aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-loop-ivopts.cc
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/tree-ssa-loop-ivopts.cc')
-rw-r--r--gcc/tree-ssa-loop-ivopts.cc8188
1 files changed, 8188 insertions, 0 deletions
diff --git a/gcc/tree-ssa-loop-ivopts.cc b/gcc/tree-ssa-loop-ivopts.cc
new file mode 100644
index 0000000..935d2d4
--- /dev/null
+++ b/gcc/tree-ssa-loop-ivopts.cc
@@ -0,0 +1,8188 @@
+/* Induction variable optimizations.
+ Copyright (C) 2003-2022 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it
+under the terms of the GNU General Public License as published by the
+Free Software Foundation; either version 3, or (at your option) any
+later version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT
+ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+/* This pass tries to find the optimal set of induction variables for the loop.
+ It optimizes just the basic linear induction variables (although adding
+ support for other types should not be too hard). It includes the
+ optimizations commonly known as strength reduction, induction variable
+ coalescing and induction variable elimination. It does it in the
+ following steps:
+
+ 1) The interesting uses of induction variables are found. This includes
+
+ -- uses of induction variables in non-linear expressions
+ -- addresses of arrays
+ -- comparisons of induction variables
+
+ Note the interesting uses are categorized and handled in group.
+ Generally, address type uses are grouped together if their iv bases
+ are different in constant offset.
+
+ 2) Candidates for the induction variables are found. This includes
+
+ -- old induction variables
+ -- the variables defined by expressions derived from the "interesting
+ groups/uses" above
+
+ 3) The optimal (w.r. to a cost function) set of variables is chosen. The
+ cost function assigns a cost to sets of induction variables and consists
+ of three parts:
+
+ -- The group/use costs. Each of the interesting groups/uses chooses
+ the best induction variable in the set and adds its cost to the sum.
+ The cost reflects the time spent on modifying the induction variables
+ value to be usable for the given purpose (adding base and offset for
+ arrays, etc.).
+ -- The variable costs. Each of the variables has a cost assigned that
+ reflects the costs associated with incrementing the value of the
+ variable. The original variables are somewhat preferred.
+ -- The set cost. Depending on the size of the set, extra cost may be
+ added to reflect register pressure.
+
+ All the costs are defined in a machine-specific way, using the target
+ hooks and machine descriptions to determine them.
+
+ 4) The trees are transformed to use the new variables, the dead code is
+ removed.
+
+ All of this is done loop by loop. Doing it globally is theoretically
+ possible, it might give a better performance and it might enable us
+ to decide costs more precisely, but getting all the interactions right
+ would be complicated.
+
+ For the targets supporting low-overhead loops, IVOPTs has to take care of
+ the loops which will probably be transformed in RTL doloop optimization,
+ to try to make selected IV candidate set optimal. The process of doloop
+ support includes:
+
+ 1) Analyze the current loop will be transformed to doloop or not, find and
+ mark its compare type IV use as doloop use (iv_group field doloop_p), and
+ set flag doloop_use_p of ivopts_data to notify subsequent processings on
+ doloop. See analyze_and_mark_doloop_use and its callees for the details.
+ The target hook predict_doloop_p can be used for target specific checks.
+
+ 2) Add one doloop dedicated IV cand {(may_be_zero ? 1 : (niter + 1)), +, -1},
+ set flag doloop_p of iv_cand, step cost is set as zero and no extra cost
+ like biv. For cost determination between doloop IV cand and IV use, the
+ target hooks doloop_cost_for_generic and doloop_cost_for_address are
+ provided to add on extra costs for generic type and address type IV use.
+ Zero cost is assigned to the pair between doloop IV cand and doloop IV
+ use, and bound zero is set for IV elimination.
+
+ 3) With the cost setting in step 2), the current cost model based IV
+ selection algorithm will process as usual, pick up doloop dedicated IV if
+ profitable. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "backend.h"
+#include "rtl.h"
+#include "tree.h"
+#include "gimple.h"
+#include "cfghooks.h"
+#include "tree-pass.h"
+#include "memmodel.h"
+#include "tm_p.h"
+#include "ssa.h"
+#include "expmed.h"
+#include "insn-config.h"
+#include "emit-rtl.h"
+#include "recog.h"
+#include "cgraph.h"
+#include "gimple-pretty-print.h"
+#include "alias.h"
+#include "fold-const.h"
+#include "stor-layout.h"
+#include "tree-eh.h"
+#include "gimplify.h"
+#include "gimple-iterator.h"
+#include "gimplify-me.h"
+#include "tree-cfg.h"
+#include "tree-ssa-loop-ivopts.h"
+#include "tree-ssa-loop-manip.h"
+#include "tree-ssa-loop-niter.h"
+#include "tree-ssa-loop.h"
+#include "explow.h"
+#include "expr.h"
+#include "tree-dfa.h"
+#include "tree-ssa.h"
+#include "cfgloop.h"
+#include "tree-scalar-evolution.h"
+#include "tree-affine.h"
+#include "tree-ssa-propagate.h"
+#include "tree-ssa-address.h"
+#include "builtins.h"
+#include "tree-vectorizer.h"
+#include "dbgcnt.h"
+
+/* For lang_hooks.types.type_for_mode. */
+#include "langhooks.h"
+
+/* FIXME: Expressions are expanded to RTL in this pass to determine the
+ cost of different addressing modes. This should be moved to a TBD
+ interface between the GIMPLE and RTL worlds. */
+
+/* The infinite cost. */
+#define INFTY 1000000000
+
+/* Returns the expected number of loop iterations for LOOP.
+ The average trip count is computed from profile data if it
+ exists. */
+
+static inline HOST_WIDE_INT
+avg_loop_niter (class loop *loop)
+{
+ HOST_WIDE_INT niter = estimated_stmt_executions_int (loop);
+ if (niter == -1)
+ {
+ niter = likely_max_stmt_executions_int (loop);
+
+ if (niter == -1 || niter > param_avg_loop_niter)
+ return param_avg_loop_niter;
+ }
+
+ return niter;
+}
+
+struct iv_use;
+
+/* Representation of the induction variable. */
+struct iv
+{
+ tree base; /* Initial value of the iv. */
+ tree base_object; /* A memory object to that the induction variable points. */
+ tree step; /* Step of the iv (constant only). */
+ tree ssa_name; /* The ssa name with the value. */
+ struct iv_use *nonlin_use; /* The identifier in the use if it is the case. */
+ bool biv_p; /* Is it a biv? */
+ bool no_overflow; /* True if the iv doesn't overflow. */
+ bool have_address_use;/* For biv, indicate if it's used in any address
+ type use. */
+};
+
+/* Per-ssa version information (induction variable descriptions, etc.). */
+struct version_info
+{
+ tree name; /* The ssa name. */
+ struct iv *iv; /* Induction variable description. */
+ bool has_nonlin_use; /* For a loop-level invariant, whether it is used in
+ an expression that is not an induction variable. */
+ bool preserve_biv; /* For the original biv, whether to preserve it. */
+ unsigned inv_id; /* Id of an invariant. */
+};
+
+/* Types of uses. */
+enum use_type
+{
+ USE_NONLINEAR_EXPR, /* Use in a nonlinear expression. */
+ USE_REF_ADDRESS, /* Use is an address for an explicit memory
+ reference. */
+ USE_PTR_ADDRESS, /* Use is a pointer argument to a function in
+ cases where the expansion of the function
+ will turn the argument into a normal address. */
+ USE_COMPARE /* Use is a compare. */
+};
+
+/* Cost of a computation. */
+class comp_cost
+{
+public:
+ comp_cost (): cost (0), complexity (0), scratch (0)
+ {}
+
+ comp_cost (int64_t cost, unsigned complexity, int64_t scratch = 0)
+ : cost (cost), complexity (complexity), scratch (scratch)
+ {}
+
+ /* Returns true if COST is infinite. */
+ bool infinite_cost_p ();
+
+ /* Adds costs COST1 and COST2. */
+ friend comp_cost operator+ (comp_cost cost1, comp_cost cost2);
+
+ /* Adds COST to the comp_cost. */
+ comp_cost operator+= (comp_cost cost);
+
+ /* Adds constant C to this comp_cost. */
+ comp_cost operator+= (HOST_WIDE_INT c);
+
+ /* Subtracts constant C to this comp_cost. */
+ comp_cost operator-= (HOST_WIDE_INT c);
+
+ /* Divide the comp_cost by constant C. */
+ comp_cost operator/= (HOST_WIDE_INT c);
+
+ /* Multiply the comp_cost by constant C. */
+ comp_cost operator*= (HOST_WIDE_INT c);
+
+ /* Subtracts costs COST1 and COST2. */
+ friend comp_cost operator- (comp_cost cost1, comp_cost cost2);
+
+ /* Subtracts COST from this comp_cost. */
+ comp_cost operator-= (comp_cost cost);
+
+ /* Returns true if COST1 is smaller than COST2. */
+ friend bool operator< (comp_cost cost1, comp_cost cost2);
+
+ /* Returns true if COST1 and COST2 are equal. */
+ friend bool operator== (comp_cost cost1, comp_cost cost2);
+
+ /* Returns true if COST1 is smaller or equal than COST2. */
+ friend bool operator<= (comp_cost cost1, comp_cost cost2);
+
+ int64_t cost; /* The runtime cost. */
+ unsigned complexity; /* The estimate of the complexity of the code for
+ the computation (in no concrete units --
+ complexity field should be larger for more
+ complex expressions and addressing modes). */
+ int64_t scratch; /* Scratch used during cost computation. */
+};
+
+static const comp_cost no_cost;
+static const comp_cost infinite_cost (INFTY, 0, INFTY);
+
+bool
+comp_cost::infinite_cost_p ()
+{
+ return cost == INFTY;
+}
+
+comp_cost
+operator+ (comp_cost cost1, comp_cost cost2)
+{
+ if (cost1.infinite_cost_p () || cost2.infinite_cost_p ())
+ return infinite_cost;
+
+ gcc_assert (cost1.cost + cost2.cost < infinite_cost.cost);
+ cost1.cost += cost2.cost;
+ cost1.complexity += cost2.complexity;
