aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-vect-data-refs.cc
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/tree-vect-data-refs.cc')
-rw-r--r--gcc/tree-vect-data-refs.cc6814
1 files changed, 6814 insertions, 0 deletions
diff --git a/gcc/tree-vect-data-refs.cc b/gcc/tree-vect-data-refs.cc
new file mode 100644
index 0000000..dd20ed9
--- /dev/null
+++ b/gcc/tree-vect-data-refs.cc
@@ -0,0 +1,6814 @@
+/* Data References Analysis and Manipulation Utilities for Vectorization.
+ Copyright (C) 2003-2022 Free Software Foundation, Inc.
+ Contributed by Dorit Naishlos <dorit@il.ibm.com>
+ and Ira Rosen <irar@il.ibm.com>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "backend.h"
+#include "target.h"
+#include "rtl.h"
+#include "tree.h"
+#include "gimple.h"
+#include "predict.h"
+#include "memmodel.h"
+#include "tm_p.h"
+#include "ssa.h"
+#include "optabs-tree.h"
+#include "cgraph.h"
+#include "dumpfile.h"
+#include "alias.h"
+#include "fold-const.h"
+#include "stor-layout.h"
+#include "tree-eh.h"
+#include "gimplify.h"
+#include "gimple-iterator.h"
+#include "gimplify-me.h"
+#include "tree-ssa-loop-ivopts.h"
+#include "tree-ssa-loop-manip.h"
+#include "tree-ssa-loop.h"
+#include "cfgloop.h"
+#include "tree-scalar-evolution.h"
+#include "tree-vectorizer.h"
+#include "expr.h"
+#include "builtins.h"
+#include "tree-cfg.h"
+#include "tree-hash-traits.h"
+#include "vec-perm-indices.h"
+#include "internal-fn.h"
+#include "gimple-fold.h"
+
+/* Return true if load- or store-lanes optab OPTAB is implemented for
+ COUNT vectors of type VECTYPE. NAME is the name of OPTAB. */
+
+static bool
+vect_lanes_optab_supported_p (const char *name, convert_optab optab,
+ tree vectype, unsigned HOST_WIDE_INT count)
+{
+ machine_mode mode, array_mode;
+ bool limit_p;
+
+ mode = TYPE_MODE (vectype);
+ if (!targetm.array_mode (mode, count).exists (&array_mode))
+ {
+ poly_uint64 bits = count * GET_MODE_BITSIZE (mode);
+ limit_p = !targetm.array_mode_supported_p (mode, count);
+ if (!int_mode_for_size (bits, limit_p).exists (&array_mode))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "no array mode for %s[%wu]\n",
+ GET_MODE_NAME (mode), count);
+ return false;
+ }
+ }
+
+ if (convert_optab_handler (optab, array_mode, mode) == CODE_FOR_nothing)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "cannot use %s<%s><%s>\n", name,
+ GET_MODE_NAME (array_mode), GET_MODE_NAME (mode));
+ return false;
+ }
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "can use %s<%s><%s>\n", name, GET_MODE_NAME (array_mode),
+ GET_MODE_NAME (mode));
+
+ return true;
+}
+
+
+/* Return the smallest scalar part of STMT_INFO.
+ This is used to determine the vectype of the stmt. We generally set the
+ vectype according to the type of the result (lhs). For stmts whose
+ result-type is different than the type of the arguments (e.g., demotion,
+ promotion), vectype will be reset appropriately (later). Note that we have
+ to visit the smallest datatype in this function, because that determines the
+ VF. If the smallest datatype in the loop is present only as the rhs of a
+ promotion operation - we'd miss it.
+ Such a case, where a variable of this datatype does not appear in the lhs
+ anywhere in the loop, can only occur if it's an invariant: e.g.:
+ 'int_x = (int) short_inv', which we'd expect to have been optimized away by
+ invariant motion. However, we cannot rely on invariant motion to always
+ take invariants out of the loop, and so in the case of promotion we also
+ have to check the rhs.
+ LHS_SIZE_UNIT and RHS_SIZE_UNIT contain the sizes of the corresponding
+ types. */
+
+tree
+vect_get_smallest_scalar_type (stmt_vec_info stmt_info, tree scalar_type)
+{
+ HOST_WIDE_INT lhs, rhs;
+
+ /* During the analysis phase, this function is called on arbitrary
+ statements that might not have scalar results. */
+ if (!tree_fits_uhwi_p (TYPE_SIZE_UNIT (scalar_type)))
+ return scalar_type;
+
+ lhs = rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
+
+ gassign *assign = dyn_cast <gassign *> (stmt_info->stmt);
+ if (assign)
+ {
+ scalar_type = TREE_TYPE (gimple_assign_lhs (assign));
+ if (gimple_assign_cast_p (assign)
+ || gimple_assign_rhs_code (assign) == DOT_PROD_EXPR
+ || gimple_assign_rhs_code (assign) == WIDEN_SUM_EXPR
+ || gimple_assign_rhs_code (assign) == WIDEN_MULT_EXPR
+ || gimple_assign_rhs_code (assign) == WIDEN_LSHIFT_EXPR
+ || gimple_assign_rhs_code (assign) == WIDEN_PLUS_EXPR
+ || gimple_assign_rhs_code (assign) == WIDEN_MINUS_EXPR
+ || gimple_assign_rhs_code (assign) == FLOAT_EXPR)
+ {
+ tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (assign));
+
+ rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (rhs_type));
+ if (rhs < lhs)
+ scalar_type = rhs_type;
+ }
+ }
+ else if (gcall *call = dyn_cast <gcall *> (stmt_info->stmt))
+ {
+ unsigned int i = 0;
+ if (gimple_call_internal_p (call))
+ {
+ internal_fn ifn = gimple_call_internal_fn (call);
+ if (internal_load_fn_p (ifn))
+ /* For loads the LHS type does the trick. */
+ i = ~0U;
+ else if (internal_store_fn_p (ifn))
+ {
+ /* For stores use the tyep of the stored value. */
+ i = internal_fn_stored_value_index (ifn);
+ scalar_type = TREE_TYPE (gimple_call_arg (call, i));
+ i = ~0U;
+ }
+ else if (internal_fn_mask_index (ifn) == 0)
+ i = 1;
+ }
+ if (i < gimple_call_num_args (call))
+ {
+ tree rhs_type = TREE_TYPE (gimple_call_arg (call, i));
+ if (tree_fits_uhwi_p (TYPE_SIZE_UNIT (rhs_type)))
+ {
+ rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (rhs_type));
+ if (rhs < lhs)
+ scalar_type = rhs_type;
+ }
+ }
+ }
+
+ return scalar_type;
+}
+
+
+/* Insert DDR into LOOP_VINFO list of ddrs that may alias and need to be
+ tested at run-time. Return TRUE if DDR was successfully inserted.
+ Return false if versioning is not supported. */
+
+static opt_result
+vect_mark_for_runtime_alias_test (ddr_p ddr, loop_vec_info loop_vinfo)
+{
+ class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+
+ if ((unsigned) param_vect_max_version_for_alias_checks == 0)
+ return opt_result::failure_at (vect_location,
+ "will not create alias checks, as"
+ " --param vect-max-version-for-alias-checks"
+ " == 0\n");
+
+ opt_result res
+ = runtime_alias_check_p (ddr, loop,
+ optimize_loop_nest_for_speed_p (loop));
+ if (!res)
+ return res;
+
+ LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).safe_push (ddr);
+ return opt_result::success ();
+}
+
+/* Record that loop LOOP_VINFO needs to check that VALUE is nonzero. */
+
+static void
+vect_check_nonzero_value (loop_vec_info loop_vinfo, tree value)
+{
+ const vec<tree> &checks = LOOP_VINFO_CHECK_NONZERO (loop_vinfo);
+ for (unsigned int i = 0; i < checks.length(); ++i)
+ if (checks[i] == value)
+ return;
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "need run-time check that %T is nonzero\n",
+ value);
+ LOOP_VINFO_CHECK_NONZERO (loop_vinfo).safe_push (value);
+}
+
+/* Return true if we know that the order of vectorized DR_INFO_A and
+ vectorized DR_INFO_B will be the same as the order of DR_INFO_A and
+ DR_INFO_B. At least one of the accesses is a write. */
+
+static bool
+vect_preserves_scalar_order_p (dr_vec_info *dr_info_a, dr_vec_info *dr_info_b)
+{
+ stmt_vec_info stmtinfo_a = dr_info_a->stmt;
+ stmt_vec_info stmtinfo_b = dr_info_b->stmt;
+
+ /* Single statements are always kept in their original order. */
+ if (!STMT_VINFO_GROUPED_ACCESS (stmtinfo_a)
+ && !STMT_VINFO_GROUPED_ACCESS (stmtinfo_b))
+ return true;
+
+ /* STMT_A and STMT_B belong to overlapping groups. All loads are
+ emitted at the position of the first scalar load.
+ Stores in a group are emitted at the position of the last scalar store.
+ Compute that position and check whether the resulting order matches
+ the current one. */
+ stmt_vec_info il_a = DR_GROUP_FIRST_ELEMENT (stmtinfo_a);
+ if (il_a)
+ {
+ if (DR_IS_WRITE (STMT_VINFO_DATA_REF (stmtinfo_a)))
+ for (stmt_vec_info s = DR_GROUP_NEXT_ELEMENT (il_a); s;
+ s = DR_GROUP_NEXT_ELEMENT (s))
+ il_a = get_later_stmt (il_a, s);
+ else /* DR_IS_READ */
+ for (stmt_vec_info s = DR_GROUP_NEXT_ELEMENT (il_a); s;
+ s = DR_GROUP_NEXT_ELEMENT (s))
+ if (get_later_stmt (il_a, s) == il_a)
+ il_a = s;
+ }
+ else
+ il_a = stmtinfo_a;
+ stmt_vec_info il_b = DR_GROUP_FIRST_ELEMENT (stmtinfo_b);
+ if (il_b)
+ {
+ if (DR_IS_WRITE (STMT_VINFO_DATA_REF (stmtinfo_b)))
+ for (stmt_vec_info s = DR_GROUP_NEXT_ELEMENT (il_b); s;
+ s = DR_GROUP_NEXT_ELEMENT (s))
+ il_b = get_later_stmt (il_b, s);
+ else /* DR_IS_READ */
+ for (stmt_vec_info s = DR_GROUP_NEXT_ELEMENT (il_b); s;
+ s = DR_GROUP_NEXT_ELEMENT (s))
+ if (get_later_stmt (il_b, s) == il_b)
+ il_b = s;
+ }
+ else
+ il_b = stmtinfo_b;
+ bool a_after_b = (get_later_stmt (stmtinfo_a, stmtinfo_b) == stmtinfo_a);
+ return (get_later_stmt (il_a, il_b) == il_a) == a_after_b;
+}
+
+/* A subroutine of vect_analyze_data_ref_dependence. Handle
+ DDR_COULD_BE_INDEPENDENT_P ddr DDR that has a known set of dependence
+ distances. These distances are conservatively correct but they don't
+ reflect a guaranteed dependence.
+
+ Return true if this function does all the work necessary to avoid
+ an alias or false if the caller should use the dependence distances
+ to limit the vectorization factor in the usual way. LOOP_DEPTH is
+ the depth of the loop described by LOOP_VINFO and the other arguments
+ are as for vect_analyze_data_ref_dependence. */
+
+static bool
+vect_analyze_possibly_independent_ddr (data_dependence_relation *ddr,
+ loop_vec_info loop_vinfo,
+ int loop_depth, unsigned int *max_vf)
+{
+ class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ for (lambda_vector &dist_v : DDR_DIST_VECTS (ddr))
+ {
+ int dist = dist_v[loop_depth];
+ if (dist != 0 && !(dist > 0 && DDR_REVERSED_P (ddr)))
+ {
+ /* If the user asserted safelen >= DIST consecutive iterations
+ can be executed concurrently, assume independence.
+
+ ??? An alternative would be to add the alias check even
+ in this case, and vectorize the fallback loop with the
+ maximum VF set to safelen. However, if the user has
+ explicitly given a length, it's less likely that that
+ would be a win. */
+ if (loop->safelen >= 2 && abs_hwi (dist) <= loop->safelen)
+ {
+ if ((unsigned int) loop->safelen < *max_vf)
+ *max_vf = loop->safelen;
+ LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
+ continue;
+ }
+
+ /* For dependence distances of 2 or more, we have the option
+ of limiting VF or checking for an alias at runtime.
+ Prefer to check at runtime if we can, to avoid limiting
+ the VF unnecessarily when the bases are in fact independent.
+
+ Note that the alias checks will be removed if the VF ends up
+ being small enough. */
+ dr_vec_info *dr_info_a = loop_vinfo->lookup_dr (DDR_A (ddr));
+ dr_vec_info *dr_info_b = loop_vinfo->lookup_dr (DDR_B (ddr));
+ return (!STMT_VINFO_GATHER_SCATTER_P (dr_info_a->stmt)
+ && !STMT_VINFO_GATHER_SCATTER_P (dr_info_b->stmt)
+ && vect_mark_for_runtime_alias_test (ddr, loop_vinfo));
+ }
+ }
+ return true;
+}
+
+
+/* Function vect_analyze_data_ref_dependence.
+
+ FIXME: I needed to change the sense of the returned flag.
+
+ Return FALSE if there (might) exist a dependence between a memory-reference
+ DRA and a memory-reference DRB. When versioning for alias may check a
+ dependence at run-time, return TRUE. Adjust *MAX_VF according to
+ the data dependence. */
+
+static opt_result
+vect_analyze_data_ref_dependence (struct data_dependence_relation *ddr,
+ loop_vec_info loop_vinfo,
+ unsigned int *max_vf)
+{
+ unsigned int i;
+ class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ struct data_reference *dra = DDR_A (ddr);
+ struct data_reference *drb = DDR_B (ddr);
+ dr_vec_info *dr_info_a = loop_vinfo->lookup_dr (dra);
+ dr_vec_info *dr_info_b = loop_vinfo->lookup_dr (drb);
+ stmt_vec_info stmtinfo_a = dr_info_a->stmt;
+ stmt_vec_info stmtinfo_b = dr_info_b->stmt;
+ lambda_vector dist_v;
+ unsigned int loop_depth;
+
+ /* If user asserted safelen consecutive iterations can be
+ executed concurrently, assume independence. */
+ auto apply_safelen = [&]()
+ {
+ if (loop->safelen >= 2)
+ {
+ if ((unsigned int) loop->safelen < *max_vf)
+ *max_vf = loop->safelen;
+ LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
+ return true;
+ }
+ return false;
+ };
+
+ /* In loop analysis all data references should be vectorizable. */
+ if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a)
+ || !STMT_VINFO_VECTORIZABLE (stmtinfo_b))
+ gcc_unreachable ();
+
+ /* Independent data accesses. */
+ if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
+ return opt_result::success ();
+
+ if (dra == drb
+ || (DR_IS_READ (dra) && DR_IS_READ (drb)))
+ return opt_result::success ();
+
+ /* We do not have to consider dependences between accesses that belong
+ to the same group, unless the stride could be smaller than the
+ group size. */
+ if (DR_GROUP_FIRST_ELEMENT (stmtinfo_a)
+ && (DR_GROUP_FIRST_ELEMENT (stmtinfo_a)
+ == DR_GROUP_FIRST_ELEMENT (stmtinfo_b))
+ && !STMT_VINFO_STRIDED_P (stmtinfo_a))
+ return opt_result::success ();
+
+ /* Even if we have an anti-dependence then, as the vectorized loop covers at
+ least two scalar iterations, there is always also a true dependence.
+ As the vectorizer does not re-order loads and stores we can ignore
+ the anti-dependence if TBAA can disambiguate both DRs similar to the
+ case with known negative distance anti-dependences (positive
+ distance anti-dependences would violate TBAA constraints). */
+ if (((DR_IS_READ (dra) && DR_IS_WRITE (drb))
+ || (DR_IS_WRITE (dra) && DR_IS_READ (drb)))
+ && !alias_sets_conflict_p (get_alias_set (DR_REF (dra)),
+ get_alias_set (DR_REF (drb))))
+ return opt_result::success ();
+
+ if (STMT_VINFO_GATHER_SCATTER_P (stmtinfo_a)
+ || STMT_VINFO_GATHER_SCATTER_P (stmtinfo_b))
+ {
+ if (apply_safelen ())
+ return opt_result::success ();
+
+ return opt_result::failure_at
+ (stmtinfo_a->stmt,
+ "possible alias involving gather/scatter between %T and %T\n",
+ DR_REF (dra), DR_REF (drb));
+ }
+
+ /* Unknown data dependence. */
+ if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
+ {
+ if (apply_safelen ())
+ return opt_result::success ();
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, stmtinfo_a->stmt,
+ "versioning for alias required: "
+ "can't determine dependence between %T and %T\n",
+ DR_REF (dra), DR_REF (drb));
+
+ /* Add to list of ddrs that need to be tested at run-time. */
+ return vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
+ }
+
+ /* Known data dependence. */
+ if (DDR_NUM_DIST_VECTS (ddr) == 0)
+ {
+ if (apply_safelen ())
+ return opt_result::success ();
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, stmtinfo_a->stmt,
+ "versioning for alias required: "
+ "bad dist vector for %T and %T\n",
+ DR_REF (dra), DR_REF (drb));
+ /* Add to list of ddrs that need to be tested at run-time. */
+ return vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
+ }
+
+ loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
+
+ if (DDR_COULD_BE_INDEPENDENT_P (ddr)
+ && vect_analyze_possibly_independent_ddr (ddr, loop_vinfo,
+ loop_depth, max_vf))
+ return opt_result::success ();
+
+ FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
+ {
+ int dist = dist_v[loop_depth];
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "dependence distance = %d.\n", dist);
+
+ if (dist == 0)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "dependence distance == 0 between %T and %T\n",
+ DR_REF (dra), DR_REF (drb));
+
+ /* When we perform grouped accesses and perform implicit CSE
+ by detecting equal accesses and doing disambiguation with
+ runtime alias tests like for
+ .. = a[i];
+ .. = a[i+1];
+ a[i] = ..;
+ a[i+1] = ..;
+ *p = ..;
+ .. = a[i];
+ .. = a[i+1];
+ where we will end up loading { a[i], a[i+1] } once, make
+ sure that inserting group loads before the first load and
+ stores after the last store will do the right thing.
+ Similar for groups like
+ a[i] = ...;
+ ... = a[i];
+ a[i+1] = ...;
+ where loads from the group interleave with the store. */
+ if (!vect_preserves_scalar_order_p (dr_info_a, dr_info_b))
+ return opt_result::failure_at (stmtinfo_a->stmt,
+ "READ_WRITE dependence"
+ " in interleaving.\n");
+
+ if (loop->safelen < 2)
+ {
+ tree indicator = dr_zero_step_indicator (dra);
+ if (!indicator || integer_zerop (indicator))
+ return opt_result::failure_at (stmtinfo_a->stmt,
+ "access also has a zero step\n");
+ else if (TREE_CODE (indicator) != INTEGER_CST)
+ vect_check_nonzero_value (loop_vinfo, indicator);
+ }
+ continue;
+ }
+
+ if (dist > 0 && DDR_REVERSED_P (ddr))
+ {
+ /* If DDR_REVERSED_P the order of the data-refs in DDR was
+ reversed (to make distance vector positive), and the actual
+ distance is negative. */
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "dependence distance negative.\n");
+ /* When doing outer loop vectorization, we need to check if there is
+ a backward dependence at the inner loop level if the dependence
+ at the outer loop is reversed. See PR81740. */
+ if (nested_in_vect_loop_p (loop, stmtinfo_a)
+ || nested_in_vect_loop_p (loop, stmtinfo_b))
+ {
+ unsigned inner_depth = index_in_loop_nest (loop->inner->num,
+ DDR_LOOP_NEST (ddr));
+ if (dist_v[inner_depth] < 0)
+ return opt_result::failure_at (stmtinfo_a->stmt,
+ "not vectorized, dependence "
+ "between data-refs %T and %T\n",
+ DR_REF (dra), DR_REF (drb));
+ }
+ /* Record a negative dependence distance to later limit the
+ amount of stmt copying / unrolling we can perform.
+ Only need to handle read-after-write dependence. */
+ if (DR_IS_READ (drb)
+ && (STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) == 0
+ || STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) > (unsigned)dist))
+ STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) = dist;
+ continue;
+ }
+
+ unsigned int abs_dist = abs (dist);
+ if (abs_dist >= 2 && abs_dist < *max_vf)
+ {
+ /* The dependence distance requires reduction of the maximal
+ vectorization factor. */
+ *max_vf = abs_dist;
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "adjusting maximal vectorization factor to %i\n",
+ *max_vf);
+ }
+
+ if (abs_dist >= *max_vf)
+ {
+ /* Dependence distance does not create dependence, as far as
+ vectorization is concerned, in this case. */
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "dependence distance >= VF.\n");
+ continue;
+ }
+
+ return opt_result::failure_at (stmtinfo_a->stmt,
+ "not vectorized, possible dependence "
+ "between data-refs %T and %T\n",
+ DR_REF (dra), DR_REF (drb));
+ }
+
+ return opt_result::success ();
+}
+
+/* Function vect_analyze_data_ref_dependences.
+
+ Examine all the data references in the loop, and make sure there do not
+ exist any data dependences between them. Set *MAX_VF according to
+ the maximum vectorization factor the data dependences allow. */
+
+opt_result
+vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo,
+ unsigned int *max_vf)
+{
+ unsigned int i;
+ struct data_dependence_relation *ddr;
+
+ DUMP_VECT_SCOPE ("vect_analyze_data_ref_dependences");
+
+ if (!LOOP_VINFO_DDRS (loop_vinfo).exists ())
+ {
+ LOOP_VINFO_DDRS (loop_vinfo)
+ .create (LOOP_VINFO_DATAREFS (loop_vinfo).length ()
+ * LOOP_VINFO_DATAREFS (loop_vinfo).length ());
+ /* We do not need read-read dependences. */
+ bool res = compute_all_dependences (LOOP_VINFO_DATAREFS (loop_vinfo),
+ &LOOP_VINFO_DDRS (loop_vinfo),
+ LOOP_VINFO_LOOP_NEST (loop_vinfo),
+ false);
+ gcc_assert (res);
+ }
+
+ LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = true;
+
+ /* For epilogues we either have no aliases or alias versioning
+ was applied to original loop. Therefore we may just get max_vf
+ using VF of original loop. */
+ if (LOOP_VINFO_EPILOGUE_P (loop_vinfo))
+ *max_vf = LOOP_VINFO_ORIG_MAX_VECT_FACTOR (loop_vinfo);
+ else
+ FOR_EACH_VEC_ELT (LOOP_VINFO_DDRS (loop_vinfo), i, ddr)
+ {
+ opt_result res
+ = vect_analyze_data_ref_dependence (ddr, loop_vinfo, max_vf);
+ if (!res)
+ return res;
+ }
+
+ return opt_result::success ();
+}
+
+
+/* Function vect_slp_analyze_data_ref_dependence.
+
+ Return TRUE if there (might) exist a dependence between a memory-reference
+ DRA and a memory-reference DRB for VINFO. When versioning for alias
+ may check a dependence at run-time, return FALSE. Adjust *MAX_VF
+ according to the data dependence. */
+
+static bool
+vect_slp_analyze_data_ref_dependence (vec_info *vinfo,
+ struct data_dependence_relation *ddr)
+{
+ struct data_reference *dra = DDR_A (ddr);
+ struct data_reference *drb = DDR_B (ddr);
+ dr_vec_info *dr_info_a = vinfo->lookup_dr (dra);
+ dr_vec_info *dr_info_b = vinfo->lookup_dr (drb);
+
+ /* We need to check dependences of statements marked as unvectorizable
+ as well, they still can prohibit vectorization. */
+
+ /* Independent data accesses. */
+ if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
+ return false;
+
+ if (dra == drb)
+ return false;
+
+ /* Read-read is OK. */
+ if (DR_IS_READ (dra) && DR_IS_READ (drb))
+ return false;
+
+ /* If dra and drb are part of the same interleaving chain consider
+ them independent. */
+ if (STMT_VINFO_GROUPED_ACCESS (dr_info_a->stmt)
+ && (DR_GROUP_FIRST_ELEMENT (dr_info_a->stmt)
+ == DR_GROUP_FIRST_ELEMENT (dr_info_b->stmt)))
+ return false;
+
+ /* Unknown data dependence. */
+ if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "can't determine dependence between %T and %T\n",
+ DR_REF (dra), DR_REF (drb));
+ }
+ else if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "determined dependence between %T and %T\n",
+ DR_REF (dra), DR_REF (drb));
+
+ return true;
+}
+
+
+/* Analyze dependences involved in the transform of SLP NODE. STORES
+ contain the vector of scalar stores of this instance if we are
+ disambiguating the loads. */
+
+static bool
+vect_slp_analyze_node_dependences (vec_info *vinfo, slp_tree node,
+ vec<stmt_vec_info> stores,
+ stmt_vec_info last_store_info)
+{
+ /* This walks over all stmts involved in the SLP load/store done
+ in NODE verifying we can sink them up to the last stmt in the
+ group. */
+ if (DR_IS_WRITE (STMT_VINFO_DATA_REF (SLP_TREE_REPRESENTATIVE (node))))
+ {
+ stmt_vec_info last_access_info = vect_find_last_scalar_stmt_in_slp (node);
+ for (unsigned k = 0; k < SLP_TREE_SCALAR_STMTS (node).length (); ++k)
+ {
+ stmt_vec_info access_info
+ = vect_orig_stmt (SLP_TREE_SCALAR_STMTS (node)[k]);
+ if (access_info == last_access_info)
+ continue;
+ data_reference *dr_a = STMT_VINFO_DATA_REF (access_info);
+ ao_ref ref;
+ bool ref_initialized_p = false;
+ for (gimple_stmt_iterator gsi = gsi_for_stmt (access_info->stmt);
+ gsi_stmt (gsi) != last_access_info->stmt; gsi_next (&gsi))
+ {
+ gimple *stmt = gsi_stmt (gsi);
+ if (! gimple_vuse (stmt))
+ continue;
+
+ /* If we couldn't record a (single) data reference for this
+ stmt we have to resort to the alias oracle. */
+ stmt_vec_info stmt_info = vinfo->lookup_stmt (stmt);
+ data_reference *dr_b = STMT_VINFO_DATA_REF (stmt_info);
+ if (!dr_b)
+ {
+ /* We are moving a store - this means
+ we cannot use TBAA for disambiguation. */
+ if (!ref_initialized_p)
+ ao_ref_init (&ref, DR_REF (dr_a));
+ if (stmt_may_clobber_ref_p_1 (stmt, &ref, false)
+ || ref_maybe_used_by_stmt_p (stmt, &ref, false))
+ return false;
+ continue;
+ }
+
+ bool dependent = false;
+ /* If we run into a store of this same instance (we've just
+ marked those) then delay dependence checking until we run
+ into the last store because this is where it will have
+ been sunk to (and we verify if we can do that as well). */
+ if (gimple_visited_p (stmt))
+ {
+ if (stmt_info != last_store_info)
+ continue;
+
+ for (stmt_vec_info &store_info : stores)
+ {
+ data_reference *store_dr
+ = STMT_VINFO_DATA_REF (store_info);
+ ddr_p ddr = initialize_data_dependence_relation
+ (dr_a, store_dr, vNULL);
+ dependent
+ = vect_slp_analyze_data_ref_dependence (vinfo, ddr);
+ free_dependence_relation (ddr);
+ if (dependent)
+ break;
+ }
+ }
+ else
+ {
+ ddr_p ddr = initialize_data_dependence_relation (dr_a,
+ dr_b, vNULL);
+ dependent = vect_slp_analyze_data_ref_dependence (vinfo, ddr);
+ free_dependence_relation (ddr);
+ }
+ if (dependent)
+ return false;
+ }
+ }
+ }
+ else /* DR_IS_READ */
+ {
+ stmt_vec_info first_access_info
+ = vect_find_first_scalar_stmt_in_slp (node);
+ for (unsigned k = 0; k < SLP_TREE_SCALAR_STMTS (node).length (); ++k)
+ {
+ stmt_vec_info access_info
+ = vect_orig_stmt (SLP_TREE_SCALAR_STMTS (node)[k]);
+ if (access_info == first_access_info)
+ continue;
+ data_reference *dr_a = STMT_VINFO_DATA_REF (access_info);
+ ao_ref ref;
+ bool ref_initialized_p = false;
+ for (gimple_stmt_iterator gsi = gsi_for_stmt (access_info->stmt);
+ gsi_stmt (gsi) != first_access_info->stmt; gsi_prev (&gsi))
+ {
+ gimple *stmt = gsi_stmt (gsi);
+ if (! gimple_vdef (stmt))
+ continue;
+
+ /* If we couldn't record a (single) data reference for this
+ stmt we have to resort to the alias oracle. */
+ stmt_vec_info stmt_info = vinfo->lookup_stmt (stmt);
+ data_reference *dr_b = STMT_VINFO_DATA_REF (stmt_info);
+
+ /* We are hoisting a load - this means we can use
+ TBAA for disambiguation. */
+ if (!ref_initialized_p)
+ ao_ref_init (&ref, DR_REF (dr_a));
+ if (stmt_may_clobber_ref_p_1 (stmt, &ref, true))
+ {
+ if (!dr_b)
+ return false;
+ /* Resort to dependence checking below. */
+ }
+ else
+ /* No dependence. */
+ continue;
+
+ bool dependent = false;
+ /* If we run into a store of this same instance (we've just
+ marked those) then delay dependence checking until we run
+ into the last store because this is where it will have
+ been sunk to (and we verify if we can do that as well). */
+ if (gimple_visited_p (stmt))
+ {
+ if (stmt_info != last_store_info)
+ continue;
+
+ for (stmt_vec_info &store_info : stores)
+ {
+ data_reference *store_dr
+ = STMT_VINFO_DATA_REF (store_info);
+ ddr_p ddr = initialize_data_dependence_relation
+ (dr_a, store_dr, vNULL);
+ dependent
+ = vect_slp_analyze_data_ref_dependence (vinfo, ddr);
+ free_dependence_relation (ddr);
+ if (dependent)
+ break;
+ }
+ }
+ else
+ {
+ ddr_p ddr = initialize_data_dependence_relation (dr_a,
+ dr_b, vNULL);
+ dependent = vect_slp_analyze_data_ref_dependence (vinfo, ddr);
+ free_dependence_relation (ddr);
+ }
+ if (dependent)
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+
+/* Function vect_analyze_data_ref_dependences.
