aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-loop-prefetch.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/tree-ssa-loop-prefetch.c')
-rw-r--r--gcc/tree-ssa-loop-prefetch.c2108
1 files changed, 0 insertions, 2108 deletions
diff --git a/gcc/tree-ssa-loop-prefetch.c b/gcc/tree-ssa-loop-prefetch.c
deleted file mode 100644
index aebd7c9..0000000
--- a/gcc/tree-ssa-loop-prefetch.c
+++ /dev/null
@@ -1,2108 +0,0 @@
-/* Array prefetching.
- Copyright (C) 2005-2022 Free Software Foundation, Inc.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it
-under the terms of the GNU General Public License as published by the
-Free Software Foundation; either version 3, or (at your option) any
-later version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT
-ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "backend.h"
-#include "target.h"
-#include "rtl.h"
-#include "tree.h"
-#include "gimple.h"
-#include "predict.h"
-#include "tree-pass.h"
-#include "gimple-ssa.h"
-#include "optabs-query.h"
-#include "tree-pretty-print.h"
-#include "fold-const.h"
-#include "stor-layout.h"
-#include "gimplify.h"
-#include "gimple-iterator.h"
-#include "gimplify-me.h"
-#include "tree-ssa-loop-ivopts.h"
-#include "tree-ssa-loop-manip.h"
-#include "tree-ssa-loop-niter.h"
-#include "tree-ssa-loop.h"
-#include "ssa.h"
-#include "tree-into-ssa.h"
-#include "cfgloop.h"
-#include "tree-scalar-evolution.h"
-#include "langhooks.h"
-#include "tree-inline.h"
-#include "tree-data-ref.h"
-#include "diagnostic-core.h"
-#include "dbgcnt.h"
-
-/* This pass inserts prefetch instructions to optimize cache usage during
- accesses to arrays in loops. It processes loops sequentially and:
-
- 1) Gathers all memory references in the single loop.
- 2) For each of the references it decides when it is profitable to prefetch
- it. To do it, we evaluate the reuse among the accesses, and determines
- two values: PREFETCH_BEFORE (meaning that it only makes sense to do
- prefetching in the first PREFETCH_BEFORE iterations of the loop) and
- PREFETCH_MOD (meaning that it only makes sense to prefetch in the
- iterations of the loop that are zero modulo PREFETCH_MOD). For example
- (assuming cache line size is 64 bytes, char has size 1 byte and there
- is no hardware sequential prefetch):
-
- char *a;
- for (i = 0; i < max; i++)
- {
- a[255] = ...; (0)
- a[i] = ...; (1)
- a[i + 64] = ...; (2)
- a[16*i] = ...; (3)
- a[187*i] = ...; (4)
- a[187*i + 50] = ...; (5)
- }
-
- (0) obviously has PREFETCH_BEFORE 1
- (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
- location 64 iterations before it, and PREFETCH_MOD 64 (since
- it hits the same cache line otherwise).
- (2) has PREFETCH_MOD 64
- (3) has PREFETCH_MOD 4
- (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since
- the cache line accessed by (5) is the same with probability only
- 7/32.
- (5) has PREFETCH_MOD 1 as well.
-
- Additionally, we use data dependence analysis to determine for each
- reference the distance till the first reuse; this information is used
- to determine the temporality of the issued prefetch instruction.
-
- 3) We determine how much ahead we need to prefetch. The number of
- iterations needed is time to fetch / time spent in one iteration of
- the loop. The problem is that we do not know either of these values,
- so we just make a heuristic guess based on a magic (possibly)
- target-specific constant and size of the loop.
-
- 4) Determine which of the references we prefetch. We take into account
- that there is a maximum number of simultaneous prefetches (provided
- by machine description). We prefetch as many prefetches as possible
- while still within this bound (starting with those with lowest
- prefetch_mod, since they are responsible for most of the cache
- misses).
-
- 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
- and PREFETCH_BEFORE requirements (within some bounds), and to avoid
- prefetching nonaccessed memory.
- TODO -- actually implement peeling.
-
- 6) We actually emit the prefetch instructions. ??? Perhaps emit the
- prefetch instructions with guards in cases where 5) was not sufficient
- to satisfy the constraints?
-
- A cost model is implemented to determine whether or not prefetching is
- profitable for a given loop. The cost model has three heuristics:
-
- 1. Function trip_count_to_ahead_ratio_too_small_p implements a
- heuristic that determines whether or not the loop has too few
- iterations (compared to ahead). Prefetching is not likely to be
- beneficial if the trip count to ahead ratio is below a certain
- minimum.
-
- 2. Function mem_ref_count_reasonable_p implements a heuristic that
- determines whether the given loop has enough CPU ops that can be
- overlapped with cache missing memory ops. If not, the loop
- won't benefit from prefetching. In the implementation,
- prefetching is not considered beneficial if the ratio between
- the instruction count and the mem ref count is below a certain
- minimum.
-
- 3. Function insn_to_prefetch_ratio_too_small_p implements a
- heuristic that disables prefetching in a loop if the prefetching
- cost is above a certain limit. The relative prefetching cost is
- estimated by taking the ratio between the prefetch count and the
- total intruction count (this models the I-cache cost).
-
- The limits used in these heuristics are defined as parameters with
- reasonable default values. Machine-specific default values will be
- added later.
-
- Some other TODO:
- -- write and use more general reuse analysis (that could be also used
- in other cache aimed loop optimizations)
- -- make it behave sanely together with the prefetches given by user
- (now we just ignore them; at the very least we should avoid
- optimizing loops in that user put his own prefetches)
- -- we assume cache line size alignment of arrays; this could be
- improved. */
-
-/* Magic constants follow. These should be replaced by machine specific
- numbers. */
-
-/* True if write can be prefetched by a read prefetch. */
-
-#ifndef WRITE_CAN_USE_READ_PREFETCH
-#define WRITE_CAN_USE_READ_PREFETCH 1
-#endif
-
-/* True if read can be prefetched by a write prefetch. */
-
-#ifndef READ_CAN_USE_WRITE_PREFETCH
-#define READ_CAN_USE_WRITE_PREFETCH 0
-#endif
-
-/* The size of the block loaded by a single prefetch. Usually, this is
- the same as cache line size (at the moment, we only consider one level
- of cache hierarchy). */
-
-#ifndef PREFETCH_BLOCK
-#define PREFETCH_BLOCK param_l1_cache_line_size
-#endif
-
-/* Do we have a forward hardware sequential prefetching? */
-
-#ifndef HAVE_FORWARD_PREFETCH
-#define HAVE_FORWARD_PREFETCH 0
-#endif
-
-/* Do we have a backward hardware sequential prefetching? */
-
-#ifndef HAVE_BACKWARD_PREFETCH
-#define HAVE_BACKWARD_PREFETCH 0
-#endif
-
-/* In some cases we are only able to determine that there is a certain
- probability that the two accesses hit the same cache line. In this
- case, we issue the prefetches for both of them if this probability
- is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand. */
-
-#ifndef ACCEPTABLE_MISS_RATE
-#define ACCEPTABLE_MISS_RATE 50
-#endif
-
-#define L1_CACHE_SIZE_BYTES ((unsigned) (param_l1_cache_size * 1024))
-#define L2_CACHE_SIZE_BYTES ((unsigned) (param_l2_cache_size * 1024))
-
-/* We consider a memory access nontemporal if it is not reused sooner than
- after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore
- accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
- so that we use nontemporal prefetches e.g. if single memory location
- is accessed several times in a single iteration of the loop. */
-#define NONTEMPORAL_FRACTION 16
-
-/* In case we have to emit a memory fence instruction after the loop that
- uses nontemporal stores, this defines the builtin to use. */
-
-#ifndef FENCE_FOLLOWING_MOVNT
-#define FENCE_FOLLOWING_MOVNT NULL_TREE
-#endif
-
-/* It is not profitable to prefetch when the trip count is not at
- least TRIP_COUNT_TO_AHEAD_RATIO times the prefetch ahead distance.