+
+ return cost1;
+}
+
+comp_cost
+operator- (comp_cost cost1, comp_cost cost2)
+{
+ if (cost1.infinite_cost_p ())
+ return infinite_cost;
+
+ gcc_assert (!cost2.infinite_cost_p ());
+ gcc_assert (cost1.cost - cost2.cost < infinite_cost.cost);
+
+ cost1.cost -= cost2.cost;
+ cost1.complexity -= cost2.complexity;
+
+ return cost1;
+}
+
+comp_cost
+comp_cost::operator+= (comp_cost cost)
+{
+ *this = *this + cost;
+ return *this;
+}
+
+comp_cost
+comp_cost::operator+= (HOST_WIDE_INT c)
+{
+ if (c >= INFTY)
+ this->cost = INFTY;
+
+ if (infinite_cost_p ())
+ return *this;
+
+ gcc_assert (this->cost + c < infinite_cost.cost);
+ this->cost += c;
+
+ return *this;
+}
+
+comp_cost
+comp_cost::operator-= (HOST_WIDE_INT c)
+{
+ if (infinite_cost_p ())
+ return *this;
+
+ gcc_assert (this->cost - c < infinite_cost.cost);
+ this->cost -= c;
+
+ return *this;
+}
+
+comp_cost
+comp_cost::operator/= (HOST_WIDE_INT c)
+{
+ gcc_assert (c != 0);
+ if (infinite_cost_p ())
+ return *this;
+
+ this->cost /= c;
+
+ return *this;
+}
+
+comp_cost
+comp_cost::operator*= (HOST_WIDE_INT c)
+{
+ if (infinite_cost_p ())
+ return *this;
+
+ gcc_assert (this->cost * c < infinite_cost.cost);
+ this->cost *= c;
+
+ return *this;
+}
+
+comp_cost
+comp_cost::operator-= (comp_cost cost)
+{
+ *this = *this - cost;
+ return *this;
+}
+
+bool
+operator< (comp_cost cost1, comp_cost cost2)
+{
+ if (cost1.cost == cost2.cost)
+ return cost1.complexity < cost2.complexity;
+
+ return cost1.cost < cost2.cost;
+}
+
+bool
+operator== (comp_cost cost1, comp_cost cost2)
+{
+ return cost1.cost == cost2.cost
+ && cost1.complexity == cost2.complexity;
+}
+
+bool
+operator<= (comp_cost cost1, comp_cost cost2)
+{
+ return cost1 < cost2 || cost1 == cost2;
+}
+
+struct iv_inv_expr_ent;
+
+/* The candidate - cost pair. */
+class cost_pair
+{
+public:
+ struct iv_cand *cand; /* The candidate. */
+ comp_cost cost; /* The cost. */
+ enum tree_code comp; /* For iv elimination, the comparison. */
+ bitmap inv_vars; /* The list of invariant ssa_vars that have to be
+ preserved when representing iv_use with iv_cand. */
+ bitmap inv_exprs; /* The list of newly created invariant expressions
+ when representing iv_use with iv_cand. */
+ tree value; /* For final value elimination, the expression for
+ the final value of the iv. For iv elimination,
+ the new bound to compare with. */
+};
+
+/* Use. */
+struct iv_use
+{
+ unsigned id; /* The id of the use. */
+ unsigned group_id; /* The group id the use belongs to. */
+ enum use_type type; /* Type of the use. */
+ tree mem_type; /* The memory type to use when testing whether an
+ address is legitimate, and what the address's
+ cost is. */
+ struct iv *iv; /* The induction variable it is based on. */
+ gimple *stmt; /* Statement in that it occurs. */
+ tree *op_p; /* The place where it occurs. */
+
+ tree addr_base; /* Base address with const offset stripped. */
+ poly_uint64_pod addr_offset;
+ /* Const offset stripped from base address. */
+};
+
+/* Group of uses. */
+struct iv_group
+{
+ /* The id of the group. */
+ unsigned id;
+ /* Uses of the group are of the same type. */
+ enum use_type type;
+ /* The set of "related" IV candidates, plus the important ones. */
+ bitmap related_cands;
+ /* Number of IV candidates in the cost_map. */
+ unsigned n_map_members;
+ /* The costs wrto the iv candidates. */
+ class cost_pair *cost_map;
+ /* The selected candidate for the group. */
+ struct iv_cand *selected;
+ /* To indicate this is a doloop use group. */
+ bool doloop_p;
+ /* Uses in the group. */
+ vec<struct iv_use *> vuses;
+};
+
+/* The position where the iv is computed. */
+enum iv_position
+{
+ IP_NORMAL, /* At the end, just before the exit condition. */
+ IP_END, /* At the end of the latch block. */
+ IP_BEFORE_USE, /* Immediately before a specific use. */
+ IP_AFTER_USE, /* Immediately after a specific use. */
+ IP_ORIGINAL /* The original biv. */
+};
+
+/* The induction variable candidate. */
+struct iv_cand
+{
+ unsigned id; /* The number of the candidate. */
+ bool important; /* Whether this is an "important" candidate, i.e. such
+ that it should be considered by all uses. */
+ ENUM_BITFIELD(iv_position) pos : 8; /* Where it is computed. */
+ gimple *incremented_at;/* For original biv, the statement where it is
+ incremented. */
+ tree var_before; /* The variable used for it before increment. */
+ tree var_after; /* The variable used for it after increment. */
+ struct iv *iv; /* The value of the candidate. NULL for
+ "pseudocandidate" used to indicate the possibility
+ to replace the final value of an iv by direct
+ computation of the value. */
+ unsigned cost; /* Cost of the candidate. */
+ unsigned cost_step; /* Cost of the candidate's increment operation. */
+ struct iv_use *ainc_use; /* For IP_{BEFORE,AFTER}_USE candidates, the place
+ where it is incremented. */
+ bitmap inv_vars; /* The list of invariant ssa_vars used in step of the
+ iv_cand. */
+ bitmap inv_exprs; /* If step is more complicated than a single ssa_var,
+ hanlde it as a new invariant expression which will
+ be hoisted out of loop. */
+ struct iv *orig_iv; /* The original iv if this cand is added from biv with
+ smaller type. */
+ bool doloop_p; /* Whether this is a doloop candidate. */
+};
+
+/* Hashtable entry for common candidate derived from iv uses. */
+class iv_common_cand
+{
+public:
+ tree base;
+ tree step;
+ /* IV uses from which this common candidate is derived. */
+ auto_vec<struct iv_use *> uses;
+ hashval_t hash;
+};
+
+/* Hashtable helpers. */
+
+struct iv_common_cand_hasher : delete_ptr_hash <iv_common_cand>
+{
+ static inline hashval_t hash (const iv_common_cand *);
+ static inline bool equal (const iv_common_cand *, const iv_common_cand *);
+};
+
+/* Hash function for possible common candidates. */
+
+inline hashval_t
+iv_common_cand_hasher::hash (const iv_common_cand *ccand)
+{
+ return ccand->hash;
+}
+
+/* Hash table equality function for common candidates. */
+
+inline bool
+iv_common_cand_hasher::equal (const iv_common_cand *ccand1,
+ const iv_common_cand *ccand2)
+{
+ return (ccand1->hash == ccand2->hash
+ && operand_equal_p (ccand1->base, ccand2->base, 0)
+ && operand_equal_p (ccand1->step, ccand2->step, 0)
+ && (TYPE_PRECISION (TREE_TYPE (ccand1->base))
+ == TYPE_PRECISION (TREE_TYPE (ccand2->base))));
+}
+
+/* Loop invariant expression hashtable entry. */
+
+struct iv_inv_expr_ent
+{
+ /* Tree expression of the entry. */
+ tree expr;
+ /* Unique indentifier. */
+ int id;
+ /* Hash value. */
+ hashval_t hash;
+};
+
+/* Sort iv_inv_expr_ent pair A and B by id field. */
+
+static int
+sort_iv_inv_expr_ent (const void *a, const void *b)
+{
+ const iv_inv_expr_ent * const *e1 = (const iv_inv_expr_ent * const *) (a);
+ const iv_inv_expr_ent * const *e2 = (const iv_inv_expr_ent * const *) (b);
+
+ unsigned id1 = (*e1)->id;
+ unsigned id2 = (*e2)->id;
+
+ if (id1 < id2)
+ return -1;
+ else if (id1 > id2)
+ return 1;
+ else
+ return 0;
+}
+
+/* Hashtable helpers. */
+
+struct iv_inv_expr_hasher : free_ptr_hash <iv_inv_expr_ent>
+{
+ static inline hashval_t hash (const iv_inv_expr_ent *);
+ static inline bool equal (const iv_inv_expr_ent *, const iv_inv_expr_ent *);
+};
+
+/* Return true if uses of type TYPE represent some form of address. */
+
+inline bool
+address_p (use_type type)
+{
+ return type == USE_REF_ADDRESS || type == USE_PTR_ADDRESS;
+}
+
+/* Hash function for loop invariant expressions. */
+
+inline hashval_t
+iv_inv_expr_hasher::hash (const iv_inv_expr_ent *expr)
+{
+ return expr->hash;
+}
+
+/* Hash table equality function for expressions. */
+
+inline bool
+iv_inv_expr_hasher::equal (const iv_inv_expr_ent *expr1,
+ const iv_inv_expr_ent *expr2)
+{
+ return expr1->hash == expr2->hash
+ && operand_equal_p (expr1->expr, expr2->expr, 0);
+}
+
+struct ivopts_data
+{
+ /* The currently optimized loop. */
+ class loop *current_loop;
+ location_t loop_loc;
+
+ /* Numbers of iterations for all exits of the current loop. */
+ hash_map<edge, tree_niter_desc *> *niters;
+
+ /* Number of registers used in it. */
+ unsigned regs_used;
+
+ /* The size of version_info array allocated. */
+ unsigned version_info_size;
+
+ /* The array of information for the ssa names. */
+ struct version_info *version_info;
+
+ /* The hashtable of loop invariant expressions created
+ by ivopt. */
+ hash_table<iv_inv_expr_hasher> *inv_expr_tab;
+
+ /* The bitmap of indices in version_info whose value was changed. */
+ bitmap relevant;
+
+ /* The uses of induction variables. */
+ vec<iv_group *> vgroups;
+
+ /* The candidates. */
+ vec<iv_cand *> vcands;
+
+ /* A bitmap of important candidates. */
+ bitmap important_candidates;
+
+ /* Cache used by tree_to_aff_combination_expand. */
+ hash_map<tree, name_expansion *> *name_expansion_cache;
+
+ /* The hashtable of common candidates derived from iv uses. */
+ hash_table<iv_common_cand_hasher> *iv_common_cand_tab;
+
+ /* The common candidates. */
+ vec<iv_common_cand *> iv_common_cands;
+
+ /* Hash map recording base object information of tree exp. */
+ hash_map<tree, tree> *base_object_map;
+
+ /* The maximum invariant variable id. */
+ unsigned max_inv_var_id;
+
+ /* The maximum invariant expression id. */
+ unsigned max_inv_expr_id;
+
+ /* Number of no_overflow BIVs which are not used in memory address. */
+ unsigned bivs_not_used_in_addr;
+
+ /* Obstack for iv structure. */
+ struct obstack iv_obstack;
+
+ /* Whether to consider just related and important candidates when replacing a
+ use. */
+ bool consider_all_candidates;
+
+ /* Are we optimizing for speed? */
+ bool speed;
+
+ /* Whether the loop body includes any function calls. */
