPE_P (vectype) + ? vect_mask_var + : vect_simple_var + : vect_scalar_var; + type = vectype ? vectype : TREE_TYPE (scalar_dest); + + gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME); + + name = get_name (scalar_dest); + if (name) + new_name = xasprintf ("%s_%u", name, SSA_NAME_VERSION (scalar_dest)); + else + new_name = xasprintf ("_%u", SSA_NAME_VERSION (scalar_dest)); + vec_dest = vect_get_new_vect_var (type, kind, new_name); + free (new_name); + + return vec_dest; +} + +/* Function vect_grouped_store_supported. + + Returns TRUE if interleave high and interleave low permutations + are supported, and FALSE otherwise. */ + +bool +vect_grouped_store_supported (tree vectype, unsigned HOST_WIDE_INT count) +{ + machine_mode mode = TYPE_MODE (vectype); + + /* vect_permute_store_chain requires the group size to be equal to 3 or + be a power of two. */ + if (count != 3 && exact_log2 (count) == -1) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "the size of the group of accesses" + " is not a power of 2 or not eqaul to 3\n"); + return false; + } + + /* Check that the permutation is supported. */ + if (VECTOR_MODE_P (mode)) + { + unsigned int i; + if (count == 3) + { + unsigned int j0 = 0, j1 = 0, j2 = 0; + unsigned int i, j; + + unsigned int nelt; + if (!GET_MODE_NUNITS (mode).is_constant (&nelt)) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "cannot handle groups of 3 stores for" + " variable-length vectors\n"); + return false; + } + + vec_perm_builder sel (nelt, nelt, 1); + sel.quick_grow (nelt); + vec_perm_indices indices; + for (j = 0; j < 3; j++) + { + int nelt0 = ((3 - j) * nelt) % 3; + int nelt1 = ((3 - j) * nelt + 1) % 3; + int nelt2 = ((3 - j) * nelt + 2) % 3; + for (i = 0; i < nelt; i++) + { + if (3 * i + nelt0 < nelt) + sel[3 * i + nelt0] = j0++; + if (3 * i + nelt1 < nelt) + sel[3 * i + nelt1] = nelt + j1++; + if (3 * i + nelt2 < nelt) + sel[3 * i + nelt2] = 0; + } + indices.new_vector (sel, 2, nelt); + if (!can_vec_perm_const_p (mode, indices)) + { + if (dump_enabled_p ()) + dump_printf (MSG_MISSED_OPTIMIZATION, + "permutation op not supported by target.\n"); + return false; + } + + for (i = 0; i < nelt; i++) + { + if (3 * i + nelt0 < nelt) + sel[3 * i + nelt0] = 3 * i + nelt0; + if (3 * i + nelt1 < nelt) + sel[3 * i + nelt1] = 3 * i + nelt1; + if (3 * i + nelt2 < nelt) + sel[3 * i + nelt2] = nelt + j2++; + } + indices.new_vector (sel, 2, nelt); + if (!can_vec_perm_const_p (mode, indices)) + { + if (dump_enabled_p ()) + dump_printf (MSG_MISSED_OPTIMIZATION, + "permutation op not supported by target.\n"); + return false; + } + } + return true; + } + else + { + /* If length is not equal to 3 then only power of 2 is supported. */ + gcc_assert (pow2p_hwi (count)); + poly_uint64 nelt = GET_MODE_NUNITS (mode); + + /* The encoding has 2 interleaved stepped patterns. */ + vec_perm_builder sel (nelt, 2, 3); + sel.quick_grow (6); + for (i = 0; i < 3; i++) + { + sel[i * 2] = i; + sel[i * 2 + 1] = i + nelt; + } + vec_perm_indices indices (sel, 2, nelt); + if (can_vec_perm_const_p (mode, indices)) + { + for (i = 0; i < 6; i++) + sel[i] += exact_div (nelt, 2); + indices.new_vector (sel, 2, nelt); + if (can_vec_perm_const_p (mode, indices)) + return true; + } + } + } + + if (dump_enabled_p ()) + dump_printf (MSG_MISSED_OPTIMIZATION, + "permutation op not supported by target.\n"); + return false; +} + + +/* Return TRUE if vec_{mask_}store_lanes is available for COUNT vectors of + type VECTYPE. MASKED_P says whether the masked form is needed. */ + +bool +vect_store_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count, + bool masked_p) +{ + if (masked_p) + return vect_lanes_optab_supported_p ("vec_mask_store_lanes", + vec_mask_store_lanes_optab, + vectype, count); + else + return vect_lanes_optab_supported_p ("vec_store_lanes", + vec_store_lanes_optab, + vectype, count); +} + + +/* Function vect_permute_store_chain. + + Given a chain of interleaved stores in DR_CHAIN of LENGTH that must be + a power of 2 or equal to 3, generate interleave_high/low stmts to reorder + the data correctly for the stores. Return the final references for stores + in RESULT_CHAIN. + + E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8. + The input is 4 vectors each containing 8 elements. We assign a number to + each element, the input sequence is: + + 1st vec: 0 1 2 3 4 5 6 7 + 2nd vec: 8 9 10 11 12 13 14 15 + 3rd vec: 16 17 18 19 20 21 22 23 + 4th vec: 24 25 26 27 28 29 30 31 + + The output sequence should be: + + 1st vec: 0 8 16 24 1 9 17 25 + 2nd vec: 2 10 18 26 3 11 19 27 + 3rd vec: 4 12 20 28 5 13 21 30 + 4th vec: 6 14 22 30 7 15 23 31 + + i.e., we interleave the contents of the four vectors in their order. + + We use interleave_high/low instructions to create such output. The input of + each interleave_high/low operation is two vectors: + 1st vec 2nd vec + 0 1 2 3 4 5 6 7 + the even elements of the result vector are obtained left-to-right from the + high/low elements of the first vector. The odd elements of the result are + obtained left-to-right from the high/low elements of the second vector. + The output of interleave_high will be: 0 4 1 5 + and of interleave_low: 2 6 3 7 + + + The permutation is done in log LENGTH stages. In each stage interleave_high + and interleave_low stmts are created for each pair of vectors in DR_CHAIN, + where the first argument is taken from the first half of DR_CHAIN and the + second argument from it's second half. + In our example, + + I1: interleave_high (1st vec, 3rd vec) + I2: interleave_low (1st vec, 3rd vec) + I3: interleave_high (2nd vec, 4th vec) + I4: interleave_low (2nd vec, 4th vec) + + The output for the first stage is: + + I1: 0 16 1 17 2 18 3 19 + I2: 4 20 5 21 6 22 7 23 + I3: 8 24 9 25 10 26 11 27 + I4: 12 28 13 29 14 30 15 31 + + The output of the second stage, i.e. the final result is: + + I1: 0 8 16 24 1 9 17 25 + I2: 2 10 18 26 3 11 19 27 + I3: 4 12 20 28 5 13 21 30 + I4: 6 14 22 30 7 15 23 31. */ + +void +vect_permute_store_chain (vec_info *vinfo, vec<tree> &dr_chain, + unsigned int length, + stmt_vec_info stmt_info, + gimple_stmt_iterator *gsi, + vec<tree> *result_chain) +{ + tree vect1, vect2, high, low; + gimple *perm_stmt; + tree vectype = STMT_VINFO_VECTYPE (stmt_info); + tree perm_mask_low, perm_mask_high; + tree data_ref; + tree perm3_mask_low, perm3_mask_high; + unsigned int i, j, n, log_length = exact_log2 (length); + + result_chain->quick_grow (length); + memcpy (result_chain->address (), dr_chain.address (), + length * sizeof (tree)); + + if (length == 3) + { + /* vect_grouped_store_supported ensures that this is constant. */ + unsigned int nelt = TYPE_VECTOR_SUBPARTS (vectype).to_constant (); + unsigned int j0 = 0, j1 = 0, j2 = 0; + + vec_perm_builder sel (nelt, nelt, 1); + sel.quick_grow (nelt); + vec_perm_indices indices; + for (j = 0; j < 3; j++) + { + int nelt0 = ((3 - j) * nelt) % 3; + int nelt1 = ((3 - j) * nelt + 1) % 3; + int nelt2 = ((3 - j) * nelt + 2) % 3; + + for (i = 0; i < nelt; i++) + { + if (3 * i + nelt0 < nelt) + sel[3 * i + nelt0] = j0++; + if (3 * i + nelt1 < nelt) + sel[3 * i + nelt1] = nelt + j1++; + if (3 * i + nelt2 < nelt) + sel[3 * i + nelt2] = 0; + } + indices.new_vector (sel, 2, nelt); + perm3_mask_low = vect_gen_perm_mask_checked (vectype, indices); + + for (i = 0; i < nelt; i++) + { + if (3 * i + nelt0 < nelt) + sel[3 * i + nelt0] = 3 * i + nelt0; + if (3 * i + nelt1 < nelt) + sel[3 * i + nelt1] = 3 * i + nelt1; + if (3 * i + nelt2 < nelt) + sel[3 * i + nelt2] = nelt + j2++; + } + indices.new_vector (sel, 2, nelt); + perm3_mask_high = vect_gen_perm_mask_checked (vectype, indices); + + vect1 = dr_chain[0]; + vect2 = dr_chain[1]; + + /* Create interleaving stmt: + low = VEC_PERM_EXPR <vect1, vect2, + {j, nelt, *, j + 1, nelt + j + 1, *, + j + 2, nelt + j + 2, *, ...}> */ + data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low"); + perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect1, + vect2, perm3_mask_low); + vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi); + + vect1 = data_ref; + vect2 = dr_chain[2]; + /* Create interleaving stmt: + low = VEC_PERM_EXPR <vect1, vect2, + {0, 1, nelt + j, 3, 4, nelt + j + 1, + 6, 7, nelt + j + 2, ...}> */ + data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high"); + perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect1, + vect2, perm3_mask_high); + vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi); + (*result_chain)[j] = data_ref; + } + } + else + { + /* If length is not equal to 3 then only power of 2 is supported. */ + gcc_assert (pow2p_hwi (length)); + + /* The encoding has 2 interleaved stepped patterns. */ + poly_uint64 nelt = TYPE_VECTOR_SUBPARTS (vectype); + vec_perm_builder sel (nelt, 2, 3); + sel.quick_grow (6); + for (i = 0; i < 3; i++) + { + sel[i * 2] = i; + sel[i * 2 + 1] = i + nelt; + } + vec_perm_indices indices (sel, 2, nelt); + perm_mask_high = vect_gen_perm_mask_checked (vectype, indices); + + for (i = 0; i < 6; i++) + sel[i] += exact_div (nelt, 2); + indices.new_vector (sel, 2, nelt); + perm_mask_low = vect_gen_perm_mask_checked (vectype, indices); + + for (i = 0, n = log_length; i < n; i++) + { + for (j = 0; j < length/2; j++) + { + vect1 = dr_chain[j]; + vect2 = dr_chain[j+length/2]; + + /* Create interleaving stmt: + high = VEC_PERM_EXPR <vect1, vect2, {0, nelt, 1, nelt+1, + ...}> */ + high = make_temp_ssa_name (vectype, NULL, "vect_inter_high"); + perm_stmt = gimple_build_assign (high, VEC_PERM_EXPR, vect1, + vect2, perm_mask_high); + vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi); + (*result_chain)[2*j] = high; + + /* Create interleaving stmt: + low = VEC_PERM_EXPR <vect1, vect2, + {nelt/2, nelt*3/2, nelt/2+1, nelt*3/2+1, + ...}> */ + low = make_temp_ssa_name (vectype, NULL, "vect_inter_low"); + perm_stmt = gimple_build_assign (low, VEC_PERM_EXPR, vect1, + vect2, perm_mask_low); + vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi); + (*result_chain)[2*j+1] = low; + } + memcpy (dr_chain.address (), result_chain->address (), + length * sizeof (tree)); + } + } +} + +/* Function vect_setup_realignment + + This function is called when vectorizing an unaligned load using + the dr_explicit_realign[_optimized] scheme. + This function generates the following code at the loop prolog: + + p = initial_addr; + x msq_init = *(floor(p)); # prolog load + realignment_token = call target_builtin; + loop: + x msq = phi (msq_init, ---) + + The stmts marked with x are generated only for the case of + dr_explicit_realign_optimized. + + The code above sets up a new (vector) pointer, pointing to the first + location accessed by STMT_INFO, and a "floor-aligned" load using that + pointer. It also generates code to compute the "realignment-token" + (if the relevant target hook was defined), and creates a phi-node at the + loop-header bb whose arguments are the result of the prolog-load (created + by this function) and the result of a load that takes place in the loop + (to be created by the caller to this function). + + For the case of dr_explicit_realign_optimized: + The caller to this function uses the phi-result (msq) to create the + realignment code inside the loop, and sets up the missing phi argument, + as follows: + loop: + msq = phi (msq_init, lsq) + lsq = *(floor(p')); # load in loop + result = realign_load (msq, lsq, realignment_token); + + For the case of dr_explicit_realign: + loop: + msq = *(floor(p)); # load in loop + p' = p + (VS-1); + lsq = *(floor(p')); # load in loop + result = realign_load (msq, lsq, realignment_token); + + Input: + STMT_INFO - (scalar) load stmt to be vectorized. This load accesses + a memory location that may be unaligned. + BSI - place where new code is to be inserted. + ALIGNMENT_SUPPORT_SCHEME - which of the two misalignment handling schemes + is used. + + Output: + REALIGNMENT_TOKEN - the result of a call to the builtin_mask_for_load + target hook, if defined. + Return value - the result of the loop-header phi node. */ + +tree +vect_setup_realignment (vec_info *vinfo, stmt_vec_info stmt_info, + gimple_stmt_iterator *gsi, tree *realignment_token, + enum dr_alignment_support alignment_support_scheme, + tree init_addr, + class loop **at_loop) +{ + tree vectype = STMT_VINFO_VECTYPE (stmt_info); + loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo); + dr_vec_info *dr_info = STMT_VINFO_DR_INFO (stmt_info); + struct data_reference *dr = dr_info->dr; + class loop *loop = NULL; + edge pe = NULL; + tree scalar_dest = gimple_assign_lhs (stmt_info->stmt); + tree vec_dest; + gimple *inc; + tree ptr; + tree data_ref; + basic_block new_bb; + tree msq_init = NULL_TREE; + tree new_temp; + gphi *phi_stmt; + tree msq = NULL_TREE; + gimple_seq stmts = NULL; + bool compute_in_loop = false; + bool nested_in_vect_loop = false; + class loop *containing_loop = (gimple_bb (stmt_info->stmt))->loop_father; + class loop *loop_for_initial_load = NULL; + + if (loop_vinfo) + { + loop = LOOP_VINFO_LOOP (loop_vinfo); + nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt_info); + } + + gcc_assert (alignment_support_scheme == dr_explicit_realign + || alignment_support_scheme == dr_explicit_realign_optimized); + + /* We need to generate three things: + 1. the misalignment computation + 2. the extra vector load (for the optimized realignment scheme). + 3. the phi node for the two vectors from which the realignment is + done (for the optimized realignment scheme). */ + + /* 1. Determine where to generate the misalignment computation. + + If INIT_ADDR is NULL_TREE, this indicates that the misalignment + calculation will be generated by this function, outside the loop (in the + preheader). Otherwise, INIT_ADDR had already been computed for us by the + caller, inside the loop. + + Background: If the misalignment remains fixed throughout the iterations of + the loop, then both realignment schemes are applicable, and also the + misalignment computation can be done outside LOOP. This is because we are + vectorizing LOOP, and so the memory accesses in LOOP advance in steps that + are a multiple of VS (the Vector Size), and therefore the misalignment in + different vectorized LOOP iterations is always the same. + The problem arises only if the memory access is in an inner-loop nested + inside LOOP, which is now being vectorized using outer-loop vectorization. + This is the only case when the misalignment of the memory access may not + remain fixed throughout the iterations of the inner-loop (as explained in + detail in vect_supportable_dr_alignment). In this case, not only is the + optimized realignment scheme not applicable, but also the misalignment + computation (and generation of the realignment token that is passed to + REALIGN_LOAD) have to be done inside the loop. + + In short, INIT_ADDR indicates whether we are in a COMPUTE_IN_LOOP mode + or not, which in turn determines if the misalignment is computed inside + the inner-loop, or outside LOOP. */ + + if (init_addr != NULL_TREE || !loop_vinfo) + { + compute_in_loop = true; + gcc_assert (alignment_support_scheme == dr_explicit_realign); + } + + + /* 2. Determine where to generate the extra vector load. + + For the optimized realignment scheme, instead of generating two vector + loads in each iteration, we generate a single extra vector load in the + preheader of the loop, and in each iteration reuse the result of the + vector load from the previous iteration. In case the memory access is in + an inner-loop nested inside LOOP, which is now being vectorized using + outer-loop vectorization, we need to determine whether this initial vector + load should be generated at the preheader of the inner-loop, or can be + generated at the preheader of LOOP. If the memory access has no evolution + in LOOP, it can be generated in the preheader of LOOP. Otherwise, it has + to be generated inside LOOP (in the preheader of the inner-loop). */ + + if (nested_in_vect_loop) + { + tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info); + bool invariant_in_outerloop = + (tree_int_cst_compare (outerloop_step, size_zero_node) == 0); + loop_for_initial_load = (invariant_in_outerloop ? loop : loop->inner); + } + else + loop_for_initial_load = loop; + if (at_loop) + *at_loop = loop_for_initial_load; + + if (loop_for_initial_load) + pe = loop_preheader_edge (loop_for_initial_load); + + /* 3. For the case of the optimized realignment, create the first vector + load at the loop preheader. */ + + if (alignment_support_scheme == dr_explicit_realign_optimized) + { + /* Create msq_init = *(floor(p1)) in the loop preheader */ + gassign *new_stmt; + + gcc_assert (!compute_in_loop); + vec_dest = vect_create_destination_var (scalar_dest, vectype); + ptr = vect_create_data_ref_ptr (vinfo, stmt_info, vectype, + loop_for_initial_load, NULL_TREE, + &init_addr, NULL, &inc, true); + if (TREE_CODE (ptr) == SSA_NAME) + new_temp = copy_ssa_name (ptr); + else + new_temp = make_ssa_name (TREE_TYPE (ptr)); + poly_uint64 align = DR_TARGET_ALIGNMENT (dr_info); + tree type = TREE_TYPE (ptr); + new_stmt = gimple_build_assign + (new_temp, BIT_AND_EXPR, ptr, + fold_build2 (MINUS_EXPR, type, + build_int_cst (type, 0), + build_int_cst (type, align))); + new_bb = gsi_insert_on_edge_immediate (pe, new_stmt); + gcc_assert (!new_bb); + data_ref + = build2 (MEM_REF, TREE_TYPE (vec_dest), new_temp, + build_int_cst (reference_alias_ptr_type (DR_REF (dr)), 0)); + vect_copy_ref_info (data_ref, DR_REF (dr)); + new_stmt = gimple_build_assign (vec_dest, data_ref); + new_temp = make_ssa_name (vec_dest, new_stmt); + gimple_assign_set_lhs (new_stmt, new_temp); + if (pe) + { + new_bb = gsi_insert_on_edge_immediate (pe, new_stmt); + gcc_assert (!new_bb); + } + else + gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT); + + msq_init = gimple_assign_lhs (new_stmt); + } + + /* 4. Create realignment token using a target builtin, if available. + It is done either inside the containing loop, or before LOOP (as + determined above). */ + + if (targetm.vectorize.builtin_mask_for_load) + { + gcall *new_stmt; + tree builtin_decl; + + /* Compute INIT_ADDR - the initial addressed accessed by this memref. */ + if (!init_addr) + { + /* Generate the INIT_ADDR computation outside LOOP. */ + init_addr = vect_create_addr_base_for_vector_ref (vinfo, + stmt_info, &stmts, + NULL_TREE); + if (loop) + { + pe = loop_preheader_edge (loop); + new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts); + gcc_assert (!new_bb); + } + else + gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); + } + + builtin_decl = targetm.vectorize.builtin_mask_for_load (); + new_stmt = gimple_build_call (builtin_decl, 1, init_addr); + vec_dest = + vect_create_destination_var (scalar_dest, + gimple_call_return_type (new_stmt)); + new_temp = make_ssa_name (vec_dest, new_stmt); + gimple_call_set_lhs (new_stmt, new_temp); + + if (compute_in_loop) + gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT); + else + { + /* Generate the misalignment computation outside LOOP. */ + pe = loop_preheader_edge (loop); + new_bb = gsi_insert_on_edge_immediate (pe, new_stmt); + gcc_assert (!new_bb); + } + + *realignment_token = gimple_call_lhs (new_stmt); + + /* The result of the CALL_EXPR to this builtin is determined from + the value of the parameter and no global variables are touched + which makes the builtin a "const" function. Requiring the + builtin to have the "const" attribute makes it unnecessary + to call mark_call_clobbered. */ + gcc_assert (TREE_READONLY (builtin_decl)); + } + + if (alignment_support_scheme == dr_explicit_realign) + return msq; + + gcc_assert (!compute_in_loop); + gcc_assert (alignment_support_scheme == dr_explicit_realign_optimized); + + + /* 5. Create msq = phi <msq_init, lsq> in loop */ + + pe = loop_preheader_edge (containing_loop); + vec_dest = vect_create_destination_var (scalar_dest, vectype); + msq = make_ssa_name (vec_dest); + phi_stmt = create_phi_node (msq, containing_loop->header); + add_phi_arg (phi_stmt, msq_init, pe, UNKNOWN_LOCATION); + + return msq; +} + + +/* Function vect_grouped_load_supported. + + COUNT is the size of the load group (the number of statements plus the + number of gaps). SINGLE_ELEMENT_P is true if there is actually + only one statement, with a gap of COUNT - 1. + + Returns true if a suitable permute exists. */ + +bool +vect_grouped_load_supported (tree vectype, bool single_element_p, + unsigned HOST_WIDE_INT count) +{ + machine_mode mode = TYPE_MODE (vectype); + + /* If this is single-element interleaving with an element distance + that leaves unused vector loads around punt - we at least create + very sub-optimal code in that case (and blow up memory, + see PR65518). */ + if (single_element_p && maybe_gt (count, TYPE_VECTOR_SUBPARTS (vectype))) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "single-element interleaving not supported " + "for not adjacent vector loads\n"); + return false; + } + + /* vect_permute_load_chain requires the group size to be equal to 3 or + be a power of two. */ + if (count != 3 && exact_log2 (count) == -1) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "the size of the group of accesses" + " is not a power of 2 or not equal to 3\n"); + return false; + } + + /* Check that the permutation is supported. */ + if (VECTOR_MODE_P (mode)) + { + unsigned int i, j; + if (count == 3) + { + unsigned int nelt; + if (!GET_MODE_NUNITS (mode).is_constant (&nelt)) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "cannot handle groups of 3 loads for" + " variable-length vectors\n"); + return false; + } + + vec_perm_builder sel (nelt, nelt, 1); + sel.quick_grow (nelt); + vec_perm_indices indices; + unsigned int k; + for (k = 0; k < 3; k++) + { + for (i = 0; i < nelt; i++) + if (3 * i + k < 2 * nelt) + sel[i] = 3 * i + k; + else + sel[i] = 0; + indices.new_vector (sel, 2, nelt); + if (!can_vec_perm_const_p (mode, indices)) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "shuffle of 3 loads is not supported by" + " target\n"); + return false; + } + for (i = 0, j = 0; i < nelt; i++) + if (3 * i + k < 2 * nelt) + sel[i] = i; + else + sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++); + indices.new_vector (sel, 2, nelt); + if (!can_vec_perm_const_p (mode, indices)) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "shuffle of 3 loads is not supported by" + " target\n"); + return false; + } + } + return true; + } + else + { + /* If length is not equal to 3 then only power of 2 is supported. */ + gcc_assert (pow2p_hwi (count)); + poly_uint64 nelt = GET_MODE_NUNITS (mode); + + /* The encoding has a single stepped pattern. */ + vec_perm_builder sel (nelt, 1, 3); + sel.quick_grow (3); + for (i = 0; i < 3; i++) + sel[i] = i * 2; + vec_perm_indices indices (sel, 2, nelt); + if (can_vec_perm_const_p (mode, indices)) + { + for (i = 0; i < 3; i++) + sel[i] = i * 2 + 1; + indices.new_vector (sel, 2, nelt); + if (can_vec_perm_const_p (mode, indices)) + return true; + } + } + } + + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "extract even/odd not supported by target\n"); + return false; +} + +/* Return TRUE if vec_{masked_}load_lanes is available for COUNT vectors of + type VECTYPE. MASKED_P says whether the masked form is needed. */ + +bool +vect_load_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count, + bool masked_p) +{ + if (masked_p) + return vect_lanes_optab_supported_p ("vec_mask_load_lanes", + vec_mask_load_lanes_optab, + vectype, count); + else + return vect_lanes_optab_supported_p ("vec_load_lanes", + vec_load_lanes_optab, + vectype, count); +} + +/* Function vect_permute_load_chain. + + Given a chain of interleaved loads in DR_CHAIN of LENGTH that must be + a power of 2 or equal to 3, generate extract_even/odd stmts to reorder + the input data correctly. Return the final references for loads in + RESULT_CHAIN. + + E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8. + The input is 4 vectors each containing 8 elements. We assign a number to each + element, the input sequence is: + + 1st vec: 0 1 2 3 4 5 6 7 + 2nd vec: 8 9 10 11 12 13 14 15 + 3rd vec: 16 17 18 19 20 21 22 23 + 4th vec: 24 25 26 27 28 29 30 31 + + The output sequence should be: + + 1st vec: 0 4 8 12 16 20 24 28 + 2nd vec: 1 5 9 13 17 21 25 29 + 3rd vec: 2 6 10 14 18 22 26 30 + 4th vec: 3 7 11 15 19 23 27 31 + + i.e., the first output vector should contain the first elements of each + interleaving group, etc. + + We use extract_even/odd instructions to create such output. The input of + each extract_even/odd operation is two vectors + 1st vec 2nd vec + 0 1 2 3 4 5 6 7 + + and the output