diff options
Diffstat (limited to 'gcc/tree-ssa-threadedge.cc')
-rw-r--r-- | gcc/tree-ssa-threadedge.cc | 1460 |
1 files changed, 1460 insertions, 0 deletions
diff --git a/gcc/tree-ssa-threadedge.cc b/gcc/tree-ssa-threadedge.cc new file mode 100644 index 0000000..4eb65ca --- /dev/null +++ b/gcc/tree-ssa-threadedge.cc @@ -0,0 +1,1460 @@ +/* SSA Jump Threading + Copyright (C) 2005-2022 Free Software Foundation, Inc. + Contributed by Jeff Law <law@redhat.com> + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 3, or (at your option) +any later version. + +GCC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "backend.h" +#include "tree.h" +#include "gimple.h" +#include "predict.h" +#include "ssa.h" +#include "fold-const.h" +#include "cfgloop.h" +#include "gimple-iterator.h" +#include "tree-cfg.h" +#include "tree-ssa-threadupdate.h" +#include "tree-ssa-scopedtables.h" +#include "tree-ssa-threadedge.h" +#include "gimple-fold.h" +#include "cfganal.h" +#include "alloc-pool.h" +#include "vr-values.h" +#include "gimple-range.h" +#include "gimple-range-path.h" + +/* To avoid code explosion due to jump threading, we limit the + number of statements we are going to copy. This variable + holds the number of statements currently seen that we'll have + to copy as part of the jump threading process. */ +static int stmt_count; + +/* Array to record value-handles per SSA_NAME. */ +vec<tree> ssa_name_values; + +/* Set the value for the SSA name NAME to VALUE. */ + +void +set_ssa_name_value (tree name, tree value) +{ + if (SSA_NAME_VERSION (name) >= ssa_name_values.length ()) + ssa_name_values.safe_grow_cleared (SSA_NAME_VERSION (name) + 1, true); + if (value && TREE_OVERFLOW_P (value)) + value = drop_tree_overflow (value); + ssa_name_values[SSA_NAME_VERSION (name)] = value; +} + +jump_threader::jump_threader (jt_simplifier *simplifier, jt_state *state) +{ + /* Initialize the per SSA_NAME value-handles array. */ + gcc_assert (!ssa_name_values.exists ()); + ssa_name_values.create (num_ssa_names); + + dummy_cond = gimple_build_cond (NE_EXPR, integer_zero_node, + integer_zero_node, NULL, NULL); + + m_registry = new fwd_jt_path_registry (); + m_simplifier = simplifier; + m_state = state; +} + +jump_threader::~jump_threader (void) +{ + ssa_name_values.release (); + ggc_free (dummy_cond); + delete m_registry; +} + +void +jump_threader::remove_jump_threads_including (edge_def *e) +{ + m_registry->remove_jump_threads_including (e); +} + +bool +jump_threader::thread_through_all_blocks (bool may_peel_loop_headers) +{ + return m_registry->thread_through_all_blocks (may_peel_loop_headers); +} + +static inline bool +has_phis_p (basic_block bb) +{ + return !gsi_end_p (gsi_start_phis (bb)); +} + +/* Return TRUE for a block with PHIs but no statements. */ + +static bool +empty_block_with_phis_p (basic_block bb) +{ + return gsi_end_p (gsi_start_nondebug_bb (bb)) && has_phis_p (bb); +} + +/* Return TRUE if we may be able to thread an incoming edge into + BB to an outgoing edge from BB. Return FALSE otherwise. */ + +static bool +potentially_threadable_block (basic_block bb) +{ + gimple_stmt_iterator gsi; + + /* Special case. We can get blocks that are forwarders, but are + not optimized away because they forward from outside a loop + to the loop header. We want to thread through them as we can + sometimes thread to the loop exit, which is obviously profitable. + The interesting case here is when the block has PHIs. */ + if (empty_block_with_phis_p (bb)) + return true; + + /* If BB has a single successor or a single predecessor, then + there is no threading opportunity. */ + if (single_succ_p (bb) || single_pred_p (bb)) + return false; + + /* If BB does not end with a conditional, switch or computed goto, + then there is no threading opportunity. */ + gsi = gsi_last_bb (bb); + if (gsi_end_p (gsi) + || ! gsi_stmt (gsi) + || (gimple_code (gsi_stmt (gsi)) != GIMPLE_COND + && gimple_code (gsi_stmt (gsi)) != GIMPLE_GOTO + && gimple_code (gsi_stmt (gsi)) != GIMPLE_SWITCH)) + return false; + + return true; +} + +/* Record temporary equivalences created by PHIs at the target of the + edge E. + + If a PHI which prevents threading is encountered, then return FALSE + indicating we should not thread this edge, else return TRUE. */ + +bool +jump_threader::record_temporary_equivalences_from_phis (edge e) +{ + gphi_iterator gsi; + + /* Each PHI creates a temporary equivalence, record them. + These are context sensitive equivalences and will be removed + later. */ + for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi)) + { + gphi *phi = gsi.phi (); + tree src = PHI_ARG_DEF_FROM_EDGE (phi, e); + tree dst = gimple_phi_result (phi); + + /* If the desired argument is not the same as this PHI's result + and it is set by a PHI in E->dest, then we cannot thread + through E->dest. */ + if (src != dst + && TREE_CODE (src) == SSA_NAME + && gimple_code (SSA_NAME_DEF_STMT (src)) == GIMPLE_PHI + && gimple_bb (SSA_NAME_DEF_STMT (src)) == e->dest) + return false; + + /* We consider any non-virtual PHI as a statement since it + count result in a constant assignment or copy operation. */ + if (!virtual_operand_p (dst)) + stmt_count++; + + m_state->register_equiv (dst, src, /*update_range=*/true); + } + return true; +} + +/* Valueize hook for