+
+ Examine all the data references in the basic-block, and make sure there
+ do not exist any data dependences between them. Set *MAX_VF according to
+ the maximum vectorization factor the data dependences allow. */
+
+bool
+vect_slp_analyze_instance_dependence (vec_info *vinfo, slp_instance instance)
+{
+ DUMP_VECT_SCOPE ("vect_slp_analyze_instance_dependence");
+
+ /* The stores of this instance are at the root of the SLP tree. */
+ slp_tree store = NULL;
+ if (SLP_INSTANCE_KIND (instance) == slp_inst_kind_store)
+ store = SLP_INSTANCE_TREE (instance);
+
+ /* Verify we can sink stores to the vectorized stmt insert location. */
+ stmt_vec_info last_store_info = NULL;
+ if (store)
+ {
+ if (! vect_slp_analyze_node_dependences (vinfo, store, vNULL, NULL))
+ return false;
+
+ /* Mark stores in this instance and remember the last one. */
+ last_store_info = vect_find_last_scalar_stmt_in_slp (store);
+ for (unsigned k = 0; k < SLP_TREE_SCALAR_STMTS (store).length (); ++k)
+ gimple_set_visited (SLP_TREE_SCALAR_STMTS (store)[k]->stmt, true);
+ }
+
+ bool res = true;
+
+ /* Verify we can sink loads to the vectorized stmt insert location,
+ special-casing stores of this instance. */
+ for (slp_tree &load : SLP_INSTANCE_LOADS (instance))
+ if (! vect_slp_analyze_node_dependences (vinfo, load,
+ store
+ ? SLP_TREE_SCALAR_STMTS (store)
+ : vNULL, last_store_info))
+ {
+ res = false;
+ break;
+ }
+
+ /* Unset the visited flag. */
+ if (store)
+ for (unsigned k = 0; k < SLP_TREE_SCALAR_STMTS (store).length (); ++k)
+ gimple_set_visited (SLP_TREE_SCALAR_STMTS (store)[k]->stmt, false);
+
+ return res;
+}
+
+/* Return the misalignment of DR_INFO accessed in VECTYPE with OFFSET
+ applied. */
+
+int
+dr_misalignment (dr_vec_info *dr_info, tree vectype, poly_int64 offset)
+{
+ HOST_WIDE_INT diff = 0;
+ /* Alignment is only analyzed for the first element of a DR group,
+ use that but adjust misalignment by the offset of the access. */
+ if (STMT_VINFO_GROUPED_ACCESS (dr_info->stmt))
+ {
+ dr_vec_info *first_dr
+ = STMT_VINFO_DR_INFO (DR_GROUP_FIRST_ELEMENT (dr_info->stmt));
+ /* vect_analyze_data_ref_accesses guarantees that DR_INIT are
+ INTEGER_CSTs and the first element in the group has the lowest
+ address. */
+ diff = (TREE_INT_CST_LOW (DR_INIT (dr_info->dr))
+ - TREE_INT_CST_LOW (DR_INIT (first_dr->dr)));
+ gcc_assert (diff >= 0);
+ dr_info = first_dr;
+ }
+
+ int misalign = dr_info->misalignment;
+ gcc_assert (misalign != DR_MISALIGNMENT_UNINITIALIZED);
+ if (misalign == DR_MISALIGNMENT_UNKNOWN)
+ return misalign;
+
+ /* If the access is only aligned for a vector type with smaller alignment
+ requirement the access has unknown misalignment. */
+ if (maybe_lt (dr_info->target_alignment * BITS_PER_UNIT,
+ targetm.vectorize.preferred_vector_alignment (vectype)))
+ return DR_MISALIGNMENT_UNKNOWN;
+
+ /* Apply the offset from the DR group start and the externally supplied
+ offset which can for example result from a negative stride access. */
+ poly_int64 misalignment = misalign + diff + offset;
+
+ /* vect_compute_data_ref_alignment will have ensured that target_alignment
+ is constant and otherwise set misalign to DR_MISALIGNMENT_UNKNOWN. */
+ unsigned HOST_WIDE_INT target_alignment_c
+ = dr_info->target_alignment.to_constant ();
+ if (!known_misalignment (misalignment, target_alignment_c, &misalign))
+ return DR_MISALIGNMENT_UNKNOWN;
+ return misalign;
+}
+
+/* Record the base alignment guarantee given by DRB, which occurs
+ in STMT_INFO. */
+
+static void
+vect_record_base_alignment (vec_info *vinfo, stmt_vec_info stmt_info,
+ innermost_loop_behavior *drb)
+{
+ bool existed;
+ std::pair<stmt_vec_info, innermost_loop_behavior *> &entry
+ = vinfo->base_alignments.get_or_insert (drb->base_address, &existed);
+ if (!existed || entry.second->base_alignment < drb->base_alignment)
+ {
+ entry = std::make_pair (stmt_info, drb);
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "recording new base alignment for %T\n"
+ " alignment: %d\n"
+ " misalignment: %d\n"
+ " based on: %G",
+ drb->base_address,
+ drb->base_alignment,
+ drb->base_misalignment,
+ stmt_info->stmt);
+ }
+}
+
+/* If the region we're going to vectorize is reached, all unconditional
+ data references occur at least once. We can therefore pool the base
+ alignment guarantees from each unconditional reference. Do this by
+ going through all the data references in VINFO and checking whether
+ the containing statement makes the reference unconditionally. If so,
+ record the alignment of the base address in VINFO so that it can be
+ used for all other references with the same base. */
+
+void
+vect_record_base_alignments (vec_info *vinfo)
+{
+ loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
+ class loop *loop = loop_vinfo ? LOOP_VINFO_LOOP (loop_vinfo) : NULL;
+ for (data_reference *dr : vinfo->shared->datarefs)
+ {
+ dr_vec_info *dr_info = vinfo->lookup_dr (dr);
+ stmt_vec_info stmt_info = dr_info->stmt;
+ if (!DR_IS_CONDITIONAL_IN_STMT (dr)
+ && STMT_VINFO_VECTORIZABLE (stmt_info)
+ && !STMT_VINFO_GATHER_SCATTER_P (stmt_info))
+ {
+ vect_record_base_alignment (vinfo, stmt_info, &DR_INNERMOST (dr));
+
+ /* If DR is nested in the loop that is being vectorized, we can also
+ record the alignment of the base wrt the outer loop. */
+ if (loop && nested_in_vect_loop_p (loop, stmt_info))
+ vect_record_base_alignment
+ (vinfo, stmt_info, &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info));
+ }
+ }
+}
+
+/* Function vect_compute_data_ref_alignment
+
+ Compute the misalignment of the data reference DR_INFO when vectorizing
+ with VECTYPE.
+
+ Output:
+ 1. initialized misalignment info for DR_INFO
+
+ FOR NOW: No analysis is actually performed. Misalignment is calculated
+ only for trivial cases. TODO. */
+
+static void
+vect_compute_data_ref_alignment (vec_info *vinfo, dr_vec_info *dr_info,
+ tree vectype)
+{
+ stmt_vec_info stmt_info = dr_info->stmt;
+ vec_base_alignments *base_alignments = &vinfo->base_alignments;
+ loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
+ class loop *loop = NULL;
+ tree ref = DR_REF (dr_info->dr);
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "vect_compute_data_ref_alignment:\n");
+
+ if (loop_vinfo)
+ loop = LOOP_VINFO_LOOP (loop_vinfo);
+
+ /* Initialize misalignment to unknown. */
+ SET_DR_MISALIGNMENT (dr_info, DR_MISALIGNMENT_UNKNOWN);
+
+ if (STMT_VINFO_GATHER_SCATTER_P (stmt_info))
+ return;
+
+ innermost_loop_behavior *drb = vect_dr_behavior (vinfo, dr_info);
+ bool step_preserves_misalignment_p;
+
+ poly_uint64 vector_alignment
+ = exact_div (targetm.vectorize.preferred_vector_alignment (vectype),
+ BITS_PER_UNIT);
+ SET_DR_TARGET_ALIGNMENT (dr_info, vector_alignment);
+
+ /* If the main loop has peeled for alignment we have no way of knowing
+ whether the data accesses in the epilogues are aligned. We can't at
+ compile time answer the question whether we have entered the main loop or
+ not. Fixes PR 92351. */
+ if (loop_vinfo)
+ {
+ loop_vec_info orig_loop_vinfo = LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo);
+ if (orig_loop_vinfo
+ && LOOP_VINFO_PEELING_FOR_ALIGNMENT (orig_loop_vinfo) != 0)
+ return;
+ }
+
+ unsigned HOST_WIDE_INT vect_align_c;
+ if (!vector_alignment.is_constant (&vect_align_c))
+ return;
+
+ /* No step for BB vectorization. */
+ if (!loop)
+ {
+ gcc_assert (integer_zerop (drb->step));
+ step_preserves_misalignment_p = true;
+ }
+
+ /* In case the dataref is in an inner-loop of the loop that is being
+ vectorized (LOOP), we use the base and misalignment information
+ relative to the outer-loop (LOOP). This is ok only if the misalignment
+ stays the same throughout the execution of the inner-loop, which is why
+ we have to check that the stride of the dataref in the inner-loop evenly
+ divides by the vector alignment. */
+ else if (nested_in_vect_loop_p (loop, stmt_info))
+ {
+ step_preserves_misalignment_p
+ = (DR_STEP_ALIGNMENT (dr_info->dr) % vect_align_c) == 0;
+
+ if (dump_enabled_p ())
+ {
+ if (step_preserves_misalignment_p)
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "inner step divides the vector alignment.\n");
+ else
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "inner step doesn't divide the vector"
+ " alignment.\n");
+ }
+ }
+
+ /* Similarly we can only use base and misalignment information relative to
+ an innermost loop if the misalignment stays the same throughout the
+ execution of the loop. As above, this is the case if the stride of
+ the dataref evenly divides by the alignment. */
+ else
+ {
+ poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
+ step_preserves_misalignment_p
+ = multiple_p (DR_STEP_ALIGNMENT (dr_info->dr) * vf, vect_align_c);
+
+ if (!step_preserves_misalignment_p && dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "step doesn't divide the vector alignment.\n");
+ }
+
+ unsigned int base_alignment = drb->base_alignment;
+ unsigned int base_misalignment = drb->base_misalignment;
+
+ /* Calculate the maximum of the pooled base address alignment and the
+ alignment that we can compute for DR itself. */
+ std::pair<stmt_vec_info, innermost_loop_behavior *> *entry
+ = base_alignments->get (drb->base_address);
+ if (entry
+ && base_alignment < (*entry).second->base_alignment
+ && (loop_vinfo
+ || (dominated_by_p (CDI_DOMINATORS, gimple_bb (stmt_info->stmt),
+ gimple_bb (entry->first->stmt))
+ && (gimple_bb (stmt_info->stmt) != gimple_bb (entry->first->stmt)
+ || (entry->first->dr_aux.group <= dr_info->group)))))
+ {
+ base_alignment = entry->second->base_alignment;
+ base_misalignment = entry->second->base_misalignment;
+ }
+
+ if (drb->offset_alignment < vect_align_c
+ || !step_preserves_misalignment_p
+ /* We need to know whether the step wrt the vectorized loop is
+ negative when computing the starting misalignment below. */
+ || TREE_CODE (drb->step) != INTEGER_CST)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "Unknown alignment for access: %T\n", ref);
+ return;
+ }
+
+ if (base_alignment < vect_align_c)
+ {
+ unsigned int max_alignment;
+ tree base = get_base_for_alignment (drb->base_address, &max_alignment);
+ if (max_alignment < vect_align_c
+ || !vect_can_force_dr_alignment_p (base,
+ vect_align_c * BITS_PER_UNIT))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "can't force alignment of ref: %T\n", ref);
+ return;
+ }
+
+ /* Force the alignment of the decl.
+ NOTE: This is the only change to the code we make during
+ the analysis phase, before deciding to vectorize the loop. */
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "force alignment of %T\n", ref);
+
+ dr_info->base_decl = base;
+ dr_info->base_misaligned = true;
+ base_misalignment = 0;
+ }
+ poly_int64 misalignment
+ = base_misalignment + wi::to_poly_offset (drb->init).force_shwi ();
+
+ unsigned int const_misalignment;
+ if (!known_misalignment (misalignment, vect_align_c, &const_misalignment))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "Non-constant misalignment for access: %T\n", ref);
+ return;
+ }
+
+ SET_DR_MISALIGNMENT (dr_info, const_misalignment);
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "misalign = %d bytes of ref %T\n",
+ const_misalignment, ref);
+
+ return;
+}
+
+/* Return whether DR_INFO, which is related to DR_PEEL_INFO in
+ that it only differs in DR_INIT, is aligned if DR_PEEL_INFO
+ is made aligned via peeling. */
+
+static bool
+vect_dr_aligned_if_related_peeled_dr_is (dr_vec_info *dr_info,
+ dr_vec_info *dr_peel_info)
+{
+ if (multiple_p (DR_TARGET_ALIGNMENT (dr_peel_info),
+ DR_TARGET_ALIGNMENT (dr_info)))
+ {
+ poly_offset_int diff
+ = (wi::to_poly_offset (DR_INIT (dr_peel_info->dr))
+ - wi::to_poly_offset (DR_INIT (dr_info->dr)));
+ if (known_eq (diff, 0)
+ || multiple_p (diff, DR_TARGET_ALIGNMENT (dr_info)))
+ return true;
+ }
+ return false;
+}
+
+/* Return whether DR_INFO is aligned if DR_PEEL_INFO is made
+ aligned via peeling. */
+
+static bool
+vect_dr_aligned_if_peeled_dr_is (dr_vec_info *dr_info,
+ dr_vec_info *dr_peel_info)
+{
+ if (!operand_equal_p (DR_BASE_ADDRESS (dr_info->dr),
+ DR_BASE_ADDRESS (dr_peel_info->dr), 0)
+ || !operand_equal_p (DR_OFFSET (dr_info->dr),
+ DR_OFFSET (dr_peel_info->dr), 0)
+ || !operand_equal_p (DR_STEP (dr_info->dr),
+ DR_STEP (dr_peel_info->dr), 0))
+ return false;
+
+ return vect_dr_aligned_if_related_peeled_dr_is (dr_info, dr_peel_info);
+}
+
+/* Compute the value for dr_info->misalign so that the access appears
+ aligned. This is used by peeling to compensate for dr_misalignment
+ applying the offset for negative step. */
+
+int
+vect_dr_misalign_for_aligned_access (dr_vec_info *dr_info)
+{
+ if (tree_int_cst_sgn (DR_STEP (dr_info->dr)) >= 0)
+ return 0;
+
+ tree vectype = STMT_VINFO_VECTYPE (dr_info->stmt);
+ poly_int64 misalignment
+ = ((TYPE_VECTOR_SUBPARTS (vectype) - 1)
+ * TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (vectype))));
+
+ unsigned HOST_WIDE_INT target_alignment_c;
+ int misalign;
+ if (!dr_info->target_alignment.is_constant (&target_alignment_c)
+ || !known_misalignment (misalignment, target_alignment_c, &misalign))
+ return DR_MISALIGNMENT_UNKNOWN;
+ return misalign;
+}
+
+/* Function vect_update_misalignment_for_peel.
+ Sets DR_INFO's misalignment
+ - to 0 if it has the same alignment as DR_PEEL_INFO,
+ - to the misalignment computed using NPEEL if DR_INFO's salignment is known,
+ - to -1 (unknown) otherwise.
+
+ DR_INFO - the data reference whose misalignment is to be adjusted.
+ DR_PEEL_INFO - the data reference whose misalignment is being made
+ zero in the vector loop by the peel.
+ NPEEL - the number of iterations in the peel loop if the misalignment
+ of DR_PEEL_INFO is known at compile time. */
+
+static void
+vect_update_misalignment_for_peel (dr_vec_info *dr_info,
+ dr_vec_info *dr_peel_info, int npeel)
+{
+ /* If dr_info is aligned of dr_peel_info is, then mark it so. */
+ if (vect_dr_aligned_if_peeled_dr_is (dr_info, dr_peel_info))
+ {
+ SET_DR_MISALIGNMENT (dr_info,
+ vect_dr_misalign_for_aligned_access (dr_peel_info));
+ return;
+ }
+
+ unsigned HOST_WIDE_INT alignment;
+ if (DR_TARGET_ALIGNMENT (dr_info).is_constant (&alignment)
+ && known_alignment_for_access_p (dr_info,
+ STMT_VINFO_VECTYPE (dr_info->stmt))
+ && known_alignment_for_access_p (dr_peel_info,
+ STMT_VINFO_VECTYPE (dr_peel_info->stmt)))
+ {
+ int misal = dr_info->misalignment;
+ misal += npeel * TREE_INT_CST_LOW (DR_STEP (dr_info->dr));
+ misal &= alignment - 1;
+ set_dr_misalignment (dr_info, misal);
+ return;
+ }
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location, "Setting misalignment " \
+ "to unknown (-1).\n");
+ SET_DR_MISALIGNMENT (dr_info, DR_MISALIGNMENT_UNKNOWN);
+}
+
+/* Return true if alignment is relevant for DR_INFO. */
+
+static bool
+vect_relevant_for_alignment_p (dr_vec_info *dr_info)
+{
+ stmt_vec_info stmt_info = dr_info->stmt;
+
+ if (!STMT_VINFO_RELEVANT_P (stmt_info))
+ return false;
+
+ /* For interleaving, only the alignment of the first access matters. */
+ if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
+ && DR_GROUP_FIRST_ELEMENT (stmt_info) != stmt_info)
+ return false;
+
+ /* Scatter-gather and invariant accesses continue to address individual
+ scalars, so vector-level alignment is irrelevant. */
+ if (STMT_VINFO_GATHER_SCATTER_P (stmt_info)
+ || integer_zerop (DR_STEP (dr_info->dr)))
+ return false;
+
+ /* Strided accesses perform only component accesses, alignment is
+ irrelevant for them. */
+ if (STMT_VINFO_STRIDED_P (stmt_info)
+ && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
+ return false;
+
+ return true;
+}
+
+/* Given an memory reference EXP return whether its alignment is less
+ than its size. */
+
+static bool
+not_size_aligned (tree exp)
+{
+ if (!tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (exp))))
+ return true;
+
+ return (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (exp)))
+ > get_object_alignment (exp));
+}
+
+/* Function vector_alignment_reachable_p
+
+ Return true if vector alignment for DR_INFO is reachable by peeling
+ a few loop iterations. Return false otherwise. */
+
+static bool
+vector_alignment_reachable_p (dr_vec_info *dr_info)
+{
+ stmt_vec_info stmt_info = dr_info->stmt;
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+
+ if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
+ {
+ /* For interleaved access we peel only if number of iterations in
+ the prolog loop ({VF - misalignment}), is a multiple of the
+ number of the interleaved accesses. */
+ int elem_size, mis_in_elements;
+
+ /* FORNOW: handle only known alignment. */
+ if (!known_alignment_for_access_p (dr_info, vectype))
+ return false;
+
+ poly_uint64 nelements = TYPE_VECTOR_SUBPARTS (vectype);
+ poly_uint64 vector_size = GET_MODE_SIZE (TYPE_MODE (vectype));
+ elem_size = vector_element_size (vector_size, nelements);
+ mis_in_elements = dr_misalignment (dr_info, vectype) / elem_size;
+
+ if (!multiple_p (nelements - mis_in_elements, DR_GROUP_SIZE (stmt_info)))
+ return false;
+ }
+
+ /* If misalignment is known at the compile time then allow peeling
+ only if natural alignment is reachable through peeling. */
+ if (known_alignment_for_access_p (dr_info, vectype)
+ && !aligned_access_p (dr_info, vectype))
+ {
+ HOST_WIDE_INT elmsize =
+ int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "data size = %wd. misalignment = %d.\n", elmsize,
+ dr_misalignment (dr_info, vectype));
+ }
+ if (dr_misalignment (dr_info, vectype) % elmsize)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "data size does not divide the misalignment.\n");
+ return false;
+ }
+ }
+
+ if (!known_alignment_for_access_p (dr_info, vectype))
+ {
+ tree type = TREE_TYPE (DR_REF (dr_info->dr));
+ bool is_packed = not_size_aligned (DR_REF (dr_info->dr));
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "Unknown misalignment, %snaturally aligned\n",
+ is_packed ? "not " : "");
+ return targetm.vectorize.vector_alignment_reachable (type, is_packed);
+ }
+
+ return true;
+}
+
+
+/* Calculate the cost of the memory access represented by DR_INFO. */
+
+static void
+vect_get_data_access_cost (vec_info *vinfo, dr_vec_info *dr_info,
+ dr_alignment_support alignment_support_scheme,
+ int misalignment,
+ unsigned int *inside_cost,
+ unsigned int *outside_cost,
+ stmt_vector_for_cost *body_cost_vec,
+ stmt_vector_for_cost *prologue_cost_vec)
+{
+ stmt_vec_info stmt_info = dr_info->stmt;
+ loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
+ int ncopies;
+
+ if (PURE_SLP_STMT (stmt_info))
+ ncopies = 1;
+ else
+ ncopies = vect_get_num_copies (loop_vinfo, STMT_VINFO_VECTYPE (stmt_info));
+
+ if (DR_IS_READ (dr_info->dr))
+ vect_get_load_cost (vinfo, stmt_info, ncopies, alignment_support_scheme,
+ misalignment, true, inside_cost,
+ outside_cost, prologue_cost_vec, body_cost_vec, false);
+ else
+ vect_get_store_cost (vinfo,stmt_info, ncopies, alignment_support_scheme,
+ misalignment, inside_cost, body_cost_vec);
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "vect_get_data_access_cost: inside_cost = %d, "
+ "outside_cost = %d.\n", *inside_cost, *outside_cost);
+}
+
+
+typedef struct _vect_peel_info
+{
+ dr_vec_info *dr_info;
+ int npeel;
+ unsigned int count;
+} *vect_peel_info;
+
+typedef struct _vect_peel_extended_info
+{
+ vec_info *vinfo;
+ struct _vect_peel_info peel_info;
+ unsigned int inside_cost;
+ unsigned int outside_cost;
+} *vect_peel_extended_info;
+
+
+/* Peeling hashtable helpers. */
+
+struct peel_info_hasher : free_ptr_hash <_vect_peel_info>
+{
+ static inline hashval_t hash (const _vect_peel_info *);
+ static inline bool equal (const _vect_peel_info *, const _vect_peel_info *);
+};
+
+inline hashval_t
+peel_info_hasher::hash (const _vect_peel_info *peel_info)
+{
+ return (hashval_t) peel_info->npeel;
+}
+
+inline bool
+peel_info_hasher::equal (const _vect_peel_info *a, const _vect_peel_info *b)
+{
+ return (a->npeel == b->npeel);
+}
+
+
+/* Insert DR_INFO into peeling hash table with NPEEL as key. */
+
+static void
+vect_peeling_hash_insert (hash_table<peel_info_hasher> *peeling_htab,
+ loop_vec_info loop_vinfo, dr_vec_info *dr_info,
+ int npeel, bool supportable_if_not_aligned)
+{
+ struct _vect_peel_info elem, *slot;
+ _vect_peel_info **new_slot;
+
+ elem.npeel = npeel;
+ slot = peeling_htab->find (&elem);
+ if (slot)
+ slot->count++;
+ else
+ {
+ slot = XNEW (struct _vect_peel_info);
+ slot->npeel = npeel;
+ slot->dr_info = dr_info;
+ slot->count = 1;
+ new_slot = peeling_htab->find_slot (slot, INSERT);
+ *new_slot = slot;
+ }
+
+ /* If this DR is not supported with unknown misalignment then bias
+ this slot when the cost model is disabled. */
+ if (!supportable_if_not_aligned
+ && unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
+ slot->count += VECT_MAX_COST;
+}
+
+
+/* Traverse peeling hash table to find peeling option that aligns maximum
+ number of data accesses. */
+
+int
+vect_peeling_hash_get_most_frequent (_vect_peel_info **slot,
+ _vect_peel_extended_info *max)
+{
+ vect_peel_info elem = *slot;
+
+ if (elem->count > max->peel_info.count
+ || (elem->count == max->peel_info.count
+ && max->peel_info.npeel > elem->npeel))
+ {
+ max->peel_info.npeel = elem->npeel;
+ max->peel_info.count = elem->count;
+ max->peel_info.dr_info = elem->dr_info;
+ }
+
+ return 1;
+}
+
+/* Get the costs of peeling NPEEL iterations for LOOP_VINFO, checking
+ data access costs for all data refs. If UNKNOWN_MISALIGNMENT is true,
+ npeel is computed at runtime but DR0_INFO's misalignment will be zero
+ after peeling. */
+
+static void
+vect_get_peeling_costs_all_drs (loop_vec_info loop_vinfo,
+ dr_vec_info *dr0_info,
+ unsigned int *inside_cost,
+ unsigned int *outside_cost,
+ stmt_vector_for_cost *body_cost_vec,
+ stmt_vector_for_cost *prologue_cost_vec,
+ unsigned int npeel)
+{
+ vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
+
+ bool dr0_alignment_known_p
+ = (dr0_info
+ && known_alignment_for_access_p (dr0_info,
+ STMT_VINFO_VECTYPE (dr0_info->stmt)));
+
+ for (data_reference *dr : datarefs)
+ {
+ dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
+ if (!vect_relevant_for_alignment_p (dr_info))
+ continue;
+
+ tree vectype = STMT_VINFO_VECTYPE (dr_info->stmt);
+ dr_alignment_support alignment_support_scheme;
+ int misalignment;
+ unsigned HOST_WIDE_INT alignment;
+
+ bool negative = tree_int_cst_compare (DR_STEP (dr_info->dr),
+ size_zero_node) < 0;
+ poly_int64 off = 0;
+ if (negative)
+ off = ((TYPE_VECTOR_SUBPARTS (vectype) - 1)
+ * -TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (vectype))));
+
+ if (npeel == 0)
+ misalignment = dr_misalignment (dr_info, vectype, off);
+ else if (dr_info == dr0_info
+ || vect_dr_aligned_if_peeled_dr_is (dr_info, dr0_info))
+ misalignment = 0;
+ else if (!dr0_alignment_known_p
+ || !known_alignment_for_access_p (dr_info, vectype)
+ || !DR_TARGET_ALIGNMENT (dr_info).is_constant (&alignment))
+ misalignment = DR_MISALIGNMENT_UNKNOWN;
+ else
+ {
+ misalignment = dr_misalignment (dr_info, vectype, off);
+ misalignment += npeel * TREE_INT_CST_LOW (DR_STEP (dr_info->dr));
+ misalignment &= alignment - 1;
+ }
+ alignment_support_scheme
+ = vect_supportable_dr_alignment (loop_vinfo, dr_info, vectype,
+ misalignment);
+
+ vect_get_data_access_cost (loop_vinfo, dr_info,
+ alignment_support_scheme, misalignment,
+ inside_cost, outside_cost,
+ body_cost_vec, prologue_cost_vec);
+ }
+}
+
+/* Traverse peeling hash table and calculate cost for each peeling option.
+ Find the one with the lowest cost. */
+
+int
+vect_peeling_hash_get_lowest_cost (_vect_peel_info **slot,
+ _vect_peel_extended_info *min)
+{
+ vect_peel_info elem = *slot;
+ int dummy;
+ unsigned int inside_cost = 0, outside_cost = 0;
+ loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (min->vinfo);
+ stmt_vector_for_cost prologue_cost_vec, body_cost_vec,
+ epilogue_cost_vec;
+
+ prologue_cost_vec.create (2);
+ body_cost_vec.create (2);
+ epilogue_cost_vec.create (2);
+
+ vect_get_peeling_costs_all_drs (loop_vinfo, elem->dr_info, &inside_cost,
+ &outside_cost, &body_cost_vec,
+ &prologue_cost_vec, elem->npeel);
+
+ body_cost_vec.release ();
+
+ outside_cost += vect_get_known_peeling_cost
+ (loop_vinfo, elem->npeel, &dummy,
+ &LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
+ &prologue_cost_vec, &epilogue_cost_vec);
+
+ /* Prologue and epilogue costs are added to the target model later.
+ These costs depend only on the scalar iteration cost, the
+ number of peeling iterations finally chosen, and the number of
+ misaligned statements. So discard the information found here. */
+ prologue_cost_vec.release ();
+ epilogue_cost_vec.release ();
+
+ if (inside_cost < min->inside_cost
+ || (inside_cost == min->inside_cost
+ && outside_cost < min->outside_cost))
+ {
+ min->inside_cost = inside_cost;
+ min->outside_cost = outside_cost;
+ min->peel_info.dr_info = elem->dr_info;
+ min->peel_info.npeel = elem->npeel;
+ min->peel_info.count = elem->count;
+ }
+
+ return 1;
+}
+
+
+/* Choose best peeling option by traversing peeling hash table and either
+ choosing an option with the lowest cost (if cost model is enabled) or the
+ option that aligns as many accesses as possible. */
+
+static struct _vect_peel_extended_info
+vect_peeling_hash_choose_best_peeling (hash_table<peel_info_hasher> *peeling_htab,
+ loop_vec_info loop_vinfo)
+{
+ struct _vect_peel_extended_info res;
+
+ res.peel_info.dr_info = NULL;
+ res.vinfo = loop_vinfo;
+
+ if (!unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
+ {
+ res.inside_cost = INT_MAX;
+ res.outside_cost = INT_MAX;
+ peeling_htab->traverse <_vect_peel_extended_info *,
+ vect_peeling_hash_get_lowest_cost> (&res);
+ }
+ else
+ {
+ res.peel_info.count = 0;
+ peeling_htab->traverse <_vect_peel_extended_info *,
+ vect_peeling_hash_get_most_frequent> (&res);
+ res.inside_cost = 0;
+ res.outside_cost = 0;
+ }
+
+ return res;
+}
+
+/* Return true if the new peeling NPEEL is supported. */
+
+static bool
+vect_peeling_supportable (loop_vec_info loop_vinfo, dr_vec_info *dr0_info,
+ unsigned npeel)
+{
+ vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
+ enum dr_alignment_support supportable_dr_alignment;
+
+ bool dr0_alignment_known_p
+ = known_alignment_for_access_p (dr0_info,
+ STMT_VINFO_VECTYPE (dr0_info->stmt));
+
+ /* Ensure that all data refs can be vectorized after the peel. */
+ for (data_reference *dr : datarefs)
+ {
+ if (dr == dr0_info->dr)
+ continue;
+
+ dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
+ if (!vect_relevant_for_alignment_p (dr_info)
+ || vect_dr_aligned_if_peeled_dr_is (dr_info, dr0_info))
+ continue;
+
+ tree vectype = STMT_VINFO_VECTYPE (dr_info->stmt);
+ int misalignment;
+ unsigned HOST_WIDE_INT alignment;
+ if (!dr0_alignment_known_p
+ || !known_alignment_for_access_p (dr_info, vectype)
+ || !DR_TARGET_ALIGNMENT (dr_info).is_constant (&alignment))
+ misalignment = DR_MISALIGNMENT_UNKNOWN;
+ else
+ {
+ misalignment = dr_misalignment (dr_info, vectype);
+ misalignment += npeel * TREE_INT_CST_LOW (DR_STEP (dr_info->dr));
+ misalignment &= alignment - 1;
+ }
+ supportable_dr_alignment
+ = vect_supportable_dr_alignment (loop_vinfo, dr_info, vectype,
+ misalignment);
+ if (supportable_dr_alignment == dr_unaligned_unsupported)
+ return false;
+ }
+
+ return true;
+}
+
+/* Compare two data-references DRA and DRB to group them into chunks
+ with related alignment. */
+
+static int
+dr_align_group_sort_cmp (const void *dra_, const void *drb_)
+{
+ data_reference_p dra = *(data_reference_p *)const_cast<void *>(dra_);
+ data_reference_p drb = *(data_reference_p *)const_cast<void *>(drb_);
+ int cmp;
+
+ /* Stabilize sort. */
+ if (dra == drb)
+ return 0;
+
+ /* Ordering of DRs according to base. */
+ cmp = data_ref_compare_tree (DR_BASE_ADDRESS (dra),
+ DR_BASE_ADDRESS (drb));
+ if (cmp != 0)
+ return cmp;
+
+ /* And according to DR_OFFSET. */
+ cmp = data_ref_compare_tree (DR_OFFSET (dra), DR_OFFSET (drb));
+ if (cmp != 0)
+ return cmp;
+
+ /* And after step. */
+ cmp = data_ref_compare_tree (DR_STEP (dra), DR_STEP (drb));
+ if (cmp != 0)
+ return cmp;
+
+ /* Then sort after DR_INIT. In case of identical DRs sort after stmt UID. */
+ cmp = data_ref_compare_tree (DR_INIT (dra), DR_INIT (drb));
+ if (cmp == 0)
+ return gimple_uid (DR_STMT (dra)) < gimple_uid (DR_STMT (drb)) ? -1 : 1;
+ return cmp;
+}
+
+/* Function vect_enhance_data_refs_alignment
+
+ This pass will use loop versioning and loop peeling in order to enhance
+ the alignment of data references in the loop.