is the vector of extracted even/odd elements. The output of + extract_even will be: 0 2 4 6 + and of extract_odd: 1 3 5 7 + + + The permutation is done in log LENGTH stages. In each stage extract_even + and extract_odd stmts are created for each pair of vectors in DR_CHAIN in + their order. In our example, + + E1: extract_even (1st vec, 2nd vec) + E2: extract_odd (1st vec, 2nd vec) + E3: extract_even (3rd vec, 4th vec) + E4: extract_odd (3rd vec, 4th vec) + + The output for the first stage will be: + + E1: 0 2 4 6 8 10 12 14 + E2: 1 3 5 7 9 11 13 15 + E3: 16 18 20 22 24 26 28 30 + E4: 17 19 21 23 25 27 29 31 + + In order to proceed and create the correct sequence for the next stage (or + for the correct output, if the second stage is the last one, as in our + example), we first put the output of extract_even operation and then the + output of extract_odd in RESULT_CHAIN (which is then copied to DR_CHAIN). + The input for the second stage is: + + 1st vec (E1): 0 2 4 6 8 10 12 14 + 2nd vec (E3): 16 18 20 22 24 26 28 30 + 3rd vec (E2): 1 3 5 7 9 11 13 15 + 4th vec (E4): 17 19 21 23 25 27 29 31 + + The output of the second stage: + + E1: 0 4 8 12 16 20 24 28 + E2: 2 6 10 14 18 22 26 30 + E3: 1 5 9 13 17 21 25 29 + E4: 3 7 11 15 19 23 27 31 + + And RESULT_CHAIN after reordering: + + 1st vec (E1): 0 4 8 12 16 20 24 28 + 2nd vec (E3): 1 5 9 13 17 21 25 29 + 3rd vec (E2): 2 6 10 14 18 22 26 30 + 4th vec (E4): 3 7 11 15 19 23 27 31. */ + +static void +vect_permute_load_chain (vec_info *vinfo, vec<tree> dr_chain, + unsigned int length, + stmt_vec_info stmt_info, + gimple_stmt_iterator *gsi, + vec<tree> *result_chain) +{ + tree data_ref, first_vect, second_vect; + tree perm_mask_even, perm_mask_odd; + tree perm3_mask_low, perm3_mask_high; + gimple *perm_stmt; + tree vectype = STMT_VINFO_VECTYPE (stmt_info); + unsigned int i, j, log_length = exact_log2 (length); + + result_chain->quick_grow (length); + memcpy (result_chain->address (), dr_chain.address (), + length * sizeof (tree)); + + if (length == 3) + { + /* vect_grouped_load_supported ensures that this is constant. */ + unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype).to_constant (); + unsigned int k; + + vec_perm_builder sel (nelt, nelt, 1); + sel.quick_grow (nelt); + vec_perm_indices indices; + for (k = 0; k < 3; k++) + { + for (i = 0; i < nelt; i++) + if (3 * i + k < 2 * nelt) + sel[i] = 3 * i + k; + else + sel[i] = 0; + indices.new_vector (sel, 2, nelt); + perm3_mask_low = vect_gen_perm_mask_checked (vectype, indices); + + for (i = 0, j = 0; i < nelt; i++) + if (3 * i + k < 2 * nelt) + sel[i] = i; + else + sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++); + indices.new_vector (sel, 2, nelt); + perm3_mask_high = vect_gen_perm_mask_checked (vectype, indices); + + first_vect = dr_chain[0]; + second_vect = dr_chain[1]; + + /* Create interleaving stmt (low part of): + low = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k, + ...}> */ + data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low"); + perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, first_vect, + second_vect, perm3_mask_low); + vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi); + + /* Create interleaving stmt (high part of): + high = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k, + ...}> */ + first_vect = data_ref; + second_vect = dr_chain[2]; + data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high"); + perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, first_vect, + second_vect, perm3_mask_high); + vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi); + (*result_chain)[k] = data_ref; + } + } + else + { + /* If length is not equal to 3 then only power of 2 is supported. */ + gcc_assert (pow2p_hwi (length)); + + /* The encoding has a single stepped pattern. */ + poly_uint64 nelt = TYPE_VECTOR_SUBPARTS (vectype); + vec_perm_builder sel (nelt, 1, 3); + sel.quick_grow (3); + for (i = 0; i < 3; ++i) + sel[i] = i * 2; + vec_perm_indices indices (sel, 2, nelt); + perm_mask_even = vect_gen_perm_mask_checked (vectype, indices); + + for (i = 0; i < 3; ++i) + sel[i] = i * 2 + 1; + indices.new_vector (sel, 2, nelt); + perm_mask_odd = vect_gen_perm_mask_checked (vectype, indices); + + for (i = 0; i < log_length; i++) + { + for (j = 0; j < length; j += 2) + { + first_vect = dr_chain[j]; + second_vect = dr_chain[j+1]; + + /* data_ref = permute_even (first_data_ref, second_data_ref); */ + data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_even"); + perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, + first_vect, second_vect, + perm_mask_even); + vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi); + (*result_chain)[j/2] = data_ref; + + /* data_ref = permute_odd (first_data_ref, second_data_ref); */ + data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_odd"); + perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, + first_vect, second_vect, + perm_mask_odd); + vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi); + (*result_chain)[j/2+length/2] = data_ref; + } + memcpy (dr_chain.address (), result_chain->address (), + length * sizeof (tree)); + } + } +} + +/* Function vect_shift_permute_load_chain. + + Given a chain of loads in DR_CHAIN of LENGTH 2 or 3, generate + sequence of stmts to reorder the input data accordingly. + Return the final references for loads in RESULT_CHAIN. + Return true if successed, false otherwise. + + E.g., LENGTH is 3 and the scalar type is short, i.e., VF is 8. + The input is 3 vectors each containing 8 elements. We assign a + number to each element, the input sequence is: + + 1st vec: 0 1 2 3 4 5 6 7 + 2nd vec: 8 9 10 11 12 13 14 15 + 3rd vec: 16 17 18 19 20 21 22 23 + + The output sequence should be: + + 1st vec: 0 3 6 9 12 15 18 21 + 2nd vec: 1 4 7 10 13 16 19 22 + 3rd vec: 2 5 8 11 14 17 20 23 + + We use 3 shuffle instructions and 3 * 3 - 1 shifts to create such output. + + First we shuffle all 3 vectors to get correct elements order: + + 1st vec: ( 0 3 6) ( 1 4 7) ( 2 5) + 2nd vec: ( 8 11 14) ( 9 12 15) (10 13) + 3rd vec: (16 19 22) (17 20 23) (18 21) + + Next we unite and shift vector 3 times: + + 1st