diff options
Diffstat (limited to 'gcc/tree-ssa-loop-split.cc')
-rw-r--r-- | gcc/tree-ssa-loop-split.cc | 1747 |
1 files changed, 1747 insertions, 0 deletions
diff --git a/gcc/tree-ssa-loop-split.cc b/gcc/tree-ssa-loop-split.cc new file mode 100644 index 0000000..b93ee4c --- /dev/null +++ b/gcc/tree-ssa-loop-split.cc @@ -0,0 +1,1747 @@ +/* Loop splitting. + Copyright (C) 2015-2022 Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it +under the terms of the GNU General Public License as published by the +Free Software Foundation; either version 3, or (at your option) any +later version. + +GCC is distributed in the hope that it will be useful, but WITHOUT +ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "backend.h" +#include "tree.h" +#include "gimple.h" +#include "tree-pass.h" +#include "ssa.h" +#include "fold-const.h" +#include "tree-cfg.h" +#include "tree-ssa.h" +#include "tree-ssa-loop-niter.h" +#include "tree-ssa-loop.h" +#include "tree-ssa-loop-manip.h" +#include "tree-into-ssa.h" +#include "tree-inline.h" +#include "tree-cfgcleanup.h" +#include "cfgloop.h" +#include "tree-scalar-evolution.h" +#include "gimple-iterator.h" +#include "gimple-pretty-print.h" +#include "cfghooks.h" +#include "gimple-fold.h" +#include "gimplify-me.h" + +/* This file implements two kinds of loop splitting. + + One transformation of loops like: + + for (i = 0; i < 100; i++) + { + if (i < 50) + A; + else + B; + } + + into: + + for (i = 0; i < 50; i++) + { + A; + } + for (; i < 100; i++) + { + B; + } + + */ + +/* Return true when BB inside LOOP is a potential iteration space + split point, i.e. ends with a condition like "IV < comp", which + is true on one side of the iteration space and false on the other, + and the split point can be computed. If so, also return the border + point in *BORDER and the comparison induction variable in IV. */ + +static tree +split_at_bb_p (class loop *loop, basic_block bb, tree *border, affine_iv *iv) +{ + gimple *last; + gcond *stmt; + affine_iv iv2; + + /* BB must end in a simple conditional jump. */ + last = last_stmt (bb); + if (!last || gimple_code (last) != GIMPLE_COND) + return NULL_TREE; + stmt = as_a <gcond *> (last); + + enum tree_code code = gimple_cond_code (stmt); + + /* Only handle relational comparisons, for equality and non-equality + we'd have to split the loop into two loops and a middle statement. */ + switch (code) + { + case LT_EXPR: + case LE_EXPR: + case GT_EXPR: + case GE_EXPR: + break; + default: + return NULL_TREE; + } + + if (loop_exits_from_bb_p (loop, bb)) + return NULL_TREE; + + tree op0 = gimple_cond_lhs (stmt); + tree op1 = gimple_cond_rhs (stmt); + class loop *useloop = loop_containing_stmt (stmt); + + if (!simple_iv (loop, useloop, op0, iv, false)) + return NULL_TREE; + if (!simple_iv (loop, useloop, op1, &iv2, false)) + return NULL_TREE; + + /* Make it so that the first argument of the condition is + the looping one. */ + if (!integer_zerop (iv2.step)) + { + std::swap (op0, op1); + std::swap (*iv, iv2); + code = swap_tree_comparison (code); + gimple_cond_set_condition (stmt, code, op0, op1); + update_stmt (stmt); + } + else if (integer_zerop (iv->step)) + return NULL_TREE; + if (!integer_zerop (iv2.step)) + return NULL_TREE; + if (!iv->no_overflow) + return NULL_TREE; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Found potential split point: "); + print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); + fprintf (dump_file, " { "); + print_generic_expr (dump_file, iv->base, TDF_SLIM); + fprintf (dump_file, " + I*"); + print_generic_expr (dump_file, iv->step, TDF_SLIM); + fprintf (dump_file, " } %s ", get_tree_code_name (code)); + print_generic_expr (dump_file, iv2.base, TDF_SLIM); + fprintf (dump_file, "\n"); + } + + *border = iv2.base; + return op0; +} + +/* Given a GUARD conditional stmt inside LOOP, which we want to make always + true or false depending on INITIAL_TRUE, and adjusted values NEXTVAL + (a post-increment IV) and NEWBOUND (the comparator) adjust the loop + exit test statement to loop back only if the GUARD statement will + also be true/false in the next iteration. */ + +static void +patch_loop_exit (class loop *loop, gcond *guard, tree nextval, tree newbound, + bool initial_true) +{ + edge exit = single_exit (loop); + gcond *stmt = as_a <gcond *> (last_stmt (exit->src)); + gimple_cond_set_condition (stmt, gimple_cond_code (guard), + nextval, newbound); + update_stmt (stmt); + + edge stay = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit); + + exit->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE); + stay->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE); + + if (initial_true) + { + exit->flags |= EDGE_FALSE_VALUE; + stay->flags |= EDGE_TRUE_VALUE; + } + else + { + exit->flags |= EDGE_TRUE_VALUE; + stay->flags |= EDGE_FALSE_VALUE; + } +} + +/* Give an induction variable GUARD_IV, and its affine descriptor IV, + find the loop phi node in LOOP defining it directly, or create + such phi node. Return that phi node. */ + +static gphi * +find_or_create_guard_phi (class loop *loop, tree guard_iv, affine_iv * /*iv*/) +{ + gimple *def = SSA_NAME_DEF_STMT (guard_iv); + gphi *phi; + if ((phi = dyn_cast <gphi *> (def)) + && gimple_bb (phi) == loop->header) + return phi; + + /* XXX Create the PHI instead. */ + return NULL; +} + +/* Returns true if the exit values of all loop phi nodes can be + determined easily (i.e. that connect_loop_phis can determine them). */ + +static bool +easy_exit_values (class loop *loop) +{ + edge exit = single_exit (loop); + edge latch = loop_latch_edge (loop); + gphi_iterator psi; + + /* Currently we regard the exit values as easy if they are the same + as the value over the backedge. Which is the case if the definition + of the backedge value dominates the exit edge. */ + for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi)) + { + gphi *phi = psi.phi (); + tree next = PHI_ARG_DEF_FROM_EDGE (phi, latch); + basic_block bb; + if (TREE_CODE (next) == SSA_NAME + && (bb = gimple_bb (SSA_NAME_DEF_STMT (next))) + && !dominated_by_p (CDI_DOMINATORS, exit->src, bb)) + return false; + } + + return true; +} + +/* This function updates the SSA form after connect_loops made a new + edge NEW_E leading from LOOP1 exit to LOOP2 (via in intermediate + conditional). I.e. the second loop can now be entered either + via the original entry or via NEW_E, so the entry values of LOOP2 + phi nodes are either the original ones or those at the exit + of LOOP1. Insert new phi nodes in LOOP2 pre-header reflecting + this. The