+
+ FOR NOW: we assume that whatever versioning/peeling takes place, only the
+ original loop is to be vectorized. Any other loops that are created by
+ the transformations performed in this pass - are not supposed to be
+ vectorized. This restriction will be relaxed.
+
+ This pass will require a cost model to guide it whether to apply peeling
+ or versioning or a combination of the two. For example, the scheme that
+ intel uses when given a loop with several memory accesses, is as follows:
+ choose one memory access ('p') which alignment you want to force by doing
+ peeling. Then, either (1) generate a loop in which 'p' is aligned and all
+ other accesses are not necessarily aligned, or (2) use loop versioning to
+ generate one loop in which all accesses are aligned, and another loop in
+ which only 'p' is necessarily aligned.
+
+ ("Automatic Intra-Register Vectorization for the Intel Architecture",
+ Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
+ Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
+
+ Devising a cost model is the most critical aspect of this work. It will
+ guide us on which access to peel for, whether to use loop versioning, how
+ many versions to create, etc. The cost model will probably consist of
+ generic considerations as well as target specific considerations (on
+ powerpc for example, misaligned stores are more painful than misaligned
+ loads).
+
+ Here are the general steps involved in alignment enhancements:
+
+ -- original loop, before alignment analysis:
+ for (i=0; i<N; i++){
+ x = q[i]; # DR_MISALIGNMENT(q) = unknown
+ p[i] = y; # DR_MISALIGNMENT(p) = unknown
+ }
+
+ -- After vect_compute_data_refs_alignment:
+ for (i=0; i<N; i++){
+ x = q[i]; # DR_MISALIGNMENT(q) = 3
+ p[i] = y; # DR_MISALIGNMENT(p) = unknown
+ }
+
+ -- Possibility 1: we do loop versioning:
+ if (p is aligned) {
+ for (i=0; i<N; i++){ # loop 1A
+ x = q[i]; # DR_MISALIGNMENT(q) = 3
+ p[i] = y; # DR_MISALIGNMENT(p) = 0
+ }
+ }
+ else {
+ for (i=0; i<N; i++){ # loop 1B
+ x = q[i]; # DR_MISALIGNMENT(q) = 3
+ p[i] = y; # DR_MISALIGNMENT(p) = unaligned
+ }
+ }
+
+ -- Possibility 2: we do loop peeling:
+ for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
+ x = q[i];
+ p[i] = y;
+ }
+ for (i = 3; i < N; i++){ # loop 2A
+ x = q[i]; # DR_MISALIGNMENT(q) = 0
+ p[i] = y; # DR_MISALIGNMENT(p) = unknown
+ }
+
+ -- Possibility 3: combination of loop peeling and versioning:
+ for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
+ x = q[i];
+ p[i] = y;
+ }
+ if (p is aligned) {
+ for (i = 3; i<N; i++){ # loop 3A
+ x = q[i]; # DR_MISALIGNMENT(q) = 0
+ p[i] = y; # DR_MISALIGNMENT(p) = 0
+ }
+ }
+ else {
+ for (i = 3; i<N; i++){ # loop 3B
+ x = q[i]; # DR_MISALIGNMENT(q) = 0
+ p[i] = y; # DR_MISALIGNMENT(p) = unaligned
+ }
+ }
+
+ These loops are later passed to loop_transform to be vectorized. The
+ vectorizer will use the alignment information to guide the transformation
+ (whether to generate regular loads/stores, or with special handling for
+ misalignment). */
+
+opt_result
+vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
+{
+ class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ dr_vec_info *first_store = NULL;
+ dr_vec_info *dr0_info = NULL;
+ struct data_reference *dr;
+ unsigned int i;
+ bool do_peeling = false;
+ bool do_versioning = false;
+ unsigned int npeel = 0;
+ bool one_misalignment_known = false;
+ bool one_misalignment_unknown = false;
+ bool one_dr_unsupportable = false;
+ dr_vec_info *unsupportable_dr_info = NULL;
+ unsigned int dr0_same_align_drs = 0, first_store_same_align_drs = 0;
+ hash_table<peel_info_hasher> peeling_htab (1);
+
+ DUMP_VECT_SCOPE ("vect_enhance_data_refs_alignment");
+
+ /* Reset data so we can safely be called multiple times. */
+ LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).truncate (0);
+ LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = 0;
+
+ if (LOOP_VINFO_DATAREFS (loop_vinfo).is_empty ())
+ return opt_result::success ();
+
+ /* Sort the vector of datarefs so DRs that have the same or dependent
+ alignment are next to each other. */
+ auto_vec<data_reference_p> datarefs
+ = LOOP_VINFO_DATAREFS (loop_vinfo).copy ();
+ datarefs.qsort (dr_align_group_sort_cmp);
+
+ /* Compute the number of DRs that become aligned when we peel
+ a dataref so it becomes aligned. */
+ auto_vec<unsigned> n_same_align_refs (datarefs.length ());
+ n_same_align_refs.quick_grow_cleared (datarefs.length ());
+ unsigned i0;
+ for (i0 = 0; i0 < datarefs.length (); ++i0)
+ if (DR_BASE_ADDRESS (datarefs[i0]))
+ break;
+ for (i = i0 + 1; i <= datarefs.length (); ++i)
+ {
+ if (i == datarefs.length ()
+ || !operand_equal_p (DR_BASE_ADDRESS (datarefs[i0]),
+ DR_BASE_ADDRESS (datarefs[i]), 0)
+ || !operand_equal_p (DR_OFFSET (datarefs[i0]),
+ DR_OFFSET (datarefs[i]), 0)
+ || !operand_equal_p (DR_STEP (datarefs[i0]),
+ DR_STEP (datarefs[i]), 0))
+ {
+ /* The subgroup [i0, i-1] now only differs in DR_INIT and
+ possibly DR_TARGET_ALIGNMENT. Still the whole subgroup
+ will get known misalignment if we align one of the refs
+ with the largest DR_TARGET_ALIGNMENT. */
+ for (unsigned j = i0; j < i; ++j)
+ {
+ dr_vec_info *dr_infoj = loop_vinfo->lookup_dr (datarefs[j]);
+ for (unsigned k = i0; k < i; ++k)
+ {
+ if (k == j)
+ continue;
+ dr_vec_info *dr_infok = loop_vinfo->lookup_dr (datarefs[k]);
+ if (vect_dr_aligned_if_related_peeled_dr_is (dr_infok,
+ dr_infoj))
+ n_same_align_refs[j]++;
+ }
+ }
+ i0 = i;
+ }
+ }
+
+ /* While cost model enhancements are expected in the future, the high level
+ view of the code at this time is as follows:
+
+ A) If there is a misaligned access then see if peeling to align
+ this access can make all data references satisfy
+ vect_supportable_dr_alignment. If so, update data structures
+ as needed and return true.
+
+ B) If peeling wasn't possible and there is a data reference with an
+ unknown misalignment that does not satisfy vect_supportable_dr_alignment
+ then see if loop versioning checks can be used to make all data
+ references satisfy vect_supportable_dr_alignment. If so, update
+ data structures as needed and return true.
+
+ C) If neither peeling nor versioning were successful then return false if
+ any data reference does not satisfy vect_supportable_dr_alignment.
+
+ D) Return true (all data references satisfy vect_supportable_dr_alignment).
+
+ Note, Possibility 3 above (which is peeling and versioning together) is not
+ being done at this time. */
+
+ /* (1) Peeling to force alignment. */
+
+ /* (1.1) Decide whether to perform peeling, and how many iterations to peel:
+ Considerations:
+ + How many accesses will become aligned due to the peeling
+ - How many accesses will become unaligned due to the peeling,
+ and the cost of misaligned accesses.
+ - The cost of peeling (the extra runtime checks, the increase
+ in code size). */
+
+ FOR_EACH_VEC_ELT (datarefs, i, dr)
+ {
+ dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
+ if (!vect_relevant_for_alignment_p (dr_info))
+ continue;
+
+ stmt_vec_info stmt_info = dr_info->stmt;
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ do_peeling = vector_alignment_reachable_p (dr_info);
+ if (do_peeling)
+ {
+ if (known_alignment_for_access_p (dr_info, vectype))
+ {
+ unsigned int npeel_tmp = 0;
+ bool negative = tree_int_cst_compare (DR_STEP (dr),
+ size_zero_node) < 0;
+
+ /* If known_alignment_for_access_p then we have set
+ DR_MISALIGNMENT which is only done if we know it at compiler
+ time, so it is safe to assume target alignment is constant.
+ */
+ unsigned int target_align =
+ DR_TARGET_ALIGNMENT (dr_info).to_constant ();
+ unsigned HOST_WIDE_INT dr_size = vect_get_scalar_dr_size (dr_info);
+ poly_int64 off = 0;
+ if (negative)
+ off = (TYPE_VECTOR_SUBPARTS (vectype) - 1) * -dr_size;
+ unsigned int mis = dr_misalignment (dr_info, vectype, off);
+ mis = negative ? mis : -mis;
+ if (mis != 0)
+ npeel_tmp = (mis & (target_align - 1)) / dr_size;
+
+ /* For multiple types, it is possible that the bigger type access
+ will have more than one peeling option. E.g., a loop with two
+ types: one of size (vector size / 4), and the other one of
+ size (vector size / 8). Vectorization factor will 8. If both
+ accesses are misaligned by 3, the first one needs one scalar
+ iteration to be aligned, and the second one needs 5. But the
+ first one will be aligned also by peeling 5 scalar
+ iterations, and in that case both accesses will be aligned.
+ Hence, except for the immediate peeling amount, we also want
+ to try to add full vector size, while we don't exceed
+ vectorization factor.
+ We do this automatically for cost model, since we calculate
+ cost for every peeling option. */
+ poly_uint64 nscalars = npeel_tmp;
+ if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
+ {
+ poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
+ nscalars = (STMT_SLP_TYPE (stmt_info)
+ ? vf * DR_GROUP_SIZE (stmt_info) : vf);
+ }
+
+ /* Save info about DR in the hash table. Also include peeling
+ amounts according to the explanation above. Indicate
+ the alignment status when the ref is not aligned.
+ ??? Rather than using unknown alignment here we should
+ prune all entries from the peeling hashtable which cause
+ DRs to be not supported. */
+ bool supportable_if_not_aligned
+ = vect_supportable_dr_alignment
+ (loop_vinfo, dr_info, vectype, DR_MISALIGNMENT_UNKNOWN);
+ while (known_le (npeel_tmp, nscalars))
+ {
+ vect_peeling_hash_insert (&peeling_htab, loop_vinfo,
+ dr_info, npeel_tmp,
+ supportable_if_not_aligned);
+ npeel_tmp += MAX (1, target_align / dr_size);
+ }
+
+ one_misalignment_known = true;
+ }
+ else
+ {
+ /* If we don't know any misalignment values, we prefer
+ peeling for data-ref that has the maximum number of data-refs
+ with the same alignment, unless the target prefers to align
+ stores over load. */
+ unsigned same_align_drs = n_same_align_refs[i];
+ if (!dr0_info
+ || dr0_same_align_drs < same_align_drs)
+ {
+ dr0_same_align_drs = same_align_drs;
+ dr0_info = dr_info;
+ }
+ /* For data-refs with the same number of related
+ accesses prefer the one where the misalign
+ computation will be invariant in the outermost loop. */
+ else if (dr0_same_align_drs == same_align_drs)
+ {
+ class loop *ivloop0, *ivloop;
+ ivloop0 = outermost_invariant_loop_for_expr
+ (loop, DR_BASE_ADDRESS (dr0_info->dr));
+ ivloop = outermost_invariant_loop_for_expr
+ (loop, DR_BASE_ADDRESS (dr));
+ if ((ivloop && !ivloop0)
+ || (ivloop && ivloop0
+ && flow_loop_nested_p (ivloop, ivloop0)))
+ dr0_info = dr_info;
+ }
+
+ one_misalignment_unknown = true;
+
+ /* Check for data refs with unsupportable alignment that
+ can be peeled. */
+ enum dr_alignment_support supportable_dr_alignment
+ = vect_supportable_dr_alignment (loop_vinfo, dr_info, vectype,
+ DR_MISALIGNMENT_UNKNOWN);
+ if (supportable_dr_alignment == dr_unaligned_unsupported)
+ {
+ one_dr_unsupportable = true;
+ unsupportable_dr_info = dr_info;
+ }
+
+ if (!first_store && DR_IS_WRITE (dr))
+ {
+ first_store = dr_info;
+ first_store_same_align_drs = same_align_drs;
+ }
+ }
+ }
+ else
+ {
+ if (!aligned_access_p (dr_info, vectype))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "vector alignment may not be reachable\n");
+ break;
+ }
+ }
+ }
+
+ /* Check if we can possibly peel the loop. */
+ if (!vect_can_advance_ivs_p (loop_vinfo)
+ || !slpeel_can_duplicate_loop_p (loop, single_exit (loop))
+ || loop->inner)
+ do_peeling = false;
+
+ struct _vect_peel_extended_info peel_for_known_alignment;
+ struct _vect_peel_extended_info peel_for_unknown_alignment;
+ struct _vect_peel_extended_info best_peel;
+
+ peel_for_unknown_alignment.inside_cost = INT_MAX;
+ peel_for_unknown_alignment.outside_cost = INT_MAX;
+ peel_for_unknown_alignment.peel_info.count = 0;
+
+ if (do_peeling
+ && one_misalignment_unknown)
+ {
+ /* Check if the target requires to prefer stores over loads, i.e., if
+ misaligned stores are more expensive than misaligned loads (taking
+ drs with same alignment into account). */
+ unsigned int load_inside_cost = 0;
+ unsigned int load_outside_cost = 0;
+ unsigned int store_inside_cost = 0;
+ unsigned int store_outside_cost = 0;
+ unsigned int estimated_npeels = vect_vf_for_cost (loop_vinfo) / 2;
+
+ stmt_vector_for_cost dummy;
+ dummy.create (2);
+ vect_get_peeling_costs_all_drs (loop_vinfo, dr0_info,
+ &load_inside_cost,
+ &load_outside_cost,
+ &dummy, &dummy, estimated_npeels);
+ dummy.release ();
+
+ if (first_store)
+ {
+ dummy.create (2);
+ vect_get_peeling_costs_all_drs (loop_vinfo, first_store,
+ &store_inside_cost,
+ &store_outside_cost,
+ &dummy, &dummy,
+ estimated_npeels);
+ dummy.release ();
+ }
+ else
+ {
+ store_inside_cost = INT_MAX;
+ store_outside_cost = INT_MAX;
+ }
+
+ if (load_inside_cost > store_inside_cost
+ || (load_inside_cost == store_inside_cost
+ && load_outside_cost > store_outside_cost))
+ {
+ dr0_info = first_store;
+ dr0_same_align_drs = first_store_same_align_drs;
+ peel_for_unknown_alignment.inside_cost = store_inside_cost;
+ peel_for_unknown_alignment.outside_cost = store_outside_cost;
+ }
+ else
+ {
+ peel_for_unknown_alignment.inside_cost = load_inside_cost;
+ peel_for_unknown_alignment.outside_cost = load_outside_cost;
+ }
+
+ stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
+ prologue_cost_vec.create (2);
+ epilogue_cost_vec.create (2);
+
+ int dummy2;
+ peel_for_unknown_alignment.outside_cost += vect_get_known_peeling_cost
+ (loop_vinfo, estimated_npeels, &dummy2,
+ &LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
+ &prologue_cost_vec, &epilogue_cost_vec);
+
+ prologue_cost_vec.release ();
+ epilogue_cost_vec.release ();
+
+ peel_for_unknown_alignment.peel_info.count = dr0_same_align_drs + 1;
+ }
+
+ peel_for_unknown_alignment.peel_info.npeel = 0;
+ peel_for_unknown_alignment.peel_info.dr_info = dr0_info;
+
+ best_peel = peel_for_unknown_alignment;
+
+ peel_for_known_alignment.inside_cost = INT_MAX;
+ peel_for_known_alignment.outside_cost = INT_MAX;
+ peel_for_known_alignment.peel_info.count = 0;
+ peel_for_known_alignment.peel_info.dr_info = NULL;
+
+ if (do_peeling && one_misalignment_known)
+ {
+ /* Peeling is possible, but there is no data access that is not supported
+ unless aligned. So we try to choose the best possible peeling from
+ the hash table. */
+ peel_for_known_alignment = vect_peeling_hash_choose_best_peeling
+ (&peeling_htab, loop_vinfo);
+ }
+
+ /* Compare costs of peeling for known and unknown alignment. */
+ if (peel_for_known_alignment.peel_info.dr_info != NULL
+ && peel_for_unknown_alignment.inside_cost
+ >= peel_for_known_alignment.inside_cost)
+ {
+ best_peel = peel_for_known_alignment;
+
+ /* If the best peeling for known alignment has NPEEL == 0, perform no
+ peeling at all except if there is an unsupportable dr that we can
+ align. */
+ if (best_peel.peel_info.npeel == 0 && !one_dr_unsupportable)
+ do_peeling = false;
+ }
+
+ /* If there is an unsupportable data ref, prefer this over all choices so far
+ since we'd have to discard a chosen peeling except when it accidentally
+ aligned the unsupportable data ref. */
+ if (one_dr_unsupportable)
+ dr0_info = unsupportable_dr_info;
+ else if (do_peeling)
+ {
+ /* Calculate the penalty for no peeling, i.e. leaving everything as-is.
+ TODO: Use nopeel_outside_cost or get rid of it? */
+ unsigned nopeel_inside_cost = 0;
+ unsigned nopeel_outside_cost = 0;
+
+ stmt_vector_for_cost dummy;
+ dummy.create (2);
+ vect_get_peeling_costs_all_drs (loop_vinfo, NULL, &nopeel_inside_cost,
+ &nopeel_outside_cost, &dummy, &dummy, 0);
+ dummy.release ();
+
+ /* Add epilogue costs. As we do not peel for alignment here, no prologue
+ costs will be recorded. */
+ stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
+ prologue_cost_vec.create (2);
+ epilogue_cost_vec.create (2);
+
+ int dummy2;
+ nopeel_outside_cost += vect_get_known_peeling_cost
+ (loop_vinfo, 0, &dummy2,
+ &LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
+ &prologue_cost_vec, &epilogue_cost_vec);
+
+ prologue_cost_vec.release ();
+ epilogue_cost_vec.release ();
+
+ npeel = best_peel.peel_info.npeel;
+ dr0_info = best_peel.peel_info.dr_info;
+
+ /* If no peeling is not more expensive than the best peeling we
+ have so far, don't perform any peeling. */
+ if (nopeel_inside_cost <= best_peel.inside_cost)
+ do_peeling = false;
+ }
+
+ if (do_peeling)
+ {
+ stmt_vec_info stmt_info = dr0_info->stmt;
+ if (known_alignment_for_access_p (dr0_info,
+ STMT_VINFO_VECTYPE (stmt_info)))
+ {
+ bool negative = tree_int_cst_compare (DR_STEP (dr0_info->dr),
+ size_zero_node) < 0;
+ if (!npeel)
+ {
+ /* Since it's known at compile time, compute the number of
+ iterations in the peeled loop (the peeling factor) for use in
+ updating DR_MISALIGNMENT values. The peeling factor is the
+ vectorization factor minus the misalignment as an element
+ count. */
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ poly_int64 off = 0;
+ if (negative)
+ off = ((TYPE_VECTOR_SUBPARTS (vectype) - 1)
+ * -TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (vectype))));
+ unsigned int mis
+ = dr_misalignment (dr0_info, vectype, off);
+ mis = negative ? mis : -mis;
+ /* If known_alignment_for_access_p then we have set
+ DR_MISALIGNMENT which is only done if we know it at compiler
+ time, so it is safe to assume target alignment is constant.
+ */
+ unsigned int target_align =
+ DR_TARGET_ALIGNMENT (dr0_info).to_constant ();
+ npeel = ((mis & (target_align - 1))
+ / vect_get_scalar_dr_size (dr0_info));
+ }
+
+ /* For interleaved data access every iteration accesses all the
+ members of the group, therefore we divide the number of iterations
+ by the group size. */
+ if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
+ npeel /= DR_GROUP_SIZE (stmt_info);
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "Try peeling by %d\n", npeel);
+ }
+
+ /* Ensure that all datarefs can be vectorized after the peel. */
+ if (!vect_peeling_supportable (loop_vinfo, dr0_info, npeel))
+ do_peeling = false;
+
+ /* Check if all datarefs are supportable and log. */
+ if (do_peeling
+ && npeel == 0
+ && known_alignment_for_access_p (dr0_info,
+ STMT_VINFO_VECTYPE (stmt_info)))
+ return opt_result::success ();
+
+ /* Cost model #1 - honor --param vect-max-peeling-for-alignment. */
+ if (do_peeling)
+ {
+ unsigned max_allowed_peel
+ = param_vect_max_peeling_for_alignment;
+ if (loop_cost_model (loop) <= VECT_COST_MODEL_CHEAP)
+ max_allowed_peel = 0;
+ if (max_allowed_peel != (unsigned)-1)
+ {
+ unsigned max_peel = npeel;
+ if (max_peel == 0)
+ {
+ poly_uint64 target_align = DR_TARGET_ALIGNMENT (dr0_info);
+ unsigned HOST_WIDE_INT target_align_c;
+ if (target_align.is_constant (&target_align_c))
+ max_peel =
+ target_align_c / vect_get_scalar_dr_size (dr0_info) - 1;
+ else
+ {
+ do_peeling = false;
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "Disable peeling, max peels set and vector"
+ " alignment unknown\n");
+ }
+ }
+ if (max_peel > max_allowed_peel)
+ {
+ do_peeling = false;
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "Disable peeling, max peels reached: %d\n", max_peel);
+ }
+ }
+ }
+
+ /* Cost model #2 - if peeling may result in a remaining loop not
+ iterating enough to be vectorized then do not peel. Since this
+ is a cost heuristic rather than a correctness decision, use the
+ most likely runtime value for variable vectorization factors. */
+ if (do_peeling
+ && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
+ {
+ unsigned int assumed_vf = vect_vf_for_cost (loop_vinfo);
+ unsigned int max_peel = npeel == 0 ? assumed_vf - 1 : npeel;
+ if ((unsigned HOST_WIDE_INT) LOOP_VINFO_INT_NITERS (loop_vinfo)
+ < assumed_vf + max_peel)
+ do_peeling = false;
+ }
+
+ if (do_peeling)
+ {
+ /* (1.2) Update the DR_MISALIGNMENT of each data reference DR_i.
+ If the misalignment of DR_i is identical to that of dr0 then set
+ DR_MISALIGNMENT (DR_i) to zero. If the misalignment of DR_i and
+ dr0 are known at compile time then increment DR_MISALIGNMENT (DR_i)
+ by the peeling factor times the element size of DR_i (MOD the
+ vectorization factor times the size). Otherwise, the
+ misalignment of DR_i must be set to unknown. */
+ FOR_EACH_VEC_ELT (datarefs, i, dr)
+ if (dr != dr0_info->dr)
+ {
+ dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
+ if (!vect_relevant_for_alignment_p (dr_info))
+ continue;
+
+ vect_update_misalignment_for_peel (dr_info, dr0_info, npeel);
+ }
+
+ LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr0_info;
+ if (npeel)
+ LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = npeel;
+ else
+ LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = -1;
+ SET_DR_MISALIGNMENT (dr0_info,
+ vect_dr_misalign_for_aligned_access (dr0_info));
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "Alignment of access forced using peeling.\n");
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "Peeling for alignment will be applied.\n");
+ }
+
+ /* The inside-loop cost will be accounted for in vectorizable_load
+ and vectorizable_store correctly with adjusted alignments.
+ Drop the body_cst_vec on the floor here. */
+ return opt_result::success ();
+ }
+ }
+
+ /* (2) Versioning to force alignment. */
+
+ /* Try versioning if:
+ 1) optimize loop for speed and the cost-model is not cheap
+ 2) there is at least one unsupported misaligned data ref with an unknown
+ misalignment, and
+ 3) all misaligned data refs with a known misalignment are supported, and
+ 4) the number of runtime alignment checks is within reason. */
+
+ do_versioning
+ = (optimize_loop_nest_for_speed_p (loop)
+ && !loop->inner /* FORNOW */
+ && loop_cost_model (loop) > VECT_COST_MODEL_CHEAP);
+
+ if (do_versioning)
+ {
+ FOR_EACH_VEC_ELT (datarefs, i, dr)
+ {
+ dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
+ if (!vect_relevant_for_alignment_p (dr_info))
+ continue;
+
+ stmt_vec_info stmt_info = dr_info->stmt;
+ if (STMT_VINFO_STRIDED_P (stmt_info))
+ {
+ do_versioning = false;
+ break;
+ }
+
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ bool negative = tree_int_cst_compare (DR_STEP (dr),
+ size_zero_node) < 0;
+ poly_int64 off = 0;
+ if (negative)
+ off = ((TYPE_VECTOR_SUBPARTS (vectype) - 1)
+ * -TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (vectype))));
+ int misalignment;
+ if ((misalignment = dr_misalignment (dr_info, vectype, off)) == 0)
+ continue;
+
+ enum dr_alignment_support supportable_dr_alignment
+ = vect_supportable_dr_alignment (loop_vinfo, dr_info, vectype,
+ misalignment);
+ if (supportable_dr_alignment == dr_unaligned_unsupported)
+ {
+ if (misalignment != DR_MISALIGNMENT_UNKNOWN
+ || (LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ()
+ >= (unsigned) param_vect_max_version_for_alignment_checks))
+ {
+ do_versioning = false;
+ break;
+ }
+
+ /* At present we don't support versioning for alignment
+ with variable VF, since there's no guarantee that the
+ VF is a power of two. We could relax this if we added
+ a way of enforcing a power-of-two size. */
+ unsigned HOST_WIDE_INT size;
+ if (!GET_MODE_SIZE (TYPE_MODE (vectype)).is_constant (&size))
+ {
+ do_versioning = false;
+ break;
+ }
+
+ /* Forcing alignment in the first iteration is no good if
+ we don't keep it across iterations. For now, just disable
+ versioning in this case.
+ ?? We could actually unroll the loop to achieve the required
+ overall step alignment, and forcing the alignment could be
+ done by doing some iterations of the non-vectorized loop. */
+ if (!multiple_p (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
+ * DR_STEP_ALIGNMENT (dr),
+ DR_TARGET_ALIGNMENT (dr_info)))
+ {
+ do_versioning = false;
+ break;
+ }
+
+ /* The rightmost bits of an aligned address must be zeros.
+ Construct the mask needed for this test. For example,
+ GET_MODE_SIZE for the vector mode V4SI is 16 bytes so the
+ mask must be 15 = 0xf. */
+ int mask = size - 1;
+
+ /* FORNOW: use the same mask to test all potentially unaligned
+ references in the loop. */
+ if (LOOP_VINFO_PTR_MASK (loop_vinfo)
+ && LOOP_VINFO_PTR_MASK (loop_vinfo) != mask)
+ {
+ do_versioning = false;
+ break;
+ }
+
+ LOOP_VINFO_PTR_MASK (loop_vinfo) = mask;
+ LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).safe_push (stmt_info);
+ }
+ }
+
+ /* Versioning requires at least one misaligned data reference. */
+ if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
+ do_versioning = false;
+ else if (!do_versioning)
+ LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).truncate (0);
+ }
+
+ if (do_versioning)
+ {
+ const vec<stmt_vec_info> &may_misalign_stmts
+ = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
+ stmt_vec_info stmt_info;
+
+ /* It can now be assumed that the data references in the statements
+ in LOOP_VINFO_MAY_MISALIGN_STMTS will be aligned in the version
+ of the loop being vectorized. */
+ FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt_info)
+ {
+ dr_vec_info *dr_info = STMT_VINFO_DR_INFO (stmt_info);
+ SET_DR_MISALIGNMENT (dr_info,
+ vect_dr_misalign_for_aligned_access (dr_info));
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "Alignment of access forced using versioning.\n");
+ }
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "Versioning for alignment will be applied.\n");
+
+ /* Peeling and versioning can't be done together at this time. */
+ gcc_assert (! (do_peeling && do_versioning));
+
+ return opt_result::success ();
+ }
+
+ /* This point is reached if neither peeling nor versioning is being done. */
+ gcc_assert (! (do_peeling || do_versioning));
+
+ return opt_result::success ();
+}
+
+
+/* Function vect_analyze_data_refs_alignment
+
+ Analyze the alignment of the data-references in the loop.
+ Return FALSE if a data reference is found that cannot be vectorized. */
+
+opt_result
+vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo)
+{
+ DUMP_VECT_SCOPE ("vect_analyze_data_refs_alignment");
+
+ vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
+ struct data_reference *dr;
+ unsigned int i;
+
+ vect_record_base_alignments (loop_vinfo);
+ FOR_EACH_VEC_ELT (datarefs, i, dr)
+ {
+ dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
+ if (STMT_VINFO_VECTORIZABLE (dr_info->stmt))
+ {
+ if (STMT_VINFO_GROUPED_ACCESS (dr_info->stmt)
+ && DR_GROUP_FIRST_ELEMENT (dr_info->stmt) != dr_info->stmt)
+ continue;
+ vect_compute_data_ref_alignment (loop_vinfo, dr_info,
+ STMT_VINFO_VECTYPE (dr_info->stmt));
+ }
+ }
+
+ return opt_result::success ();
+}
+
+
+/* Analyze alignment of DRs of stmts in NODE. */
+
+static bool
+vect_slp_analyze_node_alignment (vec_info *vinfo, slp_tree node)
+{
+ /* Alignment is maintained in the first element of the group. */
+ stmt_vec_info first_stmt_info = SLP_TREE_SCALAR_STMTS (node)[0];
+ first_stmt_info = DR_GROUP_FIRST_ELEMENT (first_stmt_info);
+ dr_vec_info *dr_info = STMT_VINFO_DR_INFO (first_stmt_info);
+ tree vectype = SLP_TREE_VECTYPE (node);
+ poly_uint64 vector_alignment
+ = exact_div (targetm.vectorize.preferred_vector_alignment (vectype),
+ BITS_PER_UNIT);
+ if (dr_info->misalignment == DR_MISALIGNMENT_UNINITIALIZED)
+ vect_compute_data_ref_alignment (vinfo, dr_info, SLP_TREE_VECTYPE (node));
+ /* Re-analyze alignment when we're facing a vectorization with a bigger
+ alignment requirement. */
+ else if (known_lt (dr_info->target_alignment, vector_alignment))
+ {
+ poly_uint64 old_target_alignment = dr_info->target_alignment;
+ int old_misalignment = dr_info->misalignment;
+ vect_compute_data_ref_alignment (vinfo, dr_info, SLP_TREE_VECTYPE (node));
+ /* But keep knowledge about a smaller alignment. */
+ if (old_misalignment != DR_MISALIGNMENT_UNKNOWN
+ && dr_info->misalignment == DR_MISALIGNMENT_UNKNOWN)
+ {
+ dr_info->target_alignment = old_target_alignment;
+ dr_info->misalignment = old_misalignment;
+ }
+ }
+ /* When we ever face unordered target alignments the first one wins in terms
+ of analyzing and the other will become unknown in dr_misalignment. */
+ return true;
+}
+
+/* Function vect_slp_analyze_instance_alignment
+
+ Analyze the alignment of the data-references in the SLP instance.