gimple_fold_stmt_to_constant_1. */ + +static tree +threadedge_valueize (tree t) +{ + if (TREE_CODE (t) == SSA_NAME) + { + tree tem = SSA_NAME_VALUE (t); + if (tem) + return tem; + } + return t; +} + +/* Try to simplify each statement in E->dest, ultimately leading to + a simplification of the COND_EXPR at the end of E->dest. + + Record unwind information for temporary equivalences onto STACK. + + Uses M_SIMPLIFIER to further simplify statements using pass specific + information. + + We might consider marking just those statements which ultimately + feed the COND_EXPR. It's not clear if the overhead of bookkeeping + would be recovered by trying to simplify fewer statements. + + If we are able to simplify a statement into the form + SSA_NAME = (SSA_NAME | gimple invariant), then we can record + a context sensitive equivalence which may help us simplify + later statements in E->dest. */ + +gimple * +jump_threader::record_temporary_equivalences_from_stmts_at_dest (edge e) +{ + gimple *stmt = NULL; + gimple_stmt_iterator gsi; + int max_stmt_count; + + max_stmt_count = param_max_jump_thread_duplication_stmts; + + /* Walk through each statement in the block recording equivalences + we discover. Note any equivalences we discover are context + sensitive (ie, are dependent on traversing E) and must be unwound + when we're finished processing E. */ + for (gsi = gsi_start_bb (e->dest); !gsi_end_p (gsi); gsi_next (&gsi)) + { + stmt = gsi_stmt (gsi); + + /* Ignore empty statements and labels. */ + if (gimple_code (stmt) == GIMPLE_NOP + || gimple_code (stmt) == GIMPLE_LABEL + || is_gimple_debug (stmt)) + continue; + + /* If the statement has volatile operands, then we assume we + cannot thread through this block. This is overly + conservative in some ways. */ + if (gimple_code (stmt) == GIMPLE_ASM + && gimple_asm_volatile_p (as_a <gasm *> (stmt))) + return NULL; + + /* If the statement is a unique builtin, we cannot thread + through here. */ + if (gimple_code (stmt) == GIMPLE_CALL + && gimple_call_internal_p (stmt) + && gimple_call_internal_unique_p (stmt)) + return NULL; + + /* We cannot thread through __builtin_constant_p, because an + expression that is constant on two threading paths may become + non-constant (i.e.: phi) when they merge. */ + if (gimple_call_builtin_p (stmt, BUILT_IN_CONSTANT_P)) + return NULL; + + /* If duplicating this block is going to cause too much code + expansion, then do not thread through this block. */ + stmt_count++; + if (stmt_count > max_stmt_count) + { + /* If any of the stmts in the PATH's dests are going to be + killed due to threading, grow the max count + accordingly. */ + if (max_stmt_count + == param_max_jump_thread_duplication_stmts) + { + max_stmt_count += estimate_threading_killed_stmts (e->dest); + if (dump_file) + fprintf (dump_file, "threading bb %i up to %i stmts\n", + e->dest->index, max_stmt_count); + } + /* If we're still past the limit, we're done. */ + if (stmt_count > max_stmt_count) + return NULL; + } + + m_state->record_ranges_from_stmt (stmt, true); + + /* If this is not a statement that sets an SSA_NAME to a new + value, then do not try to simplify this statement as it will + not simplify in any way that is helpful for jump threading. */ + if ((gimple_code (stmt) != GIMPLE_ASSIGN + || TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME) + && (gimple_code (stmt) != GIMPLE_CALL + || gimple_call_lhs (stmt) == NULL_TREE + || TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME)) + continue; + + /* The result of __builtin_object_size depends on all the arguments + of a phi node. Temporarily using only one edge produces invalid + results. For example + + if (x < 6) + goto l; + else + goto l; + + l: + r = PHI <&w[2].a[1](2), &a.a[6](3)> + __builtin_object_size (r, 0) + + The result of __builtin_object_size is defined to be the maximum of + remaining bytes. If we use only one edge on the phi, the result will + change to be the remaining bytes for the corresponding phi argument. + + Similarly for __builtin_constant_p: + + r = PHI <1(2), 2(3)> + __builtin_constant_p (r) + + Both PHI arguments are constant, but x ? 1 : 2 is still not + constant. */ + + if (is_gimple_call (stmt)) + { + tree fndecl = gimple_call_fndecl (stmt); + if (fndecl + && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL) + && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_OBJECT_SIZE + || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)) + continue; + } + + m_state->register_equivs_stmt (stmt, e->src, m_simplifier); + } + return stmt; +} + +/* Simplify the control statement at the end of the block E->dest. + + Use SIMPLIFY (a pointer to a callback function) to further simplify + a condition using pass specific information. + + Return the simplified condition or NULL if simplification could + not be performed. When simplifying a GIMPLE_SWITCH, we may return + the CASE_LABEL_EXPR that will be taken. */ + +tree +jump_threader::simplify_control_stmt_condition (edge e, gimple *stmt) +{ + tree cond, cached_lhs; + enum gimple_code code = gimple_code (stmt); + + /* For comparisons, we have to update both operands, then try + to simplify the comparison. */ + if (code == GIMPLE_COND) + { + tree op0, op1; + enum tree_code cond_code; + + op0 = gimple_cond_lhs (stmt); + op1 = gimple_cond_rhs (stmt); + cond_code = gimple_cond_code (stmt); + + /* Get the current value of both operands. */ + if (TREE_CODE (op0) == SSA_NAME) + { + for (int i = 0; i < 2; i++) + { + if (TREE_CODE (op0) == SSA_NAME + && SSA_NAME_VALUE (op0)) + op0 = SSA_NAME_VALUE (op0); + else + break; + } + } + + if (TREE_CODE (op1) == SSA_NAME) + { + for (int i = 0; i < 2; i++) + { + if (TREE_CODE (op1) == SSA_NAME + && SSA_NAME_VALUE (op1)) + op1 = SSA_NAME_VALUE (op1); + else + break; + } + } + + const unsigned recursion_limit = 4; + + cached_lhs + = simplify_control_stmt_condition_1 (e, stmt, op0, cond_code, op1, + recursion_limit); + + /* If we were testing an integer/pointer against a constant, + then we can trace the value of the SSA_NAME. If a value is + found, then the condition will collapse to a constant. + + Return the SSA_NAME we want to trace back rather than the full + expression and give the threader a chance to find its value. */ + if (cached_lhs == NULL) + { + /* Recover the original operands. They may have been simplified + using context sensitive equivalences. Those context sensitive + equivalences may not be valid on paths. */ + tree op0 = gimple_cond_lhs (stmt); + tree op1 = gimple_cond_rhs (stmt); + + if ((INTEGRAL_TYPE_P (TREE_TYPE (op0)) + || POINTER_TYPE_P (TREE_TYPE (op0))) + && TREE_CODE (op0) == SSA_NAME + && TREE_CODE (op1) == INTEGER_CST) + return op0; + } + + return cached_lhs; + } + + if (code == GIMPLE_SWITCH) + cond = gimple_switch_index (as_a <gswitch *> (stmt)); + else if (code == GIMPLE_GOTO) + cond = gimple_goto_dest (stmt); + else + gcc_unreachable (); + + /* We can have conditionals which just test the state of a variable + rather than use a relational operator. These are simpler to handle. */ + if (TREE_CODE (cond) == SSA_NAME) + { + tree original_lhs = cond; + cached_lhs = cond; + + /* Get the variable's current value from the equivalence chains. + + It is possible to get loops in the SSA_NAME_VALUE chains + (consider threading the backedge of a loop where we have + a loop invariant SSA_NAME used in the condition). */ + if (cached_lhs) + { + for (int i = 0; i < 2; i++) + { + if (TREE_CODE (cached_lhs) == SSA_NAME + && SSA_NAME_VALUE (cached_lhs)) + cached_lhs = SSA_NAME_VALUE (cached_lhs); + else + break; + } + } + + /* If we haven't simplified to an invariant yet, then use the + pass specific callback to try and simplify it further. */ + if (cached_lhs && ! is_gimple_min_invariant (cached_lhs)) + { + if (code == GIMPLE_SWITCH) + { + /* Replace the index operand of the GIMPLE_SWITCH with any LHS + we found before handing off to VRP. If simplification is + possible, the simplified value will be a CASE_LABEL_EXPR of + the label that is proven to be taken. */ + gswitch *dummy_switch = as_a<gswitch *> (gimple_copy (stmt)); + gimple_switch_set_index (dummy_switch, cached_lhs); + cached_lhs = m_simplifier->simplify (dummy_switch, stmt, e->src, + m_state); + ggc_free (dummy_switch); + } + else + cached_lhs = m_simplifier->simplify (stmt, stmt, e->src, m_state); + } + + /* We couldn't find an invariant. But, callers of this + function may be able to do something useful with the + unmodified destination. */ + if (!cached_lhs) + cached_lhs = original_lhs; + } + else + cached_lhs = NULL; + + return cached_lhs; +} + +/* Recursive helper for simplify_control_stmt_condition. */ + +tree +jump_threader::simplify_control_stmt_condition_1 + (edge e, + gimple *stmt, + tree op0, + enum tree_code cond_code, + tree op1, + unsigned limit) +{ + if (limit == 0) + return NULL_TREE; + + /* We may need to canonicalize the comparison. For + example, op0 might be a constant while op1 is an + SSA_NAME. Failure to canonicalize will cause us to + miss threading opportunities. */ + if (tree_swap_operands_p (op0, op1)) + { + cond_code = swap_tree_comparison (cond_code); + std::swap (op0, op1); + } + + /* If the condition has the form (A & B) CMP 0 or (A | B) CMP 0 then + recurse into the LHS to see if there is a dominating ASSERT_EXPR + of A or of B that makes this condition always true or always false + along the edge E. */ + if ((cond_code == EQ_EXPR || cond_code == NE_EXPR) + && TREE_CODE (op0) == SSA_NAME + && integer_zerop (op1)) + { + gimple *def_stmt = SSA_NAME_DEF_STMT (op0); + if (gimple_code (def_stmt) != GIMPLE_ASSIGN) + ; + else if (gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR + || gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR) + { + enum tree_code rhs_code = gimple_assign_rhs_code (def_stmt); + const tree rhs1 = gimple_assign_rhs1 (def_stmt); + const tree rhs2 = gimple_assign_rhs2 (def_stmt); + + /* Is A != 0 ? */ + const tree res1 + = simplify_control_stmt_condition_1 (e, def_stmt, + rhs1, NE_EXPR, op1, + limit - 1); + if (res1 == NULL_TREE) + ; + else if (rhs_code == BIT_AND_EXPR && integer_zerop (res1)) + { + /* If A == 0 then (A & B) != 0 is always false. */ + if (cond_code == NE_EXPR) + return boolean_false_node; + /* If A == 0 then (A & B) == 0 is always true. */ + if (cond_code == EQ_EXPR) + return boolean_true_node; + } + else if (rhs_code == BIT_IOR_EXPR && integer_nonzerop (res1)) + { + /* If A != 0 then (A | B) != 0 is always true. */ + if (cond_code == NE_EXPR) + return boolean_true_node; + /* If A != 0 then (A | B) == 0 is always false. */ + if (cond_code == EQ_EXPR) + return