- For example, in a loop with a prefetch ahead distance of 10,
- supposing that TRIP_COUNT_TO_AHEAD_RATIO is equal to 4, it is
- profitable to prefetch when the trip count is greater or equal to
- 40. In that case, 30 out of the 40 iterations will benefit from
- prefetching. */
-
-#ifndef TRIP_COUNT_TO_AHEAD_RATIO
-#define TRIP_COUNT_TO_AHEAD_RATIO 4
-#endif
-
-/* The group of references between that reuse may occur. */
-
-struct mem_ref_group
-{
- tree base; /* Base of the reference. */
- tree step; /* Step of the reference. */
- struct mem_ref *refs; /* References in the group. */
- struct mem_ref_group *next; /* Next group of references. */
- unsigned int uid; /* Group UID, used only for debugging. */
-};
-
-/* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */
-
-#define PREFETCH_ALL HOST_WIDE_INT_M1U
-
-/* Do not generate a prefetch if the unroll factor is significantly less
- than what is required by the prefetch. This is to avoid redundant
- prefetches. For example, when prefetch_mod is 16 and unroll_factor is
- 2, prefetching requires unrolling the loop 16 times, but
- the loop is actually unrolled twice. In this case (ratio = 8),
- prefetching is not likely to be beneficial. */
-
-#ifndef PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO
-#define PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 4
-#endif
-
-/* Some of the prefetch computations have quadratic complexity. We want to
- avoid huge compile times and, therefore, want to limit the amount of
- memory references per loop where we consider prefetching. */
-
-#ifndef PREFETCH_MAX_MEM_REFS_PER_LOOP
-#define PREFETCH_MAX_MEM_REFS_PER_LOOP 200
-#endif
-
-/* The memory reference. */
-
-struct mem_ref
-{
- gimple *stmt; /* Statement in that the reference appears. */
- tree mem; /* The reference. */
- HOST_WIDE_INT delta; /* Constant offset of the reference. */
- struct mem_ref_group *group; /* The group of references it belongs to. */
- unsigned HOST_WIDE_INT prefetch_mod;
- /* Prefetch only each PREFETCH_MOD-th
- iteration. */
- unsigned HOST_WIDE_INT prefetch_before;
- /* Prefetch only first PREFETCH_BEFORE
- iterations. */
- unsigned reuse_distance; /* The amount of data accessed before the first
- reuse of this value. */
- struct mem_ref *next; /* The next reference in the group. */
- unsigned int uid; /* Ref UID, used only for debugging. */
- unsigned write_p : 1; /* Is it a write? */
- unsigned independent_p : 1; /* True if the reference is independent on
- all other references inside the loop. */
- unsigned issue_prefetch_p : 1; /* Should we really issue the prefetch? */
- unsigned storent_p : 1; /* True if we changed the store to a
- nontemporal one. */
-};
-
-/* Dumps information about memory reference */
-static void
-dump_mem_details (FILE *file, tree base, tree step,
- HOST_WIDE_INT delta, bool write_p)
-{
- fprintf (file, "(base ");
- print_generic_expr (file, base, TDF_SLIM);
- fprintf (file, ", step ");
- if (cst_and_fits_in_hwi (step))
- fprintf (file, HOST_WIDE_INT_PRINT_DEC, int_cst_value (step));
- else
- print_generic_expr (file, step, TDF_SLIM);
- fprintf (file, ")\n");
- fprintf (file, " delta " HOST_WIDE_INT_PRINT_DEC "\n", delta);
- fprintf (file, " %s\n\n", write_p ? "write" : "read");
-}
-
-/* Dumps information about reference REF to FILE. */
-
-static void
-dump_mem_ref (FILE *file, struct mem_ref *ref)
-{
- fprintf (file, "reference %u:%u (", ref->group->uid, ref->uid);
- print_generic_expr (file, ref->mem, TDF_SLIM);
- fprintf (file, ")\n");
-}
-
-/* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
- exist. */
-
-static struct mem_ref_group *
-find_or_create_group (struct mem_ref_group **groups, tree base, tree step)
-{
- /* Global count for setting struct mem_ref_group->uid. */
- static unsigned int last_mem_ref_group_uid = 0;
-
- struct mem_ref_group *group;
-
- for (; *groups; groups = &(*groups)->next)
- {
- if (operand_equal_p ((*groups)->step, step, 0)
- && operand_equal_p ((*groups)->base, base, 0))
- return *groups;
-
- /* If step is an integer constant, keep the list of groups sorted
- by decreasing step. */
- if (cst_and_fits_in_hwi ((*groups)->step) && cst_and_fits_in_hwi (step)
- && int_cst_value ((*groups)->step) < int_cst_value (step))
- break;
- }
-
- group = XNEW (struct mem_ref_group);
- group->base = base;
- group->step = step;
- group->refs = NULL;
- group->uid = ++last_mem_ref_group_uid;
- group->next = *groups;
- *groups = group;
-
- return group;
-}
-
-/* Records a memory reference MEM in GROUP with offset DELTA and write status
- WRITE_P. The reference occurs in statement STMT. */
-
-static void
-record_ref (struct mem_ref_group *group, gimple *stmt, tree mem,
- HOST_WIDE_INT delta, bool write_p)
-{
- unsigned int last_mem_ref_uid = 0;
- struct mem_ref **aref;
-
- /* Do not record the same address twice. */
- for (aref = &group->refs; *aref; aref = &(*aref)->next)
- {
- last_mem_ref_uid = (*aref)->uid;
-
- /* It does not have to be possible for write reference to reuse the read
- prefetch, or vice versa. */
- if (!WRITE_CAN_USE_READ_PREFETCH
- && write_p
- && !(*aref)->write_p)
- continue;
- if (!READ_CAN_USE_WRITE_PREFETCH
- && !write_p
- && (*aref)->write_p)
- continue;
-
- if ((*aref)->delta == delta)
- return;
- }
-
- (*aref) = XNEW (struct mem_ref);
- (*aref)->stmt = stmt;
- (*aref)->mem = mem;
- (*aref)->delta = delta;
- (*aref)->write_p = write_p;
- (*aref)->prefetch_before = PREFETCH_ALL;
- (*aref)->prefetch_mod = 1;
- (*aref)->reuse_distance = 0;
- (*aref)->issue_prefetch_p = false;
- (*aref)->group = group;
- (*aref)->next = NULL;
- (*aref)->independent_p = false;
- (*aref)->storent_p = false;
- (*aref)->uid = last_mem_ref_uid + 1;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- dump_mem_ref (dump_file, *aref);
-
- fprintf (dump_file, " group %u ", group->uid);
- dump_mem_details (dump_file, group->base, group->step, delta,
- write_p);
- }
-}
-
-/* Release memory references in GROUPS. */
-
-static void
-release_mem_refs (struct mem_ref_group *groups)
-{
- struct mem_ref_group *next_g;
- struct mem_ref *ref, *next_r;
-
- for (; groups; groups = next_g)
- {
- next_g = groups->next;
- for (ref = groups->refs; ref; ref = next_r)
- {
- next_r = ref->next;
- free (ref);
- }
- free (groups);
- }
-}
-
-/* A structure used to pass arguments to idx_analyze_ref. */
-
-struct ar_data
-{
- class loop *loop; /* Loop of the reference. */
- gimple *stmt; /* Statement of the reference. */
- tree *step; /* Step of the memory reference. */
- HOST_WIDE_INT *delta; /* Offset of the memory reference. */
-};
-
-/* Analyzes a single INDEX of a memory reference to obtain information
- described at analyze_ref. Callback for for_each_index. */
-
-static bool
-idx_analyze_ref (tree base, tree *index, void *data)
-{
- struct ar_data *ar_data = (struct ar_data *) data;
- tree ibase, step, stepsize;
- HOST_WIDE_INT idelta = 0, imult = 1;
- affine_iv iv;
-
- if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt),
- *index, &iv, true))
- return false;
- ibase = iv.base;
- step = iv.step;
-
- if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
- && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
- {
- idelta = int_cst_value (TREE_OPERAND (ibase, 1));
- ibase = TREE_OPERAND (ibase, 0);
- }
- if (cst_and_fits_in_hwi (ibase))
- {
- idelta += int_cst_value (ibase);
- ibase = build_int_cst (TREE_TYPE (ibase), 0);
- }
-
- if (TREE_CODE (base) == ARRAY_REF)
- {
- stepsize = array_ref_element_size (base);
- if (!cst_and_fits_in_hwi (stepsize))
- return false;
- imult = int_cst_value (stepsize);
- step = fold_build2 (MULT_EXPR, sizetype,
- fold_convert (sizetype, step),
- fold_convert (sizetype, stepsize));
- idelta *= imult;
- }
-
- if (*ar_data->step == NULL_TREE)
- *ar_data->step = step;
- else
- *ar_data->step = fold_build2 (PLUS_EXPR, sizetype,
- fold_convert (sizetype, *ar_data->step),
- fold_convert (sizetype, step));
- *ar_data->delta += idelta;
- *index = ibase;
-
- return true;
-}
-
-/* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
- STEP are integer constants and iter is number of iterations of LOOP. The
- reference occurs in statement STMT. Strips nonaddressable component
- references from REF_P. */
-
-static bool
-analyze_ref (class loop *loop, tree *ref_p, tree *base,
- tree *step, HOST_WIDE_INT *delta,
- gimple *stmt)
-{
- struct ar_data ar_data;
- tree off;
- HOST_WIDE_INT bit_offset;
- tree ref = *ref_p;
-
- *step = NULL_TREE;
- *delta = 0;
-
- /* First strip off the component references. Ignore bitfields.