+ Return FALSE if a data reference is found that cannot be vectorized. */
+
+bool
+vect_slp_analyze_instance_alignment (vec_info *vinfo,
+ slp_instance instance)
+{
+ DUMP_VECT_SCOPE ("vect_slp_analyze_instance_alignment");
+
+ slp_tree node;
+ unsigned i;
+ FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), i, node)
+ if (! vect_slp_analyze_node_alignment (vinfo, node))
+ return false;
+
+ if (SLP_INSTANCE_KIND (instance) == slp_inst_kind_store
+ && ! vect_slp_analyze_node_alignment
+ (vinfo, SLP_INSTANCE_TREE (instance)))
+ return false;
+
+ return true;
+}
+
+
+/* Analyze groups of accesses: check that DR_INFO belongs to a group of
+ accesses of legal size, step, etc. Detect gaps, single element
+ interleaving, and other special cases. Set grouped access info.
+ Collect groups of strided stores for further use in SLP analysis.
+ Worker for vect_analyze_group_access. */
+
+static bool
+vect_analyze_group_access_1 (vec_info *vinfo, dr_vec_info *dr_info)
+{
+ data_reference *dr = dr_info->dr;
+ tree step = DR_STEP (dr);
+ tree scalar_type = TREE_TYPE (DR_REF (dr));
+ HOST_WIDE_INT type_size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
+ stmt_vec_info stmt_info = dr_info->stmt;
+ loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
+ bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (vinfo);
+ HOST_WIDE_INT dr_step = -1;
+ HOST_WIDE_INT groupsize, last_accessed_element = 1;
+ bool slp_impossible = false;
+
+ /* For interleaving, GROUPSIZE is STEP counted in elements, i.e., the
+ size of the interleaving group (including gaps). */
+ if (tree_fits_shwi_p (step))
+ {
+ dr_step = tree_to_shwi (step);
+ /* Check that STEP is a multiple of type size. Otherwise there is
+ a non-element-sized gap at the end of the group which we
+ cannot represent in DR_GROUP_GAP or DR_GROUP_SIZE.
+ ??? As we can handle non-constant step fine here we should
+ simply remove uses of DR_GROUP_GAP between the last and first
+ element and instead rely on DR_STEP. DR_GROUP_SIZE then would
+ simply not include that gap. */
+ if ((dr_step % type_size) != 0)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "Step %T is not a multiple of the element size"
+ " for %T\n",
+ step, DR_REF (dr));
+ return false;
+ }
+ groupsize = absu_hwi (dr_step) / type_size;
+ }
+ else
+ groupsize = 0;
+
+ /* Not consecutive access is possible only if it is a part of interleaving. */
+ if (!DR_GROUP_FIRST_ELEMENT (stmt_info))
+ {
+ /* Check if it this DR is a part of interleaving, and is a single
+ element of the group that is accessed in the loop. */
+
+ /* Gaps are supported only for loads. STEP must be a multiple of the type
+ size. */
+ if (DR_IS_READ (dr)
+ && (dr_step % type_size) == 0
+ && groupsize > 0
+ /* This could be UINT_MAX but as we are generating code in a very
+ inefficient way we have to cap earlier.
+ See PR91403 for example. */
+ && groupsize <= 4096)
+ {
+ DR_GROUP_FIRST_ELEMENT (stmt_info) = stmt_info;
+ DR_GROUP_SIZE (stmt_info) = groupsize;
+ DR_GROUP_GAP (stmt_info) = groupsize - 1;
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "Detected single element interleaving %T"
+ " step %T\n",
+ DR_REF (dr), step);
+
+ return true;
+ }
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "not consecutive access %G", stmt_info->stmt);
+
+ if (bb_vinfo)
+ {
+ /* Mark the statement as unvectorizable. */
+ STMT_VINFO_VECTORIZABLE (stmt_info) = false;
+ return true;
+ }
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location, "using strided accesses\n");
+ STMT_VINFO_STRIDED_P (stmt_info) = true;
+ return true;
+ }
+
+ if (DR_GROUP_FIRST_ELEMENT (stmt_info) == stmt_info)
+ {
+ /* First stmt in the interleaving chain. Check the chain. */
+ stmt_vec_info next = DR_GROUP_NEXT_ELEMENT (stmt_info);
+ struct data_reference *data_ref = dr;
+ unsigned int count = 1;
+ tree prev_init = DR_INIT (data_ref);
+ HOST_WIDE_INT diff, gaps = 0;
+
+ /* By construction, all group members have INTEGER_CST DR_INITs. */
+ while (next)
+ {
+ /* We never have the same DR multiple times. */
+ gcc_assert (tree_int_cst_compare (DR_INIT (data_ref),
+ DR_INIT (STMT_VINFO_DATA_REF (next))) != 0);
+
+ data_ref = STMT_VINFO_DATA_REF (next);
+
+ /* All group members have the same STEP by construction. */
+ gcc_checking_assert (operand_equal_p (DR_STEP (data_ref), step, 0));
+
+ /* Check that the distance between two accesses is equal to the type
+ size. Otherwise, we have gaps. */
+ diff = (TREE_INT_CST_LOW (DR_INIT (data_ref))
+ - TREE_INT_CST_LOW (prev_init)) / type_size;
+ if (diff < 1 || diff > UINT_MAX)
+ {
+ /* For artificial testcases with array accesses with large
+ constant indices we can run into overflow issues which
+ can end up fooling the groupsize constraint below so
+ check the individual gaps (which are represented as
+ unsigned int) as well. */
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "interleaved access with gap larger "
+ "than representable\n");
+ return false;
+ }
+ if (diff != 1)
+ {
+ /* FORNOW: SLP of accesses with gaps is not supported. */
+ slp_impossible = true;
+ if (DR_IS_WRITE (data_ref))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "interleaved store with gaps\n");
+ return false;
+ }
+
+ gaps += diff - 1;
+ }
+
+ last_accessed_element += diff;
+
+ /* Store the gap from the previous member of the group. If there is no
+ gap in the access, DR_GROUP_GAP is always 1. */
+ DR_GROUP_GAP (next) = diff;
+
+ prev_init = DR_INIT (data_ref);
+ next = DR_GROUP_NEXT_ELEMENT (next);
+ /* Count the number of data-refs in the chain. */
+ count++;
+ }
+
+ if (groupsize == 0)
+ groupsize = count + gaps;
+
+ /* This could be UINT_MAX but as we are generating code in a very
+ inefficient way we have to cap earlier. See PR78699 for example. */
+ if (groupsize > 4096)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "group is too large\n");
+ return false;
+ }
+
+ /* Check that the size of the interleaving is equal to count for stores,
+ i.e., that there are no gaps. */
+ if (groupsize != count
+ && !DR_IS_READ (dr))
+ {
+ groupsize = count;
+ STMT_VINFO_STRIDED_P (stmt_info) = true;
+ }
+
+ /* If there is a gap after the last load in the group it is the
+ difference between the groupsize and the last accessed
+ element.
+ When there is no gap, this difference should be 0. */
+ DR_GROUP_GAP (stmt_info) = groupsize - last_accessed_element;
+
+ DR_GROUP_SIZE (stmt_info) = groupsize;
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "Detected interleaving ");
+ if (DR_IS_READ (dr))
+ dump_printf (MSG_NOTE, "load ");
+ else if (STMT_VINFO_STRIDED_P (stmt_info))
+ dump_printf (MSG_NOTE, "strided store ");
+ else
+ dump_printf (MSG_NOTE, "store ");
+ dump_printf (MSG_NOTE, "of size %u\n",
+ (unsigned)groupsize);
+ dump_printf_loc (MSG_NOTE, vect_location, "\t%G", stmt_info->stmt);
+ next = DR_GROUP_NEXT_ELEMENT (stmt_info);
+ while (next)
+ {
+ if (DR_GROUP_GAP (next) != 1)
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "\t<gap of %d elements>\n",
+ DR_GROUP_GAP (next) - 1);
+ dump_printf_loc (MSG_NOTE, vect_location, "\t%G", next->stmt);
+ next = DR_GROUP_NEXT_ELEMENT (next);
+ }
+ if (DR_GROUP_GAP (stmt_info) != 0)
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "\t<gap of %d elements>\n",
+ DR_GROUP_GAP (stmt_info));
+ }
+
+ /* SLP: create an SLP data structure for every interleaving group of
+ stores for further analysis in vect_analyse_slp. */
+ if (DR_IS_WRITE (dr) && !slp_impossible)
+ {
+ if (loop_vinfo)
+ LOOP_VINFO_GROUPED_STORES (loop_vinfo).safe_push (stmt_info);
+ if (bb_vinfo)
+ BB_VINFO_GROUPED_STORES (bb_vinfo).safe_push (stmt_info);
+ }
+ }
+
+ return true;
+}
+
+/* Analyze groups of accesses: check that DR_INFO belongs to a group of
+ accesses of legal size, step, etc. Detect gaps, single element
+ interleaving, and other special cases. Set grouped access info.
+ Collect groups of strided stores for further use in SLP analysis. */
+
+static bool
+vect_analyze_group_access (vec_info *vinfo, dr_vec_info *dr_info)
+{
+ if (!vect_analyze_group_access_1 (vinfo, dr_info))
+ {
+ /* Dissolve the group if present. */
+ stmt_vec_info stmt_info = DR_GROUP_FIRST_ELEMENT (dr_info->stmt);
+ while (stmt_info)
+ {
+ stmt_vec_info next = DR_GROUP_NEXT_ELEMENT (stmt_info);
+ DR_GROUP_FIRST_ELEMENT (stmt_info) = NULL;
+ DR_GROUP_NEXT_ELEMENT (stmt_info) = NULL;
+ stmt_info = next;
+ }
+ return false;
+ }
+ return true;
+}
+
+/* Analyze the access pattern of the data-reference DR_INFO.
+ In case of non-consecutive accesses call vect_analyze_group_access() to
+ analyze groups of accesses. */
+
+static bool
+vect_analyze_data_ref_access (vec_info *vinfo, dr_vec_info *dr_info)
+{
+ data_reference *dr = dr_info->dr;
+ tree step = DR_STEP (dr);
+ tree scalar_type = TREE_TYPE (DR_REF (dr));
+ stmt_vec_info stmt_info = dr_info->stmt;
+ loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
+ class loop *loop = NULL;
+
+ if (STMT_VINFO_GATHER_SCATTER_P (stmt_info))
+ return true;
+
+ if (loop_vinfo)
+ loop = LOOP_VINFO_LOOP (loop_vinfo);
+
+ if (loop_vinfo && !step)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "bad data-ref access in loop\n");
+ return false;
+ }
+
+ /* Allow loads with zero step in inner-loop vectorization. */
+ if (loop_vinfo && integer_zerop (step))
+ {
+ DR_GROUP_FIRST_ELEMENT (stmt_info) = NULL;
+ if (!nested_in_vect_loop_p (loop, stmt_info))
+ return DR_IS_READ (dr);
+ /* Allow references with zero step for outer loops marked
+ with pragma omp simd only - it guarantees absence of
+ loop-carried dependencies between inner loop iterations. */
+ if (loop->safelen < 2)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "zero step in inner loop of nest\n");
+ return false;
+ }
+ }
+
+ if (loop && nested_in_vect_loop_p (loop, stmt_info))
+ {
+ /* Interleaved accesses are not yet supported within outer-loop
+ vectorization for references in the inner-loop. */
+ DR_GROUP_FIRST_ELEMENT (stmt_info) = NULL;
+
+ /* For the rest of the analysis we use the outer-loop step. */
+ step = STMT_VINFO_DR_STEP (stmt_info);
+ if (integer_zerop (step))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "zero step in outer loop.\n");
+ return DR_IS_READ (dr);
+ }
+ }
+
+ /* Consecutive? */
+ if (TREE_CODE (step) == INTEGER_CST)
+ {
+ HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
+ if (!tree_int_cst_compare (step, TYPE_SIZE_UNIT (scalar_type))
+ || (dr_step < 0
+ && !compare_tree_int (TYPE_SIZE_UNIT (scalar_type), -dr_step)))
+ {
+ /* Mark that it is not interleaving. */
+ DR_GROUP_FIRST_ELEMENT (stmt_info) = NULL;
+ return true;
+ }
+ }
+
+ if (loop && nested_in_vect_loop_p (loop, stmt_info))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "grouped access in outer loop.\n");
+ return false;
+ }
+
+
+ /* Assume this is a DR handled by non-constant strided load case. */
+ if (TREE_CODE (step) != INTEGER_CST)
+ return (STMT_VINFO_STRIDED_P (stmt_info)
+ && (!STMT_VINFO_GROUPED_ACCESS (stmt_info)
+ || vect_analyze_group_access (vinfo, dr_info)));
+
+ /* Not consecutive access - check if it's a part of interleaving group. */
+ return vect_analyze_group_access (vinfo, dr_info);
+}
+
+/* Compare two data-references DRA and DRB to group them into chunks
+ suitable for grouping. */
+
+static int
+dr_group_sort_cmp (const void *dra_, const void *drb_)
+{
+ dr_vec_info *dra_info = *(dr_vec_info **)const_cast<void *>(dra_);
+ dr_vec_info *drb_info = *(dr_vec_info **)const_cast<void *>(drb_);
+ data_reference_p dra = dra_info->dr;
+ data_reference_p drb = drb_info->dr;
+ int cmp;
+
+ /* Stabilize sort. */
+ if (dra == drb)
+ return 0;
+
+ /* Different group IDs lead never belong to the same group. */
+ if (dra_info->group != drb_info->group)
+ return dra_info->group < drb_info->group ? -1 : 1;
+
+ /* Ordering of DRs according to base. */
+ cmp = data_ref_compare_tree (DR_BASE_ADDRESS (dra),
+ DR_BASE_ADDRESS (drb));
+ if (cmp != 0)
+ return cmp;
+
+ /* And according to DR_OFFSET. */
+ cmp = data_ref_compare_tree (DR_OFFSET (dra), DR_OFFSET (drb));
+ if (cmp != 0)
+ return cmp;
+
+ /* Put reads before writes. */
+ if (DR_IS_READ (dra) != DR_IS_READ (drb))
+ return DR_IS_READ (dra) ? -1 : 1;
+
+ /* Then sort after access size. */
+ cmp = data_ref_compare_tree (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))),
+ TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))));
+ if (cmp != 0)
+ return cmp;
+
+ /* And after step. */
+ cmp = data_ref_compare_tree (DR_STEP (dra), DR_STEP (drb));
+ if (cmp != 0)
+ return cmp;
+
+ /* Then sort after DR_INIT. In case of identical DRs sort after stmt UID. */
+ cmp = data_ref_compare_tree (DR_INIT (dra), DR_INIT (drb));
+ if (cmp == 0)
+ return gimple_uid (DR_STMT (dra)) < gimple_uid (DR_STMT (drb)) ? -1 : 1;
+ return cmp;
+}
+
+/* If OP is the result of a conversion, return the unconverted value,
+ otherwise return null. */
+
+static tree
+strip_conversion (tree op)
+{
+ if (TREE_CODE (op) != SSA_NAME)
+ return NULL_TREE;
+ gimple *stmt = SSA_NAME_DEF_STMT (op);
+ if (!is_gimple_assign (stmt)
+ || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt)))
+ return NULL_TREE;
+ return gimple_assign_rhs1 (stmt);
+}
+
+/* Return true if vectorizable_* routines can handle statements STMT1_INFO
+ and STMT2_INFO being in a single group. When ALLOW_SLP_P, masked loads can
+ be grouped in SLP mode. */
+
+static bool
+can_group_stmts_p (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info,
+ bool allow_slp_p)
+{
+ if (gimple_assign_single_p (stmt1_info->stmt))
+ return gimple_assign_single_p (stmt2_info->stmt);
+
+ gcall *call1 = dyn_cast <gcall *> (stmt1_info->stmt);
+ if (call1 && gimple_call_internal_p (call1))
+ {
+ /* Check for two masked loads or two masked stores. */
+ gcall *call2 = dyn_cast <gcall *> (stmt2_info->stmt);
+ if (!call2 || !gimple_call_internal_p (call2))
+ return false;
+ internal_fn ifn = gimple_call_internal_fn (call1);
+ if (ifn != IFN_MASK_LOAD && ifn != IFN_MASK_STORE)
+ return false;
+ if (ifn != gimple_call_internal_fn (call2))
+ return false;
+
+ /* Check that the masks are the same. Cope with casts of masks,
+ like those created by build_mask_conversion. */
+ tree mask1 = gimple_call_arg (call1, 2);
+ tree mask2 = gimple_call_arg (call2, 2);
+ if (!operand_equal_p (mask1, mask2, 0)
+ && (ifn == IFN_MASK_STORE || !allow_slp_p))
+ {
+ mask1 = strip_conversion (mask1);
+ if (!mask1)
+ return false;
+ mask2 = strip_conversion (mask2);
+ if (!mask2)
+ return false;
+ if (!operand_equal_p (mask1, mask2, 0))
+ return false;
+ }
+ return true;
+ }
+
+ return false;
+}
+
+/* Function vect_analyze_data_ref_accesses.
+
+ Analyze the access pattern of all the data references in the loop.
+
+ FORNOW: the only access pattern that is considered vectorizable is a
+ simple step 1 (consecutive) access.
+
+ FORNOW: handle only arrays and pointer accesses. */
+
+opt_result
+vect_analyze_data_ref_accesses (vec_info *vinfo,
+ vec<int> *dataref_groups)
+{
+ unsigned int i;
+ vec<data_reference_p> datarefs = vinfo->shared->datarefs;
+
+ DUMP_VECT_SCOPE ("vect_analyze_data_ref_accesses");
+
+ if (datarefs.is_empty ())
+ return opt_result::success ();
+
+ /* Sort the array of datarefs to make building the interleaving chains
+ linear. Don't modify the original vector's order, it is needed for
+ determining what dependencies are reversed. */
+ vec<dr_vec_info *> datarefs_copy;
+ datarefs_copy.create (datarefs.length ());
+ for (unsigned i = 0; i < datarefs.length (); i++)
+ {
+ dr_vec_info *dr_info = vinfo->lookup_dr (datarefs[i]);
+ /* If the caller computed DR grouping use that, otherwise group by
+ basic blocks. */
+ if (dataref_groups)
+ dr_info->group = (*dataref_groups)[i];
+ else
+ dr_info->group = gimple_bb (DR_STMT (datarefs[i]))->index;
+ datarefs_copy.quick_push (dr_info);
+ }
+ datarefs_copy.qsort (dr_group_sort_cmp);
+ hash_set<stmt_vec_info> to_fixup;
+
+ /* Build the interleaving chains. */
+ for (i = 0; i < datarefs_copy.length () - 1;)
+ {
+ dr_vec_info *dr_info_a = datarefs_copy[i];
+ data_reference_p dra = dr_info_a->dr;
+ int dra_group_id = dr_info_a->group;
+ stmt_vec_info stmtinfo_a = dr_info_a->stmt;
+ stmt_vec_info lastinfo = NULL;
+ if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a)
+ || STMT_VINFO_GATHER_SCATTER_P (stmtinfo_a))
+ {
+ ++i;
+ continue;
+ }
+ for (i = i + 1; i < datarefs_copy.length (); ++i)
+ {
+ dr_vec_info *dr_info_b = datarefs_copy[i];
+ data_reference_p drb = dr_info_b->dr;
+ int drb_group_id = dr_info_b->group;
+ stmt_vec_info stmtinfo_b = dr_info_b->stmt;
+ if (!STMT_VINFO_VECTORIZABLE (stmtinfo_b)
+ || STMT_VINFO_GATHER_SCATTER_P (stmtinfo_b))
+ break;
+
+ /* ??? Imperfect sorting (non-compatible types, non-modulo
+ accesses, same accesses) can lead to a group to be artificially
+ split here as we don't just skip over those. If it really
+ matters we can push those to a worklist and re-iterate
+ over them. The we can just skip ahead to the next DR here. */
+
+ /* DRs in a different DR group should not be put into the same
+ interleaving group. */
+ if (dra_group_id != drb_group_id)
+ break;
+
+ /* Check that the data-refs have same first location (except init)
+ and they are both either store or load (not load and store,
+ not masked loads or stores). */
+ if (DR_IS_READ (dra) != DR_IS_READ (drb)
+ || data_ref_compare_tree (DR_BASE_ADDRESS (dra),
+ DR_BASE_ADDRESS (drb)) != 0
+ || data_ref_compare_tree (DR_OFFSET (dra), DR_OFFSET (drb)) != 0
+ || !can_group_stmts_p (stmtinfo_a, stmtinfo_b, true))
+ break;
+
+ /* Check that the data-refs have the same constant size. */
+ tree sza = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra)));
+ tree szb = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb)));
+ if (!tree_fits_uhwi_p (sza)
+ || !tree_fits_uhwi_p (szb)
+ || !tree_int_cst_equal (sza, szb))
+ break;
+
+ /* Check that the data-refs have the same step. */
+ if (data_ref_compare_tree (DR_STEP (dra), DR_STEP (drb)) != 0)
+ break;
+
+ /* Check the types are compatible.
+ ??? We don't distinguish this during sorting. */
+ if (!types_compatible_p (TREE_TYPE (DR_REF (dra)),
+ TREE_TYPE (DR_REF (drb))))
+ break;
+
+ /* Check that the DR_INITs are compile-time constants. */
+ if (TREE_CODE (DR_INIT (dra)) != INTEGER_CST
+ || TREE_CODE (DR_INIT (drb)) != INTEGER_CST)
+ break;
+
+ /* Different .GOMP_SIMD_LANE calls still give the same lane,
+ just hold extra information. */
+ if (STMT_VINFO_SIMD_LANE_ACCESS_P (stmtinfo_a)
+ && STMT_VINFO_SIMD_LANE_ACCESS_P (stmtinfo_b)
+ && data_ref_compare_tree (DR_INIT (dra), DR_INIT (drb)) == 0)
+ break;
+
+ /* Sorting has ensured that DR_INIT (dra) <= DR_INIT (drb). */
+ HOST_WIDE_INT init_a = TREE_INT_CST_LOW (DR_INIT (dra));
+ HOST_WIDE_INT init_b = TREE_INT_CST_LOW (DR_INIT (drb));
+ HOST_WIDE_INT init_prev
+ = TREE_INT_CST_LOW (DR_INIT (datarefs_copy[i-1]->dr));
+ gcc_assert (init_a <= init_b
+ && init_a <= init_prev
+ && init_prev <= init_b);
+
+ /* Do not place the same access in the interleaving chain twice. */
+ if (init_b == init_prev)
+ {
+ gcc_assert (gimple_uid (DR_STMT (datarefs_copy[i-1]->dr))
+ < gimple_uid (DR_STMT (drb)));
+ /* Simply link in duplicates and fix up the chain below. */
+ }
+ else
+ {
+ /* If init_b == init_a + the size of the type * k, we have an
+ interleaving, and DRA is accessed before DRB. */
+ HOST_WIDE_INT type_size_a = tree_to_uhwi (sza);
+ if (type_size_a == 0
+ || (init_b - init_a) % type_size_a != 0)
+ break;
+
+ /* If we have a store, the accesses are adjacent. This splits
+ groups into chunks we support (we don't support vectorization
+ of stores with gaps). */
+ if (!DR_IS_READ (dra) && init_b - init_prev != type_size_a)
+ break;
+
+ /* If the step (if not zero or non-constant) is smaller than the
+ difference between data-refs' inits this splits groups into
+ suitable sizes. */
+ if (tree_fits_shwi_p (DR_STEP (dra)))
+ {
+ unsigned HOST_WIDE_INT step
+ = absu_hwi (tree_to_shwi (DR_STEP (dra)));
+ if (step != 0
+ && step <= (unsigned HOST_WIDE_INT)(init_b - init_a))
+ break;
+ }
+ }
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ DR_IS_READ (dra)
+ ? "Detected interleaving load %T and %T\n"
+ : "Detected interleaving store %T and %T\n",
+ DR_REF (dra), DR_REF (drb));
+
+ /* Link the found element into the group list. */
+ if (!DR_GROUP_FIRST_ELEMENT (stmtinfo_a))
+ {
+ DR_GROUP_FIRST_ELEMENT (stmtinfo_a) = stmtinfo_a;
+ lastinfo = stmtinfo_a;
+ }
+ DR_GROUP_FIRST_ELEMENT (stmtinfo_b) = stmtinfo_a;
+ DR_GROUP_NEXT_ELEMENT (lastinfo) = stmtinfo_b;
+ lastinfo = stmtinfo_b;
+
+ STMT_VINFO_SLP_VECT_ONLY (stmtinfo_a)
+ = !can_group_stmts_p (stmtinfo_a, stmtinfo_b, false);
+
+ if (dump_enabled_p () && STMT_VINFO_SLP_VECT_ONLY (stmtinfo_a))
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "Load suitable for SLP vectorization only.\n");
+
+ if (init_b == init_prev
+ && !to_fixup.add (DR_GROUP_FIRST_ELEMENT (stmtinfo_a))
+ && dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "Queuing group with duplicate access for fixup\n");
+ }
+ }
+
+ /* Fixup groups with duplicate entries by splitting it. */
+ while (1)
+ {
+ hash_set<stmt_vec_info>::iterator it = to_fixup.begin ();
+ if (!(it != to_fixup.end ()))
+ break;
+ stmt_vec_info grp = *it;
+ to_fixup.remove (grp);
+
+ /* Find the earliest duplicate group member. */
+ unsigned first_duplicate = -1u;
+ stmt_vec_info next, g = grp;
+ while ((next = DR_GROUP_NEXT_ELEMENT (g)))
+ {
+ if (tree_int_cst_equal (DR_INIT (STMT_VINFO_DR_INFO (next)->dr),
+ DR_INIT (STMT_VINFO_DR_INFO (g)->dr))
+ && gimple_uid (STMT_VINFO_STMT (next)) < first_duplicate)
+ first_duplicate = gimple_uid (STMT_VINFO_STMT (next));
+ g = next;
+ }
+ if (first_duplicate == -1U)
+ continue;
+
+ /* Then move all stmts after the first duplicate to a new group.
+ Note this is a heuristic but one with the property that *it
+ is fixed up completely. */
+ g = grp;
+ stmt_vec_info newgroup = NULL, ng = grp;
+ while ((next = DR_GROUP_NEXT_ELEMENT (g)))
+ {
+ if (gimple_uid (STMT_VINFO_STMT (next)) >= first_duplicate)
+ {
+ DR_GROUP_NEXT_ELEMENT (g) = DR_GROUP_NEXT_ELEMENT (next);
+ if (!newgroup)
+ newgroup = next;
+ else
+ DR_GROUP_NEXT_ELEMENT (ng) = next;
+ ng = next;
+ DR_GROUP_FIRST_ELEMENT (ng) = newgroup;
+ }
+ else
+ g = DR_GROUP_NEXT_ELEMENT (g);
+ }
+ DR_GROUP_NEXT_ELEMENT (ng) = NULL;
+
+ /* Fixup the new group which still may contain duplicates. */
+ to_fixup.add (newgroup);
+ }
+
+ dr_vec_info *dr_info;
+ FOR_EACH_VEC_ELT (datarefs_copy, i, dr_info)
+ {
+ if (STMT_VINFO_VECTORIZABLE (dr_info->stmt)
+ && !vect_analyze_data_ref_access (vinfo, dr_info))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "not vectorized: complicated access pattern.\n");
+
+ if (is_a <bb_vec_info> (vinfo))
+ {
+ /* Mark the statement as not vectorizable. */
+ STMT_VINFO_VECTORIZABLE (dr_info->stmt) = false;
+ continue;
+ }
+ else
+ {
+ datarefs_copy.release ();
+ return opt_result::failure_at (dr_info->stmt->stmt,
+ "not vectorized:"
+ " complicated access pattern.\n");
+ }
+ }
+ }
+
+ datarefs_copy.release ();
+ return opt_result::success ();
+}
+
+/* Function vect_vfa_segment_size.
+
+ Input:
+ DR_INFO: The data reference.
+ LENGTH_FACTOR: segment length to consider.
+
+ Return a value suitable for the dr_with_seg_len::seg_len field.
+ This is the "distance travelled" by the pointer from the first
+ iteration in the segment to the last. Note that it does not include
+ the size of the access; in effect it only describes the first byte. */
+
+static tree
+vect_vfa_segment_size (dr_vec_info *dr_info, tree length_factor)
+{
+ length_factor = size_binop (MINUS_EXPR,
+ fold_convert (sizetype, length_factor),
+ size_one_node);
+ return size_binop (MULT_EXPR, fold_convert (sizetype, DR_STEP (dr_info->dr)),
+ length_factor);
+}
+
+/* Return a value that, when added to abs (vect_vfa_segment_size (DR_INFO)),
+ gives the worst-case number of bytes covered by the segment. */
+
+static unsigned HOST_WIDE_INT
+vect_vfa_access_size (vec_info *vinfo, dr_vec_info *dr_info)
+{
+ stmt_vec_info stmt_vinfo = dr_info->stmt;
+ tree ref_type = TREE_TYPE (DR_REF (dr_info->dr));
+ unsigned HOST_WIDE_INT ref_size = tree_to_uhwi (TYPE_SIZE_UNIT (ref_type));
+ unsigned HOST_WIDE_INT access_size = ref_size;
+ if (DR_GROUP_FIRST_ELEMENT (stmt_vinfo))
+ {
+ gcc_assert (DR_GROUP_FIRST_ELEMENT (stmt_vinfo) == stmt_vinfo);
+ access_size *= DR_GROUP_SIZE (stmt_vinfo) - DR_GROUP_GAP (stmt_vinfo);
+ }
+ tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
+ int misalignment;
+ if (STMT_VINFO_VEC_STMTS (stmt_vinfo).exists ()
+ && ((misalignment = dr_misalignment (dr_info, vectype)), true)
+ && (vect_supportable_dr_alignment (vinfo, dr_info, vectype, misalignment)
+ == dr_explicit_realign_optimized))
+ {
+ /* We might access a full vector's worth. */
+ access_size += tree_to_uhwi (TYPE_SIZE_UNIT (vectype)) - ref_size;
+ }
+ return access_size;
+}
+
+/* Get the minimum alignment for all the scalar accesses that DR_INFO
+ describes. */
+
+static unsigned int
+vect_vfa_align (dr_vec_info *dr_info)
+{
+ return dr_alignment (dr_info->dr);
+}
+
+/* Function vect_no_alias_p.