boolean_false_node; + } + + /* Is B != 0 ? */ + const tree res2 + = simplify_control_stmt_condition_1 (e, def_stmt, + rhs2, NE_EXPR, op1, + limit - 1); + if (res2 == NULL_TREE) + ; + else if (rhs_code == BIT_AND_EXPR && integer_zerop (res2)) + { + /* If B == 0 then (A & B) != 0 is always false. */ + if (cond_code == NE_EXPR) + return boolean_false_node; + /* If B == 0 then (A & B) == 0 is always true. */ + if (cond_code == EQ_EXPR) + return boolean_true_node; + } + else if (rhs_code == BIT_IOR_EXPR && integer_nonzerop (res2)) + { + /* If B != 0 then (A | B) != 0 is always true. */ + if (cond_code == NE_EXPR) + return boolean_true_node; + /* If B != 0 then (A | B) == 0 is always false. */ + if (cond_code == EQ_EXPR) + return boolean_false_node; + } + + if (res1 != NULL_TREE && res2 != NULL_TREE) + { + if (rhs_code == BIT_AND_EXPR + && TYPE_PRECISION (TREE_TYPE (op0)) == 1 + && integer_nonzerop (res1) + && integer_nonzerop (res2)) + { + /* If A != 0 and B != 0 then (bool)(A & B) != 0 is true. */ + if (cond_code == NE_EXPR) + return boolean_true_node; + /* If A != 0 and B != 0 then (bool)(A & B) == 0 is false. */ + if (cond_code == EQ_EXPR) + return boolean_false_node; + } + + if (rhs_code == BIT_IOR_EXPR + && integer_zerop (res1) + && integer_zerop (res2)) + { + /* If A == 0 and B == 0 then (A | B) != 0 is false. */ + if (cond_code == NE_EXPR) + return boolean_false_node; + /* If A == 0 and B == 0 then (A | B) == 0 is true. */ + if (cond_code == EQ_EXPR) + return boolean_true_node; + } + } + } + /* Handle (A CMP B) CMP 0. */ + else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) + == tcc_comparison) + { + tree rhs1 = gimple_assign_rhs1 (def_stmt); + tree rhs2 = gimple_assign_rhs2 (def_stmt); + + tree_code new_cond = gimple_assign_rhs_code (def_stmt); + if (cond_code == EQ_EXPR) + new_cond = invert_tree_comparison (new_cond, false); + + tree res + = simplify_control_stmt_condition_1 (e, def_stmt, + rhs1, new_cond, rhs2, + limit - 1); + if (res != NULL_TREE && is_gimple_min_invariant (res)) + return res; + } + } + + gimple_cond_set_code (dummy_cond, cond_code); + gimple_cond_set_lhs (dummy_cond, op0); + gimple_cond_set_rhs (dummy_cond, op1); + + /* We absolutely do not care about any type conversions + we only care about a zero/nonzero value. */ + fold_defer_overflow_warnings (); + + tree res = fold_binary (cond_code, boolean_type_node, op0, op1); + if (res) + while (CONVERT_EXPR_P (res)) + res = TREE_OPERAND (res, 0); + + fold_undefer_overflow_warnings ((res && is_gimple_min_invariant (res)), + stmt, WARN_STRICT_OVERFLOW_CONDITIONAL); + + /* If we have not simplified the condition down to an invariant, + then use the pass specific callback to simplify the condition. */ + if (!res + || !is_gimple_min_invariant (res)) + res = m_simplifier->simplify (dummy_cond, stmt, e->src, m_state); + + return res; +} + +/* Copy debug stmts from DEST's chain of single predecessors up to + SRC, so that we don't lose the bindings as PHI nodes are introduced + when DEST gains new predecessors. */ +void +propagate_threaded_block_debug_into (basic_block dest, basic_block src) +{ + if (!MAY_HAVE_DEBUG_BIND_STMTS) + return; + + if (!single_pred_p (dest)) + return; + + gcc_checking_assert (dest != src); + + gimple_stmt_iterator gsi = gsi_after_labels (dest); + int i = 0; + const int alloc_count = 16; // ?? Should this be a PARAM? + + /* Estimate the number of debug vars overridden in the beginning of + DEST, to tell how many we're going to need to begin with. */ + for (gimple_stmt_iterator si = gsi; + i * 4 <= alloc_count * 3 && !gsi_end_p (si); gsi_next (&si)) + { + gimple *stmt = gsi_stmt (si); + if (!is_gimple_debug (stmt)) + break; + if (gimple_debug_nonbind_marker_p (stmt)) + continue; + i++; + } + + auto_vec<tree, alloc_count> fewvars; + hash_set<tree> *vars = NULL; + + /* If we're already starting with 3/4 of alloc_count, go for a + hash_set, otherwise start with an unordered stack-allocated + VEC. */ + if (i * 4 > alloc_count * 3) + vars = new hash_set<tree>; + + /* Now go through the initial debug stmts in DEST again, this time + actually inserting in VARS or FEWVARS. Don't bother checking for + duplicates in FEWVARS. */ + for (gimple_stmt_iterator si = gsi; !gsi_end_p (si); gsi_next (&si)) + { + gimple *stmt = gsi_stmt (si); + if (!is_gimple_debug (stmt)) + break; + + tree var; + + if (gimple_debug_bind_p (stmt)) + var = gimple_debug_bind_get_var (stmt); + else if (gimple_debug_source_bind_p (stmt)) + var = gimple_debug_source_bind_get_var (stmt); + else if (gimple_debug_nonbind_marker_p (stmt)) + continue; + else + gcc_unreachable (); + + if (vars) + vars->add (var); + else + fewvars.quick_push (var); + } + + basic_block bb = dest; + + do + { + bb = single_pred (bb); + for (gimple_stmt_iterator si = gsi_last_bb (bb); + !gsi_end_p (si); gsi_prev (&si)) + { + gimple *stmt = gsi_stmt (si); + if (!is_gimple_debug (stmt)) + continue; + + tree var; + + if (gimple_debug_bind_p (stmt)) + var = gimple_debug_bind_get_var (stmt); + else if (gimple_debug_source_bind_p (stmt)) + var = gimple_debug_source_bind_get_var (stmt); + else if (gimple_debug_nonbind_marker_p (stmt)) + continue; + else + gcc_unreachable (); + + /* Discard debug bind overlaps. Unlike stmts from src, + copied into a new block that will