- Also strip off the real and imagine parts of a complex, so that
- they can have the same base. */
- if (TREE_CODE (ref) == REALPART_EXPR
- || TREE_CODE (ref) == IMAGPART_EXPR
- || (TREE_CODE (ref) == COMPONENT_REF
- && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1))))
- {
- if (TREE_CODE (ref) == IMAGPART_EXPR)
- *delta += int_size_in_bytes (TREE_TYPE (ref));
- ref = TREE_OPERAND (ref, 0);
- }
-
- *ref_p = ref;
-
- for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
- {
- off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
- bit_offset = TREE_INT_CST_LOW (off);
- gcc_assert (bit_offset % BITS_PER_UNIT == 0);
-
- *delta += bit_offset / BITS_PER_UNIT;
- }
-
- *base = unshare_expr (ref);
- ar_data.loop = loop;
- ar_data.stmt = stmt;
- ar_data.step = step;
- ar_data.delta = delta;
- return for_each_index (base, idx_analyze_ref, &ar_data);
-}
-
-/* Record a memory reference REF to the list REFS. The reference occurs in
- LOOP in statement STMT and it is write if WRITE_P. Returns true if the
- reference was recorded, false otherwise. */
-
-static bool
-gather_memory_references_ref (class loop *loop, struct mem_ref_group **refs,
- tree ref, bool write_p, gimple *stmt)
-{
- tree base, step;
- HOST_WIDE_INT delta;
- struct mem_ref_group *agrp;
-
- if (get_base_address (ref) == NULL)
- return false;
-
- if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
- return false;
- /* If analyze_ref fails the default is a NULL_TREE. We can stop here. */
- if (step == NULL_TREE)
- return false;
-
- /* Stop if the address of BASE could not be taken. */
- if (may_be_nonaddressable_p (base))
- return false;
-
- /* Limit non-constant step prefetching only to the innermost loops and
- only when the step is loop invariant in the entire loop nest. */
- if (!cst_and_fits_in_hwi (step))
- {
- if (loop->inner != NULL)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Memory expression %p\n",(void *) ref );
- print_generic_expr (dump_file, ref, TDF_SLIM);
- fprintf (dump_file,":");
- dump_mem_details (dump_file, base, step, delta, write_p);
- fprintf (dump_file,
- "Ignoring %p, non-constant step prefetching is "
- "limited to inner most loops \n",
- (void *) ref);
- }
- return false;
- }
- else
- {
- if (!expr_invariant_in_loop_p (loop_outermost (loop), step))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Memory expression %p\n",(void *) ref );
- print_generic_expr (dump_file, ref, TDF_SLIM);
- fprintf (dump_file,":");
- dump_mem_details (dump_file, base, step, delta, write_p);
- fprintf (dump_file,
- "Not prefetching, ignoring %p due to "
- "loop variant step\n",
- (void *) ref);
- }
- return false;
- }
- }
- }
-
- /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
- are integer constants. */
- agrp = find_or_create_group (refs, base, step);
- record_ref (agrp, stmt, ref, delta, write_p);
-
- return true;
-}
-
-/* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to
- true if there are no other memory references inside the loop. */
-
-static struct mem_ref_group *
-gather_memory_references (class loop *loop, bool *no_other_refs, unsigned *ref_count)
-{
- basic_block *body = get_loop_body_in_dom_order (loop);
- basic_block bb;
- unsigned i;
- gimple_stmt_iterator bsi;
- gimple *stmt;
- tree lhs, rhs;
- struct mem_ref_group *refs = NULL;
-
- *no_other_refs = true;
- *ref_count = 0;
-
- /* Scan the loop body in order, so that the former references precede the
- later ones. */
- for (i = 0; i < loop->num_nodes; i++)
- {
- bb = body[i];
- if (bb->loop_father != loop)
- continue;
-
- for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
- {
- stmt = gsi_stmt (bsi);
-
- if (gimple_code (stmt) != GIMPLE_ASSIGN)
- {
- if (gimple_vuse (stmt)
- || (is_gimple_call (stmt)
- && !(gimple_call_flags (stmt) & ECF_CONST)))
- *no_other_refs = false;
- continue;
- }
-
- if (! gimple_vuse (stmt))
- continue;
-
- lhs = gimple_assign_lhs (stmt);
- rhs = gimple_assign_rhs1 (stmt);
-
- if (REFERENCE_CLASS_P (rhs))
- {
- *no_other_refs &= gather_memory_references_ref (loop, &refs,
- rhs, false, stmt);
- *ref_count += 1;
- }
- if (REFERENCE_CLASS_P (lhs))
- {
- *no_other_refs &= gather_memory_references_ref (loop, &refs,
- lhs, true, stmt);
- *ref_count += 1;
- }
- }
- }
- free (body);
-
- return refs;
-}
-
-/* Prune the prefetch candidate REF using the self-reuse. */
-
-static void
-prune_ref_by_self_reuse (struct mem_ref *ref)
-{
- HOST_WIDE_INT step;
- bool backward;
-
- /* If the step size is non constant, we cannot calculate prefetch_mod. */
- if (!cst_and_fits_in_hwi (ref->group->step))
- return;
-
- step = int_cst_value (ref->group->step);
-
- backward = step < 0;
-
- if (step == 0)
- {
- /* Prefetch references to invariant address just once. */
- ref->prefetch_before = 1;
- return;
- }
-
- if (backward)
- step = -step;
-
- if (step > PREFETCH_BLOCK)
- return;
-
- if ((backward && HAVE_BACKWARD_PREFETCH)
- || (!backward && HAVE_FORWARD_PREFETCH))
- {
- ref->prefetch_before = 1;
- return;
- }
-
- ref->prefetch_mod = PREFETCH_BLOCK / step;
-}
-
-/* Divides X by BY, rounding down. */
-
-static HOST_WIDE_INT
-ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
-{
- gcc_assert (by > 0);
-
- if (x >= 0)
- return x / (HOST_WIDE_INT) by;
- else
- return (x + (HOST_WIDE_INT) by - 1) / (HOST_WIDE_INT) by;
-}
-
-/* Given a CACHE_LINE_SIZE and two inductive memory references
- with a common STEP greater than CACHE_LINE_SIZE and an address
- difference DELTA, compute the probability that they will fall
- in different cache lines. Return true if the computed miss rate
- is not greater than the ACCEPTABLE_MISS_RATE. DISTINCT_ITERS is the
- number of distinct iterations after which the pattern repeats itself.