+
+ Given data references A and B with equal base and offset, see whether
+ the alias relation can be decided at compilation time. Return 1 if
+ it can and the references alias, 0 if it can and the references do
+ not alias, and -1 if we cannot decide at compile time. SEGMENT_LENGTH_A,
+ SEGMENT_LENGTH_B, ACCESS_SIZE_A and ACCESS_SIZE_B are the equivalent
+ of dr_with_seg_len::{seg_len,access_size} for A and B. */
+
+static int
+vect_compile_time_alias (dr_vec_info *a, dr_vec_info *b,
+ tree segment_length_a, tree segment_length_b,
+ unsigned HOST_WIDE_INT access_size_a,
+ unsigned HOST_WIDE_INT access_size_b)
+{
+ poly_offset_int offset_a = wi::to_poly_offset (DR_INIT (a->dr));
+ poly_offset_int offset_b = wi::to_poly_offset (DR_INIT (b->dr));
+ poly_uint64 const_length_a;
+ poly_uint64 const_length_b;
+
+ /* For negative step, we need to adjust address range by TYPE_SIZE_UNIT
+ bytes, e.g., int a[3] -> a[1] range is [a+4, a+16) instead of
+ [a, a+12) */
+ if (tree_int_cst_compare (DR_STEP (a->dr), size_zero_node) < 0)
+ {
+ const_length_a = (-wi::to_poly_wide (segment_length_a)).force_uhwi ();
+ offset_a -= const_length_a;
+ }
+ else
+ const_length_a = tree_to_poly_uint64 (segment_length_a);
+ if (tree_int_cst_compare (DR_STEP (b->dr), size_zero_node) < 0)
+ {
+ const_length_b = (-wi::to_poly_wide (segment_length_b)).force_uhwi ();
+ offset_b -= const_length_b;
+ }
+ else
+ const_length_b = tree_to_poly_uint64 (segment_length_b);
+
+ const_length_a += access_size_a;
+ const_length_b += access_size_b;
+
+ if (ranges_known_overlap_p (offset_a, const_length_a,
+ offset_b, const_length_b))
+ return 1;
+
+ if (!ranges_maybe_overlap_p (offset_a, const_length_a,
+ offset_b, const_length_b))
+ return 0;
+
+ return -1;
+}
+
+/* Return true if the minimum nonzero dependence distance for loop LOOP_DEPTH
+ in DDR is >= VF. */
+
+static bool
+dependence_distance_ge_vf (data_dependence_relation *ddr,
+ unsigned int loop_depth, poly_uint64 vf)
+{
+ if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE
+ || DDR_NUM_DIST_VECTS (ddr) == 0)
+ return false;
+
+ /* If the dependence is exact, we should have limited the VF instead. */
+ gcc_checking_assert (DDR_COULD_BE_INDEPENDENT_P (ddr));
+
+ unsigned int i;
+ lambda_vector dist_v;
+ FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
+ {
+ HOST_WIDE_INT dist = dist_v[loop_depth];
+ if (dist != 0
+ && !(dist > 0 && DDR_REVERSED_P (ddr))
+ && maybe_lt ((unsigned HOST_WIDE_INT) abs_hwi (dist), vf))
+ return false;
+ }
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "dependence distance between %T and %T is >= VF\n",
+ DR_REF (DDR_A (ddr)), DR_REF (DDR_B (ddr)));
+
+ return true;
+}
+
+/* Dump LOWER_BOUND using flags DUMP_KIND. Dumps are known to be enabled. */
+
+static void
+dump_lower_bound (dump_flags_t dump_kind, const vec_lower_bound &lower_bound)
+{
+ dump_printf (dump_kind, "%s (%T) >= ",
+ lower_bound.unsigned_p ? "unsigned" : "abs",
+ lower_bound.expr);
+ dump_dec (dump_kind, lower_bound.min_value);
+}
+
+/* Record that the vectorized loop requires the vec_lower_bound described
+ by EXPR, UNSIGNED_P and MIN_VALUE. */
+
+static void
+vect_check_lower_bound (loop_vec_info loop_vinfo, tree expr, bool unsigned_p,
+ poly_uint64 min_value)
+{
+ vec<vec_lower_bound> &lower_bounds
+ = LOOP_VINFO_LOWER_BOUNDS (loop_vinfo);
+ for (unsigned int i = 0; i < lower_bounds.length (); ++i)
+ if (operand_equal_p (lower_bounds[i].expr, expr, 0))
+ {
+ unsigned_p &= lower_bounds[i].unsigned_p;
+ min_value = upper_bound (lower_bounds[i].min_value, min_value);
+ if (lower_bounds[i].unsigned_p != unsigned_p
+ || maybe_lt (lower_bounds[i].min_value, min_value))
+ {
+ lower_bounds[i].unsigned_p = unsigned_p;
+ lower_bounds[i].min_value = min_value;
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "updating run-time check to ");
+ dump_lower_bound (MSG_NOTE, lower_bounds[i]);
+ dump_printf (MSG_NOTE, "\n");
+ }
+ }
+ return;
+ }
+
+ vec_lower_bound lower_bound (expr, unsigned_p, min_value);
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location, "need a run-time check that ");
+ dump_lower_bound (MSG_NOTE, lower_bound);
+ dump_printf (MSG_NOTE, "\n");
+ }
+ LOOP_VINFO_LOWER_BOUNDS (loop_vinfo).safe_push (lower_bound);
+}
+
+/* Return true if it's unlikely that the step of the vectorized form of DR_INFO
+ will span fewer than GAP bytes. */
+
+static bool
+vect_small_gap_p (loop_vec_info loop_vinfo, dr_vec_info *dr_info,
+ poly_int64 gap)
+{
+ stmt_vec_info stmt_info = dr_info->stmt;
+ HOST_WIDE_INT count
+ = estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
+ if (DR_GROUP_FIRST_ELEMENT (stmt_info))
+ count *= DR_GROUP_SIZE (DR_GROUP_FIRST_ELEMENT (stmt_info));
+ return (estimated_poly_value (gap)
+ <= count * vect_get_scalar_dr_size (dr_info));
+}
+
+/* Return true if we know that there is no alias between DR_INFO_A and
+ DR_INFO_B when abs (DR_STEP (DR_INFO_A->dr)) >= N for some N.
+ When returning true, set *LOWER_BOUND_OUT to this N. */
+
+static bool
+vectorizable_with_step_bound_p (dr_vec_info *dr_info_a, dr_vec_info *dr_info_b,
+ poly_uint64 *lower_bound_out)
+{
+ /* Check that there is a constant gap of known sign between DR_A
+ and DR_B. */
+ data_reference *dr_a = dr_info_a->dr;
+ data_reference *dr_b = dr_info_b->dr;
+ poly_int64 init_a, init_b;
+ if (!operand_equal_p (DR_BASE_ADDRESS (dr_a), DR_BASE_ADDRESS (dr_b), 0)
+ || !operand_equal_p (DR_OFFSET (dr_a), DR_OFFSET (dr_b), 0)
+ || !operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0)
+ || !poly_int_tree_p (DR_INIT (dr_a), &init_a)
+ || !poly_int_tree_p (DR_INIT (dr_b), &init_b)
+ || !ordered_p (init_a, init_b))
+ return false;
+
+ /* Sort DR_A and DR_B by the address they access. */
+ if (maybe_lt (init_b, init_a))
+ {
+ std::swap (init_a, init_b);
+ std::swap (dr_info_a, dr_info_b);
+ std::swap (dr_a, dr_b);
+ }
+
+ /* If the two accesses could be dependent within a scalar iteration,
+ make sure that we'd retain their order. */
+ if (maybe_gt (init_a + vect_get_scalar_dr_size (dr_info_a), init_b)
+ && !vect_preserves_scalar_order_p (dr_info_a, dr_info_b))
+ return false;
+
+ /* There is no alias if abs (DR_STEP) is greater than or equal to
+ the bytes spanned by the combination of the two accesses. */
+ *lower_bound_out = init_b + vect_get_scalar_dr_size (dr_info_b) - init_a;
+ return true;
+}
+
+/* Function vect_prune_runtime_alias_test_list.
+
+ Prune a list of ddrs to be tested at run-time by versioning for alias.
+ Merge several alias checks into one if possible.
+ Return FALSE if resulting list of ddrs is longer then allowed by
+ PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS, otherwise return TRUE. */
+
+opt_result
+vect_prune_runtime_alias_test_list (loop_vec_info loop_vinfo)
+{
+ typedef pair_hash <tree_operand_hash, tree_operand_hash> tree_pair_hash;
+ hash_set <tree_pair_hash> compared_objects;
+
+ const vec<ddr_p> &may_alias_ddrs = LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
+ vec<dr_with_seg_len_pair_t> &comp_alias_ddrs
+ = LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
+ const vec<vec_object_pair> &check_unequal_addrs
+ = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo);
+ poly_uint64 vect_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
+ tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
+
+ ddr_p ddr;
+ unsigned int i;
+ tree length_factor;
+
+ DUMP_VECT_SCOPE ("vect_prune_runtime_alias_test_list");
+
+ /* Step values are irrelevant for aliasing if the number of vector
+ iterations is equal to the number of scalar iterations (which can
+ happen for fully-SLP loops). */
+ bool vf_one_p = known_eq (LOOP_VINFO_VECT_FACTOR (loop_vinfo), 1U);
+
+ if (!vf_one_p)
+ {
+ /* Convert the checks for nonzero steps into bound tests. */
+ tree value;
+ FOR_EACH_VEC_ELT (LOOP_VINFO_CHECK_NONZERO (loop_vinfo), i, value)
+ vect_check_lower_bound (loop_vinfo, value, true, 1);
+ }
+
+ if (may_alias_ddrs.is_empty ())
+ return opt_result::success ();
+
+ comp_alias_ddrs.create (may_alias_ddrs.length ());
+
+ unsigned int loop_depth
+ = index_in_loop_nest (LOOP_VINFO_LOOP (loop_vinfo)->num,
+ LOOP_VINFO_LOOP_NEST (loop_vinfo));
+
+ /* First, we collect all data ref pairs for aliasing checks. */
+ FOR_EACH_VEC_ELT (may_alias_ddrs, i, ddr)
+ {
+ poly_uint64 lower_bound;
+ tree segment_length_a, segment_length_b;
+ unsigned HOST_WIDE_INT access_size_a, access_size_b;
+ unsigned int align_a, align_b;
+
+ /* Ignore the alias if the VF we chose ended up being no greater
+ than the dependence distance. */
+ if (dependence_distance_ge_vf (ddr, loop_depth, vect_factor))
+ continue;
+
+ if (DDR_OBJECT_A (ddr))
+ {
+ vec_object_pair new_pair (DDR_OBJECT_A (ddr), DDR_OBJECT_B (ddr));
+ if (!compared_objects.add (new_pair))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "checking that %T and %T"
+ " have different addresses\n",
+ new_pair.first, new_pair.second);
+ LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo).safe_push (new_pair);
+ }
+ continue;
+ }
+
+ dr_vec_info *dr_info_a = loop_vinfo->lookup_dr (DDR_A (ddr));
+ stmt_vec_info stmt_info_a = dr_info_a->stmt;
+
+ dr_vec_info *dr_info_b = loop_vinfo->lookup_dr (DDR_B (ddr));
+ stmt_vec_info stmt_info_b = dr_info_b->stmt;
+
+ bool preserves_scalar_order_p
+ = vect_preserves_scalar_order_p (dr_info_a, dr_info_b);
+ bool ignore_step_p
+ = (vf_one_p
+ && (preserves_scalar_order_p
+ || operand_equal_p (DR_STEP (dr_info_a->dr),
+ DR_STEP (dr_info_b->dr))));
+
+ /* Skip the pair if inter-iteration dependencies are irrelevant
+ and intra-iteration dependencies are guaranteed to be honored. */
+ if (ignore_step_p
+ && (preserves_scalar_order_p
+ || vectorizable_with_step_bound_p (dr_info_a, dr_info_b,
+ &lower_bound)))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "no need for alias check between "
+ "%T and %T when VF is 1\n",
+ DR_REF (dr_info_a->dr), DR_REF (dr_info_b->dr));
+ continue;
+ }
+
+ /* See whether we can handle the alias using a bounds check on
+ the step, and whether that's likely to be the best approach.
+ (It might not be, for example, if the minimum step is much larger
+ than the number of bytes handled by one vector iteration.) */
+ if (!ignore_step_p
+ && TREE_CODE (DR_STEP (dr_info_a->dr)) != INTEGER_CST
+ && vectorizable_with_step_bound_p (dr_info_a, dr_info_b,
+ &lower_bound)
+ && (vect_small_gap_p (loop_vinfo, dr_info_a, lower_bound)
+ || vect_small_gap_p (loop_vinfo, dr_info_b, lower_bound)))
+ {
+ bool unsigned_p = dr_known_forward_stride_p (dr_info_a->dr);
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location, "no alias between "
+ "%T and %T when the step %T is outside ",
+ DR_REF (dr_info_a->dr),
+ DR_REF (dr_info_b->dr),
+ DR_STEP (dr_info_a->dr));
+ if (unsigned_p)
+ dump_printf (MSG_NOTE, "[0");
+ else
+ {
+ dump_printf (MSG_NOTE, "(");
+ dump_dec (MSG_NOTE, poly_int64 (-lower_bound));
+ }
+ dump_printf (MSG_NOTE, ", ");
+ dump_dec (MSG_NOTE, lower_bound);
+ dump_printf (MSG_NOTE, ")\n");
+ }
+ vect_check_lower_bound (loop_vinfo, DR_STEP (dr_info_a->dr),
+ unsigned_p, lower_bound);
+ continue;
+ }
+
+ stmt_vec_info dr_group_first_a = DR_GROUP_FIRST_ELEMENT (stmt_info_a);
+ if (dr_group_first_a)
+ {
+ stmt_info_a = dr_group_first_a;
+ dr_info_a = STMT_VINFO_DR_INFO (stmt_info_a);
+ }
+
+ stmt_vec_info dr_group_first_b = DR_GROUP_FIRST_ELEMENT (stmt_info_b);
+ if (dr_group_first_b)
+ {
+ stmt_info_b = dr_group_first_b;
+ dr_info_b = STMT_VINFO_DR_INFO (stmt_info_b);
+ }
+
+ if (ignore_step_p)
+ {
+ segment_length_a = size_zero_node;
+ segment_length_b = size_zero_node;
+ }
+ else
+ {
+ if (!operand_equal_p (DR_STEP (dr_info_a->dr),
+ DR_STEP (dr_info_b->dr), 0))
+ length_factor = scalar_loop_iters;
+ else
+ length_factor = size_int (vect_factor);
+ segment_length_a = vect_vfa_segment_size (dr_info_a, length_factor);
+ segment_length_b = vect_vfa_segment_size (dr_info_b, length_factor);
+ }
+ access_size_a = vect_vfa_access_size (loop_vinfo, dr_info_a);
+ access_size_b = vect_vfa_access_size (loop_vinfo, dr_info_b);
+ align_a = vect_vfa_align (dr_info_a);
+ align_b = vect_vfa_align (dr_info_b);
+
+ /* See whether the alias is known at compilation time. */
+ if (operand_equal_p (DR_BASE_ADDRESS (dr_info_a->dr),
+ DR_BASE_ADDRESS (dr_info_b->dr), 0)
+ && operand_equal_p (DR_OFFSET (dr_info_a->dr),
+ DR_OFFSET (dr_info_b->dr), 0)
+ && TREE_CODE (DR_STEP (dr_info_a->dr)) == INTEGER_CST
+ && TREE_CODE (DR_STEP (dr_info_b->dr)) == INTEGER_CST
+ && poly_int_tree_p (segment_length_a)
+ && poly_int_tree_p (segment_length_b))
+ {
+ int res = vect_compile_time_alias (dr_info_a, dr_info_b,
+ segment_length_a,
+ segment_length_b,
+ access_size_a,
+ access_size_b);
+ if (res >= 0 && dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "can tell at compile time that %T and %T",
+ DR_REF (dr_info_a->dr), DR_REF (dr_info_b->dr));
+ if (res == 0)
+ dump_printf (MSG_NOTE, " do not alias\n");
+ else
+ dump_printf (MSG_NOTE, " alias\n");
+ }
+
+ if (res == 0)
+ continue;
+
+ if (res == 1)
+ return opt_result::failure_at (stmt_info_b->stmt,
+ "not vectorized:"
+ " compilation time alias: %G%G",
+ stmt_info_a->stmt,
+ stmt_info_b->stmt);
+ }
+
+ dr_with_seg_len dr_a (dr_info_a->dr, segment_length_a,
+ access_size_a, align_a);
+ dr_with_seg_len dr_b (dr_info_b->dr, segment_length_b,
+ access_size_b, align_b);
+ /* Canonicalize the order to be the one that's needed for accurate
+ RAW, WAR and WAW flags, in cases where the data references are
+ well-ordered. The order doesn't really matter otherwise,
+ but we might as well be consistent. */
+ if (get_later_stmt (stmt_info_a, stmt_info_b) == stmt_info_a)
+ std::swap (dr_a, dr_b);
+
+ dr_with_seg_len_pair_t dr_with_seg_len_pair
+ (dr_a, dr_b, (preserves_scalar_order_p
+ ? dr_with_seg_len_pair_t::WELL_ORDERED
+ : dr_with_seg_len_pair_t::REORDERED));
+
+ comp_alias_ddrs.safe_push (dr_with_seg_len_pair);
+ }
+
+ prune_runtime_alias_test_list (&comp_alias_ddrs, vect_factor);
+
+ unsigned int count = (comp_alias_ddrs.length ()
+ + check_unequal_addrs.length ());
+
+ if (count
+ && (loop_cost_model (LOOP_VINFO_LOOP (loop_vinfo))
+ == VECT_COST_MODEL_VERY_CHEAP))
+ return opt_result::failure_at
+ (vect_location, "would need a runtime alias check\n");
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "improved number of alias checks from %d to %d\n",
+ may_alias_ddrs.length (), count);
+ unsigned limit = param_vect_max_version_for_alias_checks;
+ if (loop_cost_model (LOOP_VINFO_LOOP (loop_vinfo)) == VECT_COST_MODEL_CHEAP)
+ limit = param_vect_max_version_for_alias_checks * 6 / 10;
+ if (count > limit)
+ return opt_result::failure_at
+ (vect_location,
+ "number of versioning for alias run-time tests exceeds %d "
+ "(--param vect-max-version-for-alias-checks)\n", limit);
+
+ return opt_result::success ();
+}
+
+/* Check whether we can use an internal function for a gather load
+ or scatter store. READ_P is true for loads and false for stores.
+ MASKED_P is true if the load or store is conditional. MEMORY_TYPE is
+ the type of the memory elements being loaded or stored. OFFSET_TYPE
+ is the type of the offset that is being applied to the invariant
+ base address. SCALE is the amount by which the offset should
+ be multiplied *after* it has been converted to address width.
+
+ Return true if the function is supported, storing the function id in
+ *IFN_OUT and the vector type for the offset in *OFFSET_VECTYPE_OUT. */
+
+bool
+vect_gather_scatter_fn_p (vec_info *vinfo, bool read_p, bool masked_p,
+ tree vectype, tree memory_type, tree offset_type,
+ int scale, internal_fn *ifn_out,
+ tree *offset_vectype_out)
+{
+ unsigned int memory_bits = tree_to_uhwi (TYPE_SIZE (memory_type));
+ unsigned int element_bits = vector_element_bits (vectype);
+ if (element_bits != memory_bits)
+ /* For now the vector elements must be the same width as the
+ memory elements. */
+ return false;
+
+ /* Work out which function we need. */
+ internal_fn ifn, alt_ifn;
+ if (read_p)
+ {
+ ifn = masked_p ? IFN_MASK_GATHER_LOAD : IFN_GATHER_LOAD;
+ alt_ifn = IFN_MASK_GATHER_LOAD;
+ }
+ else
+ {
+ ifn = masked_p ? IFN_MASK_SCATTER_STORE : IFN_SCATTER_STORE;
+ alt_ifn = IFN_MASK_SCATTER_STORE;
+ }
+
+ for (;;)
+ {
+ tree offset_vectype = get_vectype_for_scalar_type (vinfo, offset_type);
+ if (!offset_vectype)
+ return false;
+
+ /* Test whether the target supports this combination. */
+ if (internal_gather_scatter_fn_supported_p (ifn, vectype, memory_type,
+ offset_vectype, scale))
+ {
+ *ifn_out = ifn;
+ *offset_vectype_out = offset_vectype;
+ return true;
+ }
+ else if (!masked_p
+ && internal_gather_scatter_fn_supported_p (alt_ifn, vectype,
+ memory_type,
+ offset_vectype,
+ scale))
+ {
+ *ifn_out = alt_ifn;
+ *offset_vectype_out = offset_vectype;
+ return true;
+ }
+
+ if (TYPE_PRECISION (offset_type) >= POINTER_SIZE
+ && TYPE_PRECISION (offset_type) >= element_bits)
+ return false;
+
+ offset_type = build_nonstandard_integer_type
+ (TYPE_PRECISION (offset_type) * 2, TYPE_UNSIGNED (offset_type));
+ }
+}
+
+/* STMT_INFO is a call to an internal gather load or scatter store function.
+ Describe the operation in INFO. */
+
+static void
+vect_describe_gather_scatter_call (stmt_vec_info stmt_info,
+ gather_scatter_info *info)
+{
+ gcall *call = as_a <gcall *> (stmt_info->stmt);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
+
+ info->ifn = gimple_call_internal_fn (call);
+ info->decl = NULL_TREE;
+ info->base = gimple_call_arg (call, 0);
+ info->offset = gimple_call_arg (call, 1);
+ info->offset_dt = vect_unknown_def_type;
+ info->offset_vectype = NULL_TREE;
+ info->scale = TREE_INT_CST_LOW (gimple_call_arg (call, 2));
+ info->element_type = TREE_TYPE (vectype);
+ info->memory_type = TREE_TYPE (DR_REF (dr));
+}
+
+/* Return true if a non-affine read or write in STMT_INFO is suitable for a
+ gather load or scatter store. Describe the operation in *INFO if so. */
+
+bool
+vect_check_gather_scatter (stmt_vec_info stmt_info, loop_vec_info loop_vinfo,
+ gather_scatter_info *info)
+{
+ HOST_WIDE_INT scale = 1;
+ poly_int64 pbitpos, pbitsize;
+ class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
+ tree offtype = NULL_TREE;
+ tree decl = NULL_TREE, base, off;
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ tree memory_type = TREE_TYPE (DR_REF (dr));
+ machine_mode pmode;
+ int punsignedp, reversep, pvolatilep = 0;
+ internal_fn ifn;
+ tree offset_vectype;
+ bool masked_p = false;
+
+ /* See whether this is already a call to a gather/scatter internal function.
+ If not, see whether it's a masked load or store. */
+ gcall *call = dyn_cast <gcall *> (stmt_info->stmt);
+ if (call && gimple_call_internal_p (call))
+ {
+ ifn = gimple_call_internal_fn (call);
+ if (internal_gather_scatter_fn_p (ifn))
+ {
+ vect_describe_gather_scatter_call (stmt_info, info);
+ return true;
+ }
+ masked_p = (ifn == IFN_MASK_LOAD || ifn == IFN_MASK_STORE);
+ }
+
+ /* True if we should aim to use internal functions rather than
+ built-in functions. */
+ bool use_ifn_p = (DR_IS_READ (dr)
+ ? supports_vec_gather_load_p (TYPE_MODE (vectype))
+ : supports_vec_scatter_store_p (TYPE_MODE (vectype)));
+
+ base = DR_REF (dr);
+ /* For masked loads/stores, DR_REF (dr) is an artificial MEM_REF,
+ see if we can use the def stmt of the address. */
+ if (masked_p
+ && TREE_CODE (base) == MEM_REF
+ && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME
+ && integer_zerop (TREE_OPERAND (base, 1))
+ && !expr_invariant_in_loop_p (loop, TREE_OPERAND (base, 0)))
+ {
+ gimple *def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (base, 0));
+ if (is_gimple_assign (def_stmt)
+ && gimple_assign_rhs_code (def_stmt) == ADDR_EXPR)
+ base = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0);
+ }
+
+ /* The gather and scatter builtins need address of the form
+ loop_invariant + vector * {1, 2, 4, 8}
+ or
+ loop_invariant + sign_extend (vector) * { 1, 2, 4, 8 }.
+ Unfortunately DR_BASE_ADDRESS/DR_OFFSET can be a mixture
+ of loop invariants/SSA_NAMEs defined in the loop, with casts,
+ multiplications and additions in it. To get a vector, we need
+ a single SSA_NAME that will be defined in the loop and will
+ contain everything that is not loop invariant and that can be
+ vectorized. The following code attempts to find such a preexistng
+ SSA_NAME OFF and put the loop invariants into a tree BASE
+ that can be gimplified before the loop. */
+ base = get_inner_reference (base, &pbitsize, &pbitpos, &off, &pmode,
+ &punsignedp, &reversep, &pvolatilep);
+ if (reversep)
+ return false;
+
+ poly_int64 pbytepos = exact_div (pbitpos, BITS_PER_UNIT);
+
+ if (TREE_CODE (base) == MEM_REF)
+ {
+ if (!integer_zerop (TREE_OPERAND (base, 1)))
+ {
+ if (off == NULL_TREE)
+ off = wide_int_to_tree (sizetype, mem_ref_offset (base));
+ else
+ off = size_binop (PLUS_EXPR, off,
+ fold_convert (sizetype, TREE_OPERAND (base, 1)));
+ }
+ base = TREE_OPERAND (base, 0);
+ }
+ else
+ base = build_fold_addr_expr (base);
+
+ if (off == NULL_TREE)
+ off = size_zero_node;
+
+ /* If base is not loop invariant, either off is 0, then we start with just
+ the constant offset in the loop invariant BASE and continue with base
+ as OFF, otherwise give up.
