aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-threadedge.cc
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/tree-ssa-threadedge.cc')
-rw-r--r--gcc/tree-ssa-threadedge.cc1460
1 files changed, 1460 insertions, 0 deletions
diff --git a/gcc/tree-ssa-threadedge.cc b/gcc/tree-ssa-threadedge.cc
new file mode 100644
index 0000000..4eb65ca
--- /dev/null
+++ b/gcc/tree-ssa-threadedge.cc
@@ -0,0 +1,1460 @@
+/* SSA Jump Threading
+ Copyright (C) 2005-2022 Free Software Foundation, Inc.
+ Contributed by Jeff Law <law@redhat.com>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 3, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "backend.h"
+#include "tree.h"
+#include "gimple.h"
+#include "predict.h"
+#include "ssa.h"
+#include "fold-const.h"
+#include "cfgloop.h"
+#include "gimple-iterator.h"
+#include "tree-cfg.h"
+#include "tree-ssa-threadupdate.h"
+#include "tree-ssa-scopedtables.h"
+#include "tree-ssa-threadedge.h"
+#include "gimple-fold.h"
+#include "cfganal.h"
+#include "alloc-pool.h"
+#include "vr-values.h"
+#include "gimple-range.h"
+#include "gimple-range-path.h"
+
+/* To avoid code explosion due to jump threading, we limit the
+ number of statements we are going to copy. This variable
+ holds the number of statements currently seen that we'll have
+ to copy as part of the jump threading process. */
+static int stmt_count;
+
+/* Array to record value-handles per SSA_NAME. */
+vec<tree> ssa_name_values;
+
+/* Set the value for the SSA name NAME to VALUE. */
+
+void
+set_ssa_name_value (tree name, tree value)
+{
+ if (SSA_NAME_VERSION (name) >= ssa_name_values.length ())
+ ssa_name_values.safe_grow_cleared (SSA_NAME_VERSION (name) + 1, true);
+ if (value && TREE_OVERFLOW_P (value))
+ value = drop_tree_overflow (value);
+ ssa_name_values[SSA_NAME_VERSION (name)] = value;
+}
+
+jump_threader::jump_threader (jt_simplifier *simplifier, jt_state *state)
+{
+ /* Initialize the per SSA_NAME value-handles array. */
+ gcc_assert (!ssa_name_values.exists ());
+ ssa_name_values.create (num_ssa_names);
+
+ dummy_cond = gimple_build_cond (NE_EXPR, integer_zero_node,
+ integer_zero_node, NULL, NULL);
+
+ m_registry = new fwd_jt_path_registry ();
+ m_simplifier = simplifier;
+ m_state = state;
+}
+
+jump_threader::~jump_threader (void)
+{
+ ssa_name_values.release ();
+ ggc_free (dummy_cond);
+ delete m_registry;
+}
+
+void
+jump_threader::remove_jump_threads_including (edge_def *e)
+{
+ m_registry->remove_jump_threads_including (e);
+}
+
+bool
+jump_threader::thread_through_all_blocks (bool may_peel_loop_headers)
+{
+ return m_registry->thread_through_all_blocks (may_peel_loop_headers);
+}
+
+static inline bool
+has_phis_p (basic_block bb)
+{
+ return !gsi_end_p (gsi_start_phis (bb));
+}
+
+/* Return TRUE for a block with PHIs but no statements. */
+
+static bool
+empty_block_with_phis_p (basic_block bb)
+{
+ return gsi_end_p (gsi_start_nondebug_bb (bb)) && has_phis_p (bb);
+}
+
+/* Return TRUE if we may be able to thread an incoming edge into
+ BB to an outgoing edge from BB. Return FALSE otherwise. */
+
+static bool
+potentially_threadable_block (basic_block bb)
+{
+ gimple_stmt_iterator gsi;
+
+ /* Special case. We can get blocks that are forwarders, but are
+ not optimized away because they forward from outside a loop
+ to the loop header. We want to thread through them as we can
+ sometimes thread to the loop exit, which is obviously profitable.
+ The interesting case here is when the block has PHIs. */
+ if (empty_block_with_phis_p (bb))
+ return true;
+
+ /* If BB has a single successor or a single predecessor, then
+ there is no threading opportunity. */
+ if (single_succ_p (bb) || single_pred_p (bb))
+ return false;
+
+ /* If BB does not end with a conditional, switch or computed goto,
+ then there is no threading opportunity. */
+ gsi = gsi_last_bb (bb);
+ if (gsi_end_p (gsi)
+ || ! gsi_stmt (gsi)
+ || (gimple_code (gsi_stmt (gsi)) != GIMPLE_COND
+ && gimple_code (gsi_stmt (gsi)) != GIMPLE_GOTO
+ && gimple_code (gsi_stmt (gsi)) != GIMPLE_SWITCH))
+ return false;
+
+ return true;
+}
+
+/* Record temporary equivalences created by PHIs at the target of the
+ edge E.
+
+ If a PHI which prevents threading is encountered, then return FALSE
+ indicating we should not thread this edge, else return TRUE. */
+
+bool
+jump_threader::record_temporary_equivalences_from_phis (edge e)
+{
+ gphi_iterator gsi;
+
+ /* Each PHI creates a temporary equivalence, record them.
+ These are context sensitive equivalences and will be removed
+ later. */
+ for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gphi *phi = gsi.phi ();
+ tree src = PHI_ARG_DEF_FROM_EDGE (phi, e);
+ tree dst = gimple_phi_result (phi);
+
+ /* If the desired argument is not the same as this PHI's result
+ and it is set by a PHI in E->dest, then we cannot thread
+ through E->dest. */
+ if (src != dst
+ && TREE_CODE (src) == SSA_NAME
+ && gimple_code (SSA_NAME_DEF_STMT (src)) == GIMPLE_PHI
+ && gimple_bb (SSA_NAME_DEF_STMT (src)) == e->dest)
+ return false;
+
+ /* We consider any non-virtual PHI as a statement since it
+ count result in a constant assignment or copy operation. */
+ if (!virtual_operand_p (dst))
+ stmt_count++;
+
+ m_state->register_equiv (dst, src, /*update_range=*/true);
+ }
+ return true;
+}
+
+/* Valueize hook for gimple_fold_stmt_to_constant_1. */
+
+static tree
+threadedge_valueize (tree t)
+{
+ if (TREE_CODE (t) == SSA_NAME)
+ {
+ tree tem = SSA_NAME_VALUE (t);
+ if (tem)
+ return tem;
+ }
+ return t;
+}
+
+/* Try to simplify each statement in E->dest, ultimately leading to
+ a simplification of the COND_EXPR at the end of E->dest.