+ bool body_includes_call;
+
+ /* Whether the loop body can only be exited via single exit. */
+ bool loop_single_exit_p;
+
+ /* Whether the loop has doloop comparison use. */
+ bool doloop_use_p;
+};
+
+/* An assignment of iv candidates to uses. */
+
+class iv_ca
+{
+public:
+ /* The number of uses covered by the assignment. */
+ unsigned upto;
+
+ /* Number of uses that cannot be expressed by the candidates in the set. */
+ unsigned bad_groups;
+
+ /* Candidate assigned to a use, together with the related costs. */
+ class cost_pair **cand_for_group;
+
+ /* Number of times each candidate is used. */
+ unsigned *n_cand_uses;
+
+ /* The candidates used. */
+ bitmap cands;
+
+ /* The number of candidates in the set. */
+ unsigned n_cands;
+
+ /* The number of invariants needed, including both invariant variants and
+ invariant expressions. */
+ unsigned n_invs;
+
+ /* Total cost of expressing uses. */
+ comp_cost cand_use_cost;
+
+ /* Total cost of candidates. */
+ int64_t cand_cost;
+
+ /* Number of times each invariant variable is used. */
+ unsigned *n_inv_var_uses;
+
+ /* Number of times each invariant expression is used. */
+ unsigned *n_inv_expr_uses;
+
+ /* Total cost of the assignment. */
+ comp_cost cost;
+};
+
+/* Difference of two iv candidate assignments. */
+
+struct iv_ca_delta
+{
+ /* Changed group. */
+ struct iv_group *group;
+
+ /* An old assignment (for rollback purposes). */
+ class cost_pair *old_cp;
+
+ /* A new assignment. */
+ class cost_pair *new_cp;
+
+ /* Next change in the list. */
+ struct iv_ca_delta *next;
+};
+
+/* Bound on number of candidates below that all candidates are considered. */
+
+#define CONSIDER_ALL_CANDIDATES_BOUND \
+ ((unsigned) param_iv_consider_all_candidates_bound)
+
+/* If there are more iv occurrences, we just give up (it is quite unlikely that
+ optimizing such a loop would help, and it would take ages). */
+
+#define MAX_CONSIDERED_GROUPS \
+ ((unsigned) param_iv_max_considered_uses)
+
+/* If there are at most this number of ivs in the set, try removing unnecessary
+ ivs from the set always. */
+
+#define ALWAYS_PRUNE_CAND_SET_BOUND \
+ ((unsigned) param_iv_always_prune_cand_set_bound)
+
+/* The list of trees for that the decl_rtl field must be reset is stored
+ here. */
+
+static vec<tree> decl_rtl_to_reset;
+
+static comp_cost force_expr_to_var_cost (tree, bool);
+
+/* The single loop exit if it dominates the latch, NULL otherwise. */
+
+edge
+single_dom_exit (class loop *loop)
+{
+ edge exit = single_exit (loop);
+
+ if (!exit)
+ return NULL;
+
+ if (!just_once_each_iteration_p (loop, exit->src))
+ return NULL;
+
+ return exit;
+}
+
+/* Dumps information about the induction variable IV to FILE. Don't dump
+ variable's name if DUMP_NAME is FALSE. The information is dumped with
+ preceding spaces indicated by INDENT_LEVEL. */
+
+void
+dump_iv (FILE *file, struct iv *iv, bool dump_name, unsigned indent_level)
+{
+ const char *p;
+ const char spaces[9] = {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '\0'};
+
+ if (indent_level > 4)
+ indent_level = 4;
+ p = spaces + 8 - (indent_level << 1);
+
+ fprintf (file, "%sIV struct:\n", p);
+ if (iv->ssa_name && dump_name)
+ {
+ fprintf (file, "%s SSA_NAME:\t", p);
+ print_generic_expr (file, iv->ssa_name, TDF_SLIM);
+ fprintf (file, "\n");
+ }
+
+ fprintf (file, "%s Type:\t", p);
+ print_generic_expr (file, TREE_TYPE (iv->base), TDF_SLIM);
+ fprintf (file, "\n");
+
+ fprintf (file, "%s Base:\t", p);
+ print_generic_expr (file, iv->base, TDF_SLIM);
+ fprintf (file, "\n");
+
+ fprintf (file, "%s Step:\t", p);
+ print_generic_expr (file, iv->step, TDF_SLIM);
+ fprintf (file, "\n");
+
+ if (iv->base_object)
+ {
+ fprintf (file, "%s Object:\t", p);
+ print_generic_expr (file, iv->base_object, TDF_SLIM);
+ fprintf (file, "\n");
+ }
+
+ fprintf (file, "%s Biv:\t%c\n", p, iv->biv_p ? 'Y' : 'N');
+
+ fprintf (file, "%s Overflowness wrto loop niter:\t%s\n",
+ p, iv->no_overflow ? "No-overflow" : "Overflow");
+}
+
+/* Dumps information about the USE to FILE. */
+
+void
+dump_use (FILE *file, struct iv_use *use)
+{
+ fprintf (file, " Use %d.%d:\n", use->group_id, use->id);
+ fprintf (file, " At stmt:\t");
+ print_gimple_stmt (file, use->stmt, 0);
+ fprintf (file, " At pos:\t");
+ if (use->op_p)
+ print_generic_expr (file, *use->op_p, TDF_SLIM);
+ fprintf (file, "\n");
+ dump_iv (file, use->iv, false, 2);
+}
+
+/* Dumps information about the uses to FILE. */
+
+void
+dump_groups (FILE *file, struct ivopts_data *data)
+{
+ unsigned i, j;
+ struct iv_group *group;
+
+ for (i = 0; i < data->vgroups.length (); i++)
+ {
+ group = data->vgroups[i];
+ fprintf (file, "Group %d:\n", group->id);
+ if (group->type == USE_NONLINEAR_EXPR)
+ fprintf (file, " Type:\tGENERIC\n");
+ else if (group->type == USE_REF_ADDRESS)
+ fprintf (file, " Type:\tREFERENCE ADDRESS\n");
+ else if (group->type == USE_PTR_ADDRESS)
+ fprintf (file, " Type:\tPOINTER ARGUMENT ADDRESS\n");
+ else
+ {
+ gcc_assert (group->type == USE_COMPARE);
+ fprintf (file, " Type:\tCOMPARE\n");
+ }
+ for (j = 0; j < group->vuses.length (); j++)
+ dump_use (file, group->vuses[j]);
+ }
+}
+
+/* Dumps information about induction variable candidate CAND to FILE. */
+
+void
+dump_cand (FILE *file, struct iv_cand *cand)
+{
+ struct iv *iv = cand->iv;
+
+ fprintf (file, "Candidate %d:\n", cand->id);
+ if (cand->inv_vars)
+ {
+ fprintf (file, " Depend on inv.vars: ");
+ dump_bitmap (file, cand->inv_vars);
+ }
+ if (cand->inv_exprs)
+ {
+ fprintf (file, " Depend on inv.exprs: ");
+ dump_bitmap (file, cand->inv_exprs);
+ }
+
+ if (cand->var_before)
+ {
+ fprintf (file, " Var befor: ");
+ print_generic_expr (file, cand->var_before, TDF_SLIM);
+ fprintf (file, "\n");
+ }
+ if (cand->var_after)
+ {
+ fprintf (file, " Var after: ");
+ print_generic_expr (file, cand->var_after, TDF_SLIM);
+ fprintf (file, "\n");
+ }
+
+ switch (cand->pos)
+ {
+ case IP_NORMAL:
+ fprintf (file, " Incr POS: before exit test\n");
+ break;
+
+ case IP_BEFORE_USE:
+ fprintf (file, " Incr POS: before use %d\n", cand->ainc_use->id);
+ break;
+
+ case IP_AFTER_USE:
+ fprintf (file, " Incr POS: after use %d\n", cand->ainc_use->id);
+ break;
+
+ case IP_END:
+ fprintf (file, " Incr POS: at end\n");
+ break;
+
+ case IP_ORIGINAL:
+ fprintf (file, " Incr POS: orig biv\n");
+ break;
+ }
+
+ dump_iv (file, iv, false, 1);
+}
+
+/* Returns the info for ssa version VER. */
+
+static inline struct version_info *
+ver_info (struct ivopts_data *data, unsigned ver)
+{
+ return data->version_info + ver;
+}
+
+/* Returns the info for ssa name NAME. */
+
+static inline struct version_info *
+name_info (struct ivopts_data *data, tree name)
+{
+ return ver_info (data, SSA_NAME_VERSION (name));
+}
+
+/* Returns true if STMT is after the place where the IP_NORMAL ivs will be
+ emitted in LOOP. */
+
+static bool
+stmt_after_ip_normal_pos (class loop *loop, gimple *stmt)
+{
+ basic_block bb = ip_normal_pos (loop), sbb = gimple_bb (stmt);
+
+ gcc_assert (bb);
+
+ if (sbb == loop->latch)
+ return true;
+
+ if (sbb != bb)
+ return false;
+
+ return stmt == last_stmt (bb);
+}
+
+/* Returns true if STMT if after the place where the original induction
+ variable CAND is incremented. If TRUE_IF_EQUAL is set, we return true
+ if the positions are identical. */
+
+static bool
+stmt_after_inc_pos (struct iv_cand *cand, gimple *stmt, bool true_if_equal)
+{
+ basic_block cand_bb = gimple_bb (cand->incremented_at);
+ basic_block stmt_bb = gimple_bb (stmt);
+
+ if (!dominated_by_p (CDI_DOMINATORS, stmt_bb, cand_bb))
+ return false;
+
+ if (stmt_bb != cand_bb)
+ return true;
+
+ if (true_if_equal
+ && gimple_uid (stmt) == gimple_uid (cand->incremented_at))
+ return true;
+ return gimple_uid (stmt) > gimple_uid (cand->incremented_at);
+}
+
+/* Returns true if STMT if after the place where the induction variable
+ CAND is incremented in LOOP. */
+
+static bool
+stmt_after_increment (class loop *loop, struct iv_cand *cand, gimple *stmt)
+{
+ switch (cand->pos)
+ {
+ case IP_END:
+ return false;
+
+ case IP_NORMAL:
+ return stmt_after_ip_normal_pos (loop, stmt);
+
+ case IP_ORIGINAL:
+ case IP_AFTER_USE:
+ return stmt_after_inc_pos (cand, stmt, false);
+
+ case IP_BEFORE_USE:
+ return stmt_after_inc_pos (cand, stmt, true);
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* walk_tree callback for contains_abnormal_ssa_name_p. */
+
+static tree
+contains_abnormal_ssa_name_p_1 (tree *tp, int *walk_subtrees, void *)
+{
+ if (TREE_CODE (*tp) == SSA_NAME
+ && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (*tp))
+ return *tp;
+
+ if (!EXPR_P (*tp))
+ *walk_subtrees = 0;
+
+ return NULL_TREE;
+}
+
+/* Returns true if EXPR contains a ssa name that occurs in an
+ abnormal phi node. */
+
+bool
+contains_abnormal_ssa_name_p (tree expr)
+{
+ return walk_tree_without_duplicates
+ (&expr, contains_abnormal_ssa_name_p_1, NULL) != NULL_TREE;
+}
+
+/* Returns the structure describing number of iterations determined from
+ EXIT of DATA->current_loop, or NULL if something goes wrong. */
+
+static class tree_niter_desc *
+niter_for_exit (struct ivopts_data *data, edge exit)
+{
+ class tree_niter_desc *desc;
+ tree_niter_desc **slot;
+
+ if (!data->niters)
+ {
+ data->niters = new hash_map<edge, tree_niter_desc *>;
+ slot = NULL;
+ }
+ else
+ slot = data->niters->get (exit);
+
+ if (!slot)
+ {
+ /* Try to determine number of iterations. We cannot safely work with ssa
+ names that appear in phi nodes on abnormal edges, so that we do not
+ create overlapping life ranges for them (PR 27283). */
+ desc = XNEW (class tree_niter_desc);
+ if (!number_of_iterations_exit (data->current_loop,