+ We could handle that case by gimplifying the addition of base + off
+ into some SSA_NAME and use that as off, but for now punt. */
+ if (!expr_invariant_in_loop_p (loop, base))
+ {
+ if (!integer_zerop (off))
+ return false;
+ off = base;
+ base = size_int (pbytepos);
+ }
+ /* Otherwise put base + constant offset into the loop invariant BASE
+ and continue with OFF. */
+ else
+ {
+ base = fold_convert (sizetype, base);
+ base = size_binop (PLUS_EXPR, base, size_int (pbytepos));
+ }
+
+ /* OFF at this point may be either a SSA_NAME or some tree expression
+ from get_inner_reference. Try to peel off loop invariants from it
+ into BASE as long as possible. */
+ STRIP_NOPS (off);
+ while (offtype == NULL_TREE)
+ {
+ enum tree_code code;
+ tree op0, op1, add = NULL_TREE;
+
+ if (TREE_CODE (off) == SSA_NAME)
+ {
+ gimple *def_stmt = SSA_NAME_DEF_STMT (off);
+
+ if (expr_invariant_in_loop_p (loop, off))
+ return false;
+
+ if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
+ break;
+
+ op0 = gimple_assign_rhs1 (def_stmt);
+ code = gimple_assign_rhs_code (def_stmt);
+ op1 = gimple_assign_rhs2 (def_stmt);
+ }
+ else
+ {
+ if (get_gimple_rhs_class (TREE_CODE (off)) == GIMPLE_TERNARY_RHS)
+ return false;
+ code = TREE_CODE (off);
+ extract_ops_from_tree (off, &code, &op0, &op1);
+ }
+ switch (code)
+ {
+ case POINTER_PLUS_EXPR:
+ case PLUS_EXPR:
+ if (expr_invariant_in_loop_p (loop, op0))
+ {
+ add = op0;
+ off = op1;
+ do_add:
+ add = fold_convert (sizetype, add);
+ if (scale != 1)
+ add = size_binop (MULT_EXPR, add, size_int (scale));
+ base = size_binop (PLUS_EXPR, base, add);
+ continue;
+ }
+ if (expr_invariant_in_loop_p (loop, op1))
+ {
+ add = op1;
+ off = op0;
+ goto do_add;
+ }
+ break;
+ case MINUS_EXPR:
+ if (expr_invariant_in_loop_p (loop, op1))
+ {
+ add = fold_convert (sizetype, op1);
+ add = size_binop (MINUS_EXPR, size_zero_node, add);
+ off = op0;
+ goto do_add;
+ }
+ break;
+ case MULT_EXPR:
+ if (scale == 1 && tree_fits_shwi_p (op1))
+ {
+ int new_scale = tree_to_shwi (op1);
+ /* Only treat this as a scaling operation if the target
+ supports it for at least some offset type. */
+ if (use_ifn_p
+ && !vect_gather_scatter_fn_p (loop_vinfo, DR_IS_READ (dr),
+ masked_p, vectype, memory_type,
+ signed_char_type_node,
+ new_scale, &ifn,
+ &offset_vectype)
+ && !vect_gather_scatter_fn_p (loop_vinfo, DR_IS_READ (dr),
+ masked_p, vectype, memory_type,
+ unsigned_char_type_node,
+ new_scale, &ifn,
+ &offset_vectype))
+ break;
+ scale = new_scale;
+ off = op0;
+ continue;
+ }
+ break;
+ case SSA_NAME:
+ off = op0;
+ continue;
+ CASE_CONVERT:
+ if (!POINTER_TYPE_P (TREE_TYPE (op0))
+ && !INTEGRAL_TYPE_P (TREE_TYPE (op0)))
+ break;
+
+ /* Don't include the conversion if the target is happy with
+ the current offset type. */
+ if (use_ifn_p
+ && !POINTER_TYPE_P (TREE_TYPE (off))
+ && vect_gather_scatter_fn_p (loop_vinfo, DR_IS_READ (dr),
+ masked_p, vectype, memory_type,
+ TREE_TYPE (off), scale, &ifn,
+ &offset_vectype))
+ break;
+
+ if (TYPE_PRECISION (TREE_TYPE (op0))
+ == TYPE_PRECISION (TREE_TYPE (off)))
+ {
+ off = op0;
+ continue;
+ }
+
+ /* Include the conversion if it is widening and we're using
+ the IFN path or the target can handle the converted from
+ offset or the current size is not already the same as the
+ data vector element size. */
+ if ((TYPE_PRECISION (TREE_TYPE (op0))
+ < TYPE_PRECISION (TREE_TYPE (off)))
+ && (use_ifn_p
+ || (DR_IS_READ (dr)
+ ? (targetm.vectorize.builtin_gather
+ && targetm.vectorize.builtin_gather (vectype,
+ TREE_TYPE (op0),
+ scale))
+ : (targetm.vectorize.builtin_scatter
+ && targetm.vectorize.builtin_scatter (vectype,
+ TREE_TYPE (op0),
+ scale)))
+ || !operand_equal_p (TYPE_SIZE (TREE_TYPE (off)),
+ TYPE_SIZE (TREE_TYPE (vectype)), 0)))
+ {
+ off = op0;
+ offtype = TREE_TYPE (off);
+ STRIP_NOPS (off);
+ continue;
+ }
+ break;
+ default:
+ break;
+ }
+ break;
+ }
+
+ /* If at the end OFF still isn't a SSA_NAME or isn't
+ defined in the loop, punt. */
+ if (TREE_CODE (off) != SSA_NAME
+ || expr_invariant_in_loop_p (loop, off))
+ return false;
+
+ if (offtype == NULL_TREE)
+ offtype = TREE_TYPE (off);
+
+ if (use_ifn_p)
+ {
+ if (!vect_gather_scatter_fn_p (loop_vinfo, DR_IS_READ (dr), masked_p,
+ vectype, memory_type, offtype, scale,
+ &ifn, &offset_vectype))
+ ifn = IFN_LAST;
+ decl = NULL_TREE;
+ }
+ else
+ {
+ if (DR_IS_READ (dr))
+ {
+ if (targetm.vectorize.builtin_gather)
+ decl = targetm.vectorize.builtin_gather (vectype, offtype, scale);
+ }
+ else
+ {
+ if (targetm.vectorize.builtin_scatter)
+ decl = targetm.vectorize.builtin_scatter (vectype, offtype, scale);
+ }
+ ifn = IFN_LAST;
+ /* The offset vector type will be read from DECL when needed. */
+ offset_vectype = NULL_TREE;
+ }
+
+ info->ifn = ifn;
+ info->decl = decl;
+ info->base = base;
+ info->offset = off;
+ info->offset_dt = vect_unknown_def_type;
+ info->offset_vectype = offset_vectype;
+ info->scale = scale;
+ info->element_type = TREE_TYPE (vectype);
+ info->memory_type = memory_type;
+ return true;
+}
+
+/* Find the data references in STMT, analyze them with respect to LOOP and
+ append them to DATAREFS. Return false if datarefs in this stmt cannot
+ be handled. */
+
+opt_result
+vect_find_stmt_data_reference (loop_p loop, gimple *stmt,
+ vec<data_reference_p> *datarefs,
+ vec<int> *dataref_groups, int group_id)
+{
+ /* We can ignore clobbers for dataref analysis - they are removed during
+ loop vectorization and BB vectorization checks dependences with a
+ stmt walk. */
+ if (gimple_clobber_p (stmt))
+ return opt_result::success ();
+
+ if (gimple_has_volatile_ops (stmt))
+ return opt_result::failure_at (stmt, "not vectorized: volatile type: %G",
+ stmt);
+
+ if (stmt_can_throw_internal (cfun, stmt))
+ return opt_result::failure_at (stmt,
+ "not vectorized:"
+ " statement can throw an exception: %G",
+ stmt);
+
+ auto_vec<data_reference_p, 2> refs;
+ opt_result res = find_data_references_in_stmt (loop, stmt, &refs);
+ if (!res)
+ return res;
+
+ if (refs.is_empty ())
+ return opt_result::success ();
+
+ if (refs.length () > 1)
+ {
+ while (!refs.is_empty ())
+ free_data_ref (refs.pop ());
+ return opt_result::failure_at (stmt,
+ "not vectorized: more than one "
+ "data ref in stmt: %G", stmt);
+ }
+
+ data_reference_p dr = refs.pop ();
+ if (gcall *call = dyn_cast <gcall *> (stmt))
+ if (!gimple_call_internal_p (call)
+ || (gimple_call_internal_fn (call) != IFN_MASK_LOAD
+ && gimple_call_internal_fn (call) != IFN_MASK_STORE))
+ {
+ free_data_ref (dr);
+ return opt_result::failure_at (stmt,
+ "not vectorized: dr in a call %G", stmt);
+ }
+
+ if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
+ && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
+ {
+ free_data_ref (dr);
+ return opt_result::failure_at (stmt,
+ "not vectorized:"
+ " statement is bitfield access %G", stmt);
+ }
+
+ if (DR_BASE_ADDRESS (dr)
+ && TREE_CODE (DR_BASE_ADDRESS (dr)) == INTEGER_CST)
+ {
+ free_data_ref (dr);
+ return opt_result::failure_at (stmt,
+ "not vectorized:"
+ " base addr of dr is a constant\n");
+ }
+
+ /* Check whether this may be a SIMD lane access and adjust the
+ DR to make it easier for us to handle it. */
+ if (loop
+ && loop->simduid
+ && (!DR_BASE_ADDRESS (dr)
+ || !DR_OFFSET (dr)
+ || !DR_INIT (dr)
+ || !DR_STEP (dr)))
+ {
+ struct data_reference *newdr
+ = create_data_ref (NULL, loop_containing_stmt (stmt), DR_REF (dr), stmt,
+ DR_IS_READ (dr), DR_IS_CONDITIONAL_IN_STMT (dr));
+ if (DR_BASE_ADDRESS (newdr)
+ && DR_OFFSET (newdr)
+ && DR_INIT (newdr)
+ && DR_STEP (newdr)
+ && TREE_CODE (DR_INIT (newdr)) == INTEGER_CST
+ && integer_zerop (DR_STEP (newdr)))
+ {
+ tree base_address = DR_BASE_ADDRESS (newdr);
+ tree off = DR_OFFSET (newdr);
+ tree step = ssize_int (1);
+ if (integer_zerop (off)
+ && TREE_CODE (base_address) == POINTER_PLUS_EXPR)
+ {
+ off = TREE_OPERAND (base_address, 1);
+ base_address = TREE_OPERAND (base_address, 0);
+ }
+ STRIP_NOPS (off);
+ if (TREE_CODE (off) == MULT_EXPR
+ && tree_fits_uhwi_p (TREE_OPERAND (off, 1)))
+ {
+ step = TREE_OPERAND (off, 1);
+ off = TREE_OPERAND (off, 0);
+ STRIP_NOPS (off);
+ }
+ if (CONVERT_EXPR_P (off)
+ && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (off, 0)))
+ < TYPE_PRECISION (TREE_TYPE (off))))
+ off = TREE_OPERAND (off, 0);
+ if (TREE_CODE (off) == SSA_NAME)
+ {
+ gimple *def = SSA_NAME_DEF_STMT (off);
+ /* Look through widening conversion. */
+ if (is_gimple_assign (def)
+ && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def)))
+ {
+ tree rhs1 = gimple_assign_rhs1 (def);
+ if (TREE_CODE (rhs1) == SSA_NAME
+ && INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
+ && (TYPE_PRECISION (TREE_TYPE (off))
+ > TYPE_PRECISION (TREE_TYPE (rhs1))))
+ def = SSA_NAME_DEF_STMT (rhs1);
+ }
+ if (is_gimple_call (def)
+ && gimple_call_internal_p (def)
+ && (gimple_call_internal_fn (def) == IFN_GOMP_SIMD_LANE))
+ {
+ tree arg = gimple_call_arg (def, 0);
+ tree reft = TREE_TYPE (DR_REF (newdr));
+ gcc_assert (TREE_CODE (arg) == SSA_NAME);
+ arg = SSA_NAME_VAR (arg);
+ if (arg == loop->simduid
+ /* For now. */
+ && tree_int_cst_equal (TYPE_SIZE_UNIT (reft), step))
+ {
+ DR_BASE_ADDRESS (newdr) = base_address;
+ DR_OFFSET (newdr) = ssize_int (0);
+ DR_STEP (newdr) = step;
+ DR_OFFSET_ALIGNMENT (newdr) = BIGGEST_ALIGNMENT;
+ DR_STEP_ALIGNMENT (newdr) = highest_pow2_factor (step);
+ /* Mark as simd-lane access. */
+ tree arg2 = gimple_call_arg (def, 1);
+ newdr->aux = (void *) (-1 - tree_to_uhwi (arg2));
+ free_data_ref (dr);
+ datarefs->safe_push (newdr);
+ if (dataref_groups)
+ dataref_groups->safe_push (group_id);
+ return opt_result::success ();
+ }
+ }
+ }
+ }
+ free_data_ref (newdr);
+ }
+
+ datarefs->safe_push (dr);
+ if (dataref_groups)
+ dataref_groups->safe_push (group_id);
+ return opt_result::success ();
+}
+
+/* Function vect_analyze_data_refs.
+
+ Find all the data references in the loop or basic block.
+
+ The general structure of the analysis of data refs in the vectorizer is as
+ follows:
+ 1- vect_analyze_data_refs(loop/bb): call
+ compute_data_dependences_for_loop/bb to find and analyze all data-refs
+ in the loop/bb and their dependences.
+ 2- vect_analyze_dependences(): apply dependence testing using ddrs.
+ 3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok.
+ 4- vect_analyze_drs_access(): check that ref_stmt.step is ok.
+
+*/
+
+opt_result
+vect_analyze_data_refs (vec_info *vinfo, poly_uint64 *min_vf, bool *fatal)
+{
+ class loop *loop = NULL;
+ unsigned int i;
+ struct data_reference *dr;
+ tree scalar_type;
+
+ DUMP_VECT_SCOPE ("vect_analyze_data_refs");
+
+ if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo))
+ loop = LOOP_VINFO_LOOP (loop_vinfo);
+
+ /* Go through the data-refs, check that the analysis succeeded. Update
+ pointer from stmt_vec_info struct to DR and vectype. */
+
+ vec<data_reference_p> datarefs = vinfo->shared->datarefs;
+ FOR_EACH_VEC_ELT (datarefs, i, dr)
+ {
+ enum { SG_NONE, GATHER, SCATTER } gatherscatter = SG_NONE;
+ poly_uint64 vf;
+
+ gcc_assert (DR_REF (dr));
+ stmt_vec_info stmt_info = vinfo->lookup_stmt (DR_STMT (dr));
+ gcc_assert (!stmt_info->dr_aux.dr);
+ stmt_info->dr_aux.dr = dr;
+ stmt_info->dr_aux.stmt = stmt_info;
+
+ /* Check that analysis of the data-ref succeeded. */
+ if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr) || !DR_INIT (dr)
+ || !DR_STEP (dr))
+ {
+ bool maybe_gather
+ = DR_IS_READ (dr)
+ && !TREE_THIS_VOLATILE (DR_REF (dr));
+ bool maybe_scatter
+ = DR_IS_WRITE (dr)
+ && !TREE_THIS_VOLATILE (DR_REF (dr))
+ && (targetm.vectorize.builtin_scatter != NULL
+ || supports_vec_scatter_store_p ());
+
+ /* If target supports vector gather loads or scatter stores,
+ see if they can't be used. */
+ if (is_a <loop_vec_info> (vinfo)
+ && !nested_in_vect_loop_p (loop, stmt_info))
+ {
+ if (maybe_gather || maybe_scatter)
+ {
+ if (maybe_gather)
+ gatherscatter = GATHER;
+ else
+ gatherscatter = SCATTER;
+ }
+ }
+
+ if (gatherscatter == SG_NONE)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "not vectorized: data ref analysis "
+ "failed %G", stmt_info->stmt);
+ if (is_a <bb_vec_info> (vinfo))
+ {
+ /* In BB vectorization the ref can still participate
+ in dependence analysis, we just can't vectorize it. */
+ STMT_VINFO_VECTORIZABLE (stmt_info) = false;
+ continue;
+ }
+ return opt_result::failure_at (stmt_info->stmt,
+ "not vectorized:"
+ " data ref analysis failed: %G",
+ stmt_info->stmt);
+ }
+ }
+
+ /* See if this was detected as SIMD lane access. */
+ if (dr->aux == (void *)-1
+ || dr->aux == (void *)-2
+ || dr->aux == (void *)-3
+ || dr->aux == (void *)-4)
+ {
+ if (nested_in_vect_loop_p (loop, stmt_info))
+ return opt_result::failure_at (stmt_info->stmt,
+ "not vectorized:"
+ " data ref analysis failed: %G",
+ stmt_info->stmt);
+ STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info)
+ = -(uintptr_t) dr->aux;
+ }
+
+ tree base = get_base_address (DR_REF (dr));
+ if (base && VAR_P (base) && DECL_NONALIASED (base))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "not vectorized: base object not addressable "
+ "for stmt: %G", stmt_info->stmt);
+ if (is_a <bb_vec_info> (vinfo))
+ {
+ /* In BB vectorization the ref can still participate
+ in dependence analysis, we just can't vectorize it. */
+ STMT_VINFO_VECTORIZABLE (stmt_info) = false;
+ continue;
+ }
+ return opt_result::failure_at (stmt_info->stmt,
+ "not vectorized: base object not"
+ " addressable for stmt: %G",
+ stmt_info->stmt);
+ }
+
+ if (is_a <loop_vec_info> (vinfo)
+ && DR_STEP (dr)
+ && TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
+ {
+ if (nested_in_vect_loop_p (loop, stmt_info))
+ return opt_result::failure_at (stmt_info->stmt,
+ "not vectorized: "
+ "not suitable for strided load %G",
+ stmt_info->stmt);
+ STMT_VINFO_STRIDED_P (stmt_info) = true;
+ }
+
+ /* Update DR field in stmt_vec_info struct. */
+
+ /* If the dataref is in an inner-loop of the loop that is considered for
+ for vectorization, we also want to analyze the access relative to
+ the outer-loop (DR contains information only relative to the
+ inner-most enclosing loop). We do that by building a reference to the
+ first location accessed by the inner-loop, and analyze it relative to
+ the outer-loop. */
+ if (loop && nested_in_vect_loop_p (loop, stmt_info))
+ {
+ /* Build a reference to the first location accessed by the
+ inner loop: *(BASE + INIT + OFFSET). By construction,
+ this address must be invariant in the inner loop, so we
+ can consider it as being used in the outer loop. */
+ tree base = unshare_expr (DR_BASE_ADDRESS (dr));
+ tree offset = unshare_expr (DR_OFFSET (dr));
+ tree init = unshare_expr (DR_INIT (dr));
+ tree init_offset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset),
+ init, offset);
+ tree init_addr = fold_build_pointer_plus (base, init_offset);
+ tree init_ref = build_fold_indirect_ref (init_addr);
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "analyze in outer loop: %T\n", init_ref);
+
+ opt_result res
+ = dr_analyze_innermost (&STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info),
+ init_ref, loop, stmt_info->stmt);
+ if (!res)
+ /* dr_analyze_innermost already explained the failure. */
+ return res;
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "\touter base_address: %T\n"
+ "\touter offset from base address: %T\n"
+ "\touter constant offset from base address: %T\n"
+ "\touter step: %T\n"
+ "\touter base alignment: %d\n\n"
+ "\touter base misalignment: %d\n"
+ "\touter offset alignment: %d\n"
+ "\touter step alignment: %d\n",
+ STMT_VINFO_DR_BASE_ADDRESS (stmt_info),
+ STMT_VINFO_DR_OFFSET (stmt_info),
+ STMT_VINFO_DR_INIT (stmt_info),
+ STMT_VINFO_DR_STEP (stmt_info),
+ STMT_VINFO_DR_BASE_ALIGNMENT (stmt_info),
+ STMT_VINFO_DR_BASE_MISALIGNMENT (stmt_info),
+ STMT_VINFO_DR_OFFSET_ALIGNMENT (stmt_info),
+ STMT_VINFO_DR_STEP_ALIGNMENT (stmt_info));
+ }
+
+ /* Set vectype for STMT. */
+ scalar_type = TREE_TYPE (DR_REF (dr));
+ tree vectype = get_vectype_for_scalar_type (vinfo, scalar_type);
+ if (!vectype)
+ {
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "not vectorized: no vectype for stmt: %G",
+ stmt_info->stmt);
+ dump_printf (MSG_MISSED_OPTIMIZATION, " scalar_type: ");
+ dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_DETAILS,
+ scalar_type);
+ dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
+ }
+
+ if (is_a <bb_vec_info> (vinfo))
+ {
+ /* No vector type is fine, the ref can still participate
+ in dependence analysis, we just can't vectorize it. */
+ STMT_VINFO_VECTORIZABLE (stmt_info) = false;
+ continue;
+ }
+ if (fatal)
+ *fatal = false;
+ return opt_result::failure_at (stmt_info->stmt,
+ "not vectorized:"
+ " no vectype for stmt: %G"
+ " scalar_type: %T\n",
+ stmt_info->stmt, scalar_type);
+ }
+ else
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "got vectype for stmt: %G%T\n",
+ stmt_info->stmt, vectype);
+ }
+
+ /* Adjust the minimal vectorization factor according to the
+ vector type. */
+ vf = TYPE_VECTOR_SUBPARTS (vectype);
+ *min_vf = upper_bound (*min_vf, vf);
+
+ /* Leave the BB vectorizer to pick the vector type later, based on
+ the final dataref group size and SLP node size. */
+ if (is_a <loop_vec_info> (vinfo))
+ STMT_VINFO_VECTYPE (stmt_info) = vectype;
+
+ if (gatherscatter != SG_NONE)
+ {
+ gather_scatter_info gs_info;
+ if (!vect_check_gather_scatter (stmt_info,
+ as_a <loop_vec_info> (vinfo),
+ &gs_info)
+ || !get_vectype_for_scalar_type (vinfo,
+ TREE_TYPE (gs_info.offset)))
+ {
+ if (fatal)
+ *fatal = false;
+ return opt_result::failure_at
+ (stmt_info->stmt,
+ (gatherscatter == GATHER)
+ ? "not vectorized: not suitable for gather load %G"
+ : "not vectorized: not suitable for scatter store %G",
+ stmt_info->stmt);
+ }
+ STMT_VINFO_GATHER_SCATTER_P (stmt_info) = gatherscatter;
+ }
+ }
+
+ /* We used to stop processing and prune the list here. Verify we no
+ longer need to. */
+ gcc_assert (i == datarefs.length ());
+
+ return opt_result::success ();
+}
+
+
+/* Function vect_get_new_vect_var.
+
+ Returns a name for a new variable. The current naming scheme appends the
+ prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
+ the name of vectorizer generated variables, and appends that to NAME if
+ provided. */
+
+tree
+vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
+{
+ const char *prefix;
+ tree new_vect_var;
+
+ switch (var_kind)
+ {
+ case vect_simple_var:
+ prefix = "vect";
+ break;
+ case vect_scalar_var:
+ prefix = "stmp";
+ break;
+ case vect_mask_var:
+ prefix = "mask";
+ break;
+ case vect_pointer_var:
+ prefix = "vectp";
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ if (name)
+ {
+ char* tmp = concat (prefix, "_", name, NULL);
+ new_vect_var = create_tmp_reg (type, tmp);
+ free (tmp);
+ }
+ else
+ new_vect_var = create_tmp_reg (type, prefix);
+
+ return new_vect_var;
+}
+
+/* Like vect_get_new_vect_var but return an SSA name. */
+
+tree
+vect_get_new_ssa_name (tree type, enum vect_var_kind var_kind, const char *name)
+{
+ const char *prefix;
+ tree new_vect_var;
+
+ switch (var_kind)
+ {
+ case vect_simple_var:
+ prefix = "vect";
+ break;
+ case vect_scalar_var:
+ prefix = "stmp";
+ break;
+ case vect_pointer_var:
+ prefix = "vectp";
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ if (name)
+ {
+ char* tmp = concat (prefix, "_", name, NULL);
+ new_vect_var = make_temp_ssa_name (type, NULL, tmp);
+ free (tmp);
+ }
+ else
+ new_vect_var = make_temp_ssa_name (type, NULL, prefix);
+
+ return new_vect_var;
+}
+
+/* Duplicate points-to info on NAME from DR_INFO. */
+
+static void
+vect_duplicate_ssa_name_ptr_info (tree name, dr_vec_info *dr_info)
+{
+ duplicate_ssa_name_ptr_info (name, DR_PTR_INFO (dr_info->dr));
+ /* DR_PTR_INFO is for a base SSA name, not including constant or
+ variable offsets in the ref so its alignment info does not apply. */
+ mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (name));
+}
+
+/* Function vect_create_addr_base_for_vector_ref.
+
+ Create an expression that computes the address of the first memory location
+ that will be accessed for a data reference.
+
+ Input:
+ STMT_INFO: The statement containing the data reference.
+ NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
+ OFFSET: Optional. If supplied, it is be added to the initial address.
+ LOOP: Specify relative to which loop-nest should the address be computed.
+ For example, when the dataref is in an inner-loop nested in an
+ outer-loop that is now being vectorized, LOOP can be either the
+ outer-loop, or the inner-loop. The first memory location accessed
+ by the following dataref ('in' points to short):
+
+ for (i=0; i<N; i++)
+ for (j=0; j<M; j++)
+ s += in[i+j]
+
+ is as follows:
+ if LOOP=i_loop: &in (relative to i_loop)
+ if LOOP=j_loop: &in+i*2B (relative to j_loop)
+
+ Output:
+ 1. Return an SSA_NAME whose value is the address of the memory location of
+ the first vector of the data reference.
+ 2. If new_stmt_list is not NULL_TREE after return then the caller must insert
+ these statement(s) which define the returned SSA_NAME.
+
+ FORNOW: We are only handling array accesses with step 1. */
+
+tree
+vect_create_addr_base_for_vector_ref (vec_info *vinfo, stmt_vec_info stmt_info,
+ gimple_seq *new_stmt_list,
+ tree offset)
+{
+ dr_vec_info *dr_info = STMT_VINFO_DR_INFO (stmt_info);
+ struct data_reference *dr = dr_info->dr;
+ const char *base_name;
+ tree addr_base;
+ tree dest;
+ gimple_seq seq = NULL;
+ tree vect_ptr_type;
+ loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
+ innermost_loop_behavior *drb = vect_dr_behavior (vinfo, dr_info);
+
+ tree data_ref_base = unshare_expr (drb->base_address);
+ tree base_offset = unshare_expr (get_dr_vinfo_offset (vinfo, dr_info, true));
+ tree init = unshare_expr (drb->init);
+
+ if (loop_vinfo)
+ base_name = get_name (data_ref_base);
+ else
+ {
+ base_offset = ssize_int (0);
+ init = ssize_int (0);
+ base_name = get_name (DR_REF (dr));
+ }
+
+ /* Create base_offset */
+ base_offset = size_binop (PLUS_EXPR,
+ fold_convert (sizetype, base_offset),
+ fold_convert (sizetype, init));
+
+ if (offset)
+ {
+ offset = fold_convert (sizetype, offset);
+ base_offset = fold_build2 (PLUS_EXPR, sizetype,
+ base_offset, offset);
+ }
+
+ /* base + base_offset */
+ if (loop_vinfo)
+ addr_base = fold_build_pointer_plus (data_ref_base, base_offset);
+ else
+ {
+ addr_base = build1 (ADDR_EXPR,
+ build_pointer_type (TREE_TYPE (DR_REF (dr))),
+ unshare_expr (DR_REF (dr)));
+ }
+
+ vect_ptr_type = build_pointer_type (TREE_TYPE (DR_REF (dr)));
+ dest = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var, base_name);
+ addr_base = force_gimple_operand (addr_base, &seq, true, dest);
+ gimple_seq_add_seq (new_stmt_list, seq);
+
+ if (DR_PTR_INFO (dr)
+ && TREE_CODE (addr_base) == SSA_NAME
+ /* We should only duplicate pointer info to newly created SSA names. */
+ && SSA_NAME_VAR (addr_base) == dest)
+ {
+ gcc_assert (!SSA_NAME_PTR_INFO (addr_base));
+ vect_duplicate_ssa_name_ptr_info (addr_base, dr_info);
+ }
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location, "created %T\n", addr_base);
+
+ return addr_base;
+}
+
+
+/* Function vect_create_data_ref_ptr.
+
+ Create a new pointer-to-AGGR_TYPE variable (ap), that points to the first
+ location accessed in the loop by STMT_INFO, along with the def-use update
+ chain to appropriately advance the pointer through the loop iterations.
+ Also set aliasing information for the pointer. This pointer is used by
+ the callers to this function to create a memory reference expression for
+ vector load/store access.
+
+ Input:
+ 1. STMT_INFO: a stmt that references memory. Expected to be of the form
+ GIMPLE_ASSIGN <name, data-ref> or
+ GIMPLE_ASSIGN <data-ref, name>.
+ 2. AGGR_TYPE: the type of the reference, which should be either a vector
+ or an array.
+ 3. AT_LOOP: the loop where the vector memref is to be created.
+ 4. OFFSET (optional): a byte offset to be added to the initial address
+ accessed by the data-ref in STMT_INFO.
+ 5. BSI: location where the new stmts are to be placed if there is no loop
+ 6. ONLY_INIT: indicate if ap is to be updated in the loop, or remain
+ pointing to the initial address.
+ 8. IV_STEP (optional, defaults to NULL): the amount that should be added
+ to the IV during each iteration of the loop. NULL says to move
+ by one copy of AGGR_TYPE up or down, depending on the step of the
+ data reference.
+
+ Output:
+ 1. Declare a new ptr to vector_type, and have it point to the base of the
+ data reference (initial addressed accessed by the data reference).
+ For example, for vector of type V8HI, the following code is generated:
+
+ v8hi *ap;
+ ap = (v8hi *)initial_address;
+
+ if OFFSET is not supplied:
+ initial_address = &a[init];
+ if OFFSET is supplied:
+ initial_address = &a[init] + OFFSET;
+ if BYTE_OFFSET is supplied:
+ initial_address = &a[init] + BYTE_OFFSET;
+
+ Return the initial_address in INITIAL_ADDRESS.
+
+ 2. If ONLY_INIT is true, just return the initial pointer. Otherwise, also
+ update the pointer in each iteration of the loop.
+
+ Return the increment stmt that updates the pointer in PTR_INCR.
+
+ 3. Return the pointer. */
+
+tree
+vect_create_data_ref_ptr (vec_info *vinfo, stmt_vec_info stmt_info,
+ tree aggr_type, class loop *at_loop, tree offset,
+ tree *initial_address, gimple_stmt_iterator *gsi,
+ gimple **ptr_incr, bool only_init,
+ tree iv_step)
+{
+ const char *base_name;
+ loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
+ class loop *loop = NULL;
+ bool nested_in_vect_loop = false;
+ class loop *containing_loop = NULL;
+ tree aggr_ptr_type;
+ tree aggr_ptr;
+ tree new_temp;
+ gimple_seq new_stmt_list = NULL;
+ edge pe = NULL;
+ basic_block new_bb;
+ tree aggr_ptr_init;
+ dr_vec_info *dr_info = STMT_VINFO_DR_INFO (stmt_info);
+ struct data_reference *dr = dr_info->dr;
+ tree aptr;
+ gimple_stmt_iterator incr_gsi;
+ bool insert_after;
+ tree indx_before_incr, indx_after_incr;
+ gimple *incr;
+ bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (vinfo);
+
+ gcc_assert (iv_step != NULL_TREE
+ || TREE_CODE (aggr_type) == ARRAY_TYPE
+ || TREE_CODE (aggr_type) == VECTOR_TYPE);
+
+ if (loop_vinfo)
+ {
+ loop = LOOP_VINFO_LOOP (loop_vinfo);
+ nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt_info);
+ containing_loop = (gimple_bb (stmt_info->stmt))->loop_father;
+ pe = loop_preheader_edge (loop);
+ }
+ else
+ {
+ gcc_assert (bb_vinfo);
+ only_init = true;
+ *ptr_incr = NULL;
+ }
+
+ /* Create an expression for the first address accessed by this load
+ in LOOP. */
+ base_name = get_name (DR_BASE_ADDRESS (dr));
+
+ if (dump_enabled_p ())
+ {
+ tree dr_base_type = TREE_TYPE (DR_BASE_OBJECT (dr));
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "create %s-pointer variable to type: %T",
+ get_tree_code_name (TREE_CODE (aggr_type)),
+ aggr_type);
+ if (TREE_CODE (dr_base_type) == ARRAY_TYPE)
+ dump_printf (MSG_NOTE, " vectorizing an array ref: ");
+ else if (TREE_CODE (dr_base_type) == VECTOR_TYPE)
+ dump_printf (MSG_NOTE, " vectorizing a vector ref: ");
+ else if (TREE_CODE (dr_base_type) == RECORD_TYPE)
+ dump_printf (MSG_NOTE, " vectorizing a record based array ref: ");
+ else
+ dump_printf (MSG_NOTE, " vectorizing a pointer ref: ");
+ dump_printf (MSG_NOTE, "%T\n", DR_BASE_OBJECT (dr));
+ }
+
+ /* (1) Create the new aggregate-pointer variable.
+ Vector and array types inherit the alias set of their component
+ type by default so we need to use a ref-all pointer if the data
+ reference does not conflict with the created aggregated data
+ reference because it is not addressable. */
+ bool need_ref_all = false;
+ if (!alias_sets_conflict_p (get_alias_set (aggr_type),
+ get_alias_set (DR_REF (dr))))
+ need_ref_all = true;
+ /* Likewise for any of the data references in the stmt group. */
+ else if (DR_GROUP_SIZE (stmt_info) > 1)
+ {
+ stmt_vec_info sinfo = DR_GROUP_FIRST_ELEMENT (stmt_info);
+ do
+ {
+ struct data_reference *sdr = STMT_VINFO_DATA_REF (sinfo);
+ if (!alias_sets_conflict_p (get_alias_set (aggr_type),
+ get_alias_set (DR_REF (sdr))))
+ {
+ need_ref_all = true;
+ break;
+ }
+ sinfo = DR_GROUP_NEXT_ELEMENT (sinfo);
+ }
+ while (sinfo);
+ }
+ aggr_ptr_type = build_pointer_type_for_mode (aggr_type, ptr_mode,
+ need_ref_all);
+ aggr_ptr = vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var, base_name);
+
+
+ /* Note: If the dataref is in an inner-loop nested in LOOP, and we are
+ vectorizing LOOP (i.e., outer-loop vectorization), we need to create two
+ def-use update cycles for the pointer: one relative to the outer-loop
+ (LOOP), which is what steps (3) and (4) below do. The other is relative
+ to the inner-loop (which is the inner-most loop containing the dataref),
+ and this is done be step (5) below.
+
+ When vectorizing inner-most loops, the vectorized loop (LOOP) is also the
+ inner-most loop, and so steps (3),(4) work the same, and step (5) is
+ redundant. Steps (3),(4) create the following:
+
+ vp0 = &base_addr;
+ LOOP: vp1 = phi(vp0,vp2)
+ ...
+ ...
+ vp2 = vp1 + step
+ goto LOOP
+
+ If there is an inner-loop nested in loop, then step (5) will also be
+ applied, and an additional update in the inner-loop will be created:
+
+ vp0 = &base_addr;
+ LOOP: vp1 = phi(vp0,vp2)
+ ...
+ inner: vp3 = phi(vp1,vp4)
+ vp4 = vp3 + inner_step
+ if () goto inner
+ ...
+ vp2 = vp1 + step
+ if () goto LOOP */
+
+ /* (2) Calculate the initial address of the aggregate-pointer, and set
+ the aggregate-pointer to point to it before the loop. */
+
+ /* Create: (&(base[init_val]+offset) in the loop preheader. */
+
+ new_temp = vect_create_addr_base_for_vector_ref (vinfo,
+ stmt_info, &new_stmt_list,
+ offset);
+ if (new_stmt_list)
+ {
+ if (pe)
+ {
+ new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmt_list);
+ gcc_assert (!new_bb);
+ }
+ else
+ gsi_insert_seq_before (gsi, new_stmt_list, GSI_SAME_STMT);
+ }
+
+ *initial_address = new_temp;
+ aggr_ptr_init = new_temp;
+
+ /* (3) Handle the updating of the aggregate-pointer inside the loop.