- ALIGN_UNIT is the unit of alignment in bytes. */
-
-static bool
-is_miss_rate_acceptable (unsigned HOST_WIDE_INT cache_line_size,
- HOST_WIDE_INT step, HOST_WIDE_INT delta,
- unsigned HOST_WIDE_INT distinct_iters,
- int align_unit)
-{
- unsigned align, iter;
- int total_positions, miss_positions, max_allowed_miss_positions;
- int address1, address2, cache_line1, cache_line2;
-
- /* It always misses if delta is greater than or equal to the cache
- line size. */
- if (delta >= (HOST_WIDE_INT) cache_line_size)
- return false;
-
- miss_positions = 0;
- total_positions = (cache_line_size / align_unit) * distinct_iters;
- max_allowed_miss_positions = (ACCEPTABLE_MISS_RATE * total_positions) / 1000;
-
- /* Iterate through all possible alignments of the first
- memory reference within its cache line. */
- for (align = 0; align < cache_line_size; align += align_unit)
-
- /* Iterate through all distinct iterations. */
- for (iter = 0; iter < distinct_iters; iter++)
- {
- address1 = align + step * iter;
- address2 = address1 + delta;
- cache_line1 = address1 / cache_line_size;
- cache_line2 = address2 / cache_line_size;
- if (cache_line1 != cache_line2)
- {
- miss_positions += 1;
- if (miss_positions > max_allowed_miss_positions)
- return false;
- }
- }
- return true;
-}
-
-/* Prune the prefetch candidate REF using the reuse with BY.
- If BY_IS_BEFORE is true, BY is before REF in the loop. */
-
-static void
-prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
- bool by_is_before)
-{
- HOST_WIDE_INT step;
- bool backward;
- HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
- HOST_WIDE_INT delta = delta_b - delta_r;
- HOST_WIDE_INT hit_from;
- unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
- HOST_WIDE_INT reduced_step;
- unsigned HOST_WIDE_INT reduced_prefetch_block;
- tree ref_type;
- int align_unit;
-
- /* If the step is non constant we cannot calculate prefetch_before. */
- if (!cst_and_fits_in_hwi (ref->group->step)) {
- return;
- }
-
- step = int_cst_value (ref->group->step);
-
- backward = step < 0;
-
-
- if (delta == 0)
- {
- /* If the references has the same address, only prefetch the
- former. */
- if (by_is_before)
- ref->prefetch_before = 0;
-
- return;
- }
-
- if (!step)
- {
- /* If the reference addresses are invariant and fall into the
- same cache line, prefetch just the first one. */
- if (!by_is_before)
- return;
-
- if (ddown (ref->delta, PREFETCH_BLOCK)
- != ddown (by->delta, PREFETCH_BLOCK))
- return;
-
- ref->prefetch_before = 0;
- return;
- }
-
- /* Only prune the reference that is behind in the array. */
- if (backward)
- {
- if (delta > 0)
- return;
-
- /* Transform the data so that we may assume that the accesses
- are forward. */
- delta = - delta;
- step = -step;
- delta_r = PREFETCH_BLOCK - 1 - delta_r;
- delta_b = PREFETCH_BLOCK - 1 - delta_b;
- }
- else
- {
- if (delta < 0)
- return;
- }
-
- /* Check whether the two references are likely to hit the same cache
- line, and how distant the iterations in that it occurs are from
- each other. */
-
- if (step <= PREFETCH_BLOCK)
- {
- /* The accesses are sure to meet. Let us check when. */
- hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
- prefetch_before = (hit_from - delta_r + step - 1) / step;
-
- /* Do not reduce prefetch_before if we meet beyond cache size. */
- if (prefetch_before > absu_hwi (L2_CACHE_SIZE_BYTES / step))
- prefetch_before = PREFETCH_ALL;
- if (prefetch_before < ref->prefetch_before)
- ref->prefetch_before = prefetch_before;
-
- return;
- }
-
- /* A more complicated case with step > prefetch_block. First reduce
- the ratio between the step and the cache line size to its simplest
- terms. The resulting denominator will then represent the number of
- distinct iterations after which each address will go back to its
- initial location within the cache line. This computation assumes
- that PREFETCH_BLOCK is a power of two. */
- prefetch_block = PREFETCH_BLOCK;
- reduced_prefetch_block = prefetch_block;
- reduced_step = step;
- while ((reduced_step & 1) == 0
- && reduced_prefetch_block > 1)
- {
- reduced_step >>= 1;
- reduced_prefetch_block >>= 1;
- }
-
- prefetch_before = delta / step;
- delta %= step;
- ref_type = TREE_TYPE (ref->mem);
- align_unit = TYPE_ALIGN (ref_type) / 8;
- if (is_miss_rate_acceptable (prefetch_block, step, delta,
- reduced_prefetch_block, align_unit))
- {
- /* Do not reduce prefetch_before if we meet beyond cache size. */
- if (prefetch_before > L2_CACHE_SIZE_BYTES / PREFETCH_BLOCK)
- prefetch_before = PREFETCH_ALL;
- if (prefetch_before < ref->prefetch_before)
- ref->prefetch_before = prefetch_before;
-
- return;
- }
-
- /* Try also the following iteration. */
- prefetch_before++;
- delta = step - delta;
- if (is_miss_rate_acceptable (prefetch_block, step, delta,
- reduced_prefetch_block, align_unit))
- {
- if (prefetch_before < ref->prefetch_before)
- ref->prefetch_before = prefetch_before;
-
- return;
- }
-
- /* The ref probably does not reuse by. */
- return;
-}
-
-/* Prune the prefetch candidate REF using the reuses with other references
- in REFS. */
-
-static void
-prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
-{
- struct mem_ref *prune_by;
- bool before = true;
-
- prune_ref_by_self_reuse (ref);
-
- for (prune_by = refs; prune_by; prune_by = prune_by->next)
- {
- if (prune_by == ref)
- {
- before = false;
- continue;
- }
-
- if (!WRITE_CAN_USE_READ_PREFETCH
- && ref->write_p
- && !prune_by->write_p)
- continue;
- if (!READ_CAN_USE_WRITE_PREFETCH
- && !ref->write_p
- && prune_by->write_p)
- continue;
-
- prune_ref_by_group_reuse (ref, prune_by, before);
- }
-}
-
-/* Prune the prefetch candidates in GROUP using the reuse analysis. */
-
-static void
-prune_group_by_reuse (struct mem_ref_group *group)
-{
- struct mem_ref *ref_pruned;
-
- for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
- {
- prune_ref_by_reuse (ref_pruned, group->refs);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- dump_mem_ref (dump_file, ref_pruned);
-
- if (ref_pruned->prefetch_before == PREFETCH_ALL
- && ref_pruned->prefetch_mod == 1)
- fprintf (dump_file, " no restrictions");
- else if (ref_pruned->prefetch_before == 0)
- fprintf (dump_file, " do not prefetch");
- else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
- fprintf (dump_file, " prefetch once");
- else
- {
- if (ref_pruned->prefetch_before != PREFETCH_ALL)
- {
- fprintf (dump_file, " prefetch before ");
- fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
- ref_pruned->prefetch_before);
- }
- if (ref_pruned->prefetch_mod != 1)
- {
- fprintf (dump_file, " prefetch mod ");
- fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
- ref_pruned->prefetch_mod);
- }
- }
- fprintf (dump_file, "\n");
- }
- }
-}
-
-/* Prune the list of prefetch candidates GROUPS using the reuse analysis. */
-
-static void
-prune_by_reuse (struct mem_ref_group *groups)
-{
- for (; groups; groups = groups->next)
- prune_group_by_reuse (groups);
-}
-
-/* Returns true if we should issue prefetch for REF. */
-
-static bool
-should_issue_prefetch_p (struct mem_ref *ref)
-{
- /* Do we want to issue prefetches for non-constant strides? */
- if (!cst_and_fits_in_hwi (ref->group->step)
- && param_prefetch_dynamic_strides == 0)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file,
- "Skipping non-constant step for reference %u:%u\n",
- ref->group->uid, ref->uid);
- return false;
- }
-
- /* Some processors may have a hardware prefetcher that may conflict with
- prefetch hints for a range of strides. Make sure we don't issue
- prefetches for such cases if the stride is within this particular
- range. */
- if (cst_and_fits_in_hwi (ref->group->step)
- && abs_hwi (int_cst_value (ref->group->step))
- < (HOST_WIDE_INT) param_prefetch_minimum_stride)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file,
- "Step for reference %u:%u (" HOST_WIDE_INT_PRINT_DEC
- ") is less than the mininum required stride of %d\n",
- ref->group->uid, ref->uid, int_cst_value (ref->group->step),
- param_prefetch_minimum_stride);
- return false;
- }
-
- /* For now do not issue prefetches for only first few of the
- iterations. */
- if (ref->prefetch_before != PREFETCH_ALL)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Ignoring reference %u:%u due to prefetch_before\n",
- ref->group->uid, ref->uid);
- return false;
- }
-
- /* Do not prefetch nontemporal stores. */
- if (ref->storent_p)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Ignoring nontemporal store reference %u:%u\n", ref->group->uid, ref->uid);
- return false;
- }
-
- return true;
-}
-
-/* Decide which of the prefetch candidates in GROUPS to prefetch.