precede BB, debug bind + stmts in bypassed BBs may actually be discarded if + they're overwritten by subsequent debug bind stmts. We + want to copy binds for all modified variables, so that we + retain a bind to the shared def if there is one, or to a + newly introduced PHI node if there is one. Our bind will + end up reset if the value is dead, but that implies the + variable couldn't have survived, so it's fine. We are + not actually running the code that performed the binds at + this point, we're just adding binds so that they survive + the new confluence, so markers should not be copied. */ + if (vars && vars->add (var)) + continue; + else if (!vars) + { + int i = fewvars.length (); + while (i--) + if (fewvars[i] == var) + break; + if (i >= 0) + continue; + else if (fewvars.length () < (unsigned) alloc_count) + fewvars.quick_push (var); + else + { + vars = new hash_set<tree>; + for (i = 0; i < alloc_count; i++) + vars->add (fewvars[i]); + fewvars.release (); + vars->add (var); + } + } + + stmt = gimple_copy (stmt); + /* ??? Should we drop the location of the copy to denote + they're artificial bindings? */ + gsi_insert_before (&gsi, stmt, GSI_NEW_STMT); + } + } + while (bb != src && single_pred_p (bb)); + + if (vars) + delete vars; + else if (fewvars.exists ()) + fewvars.release (); +} + +/* See if TAKEN_EDGE->dest is a threadable block with no side effecs (ie, it + need not be duplicated as part of the CFG/SSA updating process). + + If it is threadable, add it to PATH and VISITED and recurse, ultimately + returning TRUE from the toplevel call. Otherwise do nothing and + return false. */ + +bool +jump_threader::thread_around_empty_blocks (vec<jump_thread_edge *> *path, + edge taken_edge, + bitmap visited) +{ + basic_block bb = taken_edge->dest; + gimple_stmt_iterator gsi; + gimple *stmt; + tree cond; + + /* The key property of these blocks is that they need not be duplicated + when threading. Thus they cannot have visible side effects such + as PHI nodes. */ + if (has_phis_p (bb)) + return false; + + /* Skip over DEBUG statements at the start of the block. */ + gsi = gsi_start_nondebug_bb (bb); + + /* If the block has no statements, but does have a single successor, then + it's just a forwarding block and we can thread through it trivially. + + However, note that just threading through empty blocks with single + successors is not inherently profitable. For the jump thread to + be profitable, we must avoid a runtime conditional. + + By taking the return value from the recursive call, we get the + desired effect of returning TRUE when we found a profitable jump + threading opportunity and FALSE otherwise. + + This is particularly important when this routine is called after + processing a joiner block. Returning TRUE too aggressively in + that case results in pointless duplication of the joiner block. */ + if (gsi_end_p (gsi)) + { + if (single_succ_p (bb)) + { + taken_edge = single_succ_edge (bb); + + if ((taken_edge->flags & EDGE_DFS_BACK) != 0) + return false; + + if (!bitmap_bit_p (visited, taken_edge->dest->index)) + { + m_registry->push_edge (path, taken_edge, EDGE_NO_COPY_SRC_BLOCK); + m_state->append_path (taken_edge->dest); + bitmap_set_bit (visited, taken_edge->dest->index); + return thread_around_empty_blocks (path, taken_edge, visited); + } + } + + /* We have a block with no statements, but multiple successors? */ + return false; + } + + /* The only real statements this block can have are a control + flow altering statement. Anything else stops the thread. */ + stmt = gsi_stmt (gsi); + if (gimple_code (stmt) != GIMPLE_COND + && gimple_code (stmt) != GIMPLE_GOTO + && gimple_code (stmt) != GIMPLE_SWITCH) + return false; + + /* Extract and simplify the condition. */ + cond = simplify_control_stmt_condition (taken_edge, stmt); + + /* If the condition can be statically computed and we have not already + visited the destination edge, then add the taken edge to our thread + path. */ + if (cond != NULL_TREE + && (is_gimple_min_invariant (cond) + || TREE_CODE (cond) == CASE_LABEL_EXPR)) + { + if (TREE_CODE (cond) == CASE_LABEL_EXPR) + taken_edge = find_edge (bb, label_to_block (cfun, CASE_LABEL (cond))); + else + taken_edge = find_taken_edge (bb, cond); + + if (!taken_edge + || (taken_edge->flags & EDGE_DFS_BACK) != 0) + return false; + + if (bitmap_bit_p (visited, taken_edge->dest->index)) + return false; + bitmap_set_bit (visited, taken_edge->dest->index); + + m_registry->push_edge (path, taken_edge, EDGE_NO_COPY_SRC_BLOCK); + m_state->append_path (taken_edge->dest); + + thread_around_empty_blocks (path, taken_edge, visited); + return true; + } + + return false; +} + +/* We are exiting E->src, see if E->dest ends with a conditional + jump which has a known value when reached via E. + + E->dest can have arbitrary side effects which, if threading is + successful, will be maintained. + + Special care is necessary if E is a back edge in the CFG as we + may have already recorded equivalences for E->dest into our + various tables, including the result of the conditional at + the end of E->dest. Threading opportunities are severely + limited in that case to avoid short-circuiting the loop + incorrectly. + + Positive return value is success. Zero return value is failure, but + the block can still be