+ This is needed when ONLY_INIT is false, and also when AT_LOOP is the
+ inner-loop nested in LOOP (during outer-loop vectorization). */
+
+ /* No update in loop is required. */
+ if (only_init && (!loop_vinfo || at_loop == loop))
+ aptr = aggr_ptr_init;
+ else
+ {
+ /* Accesses to invariant addresses should be handled specially
+ by the caller. */
+ tree step = vect_dr_behavior (vinfo, dr_info)->step;
+ gcc_assert (!integer_zerop (step));
+
+ if (iv_step == NULL_TREE)
+ {
+ /* The step of the aggregate pointer is the type size,
+ negated for downward accesses. */
+ iv_step = TYPE_SIZE_UNIT (aggr_type);
+ if (tree_int_cst_sgn (step) == -1)
+ iv_step = fold_build1 (NEGATE_EXPR, TREE_TYPE (iv_step), iv_step);
+ }
+
+ standard_iv_increment_position (loop, &incr_gsi, &insert_after);
+
+ create_iv (aggr_ptr_init,
+ fold_convert (aggr_ptr_type, iv_step),
+ aggr_ptr, loop, &incr_gsi, insert_after,
+ &indx_before_incr, &indx_after_incr);
+ incr = gsi_stmt (incr_gsi);
+
+ /* Copy the points-to information if it exists. */
+ if (DR_PTR_INFO (dr))
+ {
+ vect_duplicate_ssa_name_ptr_info (indx_before_incr, dr_info);
+ vect_duplicate_ssa_name_ptr_info (indx_after_incr, dr_info);
+ }
+ if (ptr_incr)
+ *ptr_incr = incr;
+
+ aptr = indx_before_incr;
+ }
+
+ if (!nested_in_vect_loop || only_init)
+ return aptr;
+
+
+ /* (4) Handle the updating of the aggregate-pointer inside the inner-loop
+ nested in LOOP, if exists. */
+
+ gcc_assert (nested_in_vect_loop);
+ if (!only_init)
+ {
+ standard_iv_increment_position (containing_loop, &incr_gsi,
+ &insert_after);
+ create_iv (aptr, fold_convert (aggr_ptr_type, DR_STEP (dr)), aggr_ptr,
+ containing_loop, &incr_gsi, insert_after, &indx_before_incr,
+ &indx_after_incr);
+ incr = gsi_stmt (incr_gsi);
+
+ /* Copy the points-to information if it exists. */
+ if (DR_PTR_INFO (dr))
+ {
+ vect_duplicate_ssa_name_ptr_info (indx_before_incr, dr_info);
+ vect_duplicate_ssa_name_ptr_info (indx_after_incr, dr_info);
+ }
+ if (ptr_incr)
+ *ptr_incr = incr;
+
+ return indx_before_incr;
+ }
+ else
+ gcc_unreachable ();
+}
+
+
+/* Function bump_vector_ptr
+
+ Increment a pointer (to a vector type) by vector-size. If requested,
+ i.e. if PTR-INCR is given, then also connect the new increment stmt
+ to the existing def-use update-chain of the pointer, by modifying
+ the PTR_INCR as illustrated below:
+
+ The pointer def-use update-chain before this function:
+ DATAREF_PTR = phi (p_0, p_2)
+ ....
+ PTR_INCR: p_2 = DATAREF_PTR + step
+
+ The pointer def-use update-chain after this function:
+ DATAREF_PTR = phi (p_0, p_2)
+ ....
+ NEW_DATAREF_PTR = DATAREF_PTR + BUMP
+ ....
+ PTR_INCR: p_2 = NEW_DATAREF_PTR + step
+
+ Input:
+ DATAREF_PTR - ssa_name of a pointer (to vector type) that is being updated
+ in the loop.
+ PTR_INCR - optional. The stmt that updates the pointer in each iteration of
+ the loop. The increment amount across iterations is expected
+ to be vector_size.
+ BSI - location where the new update stmt is to be placed.
+ STMT_INFO - the original scalar memory-access stmt that is being vectorized.
+ BUMP - optional. The offset by which to bump the pointer. If not given,
+ the offset is assumed to be vector_size.
+
+ Output: Return NEW_DATAREF_PTR as illustrated above.
+
+*/
+
+tree
+bump_vector_ptr (vec_info *vinfo,
+ tree dataref_ptr, gimple *ptr_incr, gimple_stmt_iterator *gsi,
+ stmt_vec_info stmt_info, tree bump)
+{
+ struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ tree update = TYPE_SIZE_UNIT (vectype);
+ gimple *incr_stmt;
+ ssa_op_iter iter;
+ use_operand_p use_p;
+ tree new_dataref_ptr;
+
+ if (bump)
+ update = bump;
+
+ if (TREE_CODE (dataref_ptr) == SSA_NAME)
+ new_dataref_ptr = copy_ssa_name (dataref_ptr);
+ else
+ new_dataref_ptr = make_ssa_name (TREE_TYPE (dataref_ptr));
+ incr_stmt = gimple_build_assign (new_dataref_ptr, POINTER_PLUS_EXPR,
+ dataref_ptr, update);
+ vect_finish_stmt_generation (vinfo, stmt_info, incr_stmt, gsi);
+ /* Fold the increment, avoiding excessive chains use-def chains of
+ those, leading to compile-time issues for passes until the next
+ forwprop pass which would do this as well. */
+ gimple_stmt_iterator fold_gsi = gsi_for_stmt (incr_stmt);
+ if (fold_stmt (&fold_gsi, follow_all_ssa_edges))
+ {
+ incr_stmt = gsi_stmt (fold_gsi);
+ update_stmt (incr_stmt);
+ }
+
+ /* Copy the points-to information if it exists. */
+ if (DR_PTR_INFO (dr))
+ {
+ duplicate_ssa_name_ptr_info (new_dataref_ptr, DR_PTR_INFO (dr));
+ mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (new_dataref_ptr));
+ }
+
+ if (!ptr_incr)
+ return new_dataref_ptr;
+
+ /* Update the vector-pointer's cross-iteration increment. */
+ FOR_EACH_SSA_USE_OPERAND (use_p, ptr_incr, iter, SSA_OP_USE)
+ {
+ tree use = USE_FROM_PTR (use_p);
+
+ if (use == dataref_ptr)
+ SET_USE (use_p, new_dataref_ptr);
+ else
+ gcc_assert (operand_equal_p (use, update, 0));
+ }
+
+ return new_dataref_ptr;
+}
+
+
+/* Copy memory reference info such as base/clique from the SRC reference
+ to the DEST MEM_REF. */
+
+void
+vect_copy_ref_info (tree dest, tree src)
+{
+ if (TREE_CODE (dest) != MEM_REF)
+ return;
+
+ tree src_base = src;
+ while (handled_component_p (src_base))
+ src_base = TREE_OPERAND (src_base, 0);
+ if (TREE_CODE (src_base) != MEM_REF
+ && TREE_CODE (src_base) != TARGET_MEM_REF)
+ return;
+
+ MR_DEPENDENCE_CLIQUE (dest) = MR_DEPENDENCE_CLIQUE (src_base);
+ MR_DEPENDENCE_BASE (dest) = MR_DEPENDENCE_BASE (src_base);
+}
+
+
+/* Function vect_create_destination_var.
+
+ Create a new temporary of type VECTYPE. */
+
+tree
+vect_create_destination_var (tree scalar_dest, tree vectype)
+{
+ tree vec_dest;
+ const char *name;
+ char *new_name;
+ tree type;
+ enum vect_var_kind kind;
+
+ kind = vectype
+ ? VECTOR_BOOLEAN_TYPE_P (vectype)
+ ? vect_mask_var
+ : vect_simple_var
+ : vect_scalar_var;
+ type = vectype ? vectype : TREE_TYPE (scalar_dest);
+
+ gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
+
+ name = get_name (scalar_dest);
+ if (name)
+ new_name = xasprintf ("%s_%u", name, SSA_NAME_VERSION (scalar_dest));
+ else
+ new_name = xasprintf ("_%u", SSA_NAME_VERSION (scalar_dest));
+ vec_dest = vect_get_new_vect_var (type, kind, new_name);
+ free (new_name);
+
+ return vec_dest;
+}
+
+/* Function vect_grouped_store_supported.
+
+ Returns TRUE if interleave high and interleave low permutations
+ are supported, and FALSE otherwise. */
+
+bool
+vect_grouped_store_supported (tree vectype, unsigned HOST_WIDE_INT count)
+{
+ machine_mode mode = TYPE_MODE (vectype);
+
+ /* vect_permute_store_chain requires the group size to be equal to 3 or
+ be a power of two. */
+ if (count != 3 && exact_log2 (count) == -1)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "the size of the group of accesses"
+ " is not a power of 2 or not eqaul to 3\n");
+ return false;
+ }
+
+ /* Check that the permutation is supported. */
+ if (VECTOR_MODE_P (mode))
+ {
+ unsigned int i;
+ if (count == 3)
+ {
+ unsigned int j0 = 0, j1 = 0, j2 = 0;
+ unsigned int i, j;
+
+ unsigned int nelt;
+ if (!GET_MODE_NUNITS (mode).is_constant (&nelt))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "cannot handle groups of 3 stores for"
+ " variable-length vectors\n");
+ return false;
+ }
+
+ vec_perm_builder sel (nelt, nelt, 1);
+ sel.quick_grow (nelt);
+ vec_perm_indices indices;
+ for (j = 0; j < 3; j++)
+ {
+ int nelt0 = ((3 - j) * nelt) % 3;
+ int nelt1 = ((3 - j) * nelt + 1) % 3;
+ int nelt2 = ((3 - j) * nelt + 2) % 3;
+ for (i = 0; i < nelt; i++)
+ {
+ if (3 * i + nelt0 < nelt)
+ sel[3 * i + nelt0] = j0++;
+ if (3 * i + nelt1 < nelt)
+ sel[3 * i + nelt1] = nelt + j1++;
+ if (3 * i + nelt2 < nelt)
+ sel[3 * i + nelt2] = 0;
+ }
+ indices.new_vector (sel, 2, nelt);
+ if (!can_vec_perm_const_p (mode, indices))
+ {
+ if (dump_enabled_p ())
+ dump_printf (MSG_MISSED_OPTIMIZATION,
+ "permutation op not supported by target.\n");
+ return false;
+ }
+
+ for (i = 0; i < nelt; i++)
+ {
+ if (3 * i + nelt0 < nelt)
+ sel[3 * i + nelt0] = 3 * i + nelt0;
+ if (3 * i + nelt1 < nelt)
+ sel[3 * i + nelt1] = 3 * i + nelt1;
+ if (3 * i + nelt2 < nelt)
+ sel[3 * i + nelt2] = nelt + j2++;
+ }
+ indices.new_vector (sel, 2, nelt);
+ if (!can_vec_perm_const_p (mode, indices))
+ {
+ if (dump_enabled_p ())
+ dump_printf (MSG_MISSED_OPTIMIZATION,
+ "permutation op not supported by target.\n");
+ return false;
+ }
+ }
+ return true;
+ }
+ else
+ {
+ /* If length is not equal to 3 then only power of 2 is supported. */
+ gcc_assert (pow2p_hwi (count));
+ poly_uint64 nelt = GET_MODE_NUNITS (mode);
+
+ /* The encoding has 2 interleaved stepped patterns. */
+ vec_perm_builder sel (nelt, 2, 3);
+ sel.quick_grow (6);
+ for (i = 0; i < 3; i++)
+ {
+ sel[i * 2] = i;
+ sel[i * 2 + 1] = i + nelt;
+ }
+ vec_perm_indices indices (sel, 2, nelt);
+ if (can_vec_perm_const_p (mode, indices))
+ {
+ for (i = 0; i < 6; i++)
+ sel[i] += exact_div (nelt, 2);
+ indices.new_vector (sel, 2, nelt);
+ if (can_vec_perm_const_p (mode, indices))
+ return true;
+ }
+ }
+ }
+
+ if (dump_enabled_p ())
+ dump_printf (MSG_MISSED_OPTIMIZATION,
+ "permutation op not supported by target.\n");
+ return false;
+}
+
+
+/* Return TRUE if vec_{mask_}store_lanes is available for COUNT vectors of
+ type VECTYPE. MASKED_P says whether the masked form is needed. */
+
+bool
+vect_store_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count,
+ bool masked_p)
+{
+ if (masked_p)
+ return vect_lanes_optab_supported_p ("vec_mask_store_lanes",
+ vec_mask_store_lanes_optab,
+ vectype, count);
+ else
+ return vect_lanes_optab_supported_p ("vec_store_lanes",
+ vec_store_lanes_optab,
+ vectype, count);
+}
+
+
+/* Function vect_permute_store_chain.
+
+ Given a chain of interleaved stores in DR_CHAIN of LENGTH that must be
+ a power of 2 or equal to 3, generate interleave_high/low stmts to reorder
+ the data correctly for the stores. Return the final references for stores
+ in RESULT_CHAIN.
+
+ E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
+ The input is 4 vectors each containing 8 elements. We assign a number to
+ each element, the input sequence is:
+
+ 1st vec: 0 1 2 3 4 5 6 7
+ 2nd vec: 8 9 10 11 12 13 14 15
+ 3rd vec: 16 17 18 19 20 21 22 23
+ 4th vec: 24 25 26 27 28 29 30 31
+
+ The output sequence should be:
+
+ 1st vec: 0 8 16 24 1 9 17 25
+ 2nd vec: 2 10 18 26 3 11 19 27
+ 3rd vec: 4 12 20 28 5 13 21 30
+ 4th vec: 6 14 22 30 7 15 23 31
+
+ i.e., we interleave the contents of the four vectors in their order.
+
+ We use interleave_high/low instructions to create such output. The input of
+ each interleave_high/low operation is two vectors:
+ 1st vec 2nd vec
+ 0 1 2 3 4 5 6 7
+ the even elements of the result vector are obtained left-to-right from the
+ high/low elements of the first vector. The odd elements of the result are
+ obtained left-to-right from the high/low elements of the second vector.
+ The output of interleave_high will be: 0 4 1 5
+ and of interleave_low: 2 6 3 7
+
+
+ The permutation is done in log LENGTH stages. In each stage interleave_high
+ and interleave_low stmts are created for each pair of vectors in DR_CHAIN,
+ where the first argument is taken from the first half of DR_CHAIN and the
+ second argument from it's second half.
+ In our example,
+
+ I1: interleave_high (1st vec, 3rd vec)
+ I2: interleave_low (1st vec, 3rd vec)
+ I3: interleave_high (2nd vec, 4th vec)
+ I4: interleave_low (2nd vec, 4th vec)
+
+ The output for the first stage is:
+
+ I1: 0 16 1 17 2 18 3 19
+ I2: 4 20 5 21 6 22 7 23
+ I3: 8 24 9 25 10 26 11 27
+ I4: 12 28 13 29 14 30 15 31
+
+ The output of the second stage, i.e. the final result is:
+
+ I1: 0 8 16 24 1 9 17 25
+ I2: 2 10 18 26 3 11 19 27
+ I3: 4 12 20 28 5 13 21 30
+ I4: 6 14 22 30 7 15 23 31. */
+
+void
+vect_permute_store_chain (vec_info *vinfo, vec<tree> &dr_chain,
+ unsigned int length,
+ stmt_vec_info stmt_info,
+ gimple_stmt_iterator *gsi,
+ vec<tree> *result_chain)
+{
+ tree vect1, vect2, high, low;
+ gimple *perm_stmt;
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ tree perm_mask_low, perm_mask_high;
+ tree data_ref;
+ tree perm3_mask_low, perm3_mask_high;
+ unsigned int i, j, n, log_length = exact_log2 (length);
+
+ result_chain->quick_grow (length);
+ memcpy (result_chain->address (), dr_chain.address (),
+ length * sizeof (tree));
+
+ if (length == 3)
+ {
+ /* vect_grouped_store_supported ensures that this is constant. */
+ unsigned int nelt = TYPE_VECTOR_SUBPARTS (vectype).to_constant ();
+ unsigned int j0 = 0, j1 = 0, j2 = 0;
+
+ vec_perm_builder sel (nelt, nelt, 1);
+ sel.quick_grow (nelt);
+ vec_perm_indices indices;
+ for (j = 0; j < 3; j++)
+ {
+ int nelt0 = ((3 - j) * nelt) % 3;
+ int nelt1 = ((3 - j) * nelt + 1) % 3;
+ int nelt2 = ((3 - j) * nelt + 2) % 3;
+
+ for (i = 0; i < nelt; i++)
+ {
+ if (3 * i + nelt0 < nelt)
+ sel[3 * i + nelt0] = j0++;
+ if (3 * i + nelt1 < nelt)
+ sel[3 * i + nelt1] = nelt + j1++;
+ if (3 * i + nelt2 < nelt)
+ sel[3 * i + nelt2] = 0;
+ }
+ indices.new_vector (sel, 2, nelt);
+ perm3_mask_low = vect_gen_perm_mask_checked (vectype, indices);
+
+ for (i = 0; i < nelt; i++)
+ {
+ if (3 * i + nelt0 < nelt)
+ sel[3 * i + nelt0] = 3 * i + nelt0;
+ if (3 * i + nelt1 < nelt)
+ sel[3 * i + nelt1] = 3 * i + nelt1;
+ if (3 * i + nelt2 < nelt)
+ sel[3 * i + nelt2] = nelt + j2++;
+ }
+ indices.new_vector (sel, 2, nelt);
+ perm3_mask_high = vect_gen_perm_mask_checked (vectype, indices);
+
+ vect1 = dr_chain[0];
+ vect2 = dr_chain[1];
+
+ /* Create interleaving stmt:
+ low = VEC_PERM_EXPR <vect1, vect2,
+ {j, nelt, *, j + 1, nelt + j + 1, *,
+ j + 2, nelt + j + 2, *, ...}> */
+ data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low");
+ perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect1,
+ vect2, perm3_mask_low);
+ vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
+
+ vect1 = data_ref;
+ vect2 = dr_chain[2];
+ /* Create interleaving stmt:
+ low = VEC_PERM_EXPR <vect1, vect2,
+ {0, 1, nelt + j, 3, 4, nelt + j + 1,
+ 6, 7, nelt + j + 2, ...}> */
+ data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high");
+ perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect1,
+ vect2, perm3_mask_high);
+ vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
+ (*result_chain)[j] = data_ref;
+ }
+ }
+ else
+ {
+ /* If length is not equal to 3 then only power of 2 is supported. */
+ gcc_assert (pow2p_hwi (length));
+
+ /* The encoding has 2 interleaved stepped patterns. */
+ poly_uint64 nelt = TYPE_VECTOR_SUBPARTS (vectype);
+ vec_perm_builder sel (nelt, 2, 3);
+ sel.quick_grow (6);
+ for (i = 0; i < 3; i++)
+ {
+ sel[i * 2] = i;
+ sel[i * 2 + 1] = i + nelt;
+ }
+ vec_perm_indices indices (sel, 2, nelt);
+ perm_mask_high = vect_gen_perm_mask_checked (vectype, indices);
+
+ for (i = 0; i < 6; i++)
+ sel[i] += exact_div (nelt, 2);
+ indices.new_vector (sel, 2, nelt);
+ perm_mask_low = vect_gen_perm_mask_checked (vectype, indices);
+
+ for (i = 0, n = log_length; i < n; i++)
+ {
+ for (j = 0; j < length/2; j++)
+ {
+ vect1 = dr_chain[j];
+ vect2 = dr_chain[j+length/2];
+
+ /* Create interleaving stmt:
+ high = VEC_PERM_EXPR <vect1, vect2, {0, nelt, 1, nelt+1,
+ ...}> */
+ high = make_temp_ssa_name (vectype, NULL, "vect_inter_high");
+ perm_stmt = gimple_build_assign (high, VEC_PERM_EXPR, vect1,
+ vect2, perm_mask_high);
+ vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
+ (*result_chain)[2*j] = high;
+
+ /* Create interleaving stmt:
+ low = VEC_PERM_EXPR <vect1, vect2,
+ {nelt/2, nelt*3/2, nelt/2+1, nelt*3/2+1,
+ ...}> */
+ low = make_temp_ssa_name (vectype, NULL, "vect_inter_low");
+ perm_stmt = gimple_build_assign (low, VEC_PERM_EXPR, vect1,
+ vect2, perm_mask_low);
+ vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
+ (*result_chain)[2*j+1] = low;
+ }
+ memcpy (dr_chain.address (), result_chain->address (),
+ length * sizeof (tree));
+ }
+ }
+}
+
+/* Function vect_setup_realignment
+
+ This function is called when vectorizing an unaligned load using
+ the dr_explicit_realign[_optimized] scheme.
+ This function generates the following code at the loop prolog:
+
+ p = initial_addr;
+ x msq_init = *(floor(p)); # prolog load
+ realignment_token = call target_builtin;
+ loop:
+ x msq = phi (msq_init, ---)
+
+ The stmts marked with x are generated only for the case of
+ dr_explicit_realign_optimized.
+
+ The code above sets up a new (vector) pointer, pointing to the first
+ location accessed by STMT_INFO, and a "floor-aligned" load using that
+ pointer. It also generates code to compute the "realignment-token"
+ (if the relevant target hook was defined), and creates a phi-node at the
+ loop-header bb whose arguments are the result of the prolog-load (created
+ by this function) and the result of a load that takes place in the loop
+ (to be created by the caller to this function).
+
+ For the case of dr_explicit_realign_optimized:
+ The caller to this function uses the phi-result (msq) to create the
+ realignment code inside the loop, and sets up the missing phi argument,
+ as follows:
+ loop:
+ msq = phi (msq_init, lsq)
+ lsq = *(floor(p')); # load in loop
+ result = realign_load (msq, lsq, realignment_token);
+
+ For the case of dr_explicit_realign:
+ loop:
+ msq = *(floor(p)); # load in loop
+ p' = p + (VS-1);
+ lsq = *(floor(p')); # load in loop
+ result = realign_load (msq, lsq, realignment_token);
+
+ Input:
+ STMT_INFO - (scalar) load stmt to be vectorized. This load accesses
+ a memory location that may be unaligned.
+ BSI - place where new code is to be inserted.
+ ALIGNMENT_SUPPORT_SCHEME - which of the two misalignment handling schemes
+ is used.
+
+ Output:
+ REALIGNMENT_TOKEN - the result of a call to the builtin_mask_for_load
+ target hook, if defined.
+ Return value - the result of the loop-header phi node. */
+
+tree
+vect_setup_realignment (vec_info *vinfo, stmt_vec_info stmt_info,
+ gimple_stmt_iterator *gsi, tree *realignment_token,
+ enum dr_alignment_support alignment_support_scheme,
+ tree init_addr,
+ class loop **at_loop)
+{
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
+ dr_vec_info *dr_info = STMT_VINFO_DR_INFO (stmt_info);
+ struct data_reference *dr = dr_info->dr;
+ class loop *loop = NULL;
+ edge pe = NULL;
+ tree scalar_dest = gimple_assign_lhs (stmt_info->stmt);
+ tree vec_dest;
+ gimple *inc;
+ tree ptr;
+ tree data_ref;
+ basic_block new_bb;
+ tree msq_init = NULL_TREE;
+ tree new_temp;
+ gphi *phi_stmt;
+ tree msq = NULL_TREE;
+ gimple_seq stmts = NULL;
+ bool compute_in_loop = false;
+ bool nested_in_vect_loop = false;
+ class loop *containing_loop = (gimple_bb (stmt_info->stmt))->loop_father;
+ class loop *loop_for_initial_load = NULL;
+
+ if (loop_vinfo)
+ {
+ loop = LOOP_VINFO_LOOP (loop_vinfo);
+ nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt_info);
+ }
+
+ gcc_assert (alignment_support_scheme == dr_explicit_realign
+ || alignment_support_scheme == dr_explicit_realign_optimized);
+
+ /* We need to generate three things:
+ 1. the misalignment computation
+ 2. the extra vector load (for the optimized realignment scheme).
+ 3. the phi node for the two vectors from which the realignment is
+ done (for the optimized realignment scheme). */
+
+ /* 1. Determine where to generate the misalignment computation.
+
+ If INIT_ADDR is NULL_TREE, this indicates that the misalignment
+ calculation will be generated by this function, outside the loop (in the
+ preheader). Otherwise, INIT_ADDR had already been computed for us by the
+ caller, inside the loop.
+
+ Background: If the misalignment remains fixed throughout the iterations of
+ the loop, then both realignment schemes are applicable, and also the
+ misalignment computation can be done outside LOOP. This is because we are
+ vectorizing LOOP, and so the memory accesses in LOOP advance in steps that
+ are a multiple of VS (the Vector Size), and therefore the misalignment in
+ different vectorized LOOP iterations is always the same.
+ The problem arises only if the memory access is in an inner-loop nested
+ inside LOOP, which is now being vectorized using outer-loop vectorization.
+ This is the only case when the misalignment of the memory access may not
+ remain fixed throughout the iterations of the inner-loop (as explained in
+ detail in vect_supportable_dr_alignment). In this case, not only is the
+ optimized realignment scheme not applicable, but also the misalignment
+ computation (and generation of the realignment token that is passed to
+ REALIGN_LOAD) have to be done inside the loop.
+
+ In short, INIT_ADDR indicates whether we are in a COMPUTE_IN_LOOP mode
+ or not, which in turn determines if the misalignment is computed inside
+ the inner-loop, or outside LOOP. */
+
+ if (init_addr != NULL_TREE || !loop_vinfo)
+ {
+ compute_in_loop = true;
+ gcc_assert (alignment_support_scheme == dr_explicit_realign);
+ }
+
+
+ /* 2. Determine where to generate the extra vector load.
+
+ For the optimized realignment scheme, instead of generating two vector
+ loads in each iteration, we generate a single extra vector load in the
+ preheader of the loop, and in each iteration reuse the result of the
+ vector load from the previous iteration. In case the memory access is in
+ an inner-loop nested inside LOOP, which is now being vectorized using
+ outer-loop vectorization, we need to determine whether this initial vector
+ load should be generated at the preheader of the inner-loop, or can be
+ generated at the preheader of LOOP. If the memory access has no evolution
+ in LOOP, it can be generated in the preheader of LOOP. Otherwise, it has
+ to be generated inside LOOP (in the preheader of the inner-loop). */
+
+ if (nested_in_vect_loop)
+ {
+ tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
+ bool invariant_in_outerloop =
+ (tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
+ loop_for_initial_load = (invariant_in_outerloop ? loop : loop->inner);
+ }
+ else
+ loop_for_initial_load = loop;
+ if (at_loop)
+ *at_loop = loop_for_initial_load;
+
+ if (loop_for_initial_load)
+ pe = loop_preheader_edge (loop_for_initial_load);
+
+ /* 3. For the case of the optimized realignment, create the first vector
+ load at the loop preheader. */
+
+ if (alignment_support_scheme == dr_explicit_realign_optimized)
+ {
+ /* Create msq_init = *(floor(p1)) in the loop preheader */
+ gassign *new_stmt;
+
+ gcc_assert (!compute_in_loop);
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+ ptr = vect_create_data_ref_ptr (vinfo, stmt_info, vectype,
+ loop_for_initial_load, NULL_TREE,
+ &init_addr, NULL, &inc, true);
+ if (TREE_CODE (ptr) == SSA_NAME)
+ new_temp = copy_ssa_name (ptr);
+ else
+ new_temp = make_ssa_name (TREE_TYPE (ptr));
+ poly_uint64 align = DR_TARGET_ALIGNMENT (dr_info);
+ tree type = TREE_TYPE (ptr);
+ new_stmt = gimple_build_assign
+ (new_temp, BIT_AND_EXPR, ptr,
+ fold_build2 (MINUS_EXPR, type,
+ build_int_cst (type, 0),
+ build_int_cst (type, align)));
+ new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
+ gcc_assert (!new_bb);
+ data_ref
+ = build2 (MEM_REF, TREE_TYPE (vec_dest), new_temp,
+ build_int_cst (reference_alias_ptr_type (DR_REF (dr)), 0));
+ vect_copy_ref_info (data_ref, DR_REF (dr));
+ new_stmt = gimple_build_assign (vec_dest, data_ref);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_assign_set_lhs (new_stmt, new_temp);
+ if (pe)
+ {
+ new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
+ gcc_assert (!new_bb);
+ }
+ else
+ gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
+
+ msq_init = gimple_assign_lhs (new_stmt);
+ }
+
+ /* 4. Create realignment token using a target builtin, if available.
+ It is done either inside the containing loop, or before LOOP (as
+ determined above). */
+
+ if (targetm.vectorize.builtin_mask_for_load)
+ {
+ gcall *new_stmt;
+ tree builtin_decl;
+
+ /* Compute INIT_ADDR - the initial addressed accessed by this memref. */
+ if (!init_addr)
+ {
+ /* Generate the INIT_ADDR computation outside LOOP. */
+ init_addr = vect_create_addr_base_for_vector_ref (vinfo,
+ stmt_info, &stmts,
+ NULL_TREE);
+ if (loop)
+ {
+ pe = loop_preheader_edge (loop);
+ new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
+ gcc_assert (!new_bb);
+ }
+ else
+ gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
+ }
+
+ builtin_decl = targetm.vectorize.builtin_mask_for_load ();
+ new_stmt = gimple_build_call (builtin_decl, 1, init_addr);
+ vec_dest =
+ vect_create_destination_var (scalar_dest,
+ gimple_call_return_type (new_stmt));
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_call_set_lhs (new_stmt, new_temp);
+
+ if (compute_in_loop)
+ gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
+ else
+ {
+ /* Generate the misalignment computation outside LOOP. */
+ pe = loop_preheader_edge (loop);
+ new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
+ gcc_assert (!new_bb);
+ }
+
+ *realignment_token = gimple_call_lhs (new_stmt);
+
+ /* The result of the CALL_EXPR to this builtin is determined from
+ the value of the parameter and no global variables are touched
+ which makes the builtin a "const" function. Requiring the
+ builtin to have the "const" attribute makes it unnecessary
+ to call mark_call_clobbered. */
+ gcc_assert (TREE_READONLY (builtin_decl));
+ }
+
+ if (alignment_support_scheme == dr_explicit_realign)
+ return msq;
+
+ gcc_assert (!compute_in_loop);
+ gcc_assert (alignment_support_scheme == dr_explicit_realign_optimized);
+
+
+ /* 5. Create msq = phi <msq_init, lsq> in loop */
+
+ pe = loop_preheader_edge (containing_loop);
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+ msq = make_ssa_name (vec_dest);
+ phi_stmt = create_phi_node (msq, containing_loop->header);
+ add_phi_arg (phi_stmt, msq_init, pe, UNKNOWN_LOCATION);
+
+ return msq;
+}
+
+
+/* Function vect_grouped_load_supported.
+
+ COUNT is the size of the load group (the number of statements plus the
+ number of gaps). SINGLE_ELEMENT_P is true if there is actually
+ only one statement, with a gap of COUNT - 1.