- AHEAD is the number of iterations to prefetch ahead (which corresponds
- to the number of simultaneous instances of one prefetch running at a
- time). UNROLL_FACTOR is the factor by that the loop is going to be
- unrolled. Returns true if there is anything to prefetch. */
-
-static bool
-schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
- unsigned ahead)
-{
- unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
- unsigned slots_per_prefetch;
- struct mem_ref *ref;
- bool any = false;
-
- /* At most param_simultaneous_prefetches should be running
- at the same time. */
- remaining_prefetch_slots = param_simultaneous_prefetches;
-
- /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
- AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration,
- it will need a prefetch slot. */
- slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
- slots_per_prefetch);
-
- /* For now we just take memory references one by one and issue
- prefetches for as many as possible. The groups are sorted
- starting with the largest step, since the references with
- large step are more likely to cause many cache misses. */
-
- for (; groups; groups = groups->next)
- for (ref = groups->refs; ref; ref = ref->next)
- {
- if (!should_issue_prefetch_p (ref))
- continue;
-
- /* The loop is far from being sufficiently unrolled for this
- prefetch. Do not generate prefetch to avoid many redudant
- prefetches. */
- if (ref->prefetch_mod / unroll_factor > PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO)
- continue;
-
- /* If we need to prefetch the reference each PREFETCH_MOD iterations,
- and we unroll the loop UNROLL_FACTOR times, we need to insert
- ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
- iteration. */
- n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
- / ref->prefetch_mod);
- prefetch_slots = n_prefetches * slots_per_prefetch;
-
- /* If more than half of the prefetches would be lost anyway, do not
- issue the prefetch. */
- if (2 * remaining_prefetch_slots < prefetch_slots)
- continue;
-
- /* Stop prefetching if debug counter is activated. */
- if (!dbg_cnt (prefetch))
- continue;
-
- ref->issue_prefetch_p = true;
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Decided to issue prefetch for reference %u:%u\n",
- ref->group->uid, ref->uid);
-
- if (remaining_prefetch_slots <= prefetch_slots)
- return true;
- remaining_prefetch_slots -= prefetch_slots;
- any = true;
- }
-
- return any;
-}
-
-/* Return TRUE if no prefetch is going to be generated in the given
- GROUPS. */
-
-static bool
-nothing_to_prefetch_p (struct mem_ref_group *groups)
-{
- struct mem_ref *ref;
-
- for (; groups; groups = groups->next)
- for (ref = groups->refs; ref; ref = ref->next)
- if (should_issue_prefetch_p (ref))
- return false;
-
- return true;
-}
-
-/* Estimate the number of prefetches in the given GROUPS.
- UNROLL_FACTOR is the factor by which LOOP was unrolled. */
-
-static int
-estimate_prefetch_count (struct mem_ref_group *groups, unsigned unroll_factor)
-{
- struct mem_ref *ref;
- unsigned n_prefetches;
- int prefetch_count = 0;
-
- for (; groups; groups = groups->next)
- for (ref = groups->refs; ref; ref = ref->next)
- if (should_issue_prefetch_p (ref))
- {
- n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
- / ref->prefetch_mod);
- prefetch_count += n_prefetches;
- }
-
- return prefetch_count;
-}
-
-/* Issue prefetches for the reference REF into loop as decided before.
- HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR
- is the factor by which LOOP was unrolled. */
-
-static void
-issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
-{
- HOST_WIDE_INT delta;
- tree addr, addr_base, write_p, local, forward;
- gcall *prefetch;
- gimple_stmt_iterator bsi;
- unsigned n_prefetches, ap;
- bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Issued%s prefetch for reference %u:%u.\n",
- nontemporal ? " nontemporal" : "",
- ref->group->uid, ref->uid);
-
- bsi = gsi_for_stmt (ref->stmt);
-
- n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
- / ref->prefetch_mod);
- addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
- addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
- true, NULL, true, GSI_SAME_STMT);
- write_p = ref->write_p ? integer_one_node : integer_zero_node;
- local = nontemporal ? integer_zero_node : integer_three_node;
-
- for (ap = 0; ap < n_prefetches; ap++)
- {
- if (cst_and_fits_in_hwi (ref->group->step))
- {
- /* Determine the address to prefetch. */
- delta = (ahead + ap * ref->prefetch_mod) *
- int_cst_value (ref->group->step);
- addr = fold_build_pointer_plus_hwi (addr_base, delta);
- addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true,
- NULL, true, GSI_SAME_STMT);
- }
- else
- {
- /* The step size is non-constant but loop-invariant. We use the
- heuristic to simply prefetch ahead iterations ahead. */
- forward = fold_build2 (MULT_EXPR, sizetype,
- fold_convert (sizetype, ref->group->step),
- fold_convert (sizetype, size_int (ahead)));
- addr = fold_build_pointer_plus (addr_base, forward);
- addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true,
- NULL, true, GSI_SAME_STMT);
- }
-
- if (addr_base != addr
- && TREE_CODE (addr_base) == SSA_NAME
- && TREE_CODE (addr) == SSA_NAME)
- {
- duplicate_ssa_name_ptr_info (addr, SSA_NAME_PTR_INFO (addr_base));
- /* As this isn't a plain copy we have to reset alignment
- information. */
- if (SSA_NAME_PTR_INFO (addr))
- mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (addr));
- }
-
- /* Create the prefetch instruction. */
- prefetch = gimple_build_call (builtin_decl_explicit (BUILT_IN_PREFETCH),
- 3, addr, write_p, local);
- gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
- }
-}
-
-/* Issue prefetches for the references in GROUPS into loop as decided before.
- HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the
- factor by that LOOP was unrolled. */
-
-static void
-issue_prefetches (struct mem_ref_group *groups,
- unsigned unroll_factor, unsigned ahead)
-{
- struct mem_ref *ref;
-
- for (; groups; groups = groups->next)
- for (ref = groups->refs; ref; ref = ref->next)
- if (ref->issue_prefetch_p)
- issue_prefetch_ref (ref, unroll_factor, ahead);
-}
-
-/* Returns true if REF is a memory write for that a nontemporal store insn
- can be used. */
-
-static bool
-nontemporal_store_p (struct mem_ref *ref)
-{
- machine_mode mode;
- enum insn_code code;
-
- /* REF must be a write that is not reused. We require it to be independent
- on all other memory references in the loop, as the nontemporal stores may
- be reordered with respect to other memory references. */
- if (!ref->write_p
- || !ref->independent_p
- || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
- return false;
-
- /* Check that we have the storent instruction for the mode. */
- mode = TYPE_MODE (TREE_TYPE (ref->mem));
- if (mode == BLKmode)
- return false;
-
- code = optab_handler (storent_optab, mode);
- return code != CODE_FOR_nothing;
-}
-
-/* If REF is a nontemporal store, we mark the corresponding modify statement
- and return true. Otherwise, we return false. */
-
-static bool
-mark_nontemporal_store (struct mem_ref *ref)
-{
- if (!nontemporal_store_p (ref))
- return false;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Marked reference %u:%u as a nontemporal store.\n",
- ref->group->uid, ref->uid);
-
- gimple_assign_set_nontemporal_move (ref->stmt, true);
- ref->storent_p = true;
-
- return true;
-}
-
-/* Issue a memory fence instruction after LOOP. */
-
-static void
-emit_mfence_after_loop (class loop *loop)
-{
- auto_vec<edge> exits = get_loop_exit_edges (loop);
- edge exit;
- gcall *call;
- gimple_stmt_iterator bsi;
- unsigned i;
-
- FOR_EACH_VEC_ELT (exits, i, exit)
- {
- call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);
-
- if (!single_pred_p (exit->dest)
- /* If possible, we prefer not to insert the fence on other paths
- in cfg. */
- && !(exit->flags & EDGE_ABNORMAL))
- split_loop_exit_edge (exit);
- bsi = gsi_after_labels (exit->dest);
-
- gsi_insert_before (&bsi, call, GSI_NEW_STMT);
- }
-
- update_ssa (TODO_update_ssa_only_virtuals);
-}
-
-/* Returns true if we can use storent in loop, false otherwise. */
-
-static bool
-may_use_storent_in_loop_p (class loop *loop)
-{
- bool ret = true;
-
- if (loop->inner != NULL)
- return false;
-
- /* If we must issue a mfence insn after using storent, check that there
- is a suitable place for it at each of the loop exits. */
- if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
- {
- auto_vec<edge> exits = get_loop_exit_edges (loop);
- unsigned i;
- edge exit;
-
- FOR_EACH_VEC_ELT (exits, i, exit)
- if ((exit->flags & EDGE_ABNORMAL)
- && exit->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
- ret = false;
- }
-
- return ret;
-}
-
-/* Marks nontemporal stores in LOOP. GROUPS contains the description of memory
- references in the loop. */
-
-static void
-mark_nontemporal_stores (class loop *loop, struct mem_ref_group *groups)
-{
- struct mem_ref *ref;
- bool any = false;
-
- if (!may_use_storent_in_loop_p (loop))
- return;
-
- for (; groups; groups = groups->next)
- for (ref = groups->refs; ref; ref = ref->next)
- any |= mark_nontemporal_store (ref);
-
- if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
- emit_mfence_after_loop (loop);
-}
-
-/* Determines whether we can profitably unroll LOOP FACTOR times, and if
- this is the case, fill in DESC by the description of number of
- iterations. */
-
-static bool
-should_unroll_loop_p (class loop *loop, class tree_niter_desc *desc,
- unsigned factor)
-{
- if (!can_unroll_loop_p (loop, factor, desc))
- return false;
-
- /* We only consider loops without control flow for unrolling. This is not
- a hard restriction -- tree_unroll_loop works with arbitrary loops
- as well; but the unrolling/prefetching is usually more profitable for
- loops consisting of a single basic block, and we want to limit the
- code growth. */
- if (loop->num_nodes > 2)
- return false;
-
- return true;
-}
-
-/* Determine the coefficient by that unroll LOOP, from the information
- contained in the list of memory references REFS. Description of
- number of iterations of LOOP is stored to DESC. NINSNS is the number of
- insns of the LOOP. EST_NITER is the estimated number of iterations of
- the loop, or -1 if no estimate is available. */
-
-static unsigned
-determine_unroll_factor (class loop *loop, struct mem_ref_group *refs,
- unsigned ninsns, class tree_niter_desc *desc,
- HOST_WIDE_INT est_niter)
-{
- unsigned upper_bound;
- unsigned nfactor, factor, mod_constraint;
- struct mem_ref_group *agp;
- struct mem_ref *ref;
-
- /* First check whether the loop is not too large to unroll. We ignore
- PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
- from unrolling them enough to make exactly one cache line covered by each
- iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
- us from unrolling the loops too many times in cases where we only expect
- gains from better scheduling and decreasing loop overhead, which is not
- the case here. */
- upper_bound = param_max_unrolled_insns / ninsns;
-
- /* If we unrolled the loop more times than it iterates, the unrolled version
- of the loop would be never entered. */
- if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
- upper_bound = est_niter;
-
- if (upper_bound <= 1)
- return 1;
-
- /* Choose the factor so that we may prefetch each cache just once,
- but bound the unrolling by UPPER_BOUND. */
- factor = 1;
- for (agp = refs; agp; agp = agp->next)
- for (ref = agp->refs; ref; ref = ref->next)
- if (should_issue_prefetch_p (ref))
- {
- mod_constraint = ref->prefetch_mod;
- nfactor = least_common_multiple (mod_constraint, factor);
- if (nfactor <= upper_bound)
- factor = nfactor;
- }
-
- if (!should_unroll_loop_p (loop, desc, factor))
- return 1;
-
- return factor;
-}
-
-/* Returns the total volume of the memory references REFS, taking into account
- reuses in the innermost loop and cache line size. TODO -- we should also
- take into account reuses across the iterations of the loops in the loop
- nest. */
-
-static unsigned
-volume_of_references (struct mem_ref_group *refs)
-{
- unsigned volume = 0;
- struct mem_ref_group *gr;
- struct mem_ref *ref;
-
- for (gr = refs; gr; gr = gr->next)
- for (ref = gr->refs; ref; ref = ref->next)
- {
- /* Almost always reuses another value? */
- if (ref->prefetch_before != PREFETCH_ALL)
- continue;
-
- /* If several iterations access the same cache line, use the size of
- the line divided by this number. Otherwise, a cache line is
- accessed in each iteration. TODO -- in the latter case, we should
- take the size of the reference into account, rounding it up on cache
- line size multiple. */
- volume += param_l1_cache_line_size / ref->prefetch_mod;
- }
- return volume;
-}
-
-/* Returns the volume of memory references accessed across VEC iterations of
- loops, whose sizes are described in the LOOP_SIZES array. N is the number
- of the loops in the nest (length of VEC and LOOP_SIZES vectors). */
-
-static unsigned
-volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
-{
- unsigned i;
-
- for (i = 0; i < n; i++)
- if (vec[i] != 0)
- break;
-
- if (i == n)
- return 0;
-
- gcc_assert (vec[i] > 0);
-
- /* We ignore the parts of the distance vector in subloops, since usually
- the numbers of iterations are much smaller. */
- return loop_sizes[i] * vec[i];
-}
-
-/* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
- at the position corresponding to the loop of the step. N is the depth
- of the considered loop nest, and, LOOP is its innermost loop. */
-
-static void
-add_subscript_strides (tree access_fn, unsigned stride,
- HOST_WIDE_INT *strides, unsigned n, class loop *loop)
-{
- class loop *aloop;
- tree step;
- HOST_WIDE_INT astep;
- unsigned min_depth = loop_depth (loop) - n;
-
- while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
- {
- aloop = get_chrec_loop (access_fn);
- step = CHREC_RIGHT (access_fn);
- access_fn = CHREC_LEFT (access_fn);
-
- if ((unsigned) loop_depth (aloop) <= min_depth)
- continue;
-
- if (tree_fits_shwi_p (step))
- astep = tree_to_shwi (step);
- else
- astep = param_l1_cache_line_size;
-
- strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;
-
- }
-}
-
-/* Returns the volume of memory references accessed between two consecutive
- self-reuses of the reference DR. We consider the subscripts of DR in N
- loops, and LOOP_SIZES contains the volumes of accesses in each of the
- loops. LOOP is the innermost loop of the current loop nest. */
-
-static unsigned
-self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
- class loop *loop)
-{
- tree stride, access_fn;
- HOST_WIDE_INT *strides, astride;
- vec<tree> access_fns;
- tree ref = DR_REF (dr);
- unsigned i, ret = ~0u;
-
- /* In the following example:
-
- for (i = 0; i < N; i++)
- for (j = 0; j < N; j++)
- use (a[j][i]);
- the same cache line is accessed each N steps (except if the change from
- i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse,
- we cannot rely purely on the results of the data dependence analysis.