+
+ Record unwind information for temporary equivalences onto STACK.
+
+ Uses M_SIMPLIFIER to further simplify statements using pass specific
+ information.
+
+ We might consider marking just those statements which ultimately
+ feed the COND_EXPR. It's not clear if the overhead of bookkeeping
+ would be recovered by trying to simplify fewer statements.
+
+ If we are able to simplify a statement into the form
+ SSA_NAME = (SSA_NAME | gimple invariant), then we can record
+ a context sensitive equivalence which may help us simplify
+ later statements in E->dest. */
+
+gimple *
+jump_threader::record_temporary_equivalences_from_stmts_at_dest (edge e)
+{
+ gimple *stmt = NULL;
+ gimple_stmt_iterator gsi;
+ int max_stmt_count;
+
+ max_stmt_count = param_max_jump_thread_duplication_stmts;
+
+ /* Walk through each statement in the block recording equivalences
+ we discover. Note any equivalences we discover are context
+ sensitive (ie, are dependent on traversing E) and must be unwound
+ when we're finished processing E. */
+ for (gsi = gsi_start_bb (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ stmt = gsi_stmt (gsi);
+
+ /* Ignore empty statements and labels. */
+ if (gimple_code (stmt) == GIMPLE_NOP
+ || gimple_code (stmt) == GIMPLE_LABEL
+ || is_gimple_debug (stmt))
+ continue;
+
+ /* If the statement has volatile operands, then we assume we
+ cannot thread through this block. This is overly
+ conservative in some ways. */
+ if (gimple_code (stmt) == GIMPLE_ASM
+ && gimple_asm_volatile_p (as_a <gasm *> (stmt)))
+ return NULL;
+
+ /* If the statement is a unique builtin, we cannot thread
+ through here. */
+ if (gimple_code (stmt) == GIMPLE_CALL
+ && gimple_call_internal_p (stmt)
+ && gimple_call_internal_unique_p (stmt))
+ return NULL;
+
+ /* We cannot thread through __builtin_constant_p, because an
+ expression that is constant on two threading paths may become
+ non-constant (i.e.: phi) when they merge. */
+ if (gimple_call_builtin_p (stmt, BUILT_IN_CONSTANT_P))
+ return NULL;
+
+ /* If duplicating this block is going to cause too much code
+ expansion, then do not thread through this block. */
+ stmt_count++;
+ if (stmt_count > max_stmt_count)
+ {
+ /* If any of the stmts in the PATH's dests are going to be
+ killed due to threading, grow the max count
+ accordingly. */
+ if (max_stmt_count
+ == param_max_jump_thread_duplication_stmts)
+ {
+ max_stmt_count += estimate_threading_killed_stmts (e->dest);
+ if (dump_file)
+ fprintf (dump_file, "threading bb %i up to %i stmts\n",
+ e->dest->index, max_stmt_count);
+ }
+ /* If we're still past the limit, we're done. */
+ if (stmt_count > max_stmt_count)
+ return NULL;
+ }
+
+ m_state->record_ranges_from_stmt (stmt, true);
+
+ /* If this is not a statement that sets an SSA_NAME to a new
+ value, then do not try to simplify this statement as it will
+ not simplify in any way that is helpful for jump threading. */
+ if ((gimple_code (stmt) != GIMPLE_ASSIGN
+ || TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
+ && (gimple_code (stmt) != GIMPLE_CALL
+ || gimple_call_lhs (stmt) == NULL_TREE
+ || TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME))
+ continue;
+
+ /* The result of __builtin_object_size depends on all the arguments
+ of a phi node. Temporarily using only one edge produces invalid
+ results. For example
+
+ if (x < 6)
+ goto l;
+ else
+ goto l;
+
+ l:
+ r = PHI <&w[2].a[1](2), &a.a[6](3)>
+ __builtin_object_size (r, 0)
+
+ The result of __builtin_object_size is defined to be the maximum of
+ remaining bytes. If we use only one edge on the phi, the result will
+ change to be the remaining bytes for the corresponding phi argument.
+
+ Similarly for __builtin_constant_p:
+
+ r = PHI <1(2), 2(3)>
+ __builtin_constant_p (r)
+
+ Both PHI arguments are constant, but x ? 1 : 2 is still not
+ constant. */
+
+ if (is_gimple_call (stmt))
+ {
+ tree fndecl = gimple_call_fndecl (stmt);
+ if (fndecl
+ && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)
+ && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_OBJECT_SIZE
+ || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P))
+ continue;
+ }
+
+ m_state->register_equivs_stmt (stmt, e->src, m_simplifier);
+ }
+ return stmt;
+}
+
+/* Simplify the control statement at the end of the block E->dest.
+
+ Use SIMPLIFY (a pointer to a callback function) to further simplify
+ a condition using pass specific information.
+
+ Return the simplified condition or NULL if simplification could
+ not be performed. When simplifying a GIMPLE_SWITCH, we may return
+ the CASE_LABEL_EXPR that will be taken. */
+
+tree
+jump_threader::simplify_control_stmt_condition (edge e, gimple *stmt)
+{
+ tree cond, cached_lhs;
+ enum gimple_code code = gimple_code (stmt);
+
+ /* For comparisons, we have to update both operands, then try
+ to simplify the comparison. */
+ if (code == GIMPLE_COND)
+ {
+ tree op0, op1;
+ enum tree_code cond_code;
+
+ op0 = gimple_cond_lhs (stmt);
+ op1 = gimple_cond_rhs (stmt);
+ cond_code = gimple_cond_code (stmt);
+
+ /* Get the current value of both operands. */
+ if (TREE_CODE (op0) == SSA_NAME)
+ {
+ for (int i = 0; i < 2; i++)
+ {
+ if (TREE_CODE (op0) == SSA_NAME
+ && SSA_NAME_VALUE (op0))
+ op0 = SSA_NAME_VALUE (op0);
+ else
+ break;
+ }
+ }
+
+ if (TREE_CODE (op1) == SSA_NAME)
+ {
+ for (int i = 0; i < 2; i++)
+ {
+ if (TREE_CODE (op1) == SSA_NAME
+ && SSA_NAME_VALUE (op1))
+ op1 = SSA_NAME_VALUE (op1);
+ else
+ break;
+ }
+ }
+
+ const unsigned recursion_limit = 4;
+
+ cached_lhs
+ = simplify_control_stmt_condition_1 (e, stmt, op0, cond_code, op1,
+ recursion_limit);
+
+ /* If we were testing an integer/pointer against a constant,
+ then we can trace the value of the SSA_NAME. If a value is
+ found, then the condition will collapse to a constant.