duplicated as a joiner in a jump thread path, + negative indicates the block should not be duplicated and thus is not + suitable for a joiner in a jump threading path. */ + +int +jump_threader::thread_through_normal_block (vec<jump_thread_edge *> *path, + edge e, bitmap visited) +{ + m_state->register_equivs_edge (e); + + /* PHIs create temporary equivalences. + Note that if we found a PHI that made the block non-threadable, then + we need to bubble that up to our caller in the same manner we do + when we prematurely stop processing statements below. */ + if (!record_temporary_equivalences_from_phis (e)) + return -1; + + /* Now walk each statement recording any context sensitive + temporary equivalences we can detect. */ + gimple *stmt = record_temporary_equivalences_from_stmts_at_dest (e); + + /* There's two reasons STMT might be null, and distinguishing + between them is important. + + First the block may not have had any statements. For example, it + might have some PHIs and unconditionally transfer control elsewhere. + Such blocks are suitable for jump threading, particularly as a + joiner block. + + The second reason would be if we did not process all the statements + in the block (because there were too many to make duplicating the + block profitable. If we did not look at all the statements, then + we may not have invalidated everything needing invalidation. Thus + we must signal to our caller that this block is not suitable for + use as a joiner in a threading path. */ + if (!stmt) + { + /* First case. The statement simply doesn't have any instructions, but + does have PHIs. */ + if (empty_block_with_phis_p (e->dest)) + return 0; + + /* Second case. */ + return -1; + } + + /* If we stopped at a COND_EXPR or SWITCH_EXPR, see if we know which arm + will be taken. */ + if (gimple_code (stmt) == GIMPLE_COND + || gimple_code (stmt) == GIMPLE_GOTO + || gimple_code (stmt) == GIMPLE_SWITCH) + { + tree cond; + + /* Extract and simplify the condition. */ + cond = simplify_control_stmt_condition (e, stmt); + + if (!cond) + return 0; + + if (is_gimple_min_invariant (cond) + || TREE_CODE (cond) == CASE_LABEL_EXPR) + { + edge taken_edge; + if (TREE_CODE (cond) == CASE_LABEL_EXPR) + taken_edge = find_edge (e->dest, + label_to_block (cfun, CASE_LABEL (cond))); + else + taken_edge = find_taken_edge (e->dest, cond); + + basic_block dest = (taken_edge ? taken_edge->dest : NULL); + + /* DEST could be NULL for a computed jump to an absolute + address. */ + if (dest == NULL + || dest == e->dest + || (taken_edge->flags & EDGE_DFS_BACK) != 0 + || bitmap_bit_p (visited, dest->index)) + return 0; + + /* Only push the EDGE_START_JUMP_THREAD marker if this is + first edge on the path. */ + if (path->length () == 0) + m_registry->push_edge (path, e, EDGE_START_JUMP_THREAD); + + m_registry->push_edge (path, taken_edge, EDGE_COPY_SRC_BLOCK); + m_state->append_path (taken_edge->dest); + + /* See if we can thread through DEST as well, this helps capture + secondary effects of threading without having to re-run DOM or + VRP. + + We don't want to thread back to a block we have already + visited. This may be overly conservative. */ + bitmap_set_bit (visited, dest->index); + bitmap_set_bit (visited, e->dest->index); + thread_around_empty_blocks (path, taken_edge, visited); + return 1; + } + } + return 0; +} + +/* There are basic blocks look like: + <P0> + p0 = a CMP b ; or p0 = (INT) (a CMP b) + goto <X>; + + <P1> + p1 = c CMP d + goto <X>; + + <X> + # phi = PHI <p0 (P0), p1 (P1)> + if (phi != 0) goto <Y>; else goto <Z>; + + Then, edge (P0,X) or (P1,X) could be marked as EDGE_START_JUMP_THREAD + And edge (X,Y), (X,Z) is EDGE_COPY_SRC_JOINER_BLOCK + + Return true if E is (P0,X) or (P1,X) */ + +bool +edge_forwards_cmp_to_conditional_jump_through_empty_bb_p (edge e) +{ + /* See if there is only one stmt which is gcond. */ + gcond *gs; + if (!(gs = safe_dyn_cast<gcond *> (last_and_only_stmt (e->dest)))) + return false; + + /* See if gcond's cond is "(phi !=/== 0/1)" in the basic block. */ + tree cond = gimple_cond_lhs (gs); + enum tree_code code = gimple_cond_code (gs); + tree rhs = gimple_cond_rhs (gs); + if (TREE_CODE (cond) != SSA_NAME + || (code != NE_EXPR && code != EQ_EXPR) + || (!integer_onep (rhs) && !integer_zerop (rhs))) + return false; + gphi *phi = dyn_cast <gphi *> (SSA_NAME_DEF_STMT (cond)); + if (phi == NULL || gimple_bb (phi) != e->dest) + return false; + + /* Check if phi's incoming value is CMP. */ + gassign *def; + tree value = PHI_ARG_DEF_FROM_EDGE (phi, e); + if (TREE_CODE (value) != SSA_NAME + || !has_single_use (value) + || !(def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (value)))) + return false; + + /* Or if it is (INT) (a CMP b). */ + if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def))) + { + value = gimple_assign_rhs1 (def); + if (TREE_CODE (value) != SSA_NAME + || !has_single_use (value) + || !