loops need to fulfill easy_exit_values(). */ + +static void +connect_loop_phis (class loop *loop1, class loop *loop2, edge new_e) +{ + basic_block rest = loop_preheader_edge (loop2)->src; + gcc_assert (new_e->dest == rest); + edge skip_first = EDGE_PRED (rest, EDGE_PRED (rest, 0) == new_e); + + edge firste = loop_preheader_edge (loop1); + edge seconde = loop_preheader_edge (loop2); + edge firstn = loop_latch_edge (loop1); + gphi_iterator psi_first, psi_second; + for (psi_first = gsi_start_phis (loop1->header), + psi_second = gsi_start_phis (loop2->header); + !gsi_end_p (psi_first); + gsi_next (&psi_first), gsi_next (&psi_second)) + { + tree init, next, new_init; + use_operand_p op; + gphi *phi_first = psi_first.phi (); + gphi *phi_second = psi_second.phi (); + + init = PHI_ARG_DEF_FROM_EDGE (phi_first, firste); + next = PHI_ARG_DEF_FROM_EDGE (phi_first, firstn); + op = PHI_ARG_DEF_PTR_FROM_EDGE (phi_second, seconde); + gcc_assert (operand_equal_for_phi_arg_p (init, USE_FROM_PTR (op))); + + /* Prefer using original variable as a base for the new ssa name. + This is necessary for virtual ops, and useful in order to avoid + losing debug info for real ops. */ + if (TREE_CODE (next) == SSA_NAME + && useless_type_conversion_p (TREE_TYPE (next), + TREE_TYPE (init))) + new_init = copy_ssa_name (next); + else if (TREE_CODE (init) == SSA_NAME + && useless_type_conversion_p (TREE_TYPE (init), + TREE_TYPE (next))) + new_init = copy_ssa_name (init); + else if (useless_type_conversion_p (TREE_TYPE (next), + TREE_TYPE (init))) + new_init = make_temp_ssa_name (TREE_TYPE (next), NULL, + "unrinittmp"); + else + new_init = make_temp_ssa_name (TREE_TYPE (init), NULL, + "unrinittmp"); + + gphi * newphi = create_phi_node (new_init, rest); + add_phi_arg (newphi, init, skip_first, UNKNOWN_LOCATION); + add_phi_arg (newphi, next, new_e, UNKNOWN_LOCATION); + SET_USE (op, new_init); + } +} + +/* The two loops LOOP1 and LOOP2 were just created by loop versioning, + they are still equivalent and placed in two arms of a diamond, like so: + + .------if (cond)------. + v v + pre1 pre2 + | | + .--->h1 h2<----. + | | | | + | ex1---. .---ex2 | + | / | | \ | + '---l1 X | l2---' + | | + | | + '--->join<---' + + This function transforms the program such that LOOP1 is conditionally + falling through to LOOP2, or skipping it. This is done by splitting + the ex1->join edge at X in the diagram above, and inserting a condition + whose one arm goes to pre2, resulting in this situation: + + .------if (cond)------. + v v + pre1 .---------->pre2 + | | | + .--->h1 | h2<----. + | | | | | + | ex1---. | .---ex2 | + | / v | | \ | + '---l1 skip---' | l2---' + | | + | | + '--->join<---' + + + The condition used is the exit condition of LOOP1, which effectively means + that when the first loop exits (for whatever reason) but the real original + exit expression is still false the second loop will be entered. + The function returns the new edge cond->pre2. + + This doesn't update the SSA form, see connect_loop_phis for that. */ + +static edge +connect_loops (class loop *loop1, class loop *loop2) +{ + edge exit = single_exit (loop1); + basic_block skip_bb = split_edge (exit); + gcond *skip_stmt; + gimple_stmt_iterator gsi; + edge new_e, skip_e; + + gimple *stmt = last_stmt (exit->src); + skip_stmt = gimple_build_cond (gimple_cond_code (stmt), + gimple_cond_lhs (stmt), + gimple_cond_rhs (stmt), + NULL_TREE, NULL_TREE); + gsi = gsi_last_bb (skip_bb); + gsi_insert_after (&gsi, skip_stmt, GSI_NEW_STMT); + + skip_e = EDGE_SUCC (skip_bb, 0); + skip_e->flags &= ~EDGE_FALLTHRU; + new_e = make_edge (skip_bb, loop_preheader_edge (loop2)->src, 0); + if (exit->flags & EDGE_TRUE_VALUE) + { + skip_e->flags |= EDGE_TRUE_VALUE; + new_e->flags |= EDGE_FALSE_VALUE; + } + else + { + skip_e->flags |= EDGE_FALSE_VALUE; + new_e->flags |= EDGE_TRUE_VALUE; + } + + new_e->probability = profile_probability::likely (); + skip_e->probability = new_e->probability.invert (); + + return new_e; +} + +/* This returns the new bound for iterations given the original iteration + space in NITER, an arbitrary new bound BORDER, assumed to be some + comparison value with a different IV, the initial value GUARD_INIT of + that other IV, and the comparison code GUARD_CODE that compares + that other IV with BORDER. We return an SSA name, and place any + necessary statements for that computation into *STMTS. + + For example for such a loop: + + for (i = beg, j = guard_init; i < end; i++, j++) + if (j < border) // this is supposed to be true/false + ... + + we want to return a new bound (on j) that makes the loop iterate + as long as the condition j < border stays true. We also don't want + to iterate more often than the original loop, so we have to introduce + some cut-off as well (via min/max), effectively resulting in: + + newend = min (end+guard_init-beg, border) + for (i = beg; j = guard_init; j < newend; i++, j++) + if (j < c) + ... + + Depending on the direction of the IVs and if the exit tests + are strict or non-strict we need to use MIN or MAX, + and add or subtract 1. This routine computes newend above. */ + +static tree +compute_new_first_bound (gimple_seq *stmts, class tree_niter_desc *niter, + tree border, + enum tree_code guard_code, tree guard_init) +{ + /* The niter structure contains the after-increment IV, we need + the loop-enter base, so subtract STEP once. */ + tree controlbase = force_gimple_operand (niter->control.base, + stmts, true, NULL_TREE); + tree controlstep = niter->control.step; + tree enddiff; + if (POINTER_TYPE_P (TREE_TYPE (controlbase))) + { + controlstep = gimple_build (stmts, NEGATE_EXPR, + TREE_TYPE (controlstep), controlstep); + enddiff = gimple_build (stmts, POINTER_PLUS_EXPR, + TREE_TYPE (controlbase), + controlbase, controlstep); + } + else + enddiff = gimple_build (stmts, MINUS_EXPR, + TREE_TYPE (controlbase), + controlbase, controlstep); + + /* Compute end-beg. */ + gimple_seq stmts2; + tree end = force_gimple_operand (niter->bound, &stmts2, + true, NULL_TREE); + gimple_seq_add_seq_without_update (stmts, stmts2); + if (POINTER_TYPE_P (TREE_TYPE (enddiff))) + { + tree tem = gimple_convert (stmts, sizetype, enddiff); + tem = gimple_build (stmts, NEGATE_EXPR, sizetype, tem); + enddiff = gimple_build (stmts, POINTER_PLUS_EXPR, + TREE_TYPE (enddiff), + end, tem); + } + else + enddiff = gimple_build (stmts, MINUS_EXPR, TREE_TYPE (enddiff), + end, enddiff); + + /* Compute guard_init + (end-beg). */ + tree newbound; + enddiff = gimple_convert (stmts, TREE_TYPE (guard_init), enddiff); + if (POINTER_TYPE_P (TREE_TYPE (guard_init))) + { + enddiff = gimple_convert (stmts, sizetype, enddiff); + newbound = gimple_build (stmts, POINTER_PLUS_EXPR, + TREE_TYPE (guard_init), + guard_init, enddiff); + } + else + newbound = gimple_build (stmts, PLUS_EXPR, TREE_TYPE (guard_init), + guard_init, enddiff); + + /* Depending on the direction of the IVs the new bound for the first + loop is the minimum or maximum of old bound and border. + Also, if the guard condition isn't strictly less or greater, + we need to adjust the bound. */ + int addbound = 0; + enum tree_code minmax; + if (niter->cmp == LT_EXPR) + { + /* GT and LE are the same, inverted. */ + if (guard_code == GT_EXPR || guard_code == LE_EXPR) + addbound = -1; + minmax = MIN_EXPR; + } + else + { + gcc_assert (niter->cmp == GT_EXPR); + if (guard_code == GE_EXPR || guard_code == LT_EXPR) + addbound = 1; + minmax = MAX_EXPR; + } + + if (addbound) + { + tree type2 = TREE_TYPE (newbound); + if (POINTER_TYPE_P (type2)) + type2 = sizetype; + newbound = gimple_build (stmts, + POINTER_TYPE_P (TREE_TYPE (newbound)) + ? POINTER_PLUS_EXPR : PLUS_EXPR, + TREE_TYPE (newbound), + newbound, + build_int_cst (type2, addbound)); + } + + tree newend = gimple_build (stmts, minmax, TREE_TYPE (border), + border, newbound); + return newend; +} + +/* Fix the two loop's bb count after split based on the split edge probability, + don't adjust the bbs dominated by true branches of that loop to avoid + dropping 1s down. */ +static void +fix_loop_bb_probability (class loop *loop1, class loop *loop2, edge true_edge, + edge false_edge) +{ + update_ssa (TODO_update_ssa); + + /* Proportion first loop's bb counts except those dominated by true + branch to avoid drop 1s down. */ + basic_block *bbs1, *bbs2; + bbs1 = get_loop_body (loop1); + unsigned j; + for (j = 0; j < loop1->num_nodes; j++) + if (bbs1[j] == loop1->latch + || !dominated_by_p (CDI_DOMINATORS, bbs1[j], true_edge->dest)) + bbs1[j]->count + = bbs1[j]->count.apply_probability (true_edge->probability); + free (bbs1); + + /* Proportion second loop's bb counts except those dominated by false + branch to avoid drop 1s down. */ + basic_block bbi_copy = get_bb_copy (false_edge->dest); + bbs2 = get_loop_body (loop2); + for (j = 0; j < loop2->num_nodes; j++) + if (bbs2[j] == loop2->latch + || !dominated_by_p (CDI_DOMINATORS, bbs2[j], bbi_copy)) + bbs2[j]->count + = bbs2[j]->count.apply_probability (true_edge->probability.invert ()); + free (bbs2); +} + +/* Checks if LOOP contains an conditional block whose condition + depends on which side in the iteration space it is, and if so + splits the iteration space into two loops. Returns true if the + loop was split. NITER must contain the iteration descriptor for the + single exit of LOOP. */ + +static bool +split_loop (class loop *loop1) +{ + class tree_niter_desc niter; + basic_block *bbs; + unsigned i; + bool changed = false; + tree guard_iv; + tree border = NULL_TREE; + affine_iv iv; + + if (!single_exit (loop1) + /* ??? We could handle non-empty latches when we split the latch edge + (not the exit edge), and put the new exit condition in the new block. + OTOH this executes some code unconditionally that might have been + skipped by the original exit before. */ + || !empty_block_p (loop1->latch) + || !easy_exit_values (loop1) + || !number_of_iterations_exit (loop1, single_exit (loop1), &niter, + false, true) + || niter.cmp == ERROR_MARK + /* We can't yet handle loops controlled by a != predicate. */ + || niter.cmp == NE_EXPR) + return false; + + bbs = get_loop_body (loop1); + + if (!can_copy_bbs_p (bbs, loop1->num_nodes)) + { + free (bbs); + return false; + } + + /* Find a splitting opportunity. */ + for (i = 0; i < loop1->num_nodes; i++) + if ((guard_iv = split_at_bb_p (loop1, bbs[i], &border, &iv))) + { + /* Handling opposite steps is not implemented yet. Neither + is handling different step sizes. */ + if ((tree_int_cst_sign_bit (iv.step) + != tree_int_cst_sign_bit (niter.control.step)) + || !tree_int_cst_equal (iv.step, niter.control.step)) + continue; + + /* Find a loop PHI node that defines guard_iv directly, + or create one doing that. */ + gphi *phi = find_or_create_guard_phi (loop1, guard_iv, &iv); + if (!phi) + continue; + gcond *guard_stmt = as_a<gcond *> (last_stmt (bbs[i])); + tree guard_init = PHI_ARG_DEF_FROM_EDGE (phi, + loop_preheader_edge (loop1)); + enum tree_code guard_code = gimple_cond_code (guard_stmt); + + /* Loop splitting is implemented by versioning the loop, placing + the new loop after the old loop, make the first loop iterate + as long as the conditional stays true (or false) and let the + second (new) loop handle the rest of the iterations. + + First we need to determine if the condition will start being true + or false in the first loop. */ + bool initial_true; + switch (guard_code) + { + case LT_EXPR: + case LE_EXPR: + initial_true = !tree_int_cst_sign_bit (iv.step); + break; + case GT_EXPR: + case GE_EXPR: + initial_true = tree_int_cst_sign_bit (iv.step); + break; + default: + gcc_unreachable (); + } + + /* Build a condition that will skip the first loop when the + guard condition won't ever be true (or false). */ + gimple_seq stmts2; + border = force_gimple_operand (border, &stmts2, true, NULL_TREE); + if (stmts2) + gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop1), + stmts2); + tree cond = build2 (guard_code, boolean_type_node, guard_init, border); + if (!initial_true) + cond = fold_build1 (TRUTH_NOT_EXPR, boolean_type_node, cond); + + edge true_edge, false_edge; + extract_true_false_edges_from_block (bbs[i], &true_edge, &false_edge); + + /* Now version the loop, placing loop2 after loop1 connecting + them, and fix up SSA form for that. */ + initialize_original_copy_tables (); + basic_block cond_bb; + + class loop *loop2 = loop_version (loop1, cond, &cond_bb, + true_edge->probability, + true_edge->probability.invert (), + profile_probability::always (), + profile_probability::always (), + true); + gcc_assert (loop2); + + edge new_e = connect_loops (loop1, loop2); + connect_loop_phis (loop1, loop2, new_e); + + /* The iterations of the second loop is now already + exactly those that the first loop didn't do, but the + iteration space of the first loop is still the original one. + Compute the new bound for the guarding IV and patch the + loop exit to use it instead of original IV and bound. */ + gimple_seq stmts = NULL; + tree newend = compute_new_first_bound (&stmts, &niter, border, + guard_code, guard_init); + if (stmts) + gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop1), + stmts); + tree guard_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop1)); + patch_loop_exit (loop1, guard_stmt, guard_next, newend, initial_true); + + fix_loop_bb_probability (loop1, loop2, true_edge, false_edge); + + /* Fix first loop's exit probability after scaling. */ + edge exit_to_latch1 = single_pred_edge (loop1->latch); + exit_to_latch1->probability *= true_edge->probability; + single_exit (loop1)->probability + = exit_to_latch1->probability.invert (); + + /* Finally patch out the two copies of the condition to be always + true/false (or opposite). */ + gcond *force_true = as_a<gcond *> (last_stmt (bbs[i])); + gcond *force_false = as_a<gcond *> (last_stmt (get_bb_copy (bbs[i]))); + if (!initial_true) + std::swap (force_true, force_false); + gimple_cond_make_true (force_true); + gimple_cond_make_false (force_false); + update_stmt (force_true); + update_stmt (force_false); + + free_original_copy_tables (); + + changed = true; + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, ";; Loop split.\n"); + + if (dump_enabled_p ()) + dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, guard_stmt, "loop split\n"); + + /* Only deal with the first opportunity. */ + break; + } + + free (bbs); + return changed; +} + +/* Another transformation of loops like: + + for (i = INIT (); CHECK (i); i = NEXT ()) + { + if (expr (a_1, a_2, ..., a_n)) // expr is pure + a_j = ...; // change at least one a_j + else + S; // not change any a_j + } + + into: + + for (i = INIT (); CHECK (i); i = NEXT ()) + { + if (expr (a_1, a_2, ..., a_n)) + a_j = ...; + else + { + S; + i = NEXT (); + break; + } + } + + for (; CHECK (i); i = NEXT ()) + { + S; + } + + */ + +/* Data structure to hold temporary information during loop split upon + semi-invariant conditional statement. */ +class split_info { +public: + /* Array of all basic blocks in a loop, returned by get_loop_body(). */ + basic_block *bbs; + + /* All memory store/clobber statements in a loop. */ + auto_vec<gimple *> memory_stores; + + /* Whether above memory stores vector has been filled. */ + int need_init; + + /* Control dependencies of basic blocks in a loop. */ + auto_vec<hash_set<basic_block> *> control_deps; + + split_info () : bbs (NULL), need_init (true) { } + + ~split_info () + { + if (bbs) + free (bbs); + + for (unsigned i = 0; i < control_deps.length (); i++) + delete control_deps[i]; + } +}; + +/* Find all statements with memory-write effect in LOOP, including memory + store and non-pure function call, and keep those in a vector. This work + is only done one time, for the vector should be constant during analysis + stage of semi-invariant condition. */ + +static void +find_vdef_in_loop (struct loop *loop) +{ + split_info *info = (split_info *) loop->aux; + gphi *vphi = get_virtual_phi (loop->header); + + /* Indicate memory store vector has been filled. */ + info->need_init = false; + + /* If loop contains memory operation, there must be a virtual PHI node in + loop header basic block. */ + if (vphi == NULL) + return; + + /* All virtual SSA names inside the loop are connected to be a cyclic + graph via virtual PHI nodes. The virtual PHI node in loop header just + links the first and the last virtual SSA names, by using the last as + PHI operand to define the first. */ + const edge latch = loop_latch_edge (loop); + const tree first = gimple_phi_result (vphi); + const tree last = PHI_ARG_DEF_FROM_EDGE (vphi, latch); + + /* The virtual SSA cyclic graph might consist of only one SSA name, who + is defined by itself. + + .MEM_1 = PHI <.MEM_2(loop entry edge), .MEM_1(latch edge)> + + This means the loop contains only memory loads, so we can skip it. */ + if (first == last) + return; + + auto_vec<gimple *> other_stores; + auto_vec<tree> worklist; + auto_bitmap visited; + + bitmap_set_bit (visited, SSA_NAME_VERSION (first)); + bitmap_set_bit (visited, SSA_NAME_VERSION (last)); + worklist.safe_push (last); + + do + { + tree vuse = worklist.pop (); + gimple *stmt = SSA_NAME_DEF_STMT (vuse); + + /* We mark the first and last SSA names as visited at the beginning, + and reversely start the process from the last SSA name towards the + first, which ensures that this do-while will not touch SSA names + defined outside the loop. */ + gcc_assert (gimple_bb (stmt) + && flow_bb_inside_loop_p (loop, gimple_bb (stmt))); + + if (gimple_code (stmt) == GIMPLE_PHI) + { + gphi *phi = as_a <gphi *> (stmt); + + for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i) + { + tree arg = gimple_phi_arg_def (stmt, i); + + if (bitmap_set_bit (visited, SSA_NAME_VERSION (arg))) + worklist.safe_push (arg); + } + } + else + { + tree prev = gimple_vuse (stmt); + + /* Non-pure call statement is conservatively assumed to impact all + memory locations. So place call statements ahead of other memory + stores in the vector with an idea of using them as shortcut + terminators to memory alias analysis. */ + if (gimple_code (stmt) == GIMPLE_CALL) + info->memory_stores.safe_push (stmt); + else + other_stores.safe_push (stmt); + + if (bitmap_set_bit (visited, SSA_NAME_VERSION (prev))) + worklist.safe_push (prev); + } + } while (!worklist.is_empty ()); + + info->memory_stores.safe_splice (other_stores); +} + +/* Two basic blocks have equivalent control dependency if one dominates to + the other, and it is post-dominated by the latter. Given a basic block + BB in LOOP, find farest equivalent dominating basic block. For BB, there + is a constraint that BB does not post-dominate loop header of LOOP, this + means BB is control-dependent on at least one basic block in LOOP. */ + +static basic_block +get_control_equiv_head_block (struct loop *loop, basic_block bb) +{ + while (!bb->aux) + { + basic_block dom_bb = get_immediate_dominator (CDI_DOMINATORS, bb); + + gcc_checking_assert (dom_bb && flow_bb_inside_loop_p (loop, dom_bb)); + + if (!dominated_by_p (CDI_POST_DOMINATORS, dom_bb, bb)) + break; + + bb = dom_bb; + } + return bb; +} + +/* Given a BB in LOOP, find out all basic blocks in LOOP that BB is control- + dependent on. */ + +static hash_set<basic_block> * +find_control_dep_blocks (struct loop *loop, basic_block bb) +{ + /* BB has same control dependency as loop header, then it is not control- + dependent on any basic block in LOOP. */ + if (dominated_by_p (CDI_POST_DOMINATORS, loop->header, bb)) + return NULL; + + basic_block equiv_head = get_control_equiv_head_block (loop, bb); + + if (equiv_head->aux) + { + /* There is a basic block containing control