+
+ Return the SSA_NAME we want to trace back rather than the full
+ expression and give the threader a chance to find its value. */
+ if (cached_lhs == NULL)
+ {
+ /* Recover the original operands. They may have been simplified
+ using context sensitive equivalences. Those context sensitive
+ equivalences may not be valid on paths. */
+ tree op0 = gimple_cond_lhs (stmt);
+ tree op1 = gimple_cond_rhs (stmt);
+
+ if ((INTEGRAL_TYPE_P (TREE_TYPE (op0))
+ || POINTER_TYPE_P (TREE_TYPE (op0)))
+ && TREE_CODE (op0) == SSA_NAME
+ && TREE_CODE (op1) == INTEGER_CST)
+ return op0;
+ }
+
+ return cached_lhs;
+ }
+
+ if (code == GIMPLE_SWITCH)
+ cond = gimple_switch_index (as_a <gswitch *> (stmt));
+ else if (code == GIMPLE_GOTO)
+ cond = gimple_goto_dest (stmt);
+ else
+ gcc_unreachable ();
+
+ /* We can have conditionals which just test the state of a variable
+ rather than use a relational operator. These are simpler to handle. */
+ if (TREE_CODE (cond) == SSA_NAME)
+ {
+ tree original_lhs = cond;
+ cached_lhs = cond;
+
+ /* Get the variable's current value from the equivalence chains.
+
+ It is possible to get loops in the SSA_NAME_VALUE chains
+ (consider threading the backedge of a loop where we have
+ a loop invariant SSA_NAME used in the condition). */
+ if (cached_lhs)
+ {
+ for (int i = 0; i < 2; i++)
+ {
+ if (TREE_CODE (cached_lhs) == SSA_NAME
+ && SSA_NAME_VALUE (cached_lhs))
+ cached_lhs = SSA_NAME_VALUE (cached_lhs);
+ else
+ break;
+ }
+ }
+
+ /* If we haven't simplified to an invariant yet, then use the
+ pass specific callback to try and simplify it further. */
+ if (cached_lhs && ! is_gimple_min_invariant (cached_lhs))
+ {
+ if (code == GIMPLE_SWITCH)
+ {
+ /* Replace the index operand of the GIMPLE_SWITCH with any LHS
+ we found before handing off to VRP. If simplification is
+ possible, the simplified value will be a CASE_LABEL_EXPR of
+ the label that is proven to be taken. */
+ gswitch *dummy_switch = as_a<gswitch *> (gimple_copy (stmt));
+ gimple_switch_set_index (dummy_switch, cached_lhs);
+ cached_lhs = m_simplifier->simplify (dummy_switch, stmt, e->src,
+ m_state);
+ ggc_free (dummy_switch);
+ }
+ else
+ cached_lhs = m_simplifier->simplify (stmt, stmt, e->src, m_state);
+ }
+
+ /* We couldn't find an invariant. But, callers of this
+ function may be able to do something useful with the
+ unmodified destination. */
+ if (!cached_lhs)
+ cached_lhs = original_lhs;
+ }
+ else
+ cached_lhs = NULL;
+
+ return cached_lhs;
+}
+
+/* Recursive helper for simplify_control_stmt_condition. */
+
+tree
+jump_threader::simplify_control_stmt_condition_1
+ (edge e,
+ gimple *stmt,
+ tree op0,
+ enum tree_code cond_code,
+ tree op1,
+ unsigned limit)
+{
+ if (limit == 0)
+ return NULL_TREE;
+
+ /* We may need to canonicalize the comparison. For
+ example, op0 might be a constant while op1 is an
+ SSA_NAME. Failure to canonicalize will cause us to
+ miss threading opportunities. */
+ if (tree_swap_operands_p (op0, op1))
+ {
+ cond_code = swap_tree_comparison (cond_code);
+ std::swap (op0, op1);
+ }
+
+ /* If the condition has the form (A & B) CMP 0 or (A | B) CMP 0 then
+ recurse into the LHS to see if there is a dominating ASSERT_EXPR
+ of A or of B that makes this condition always true or always false
+ along the edge E. */
+ if ((cond_code == EQ_EXPR || cond_code == NE_EXPR)
+ && TREE_CODE (op0) == SSA_NAME
+ && integer_zerop (op1))
+ {
+ gimple *def_stmt = SSA_NAME_DEF_STMT (op0);
+ if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
+ ;
+ else if (gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR
+ || gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR)
+ {
+ enum tree_code rhs_code = gimple_assign_rhs_code (def_stmt);
+ const tree rhs1 = gimple_assign_rhs1 (def_stmt);
+ const tree rhs2 = gimple_assign_rhs2 (def_stmt);
+
+ /* Is A != 0 ? */
+ const tree res1
+ = simplify_control_stmt_condition_1 (e, def_stmt,
+ rhs1, NE_EXPR, op1,
+ limit - 1);
+ if (res1 == NULL_TREE)
+ ;
+ else if (rhs_code == BIT_AND_EXPR && integer_zerop (res1))
+ {
+ /* If A == 0 then (A & B) != 0 is always false. */
+ if (cond_code == NE_EXPR)
+ return boolean_false_node;
+ /* If A == 0 then (A & B) == 0 is always true. */
+ if (cond_code == EQ_EXPR)
+ return boolean_true_node;
+ }
+ else if (rhs_code == BIT_IOR_EXPR && integer_nonzerop (res1))
+ {
+ /* If A != 0 then (A | B) != 0 is always true. */
+ if (cond_code == NE_EXPR)
+ return boolean_true_node;
+ /* If A != 0 then (A | B) == 0 is always false. */
+ if (cond_code == EQ_EXPR)
+ return boolean_false_node;
+ }
+
+ /* Is B != 0 ? */
+ const tree res2
+ = simplify_control_stmt_condition_1 (e, def_stmt,
+ rhs2, NE_EXPR, op1,
+ limit - 1);
+ if (res2 == NULL_TREE)
+ ;
+ else if (rhs_code == BIT_AND_EXPR && integer_zerop (res2))
+ {
+ /* If B == 0 then (A & B) != 0 is always false. */
+ if (cond_code == NE_EXPR)
+ return boolean_false_node;
+ /* If B == 0 then (A & B) == 0 is always true. */
+ if (cond_code == EQ_EXPR)
+ return boolean_true_node;
+ }
+ else if (rhs_code == BIT_IOR_EXPR && integer_nonzerop (res2))
+ {
+ /* If B != 0 then (A | B) != 0 is always true. */
+ if (cond_code == NE_EXPR)
+ return boolean_true_node;