(def = dyn_cast<gassign *> (SSA_NAME_DEF_STMT (value)))) + return false; + } + + if (TREE_CODE_CLASS (gimple_assign_rhs_code (def)) != tcc_comparison) + return false; + + return true; +} + +/* We are exiting E->src, see if E->dest ends with a conditional jump + which has a known value when reached via E. If so, thread the + edge. */ + +void +jump_threader::thread_across_edge (edge e) +{ + auto_bitmap visited; + + m_state->push (e); + + stmt_count = 0; + + vec<jump_thread_edge *> *path = m_registry->allocate_thread_path (); + bitmap_set_bit (visited, e->src->index); + bitmap_set_bit (visited, e->dest->index); + + int threaded = 0; + if ((e->flags & EDGE_DFS_BACK) == 0) + threaded = thread_through_normal_block (path, e, visited); + + if (threaded > 0) + { + propagate_threaded_block_debug_into (path->last ()->e->dest, + e->dest); + m_registry->register_jump_thread (path); + m_state->pop (); + return; + } + + gcc_checking_assert (path->length () == 0); + path->release (); + + if (threaded < 0) + { + /* The target block was deemed too big to duplicate. Just quit + now rather than trying to use the block as a joiner in a jump + threading path. + + This prevents unnecessary code growth, but more importantly if we + do not look at all the statements in the block, then we may have + missed some invalidations if we had traversed a backedge! */ + m_state->pop (); + return; + } + + /* We were unable to determine what out edge from E->dest is taken. However, + we might still be able to thread through successors of E->dest. This + often occurs when E->dest is a joiner block which then fans back out + based on redundant tests. + + If so, we'll copy E->dest and redirect the appropriate predecessor to + the copy. Within the copy of E->dest, we'll thread one or more edges + to points deeper in the CFG. + + This is a stopgap until we have a more structured approach to path + isolation. */ + { + edge taken_edge; + edge_iterator ei; + bool found; + + /* If E->dest has abnormal outgoing edges, then there's no guarantee + we can safely redirect any of the edges. Just punt those cases. */ + FOR_EACH_EDGE (taken_edge, ei, e->dest->succs) + if (taken_edge->flags & EDGE_COMPLEX) + { + m_state->pop (); + return; + } + + /* Look at each successor of E->dest to see if we can thread through it. */ + FOR_EACH_EDGE (taken_edge, ei, e->dest->succs) + { + if ((e->flags & EDGE_DFS_BACK) != 0 + || (taken_edge->flags & EDGE_DFS_BACK) != 0) + continue; + + m_state->push (taken_edge); + + /* Avoid threading to any block we have already visited. */ + bitmap_clear (visited); + bitmap_set_bit (visited, e->src->index); + bitmap_set_bit (visited, e->dest->index); + bitmap_set_bit (visited, taken_edge->dest->index); + + vec<jump_thread_edge *> *path = m_registry->allocate_thread_path (); + m_registry->push_edge (path, e, EDGE_START_JUMP_THREAD); + m_registry->push_edge (path, taken_edge, EDGE_COPY_SRC_JOINER_BLOCK); + + found = thread_around_empty_blocks (path, taken_edge, visited); + + if (!found) + found = thread_through_normal_block (path, + path->last ()->e, visited) > 0; + + /* If we were able to thread through a successor of E->dest, then + record the jump threading opportunity. */ + if (found + || edge_forwards_cmp_to_conditional_jump_through_empty_bb_p (e)) + { + if (taken_edge->dest != path->last ()->e->dest) + propagate_threaded_block_debug_into (path->last ()->e->dest, + taken_edge->dest); + m_registry->register_jump_thread (path); + } + else + path->release (); + + m_state->pop (); + } + } + + m_state->pop (); +} + +/* Return TRUE if BB has a single successor to a block with multiple + incoming and outgoing edges. */ + +bool +single_succ_to_potentially_threadable_block (basic_block bb) +{ + int flags = (EDGE_IGNORE | EDGE_COMPLEX | EDGE_ABNORMAL); + return (single_succ_p (bb) + && (single_succ_edge (bb)->flags & flags) == 0 + && potentially_threadable_block (single_succ (bb))); +} + +/* Examine the outgoing edges from BB and conditionally + try to thread them. */ + +void +jump_threader::thread_outgoing_edges (basic_block bb) +{ + int flags = (EDGE_IGNORE | EDGE_COMPLEX | EDGE_ABNORMAL); + gimple *last; + + if (!flag_thread_jumps) + return; + + /* If we have an outgoing edge to a block with multiple incoming and + outgoing edges, then we may be able to thread the edge, i.e., we + may be able to statically determine which of the outgoing edges + will be traversed when the incoming edge from BB is traversed. */ + if (single_succ_to_potentially_threadable_block (bb)) + thread_across_edge (single_succ_edge (bb)); + else if ((last = last_stmt (bb)) + && gimple_code (last) == GIMPLE_COND + && EDGE_COUNT (bb->succs) == 2 + && (EDGE_SUCC (bb, 0)->flags & flags) == 0 + && (EDGE_SUCC (bb, 1)->flags & flags) == 0) + { + edge true_edge, false_edge; + + extract_true_false_edges_from_block (bb, &true_edge, &false_edge); + + /* Only try to thread the edge if it reaches a target block with + more than one predecessor and more than one successor. */ + if (potentially_threadable_block (true_edge->dest)) + thread_across_edge (true_edge); + + /* Similarly for the ELSE arm. */ + if (potentially_threadable_block (false_edge->dest)) + thread_across_edge (false_edge); + } +} + +// Marker to keep track of the start of the current path. +const basic_block jt_state::BB_MARKER = (basic_block) -1; + +// Record that E is being crossed. + +void +jt_state::push (edge e) +{ + m_blocks.safe_push (BB_MARKER); + if (m_blocks.length () == 1) + m_blocks.safe_push (e->src); + m_blocks.safe_push (e->dest); +} + +// Pop to the last pushed state. + +void +jt_state::pop () +{ + if (!m_blocks.is_empty ()) + { + while (m_blocks.last () != BB_MARKER) + m_blocks.pop (); + // Pop marker. + m_blocks.pop (); + } +} + +// Add BB to the list of blocks seen. + +void +jt_state::append_path (basic_block bb) +{ + gcc_checking_assert (!m_blocks.is_empty ()); + m_blocks.safe_push (bb); +} + +void +jt_state::dump (FILE *out) +{ + if (!m_blocks.is_empty ()) + { + auto_vec<basic_block> path; + get_path (path); + dump_ranger (out, path); + } +} + +void +jt_state::debug () +{ + push_dump_file save (stderr, TDF_DETAILS); + dump (stderr); +} + +// Convert the current path in jt_state into a path suitable for the +// path solver. Return the resulting path in PATH. + +void +jt_state::get_path (vec<basic_block> &path) +{ + path.truncate (0); + + for (int i = (int) m_blocks.length () - 1; i >= 0; --i) + { + basic_block bb = m_blocks[i]; + + if (bb != BB_MARKER) + path.safe_push (bb); + } +} + +// Record an equivalence from DST to SRC. If UPDATE_RANGE is TRUE, +// update the value range associated with DST. + +void +jt_state::register_equiv (tree dest ATTRIBUTE_UNUSED, + tree src ATTRIBUTE_UNUSED, + bool update_range ATTRIBUTE_UNUSED) +{ +} + +// Record any ranges calculated in STMT. If TEMPORARY is TRUE, then +// this is a temporary equivalence and should be recorded into the +// unwind table, instead of the global table. + +void +jt_state::record_ranges_from_stmt (gimple *, + bool temporary ATTRIBUTE_UNUSED) +{ +} + +// Record any equivalences created by traversing E. + +void +jt_state::register_equivs_edge (edge) +{ +} + +void +jt_state::register_equivs_stmt (gimple *stmt, basic_block bb, + jt_simplifier *simplifier) +{ + /* At this point we have a statement which assigns an RHS to an + SSA_VAR on the LHS. We want to try and simplify this statement + to expose more context sensitive equivalences which in turn may + allow us to simplify the condition at the end of the loop. + + Handle simple copy operations. */ + tree cached_lhs = NULL; + if (gimple_assign_single_p (stmt) + && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME) + cached_lhs = gimple_assign_rhs1 (stmt); + else + { + /* A statement that is not a trivial copy. + Try to fold the new expression. Inserting the + expression into the hash table is unlikely to help. */ + /* ??? The DOM callback below can be changed to setting + the mprts_hook around the call to thread_across_edge, + avoiding the use substitution. */ + cached_lhs = gimple_fold_stmt_to_constant_1 (stmt, + threadedge_valueize); + if (NUM_SSA_OPERANDS (stmt, SSA_OP_ALL_USES) != 0 + && (!cached_lhs + || (TREE_CODE (cached_lhs) != SSA_NAME + && !is_gimple_min_invariant (cached_lhs)))) + { + /* We're going to temporarily copy propagate the operands + and see if that allows us to simplify this statement. */ + tree *copy; + ssa_op_iter iter; + use_operand_p use_p; + unsigned int num, i = 0; + + num = NUM_SSA_OPERANDS (stmt, SSA_OP_ALL_USES); + copy = XALLOCAVEC (tree, num); + + /* Make a copy of the uses & vuses into USES_COPY, then cprop into + the operands. */ + FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES) + { + tree tmp = NULL; + tree use = USE_FROM_PTR (use_p); + + copy[i++] = use; + if (TREE_CODE (use) == SSA_NAME) + tmp = SSA_NAME_VALUE (use); + if (tmp) + SET_USE (use_p, tmp); + } + + cached_lhs = simplifier->simplify (stmt, stmt, bb, this); + + /* Restore the statement's original uses/defs. */ + i = 0; + FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES) + SET_USE (use_p, copy[i++]); + } + } + + /* Record the context sensitive equivalence if we were able + to simplify this statement. */ + if (cached_lhs + && (TREE_CODE (cached_lhs) == SSA_NAME + || is_gimple_min_invariant (cached_lhs))) + register_equiv (gimple_get_lhs (stmt), cached_lhs, + /*update_range=*/false); +} + +// Hybrid threader implementation. + + +hybrid_jt_simplifier::hybrid_jt_simplifier (gimple_ranger *r, + path_range_query *q) +{ + m_ranger = r; + m_query = q; +} + +tree +hybrid_jt_simplifier::simplify (gimple *stmt, gimple *, basic_block, + jt_state *state) +{ + int_range_max r; + + compute_ranges_from_state (stmt, state); + + if (gimple_code (stmt) == GIMPLE_COND + || gimple_code (stmt) == GIMPLE_ASSIGN) + { + tree ret; + if (m_query->range_of_stmt (r, stmt) && r.singleton_p (&ret)) + return ret; + } + else if (gimple_code (stmt) == GIMPLE_SWITCH) + { + gswitch *switch_stmt = dyn_cast <gswitch *> (stmt); + tree index = gimple_switch_index (switch_stmt); + if (m_query->range_of_expr (r, index, stmt)) + return find_case_label_range (switch_stmt, &r); + } + return NULL; +} + +// Use STATE to generate the list of imports needed for the solver, +// and calculate the ranges along the path. + +void +hybrid_jt_simplifier::compute_ranges_from_state (gimple *stmt, jt_state *state) +{ + auto_bitmap imports; + gori_compute &gori = m_ranger->gori (); + + state->get_path (m_path); + + // Start with the imports to the final conditional. + bitmap_copy (imports, gori.imports (m_path[0])); + + // Add any other interesting operands we may have missed. + if (gimple_bb (stmt) != m_path[0]) + { + for (unsigned i = 0; i < gimple_num_ops (stmt); ++i) + { + tree op = gimple_op (stmt, i); + if (op + && TREE_CODE (op) == SSA_NAME + && irange::supports_type_p (TREE_TYPE (op))) + bitmap_set_bit (imports, SSA_NAME_VERSION (op)); + } + } + m_query->compute_ranges (m_path, imports); +} |