step: + shift right by 6 the concatenation of: + "1st vec" and "2nd vec" + ( 0 3 6) ( 1 4 7) |( 2 5) _ ( 8 11 14) ( 9 12 15)| (10 13) + "2nd vec" and "3rd vec" + ( 8 11 14) ( 9 12 15) |(10 13) _ (16 19 22) (17 20 23)| (18 21) + "3rd vec" and "1st vec" + (16 19 22) (17 20 23) |(18 21) _ ( 0 3 6) ( 1 4 7)| ( 2 5) + | New vectors | + + So that now new vectors are: + + 1st vec: ( 2 5) ( 8 11 14) ( 9 12 15) + 2nd vec: (10 13) (16 19 22) (17 20 23) + 3rd vec: (18 21) ( 0 3 6) ( 1 4 7) + + 2nd step: + shift right by 5 the concatenation of: + "1st vec" and "3rd vec" + ( 2 5) ( 8 11 14) |( 9 12 15) _ (18 21) ( 0 3 6)| ( 1 4 7) + "2nd vec" and "1st vec" + (10 13) (16 19 22) |(17 20 23) _ ( 2 5) ( 8 11 14)| ( 9 12 15) + "3rd vec" and "2nd vec" + (18 21) ( 0 3 6) |( 1 4 7) _ (10 13) (16 19 22)| (17 20 23) + | New vectors | + + So that now new vectors are: + + 1st vec: ( 9 12 15) (18 21) ( 0 3 6) + 2nd vec: (17 20 23) ( 2 5) ( 8 11 14) + 3rd vec: ( 1 4 7) (10 13) (16 19 22) READY + + 3rd step: + shift right by 5 the concatenation of: + "1st vec" and "1st vec" + ( 9 12 15) (18 21) |( 0 3 6) _ ( 9 12 15) (18 21)| ( 0 3 6) + shift right by 3 the concatenation of: + "2nd vec" and "2nd vec" + (17 20 23) |( 2 5) ( 8 11 14) _ (17 20 23)| ( 2 5) ( 8 11 14) + | New vectors | + + So that now all vectors are READY: + 1st vec: ( 0 3 6) ( 9 12 15) (18 21) + 2nd vec: ( 2 5) ( 8 11 14) (17 20 23) + 3rd vec: ( 1 4 7) (10 13) (16 19 22) + + This algorithm is faster than one in vect_permute_load_chain if: + 1. "shift of a concatination" is faster than general permutation. + This is usually so. + 2. The TARGET machine can't execute vector instructions in parallel. + This is because each step of the algorithm depends on previous. + The algorithm in vect_permute_load_chain is much more parallel. + + The algorithm is applicable only for LOAD CHAIN LENGTH less than VF. +*/ + +static bool +vect_shift_permute_load_chain (vec_info *vinfo, vec<tree> dr_chain, + unsigned int length, + stmt_vec_info stmt_info, + gimple_stmt_iterator *gsi, + vec<tree> *result_chain) +{ + tree vect[3], vect_shift[3], data_ref, first_vect, second_vect; + tree perm2_mask1, perm2_mask2, perm3_mask; + tree select_mask, shift1_mask, shift2_mask, shift3_mask, shift4_mask; + gimple *perm_stmt; + + tree vectype = STMT_VINFO_VECTYPE (stmt_info); + unsigned int i; + loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo); + + unsigned HOST_WIDE_INT nelt, vf; + if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nelt) + || !LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf)) + /* Not supported for variable-length vectors. */ + return false; + + vec_perm_builder sel (nelt, nelt, 1); + sel.quick_grow (nelt); + + result_chain->quick_grow (length); + memcpy (result_chain->address (), dr_chain.address (), + length * sizeof (tree)); + + if (pow2p_hwi (length) && vf > 4) + { + unsigned int j, log_length = exact_log2 (length); + for (i = 0; i < nelt / 2; ++i) + sel[i] = i * 2; + for (i = 0; i < nelt / 2; ++i) + sel[nelt / 2 + i] = i * 2 + 1; + vec_perm_indices indices (sel, 2, nelt); + if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices)) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "shuffle of 2 fields structure is not \ + supported by target\n"); + return false; + } + perm2_mask1 = vect_gen_perm_mask_checked (vectype, indices); + + for (i = 0; i < nelt / 2; ++i) + sel[i] = i * 2 + 1; + for (i = 0; i < nelt / 2; ++i) + sel[nelt / 2 + i] = i * 2; + indices.new_vector (sel, 2, nelt); + if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices)) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "shuffle of 2 fields structure is not \ + supported by target\n"); + return false; + } + perm2_mask2 = vect_gen_perm_mask_checked (vectype, indices); + + /* Generating permutation constant to shift all elements. + For vector length 8 it is {4 5 6 7 8 9 10 11}. */ + for (i = 0; i < nelt; i++) + sel[i] = nelt / 2 + i; + indices.new_vector (sel, 2, nelt); + if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices)) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "shift permutation is not supported by target\n"); + return false; + } + shift1_mask = vect_gen_perm_mask_checked (vectype, indices); + + /* Generating permutation constant to select vector from 2. + For vector length 8 it is {0 1 2 3 12 13 14 15}. */ + for (i = 0; i < nelt / 2; i++) + sel[i] = i; + for (i = nelt / 2; i < nelt; i++) + sel[i] = nelt + i; + indices.new_vector (sel, 2, nelt); + if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices)) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "select is not supported by target\n"); + return false; + } + select_mask = vect_gen_perm_mask_checked (vectype, indices); + + for (i = 0; i < log_length; i++) + { + for (j = 0; j < length; j += 2) + { + first_vect = dr_chain[j]; + second_vect = dr_chain[j + 1]; + + data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2"); + perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, + first_vect, first_vect, + perm2_mask1); + vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi); + vect[0] = data_ref; + + data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2"); + perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, + second_vect, second_vect, + perm2_mask2); + vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi); + vect[1] = data_ref; + + data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift"); + perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, + vect[0], vect[1], shift1_mask); + vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi); + (*result_chain)[j/2 + length/2] = data_ref; + + data_ref = make_temp_ssa_name (vectype, NULL, "vect_select"); + perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, + vect[0], vect[1], select_mask); + vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi); + (*result_chain)[j/2] = data_ref; + } + memcpy (dr_chain.address (), result_chain->address (), + length * sizeof (tree)); + } + return true; + } + if (length == 3 && vf > 2) + { + unsigned int k = 0, l = 0; + + /* Generating permutation constant to get all elements in rigth order. + For vector