+ /* If B != 0 then (A | B) == 0 is always false. */
+ if (cond_code == EQ_EXPR)
+ return boolean_false_node;
+ }
+
+ if (res1 != NULL_TREE && res2 != NULL_TREE)
+ {
+ if (rhs_code == BIT_AND_EXPR
+ && TYPE_PRECISION (TREE_TYPE (op0)) == 1
+ && integer_nonzerop (res1)
+ && integer_nonzerop (res2))
+ {
+ /* If A != 0 and B != 0 then (bool)(A & B) != 0 is true. */
+ if (cond_code == NE_EXPR)
+ return boolean_true_node;
+ /* If A != 0 and B != 0 then (bool)(A & B) == 0 is false. */
+ if (cond_code == EQ_EXPR)
+ return boolean_false_node;
+ }
+
+ if (rhs_code == BIT_IOR_EXPR
+ && integer_zerop (res1)
+ && integer_zerop (res2))
+ {
+ /* If A == 0 and B == 0 then (A | B) != 0 is false. */
+ if (cond_code == NE_EXPR)
+ return boolean_false_node;
+ /* If A == 0 and B == 0 then (A | B) == 0 is true. */
+ if (cond_code == EQ_EXPR)
+ return boolean_true_node;
+ }
+ }
+ }
+ /* Handle (A CMP B) CMP 0. */
+ else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt))
+ == tcc_comparison)
+ {
+ tree rhs1 = gimple_assign_rhs1 (def_stmt);
+ tree rhs2 = gimple_assign_rhs2 (def_stmt);
+
+ tree_code new_cond = gimple_assign_rhs_code (def_stmt);
+ if (cond_code == EQ_EXPR)
+ new_cond = invert_tree_comparison (new_cond, false);
+
+ tree res
+ = simplify_control_stmt_condition_1 (e, def_stmt,
+ rhs1, new_cond, rhs2,
+ limit - 1);
+ if (res != NULL_TREE && is_gimple_min_invariant (res))
+ return res;
+ }
+ }
+
+ gimple_cond_set_code (dummy_cond, cond_code);
+ gimple_cond_set_lhs (dummy_cond, op0);
+ gimple_cond_set_rhs (dummy_cond, op1);
+
+ /* We absolutely do not care about any type conversions
+ we only care about a zero/nonzero value. */
+ fold_defer_overflow_warnings ();
+
+ tree res = fold_binary (cond_code, boolean_type_node, op0, op1);
+ if (res)
+ while (CONVERT_EXPR_P (res))
+ res = TREE_OPERAND (res, 0);
+
+ fold_undefer_overflow_warnings ((res && is_gimple_min_invariant (res)),
+ stmt, WARN_STRICT_OVERFLOW_CONDITIONAL);
+
+ /* If we have not simplified the condition down to an invariant,
+ then use the pass specific callback to simplify the condition. */
+ if (!res
+ || !is_gimple_min_invariant (res))
+ res = m_simplifier->simplify (dummy_cond, stmt, e->src, m_state);
+
+ return res;
+}
+
+/* Copy debug stmts from DEST's chain of single predecessors up to
+ SRC, so that we don't lose the bindings as PHI nodes are introduced
+ when DEST gains new predecessors. */
+void
+propagate_threaded_block_debug_into (basic_block dest, basic_block src)
+{
+ if (!MAY_HAVE_DEBUG_BIND_STMTS)
+ return;
+
+ if (!single_pred_p (dest))
+ return;
+
+ gcc_checking_assert (dest != src);
+
+ gimple_stmt_iterator gsi = gsi_after_labels (dest);
+ int i = 0;
+ const int alloc_count = 16; // ?? Should this be a PARAM?
+
+ /* Estimate the number of debug vars overridden in the beginning of
+ DEST, to tell how many we're going to need to begin with. */
+ for (gimple_stmt_iterator si = gsi;
+ i * 4 <= alloc_count * 3 && !gsi_end_p (si); gsi_next (&si))
+ {
+ gimple *stmt = gsi_stmt (si);
+ if (!is_gimple_debug (stmt))
+ break;
+ if (gimple_debug_nonbind_marker_p (stmt))
+ continue;
+ i++;
+ }
+
+ auto_vec<tree, alloc_count> fewvars;
+ hash_set<tree> *vars = NULL;
+
+ /* If we're already starting with 3/4 of alloc_count, go for a
+ hash_set, otherwise start with an unordered stack-allocated
+ VEC. */
+ if (i * 4 > alloc_count * 3)
+ vars = new hash_set<tree>;
+
+ /* Now go through the initial debug stmts in DEST again, this time
+ actually inserting in VARS or FEWVARS. Don't bother checking for
+ duplicates in FEWVARS. */
+ for (gimple_stmt_iterator si = gsi; !gsi_end_p (si); gsi_next (&si))
+ {
+ gimple *stmt = gsi_stmt (si);
+ if (!is_gimple_debug (stmt))
+ break;
+
+ tree var;
+
+ if (gimple_debug_bind_p (stmt))
+ var = gimple_debug_bind_get_var (stmt);
+ else if (gimple_debug_source_bind_p (stmt))
+ var = gimple_debug_source_bind_get_var (stmt);
+ else if (gimple_debug_nonbind_marker_p (stmt))
+ continue;
+ else
+ gcc_unreachable ();
+
+ if (vars)
+ vars->add (var);
+ else
+ fewvars.quick_push (var);
+ }
+
+ basic_block bb = dest;
+
+ do
+ {
+ bb = single_pred (bb);
+ for (gimple_stmt_iterator si = gsi_last_bb (bb);
+ !gsi_end_p (si); gsi_prev (&si))
+ {
+ gimple *stmt = gsi_stmt (si);
+ if (!is_gimple_debug (stmt))
+ continue;
+
+ tree var;
+
+ if (gimple_debug_bind_p (stmt))
+ var = gimple_debug_bind_get_var (stmt);
+ else if (gimple_debug_source_bind_p (stmt))
+ var = gimple_debug_source_bind_get_var (stmt);
+ else if (gimple_debug_nonbind_marker_p (stmt))
+ continue;
+ else
+ gcc_unreachable ();
+
+ /* Discard debug bind overlaps. Unlike stmts from src,
+ copied into a new block that will precede BB, debug bind
+ stmts in bypassed BBs may actually be discarded if
+ they're overwritten by subsequent debug bind stmts. We
+ want to copy binds for all modified variables, so that we
+ retain a bind to the shared def if there is one, or to a
+ newly introduced PHI node if there is one. Our bind will
+ end up reset if the value is dead, but that implies the
+ variable couldn't have survived, so it's fine. We are
+ not actually running the code that performed the binds at