-
- Instead, we compute the stride of the reference in each loop, and consider
- the innermost loop in that the stride is less than cache size. */
-
- strides = XCNEWVEC (HOST_WIDE_INT, n);
- access_fns = DR_ACCESS_FNS (dr);
-
- FOR_EACH_VEC_ELT (access_fns, i, access_fn)
- {
- /* Keep track of the reference corresponding to the subscript, so that we
- know its stride. */
- while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
- ref = TREE_OPERAND (ref, 0);
-
- if (TREE_CODE (ref) == ARRAY_REF)
- {
- stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
- if (tree_fits_uhwi_p (stride))
- astride = tree_to_uhwi (stride);
- else
- astride = param_l1_cache_line_size;
-
- ref = TREE_OPERAND (ref, 0);
- }
- else
- astride = 1;
-
- add_subscript_strides (access_fn, astride, strides, n, loop);
- }
-
- for (i = n; i-- > 0; )
- {
- unsigned HOST_WIDE_INT s;
-
- s = strides[i] < 0 ? -strides[i] : strides[i];
-
- if (s < (unsigned) param_l1_cache_line_size
- && (loop_sizes[i]
- > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
- {
- ret = loop_sizes[i];
- break;
- }
- }
-
- free (strides);
- return ret;
-}
-
-/* Determines the distance till the first reuse of each reference in REFS
- in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other
- memory references in the loop. Return false if the analysis fails. */
-
-static bool
-determine_loop_nest_reuse (class loop *loop, struct mem_ref_group *refs,
- bool no_other_refs)
-{
- class loop *nest, *aloop;
- vec<data_reference_p> datarefs = vNULL;
- vec<ddr_p> dependences = vNULL;
- struct mem_ref_group *gr;
- struct mem_ref *ref, *refb;
- auto_vec<loop_p> vloops;
- unsigned *loop_data_size;
- unsigned i, j, n;
- unsigned volume, dist, adist;
- HOST_WIDE_INT vol;
- data_reference_p dr;
- ddr_p dep;
-
- if (loop->inner)
- return true;
-
- /* Find the outermost loop of the loop nest of loop (we require that
- there are no sibling loops inside the nest). */
- nest = loop;
- while (1)
- {
- aloop = loop_outer (nest);
-
- if (aloop == current_loops->tree_root
- || aloop->inner->next)
- break;
-
- nest = aloop;
- }
-
- /* For each loop, determine the amount of data accessed in each iteration.
- We use this to estimate whether the reference is evicted from the
- cache before its reuse. */
- find_loop_nest (nest, &vloops);
- n = vloops.length ();
- loop_data_size = XNEWVEC (unsigned, n);
- volume = volume_of_references (refs);
- i = n;
- while (i-- != 0)
- {
- loop_data_size[i] = volume;
- /* Bound the volume by the L2 cache size, since above this bound,
- all dependence distances are equivalent. */
- if (volume > L2_CACHE_SIZE_BYTES)
- continue;
-
- aloop = vloops[i];
- vol = estimated_stmt_executions_int (aloop);
- if (vol == -1)
- vol = expected_loop_iterations (aloop);
- volume *= vol;
- }
-
- /* Prepare the references in the form suitable for data dependence
- analysis. We ignore unanalyzable data references (the results
- are used just as a heuristics to estimate temporality of the
- references, hence we do not need to worry about correctness). */
- for (gr = refs; gr; gr = gr->next)
- for (ref = gr->refs; ref; ref = ref->next)
- {
- dr = create_data_ref (loop_preheader_edge (nest),
- loop_containing_stmt (ref->stmt),
- ref->mem, ref->stmt, !ref->write_p, false);
-
- if (dr)
- {
- ref->reuse_distance = volume;
- dr->aux = ref;
- datarefs.safe_push (dr);
- }
- else
- no_other_refs = false;
- }
-
- FOR_EACH_VEC_ELT (datarefs, i, dr)
- {
- dist = self_reuse_distance (dr, loop_data_size, n, loop);
- ref = (struct mem_ref *) dr->aux;
- if (ref->reuse_distance > dist)
- ref->reuse_distance = dist;
-
- if (no_other_refs)
- ref->independent_p = true;
- }
-
- if (!compute_all_dependences (datarefs, &dependences, vloops, true))
- return false;
-
- FOR_EACH_VEC_ELT (dependences, i, dep)
- {
- if (DDR_ARE_DEPENDENT (dep) == chrec_known)
- continue;
-
- ref = (struct mem_ref *) DDR_A (dep)->aux;
- refb = (struct mem_ref *) DDR_B (dep)->aux;
-
- if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
- || DDR_COULD_BE_INDEPENDENT_P (dep)
- || DDR_NUM_DIST_VECTS (dep) == 0)
- {
- /* If the dependence cannot be analyzed, assume that there might be
- a reuse. */
- dist = 0;
-
- ref->independent_p = false;
- refb->independent_p = false;
- }
- else
- {
- /* The distance vectors are normalized to be always lexicographically
- positive, hence we cannot tell just from them whether DDR_A comes
- before DDR_B or vice versa. However, it is not important,
- anyway -- if DDR_A is close to DDR_B, then it is either reused in
- DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
- in cache (and marking it as nontemporal would not affect
- anything). */
-
- dist = volume;
- for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
- {
- adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
- loop_data_size, n);
-
- /* If this is a dependence in the innermost loop (i.e., the
- distances in all superloops are zero) and it is not
- the trivial self-dependence with distance zero, record that
- the references are not completely independent. */
- if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
- && (ref != refb
- || DDR_DIST_VECT (dep, j)[n-1] != 0))
- {
- ref->independent_p = false;
- refb->independent_p = false;
- }
-
- /* Ignore accesses closer than
- L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
- so that we use nontemporal prefetches e.g. if single memory
- location is accessed several times in a single iteration of
- the loop. */
- if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
- continue;
-
- if (adist < dist)
- dist = adist;
- }
- }
-
- if (ref->reuse_distance > dist)
- ref->reuse_distance = dist;
- if (refb->reuse_distance > dist)
- refb->reuse_distance = dist;
- }
-
- free_dependence_relations (dependences);
- free_data_refs (datarefs);
- free (loop_data_size);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Reuse distances:\n");
- for (gr = refs; gr; gr = gr->next)
- for (ref = gr->refs; ref; ref = ref->next)
- fprintf (dump_file, " reference %u:%u distance %u\n",
- ref->group->uid, ref->uid, ref->reuse_distance);
- }
-
- return true;
-}
-
-/* Determine whether or not the trip count to ahead ratio is too small based
- on prefitablility consideration.
- AHEAD: the iteration ahead distance,
- EST_NITER: the estimated trip count. */
-
-static bool
-trip_count_to_ahead_ratio_too_small_p (unsigned ahead, HOST_WIDE_INT est_niter)
-{
- /* Assume trip count to ahead ratio is big enough if the trip count could not
- be estimated at compile time. */
- if (est_niter < 0)
- return false;
-
- if (est_niter < (HOST_WIDE_INT) (TRIP_COUNT_TO_AHEAD_RATIO * ahead))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file,
- "Not prefetching -- loop estimated to roll only %d times\n",
- (int) est_niter);
- return true;
- }
-
- return false;
-}
-
-/* Determine whether or not the number of memory references in the loop is
- reasonable based on the profitablity and compilation time considerations.
- NINSNS: estimated number of instructions in the loop,
- MEM_REF_COUNT: total number of memory references in the loop. */
-
-static bool
-mem_ref_count_reasonable_p (unsigned ninsns, unsigned mem_ref_count)
-{
- int insn_to_mem_ratio;
-
- if (mem_ref_count == 0)
- return false;
-
- /* Miss rate computation (is_miss_rate_acceptable) and dependence analysis
- (compute_all_dependences) have high costs based on quadratic complexity.
- To avoid huge compilation time, we give up prefetching if mem_ref_count
- is too large. */
- if (mem_ref_count > PREFETCH_MAX_MEM_REFS_PER_LOOP)
- return false;
-
- /* Prefetching improves performance by overlapping cache missing
- memory accesses with CPU operations. If the loop does not have
- enough CPU operations to overlap with memory operations, prefetching
- won't give a significant benefit. One approximate way of checking
- this is to require the ratio of instructions to memory references to
- be above a certain limit. This approximation works well in practice.
- TODO: Implement a more precise computation by estimating the time
- for each CPU or memory op in the loop. Time estimates for memory ops
- should account for cache misses. */
- insn_to_mem_ratio = ninsns / mem_ref_count;
-
- if (insn_to_mem_ratio < param_prefetch_min_insn_to_mem_ratio)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file,
- "Not prefetching -- instruction to memory reference ratio (%d) too small\n",
- insn_to_mem_ratio);
- return false;
- }
-
- return true;
-}
-
-/* Determine whether or not the instruction to prefetch ratio in the loop is
- too small based on the profitablity consideration.
- NINSNS: estimated number of instructions in the loop,
- PREFETCH_COUNT: an estimate of the number of prefetches,
- UNROLL_FACTOR: the factor to unroll the loop if prefetching. */
-
-static bool
-insn_to_prefetch_ratio_too_small_p (unsigned ninsns, unsigned prefetch_count,
- unsigned unroll_factor)
-{
- int insn_to_prefetch_ratio;
-
- /* Prefetching most likely causes performance degradation when the instruction
- to prefetch ratio is too small. Too many prefetch instructions in a loop
- may reduce the I-cache performance.