dependency equivalent + to BB. No need to recompute that, and also set this information + to other equivalent basic blocks. */ + for (; bb != equiv_head; + bb = get_immediate_dominator (CDI_DOMINATORS, bb)) + bb->aux = equiv_head->aux; + return (hash_set<basic_block> *) equiv_head->aux; + } + + /* A basic block X is control-dependent on another Y iff there exists + a path from X to Y, in which every basic block other than X and Y + is post-dominated by Y, but X is not post-dominated by Y. + + According to this rule, traverse basic blocks in the loop backwards + starting from BB, if a basic block is post-dominated by BB, extend + current post-dominating path to this block, otherwise it is another + one that BB is control-dependent on. */ + + auto_vec<basic_block> pdom_worklist; + hash_set<basic_block> pdom_visited; + hash_set<basic_block> *dep_bbs = new hash_set<basic_block>; + + pdom_worklist.safe_push (equiv_head); + + do + { + basic_block pdom_bb = pdom_worklist.pop (); + edge_iterator ei; + edge e; + + if (pdom_visited.add (pdom_bb)) + continue; + + FOR_EACH_EDGE (e, ei, pdom_bb->preds) + { + basic_block pred_bb = e->src; + + if (!dominated_by_p (CDI_POST_DOMINATORS, pred_bb, bb)) + { + dep_bbs->add (pred_bb); + continue; + } + + pred_bb = get_control_equiv_head_block (loop, pred_bb); + + if (pdom_visited.contains (pred_bb)) + continue; + + if (!pred_bb->aux) + { + pdom_worklist.safe_push (pred_bb); + continue; + } + + /* If control dependency of basic block is available, fast extend + post-dominating path using the information instead of advancing + forward step-by-step. */ + hash_set<basic_block> *pred_dep_bbs + = (hash_set<basic_block> *) pred_bb->aux; + + for (hash_set<basic_block>::iterator iter = pred_dep_bbs->begin (); + iter != pred_dep_bbs->end (); ++iter) + { + basic_block pred_dep_bb = *iter; + + /* Basic blocks can either be in control dependency of BB, or + must be post-dominated by BB, if so, extend the path from + these basic blocks. */ + if (!dominated_by_p (CDI_POST_DOMINATORS, pred_dep_bb, bb)) + dep_bbs->add (pred_dep_bb); + else if (!pdom_visited.contains (pred_dep_bb)) + pdom_worklist.safe_push (pred_dep_bb); + } + } + } while (!pdom_worklist.is_empty ()); + + /* Record computed control dependencies in loop so that we can reach them + when reclaiming resources. */ + ((split_info *) loop->aux)->control_deps.safe_push (dep_bbs); + + /* Associate control dependence with related equivalent basic blocks. */ + for (equiv_head->aux = dep_bbs; bb != equiv_head; + bb = get_immediate_dominator (CDI_DOMINATORS, bb)) + bb->aux = dep_bbs; + + return dep_bbs; +} + +/* Forward declaration */ + +static bool +stmt_semi_invariant_p_1 (struct loop *loop, gimple *stmt, + const_basic_block skip_head, + hash_map<gimple *, bool> &stmt_stat); + +/* Given STMT, memory load or pure call statement, check whether it is impacted + by some memory store in LOOP, excluding trace starting from SKIP_HEAD (the + trace is composed of SKIP_HEAD and those basic block dominated by it, always + corresponds to one branch of a conditional statement). If SKIP_HEAD is + NULL, all basic blocks of LOOP are checked. */ + +static bool +vuse_semi_invariant_p (struct loop *loop, gimple *stmt, + const_basic_block skip_head) +{ + split_info *info = (split_info *) loop->aux; + tree rhs = NULL_TREE; + ao_ref ref; + gimple *store; + unsigned i; + + /* Collect memory store/clobber statements if haven't done that. */ + if (info->need_init) + find_vdef_in_loop (loop); + + if (is_gimple_assign (stmt)) + rhs = gimple_assign_rhs1 (stmt); + + ao_ref_init (&ref, rhs); + + FOR_EACH_VEC_ELT (info->memory_stores, i, store) + { + /* Skip basic blocks dominated by SKIP_HEAD, if non-NULL. */ + if (skip_head + && dominated_by_p (CDI_DOMINATORS, gimple_bb (store), skip_head)) + continue; + + if (!ref.ref || stmt_may_clobber_ref_p_1 (store, &ref)) + return false; + } + + return true; +} + +/* Suppose one condition branch, led by SKIP_HEAD, is not executed since + certain iteration of LOOP, check whether an SSA name (NAME) remains + unchanged in next iteration. We call this characteristic semi- + invariantness. SKIP_HEAD might be NULL, if so, nothing excluded, all basic + blocks and control flows in the loop will be considered. Semi-invariant + state of checked statement is cached in hash map STMT_STAT to avoid + redundant computation in possible following re-check. */ + +static inline bool +ssa_semi_invariant_p (struct loop *loop, tree name, + const_basic_block skip_head, + hash_map<gimple *, bool> &stmt_stat) +{ + gimple *def = SSA_NAME_DEF_STMT (name); + const_basic_block def_bb = gimple_bb (def); + + /* An SSA name defined outside loop is definitely semi-invariant. */ + if (!def_bb || !flow_bb_inside_loop_p (loop, def_bb)) + return true; + + if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name)) + return false; + + return stmt_semi_invariant_p_1 (loop, def, skip_head, stmt_stat); +} + +/* Check whether a loop iteration PHI node (LOOP_PHI) defines a value that is + semi-invariant in LOOP. Basic blocks dominated by SKIP_HEAD (if non-NULL), + are excluded from LOOP. */ + +static bool +loop_iter_phi_semi_invariant_p (struct loop *loop, gphi *loop_phi, + const_basic_block skip_head) +{ + const_edge latch = loop_latch_edge (loop); + tree name = gimple_phi_result (loop_phi); + tree from = PHI_ARG_DEF_FROM_EDGE (loop_phi, latch); + + gcc_checking_assert (from); + + /* Loop iteration PHI node locates in loop header, and it has two source + operands, one is an initial value coming from outside the loop, the other + is a value through latch of the loop, which is derived in last iteration, + we call the latter latch value. From the PHI node to definition of latch + value, if excluding branch trace starting from SKIP_HEAD, except copy- + assignment or likewise, there is no other kind of value redefinition, SSA + name defined by the PHI node is semi-invariant. + + loop entry + | .--- latch ---. + | | | + v v | + x_1 = PHI <x_0, x_3> | + | | + v | + .------- if (cond) -------. | + | | | + | [ SKIP ] | + | | | + | x_2 = ... | + | | | + '---- T ---->.