+ this point, we're just adding binds so that they survive
+ the new confluence, so markers should not be copied. */
+ if (vars && vars->add (var))
+ continue;
+ else if (!vars)
+ {
+ int i = fewvars.length ();
+ while (i--)
+ if (fewvars[i] == var)
+ break;
+ if (i >= 0)
+ continue;
+ else if (fewvars.length () < (unsigned) alloc_count)
+ fewvars.quick_push (var);
+ else
+ {
+ vars = new hash_set<tree>;
+ for (i = 0; i < alloc_count; i++)
+ vars->add (fewvars[i]);
+ fewvars.release ();
+ vars->add (var);
+ }
+ }
+
+ stmt = gimple_copy (stmt);
+ /* ??? Should we drop the location of the copy to denote
+ they're artificial bindings? */
+ gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
+ }
+ }
+ while (bb != src && single_pred_p (bb));
+
+ if (vars)
+ delete vars;
+ else if (fewvars.exists ())
+ fewvars.release ();
+}
+
+/* See if TAKEN_EDGE->dest is a threadable block with no side effecs (ie, it
+ need not be duplicated as part of the CFG/SSA updating process).
+
+ If it is threadable, add it to PATH and VISITED and recurse, ultimately
+ returning TRUE from the toplevel call. Otherwise do nothing and
+ return false. */
+
+bool
+jump_threader::thread_around_empty_blocks (vec<jump_thread_edge *> *path,
+ edge taken_edge,
+ bitmap visited)
+{
+ basic_block bb = taken_edge->dest;
+ gimple_stmt_iterator gsi;
+ gimple *stmt;
+ tree cond;
+
+ /* The key property of these blocks is that they need not be duplicated
+ when threading. Thus they cannot have visible side effects such
+ as PHI nodes. */
+ if (has_phis_p (bb))
+ return false;
+
+ /* Skip over DEBUG statements at the start of the block. */
+ gsi = gsi_start_nondebug_bb (bb);
+
+ /* If the block has no statements, but does have a single successor, then
+ it's just a forwarding block and we can thread through it trivially.
+
+ However, note that just threading through empty blocks with single
+ successors is not inherently profitable. For the jump thread to
+ be profitable, we must avoid a runtime conditional.
+
+ By taking the return value from the recursive call, we get the
+ desired effect of returning TRUE when we found a profitable jump
+ threading opportunity and FALSE otherwise.
+
+ This is particularly important when this routine is called after
+ processing a joiner block. Returning TRUE too aggressively in
+ that case results in pointless duplication of the joiner block. */
+ if (gsi_end_p (gsi))
+ {
+ if (single_succ_p (bb))
+ {
+ taken_edge = single_succ_edge (bb);
+
+ if ((taken_edge->flags & EDGE_DFS_BACK) != 0)
+ return false;
+
+ if (!bitmap_bit_p (visited, taken_edge->dest->index))
+ {
+ m_registry->push_edge (path, taken_edge, EDGE_NO_COPY_SRC_BLOCK);
+ m_state->append_path (taken_edge->dest);
+ bitmap_set_bit (visited, taken_edge->dest->index);
+ return thread_around_empty_blocks (path, taken_edge, visited);
+ }
+ }
+
+ /* We have a block with no statements, but multiple successors? */
+ return false;
+ }
+
+ /* The only real statements this block can have are a control
+ flow altering statement. Anything else stops the thread. */
+ stmt = gsi_stmt (gsi);
+ if (gimple_code (stmt) != GIMPLE_COND
+ && gimple_code (stmt) != GIMPLE_GOTO
+ && gimple_code (stmt) != GIMPLE_SWITCH)
+ return false;
+
+ /* Extract and simplify the condition. */
+ cond = simplify_control_stmt_condition (taken_edge, stmt);
+
+ /* If the condition can be statically computed and we have not already
+ visited the destination edge, then add the taken edge to our thread
+ path. */
+ if (cond != NULL_TREE
+ && (is_gimple_min_invariant (cond)
+ || TREE_CODE (cond) == CASE_LABEL_EXPR))
+ {
+ if (TREE_CODE (cond) == CASE_LABEL_EXPR)
+ taken_edge = find_edge (bb, label_to_block (cfun, CASE_LABEL (cond)));
+ else
+ taken_edge = find_taken_edge (bb, cond);
+
+ if (!taken_edge
+ || (taken_edge->flags & EDGE_DFS_BACK) != 0)
+ return false;
+
+ if (bitmap_bit_p (visited, taken_edge->dest->index))
+ return false;
+ bitmap_set_bit (visited, taken_edge->dest->index);
+
+ m_registry->push_edge (path, taken_edge, EDGE_NO_COPY_SRC_BLOCK);
+ m_state->append_path (taken_edge->dest);
+
+ thread_around_empty_blocks (path, taken_edge, visited);
+ return true;
+ }
+
+ return false;
+}
+
+/* We are exiting E->src, see if E->dest ends with a conditional
+ jump which has a known value when reached via E.
+
+ E->dest can have arbitrary side effects which, if threading is
+ successful, will be maintained.
+
+ Special care is necessary if E is a back edge in the CFG as we
+ may have already recorded equivalences for E->dest into our
+ various tables, including the result of the conditional at
+ the end of E->dest. Threading opportunities are severely
+ limited in that case to avoid short-circuiting the loop
+ incorrectly.
+
+ Positive return value is success. Zero return value is failure, but
+ the block can still be duplicated as a joiner in a jump thread path,
+ negative indicates the block should not be duplicated and thus is not
+ suitable for a joiner in a jump threading path. */
+
+int
+jump_threader::thread_through_normal_block (vec<jump_thread_edge *> *path,
+ edge e, bitmap visited)
+{
+ m_state->register_equivs_edge (e);
+
+ /* PHIs create temporary equivalences.