+ exit, desc, true)
+ || contains_abnormal_ssa_name_p (desc->niter))
+ {
+ XDELETE (desc);
+ desc = NULL;
+ }
+ data->niters->put (exit, desc);
+ }
+ else
+ desc = *slot;
+
+ return desc;
+}
+
+/* Returns the structure describing number of iterations determined from
+ single dominating exit of DATA->current_loop, or NULL if something
+ goes wrong. */
+
+static class tree_niter_desc *
+niter_for_single_dom_exit (struct ivopts_data *data)
+{
+ edge exit = single_dom_exit (data->current_loop);
+
+ if (!exit)
+ return NULL;
+
+ return niter_for_exit (data, exit);
+}
+
+/* Initializes data structures used by the iv optimization pass, stored
+ in DATA. */
+
+static void
+tree_ssa_iv_optimize_init (struct ivopts_data *data)
+{
+ data->version_info_size = 2 * num_ssa_names;
+ data->version_info = XCNEWVEC (struct version_info, data->version_info_size);
+ data->relevant = BITMAP_ALLOC (NULL);
+ data->important_candidates = BITMAP_ALLOC (NULL);
+ data->max_inv_var_id = 0;
+ data->max_inv_expr_id = 0;
+ data->niters = NULL;
+ data->vgroups.create (20);
+ data->vcands.create (20);
+ data->inv_expr_tab = new hash_table<iv_inv_expr_hasher> (10);
+ data->name_expansion_cache = NULL;
+ data->base_object_map = NULL;
+ data->iv_common_cand_tab = new hash_table<iv_common_cand_hasher> (10);
+ data->iv_common_cands.create (20);
+ decl_rtl_to_reset.create (20);
+ gcc_obstack_init (&data->iv_obstack);
+}
+
+/* walk_tree callback for determine_base_object. */
+
+static tree
+determine_base_object_1 (tree *tp, int *walk_subtrees, void *wdata)
+{
+ tree_code code = TREE_CODE (*tp);
+ tree obj = NULL_TREE;
+ if (code == ADDR_EXPR)
+ {
+ tree base = get_base_address (TREE_OPERAND (*tp, 0));
+ if (!base)
+ obj = *tp;
+ else if (TREE_CODE (base) != MEM_REF)
+ obj = fold_convert (ptr_type_node, build_fold_addr_expr (base));
+ }
+ else if (code == SSA_NAME && POINTER_TYPE_P (TREE_TYPE (*tp)))
+ obj = fold_convert (ptr_type_node, *tp);
+
+ if (!obj)
+ {
+ if (!EXPR_P (*tp))
+ *walk_subtrees = 0;
+
+ return NULL_TREE;
+ }
+ /* Record special node for multiple base objects and stop. */
+ if (*static_cast<tree *> (wdata))
+ {
+ *static_cast<tree *> (wdata) = integer_zero_node;
+ return integer_zero_node;
+ }
+ /* Record the base object and continue looking. */
+ *static_cast<tree *> (wdata) = obj;
+ return NULL_TREE;
+}
+
+/* Returns a memory object to that EXPR points with caching. Return NULL if we
+ are able to determine that it does not point to any such object; specially
+ return integer_zero_node if EXPR contains multiple base objects. */
+
+static tree
+determine_base_object (struct ivopts_data *data, tree expr)
+{
+ tree *slot, obj = NULL_TREE;
+ if (data->base_object_map)
+ {
+ if ((slot = data->base_object_map->get(expr)) != NULL)
+ return *slot;
+ }
+ else
+ data->base_object_map = new hash_map<tree, tree>;
+
+ (void) walk_tree_without_duplicates (&expr, determine_base_object_1, &obj);
+ data->base_object_map->put (expr, obj);
+ return obj;
+}
+
+/* Return true if address expression with non-DECL_P operand appears
+ in EXPR. */
+
+static bool
+contain_complex_addr_expr (tree expr)
+{
+ bool res = false;
+
+ STRIP_NOPS (expr);
+ switch (TREE_CODE (expr))
+ {
+ case POINTER_PLUS_EXPR:
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ res |= contain_complex_addr_expr (TREE_OPERAND (expr, 0));
+ res |= contain_complex_addr_expr (TREE_OPERAND (expr, 1));
+ break;
+
+ case ADDR_EXPR:
+ return (!DECL_P (TREE_OPERAND (expr, 0)));
+
+ default:
+ return false;
+ }
+
+ return res;
+}
+
+/* Allocates an induction variable with given initial value BASE and step STEP
+ for loop LOOP. NO_OVERFLOW implies the iv doesn't overflow. */
+
+static struct iv *
+alloc_iv (struct ivopts_data *data, tree base, tree step,
+ bool no_overflow = false)
+{
+ tree expr = base;
+ struct iv *iv = (struct iv*) obstack_alloc (&data->iv_obstack,
+ sizeof (struct iv));
+ gcc_assert (step != NULL_TREE);
+
+ /* Lower address expression in base except ones with DECL_P as operand.
+ By doing this:
+ 1) More accurate cost can be computed for address expressions;
+ 2) Duplicate candidates won't be created for bases in different
+ forms, like &a[0] and &a. */
+ STRIP_NOPS (expr);
+ if ((TREE_CODE (expr) == ADDR_EXPR && !DECL_P (TREE_OPERAND (expr, 0)))
+ || contain_complex_addr_expr (expr))
+ {
+ aff_tree comb;
+ tree_to_aff_combination (expr, TREE_TYPE (expr), &comb);
+ base = fold_convert (TREE_TYPE (base), aff_combination_to_tree (&comb));
+ }
+
+ iv->base = base;
+ iv->base_object = determine_base_object (data, base);
+ iv->step = step;
+ iv->biv_p = false;
+ iv->nonlin_use = NULL;
+ iv->ssa_name = NULL_TREE;
+ if (!no_overflow
+ && !iv_can_overflow_p (data->current_loop, TREE_TYPE (base),
+ base, step))
+ no_overflow = true;
+ iv->no_overflow = no_overflow;
+ iv->have_address_use = false;
+
+ return iv;
+}
+
+/* Sets STEP and BASE for induction variable IV. NO_OVERFLOW implies the IV
+ doesn't overflow. */
+
+static void
+set_iv (struct ivopts_data *data, tree iv, tree base, tree step,
+ bool no_overflow)
+{
+ struct version_info *info = name_info (data, iv);
+
+ gcc_assert (!info->iv);
+
+ bitmap_set_bit (data->relevant, SSA_NAME_VERSION (iv));
+ info->iv = alloc_iv (data, base, step, no_overflow);
+ info->iv->ssa_name = iv;
+}
+
+/* Finds induction variable declaration for VAR. */
+
+static struct iv *
+get_iv (struct ivopts_data *data, tree var)
+{
+ basic_block bb;
+ tree type = TREE_TYPE (var);
+
+ if (!POINTER_TYPE_P (type)
+ && !INTEGRAL_TYPE_P (type))
+ return NULL;
+
+ if (!name_info (data, var)->iv)
+ {
+ bb = gimple_bb (SSA_NAME_DEF_STMT (var));
+
+ if (!bb
+ || !flow_bb_inside_loop_p (data->current_loop, bb))
+ {
+ if (POINTER_TYPE_P (type))
+ type = sizetype;
+ set_iv (data, var, var, build_int_cst (type, 0), true);
+ }
+ }
+
+ return name_info (data, var)->iv;
+}
+
+/* Return the first non-invariant ssa var found in EXPR. */
+
+static tree
+extract_single_var_from_expr (tree expr)
+{
+ int i, n;
+ tree tmp;
+ enum tree_code code;
+
+ if (!expr || is_gimple_min_invariant (expr))
+ return NULL;
+
+ code = TREE_CODE (expr);
+ if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
+ {
+ n = TREE_OPERAND_LENGTH (expr);
+ for (i = 0; i < n; i++)
+ {
+ tmp = extract_single_var_from_expr (TREE_OPERAND (expr, i));
+
+ if (tmp)
+ return tmp;
+ }
+ }
+ return (TREE_CODE (expr) == SSA_NAME) ? expr : NULL;
+}
+
+/* Finds basic ivs. */
+
+static bool
+find_bivs (struct ivopts_data *data)
+{
+ gphi *phi;
+ affine_iv iv;
+ tree step, type, base, stop;
+ bool found = false;
+ class loop *loop = data->current_loop;
+ gphi_iterator psi;
+
+ for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
+ {
+ phi = psi.phi ();
+
+ if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi)))
+ continue;
+
+ if (virtual_operand_p (PHI_RESULT (phi)))
+ continue;
+
+ if (!simple_iv (loop, loop, PHI_RESULT (phi), &iv, true))
+ continue;
+
+ if (integer_zerop (iv.step))
+ continue;
+
+ step = iv.step;
+ base = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
+ /* Stop expanding iv base at the first ssa var referred by iv step.
+ Ideally we should stop at any ssa var, because that's expensive
+ and unusual to happen, we just do it on the first one.
+
+ See PR64705 for the rationale. */
+ stop = extract_single_var_from_expr (step);
+ base = expand_simple_operations (base, stop);
+ if (contains_abnormal_ssa_name_p (base)
+ || contains_abnormal_ssa_name_p (step))
+ continue;
+
+ type = TREE_TYPE (PHI_RESULT (phi));
+ base = fold_convert (type, base);
+ if (step)
+ {
+ if (POINTER_TYPE_P (type))
+ step = convert_to_ptrofftype (step);
+ else
+ step = fold_convert (type, step);
+ }
+
+ set_iv (data, PHI_RESULT (phi), base, step, iv.no_overflow);
+ found = true;
+ }
+
+ return found;
+}
+
+/* Marks basic ivs. */
+
+static void
+mark_bivs (struct ivopts_data *data)
+{
+ gphi *phi;
+ gimple *def;
+ tree var;
+ struct iv *iv, *incr_iv;
+ class loop *loop = data->current_loop;
+ basic_block incr_bb;
+ gphi_iterator psi;
+
+ data->bivs_not_used_in_addr = 0;
+ for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
+ {
+ phi = psi.phi ();
+
+ iv = get_iv (data, PHI_RESULT (phi));
+ if (!iv)
+ continue;
+
+ var = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
+ def = SSA_NAME_DEF_STMT (var);
+ /* Don't mark iv peeled from other one as biv. */
+ if (def
+ && gimple_code (def) == GIMPLE_PHI
+ && gimple_bb (def) == loop->header)
+ continue;
+
+ incr_iv = get_iv (data, var);
+ if (!incr_iv)
+ continue;
+
+ /* If the increment is in the subloop, ignore it. */
+ incr_bb = gimple_bb (SSA_NAME_DEF_STMT (var));
+ if (incr_bb->loop_father != data->current_loop
+ || (incr_bb->flags & BB_IRREDUCIBLE_LOOP))
+ continue;
+
+ iv->biv_p = true;
+ incr_iv->biv_p = true;
+ if (iv->no_overflow)
+ data->bivs_not_used_in_addr++;
+ if (incr_iv->no_overflow)
+ data->bivs_not_used_in_addr++;
+ }
+}
+
+/* Checks whether STMT defines a linear induction variable and stores its
+ parameters to IV. */
+
+static bool
+find_givs_in_stmt_scev (struct ivopts_data *data, gimple *stmt, affine_iv *iv)
+{
+ tree lhs, stop;
+ class loop *loop = data->current_loop;
+
+ iv->base = NULL_TREE;
+ iv->step = NULL_TREE;
+
+ if (gimple_code (stmt) != GIMPLE_ASSIGN)
+ return false;
+
+ lhs = gimple_assign_lhs (stmt);
+ if (TREE_CODE (lhs) != SSA_NAME)
+ return false;
+
+ if (!simple_iv (loop, loop_containing_stmt (stmt), lhs, iv, true))
+ return false;
+
+ /* Stop expanding iv base at the first ssa var referred by iv step.
+ Ideally we should stop at any ssa var, because that's expensive
+ and unusual to happen, we just do it on the first one.