<---- F ----' | + | | + v | + x_3 = PHI <x_1, x_2> | + | | + '----------------------' + + Suppose in certain iteration, execution flow in above graph goes through + true branch, which means that one source value to define x_3 in false + branch (x_2) is skipped, x_3 only comes from x_1, and x_1 in next + iterations is defined by x_3, we know that x_1 will never changed if COND + always chooses true branch from then on. */ + + while (from != name) + { + /* A new value comes from a CONSTANT. */ + if (TREE_CODE (from) != SSA_NAME) + return false; + + gimple *stmt = SSA_NAME_DEF_STMT (from); + const_basic_block bb = gimple_bb (stmt); + + /* A new value comes from outside the loop. */ + if (!bb || !flow_bb_inside_loop_p (loop, bb)) + return false; + + from = NULL_TREE; + + if (gimple_code (stmt) == GIMPLE_PHI) + { + gphi *phi = as_a <gphi *> (stmt); + + for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i) + { + if (skip_head) + { + const_edge e = gimple_phi_arg_edge (phi, i); + + /* Don't consider redefinitions in excluded basic blocks. */ + if (dominated_by_p (CDI_DOMINATORS, e->src, skip_head)) + continue; + } + + tree arg = gimple_phi_arg_def (phi, i); + + if (!from) + from = arg; + else if (!operand_equal_p (from, arg, 0)) + /* There are more than one source operands that provide + different values to the SSA name, it is variant. */ + return false; + } + } + else if (gimple_code (stmt) == GIMPLE_ASSIGN) + { + /* For simple value copy, check its rhs instead. */ + if (gimple_assign_ssa_name_copy_p (stmt)) + from = gimple_assign_rhs1 (stmt); + } + + /* Any other kind of definition is deemed to introduce a new value + to the SSA name. */ + if (!from) + return false; + } + return true; +} + +/* Check whether conditional predicates that BB is control-dependent on, are + semi-invariant in LOOP. Basic blocks dominated by SKIP_HEAD (if non-NULL), + are excluded from LOOP. Semi-invariant state of checked statement is cached + in hash map STMT_STAT. */ + +static bool +control_dep_semi_invariant_p (struct loop *loop, basic_block bb, + const_basic_block skip_head, + hash_map<gimple *, bool> &stmt_stat) +{ + hash_set<basic_block> *dep_bbs = find_control_dep_blocks (loop, bb); + + if (!dep_bbs) + return true; + + for (hash_set<basic_block>::iterator iter = dep_bbs->begin (); + iter != dep_bbs->end (); ++iter) + { + gimple *last = last_stmt (*iter); + + if (!last) + return false; + + /* Only check condition predicates. */ + if (gimple_code (last) != GIMPLE_COND + && gimple_code (last) != GIMPLE_SWITCH) + return false; + + if (!stmt_semi_invariant_p_1 (loop, last, skip_head, stmt_stat)) + return false; + } + + return true; +} + +/* Check whether STMT is semi-invariant in LOOP, iff all its operands are + semi-invariant, consequently, all its defined values are semi-invariant. + Basic blocks dominated by SKIP_HEAD (if non-NULL), are excluded from LOOP. + Semi-invariant state of checked statement is cached in hash map + STMT_STAT. */ + +static bool +stmt_semi_invariant_p_1 (struct loop *loop, gimple *stmt, + const_basic_block skip_head, + hash_map<gimple *, bool> &stmt_stat) +{ + bool existed; + bool &invar = stmt_stat.get_or_insert (stmt, &existed); + + if (existed) + return invar; + + /* A statement might depend on itself, which is treated as variant. So set + state of statement under check to be variant to ensure that. */ + invar = false; + + if (gimple_code (stmt) == GIMPLE_PHI) + { + gphi *phi = as_a <gphi *> (stmt); + + if (gimple_bb (stmt) == loop->header) + { + /* If the entry value is subject to abnormal coalescing + avoid the transform since we're going to duplicate the + loop header and thus likely introduce overlapping life-ranges + between the PHI def and the entry on the path when the + first loop is skipped. */ + tree entry_def + = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop)); + if (TREE_CODE (entry_def) == SSA_NAME + && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (entry_def)) + return false; + invar = loop_iter_phi_semi_invariant_p (loop, phi, skip_head); + return invar; + } + + /* For a loop PHI node that does not locate in loop header, it is semi- + invariant only if two conditions are met. The first is its source + values are derived from CONSTANT (including loop-invariant value), or + from SSA name defined by semi-invariant loop iteration PHI node. The + second is its source incoming edges are control-dependent on semi- + invariant conditional predicates. */ + for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i) + { + const_edge e = gimple_phi_arg_edge (phi, i); + tree arg = gimple_phi_arg_def (phi, i); + + if (TREE_CODE (arg) == SSA_NAME) + { + if (!ssa_semi_invariant_p (loop, arg, skip_head, stmt_stat)) + return false; + + /* If source value is defined in location from where the source + edge comes in, no need to check control dependency again + since this has been done in above SSA name check stage. */ + if (e->src == gimple_bb (SSA_NAME_DEF_STMT (arg))) + continue; + } + + if (!control_dep_semi_invariant_p (loop, e->src, skip_head, + stmt_stat)) + return false; + } + } + else + { + ssa_op_iter iter; + tree use; + + /* Volatile memory load or return of normal (non-const/non-pure) call + should not be treated as constant in each iteration of loop. */ + if (gimple_has_side_effects (stmt)) + return false; + + /* Check if any memory store may kill memory load at this place. */ + if (gimple_vuse (stmt) && !vuse_semi_invariant_p (loop, stmt, skip_head)) + return false; + + /* Although operand of a statement might be SSA name, CONSTANT or + VARDECL, here we only need to check SSA name operands. This is + because check on VARDECL operands, which involve memory loads, + must have been done prior to invocation of this function in + vuse_semi_invariant_p. */ + FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE) + if (!ssa_semi_invariant_p (loop, use, skip_head, stmt_stat)) + return false; + } + + if (!control_dep_semi_invariant_p (loop, gimple_bb (stmt), skip_head, + stmt_stat)) + return false; + + /* Here we SHOULD NOT use invar = true, since hash map might be changed due + to new insertion, and thus invar may point to invalid memory. */ + stmt_stat.put (stmt, true); + return true; +} + +/* A helper function to check whether STMT is semi-invariant in LOOP. Basic + blocks dominated by SKIP_HEAD (if non-NULL), are excluded from LOOP. */ + +static bool +stmt_semi_invariant_p (struct loop *loop, gimple *stmt, + const_basic_block skip_head) +{ + hash_map<gimple *, bool> stmt_stat; + return stmt_semi_invariant_p_1 (loop, stmt, skip_head, stmt_stat); +} + +/* Determine when conditional statement never transfers execution to one of its + branch, whether we can remove the branch's leading basic block (BRANCH_BB) + and those basic blocks dominated by BRANCH_BB. */ + +static bool +branch_removable_p (basic_block branch_bb) +{ + edge_iterator ei; + edge e; + + if (single_pred_p (branch_bb)) + return