+ Note that if we found a PHI that made the block non-threadable, then
+ we need to bubble that up to our caller in the same manner we do
+ when we prematurely stop processing statements below. */
+ if (!record_temporary_equivalences_from_phis (e))
+ return -1;
+
+ /* Now walk each statement recording any context sensitive
+ temporary equivalences we can detect. */
+ gimple *stmt = record_temporary_equivalences_from_stmts_at_dest (e);
+
+ /* There's two reasons STMT might be null, and distinguishing
+ between them is important.
+
+ First the block may not have had any statements. For example, it
+ might have some PHIs and unconditionally transfer control elsewhere.
+ Such blocks are suitable for jump threading, particularly as a
+ joiner block.
+
+ The second reason would be if we did not process all the statements
+ in the block (because there were too many to make duplicating the
+ block profitable. If we did not look at all the statements, then
+ we may not have invalidated everything needing invalidation. Thus
+ we must signal to our caller that this block is not suitable for
+ use as a joiner in a threading path. */
+ if (!stmt)
+ {
+ /* First case. The statement simply doesn't have any instructions, but
+ does have PHIs. */
+ if (empty_block_with_phis_p (e->dest))
+ return 0;
+
+ /* Second case. */
+ return -1;
+ }
+
+ /* If we stopped at a COND_EXPR or SWITCH_EXPR, see if we know which arm
+ will be taken. */
+ if (gimple_code (stmt) == GIMPLE_COND
+ || gimple_code (stmt) == GIMPLE_GOTO
+ || gimple_code (stmt) == GIMPLE_SWITCH)
+ {
+ tree cond;
+
+ /* Extract and simplify the condition. */
+ cond = simplify_control_stmt_condition (e, stmt);
+
+ if (!cond)
+ return 0;
+
+ if (is_gimple_min_invariant (cond)
+ || TREE_CODE (cond) == CASE_LABEL_EXPR)
+ {
+ edge taken_edge;
+ if (TREE_CODE (cond) == CASE_LABEL_EXPR)
+ taken_edge = find_edge (e->dest,
+ label_to_block (cfun, CASE_LABEL (cond)));
+ else
+ taken_edge = find_taken_edge (e->dest, cond);
+
+ basic_block dest = (taken_edge ? taken_edge->dest : NULL);
+
+ /* DEST could be NULL for a computed jump to an absolute
+ address. */
+ if (dest == NULL
+ || dest == e->dest
+ || (taken_edge->flags & EDGE_DFS_BACK) != 0
+ || bitmap_bit_p (visited, dest->index))
+ return 0;
+
+ /* Only push the EDGE_START_JUMP_THREAD marker if this is
+ first edge on the path. */
+ if (path->length () == 0)
+ m_registry->push_edge (path, e, EDGE_START_JUMP_THREAD);
+
+ m_registry->push_edge (path, taken_edge, EDGE_COPY_SRC_BLOCK);
+ m_state->append_path (taken_edge->dest);
+
+ /* See if we can thread through DEST as well, this helps capture
+ secondary effects of threading without having to re-run DOM or
+ VRP.
+
+ We don't want to thread back to a block we have already
+ visited. This may be overly conservative. */
+ bitmap_set_bit (visited, dest->index);
+ bitmap_set_bit (visited, e->dest->index);
+ thread_around_empty_blocks (path, taken_edge, visited);
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/* There are basic blocks look like:
+ <P0>
+ p0 = a CMP b ; or p0 = (INT) (a CMP b)
+ goto <X>;
+
+ <P1>
+ p1 = c CMP d
+ goto <X>;
+
+ <X>
+ # phi = PHI <p0 (P0), p1 (P1)>
+ if (phi != 0) goto <Y>; else goto <Z>;
+
+ Then, edge (P0,X) or (P1,X) could be marked as EDGE_START_JUMP_THREAD
+ And edge (X,Y), (X,Z) is EDGE_COPY_SRC_JOINER_BLOCK
+
+ Return true if E is (P0,X) or (P1,X) */
+
+bool
+edge_forwards_cmp_to_conditional_jump_through_empty_bb_p (edge e)
+{
+ /* See if there is only one stmt which is gcond. */
+ gcond *gs;
+ if (!(gs = safe_dyn_cast<gcond *> (last_and_only_stmt (e->dest))))
+ return false;
+
+ /* See if gcond's cond is "(phi !=/== 0/1)" in the basic block. */
+ tree cond = gimple_cond_lhs (gs);
+ enum tree_code code = gimple_cond_code (gs);
+ tree rhs = gimple_cond_rhs (gs);
+ if (TREE_CODE (cond) != SSA_NAME
+ || (code != NE_EXPR && code != EQ_EXPR)
+ || (!integer_onep (rhs) && !integer_zerop (rhs)))
+ return false;
+ gphi *phi = dyn_cast <gphi *> (SSA_NAME_DEF_STMT (cond));
+ if (phi == NULL || gimple_bb (phi) != e->dest)
+ return false;
+
+ /* Check if phi's incoming value is CMP. */
+ gassign *def;
+ tree value = PHI_ARG_DEF_FROM_EDGE (phi, e);
+ if (TREE_CODE (value) != SSA_NAME
+ || !has_single_use (value)
+ || !(def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (value))))
+ return false;
+
+ /* Or if it is (INT) (a CMP b). */
+ if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def)))
+ {
+ value = gimple_assign_rhs1 (def);
+ if (TREE_CODE (value) != SSA_NAME
+ || !has_single_use (value)
+ || !(def = dyn_cast<gassign *> (SSA_NAME_DEF_STMT (value))))
+ return false;
+ }
+
+ if (TREE_CODE_CLASS (gimple_assign_rhs_code (def)) != tcc_comparison)
+ return false;
+
+ return true;
+}
+
+/* We are exiting E->src, see if E->dest ends with a conditional jump
+ which has a known value when reached via E. If so, thread the
+ edge. */
+
+void
+jump_threader::thread_across_edge (edge e)
+{
+ auto_bitmap visited;
+
+ m_state->push (e);
+
+ stmt_count = 0;
+
+ vec<jump_thread_edge *> *path = m_registry->allocate_thread_path ();
+ bitmap_set_bit (visited, e->src->index);
+ bitmap_set_bit (visited, e->dest->index);
+
+ int threaded = 0;
+ if ((e->flags & EDGE_DFS_BACK) == 0)
+ threaded = thread_through_normal_block (path, e, visited);
+
+ if (threaded > 0)
+ {
+ propagate_threaded_block_debug_into (path->last ()->e->dest,
+ e->dest);
+ m_registry->register_jump_thread (path);
+ m_state->pop ();
+ return;
+ }
+
+ gcc_checking_assert (path->length () == 0);
+ path->release ();
+
+ if (threaded < 0)
+ {
+ /* The target block was deemed too big to duplicate. Just quit
+ now rather than trying to use the block as a joiner in a jump
+ threading path.