length 8 it is {0 3 6 1 4 7 2 5}. */ + for (i = 0; i < nelt; i++) + { + if (3 * k + (l % 3) >= nelt) + { + k = 0; + l += (3 - (nelt % 3)); + } + sel[i] = 3 * k + (l % 3); + k++; + } + vec_perm_indices indices (sel, 2, nelt); + if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices)) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "shuffle of 3 fields structure is not \ + supported by target\n"); + return false; + } + perm3_mask = vect_gen_perm_mask_checked (vectype, indices); + + /* Generating permutation constant to shift all elements. + For vector length 8 it is {6 7 8 9 10 11 12 13}. */ + for (i = 0; i < nelt; i++) + sel[i] = 2 * (nelt / 3) + (nelt % 3) + i; + indices.new_vector (sel, 2, nelt); + if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices)) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "shift permutation is not supported by target\n"); + return false; + } + shift1_mask = vect_gen_perm_mask_checked (vectype, indices); + + /* Generating permutation constant to shift all elements. + For vector length 8 it is {5 6 7 8 9 10 11 12}. */ + for (i = 0; i < nelt; i++) + sel[i] = 2 * (nelt / 3) + 1 + i; + indices.new_vector (sel, 2, nelt); + if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices)) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "shift permutation is not supported by target\n"); + return false; + } + shift2_mask = vect_gen_perm_mask_checked (vectype, indices); + + /* Generating permutation constant to shift all elements. + For vector length 8 it is {3 4 5 6 7 8 9 10}. */ + for (i = 0; i < nelt; i++) + sel[i] = (nelt / 3) + (nelt % 3) / 2 + i; + indices.new_vector (sel, 2, nelt); + if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices)) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "shift permutation is not supported by target\n"); + return false; + } + shift3_mask = vect_gen_perm_mask_checked (vectype, indices); + + /* Generating permutation constant to shift all elements. + For vector length 8 it is {5 6 7 8 9 10 11 12}. */ + for (i = 0; i < nelt; i++) + sel[i] = 2 * (nelt / 3) + (nelt % 3) / 2 + i; + indices.new_vector (sel, 2, nelt); + if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices)) + { + if (dump_enabled_p ()) + dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, + "shift permutation is not supported by target\n"); + return false; + } + shift4_mask = vect_gen_perm_mask_checked (vectype, indices); + + for (k = 0; k < 3; k++) + { + data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3"); + perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, + dr_chain[k], dr_chain[k], + perm3_mask); + vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi); + vect[k] = data_ref; + } + + for (k = 0; k < 3; k++) + { + data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift1"); + perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, + vect[k % 3], vect[(k + 1) % 3], + shift1_mask); + vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi); + vect_shift[k] = data_ref; + } + + for (k = 0; k < 3; k++) + { + data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift2"); + perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, + vect_shift[(4 - k) % 3], + vect_shift[(3 - k) % 3], + shift2_mask); + vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi); + vect[k] = data_ref; + } + + (*result_chain)[3 - (nelt % 3)] = vect[2]; + + data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift3"); + perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect[0], + vect[0], shift3_mask); + vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi); + (*result_chain)[nelt % 3] = data_ref; + + data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift4"); + perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect[1], + vect[1], shift4_mask); + vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi); + (*result_chain)[0] = data_ref; + return true; + } + return false; +} + +/* Function vect_transform_grouped_load. + + Given a chain of input interleaved data-refs (in DR_CHAIN), build statements + to perform their permutation and ascribe the result vectorized statements to + the scalar statements. +*/ + +void +vect_transform_grouped_load (vec_info *vinfo, stmt_vec_info stmt_info, + vec<tree> dr_chain, + int size, gimple_stmt_iterator *gsi) +{ + machine_mode mode; + vec<tree> result_chain = vNULL; + + /* DR_CHAIN contains input data-refs that are a part of the interleaving. + RESULT_CHAIN is the output of vect_permute_load_chain, it contains permuted + vectors, that are ready for vector computation. */ + result_chain.create (size); + + /* If reassociation width for vector type is 2 or greater target machine can + execute 2 or more vector instructions in parallel. Otherwise try to + get chain for loads group using vect_shift_permute_load_chain. */ + mode = TYPE_MODE (STMT_VINFO_VECTYPE (stmt_info)); + if (targetm.sched.reassociation_width (VEC_PERM_EXPR, mode) > 1 + || pow2p_hwi (size) + || !vect_shift_permute_load_chain (vinfo, dr_chain, size, stmt_info, + gsi, &result_chain)) + vect_permute_load_chain (vinfo, dr_chain, + size, stmt_info, gsi, &result_chain); + vect_record_grouped_load_vectors (vinfo, stmt_info, result_chain); + result_chain.release (); +} + +/* RESULT_CHAIN contains the output of a group of grouped loads that were + generated as part of the vectorization of STMT_INFO. Assign the statement + for each vector to the associated scalar statement. */ + +void +vect_record_grouped_load_vectors (vec_info *, stmt_vec_info stmt_info, + vec<tree> result_chain) +{ + stmt_vec_info first_stmt_info = DR_GROUP_FIRST_ELEMENT (stmt_info); + unsigned int i, gap_count; + tree tmp_data_ref; + + /* Put a permuted data-ref in the VECTORIZED_STMT field. + Since we scan the chain starting from it's first node, their order + corresponds the order of data-refs in RESULT_CHAIN. */ + stmt_vec_info next_stmt_info = first_stmt_info; + gap_count = 1; + FOR_EACH_VEC_ELT (result_chain, i, tmp_data_ref) + { + if (!next_stmt_info) + break; + + /* Skip the gaps. Loads created for the gaps will be removed by dead + code elimination pass later. No need to check for the first