- (unroll_factor * ninsns) is used to estimate the number of instructions in
- the unrolled loop. This implementation is a bit simplistic -- the number
- of issued prefetch instructions is also affected by unrolling. So,
- prefetch_mod and the unroll factor should be taken into account when
- determining prefetch_count. Also, the number of insns of the unrolled
- loop will usually be significantly smaller than the number of insns of the
- original loop * unroll_factor (at least the induction variable increases
- and the exit branches will get eliminated), so it might be better to use
- tree_estimate_loop_size + estimated_unrolled_size. */
- insn_to_prefetch_ratio = (unroll_factor * ninsns) / prefetch_count;
- if (insn_to_prefetch_ratio < param_min_insn_to_prefetch_ratio)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file,
- "Not prefetching -- instruction to prefetch ratio (%d) too small\n",
- insn_to_prefetch_ratio);
- return true;
- }
-
- return false;
-}
-
-
-/* Issue prefetch instructions for array references in LOOP. Returns
- true if the LOOP was unrolled. */
-
-static bool
-loop_prefetch_arrays (class loop *loop)
-{
- struct mem_ref_group *refs;
- unsigned ahead, ninsns, time, unroll_factor;
- HOST_WIDE_INT est_niter;
- class tree_niter_desc desc;
- bool unrolled = false, no_other_refs;
- unsigned prefetch_count;
- unsigned mem_ref_count;
-
- if (optimize_loop_nest_for_size_p (loop))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, " ignored (cold area)\n");
- return false;
- }
-
- /* FIXME: the time should be weighted by the probabilities of the blocks in
- the loop body. */
- time = tree_num_loop_insns (loop, &eni_time_weights);
- if (time == 0)
- return false;
-
- ahead = (param_prefetch_latency + time - 1) / time;
- est_niter = estimated_stmt_executions_int (loop);
- if (est_niter == -1)
- est_niter = likely_max_stmt_executions_int (loop);
-
- /* Prefetching is not likely to be profitable if the trip count to ahead
- ratio is too small. */
- if (trip_count_to_ahead_ratio_too_small_p (ahead, est_niter))
- return false;
-
- ninsns = tree_num_loop_insns (loop, &eni_size_weights);
-
- /* Step 1: gather the memory references. */
- refs = gather_memory_references (loop, &no_other_refs, &mem_ref_count);
-
- /* Give up prefetching if the number of memory references in the
- loop is not reasonable based on profitablity and compilation time
- considerations. */
- if (!mem_ref_count_reasonable_p (ninsns, mem_ref_count))
- goto fail;
-
- /* Step 2: estimate the reuse effects. */
- prune_by_reuse (refs);
-
- if (nothing_to_prefetch_p (refs))
- goto fail;
-
- if (!determine_loop_nest_reuse (loop, refs, no_other_refs))
- goto fail;
-
- /* Step 3: determine unroll factor. */
- unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
- est_niter);
-
- /* Estimate prefetch count for the unrolled loop. */
- prefetch_count = estimate_prefetch_count (refs, unroll_factor);
- if (prefetch_count == 0)
- goto fail;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Ahead %d, unroll factor %d, trip count "
- HOST_WIDE_INT_PRINT_DEC "\n"
- "insn count %d, mem ref count %d, prefetch count %d\n",
- ahead, unroll_factor, est_niter,
- ninsns, mem_ref_count, prefetch_count);
-
- /* Prefetching is not likely to be profitable if the instruction to prefetch
- ratio is too small. */
- if (insn_to_prefetch_ratio_too_small_p (ninsns, prefetch_count,
- unroll_factor))
- goto fail;
-
- mark_nontemporal_stores (loop, refs);
-
- /* Step 4: what to prefetch? */
- if (!schedule_prefetches (refs, unroll_factor, ahead))
- goto fail;
-
- /* Step 5: unroll the loop. TODO -- peeling of first and last few
- iterations so that we do not issue superfluous prefetches. */
- if (unroll_factor != 1)
- {
- tree_unroll_loop (loop, unroll_factor, &desc);
- unrolled = true;
- }
-
- /* Step 6: issue the prefetches. */
- issue_prefetches (refs, unroll_factor, ahead);
-
-fail:
- release_mem_refs (refs);
- return unrolled;
-}
-
-/* Issue prefetch instructions for array references in loops. */
-
-unsigned int
-tree_ssa_prefetch_arrays (void)
-{
- bool unrolled = false;
- int todo_flags = 0;
-
- if (!targetm.have_prefetch ()
- /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
- -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
- of processor costs and i486 does not have prefetch, but
- -march=pentium4 causes targetm.have_prefetch to be true. Ugh. */
- || PREFETCH_BLOCK == 0)
- return 0;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Prefetching parameters:\n");
- fprintf (dump_file, " simultaneous prefetches: %d\n",
- param_simultaneous_prefetches);
- fprintf (dump_file, " prefetch latency: %d\n", param_prefetch_latency);
- fprintf (dump_file, " prefetch block size: %d\n", PREFETCH_BLOCK);
- fprintf (dump_file, " L1 cache size: %d lines, %d kB\n",
- L1_CACHE_SIZE_BYTES / param_l1_cache_line_size,
- param_l1_cache_size);
- fprintf (dump_file, " L1 cache line size: %d\n",
- param_l1_cache_line_size);
- fprintf (dump_file, " L2 cache size: %d kB\n", param_l2_cache_size);
- fprintf (dump_file, " min insn-to-prefetch ratio: %d \n",
- param_min_insn_to_prefetch_ratio);
- fprintf (dump_file, " min insn-to-mem ratio: %d \n",
- param_prefetch_min_insn_to_mem_ratio);
- fprintf (dump_file, "\n");
- }
-
- initialize_original_copy_tables ();
-
- if (!builtin_decl_explicit_p (BUILT_IN_PREFETCH))
- {
- tree type = build_function_type_list (void_type_node,
- const_ptr_type_node, NULL_TREE);
- tree decl = add_builtin_function ("__builtin_prefetch", type,
- BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
- NULL, NULL_TREE);
- DECL_IS_NOVOPS (decl) = true;
- set_builtin_decl (BUILT_IN_PREFETCH, decl, false);
- }
-
- for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Processing loop %d:\n", loop->num);
-
- unrolled |= loop_prefetch_arrays (loop);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "\n\n");
- }
-
- if (unrolled)
- {
- scev_reset ();
- todo_flags |= TODO_cleanup_cfg;
- }
-
- free_original_copy_tables ();
- return todo_flags;
-}
-
-/* Prefetching. */
-
-namespace {
-
-const pass_data pass_data_loop_prefetch =
-{
- GIMPLE_PASS, /* type */
- "aprefetch", /* name */
- OPTGROUP_LOOP, /* optinfo_flags */
- TV_TREE_PREFETCH, /* tv_id */
- ( PROP_cfg | PROP_ssa ), /* properties_required */
- 0, /* properties_provided */
- 0, /* properties_destroyed */
- 0, /* todo_flags_start */
- 0, /* todo_flags_finish */
-};
-
-class pass_loop_prefetch : public gimple_opt_pass
-{
-public:
- pass_loop_prefetch (gcc::context *ctxt)
- : gimple_opt_pass (pass_data_loop_prefetch, ctxt)
- {}
-
- /* opt_pass methods: */
- virtual bool gate (function *) { return flag_prefetch_loop_arrays > 0; }
- virtual unsigned int execute (function *);
-
-}; // class pass_loop_prefetch
-
-unsigned int
-pass_loop_prefetch::execute (function *fun)
-{
- if (number_of_loops (fun) <= 1)
- return 0;
-
- if ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) != 0)
- {
- static bool warned = false;
-
- if (!warned)
- {
- warning (OPT_Wdisabled_optimization,
- "%<l1-cache-size%> parameter is not a power of two %d",
- PREFETCH_BLOCK);
- warned = true;
- }
- return 0;
- }
-
- return tree_ssa_prefetch_arrays ();
-}
-
-} // anon namespace
-
-gimple_opt_pass *
-make_pass_loop_prefetch (gcc::context *ctxt)
-{
- return new pass_loop_prefetch (ctxt);
-}
-
-