+
+ This prevents unnecessary code growth, but more importantly if we
+ do not look at all the statements in the block, then we may have
+ missed some invalidations if we had traversed a backedge! */
+ m_state->pop ();
+ return;
+ }
+
+ /* We were unable to determine what out edge from E->dest is taken. However,
+ we might still be able to thread through successors of E->dest. This
+ often occurs when E->dest is a joiner block which then fans back out
+ based on redundant tests.
+
+ If so, we'll copy E->dest and redirect the appropriate predecessor to
+ the copy. Within the copy of E->dest, we'll thread one or more edges
+ to points deeper in the CFG.
+
+ This is a stopgap until we have a more structured approach to path
+ isolation. */
+ {
+ edge taken_edge;
+ edge_iterator ei;
+ bool found;
+
+ /* If E->dest has abnormal outgoing edges, then there's no guarantee
+ we can safely redirect any of the edges. Just punt those cases. */
+ FOR_EACH_EDGE (taken_edge, ei, e->dest->succs)
+ if (taken_edge->flags & EDGE_COMPLEX)
+ {
+ m_state->pop ();
+ return;
+ }
+
+ /* Look at each successor of E->dest to see if we can thread through it. */
+ FOR_EACH_EDGE (taken_edge, ei, e->dest->succs)
+ {
+ if ((e->flags & EDGE_DFS_BACK) != 0
+ || (taken_edge->flags & EDGE_DFS_BACK) != 0)
+ continue;
+
+ m_state->push (taken_edge);
+
+ /* Avoid threading to any block we have already visited. */
+ bitmap_clear (visited);
+ bitmap_set_bit (visited, e->src->index);
+ bitmap_set_bit (visited, e->dest->index);
+ bitmap_set_bit (visited, taken_edge->dest->index);
+
+ vec<jump_thread_edge *> *path = m_registry->allocate_thread_path ();
+ m_registry->push_edge (path, e, EDGE_START_JUMP_THREAD);
+ m_registry->push_edge (path, taken_edge, EDGE_COPY_SRC_JOINER_BLOCK);
+
+ found = thread_around_empty_blocks (path, taken_edge, visited);
+
+ if (!found)
+ found = thread_through_normal_block (path,
+ path->last ()->e, visited) > 0;
+
+ /* If we were able to thread through a successor of E->dest, then
+ record the jump threading opportunity. */
+ if (found
+ || edge_forwards_cmp_to_conditional_jump_through_empty_bb_p (e))
+ {
+ if (taken_edge->dest != path->last ()->e->dest)
+ propagate_threaded_block_debug_into (path->last ()->e->dest,
+ taken_edge->dest);
+ m_registry->register_jump_thread (path);
+ }
+ else
+ path->release ();
+
+ m_state->pop ();
+ }
+ }
+
+ m_state->pop ();
+}
+
+/* Return TRUE if BB has a single successor to a block with multiple
+ incoming and outgoing edges. */
+
+bool
+single_succ_to_potentially_threadable_block (basic_block bb)
+{
+ int flags = (EDGE_IGNORE | EDGE_COMPLEX | EDGE_ABNORMAL);
+ return (single_succ_p (bb)
+ && (single_succ_edge (bb)->flags & flags) == 0
+ && potentially_threadable_block (single_succ (bb)));
+}
+
+/* Examine the outgoing edges from BB and conditionally
+ try to thread them. */
+
+void
+jump_threader::thread_outgoing_edges (basic_block bb)
+{
+ int flags = (EDGE_IGNORE | EDGE_COMPLEX | EDGE_ABNORMAL);
+ gimple *last;
+
+ if (!flag_thread_jumps)
+ return;
+
+ /* If we have an outgoing edge to a block with multiple incoming and
+ outgoing edges, then we may be able to thread the edge, i.e., we
+ may be able to statically determine which of the outgoing edges
+ will be traversed when the incoming edge from BB is traversed. */
+ if (single_succ_to_potentially_threadable_block (bb))
+ thread_across_edge (single_succ_edge (bb));
+ else if ((last = last_stmt (bb))
+ && gimple_code (last) == GIMPLE_COND
+ && EDGE_COUNT (bb->succs) == 2
+ && (EDGE_SUCC (bb, 0)->flags & flags) == 0
+ && (EDGE_SUCC (bb, 1)->flags & flags) == 0)
+ {
+ edge true_edge, false_edge;
+
+ extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
+
+ /* Only try to thread the edge if it reaches a target block with
+ more than one predecessor and more than one successor. */
+ if (potentially_threadable_block (true_edge->dest))
+ thread_across_edge (true_edge);
+
+ /* Similarly for the ELSE arm. */
+ if (potentially_threadable_block (false_edge->dest))
+ thread_across_edge (false_edge);
+ }
+}
+
+// Marker to keep track of the start of the current path.
+const basic_block jt_state::BB_MARKER = (basic_block) -1;
+
+// Record that E is being crossed.
+
+void
+jt_state::push (edge e)
+{
+ m_blocks.safe_push (BB_MARKER);
+ if (m_blocks.length () == 1)
+ m_blocks.safe_push (e->src);
+ m_blocks.safe_push (e->dest);
+}
+
+// Pop to the last pushed state.
+
+void
+jt_state::pop ()
+{
+ if (!m_blocks.is_empty ())
+ {
+ while (m_blocks.last () != BB_MARKER)
+ m_blocks.pop ();
+ // Pop marker.
+ m_blocks.pop ();
+ }
+}
+
+// Add BB to the list of blocks seen.