+
+ Returns true if a suitable permute exists. */
+
+bool
+vect_grouped_load_supported (tree vectype, bool single_element_p,
+ unsigned HOST_WIDE_INT count)
+{
+ machine_mode mode = TYPE_MODE (vectype);
+
+ /* If this is single-element interleaving with an element distance
+ that leaves unused vector loads around punt - we at least create
+ very sub-optimal code in that case (and blow up memory,
+ see PR65518). */
+ if (single_element_p && maybe_gt (count, TYPE_VECTOR_SUBPARTS (vectype)))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "single-element interleaving not supported "
+ "for not adjacent vector loads\n");
+ return false;
+ }
+
+ /* vect_permute_load_chain requires the group size to be equal to 3 or
+ be a power of two. */
+ if (count != 3 && exact_log2 (count) == -1)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "the size of the group of accesses"
+ " is not a power of 2 or not equal to 3\n");
+ return false;
+ }
+
+ /* Check that the permutation is supported. */
+ if (VECTOR_MODE_P (mode))
+ {
+ unsigned int i, j;
+ if (count == 3)
+ {
+ unsigned int nelt;
+ if (!GET_MODE_NUNITS (mode).is_constant (&nelt))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "cannot handle groups of 3 loads for"
+ " variable-length vectors\n");
+ return false;
+ }
+
+ vec_perm_builder sel (nelt, nelt, 1);
+ sel.quick_grow (nelt);
+ vec_perm_indices indices;
+ unsigned int k;
+ for (k = 0; k < 3; k++)
+ {
+ for (i = 0; i < nelt; i++)
+ if (3 * i + k < 2 * nelt)
+ sel[i] = 3 * i + k;
+ else
+ sel[i] = 0;
+ indices.new_vector (sel, 2, nelt);
+ if (!can_vec_perm_const_p (mode, indices))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "shuffle of 3 loads is not supported by"
+ " target\n");
+ return false;
+ }
+ for (i = 0, j = 0; i < nelt; i++)
+ if (3 * i + k < 2 * nelt)
+ sel[i] = i;
+ else
+ sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++);
+ indices.new_vector (sel, 2, nelt);
+ if (!can_vec_perm_const_p (mode, indices))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "shuffle of 3 loads is not supported by"
+ " target\n");
+ return false;
+ }
+ }
+ return true;
+ }
+ else
+ {
+ /* If length is not equal to 3 then only power of 2 is supported. */
+ gcc_assert (pow2p_hwi (count));
+ poly_uint64 nelt = GET_MODE_NUNITS (mode);
+
+ /* The encoding has a single stepped pattern. */
+ vec_perm_builder sel (nelt, 1, 3);
+ sel.quick_grow (3);
+ for (i = 0; i < 3; i++)
+ sel[i] = i * 2;
+ vec_perm_indices indices (sel, 2, nelt);
+ if (can_vec_perm_const_p (mode, indices))
+ {
+ for (i = 0; i < 3; i++)
+ sel[i] = i * 2 + 1;
+ indices.new_vector (sel, 2, nelt);
+ if (can_vec_perm_const_p (mode, indices))
+ return true;
+ }
+ }
+ }
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "extract even/odd not supported by target\n");
+ return false;
+}
+
+/* Return TRUE if vec_{masked_}load_lanes is available for COUNT vectors of
+ type VECTYPE. MASKED_P says whether the masked form is needed. */
+
+bool
+vect_load_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count,
+ bool masked_p)
+{
+ if (masked_p)
+ return vect_lanes_optab_supported_p ("vec_mask_load_lanes",
+ vec_mask_load_lanes_optab,
+ vectype, count);
+ else
+ return vect_lanes_optab_supported_p ("vec_load_lanes",
+ vec_load_lanes_optab,
+ vectype, count);
+}
+
+/* Function vect_permute_load_chain.
+
+ Given a chain of interleaved loads in DR_CHAIN of LENGTH that must be
+ a power of 2 or equal to 3, generate extract_even/odd stmts to reorder
+ the input data correctly. Return the final references for loads in
+ RESULT_CHAIN.
+
+ E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
+ The input is 4 vectors each containing 8 elements. We assign a number to each
+ element, the input sequence is:
+
+ 1st vec: 0 1 2 3 4 5 6 7
+ 2nd vec: 8 9 10 11 12 13 14 15
+ 3rd vec: 16 17 18 19 20 21 22 23
+ 4th vec: 24 25 26 27 28 29 30 31
+
+ The output sequence should be:
+
+ 1st vec: 0 4 8 12 16 20 24 28
+ 2nd vec: 1 5 9 13 17 21 25 29
+ 3rd vec: 2 6 10 14 18 22 26 30
+ 4th vec: 3 7 11 15 19 23 27 31
+
+ i.e., the first output vector should contain the first elements of each
+ interleaving group, etc.
+
+ We use extract_even/odd instructions to create such output. The input of
+ each extract_even/odd operation is two vectors
+ 1st vec 2nd vec
+ 0 1 2 3 4 5 6 7
+
+ and the output is the vector of extracted even/odd elements. The output of
+ extract_even will be: 0 2 4 6
+ and of extract_odd: 1 3 5 7
+
+
+ The permutation is done in log LENGTH stages. In each stage extract_even
+ and extract_odd stmts are created for each pair of vectors in DR_CHAIN in
+ their order. In our example,
+
+ E1: extract_even (1st vec, 2nd vec)
+ E2: extract_odd (1st vec, 2nd vec)
+ E3: extract_even (3rd vec, 4th vec)
+ E4: extract_odd (3rd vec, 4th vec)
+
+ The output for the first stage will be:
+
+ E1: 0 2 4 6 8 10 12 14
+ E2: 1 3 5 7 9 11 13 15
+ E3: 16 18 20 22 24 26 28 30
+ E4: 17 19 21 23 25 27 29 31
+
+ In order to proceed and create the correct sequence for the next stage (or
+ for the correct output, if the second stage is the last one, as in our
+ example), we first put the output of extract_even operation and then the
+ output of extract_odd in RESULT_CHAIN (which is then copied to DR_CHAIN).
+ The input for the second stage is:
+
+ 1st vec (E1): 0 2 4 6 8 10 12 14
+ 2nd vec (E3): 16 18 20 22 24 26 28 30
+ 3rd vec (E2): 1 3 5 7 9 11 13 15
+ 4th vec (E4): 17 19 21 23 25 27 29 31
+
+ The output of the second stage:
+
+ E1: 0 4 8 12 16 20 24 28
+ E2: 2 6 10 14 18 22 26 30
+ E3: 1 5 9 13 17 21 25 29
+ E4: 3 7 11 15 19 23 27 31
+
+ And RESULT_CHAIN after reordering:
+
+ 1st vec (E1): 0 4 8 12 16 20 24 28
+ 2nd vec (E3): 1 5 9 13 17 21 25 29
+ 3rd vec (E2): 2 6 10 14 18 22 26 30
+ 4th vec (E4): 3 7 11 15 19 23 27 31. */
+
+static void
+vect_permute_load_chain (vec_info *vinfo, vec<tree> dr_chain,
+ unsigned int length,
+ stmt_vec_info stmt_info,
+ gimple_stmt_iterator *gsi,
+ vec<tree> *result_chain)
+{
+ tree data_ref, first_vect, second_vect;
+ tree perm_mask_even, perm_mask_odd;
+ tree perm3_mask_low, perm3_mask_high;
+ gimple *perm_stmt;
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ unsigned int i, j, log_length = exact_log2 (length);
+
+ result_chain->quick_grow (length);
+ memcpy (result_chain->address (), dr_chain.address (),
+ length * sizeof (tree));
+
+ if (length == 3)
+ {
+ /* vect_grouped_load_supported ensures that this is constant. */
+ unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype).to_constant ();
+ unsigned int k;
+
+ vec_perm_builder sel (nelt, nelt, 1);
+ sel.quick_grow (nelt);
+ vec_perm_indices indices;
+ for (k = 0; k < 3; k++)
+ {
+ for (i = 0; i < nelt; i++)
+ if (3 * i + k < 2 * nelt)
+ sel[i] = 3 * i + k;
+ else
+ sel[i] = 0;
+ indices.new_vector (sel, 2, nelt);
+ perm3_mask_low = vect_gen_perm_mask_checked (vectype, indices);
+
+ for (i = 0, j = 0; i < nelt; i++)
+ if (3 * i + k < 2 * nelt)
+ sel[i] = i;
+ else
+ sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++);
+ indices.new_vector (sel, 2, nelt);
+ perm3_mask_high = vect_gen_perm_mask_checked (vectype, indices);
+
+ first_vect = dr_chain[0];
+ second_vect = dr_chain[1];
+
+ /* Create interleaving stmt (low part of):
+ low = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k,
+ ...}> */
+ data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low");
+ perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, first_vect,
+ second_vect, perm3_mask_low);
+ vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
+
+ /* Create interleaving stmt (high part of):
+ high = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k,
+ ...}> */
+ first_vect = data_ref;
+ second_vect = dr_chain[2];
+ data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high");
+ perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, first_vect,
+ second_vect, perm3_mask_high);
+ vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
+ (*result_chain)[k] = data_ref;
+ }
+ }
+ else
+ {
+ /* If length is not equal to 3 then only power of 2 is supported. */
+ gcc_assert (pow2p_hwi (length));
+
+ /* The encoding has a single stepped pattern. */
+ poly_uint64 nelt = TYPE_VECTOR_SUBPARTS (vectype);
+ vec_perm_builder sel (nelt, 1, 3);
+ sel.quick_grow (3);
+ for (i = 0; i < 3; ++i)
+ sel[i] = i * 2;
+ vec_perm_indices indices (sel, 2, nelt);
+ perm_mask_even = vect_gen_perm_mask_checked (vectype, indices);
+
+ for (i = 0; i < 3; ++i)
+ sel[i] = i * 2 + 1;
+ indices.new_vector (sel, 2, nelt);
+ perm_mask_odd = vect_gen_perm_mask_checked (vectype, indices);
+
+ for (i = 0; i < log_length; i++)
+ {
+ for (j = 0; j < length; j += 2)
+ {
+ first_vect = dr_chain[j];
+ second_vect = dr_chain[j+1];
+
+ /* data_ref = permute_even (first_data_ref, second_data_ref); */
+ data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_even");
+ perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
+ first_vect, second_vect,
+ perm_mask_even);
+ vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
+ (*result_chain)[j/2] = data_ref;
+
+ /* data_ref = permute_odd (first_data_ref, second_data_ref); */
+ data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_odd");
+ perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
+ first_vect, second_vect,
+ perm_mask_odd);
+ vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
+ (*result_chain)[j/2+length/2] = data_ref;
+ }
+ memcpy (dr_chain.address (), result_chain->address (),
+ length * sizeof (tree));
+ }
+ }
+}
+
+/* Function vect_shift_permute_load_chain.
+
+ Given a chain of loads in DR_CHAIN of LENGTH 2 or 3, generate
+ sequence of stmts to reorder the input data accordingly.
+ Return the final references for loads in RESULT_CHAIN.
+ Return true if successed, false otherwise.
+
+ E.g., LENGTH is 3 and the scalar type is short, i.e., VF is 8.
+ The input is 3 vectors each containing 8 elements. We assign a
+ number to each element, the input sequence is:
+
+ 1st vec: 0 1 2 3 4 5 6 7
+ 2nd vec: 8 9 10 11 12 13 14 15
+ 3rd vec: 16 17 18 19 20 21 22 23
+
+ The output sequence should be:
+
+ 1st vec: 0 3 6 9 12 15 18 21
+ 2nd vec: 1 4 7 10 13 16 19 22
+ 3rd vec: 2 5 8 11 14 17 20 23
+
+ We use 3 shuffle instructions and 3 * 3 - 1 shifts to create such output.
+
+ First we shuffle all 3 vectors to get correct elements order:
+
+ 1st vec: ( 0 3 6) ( 1 4 7) ( 2 5)
+ 2nd vec: ( 8 11 14) ( 9 12 15) (10 13)
+ 3rd vec: (16 19 22) (17 20 23) (18 21)
+
+ Next we unite and shift vector 3 times:
+
+ 1st step:
+ shift right by 6 the concatenation of:
+ "1st vec" and "2nd vec"
+ ( 0 3 6) ( 1 4 7) |( 2 5) _ ( 8 11 14) ( 9 12 15)| (10 13)
+ "2nd vec" and "3rd vec"
+ ( 8 11 14) ( 9 12 15) |(10 13) _ (16 19 22) (17 20 23)| (18 21)
+ "3rd vec" and "1st vec"
+ (16 19 22) (17 20 23) |(18 21) _ ( 0 3 6) ( 1 4 7)| ( 2 5)
+ | New vectors |
+
+ So that now new vectors are:
+
+ 1st vec: ( 2 5) ( 8 11 14) ( 9 12 15)
+ 2nd vec: (10 13) (16 19 22) (17 20 23)
+ 3rd vec: (18 21) ( 0 3 6) ( 1 4 7)
+
+ 2nd step:
+ shift right by 5 the concatenation of:
+ "1st vec" and "3rd vec"
+ ( 2 5) ( 8 11 14) |( 9 12 15) _ (18 21) ( 0 3 6)| ( 1 4 7)
+ "2nd vec" and "1st vec"
+ (10 13) (16 19 22) |(17 20 23) _ ( 2 5) ( 8 11 14)| ( 9 12 15)
+ "3rd vec" and "2nd vec"
+ (18 21) ( 0 3 6) |( 1 4 7) _ (10 13) (16 19 22)| (17 20 23)
+ | New vectors |
+
+ So that now new vectors are:
+
+ 1st vec: ( 9 12 15) (18 21) ( 0 3 6)
+ 2nd vec: (17 20 23) ( 2 5) ( 8 11 14)
+ 3rd vec: ( 1 4 7) (10 13) (16 19 22) READY
+
+ 3rd step:
+ shift right by 5 the concatenation of:
+ "1st vec" and "1st vec"
+ ( 9 12 15) (18 21) |( 0 3 6) _ ( 9 12 15) (18 21)| ( 0 3 6)
+ shift right by 3 the concatenation of:
+ "2nd vec" and "2nd vec"
+ (17 20 23) |( 2 5) ( 8 11 14) _ (17 20 23)| ( 2 5) ( 8 11 14)
+ | New vectors |
+
+ So that now all vectors are READY:
+ 1st vec: ( 0 3 6) ( 9 12 15) (18 21)
+ 2nd vec: ( 2 5) ( 8 11 14) (17 20 23)
+ 3rd vec: ( 1 4 7) (10 13) (16 19 22)
+
+ This algorithm is faster than one in vect_permute_load_chain if:
+ 1. "shift of a concatination" is faster than general permutation.
+ This is usually so.
+ 2. The TARGET machine can't execute vector instructions in parallel.
+ This is because each step of the algorithm depends on previous.
+ The algorithm in vect_permute_load_chain is much more parallel.
+
+ The algorithm is applicable only for LOAD CHAIN LENGTH less than VF.
+*/
+
+static bool
+vect_shift_permute_load_chain (vec_info *vinfo, vec<tree> dr_chain,
+ unsigned int length,
+ stmt_vec_info stmt_info,
+ gimple_stmt_iterator *gsi,
+ vec<tree> *result_chain)
+{
+ tree vect[3], vect_shift[3], data_ref, first_vect, second_vect;
+ tree perm2_mask1, perm2_mask2, perm3_mask;
+ tree select_mask, shift1_mask, shift2_mask, shift3_mask, shift4_mask;
+ gimple *perm_stmt;
+
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ unsigned int i;
+ loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
+
+ unsigned HOST_WIDE_INT nelt, vf;
+ if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nelt)
+ || !LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
+ /* Not supported for variable-length vectors. */
+ return false;
+
+ vec_perm_builder sel (nelt, nelt, 1);
+ sel.quick_grow (nelt);
+
+ result_chain->quick_grow (length);
+ memcpy (result_chain->address (), dr_chain.address (),
+ length * sizeof (tree));
+
+ if (pow2p_hwi (length) && vf > 4)
+ {
+ unsigned int j, log_length = exact_log2 (length);
+ for (i = 0; i < nelt / 2; ++i)
+ sel[i] = i * 2;
+ for (i = 0; i < nelt / 2; ++i)
+ sel[nelt / 2 + i] = i * 2 + 1;
+ vec_perm_indices indices (sel, 2, nelt);
+ if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "shuffle of 2 fields structure is not \
+ supported by target\n");
+ return false;
+ }
+ perm2_mask1 = vect_gen_perm_mask_checked (vectype, indices);
+
+ for (i = 0; i < nelt / 2; ++i)
+ sel[i] = i * 2 + 1;
+ for (i = 0; i < nelt / 2; ++i)
+ sel[nelt / 2 + i] = i * 2;
+ indices.new_vector (sel, 2, nelt);
+ if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "shuffle of 2 fields structure is not \
+ supported by target\n");
+ return false;
+ }
+ perm2_mask2 = vect_gen_perm_mask_checked (vectype, indices);
+
+ /* Generating permutation constant to shift all elements.
+ For vector length 8 it is {4 5 6 7 8 9 10 11}. */
+ for (i = 0; i < nelt; i++)
+ sel[i] = nelt / 2 + i;
+ indices.new_vector (sel, 2, nelt);
+ if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "shift permutation is not supported by target\n");
+ return false;
+ }
+ shift1_mask = vect_gen_perm_mask_checked (vectype, indices);
+
+ /* Generating permutation constant to select vector from 2.
+ For vector length 8 it is {0 1 2 3 12 13 14 15}. */
+ for (i = 0; i < nelt / 2; i++)
+ sel[i] = i;
+ for (i = nelt / 2; i < nelt; i++)
+ sel[i] = nelt + i;
+ indices.new_vector (sel, 2, nelt);
+ if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "select is not supported by target\n");
+ return false;
+ }
+ select_mask = vect_gen_perm_mask_checked (vectype, indices);
+
+ for (i = 0; i < log_length; i++)
+ {
+ for (j = 0; j < length; j += 2)
+ {
+ first_vect = dr_chain[j];
+ second_vect = dr_chain[j + 1];
+
+ data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2");
+ perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
+ first_vect, first_vect,
+ perm2_mask1);
+ vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
+ vect[0] = data_ref;
+
+ data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2");
+ perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
+ second_vect, second_vect,
+ perm2_mask2);
+ vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
+ vect[1] = data_ref;
+
+ data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift");
+ perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
+ vect[0], vect[1], shift1_mask);
+ vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
+ (*result_chain)[j/2 + length/2] = data_ref;
+
+ data_ref = make_temp_ssa_name (vectype, NULL, "vect_select");
+ perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
+ vect[0], vect[1], select_mask);
+ vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
+ (*result_chain)[j/2] = data_ref;
+ }
+ memcpy (dr_chain.address (), result_chain->address (),
+ length * sizeof (tree));
+ }
+ return true;
+ }
+ if (length == 3 && vf > 2)
+ {
+ unsigned int k = 0, l = 0;
+
+ /* Generating permutation constant to get all elements in rigth order.
+ For vector length 8 it is {0 3 6 1 4 7 2 5}. */
+ for (i = 0; i < nelt; i++)
+ {
+ if (3 * k + (l % 3) >= nelt)
+ {
+ k = 0;
+ l += (3 - (nelt % 3));
+ }
+ sel[i] = 3 * k + (l % 3);
+ k++;
+ }
+ vec_perm_indices indices (sel, 2, nelt);
+ if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "shuffle of 3 fields structure is not \
+ supported by target\n");
+ return false;
+ }
+ perm3_mask = vect_gen_perm_mask_checked (vectype, indices);
+
+ /* Generating permutation constant to shift all elements.
+ For vector length 8 it is {6 7 8 9 10 11 12 13}. */
+ for (i = 0; i < nelt; i++)
+ sel[i] = 2 * (nelt / 3) + (nelt % 3) + i;
+ indices.new_vector (sel, 2, nelt);
+ if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "shift permutation is not supported by target\n");
+ return false;
+ }
+ shift1_mask = vect_gen_perm_mask_checked (vectype, indices);
+
+ /* Generating permutation constant to shift all elements.
+ For vector length 8 it is {5 6 7 8 9 10 11 12}. */
+ for (i = 0; i < nelt; i++)
+ sel[i] = 2 * (nelt / 3) + 1 + i;
+ indices.new_vector (sel, 2, nelt);
+ if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "shift permutation is not supported by target\n");
+ return false;
+ }
+ shift2_mask = vect_gen_perm_mask_checked (vectype, indices);
+
+ /* Generating permutation constant to shift all elements.
+ For vector length 8 it is {3 4 5 6 7 8 9 10}. */
+ for (i = 0; i < nelt; i++)
+ sel[i] = (nelt / 3) + (nelt % 3) / 2 + i;
+ indices.new_vector (sel, 2, nelt);
+ if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "shift permutation is not supported by target\n");
+ return false;
+ }
+ shift3_mask = vect_gen_perm_mask_checked (vectype, indices);
+
+ /* Generating permutation constant to shift all elements.
+ For vector length 8 it is {5 6 7 8 9 10 11 12}. */
+ for (i = 0; i < nelt; i++)
+ sel[i] = 2 * (nelt / 3) + (nelt % 3) / 2 + i;
+ indices.new_vector (sel, 2, nelt);
+ if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "shift permutation is not supported by target\n");
+ return false;
+ }
+ shift4_mask = vect_gen_perm_mask_checked (vectype, indices);
+
+ for (k = 0; k < 3; k++)
+ {
+ data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3");
+ perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
+ dr_chain[k], dr_chain[k],
+ perm3_mask);
+ vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
+ vect[k] = data_ref;
+ }
+
+ for (k = 0; k < 3; k++)
+ {
+ data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift1");
+ perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
+ vect[k % 3], vect[(k + 1) % 3],
+ shift1_mask);
+ vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
+ vect_shift[k] = data_ref;
+ }
+
+ for (k = 0; k < 3; k++)
+ {
+ data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift2");
+ perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
+ vect_shift[(4 - k) % 3],
+ vect_shift[(3 - k) % 3],
+ shift2_mask);
+ vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
+ vect[k] = data_ref;
+ }
+
+ (*result_chain)[3 - (nelt % 3)] = vect[2];
+
+ data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift3");
+ perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect[0],
+ vect[0], shift3_mask);
+ vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
+ (*result_chain)[nelt % 3] = data_ref;
+
+ data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift4");
+ perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect[1],
+ vect[1], shift4_mask);
+ vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
+ (*result_chain)[0] = data_ref;
+ return true;
+ }
+ return false;
+}
+
+/* Function vect_transform_grouped_load.
+
+ Given a chain of input interleaved data-refs (in DR_CHAIN), build statements
+ to perform their permutation and ascribe the result vectorized statements to
+ the scalar statements.
+*/
+
+void
+vect_transform_grouped_load (vec_info *vinfo, stmt_vec_info stmt_info,
+ vec<tree> dr_chain,
+ int size, gimple_stmt_iterator *gsi)
+{
+ machine_mode mode;
+ vec<tree> result_chain = vNULL;
+
+ /* DR_CHAIN contains input data-refs that are a part of the interleaving.
+ RESULT_CHAIN is the output of vect_permute_load_chain, it contains permuted
+ vectors, that are ready for vector computation. */
+ result_chain.create (size);
+
+ /* If reassociation width for vector type is 2 or greater target machine can
+ execute 2 or more vector instructions in parallel. Otherwise try to
+ get chain for loads group using vect_shift_permute_load_chain. */
+ mode = TYPE_MODE (STMT_VINFO_VECTYPE (stmt_info));
+ if (targetm.sched.reassociation_width (VEC_PERM_EXPR, mode) > 1
+ || pow2p_hwi (size)
+ || !vect_shift_permute_load_chain (vinfo, dr_chain, size, stmt_info,
+ gsi, &result_chain))
+ vect_permute_load_chain (vinfo, dr_chain,
+ size, stmt_info, gsi, &result_chain);
+ vect_record_grouped_load_vectors (vinfo, stmt_info, result_chain);
+ result_chain.release ();
+}
+
+/* RESULT_CHAIN contains the output of a group of grouped loads that were
+ generated as part of the vectorization of STMT_INFO. Assign the statement
+ for each vector to the associated scalar statement. */
+
+void
+vect_record_grouped_load_vectors (vec_info *, stmt_vec_info stmt_info,
+ vec<tree> result_chain)
+{
+ stmt_vec_info first_stmt_info = DR_GROUP_FIRST_ELEMENT (stmt_info);
+ unsigned int i, gap_count;
+ tree tmp_data_ref;
+
+ /* Put a permuted data-ref in the VECTORIZED_STMT field.
+ Since we scan the chain starting from it's first node, their order
+ corresponds the order of data-refs in RESULT_CHAIN. */
+ stmt_vec_info next_stmt_info = first_stmt_info;
+ gap_count = 1;
+ FOR_EACH_VEC_ELT (result_chain, i, tmp_data_ref)
+ {
+ if (!next_stmt_info)
+ break;
+
+ /* Skip the gaps. Loads created for the gaps will be removed by dead
+ code elimination pass later. No need to check for the first stmt in
+ the group, since it always exists.
+ DR_GROUP_GAP is the number of steps in elements from the previous
+ access (if there is no gap DR_GROUP_GAP is 1). We skip loads that
+ correspond to the gaps. */
+ if (next_stmt_info != first_stmt_info
+ && gap_count < DR_GROUP_GAP (next_stmt_info))
+ {
+ gap_count++;
+ continue;
+ }
+
+ /* ??? The following needs cleanup after the removal of
+ DR_GROUP_SAME_DR_STMT. */
+ if (next_stmt_info)
+ {
+ gimple *new_stmt = SSA_NAME_DEF_STMT (tmp_data_ref);
+ /* We assume that if VEC_STMT is not NULL, this is a case of multiple
+ copies, and we put the new vector statement last. */
+ STMT_VINFO_VEC_STMTS (next_stmt_info).safe_push (new_stmt);
+
+ next_stmt_info = DR_GROUP_NEXT_ELEMENT (next_stmt_info);
+ gap_count = 1;
+ }
+ }
+}
+
+/* Function vect_force_dr_alignment_p.
+
+ Returns whether the alignment of a DECL can be forced to be aligned
+ on ALIGNMENT bit boundary. */
+
+bool
+vect_can_force_dr_alignment_p (const_tree decl, poly_uint64 alignment)
+{
+ if (!VAR_P (decl))
+ return false;
+
+ if (decl_in_symtab_p (decl)
+ && !symtab_node::get (decl)->can_increase_alignment_p ())
+ return false;
+
+ if (TREE_STATIC (decl))
+ return (known_le (alignment,
+ (unsigned HOST_WIDE_INT) MAX_OFILE_ALIGNMENT));
+ else
+ return (known_le (alignment, (unsigned HOST_WIDE_INT) MAX_STACK_ALIGNMENT));
+}
+
+/* Return whether the data reference DR_INFO is supported with respect to its
+ alignment.
+ If CHECK_ALIGNED_ACCESSES is TRUE, check if the access is supported even
+ it is aligned, i.e., check if it is possible to vectorize it with different
+ alignment. */
+
+enum dr_alignment_support
+vect_supportable_dr_alignment (vec_info *vinfo, dr_vec_info *dr_info,
+ tree vectype, int misalignment)
+{
+ data_reference *dr = dr_info->dr;
+ stmt_vec_info stmt_info = dr_info->stmt;
+ machine_mode mode = TYPE_MODE (vectype);
+ loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
+ class loop *vect_loop = NULL;
+ bool nested_in_vect_loop = false;
+
+ if (misalignment == 0)
+ return dr_aligned;
+
+ /* For now assume all conditional loads/stores support unaligned
+ access without any special code. */
+ if (gcall *stmt = dyn_cast <gcall *> (stmt_info->stmt))
+ if (gimple_call_internal_p (stmt)
+ && (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
+ || gimple_call_internal_fn (stmt) == IFN_MASK_STORE))
+ return dr_unaligned_supported;
+
+ if (loop_vinfo)
+ {
+ vect_loop = LOOP_VINFO_LOOP (loop_vinfo);
+ nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt_info);
+ }
+
+ /* Possibly unaligned access. */
+
+ /* We can choose between using the implicit realignment scheme (generating
+ a misaligned_move stmt) and the explicit realignment scheme (generating
+ aligned loads with a REALIGN_LOAD). There are two variants to the
+ explicit realignment scheme: optimized, and unoptimized.
+ We can optimize the realignment only if the step between consecutive
+ vector loads is equal to the vector size. Since the vector memory
+ accesses advance in steps of VS (Vector Size) in the vectorized loop, it
+ is guaranteed that the misalignment amount remains the same throughout the
+ execution of the vectorized loop. Therefore, we can create the
+ "realignment token" (the permutation mask that is passed to REALIGN_LOAD)
+ at the loop preheader.
+
+ However, in the case of outer-loop vectorization, when vectorizing a
+ memory access in the inner-loop nested within the LOOP that is now being
+ vectorized, while it is guaranteed that the misalignment of the
+ vectorized memory access will remain the same in different outer-loop
+ iterations, it is *not* guaranteed that is will remain the same throughout
+ the execution of the inner-loop. This is because the inner-loop advances
+ with the original scalar step (and not in steps of VS). If the inner-loop
+ step happens to be a multiple of VS, then the misalignment remains fixed
+ and we can use the optimized realignment scheme. For example:
+
+ for (i=0; i<N; i++)
+ for (j=0; j<M; j++)
+ s += a[i+j];
+
+ When vectorizing the i-loop in the above example, the step between
+ consecutive vector loads is 1, and so the misalignment does not remain
+ fixed across the execution of the inner-loop, and the realignment cannot
+ be optimized (as illustrated in the following pseudo vectorized loop):
+
+ for (i=0; i<N; i+=4)
+ for (j=0; j<M; j++){
+ vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...}
+ // when j is {0,1,2,3,4,5,6,7,...} respectively.
+ // (assuming that we start from an aligned address).
+ }
+
+ We therefore have to use the unoptimized realignment scheme:
+
+ for (i=0; i<N; i+=4)
+ for (j=k; j<M; j+=4)
+ vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming
+ // that the misalignment of the initial address is
+ // 0).
+
+ The loop can then be vectorized as follows:
+
+ for (k=0; k<4; k++){
+ rt = get_realignment_token (&vp[k]);
+ for (i=0; i<N; i+=4){
+ v1 = vp[i+k];
+ for (j=k; j<M; j+=4){
+ v2 = vp[i+j+VS-1];
+ va = REALIGN_LOAD <v1,v2,rt>;
+ vs += va;
+ v1 = v2;
+ }
+ }
+ } */
+
+ if (DR_IS_READ (dr))
+ {
+ if (optab_handler (vec_realign_load_optab, mode) != CODE_FOR_nothing
+ && (!targetm.vectorize.builtin_mask_for_load
+ || targetm.vectorize.builtin_mask_for_load ()))
+ {
+ /* If we are doing SLP then the accesses need not have the
+ same alignment, instead it depends on the SLP group size. */
+ if (loop_vinfo
+ && STMT_SLP_TYPE (stmt_info)
+ && !multiple_p (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
+ * (DR_GROUP_SIZE
+ (DR_GROUP_FIRST_ELEMENT (stmt_info))),
+ TYPE_VECTOR_SUBPARTS (vectype)))
+ ;
+ else if (!loop_vinfo
+ || (nested_in_vect_loop
+ && maybe_ne (TREE_INT_CST_LOW (DR_STEP (dr)),
+ GET_MODE_SIZE (TYPE_MODE (vectype)))))
+ return dr_explicit_realign;
+ else
+ return dr_explicit_realign_optimized;
+ }
+ }
+
+ bool is_packed = false;
+ tree type = TREE_TYPE (DR_REF (dr));
+ if (misalignment == DR_MISALIGNMENT_UNKNOWN)
+ is_packed = not_size_aligned (DR_REF (dr));
+ if (targetm.vectorize.support_vector_misalignment (mode, type, misalignment,
+ is_packed))
+ return dr_unaligned_supported;
+
+ /* Unsupported. */
+ return dr_unaligned_unsupported;
+}