true; + + FOR_EACH_EDGE (e, ei, branch_bb->preds) + { + if (dominated_by_p (CDI_DOMINATORS, e->src, branch_bb)) + continue; + + if (dominated_by_p (CDI_DOMINATORS, branch_bb, e->src)) + continue; + + /* The branch can be reached from opposite branch, or from some + statement not dominated by the conditional statement. */ + return false; + } + + return true; +} + +/* Find out which branch of a conditional statement (COND) is invariant in the + execution context of LOOP. That is: once the branch is selected in certain + iteration of the loop, any operand that contributes to computation of the + conditional statement remains unchanged in all following iterations. */ + +static edge +get_cond_invariant_branch (struct loop *loop, gcond *cond) +{ + basic_block cond_bb = gimple_bb (cond); + basic_block targ_bb[2]; + bool invar[2]; + unsigned invar_checks = 0; + + for (unsigned i = 0; i < 2; i++) + { + targ_bb[i] = EDGE_SUCC (cond_bb, i)->dest; + + /* One branch directs to loop exit, no need to perform loop split upon + this conditional statement. Firstly, it is trivial if the exit branch + is semi-invariant, for the statement is just to break loop. Secondly, + if the opposite branch is semi-invariant, it means that the statement + is real loop-invariant, which is covered by loop unswitch. */ + if (!flow_bb_inside_loop_p (loop, targ_bb[i])) + return NULL; + } + + for (unsigned i = 0; i < 2; i++) + { + invar[!i] = false; + + if (!branch_removable_p (targ_bb[i])) + continue; + + /* Given a semi-invariant branch, if its opposite branch dominates + loop latch, it and its following trace will only be executed in + final iteration of loop, namely it is not part of repeated body + of the loop. Similar to the above case that the branch is loop + exit, no need to split loop. */ + if (dominated_by_p (CDI_DOMINATORS, loop->latch, targ_bb[i])) + continue; + + invar[!i] = stmt_semi_invariant_p (loop, cond, targ_bb[i]); + invar_checks++; + } + + /* With both branches being invariant (handled by loop unswitch) or + variant is not what we want. */ + if (invar[0] ^ !invar[1]) + return NULL; + + /* Found a real loop-invariant condition, do nothing. */ + if (invar_checks < 2 && stmt_semi_invariant_p (loop, cond, NULL)) + return NULL; + + return EDGE_SUCC (cond_bb, invar[0] ? 0 : 1); +} + +/* Calculate increased code size measured by estimated insn number if applying + loop split upon certain branch (BRANCH_EDGE) of a conditional statement. */ + +static int +compute_added_num_insns (struct loop *loop, const_edge branch_edge) +{ + basic_block cond_bb = branch_edge->src; + unsigned branch = EDGE_SUCC (cond_bb, 1) == branch_edge; + basic_block opposite_bb = EDGE_SUCC (cond_bb, !branch)->dest; + basic_block *bbs = ((split_info *) loop->aux)->bbs; + int num = 0; + + for (unsigned i = 0; i < loop->num_nodes; i++) + { + /* Do no count basic blocks only in opposite branch. */ + if (dominated_by_p (CDI_DOMINATORS, bbs[i], opposite_bb)) + continue; + + num += estimate_num_insns_seq (bb_seq (bbs[i]), &eni_size_weights); + } + + /* It is unnecessary to evaluate expression of the conditional statement + in new loop that contains only invariant branch. This expression should + be constant value (either true or false). Exclude code size of insns + that contribute to computation of the expression. */ + + auto_vec<gimple *> worklist; + hash_set<gimple *> removed; + gimple *stmt = last_stmt (cond_bb); + + worklist.safe_push (stmt); + removed.add (stmt); + num -= estimate_num_insns (stmt, &eni_size_weights); + + do + { + ssa_op_iter opnd_iter; + use_operand_p opnd_p; + + stmt = worklist.pop (); + FOR_EACH_PHI_OR_STMT_USE (opnd_p, stmt, opnd_iter, SSA_OP_USE) + { + tree opnd = USE_FROM_PTR (opnd_p); + + if (TREE_CODE (opnd) != SSA_NAME || SSA_NAME_IS_DEFAULT_DEF (opnd)) + continue; + + gimple *opnd_stmt = SSA_NAME_DEF_STMT (opnd); + use_operand_p use_p; + imm_use_iterator use_iter; + + if (removed.contains (opnd_stmt) + || !flow_bb_inside_loop_p (loop, gimple_bb (opnd_stmt))) + continue; + + FOR_EACH_IMM_USE_FAST (use_p, use_iter, opnd) + { + gimple *use_stmt = USE_STMT (use_p); + + if (!is_gimple_debug (use_stmt) && !removed.contains (use_stmt)) + { + opnd_stmt = NULL; + break; + } + } + + if (opnd_stmt) + { + worklist.safe_push (opnd_stmt); + removed.add (opnd_stmt); + num -= estimate_num_insns (opnd_stmt, &eni_size_weights); + } + } + } while (!worklist.is_empty ()); + + gcc_assert (num >= 0); + return num; +} + +/* Find out loop-invariant branch of a conditional statement (COND) if it has, + and check whether it is eligible and profitable to perform loop split upon + this branch in LOOP. */ + +static edge +get_cond_branch_to_split_loop (struct loop *loop, gcond *cond) +{ + edge invar_branch = get_cond_invariant_branch (loop, cond); + if (!invar_branch) + return NULL; + + /* When accurate profile information is available, and execution + frequency of the branch is too low, just let it go. */ + profile_probability prob = invar_branch->probability; + if (prob.reliable_p ()) + { + int thres = param_min_loop_cond_split_prob; + + if (prob < profile_probability::always ().apply_scale (thres, 100)) + return NULL; + } + + /* Add a threshold for increased code size to disable loop split. */ + if (compute_added_num_insns (loop, invar_branch) > param_max_peeled_insns) + return NULL; + + return invar_branch; +} + +/* Given a loop (LOOP1) with a loop-invariant branch (INVAR_BRANCH) of some + conditional statement, perform loop split transformation illustrated + as the following graph. + + .-------T------ if (true) ------F------. + | .---------------. | + | | | | + v | v v + pre-header | pre-header + | .------------. | | .------------. + | | | | | | | + | v | | | v | + header | | header | + | | | | | + .--- if (cond) ---. | | .--- if (true) ---. | + | | | | | | | + invariant | | | invariant | | + | | | | | | | + '---T--->.<---F---' | | '---T--->.<---F---' | + | | / | | + stmts | / stmts | + | F T | | + / \ | / / \ | + .-------* * [ if (cond) ] .-------* * | + | | | | | | + | latch | | latch | + | | | | | | + | '------------' | '------------' + '------------------------. .-----------' + loop1 | | loop2 + v v + exits + + In the graph, loop1 represents the part derived from original one, and + loop2 is duplicated using loop_version (), which corresponds to the part + of original one being splitted out. In original latch edge of loop1, we + insert a new conditional statement duplicated from the semi-invariant cond, + and one of its branch goes back to loop1 header as a latch edge, and the + other branch goes to loop2 pre-header as an entry edge. And also in loop2, + we abandon the variant branch of the conditional statement by setting a + constant bool condition, based on which branch is semi-invariant. */ + +static bool +do_split_loop_on_cond (struct loop *loop1, edge invar_branch) +{ + basic_block cond_bb = invar_branch->src; + bool true_invar = !!