stmt in + the group, since it always exists. + DR_GROUP_GAP is the number of steps in elements from the previous + access (if there is no gap DR_GROUP_GAP is 1). We skip loads that + correspond to the gaps. */ + if (next_stmt_info != first_stmt_info + && gap_count < DR_GROUP_GAP (next_stmt_info)) + { + gap_count++; + continue; + } + + /* ??? The following needs cleanup after the removal of + DR_GROUP_SAME_DR_STMT. */ + if (next_stmt_info) + { + gimple *new_stmt = SSA_NAME_DEF_STMT (tmp_data_ref); + /* We assume that if VEC_STMT is not NULL, this is a case of multiple + copies, and we put the new vector statement last. */ + STMT_VINFO_VEC_STMTS (next_stmt_info).safe_push (new_stmt); + + next_stmt_info = DR_GROUP_NEXT_ELEMENT (next_stmt_info); + gap_count = 1; + } + } +} + +/* Function vect_force_dr_alignment_p. + + Returns whether the alignment of a DECL can be forced to be aligned + on ALIGNMENT bit boundary. */ + +bool +vect_can_force_dr_alignment_p (const_tree decl, poly_uint64 alignment) +{ + if (!VAR_P (decl)) + return false; + + if (decl_in_symtab_p (decl) + && !symtab_node::get (decl)->can_increase_alignment_p ()) + return false; + + if (TREE_STATIC (decl)) + return (known_le (alignment, + (unsigned HOST_WIDE_INT) MAX_OFILE_ALIGNMENT)); + else + return (known_le (alignment, (unsigned HOST_WIDE_INT) MAX_STACK_ALIGNMENT)); +} + +/* Return whether the data reference DR_INFO is supported with respect to its + alignment. + If CHECK_ALIGNED_ACCESSES is TRUE, check if the access is supported even + it is aligned, i.e., check if it is possible to vectorize it with different + alignment. */ + +enum dr_alignment_support +vect_supportable_dr_alignment (vec_info *vinfo, dr_vec_info *dr_info, + tree vectype, int misalignment) +{ + data_reference *dr = dr_info->dr; + stmt_vec_info stmt_info = dr_info->stmt; + machine_mode mode = TYPE_MODE (vectype); + loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo); + class loop *vect_loop = NULL; + bool nested_in_vect_loop = false; + + if (misalignment == 0) + return dr_aligned; + + /* For now assume all conditional loads/stores support unaligned + access without any special code. */ + if (gcall *stmt = dyn_cast <gcall *> (stmt_info->stmt)) + if (gimple_call_internal_p (stmt) + && (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD + || gimple_call_internal_fn (stmt) == IFN_MASK_STORE)) + return dr_unaligned_supported; + + if (loop_vinfo) + { + vect_loop = LOOP_VINFO_LOOP (loop_vinfo); + nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt_info); + } + + /* Possibly unaligned access. */ + + /* We can choose between using the implicit realignment scheme (generating + a misaligned_move stmt) and the explicit realignment scheme (generating + aligned loads with a REALIGN_LOAD). There are two variants to the + explicit realignment scheme: optimized, and unoptimized. + We can optimize the realignment only if the step between consecutive + vector loads is equal to the vector size. Since the vector memory + accesses advance in steps of VS (Vector Size) in the vectorized loop, it + is guaranteed that the misalignment amount remains the same throughout the + execution of the vectorized loop. Therefore, we can create the + "realignment token" (the permutation mask that is passed to REALIGN_LOAD) + at the loop preheader. + + However, in the case of outer-loop vectorization, when vectorizing a + memory access in the inner-loop nested within the LOOP that is now being + vectorized, while it is guaranteed that the misalignment of the + vectorized memory access will remain the same in different outer-loop + iterations, it is *not* guaranteed that is will remain the same throughout + the execution of the inner-loop. This is because the inner-loop advances + with the original scalar step (and not in steps of VS). If the inner-loop + step happens to be a multiple of VS, then the misalignment remains fixed + and we can use the optimized realignment scheme. For example: + + for (i=0; i<N; i++) + for (j=0; j<M; j++) + s += a[i+j]; + + When vectorizing the i-loop in the above example, the step between + consecutive vector loads is 1, and so the misalignment does not remain + fixed across the execution of the inner-loop, and the realignment cannot + be optimized (as illustrated in the following pseudo vectorized loop): + + for (i=0; i<N; i+=4) + for (j=0; j<M; j++){ + vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...} + // when j is {0,1,2,3,4,5,6,7,...} respectively. + // (assuming that we start from an aligned address). + } + + We therefore have to use the unoptimized realignment scheme: + + for (i=0; i<N; i+=4) + for (j=k; j<M; j+=4) + vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming + // that the misalignment of the initial address is + // 0). + + The loop can then be vectorized as follows: + + for (k=0; k<4; k++){ + rt = get_realignment_token (&vp[k]); + for (i=0; i<N; i+=4){ + v1 = vp[i+k]; + for (j=k; j<M; j+=4){ + v2 = vp[i+j+VS-1]; + va = REALIGN_LOAD <v1,v2,rt>; + vs += va; + v1 = v2; + } + } + } */ + + if (DR_IS_READ (dr)) + { + if (optab_handler (vec_realign_load_optab, mode) != CODE_FOR_nothing + && (!targetm.vectorize.builtin_mask_for_load + || targetm.vectorize.builtin_mask_for_load ())) + { + /* If we are doing SLP then the accesses need not have the + same alignment, instead it depends on the SLP group size. */ + if (loop_vinfo + && STMT_SLP_TYPE (stmt_info) + && !multiple_p (LOOP_VINFO_VECT_FACTOR (loop_vinfo) + * (DR_GROUP_SIZE + (DR_GROUP_FIRST_ELEMENT (stmt_info))), + TYPE_VECTOR_SUBPARTS (vectype))) + ; + else if (!loop_vinfo + || (nested_in_vect_loop + && maybe_ne (TREE_INT_CST_LOW (DR_STEP (dr)), + GET_MODE_SIZE (TYPE_MODE (vectype))))) + return dr_explicit_realign; + else + return dr_explicit_realign_optimized; + } + } + + bool is_packed = false; + tree type = TREE_TYPE (DR_REF (dr)); + if (misalignment == DR_MISALIGNMENT_UNKNOWN) + is_packed = not_size_aligned (DR_REF (dr)); + if (targetm.vectorize.support_vector_misalignment (mode, type, misalignment, + is_packed)) + return dr_unaligned_supported; + + /* Unsupported. */ + return dr_unaligned_unsupported; +} |