+
+ See PR64705 for the rationale. */
+ stop = extract_single_var_from_expr (iv->step);
+ iv->base = expand_simple_operations (iv->base, stop);
+ if (contains_abnormal_ssa_name_p (iv->base)
+ || contains_abnormal_ssa_name_p (iv->step))
+ return false;
+
+ /* If STMT could throw, then do not consider STMT as defining a GIV.
+ While this will suppress optimizations, we cannot safely delete this
+ GIV and associated statements, even if it appears it is not used. */
+ if (stmt_could_throw_p (cfun, stmt))
+ return false;
+
+ return true;
+}
+
+/* Finds general ivs in statement STMT. */
+
+static void
+find_givs_in_stmt (struct ivopts_data *data, gimple *stmt)
+{
+ affine_iv iv;
+
+ if (!find_givs_in_stmt_scev (data, stmt, &iv))
+ return;
+
+ set_iv (data, gimple_assign_lhs (stmt), iv.base, iv.step, iv.no_overflow);
+}
+
+/* Finds general ivs in basic block BB. */
+
+static void
+find_givs_in_bb (struct ivopts_data *data, basic_block bb)
+{
+ gimple_stmt_iterator bsi;
+
+ for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+ find_givs_in_stmt (data, gsi_stmt (bsi));
+}
+
+/* Finds general ivs. */
+
+static void
+find_givs (struct ivopts_data *data, basic_block *body)
+{
+ class loop *loop = data->current_loop;
+ unsigned i;
+
+ for (i = 0; i < loop->num_nodes; i++)
+ find_givs_in_bb (data, body[i]);
+}
+
+/* For each ssa name defined in LOOP determines whether it is an induction
+ variable and if so, its initial value and step. */
+
+static bool
+find_induction_variables (struct ivopts_data *data, basic_block *body)
+{
+ unsigned i;
+ bitmap_iterator bi;
+
+ if (!find_bivs (data))
+ return false;
+
+ find_givs (data, body);
+ mark_bivs (data);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ class tree_niter_desc *niter = niter_for_single_dom_exit (data);
+
+ if (niter)
+ {
+ fprintf (dump_file, " number of iterations ");
+ print_generic_expr (dump_file, niter->niter, TDF_SLIM);
+ if (!integer_zerop (niter->may_be_zero))
+ {
+ fprintf (dump_file, "; zero if ");
+ print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
+ }
+ fprintf (dump_file, "\n");
+ };
+
+ fprintf (dump_file, "\n<Induction Vars>:\n");
+ EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
+ {
+ struct version_info *info = ver_info (data, i);
+ if (info->iv && info->iv->step && !integer_zerop (info->iv->step))
+ dump_iv (dump_file, ver_info (data, i)->iv, true, 0);
+ }
+ }
+
+ return true;
+}
+
+/* Records a use of TYPE at *USE_P in STMT whose value is IV in GROUP.
+ For address type use, ADDR_BASE is the stripped IV base, ADDR_OFFSET
+ is the const offset stripped from IV base and MEM_TYPE is the type
+ of the memory being addressed. For uses of other types, ADDR_BASE
+ and ADDR_OFFSET are zero by default and MEM_TYPE is NULL_TREE. */
+
+static struct iv_use *
+record_use (struct iv_group *group, tree *use_p, struct iv *iv,
+ gimple *stmt, enum use_type type, tree mem_type,
+ tree addr_base, poly_uint64 addr_offset)
+{
+ struct iv_use *use = XCNEW (struct iv_use);
+
+ use->id = group->vuses.length ();
+ use->group_id = group->id;
+ use->type = type;
+ use->mem_type = mem_type;
+ use->iv = iv;
+ use->stmt = stmt;
+ use->op_p = use_p;
+ use->addr_base = addr_base;
+ use->addr_offset = addr_offset;
+
+ group->vuses.safe_push (use);
+ return use;
+}
+
+/* Checks whether OP is a loop-level invariant and if so, records it.
+ NONLINEAR_USE is true if the invariant is used in a way we do not
+ handle specially. */
+
+static void
+record_invariant (struct ivopts_data *data, tree op, bool nonlinear_use)
+{
+ basic_block bb;
+ struct version_info *info;
+
+ if (TREE_CODE (op) != SSA_NAME
+ || virtual_operand_p (op))
+ return;
+
+ bb = gimple_bb (SSA_NAME_DEF_STMT (op));
+ if (bb
+ && flow_bb_inside_loop_p (data->current_loop, bb))
+ return;
+
+ info = name_info (data, op);
+ info->name = op;
+ info->has_nonlin_use |= nonlinear_use;
+ if (!info->inv_id)
+ info->inv_id = ++data->max_inv_var_id;
+ bitmap_set_bit (data->relevant, SSA_NAME_VERSION (op));
+}
+
+/* Record a group of TYPE. */
+
+static struct iv_group *
+record_group (struct ivopts_data *data, enum use_type type)
+{
+ struct iv_group *group = XCNEW (struct iv_group);
+
+ group->id = data->vgroups.length ();
+ group->type = type;
+ group->related_cands = BITMAP_ALLOC (NULL);
+ group->vuses.create (1);
+ group->doloop_p = false;
+
+ data->vgroups.safe_push (group);
+ return group;
+}
+
+/* Record a use of TYPE at *USE_P in STMT whose value is IV in a group.
+ New group will be created if there is no existing group for the use.
+ MEM_TYPE is the type of memory being addressed, or NULL if this
+ isn't an address reference. */
+
+static struct iv_use *
+record_group_use (struct ivopts_data *data, tree *use_p,
+ struct iv *iv, gimple *stmt, enum use_type type,
+ tree mem_type)
+{
+ tree addr_base = NULL;
+ struct iv_group *group = NULL;
+ poly_uint64 addr_offset = 0;
+
+ /* Record non address type use in a new group. */
+ if (address_p (type))
+ {
+ unsigned int i;
+
+ addr_base = strip_offset (iv->base, &addr_offset);
+ for (i = 0; i < data->vgroups.length (); i++)
+ {
+ struct iv_use *use;
+
+ group = data->vgroups[i];
+ use = group->vuses[0];
+ if (!address_p (use->type))
+ continue;
+
+ /* Check if it has the same stripped base and step. */
+ if (operand_equal_p (iv->base_object, use->iv->base_object, 0)
+ && operand_equal_p (iv->step, use->iv->step, 0)
+ && operand_equal_p (addr_base, use->addr_base, 0))
+ break;
+ }
+ if (i == data->vgroups.length ())
+ group = NULL;
+ }
+
+ if (!group)
+ group = record_group (data, type);
+
+ return record_use (group, use_p, iv, stmt, type, mem_type,
+ addr_base, addr_offset);
+}
+
+/* Checks whether the use OP is interesting and if so, records it. */
+
+static struct iv_use *
+find_interesting_uses_op (struct ivopts_data *data, tree op)
+{
+ struct iv *iv;
+ gimple *stmt;
+ struct iv_use *use;
+
+ if (TREE_CODE (op) != SSA_NAME)
+ return NULL;
+
+ iv = get_iv (data, op);
+ if (!iv)
+ return NULL;
+
+ if (iv->nonlin_use)
+ {
+ gcc_assert (iv->nonlin_use->type == USE_NONLINEAR_EXPR);
+ return iv->nonlin_use;
+ }
+
+ if (integer_zerop (iv->step))
+ {
+ record_invariant (data, op, true);
+ return NULL;
+ }
+
+ stmt = SSA_NAME_DEF_STMT (op);
+ gcc_assert (gimple_code (stmt) == GIMPLE_PHI || is_gimple_assign (stmt));
+
+ use = record_group_use (data, NULL, iv, stmt, USE_NONLINEAR_EXPR, NULL_TREE);
+ iv->nonlin_use = use;
+ return use;
+}
+
+/* Indicate how compare type iv_use can be handled. */
+enum comp_iv_rewrite
+{
+ COMP_IV_NA,
+ /* We may rewrite compare type iv_use by expressing value of the iv_use. */
+ COMP_IV_EXPR,
+ /* We may rewrite compare type iv_uses on both sides of comparison by
+ expressing value of each iv_use. */
+ COMP_IV_EXPR_2,
+ /* We may rewrite compare type iv_use by expressing value of the iv_use
+ or by eliminating it with other iv_cand. */
+ COMP_IV_ELIM
+};
+
+/* Given a condition in statement STMT, checks whether it is a compare
+ of an induction variable and an invariant. If this is the case,
+ CONTROL_VAR is set to location of the iv, BOUND to the location of
+ the invariant, IV_VAR and IV_BOUND are set to the corresponding
+ induction variable descriptions, and true is returned. If this is not
+ the case, CONTROL_VAR and BOUND are set to the arguments of the
+ condition and false is returned. */
+
+static enum comp_iv_rewrite
+extract_cond_operands (struct ivopts_data *data, gimple *stmt,
+ tree **control_var, tree **bound,
+ struct iv **iv_var, struct iv **iv_bound)
+{
+ /* The objects returned when COND has constant operands. */
+ static struct iv const_iv;
+ static tree zero;
+ tree *op0 = &zero, *op1 = &zero;
+ struct iv *iv0 = &const_iv, *iv1 = &const_iv;
+ enum comp_iv_rewrite rewrite_type = COMP_IV_NA;
+
+ if (gimple_code (stmt) == GIMPLE_COND)
+ {
+ gcond *cond_stmt = as_a <gcond *> (stmt);
+ op0 = gimple_cond_lhs_ptr (cond_stmt);
+ op1 = gimple_cond_rhs_ptr (cond_stmt);
+ }
+ else
+ {
+ op0 = gimple_assign_rhs1_ptr (stmt);
+ op1 = gimple_assign_rhs2_ptr (stmt);
+ }
+
+ zero = integer_zero_node;
+ const_iv.step = integer_zero_node;
+
+ if (TREE_CODE (*op0) == SSA_NAME)
+ iv0 = get_iv (data, *op0);
+ if (TREE_CODE (*op1) == SSA_NAME)
+ iv1 = get_iv (data, *op1);
+
+ /* If both sides of comparison are IVs. We can express ivs on both end. */
+ if (iv0 && iv1 && !integer_zerop (iv0->step) && !integer_zerop (iv1->step))
+ {
+ rewrite_type = COMP_IV_EXPR_2;
+ goto end;
+ }
+
+ /* If none side of comparison is IV. */
+ if ((!iv0 || integer_zerop (iv0->step))
+ && (!iv1 || integer_zerop (iv1->step)))
+ goto end;
+
+ /* Control variable may be on the other side. */
+ if (!iv0 || integer_zerop (iv0->step))
+ {
+ std::swap (op0, op1);
+ std::swap (iv0, iv1);
+ }
+ /* If one side is IV and the other side isn't loop invariant. */
+ if (!iv1)
+ rewrite_type = COMP_IV_EXPR;
+ /* If one side is IV and the other side is loop invariant. */
+ else if (!integer_zerop (iv0->step) && integer_zerop (iv1->step))
+ rewrite_type = COMP_IV_ELIM;
+
+end:
+ if (control_var)
+ *control_var = op0;
+ if (iv_var)
+ *iv_var = iv0;
+ if (bound)
+ *bound = op1;
+ if (iv_bound)
+ *iv_bound = iv1;
+
+ return rewrite_type;
+}
+
+/* Checks whether the condition in STMT is interesting and if so,
+ records it. */
+
+static void
+find_interesting_uses_cond (struct ivopts_data *data, gimple *stmt)