(invar_branch->flags & EDGE_TRUE_VALUE); + gcond *cond = as_a <gcond *> (last_stmt (cond_bb)); + + gcc_assert (cond_bb->loop_father == loop1); + + if (dump_enabled_p ()) + dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, cond, + "loop split on semi-invariant condition at %s branch\n", + true_invar ? "true" : "false"); + + initialize_original_copy_tables (); + + struct loop *loop2 = loop_version (loop1, boolean_true_node, NULL, + invar_branch->probability.invert (), + invar_branch->probability, + profile_probability::always (), + profile_probability::always (), + true); + if (!loop2) + { + free_original_copy_tables (); + return false; + } + + basic_block cond_bb_copy = get_bb_copy (cond_bb); + gcond *cond_copy = as_a<gcond *> (last_stmt (cond_bb_copy)); + + /* Replace the condition in loop2 with a bool constant to let PassManager + remove the variant branch after current pass completes. */ + if (true_invar) + gimple_cond_make_true (cond_copy); + else + gimple_cond_make_false (cond_copy); + + update_stmt (cond_copy); + + /* Insert a new conditional statement on latch edge of loop1, its condition + is duplicated from the semi-invariant. This statement acts as a switch + to transfer execution from loop1 to loop2, when loop1 enters into + invariant state. */ + basic_block latch_bb = split_edge (loop_latch_edge (loop1)); + basic_block break_bb = split_edge (single_pred_edge (latch_bb)); + gimple *break_cond = gimple_build_cond (gimple_cond_code(cond), + gimple_cond_lhs (cond), + gimple_cond_rhs (cond), + NULL_TREE, NULL_TREE); + + gimple_stmt_iterator gsi = gsi_last_bb (break_bb); + gsi_insert_after (&gsi, break_cond, GSI_NEW_STMT); + + edge to_loop1 = single_succ_edge (break_bb); + edge to_loop2 = make_edge (break_bb, loop_preheader_edge (loop2)->src, 0); + + to_loop1->flags &= ~EDGE_FALLTHRU; + to_loop1->flags |= true_invar ? EDGE_FALSE_VALUE : EDGE_TRUE_VALUE; + to_loop2->flags |= true_invar ? EDGE_TRUE_VALUE : EDGE_FALSE_VALUE; + + /* Due to introduction of a control flow edge from loop1 latch to loop2 + pre-header, we should update PHIs in loop2 to reflect this connection + between loop1 and loop2. */ + connect_loop_phis (loop1, loop2, to_loop2); + + edge true_edge, false_edge, skip_edge1, skip_edge2; + extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge); + + skip_edge1 = true_invar ? false_edge : true_edge; + skip_edge2 = true_invar ? true_edge : false_edge; + fix_loop_bb_probability (loop1, loop2, skip_edge1, skip_edge2); + + /* Fix first loop's exit probability after scaling. */ + to_loop1->probability = invar_branch->probability.invert (); + to_loop2->probability = invar_branch->probability; + + free_original_copy_tables (); + + return true; +} + +/* Traverse all conditional statements in LOOP, to find out a good candidate + upon which we can do loop split. */ + +static bool +split_loop_on_cond (struct loop *loop) +{ + split_info *info = new split_info (); + basic_block *bbs = info->bbs = get_loop_body (loop); + bool do_split = false; + + /* Allocate an area to keep temporary info, and associate its address + with loop aux field. */ + loop->aux = info; + + for (unsigned i = 0; i < loop->num_nodes; i++) + bbs[i]->aux = NULL; + + for (unsigned i = 0; i < loop->num_nodes; i++) + { + basic_block bb = bbs[i]; + + /* We only consider conditional statement, which be executed at most once + in each iteration of the loop. So skip statements in inner loops. */ + if ((bb->loop_father != loop) || (bb->flags & BB_IRREDUCIBLE_LOOP)) + continue; + + /* Actually this check is not a must constraint. With it, we can ensure + conditional statement will always be executed in each iteration. */ + if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb)) + continue; + + gimple *last = last_stmt (bb); + + if (!last || gimple_code (last) != GIMPLE_COND) + continue; + + gcond *cond = as_a <gcond *> (last); + edge branch_edge = get_cond_branch_to_split_loop (loop, cond); + + if (branch_edge) + { + do_split_loop_on_cond (loop, branch_edge); + do_split = true; + break; + } + } + + delete info; + loop->aux = NULL; + + return do_split; +} + +/* Main entry point. Perform loop splitting on all suitable loops. */ + +static unsigned int +tree_ssa_split_loops (void) +{ + bool changed = false; + + gcc_assert (scev_initialized_p ()); + + calculate_dominance_info (CDI_POST_DOMINATORS); + + for (auto loop : loops_list (cfun, LI_INCLUDE_ROOT)) + loop->aux = NULL; + + /* Go through all loops starting from innermost. */ + for (auto loop : loops_list (cfun, LI_FROM_INNERMOST)) + { + if (loop->aux) + { + /* If any of our inner loops was split, don't split us, + and mark our containing loop as having had splits as well. */ + loop_outer (loop)->aux = loop; + continue; + } + + if (optimize_loop_for_size_p (loop)) + continue; + + if (split_loop (loop) || split_loop_on_cond (loop)) + { + /* Mark our containing loop as having had some split inner loops. */ + loop_outer (loop)->aux = loop; + changed = true; + } + } + + for (auto loop : loops_list (cfun, LI_INCLUDE_ROOT)) + loop->aux = NULL; + + clear_aux_for_blocks (); + + free_dominance_info (CDI_POST_DOMINATORS); + + if (changed) + { + rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa); + return TODO_cleanup_cfg; + } + return 0; +} + +/* Loop splitting pass. */ + +namespace { + +const pass_data pass_data_loop_split = +{ + GIMPLE_PASS, /* type */ + "lsplit", /* name */ + OPTGROUP_LOOP, /* optinfo_flags */ + TV_LOOP_SPLIT, /* tv_id */ + PROP_cfg, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + 0, /* todo_flags_finish */ +}; + +class pass_loop_split : public gimple_opt_pass +{ +public: + pass_loop_split (gcc::context *ctxt) + : gimple_opt_pass (pass_data_loop_split, ctxt) + {} + + /* opt_pass methods: */ + virtual bool gate (function *) { return flag_split_loops != 0; } + virtual unsigned int execute (function *); + +}; // class pass_loop_split + +unsigned int +pass_loop_split::execute (function *fun) +{ + if (number_of_loops (fun) <= 1) + return 0; + + return tree_ssa_split_loops (); +} + +} // anon namespace + +gimple_opt_pass * +make_pass_loop_split (gcc::context *ctxt) +{ + return new pass_loop_split (ctxt); +} |