+
+void
+jt_state::append_path (basic_block bb)
+{
+ gcc_checking_assert (!m_blocks.is_empty ());
+ m_blocks.safe_push (bb);
+}
+
+void
+jt_state::dump (FILE *out)
+{
+ if (!m_blocks.is_empty ())
+ {
+ auto_vec<basic_block> path;
+ get_path (path);
+ dump_ranger (out, path);
+ }
+}
+
+void
+jt_state::debug ()
+{
+ push_dump_file save (stderr, TDF_DETAILS);
+ dump (stderr);
+}
+
+// Convert the current path in jt_state into a path suitable for the
+// path solver. Return the resulting path in PATH.
+
+void
+jt_state::get_path (vec<basic_block> &path)
+{
+ path.truncate (0);
+
+ for (int i = (int) m_blocks.length () - 1; i >= 0; --i)
+ {
+ basic_block bb = m_blocks[i];
+
+ if (bb != BB_MARKER)
+ path.safe_push (bb);
+ }
+}
+
+// Record an equivalence from DST to SRC. If UPDATE_RANGE is TRUE,
+// update the value range associated with DST.
+
+void
+jt_state::register_equiv (tree dest ATTRIBUTE_UNUSED,
+ tree src ATTRIBUTE_UNUSED,
+ bool update_range ATTRIBUTE_UNUSED)
+{
+}
+
+// Record any ranges calculated in STMT. If TEMPORARY is TRUE, then
+// this is a temporary equivalence and should be recorded into the
+// unwind table, instead of the global table.
+
+void
+jt_state::record_ranges_from_stmt (gimple *,
+ bool temporary ATTRIBUTE_UNUSED)
+{
+}
+
+// Record any equivalences created by traversing E.
+
+void
+jt_state::register_equivs_edge (edge)
+{
+}
+
+void
+jt_state::register_equivs_stmt (gimple *stmt, basic_block bb,
+ jt_simplifier *simplifier)
+{
+ /* At this point we have a statement which assigns an RHS to an
+ SSA_VAR on the LHS. We want to try and simplify this statement
+ to expose more context sensitive equivalences which in turn may
+ allow us to simplify the condition at the end of the loop.
+
+ Handle simple copy operations. */
+ tree cached_lhs = NULL;
+ if (gimple_assign_single_p (stmt)
+ && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
+ cached_lhs = gimple_assign_rhs1 (stmt);
+ else
+ {
+ /* A statement that is not a trivial copy.
+ Try to fold the new expression. Inserting the
+ expression into the hash table is unlikely to help. */
+ /* ??? The DOM callback below can be changed to setting
+ the mprts_hook around the call to thread_across_edge,
+ avoiding the use substitution. */
+ cached_lhs = gimple_fold_stmt_to_constant_1 (stmt,
+ threadedge_valueize);
+ if (NUM_SSA_OPERANDS (stmt, SSA_OP_ALL_USES) != 0
+ && (!cached_lhs
+ || (TREE_CODE (cached_lhs) != SSA_NAME
+ && !is_gimple_min_invariant (cached_lhs))))
+ {
+ /* We're going to temporarily copy propagate the operands
+ and see if that allows us to simplify this statement. */
+ tree *copy;
+ ssa_op_iter iter;
+ use_operand_p use_p;
+ unsigned int num, i = 0;
+
+ num = NUM_SSA_OPERANDS (stmt, SSA_OP_ALL_USES);
+ copy = XALLOCAVEC (tree, num);
+
+ /* Make a copy of the uses & vuses into USES_COPY, then cprop into
+ the operands. */
+ FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
+ {
+ tree tmp = NULL;
+ tree use = USE_FROM_PTR (use_p);
+
+ copy[i++] = use;
+ if (TREE_CODE (use) == SSA_NAME)
+ tmp = SSA_NAME_VALUE (use);
+ if (tmp)
+ SET_USE (use_p, tmp);
+ }
+
+ cached_lhs = simplifier->simplify (stmt, stmt, bb, this);
+
+ /* Restore the statement's original uses/defs. */
+ i = 0;
+ FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
+ SET_USE (use_p, copy[i++]);
+ }
+ }
+
+ /* Record the context sensitive equivalence if we were able
+ to simplify this statement. */
+ if (cached_lhs
+ && (TREE_CODE (cached_lhs) == SSA_NAME
+ || is_gimple_min_invariant (cached_lhs)))
+ register_equiv (gimple_get_lhs (stmt), cached_lhs,
+ /*update_range=*/false);
+}
+
+// Hybrid threader implementation.
+
+
+hybrid_jt_simplifier::hybrid_jt_simplifier (gimple_ranger *r,
+ path_range_query *q)
+{
+ m_ranger = r;
+ m_query = q;
+}
+
+tree
+hybrid_jt_simplifier::simplify (gimple *stmt, gimple *, basic_block,
+ jt_state *state)
+{
+ int_range_max r;
+
+ compute_ranges_from_state (stmt, state);
+
+ if (gimple_code (stmt) == GIMPLE_COND
+ || gimple_code (stmt) == GIMPLE_ASSIGN)
+ {
+ tree ret;
+ if (m_query->range_of_stmt (r, stmt) && r.singleton_p (&ret))
+ return ret;
+ }
+ else if (gimple_code (stmt) == GIMPLE_SWITCH)
+ {
+ gswitch *switch_stmt = dyn_cast <gswitch *> (stmt);
+ tree index = gimple_switch_index (switch_stmt);
+ if (m_query->range_of_expr (r, index, stmt))
+ return find_case_label_range (switch_stmt, &r);
+ }
+ return NULL;
+}
+
+// Use STATE to generate the list of imports needed for the solver,
+// and calculate the ranges along the path.
+
+void
+hybrid_jt_simplifier::compute_ranges_from_state (gimple *stmt, jt_state *state)
+{
+ auto_bitmap imports;
+ gori_compute &gori = m_ranger->gori ();
+
+ state->get_path (m_path);
+
+ // Start with the imports to the final conditional.
+ bitmap_copy (imports, gori.imports (m_path[0]));
+
+ // Add any other interesting operands we may have missed.
+ if (gimple_bb (stmt) != m_path[0])
+ {
+ for (unsigned i = 0; i < gimple_num_ops (stmt); ++i)
+ {
+ tree op = gimple_op (stmt, i);
+ if (op
+ && TREE_CODE (op) == SSA_NAME
+ && irange::supports_type_p (TREE_TYPE (op)))
+ bitmap_set_bit (imports, SSA_NAME_VERSION (op));
+ }
+ }
+ m_query->compute_ranges (m_path, imports);
+}