+{
+ tree *var_p, *bound_p;
+ struct iv *var_iv, *bound_iv;
+ enum comp_iv_rewrite ret;
+
+ ret = extract_cond_operands (data, stmt,
+ &var_p, &bound_p, &var_iv, &bound_iv);
+ if (ret == COMP_IV_NA)
+ {
+ find_interesting_uses_op (data, *var_p);
+ find_interesting_uses_op (data, *bound_p);
+ return;
+ }
+
+ record_group_use (data, var_p, var_iv, stmt, USE_COMPARE, NULL_TREE);
+ /* Record compare type iv_use for iv on the other side of comparison. */
+ if (ret == COMP_IV_EXPR_2)
+ record_group_use (data, bound_p, bound_iv, stmt, USE_COMPARE, NULL_TREE);
+}
+
+/* Returns the outermost loop EXPR is obviously invariant in
+ relative to the loop LOOP, i.e. if all its operands are defined
+ outside of the returned loop. Returns NULL if EXPR is not
+ even obviously invariant in LOOP. */
+
+class loop *
+outermost_invariant_loop_for_expr (class loop *loop, tree expr)
+{
+ basic_block def_bb;
+ unsigned i, len;
+
+ if (is_gimple_min_invariant (expr))
+ return current_loops->tree_root;
+
+ if (TREE_CODE (expr) == SSA_NAME)
+ {
+ def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
+ if (def_bb)
+ {
+ if (flow_bb_inside_loop_p (loop, def_bb))
+ return NULL;
+ return superloop_at_depth (loop,
+ loop_depth (def_bb->loop_father) + 1);
+ }
+
+ return current_loops->tree_root;
+ }
+
+ if (!EXPR_P (expr))
+ return NULL;
+
+ unsigned maxdepth = 0;
+ len = TREE_OPERAND_LENGTH (expr);
+ for (i = 0; i < len; i++)
+ {
+ class loop *ivloop;
+ if (!TREE_OPERAND (expr, i))
+ continue;
+
+ ivloop = outermost_invariant_loop_for_expr (loop, TREE_OPERAND (expr, i));
+ if (!ivloop)
+ return NULL;
+ maxdepth = MAX (maxdepth, loop_depth (ivloop));
+ }
+
+ return superloop_at_depth (loop, maxdepth);
+}
+
+/* Returns true if expression EXPR is obviously invariant in LOOP,
+ i.e. if all its operands are defined outside of the LOOP. LOOP
+ should not be the function body. */
+
+bool
+expr_invariant_in_loop_p (class loop *loop, tree expr)
+{
+ basic_block def_bb;
+ unsigned i, len;
+
+ gcc_assert (loop_depth (loop) > 0);
+
+ if (is_gimple_min_invariant (expr))
+ return true;
+
+ if (TREE_CODE (expr) == SSA_NAME)
+ {
+ def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
+ if (def_bb
+ && flow_bb_inside_loop_p (loop, def_bb))
+ return false;
+
+ return true;
+ }
+
+ if (!EXPR_P (expr))
+ return false;
+
+ len = TREE_OPERAND_LENGTH (expr);
+ for (i = 0; i < len; i++)
+ if (TREE_OPERAND (expr, i)
+ && !expr_invariant_in_loop_p (loop, TREE_OPERAND (expr, i)))
+ return false;
+
+ return true;
+}
+
+/* Given expression EXPR which computes inductive values with respect
+ to loop recorded in DATA, this function returns biv from which EXPR
+ is derived by tracing definition chains of ssa variables in EXPR. */
+
+static struct iv*
+find_deriving_biv_for_expr (struct ivopts_data *data, tree expr)
+{
+ struct iv *iv;
+ unsigned i, n;
+ tree e2, e1;
+ enum tree_code code;
+ gimple *stmt;
+
+ if (expr == NULL_TREE)
+ return NULL;
+
+ if (is_gimple_min_invariant (expr))
+ return NULL;
+
+ code = TREE_CODE (expr);
+ if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
+ {
+ n = TREE_OPERAND_LENGTH (expr);
+ for (i = 0; i < n; i++)
+ {
+ iv = find_deriving_biv_for_expr (data, TREE_OPERAND (expr, i));
+ if (iv)
+ return iv;
+ }
+ }
+
+ /* Stop if it's not ssa name. */
+ if (code != SSA_NAME)
+ return NULL;
+
+ iv = get_iv (data, expr);
+ if (!iv || integer_zerop (iv->step))
+ return NULL;
+ else if (iv->biv_p)
+ return iv;
+
+ stmt = SSA_NAME_DEF_STMT (expr);
+ if (gphi *phi = dyn_cast <gphi *> (stmt))
+ {
+ ssa_op_iter iter;
+ use_operand_p use_p;
+ basic_block phi_bb = gimple_bb (phi);
+
+ /* Skip loop header PHI that doesn't define biv. */
+ if (phi_bb->loop_father == data->current_loop)
+ return NULL;
+
+ if (virtual_operand_p (gimple_phi_result (phi)))
+ return NULL;
+
+ FOR_EACH_PHI_ARG (use_p, phi, iter, SSA_OP_USE)
+ {
+ tree use = USE_FROM_PTR (use_p);
+ iv = find_deriving_biv_for_expr (data, use);
+ if (iv)
+ return iv;
+ }
+ return NULL;
+ }
+ if (gimple_code (stmt) != GIMPLE_ASSIGN)
+ return NULL;
+
+ e1 = gimple_assign_rhs1 (stmt);
+ code = gimple_assign_rhs_code (stmt);
+ if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
+ return find_deriving_biv_for_expr (data, e1);
+
+ switch (code)
+ {
+ case MULT_EXPR:
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ case POINTER_PLUS_EXPR:
+ /* Increments, decrements and multiplications by a constant
+ are simple. */
+ e2 = gimple_assign_rhs2 (stmt);
+ iv = find_deriving_biv_for_expr (data, e2);
+ if (iv)
+ return iv;
+ gcc_fallthrough ();
+
+ CASE_CONVERT:
+ /* Casts are simple. */
+ return find_deriving_biv_for_expr (data, e1);
+
+ default:
+ break;
+ }
+
+ return NULL;
+}
+
+/* Record BIV, its predecessor and successor that they are used in
+ address type uses. */
+
+static void
+record_biv_for_address_use (struct ivopts_data *data, struct iv *biv)
+{
+ unsigned i;
+ tree type, base_1, base_2;
+ bitmap_iterator bi;
+
+ if (!biv || !biv->biv_p || integer_zerop (biv->step)
+ || biv->have_address_use || !biv->no_overflow)
+ return;
+
+ type = TREE_TYPE (biv->base);
+ if (!INTEGRAL_TYPE_P (type))
+ return;
+
+ biv->have_address_use = true;
+ data->bivs_not_used_in_addr--;
+ base_1 = fold_build2 (PLUS_EXPR, type, biv->base, biv->step);
+ EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
+ {
+ struct iv *iv = ver_info (data, i)->iv;
+
+ if (!iv || !iv->biv_p || integer_zerop (iv->step)
+ || iv->have_address_use || !iv->no_overflow)
+ continue;
+
+ if (type != TREE_TYPE (iv->base)
+ || !INTEGRAL_TYPE_P (TREE_TYPE (iv->base)))
+ continue;
+
+ if (!operand_equal_p (biv->step, iv->step, 0))
+ continue;
+
+ base_2 = fold_build2 (PLUS_EXPR, type, iv->base, iv->step);
+ if (operand_equal_p (base_1, iv->base, 0)
+ || operand_equal_p (base_2, biv->base, 0))
+ {
+ iv->have_address_use = true;
+ data->bivs_not_used_in_addr--;
+ }
+ }
+}
+
+/* Cumulates the steps of indices into DATA and replaces their values with the
+ initial ones. Returns false when the value of the index cannot be determined.
+ Callback for for_each_index. */
+
+struct ifs_ivopts_data
+{
+ struct ivopts_data *ivopts_data;
+ gimple *stmt;
+ tree step;
+};
+
+static bool
+idx_find_step (tree base, tree *idx, void *data)
+{
+ struct ifs_ivopts_data *dta = (struct ifs_ivopts_data *) data;
+ struct iv *iv;
+ bool use_overflow_semantics = false;
+ tree step, iv_base, iv_step, lbound, off;
+ class loop *loop = dta->ivopts_data->current_loop;
+
+ /* If base is a component ref, require that the offset of the reference
+ be invariant. */
+ if (TREE_CODE (base) == COMPONENT_REF)
+ {
+ off = component_ref_field_offset (base);
+ return expr_invariant_in_loop_p (loop, off);
+ }
+
+ /* If base is array, first check whether we will be able to move the
+ reference out of the loop (in order to take its address in strength
+ reduction). In order for this to work we need both lower bound
+ and step to be loop invariants. */
+ if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
+ {
+ /* Moreover, for a range, the size needs to be invariant as well. */
+ if (TREE_CODE (base) == ARRAY_RANGE_REF
+ && !expr_invariant_in_loop_p (loop, TYPE_SIZE (TREE_TYPE (base))))
+ return false;
+
+ step = array_ref_element_size (base);
+ lbound = array_ref_low_bound (base);
+
+ if (!expr_invariant_in_loop_p (loop, step)
+ || !expr_invariant_in_loop_p (loop, lbound))
+ return false;
+ }
+
+ if (TREE_CODE (*idx) != SSA_NAME)
+ return true;
+
+ iv = get_iv (dta->ivopts_data, *idx);
+ if (!iv)
+ return false;
+
+ /* XXX We produce for a base of *D42 with iv->base being &x[0]
+ *&x[0], which is not folded and does not trigger the
+ ARRAY_REF path below. */
+ *idx = iv->base;
+
+ if (integer_zerop (iv->step))
+ return true;
+
+ if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
+ {
+ step = array_ref_element_size (base);
+
+ /* We only handle addresses whose step is an integer constant. */
+ if (TREE_CODE (step) != INTEGER_CST)
+ return false;
+ }
+ else
+ /* The step for pointer arithmetics already is 1 byte. */
+ step = size_one_node;
+
+ iv_base = iv->base;
+ iv_step = iv->step;
+ if (iv->no_overflow && nowrap_type_p (TREE_TYPE (iv_step)))
+ use_overflow_semantics = true;
+
+ if (!convert_affine_scev (dta->ivopts_data->current_loop,
+ sizetype, &iv_base, &iv_step, dta->stmt,
+ use_overflow_semantics))
+ {
+ /* The index might wrap. */
+ return false;
+ }
+
+ step = fold_build2 (MULT_EXPR, sizetype, step, iv_step);
+ dta->step = fold_build2 (PLUS_EXPR, sizetype, dta->step, step);
+
+ if (dta->ivopts_data->bivs_not_used_in_addr)
+ {
+ if (!iv->biv_p)
+ iv = find_deriving_biv_for_expr (dta->ivopts_data, iv->ssa_name);
+
+ record_biv_for_address_use (dta->ivopts_data, iv);
+ }
+ return true;
+}
+
+/* Records use in index IDX. Callback for for_each_index. Ivopts data
+ object is passed to it in DATA. */
+
+static bool
+idx_record_use (tree base, tree *idx,
+ void *vdata)
+{
+ struct ivopts_data *data = (struct ivopts_data *) vdata;
+ find_interesting_uses_op (data, *idx);
+ if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
+ {
+ find_interesting_uses_op (data, array_ref_element_size (base));
+ find_interesting_uses_op (data, array_ref_low_bound (base));
+ }
+ return true;
+}
+
+/* If we can prove that TOP = cst * BOT for some constant cst,
+ store cst to MUL and return true. Otherwise return false.
+ The returned value is always sign-extended, regardless of the
+ signedness of TOP and BOT. */
+
+static bool
+constant_multiple_of (tree top, tree bot, widest_int *mul)
+{
+ tree mby;
+ enum tree_code code;
+ unsigned precision = TYPE_PRECISION (TREE_TYPE (top));
+ widest_int res, p0, p1;
+
+ STRIP_NOPS (top);
+ STRIP_NOPS (bot);
+
+ if (operand_equal_p (top, bot, 0))
+ {
+ *mul = 1;
+ return true;
+ }
+
+ code = TREE_CODE (top);
+ switch (code)
+ {
+ case MULT_EXPR:
+ mby = TREE_OPERAND (top, 1);
+ if (TREE_CODE (mby) != INTEGER_CST)
+ return false;
+
+ if (!constant_multiple_of (TREE_OPERAND (top, 0), bot, &res))
+ return false;
+
+ *mul = wi::sext (res * wi::to_widest (mby), precision);
+ return true;
+
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ if (!constant_multiple_of (TREE_OPERAND (top, 0), bot, &p0)
+ || !constant_multiple_of (TREE_OPERAND (top, 1), bot, &p1))
+ return false;
+
+ if (code == MINUS_EXPR)
+ p1 = -p1;
+ *mul = wi::sext (p0 + p1, precision);
+ return true;
+
+ case INTEGER_CST:
+ if (TREE_CODE (bot) != INTEGER_CST)
+ return false;
+
+ p0 = widest_int::from (wi::to_wide (top), SIGNED);
+ p1 = widest_int::from (wi::to_wide (bot), SIGNED);
+ if (p1 == 0)
+ return false;
+ *mul = wi::sext (wi::divmod_trunc (p0, p1, SIGNED, &res), precision);
+ return res == 0;
+
+ default:
+ if (POLY_INT_CST_P (top)
+ && POLY_INT_CST_P (bot)
+ && constant_multiple_p (wi::to_poly_widest (top),
+ wi::to_poly_widest (bot), mul))
+ return true;
+
+ return false;
+ }
+}
+
+/* Return true if memory reference REF with step STEP may be unaligned. */
+
+static bool
+may_be_unaligned_p (tree ref, tree step)
+{
+ /* TARGET_MEM_REFs are translated directly to valid MEMs on the target,
+ thus they are not misaligned. */
+ if (TREE_CODE (ref) == TARGET_MEM_REF)
+ return false;
+
+ unsigned int align = TYPE_ALIGN (TREE_TYPE (ref));
+ if (GET_MODE_ALIGNMENT (TYPE_MODE (TREE_TYPE (ref))) > align)
+ align = GET_MODE_ALIGNMENT (TYPE_MODE (TREE_TYPE (ref)));
+
+ unsigned HOST_WIDE_INT bitpos;
+ unsigned int ref_align;
+ get_object_alignment_1 (ref, &ref_align, &bitpos);
+ if (ref_align < align
+ || (bitpos % align) != 0
+ || (bitpos % BITS_PER_UNIT) != 0)
+ return true;
+
+ unsigned int trailing_zeros = tree_ctz (step);
+ if (trailing_zeros < HOST_BITS_PER_INT
+ && (1U << trailing_zeros) * BITS_PER_UNIT < align)
+ return true;
+
+ return false;
+}
+
+/* Return true if EXPR may be non-addressable. */
+
+bool
+may_be_nonaddressable_p (tree expr)
+{
+ switch (TREE_CODE (expr))
+ {
+ case VAR_DECL:
+ /* Check if it's a register variable. */
+ return DECL_HARD_REGISTER (expr);
+
+ case TARGET_MEM_REF:
+ /* TARGET_MEM_REFs are translated directly to valid MEMs on the
+ target, thus they are always addressable. */
+ return false;
+
+ case MEM_REF:
+ /* Likewise for MEM_REFs, modulo the storage order. */
+ return REF_REVERSE_STORAGE_ORDER (expr);
+
+ case BIT_FIELD_REF:
+ if (REF_REVERSE_STORAGE_ORDER (expr))
+ return true;
+ return may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
+
+ case COMPONENT_REF:
+ if (TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (TREE_OPERAND (expr, 0))))
+ return true;
+ return DECL_NONADDRESSABLE_P (TREE_OPERAND (expr, 1))
+ || may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
+
+ case ARRAY_REF:
+ case ARRAY_RANGE_REF:
+ if (TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (TREE_OPERAND (expr, 0))))
+ return true;
+ return may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
+
+ case VIEW_CONVERT_EXPR:
+ /* This kind of view-conversions may wrap non-addressable objects
+ and make them look addressable. After some processing the
+ non-addressability may be uncovered again, causing ADDR_EXPRs
+ of inappropriate objects to be built. */
+ if (is_gimple_reg (TREE_OPERAND (expr, 0))
+ || !is_gimple_addressable (TREE_OPERAND (expr, 0)))
+ return true;
+ return may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
+
+ CASE_CONVERT:
+ return true;
+
+ default:
+ break;
+ }
+
+ return false;
+}
+
+/* Finds addresses in *OP_P inside STMT. */
+
+static void
+find_interesting_uses_address (struct ivopts_data *data, gimple *stmt,
+ tree *op_p)
+{
+ tree base = *op_p, step = size_zero_node;
+ struct iv *civ;
+ struct ifs_ivopts_data ifs_ivopts_data;
+
+ /* Do not play with volatile memory references. A bit too conservative,
+ perhaps, but safe. */
+ if (gimple_has_volatile_ops (stmt))
+ goto fail;
+
+ /* Ignore bitfields for now. Not really something terribly complicated
+ to handle. TODO. */
+ if (TREE_CODE (base) == BIT_FIELD_REF)
+ goto fail;
+
+ base = unshare_expr (base);
+
+ if (TREE_CODE (base) == TARGET_MEM_REF)
+ {
+ tree type = build_pointer_type (TREE_TYPE (base));
+ tree astep;
+
+ if (TMR_BASE (base)
+ && TREE_CODE (TMR_BASE (base)) == SSA_NAME)
+ {
+ civ = get_iv (data, TMR_BASE (base));
+ if (!civ)
+ goto fail;
+
+ TMR_BASE (base) = civ->base;
+ step = civ->step;
+ }
+ if (TMR_INDEX2 (base)
+ && TREE_CODE (TMR_INDEX2 (base)) == SSA_NAME)
+ {
+ civ = get_iv (data, TMR_INDEX2 (base));
+ if (!civ)
+ goto fail;
+
+ TMR_INDEX2 (base) = civ->base;
+ step = civ->step;
+ }
+ if (TMR_INDEX (base)
+ && TREE_CODE (TMR_INDEX (base)) == SSA_NAME)
+ {
+ civ = get_iv (data, TMR_INDEX (base));
+ if (!civ)
+ goto fail;
+
+ TMR_INDEX (base) = civ->base;
+ astep = civ->step;
+
+ if (astep)
+ {
+ if (TMR_STEP (base))
+ astep = fold_build2 (MULT_EXPR, type, TMR_STEP (base), astep);
+
+ step = fold_build2 (PLUS_EXPR, type, step, astep);
+ }
+ }
+
+ if (integer_zerop (step))
+ goto fail;
+ base = tree_mem_ref_addr (type, base);
+ }
+ else
+ {
+ ifs_ivopts_data.ivopts_data = data;
+ ifs_ivopts_data.stmt = stmt;
+ ifs_ivopts_data.step = size_zero_node;
+ if (!for_each_index (&base, idx_find_step, &ifs_ivopts_data)
+ || integer_zerop (ifs_ivopts_data.step))
+ goto fail;
+ step = ifs_ivopts_data.step;
+
+ /* Check that the base expression is addressable. This needs
+ to be done after substituting bases of IVs into it. */
+ if (may_be_nonaddressable_p (base))
+ goto fail;
+
+ /* Moreover, on strict alignment platforms, check that it is
+ sufficiently aligned. */
+ if (STRICT_ALIGNMENT && may_be_unaligned_p (base, step))
+ goto fail;
+
+ base = build_fold_addr_expr (base);
+
+ /* Substituting bases of IVs into the base expression might
+ have caused folding opportunities. */
+ if (TREE_CODE (base) == ADDR_EXPR)
+ {
+ tree *ref = &TREE_OPERAND (base, 0);
+ while (handled_component_p (*ref))
+ ref = &TREE_OPERAND (*ref, 0);
+ if (TREE_CODE (*ref) == MEM_REF)
+ {
+ tree tem = fold_binary (MEM_REF, TREE_TYPE (*ref),
+ TREE_OPERAND (*ref, 0),
+ TREE_OPERAND (*ref, 1));
+ if (tem)
+ *ref = tem;
+ }
+ }
+ }
+
+ civ = alloc_iv (data, base, step);
+ /* Fail if base object of this memory reference is unknown. */
+ if (civ->base_object == NULL_TREE)
+ goto fail;
+
+ record_group_use (data, op_p, civ, stmt, USE_REF_ADDRESS, TREE_TYPE (*op_p));
+ return;
+
+fail:
+ for_each_index (op_p, idx_record_use, data);
+}
+
+/* Finds and records invariants used in STMT. */
+
+static void
+find_invariants_stmt (struct ivopts_data *data, gimple *stmt)
+{
+ ssa_op_iter iter;
+ use_operand_p use_p;
+ tree op;
+
+ FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
+ {
+ op = USE_FROM_PTR (use_p);
+ record_invariant (data, op, false);
+ }
+}
+
+/* CALL calls an internal function. If operand *OP_P will become an
+ address when the call is expanded, return the type of the memory
+ being addressed, otherwise return null. */
+
+static tree
+get_mem_type_for_internal_fn (gcall *call, tree *op_p)
+{
+ switch (gimple_call_internal_fn (call))
+ {
+ case IFN_MASK_LOAD:
+ case IFN_MASK_LOAD_LANES:
+ case IFN_LEN_LOAD:
+ if (op_p == gimple_call_arg_ptr (call, 0))
+ return TREE_TYPE (gimple_call_lhs (call));
+ return NULL_TREE;
+
+ case IFN_MASK_STORE:
+ case IFN_MASK_STORE_LANES:
+ case IFN_LEN_STORE:
+ if (op_p == gimple_call_arg_ptr (call, 0))
+ return TREE_TYPE (gimple_call_arg (call, 3));
+ return NULL_TREE;
+
+ default:
+ return NULL_TREE;
+ }
+}
+
+/* IV is a (non-address) iv that describes operand *OP_P of STMT.
+ Return true if the operand will become an address when STMT
+ is expanded and record the associated address use if so. */
+
+static bool
+find_address_like_use (struct ivopts_data *data, gimple *stmt, tree *op_p,
+ struct iv *iv)
+{
+ /* Fail if base object of this memory reference is unknown. */
+ if (iv->base_object == NULL_TREE)
+ return false;
+
+ tree mem_type = NULL_TREE;
+ if (gcall *call = dyn_cast <gcall *> (stmt))
+ if (gimple_call_internal_p (call))
+ mem_type = get_mem_type_for_internal_fn (call, op_p);
+ if (mem_type)
+ {
+ iv = alloc_iv (data, iv->base, iv->step);
+ record_group_use (data, op_p, iv, stmt, USE_PTR_ADDRESS, mem_type);
+ return true;
+ }
+ return false;
+}
+
+/* Finds interesting uses of induction variables in the statement STMT. */
+
+static void
+find_interesting_uses_stmt (struct ivopts_data *data, gimple *stmt)
+{
+ struct iv *iv;
+ tree op, *lhs, *rhs;
+ ssa_op_iter iter;
+ use_operand_p use_p;
+ enum tree_code code;
+
+ find_invariants_stmt (data, stmt);
+
+ if (gimple_code (stmt) == GIMPLE_COND)
+ {
+ find_interesting_uses_cond (data, stmt);
+ return;
+ }
+
+ if (is_gimple_assign (stmt))
+ {
+ lhs = gimple_assign_lhs_ptr (stmt);
+ rhs = gimple_assign_rhs1_ptr (stmt);
+
+ if (TREE_CODE (*lhs) == SSA_NAME)
+ {
+ /* If the statement defines an induction variable, the uses are not
+ interesting by themselves. */
+
+ iv = get_iv (data, *lhs);
+
+ if (iv && !integer_zerop (iv->step))
+ return;
+ }
+
+ code = gimple_assign_rhs_code (stmt);
+ if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
+ && (REFERENCE_CLASS_P (*rhs)
+ || is_gimple_val (*rhs)))
+ {
+ if (REFERENCE_CLASS_P (*rhs))
+ find_interesting_uses_address (data, stmt, rhs);
+ else
+ find_interesting_uses_op (data, *rhs);
+
+ if (REFERENCE_CLASS_P (*lhs))
+ find_interesting_uses_address (data, stmt, lhs);
+ return;
+ }
+ else if (TREE_CODE_CLASS (code) == tcc_comparison)
+ {
+ find_interesting_uses_cond (data, stmt);
+ return;
+ }
+
+ /* TODO -- we should also handle address uses of type
+
+ memory = call (whatever);
+
+ and
+
+ call (memory). */
+ }
+
+ if (gimple_code (stmt) == GIMPLE_PHI
+ && gimple_bb (stmt) == data->current_loop->header)
+ {
+ iv = get_iv (data, PHI_RESULT (stmt));
+
+ if (iv && !integer_zerop (iv->step))
+ return;
+ }
+
+ FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
+ {
+ op = USE_FROM_PTR (use_p);
+
+ if (TREE_CODE (op) != SSA_NAME)
+ continue;
+
+ iv = get_iv (data, op);
+ if (!iv)
+ continue;
+
+ if (!find_address_like_use (data, stmt, use_p->use, iv))
+ find_interesting_uses_op (data, op);
+ }
+}
+
+/* Finds interesting uses of induction variables outside of loops
+ on loop exit edge EXIT. */
+
+static void
+find_interesting_uses_outside (struct ivopts_data *data, edge exit)
+{
+ gphi *phi;
+ gphi_iterator psi;
+ tree def;
+
+ for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); gsi_next (&psi))
+ {
+ phi = psi.phi ();
+ def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
+ if (!virtual_operand_p (def))
+ find_interesting_uses_op (data, def);
+ }
+}
+
+/* Return TRUE if OFFSET is within the range of [base + offset] addressing
+ mode for memory reference represented by USE. */
+
+static GTY (()) vec<rtx, va_gc> *addr_list;
+
+static bool
+addr_offset_valid_p (struct iv_use *use, poly_int64 offset)
+{
+ rtx reg, addr;
+ unsigned list_index;
+ addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (use->iv->base));
+ machine_mode addr_mode, mem_mode = TYPE_MODE (use->mem_type);
+
+ list_index = (unsigned) as * MAX_MACHINE_MODE + (unsigned) mem_mode;
+ if (list_index >= vec_safe_length (addr_list))
+ vec_safe_grow_cleared (addr_list, list_index + MAX_MACHINE_MODE, true);
+
+ addr = (*addr_list)[list_index];
+ if (!addr)
+ {
+ addr_mode = targetm.addr_space.address_mode (as);
+ reg = gen_raw_REG (addr_mode, LAST_VIRTUAL_REGISTER + 1);
+ addr = gen_rtx_fmt_ee (PLUS, addr_mode, reg, NULL_RTX);
+ (*addr_list)[list_index] = addr;
+ }
+ else
+ addr_mode = GET_MODE (addr);
+
+ XEXP (addr, 1) = gen_int_mode (offset, addr_mode);
+ return (memory_address_addr_space_p (mem_mode, addr, as));
+}
+
+/* Comparison function to sort group in ascending order of addr_offset. */
+
+static int
+group_compare_offset (const void *a, const void *b)
+{
+ const struct iv_use *const *u1 = (const struct iv_use *const *) a;
+ const struct iv_use *const *u2 = (const struct iv_use *const *) b;
+
+ return compare_sizes_for_sort ((*u1)->addr_offset, (*u2)->addr_offset);
+}
+
+/* Check if small groups should be split. Return true if no group
+ contains more than two uses with distinct addr_offsets. Return
+ false otherwise. We want to split such groups because:
+
+ 1) Small groups don't have much benefit and may interfer with
+ general candidate selection.
+ 2) Size for problem with only small groups is usually small and
+ general algorithm can handle it well.
+
+ TODO -- Above claim may not hold when we want to merge memory
+ accesses with conseuctive addresses. */
+
+static bool
+split_small_address_groups_p (struct ivopts_data *data)
+{
+ unsigned int i, j, distinct = 1;
+ struct iv_use *pre;
+ struct iv_group *group;
+
+ for (i = 0; i < data->vgroups.length (); i++)
+ {
+ group = data->vgroups[i];
+ if (group->vuses.length () == 1)
+ continue;
+
+ gcc_assert (address_p (group->type));
+ if (group->vuses.length () == 2)
+ {
+ if (compare_sizes_for_sort (group->vuses[0]->addr_offset,
+ group->vuses[1]->addr_offset) > 0)
+ std::swap (group->vuses[0], group->vuses[1]);
+ }
+ else
+ group->vuses.qsort (group_compare_offset);
+
+ if (distinct > 2)
+ continue;
+
+ distinct = 1;
+ for (pre = group->vuses[0], j = 1; j < group->vuses.length (); j++)
+ {
+ if (maybe_ne (group->vuses[j]->addr_offset, pre->addr_offset))
+ {
+ pre = group->vuses[j];
+ distinct++;
+ }
+
+ if (distinct > 2)
+ break;
+ }
+ }
+
+ return (distinct <= 2);
+}
+
+/* For each group of address type uses, this function further groups
+ these uses according to the maximum offset supported by target's
+ [base + offset] addressing mode. */
+
+static void
+split_address_groups (struct ivopts_data *data)
+{
+ unsigned int i, j;
+ /* Always split group. */
+ bool split_p = split_small_address_groups_p (data);
+
+ for (i = 0; i < data->vgroups.length (); i++)
+ {
+ struct iv_group *new_group = NULL;
+ struct iv_group *group = data->vgroups[i];
+ struct iv_use *use = group->vuses[0];
+
+ use->id = 0;
+ use->group_id = group->id;
+ if (group->vuses.length () == 1)
+ continue;
+
+ gcc_assert (address_p (use->type));
+
+ for (j = 1; j < group->vuses.length ();)
+ {
+ struct iv_use *next = group->vuses[j];
+ poly_int64 offset = next->addr_offset - use->addr_offset;
+
+ /* Split group if aksed to, or the offset against the first
+ use can't fit in offset part of addressing mode. IV uses
+ having the same offset are still kept in one group. */
+ if (maybe_ne (offset, 0)
+ && (split_p || !addr_offset_valid_p (use, offset)))
+ {
+ if (!new_group)
+ new_group = record_group (data, group->type);
+ group->vuses.ordered_remove (j);
+ new_group->vuses.safe_push (next);
+ continue;
+ }
+
+ next->id = j;
+ next->group_id = group->id;
+ j++;
+ }
+ }
+}
+
+/* Finds uses of the induction variables that are interesting. */
+
+static void
+find_interesting_uses (struct ivopts_data *data, basic_block *body)
+{
+ basic_block bb;
+ gimple_stmt_iterator bsi;
+ unsigned i;
+ edge e;
+
+ for (i = 0; i < data->current_loop->num_nodes; i++)
+ {
+ edge_iterator ei;
+ bb = body[i];
+
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
+ && !flow_bb_inside_loop_p (data->current_loop, e->dest))
+ find_interesting_uses_outside (data, e);
+
+ for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+ find_interesting_uses_stmt (data, gsi_stmt (bsi));
+ for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+ if (!is_gimple_debug (gsi_stmt (bsi)))
+ find_interesting_uses_stmt (data, gsi_stmt (bsi));
+ }
+
+ split_address_groups (data);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\n<IV Groups>:\n");
+ dump_groups (dump_file, data);
+ fprintf (dump_file, "\n");
+ }
+}
+
+/* Strips constant offsets from EXPR and stores them to OFFSET. If INSIDE_ADDR
+ is true, assume we are inside an address. If TOP_COMPREF is true, assume
+ we are at the top-level of the processed address. */
+
+static tree
+strip_offset_1 (tree expr, bool inside_addr, bool top_compref,
+ poly_int64 *offset)
+{
+ tree op0 = NULL_TREE, op1 = NULL_TREE, tmp, step;
+ enum tree_code code;
+ tree type, orig_type = TREE_TYPE (expr);
+ poly_int64 off0, off1;
+ HOST_WIDE_INT st;
+ tree orig_expr = expr;
+
+ STRIP_NOPS (expr);
+
+ type = TREE_TYPE (expr);
+ code = TREE_CODE (expr);
+ *offset = 0;
+
+ switch (code)
+ {
+ case POINTER_PLUS_EXPR:
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ op0 = TREE_OPERAND (expr, 0);
+ op1 = TREE_OPERAND (expr, 1);
+
+ op0 = strip_offset_1 (op0, false, false, &off0);
+ op1 = strip_offset_1 (op1, false, false, &off1);
+
+ *offset = (code == MINUS_EXPR ? off0 - off1 : off0 + off1);
+ if (op0 == TREE_OPERAND (expr, 0)
+ && op1 == TREE_OPERAND (expr, 1))
+ return orig_expr;
+
+ if (integer_zerop (op1))
+ expr = op0;
+ else if (integer_zerop (op0))
+ {
+ if (code == MINUS_EXPR)
+ expr = fold_build1 (NEGATE_EXPR, type, op1);
+ else
+ expr = op1;
+ }
+ else
+ expr = fold_build2 (code, type, op0, op1);
+
+ return fold_convert (orig_type, expr);
+
+ case MULT_EXPR:
+ op1 = TREE_OPERAND (expr, 1);
+ if (!cst_and_fits_in_hwi (op1))
+ return orig_expr;
+
+ op0 = TREE_OPERAND (expr, 0);
+ op0 = strip_offset_1 (op0, false, false, &off0);
+ if (op0 == TREE_OPERAND (expr, 0))
+ return orig_expr;
+
+ *offset = off0 * int_cst_value (op1);
+ if (integer_zerop (op0))
+ expr = op0;
+ else
+ expr = fold_build2 (MULT_EXPR, type, op0, op1);
+
+ return fold_convert (orig_type, expr);
+
+ case ARRAY_REF:
+ case ARRAY_RANGE_REF:
+ if (!inside_addr)
+ return orig_expr;
+
+ step = array_ref_element_size (expr);
+ if (!cst_and_fits_in_hwi (step))
+ break;
+
+ st = int_cst_value (step);
+ op1 = TREE_OPERAND (expr, 1);
+ op1 = strip_offset_1 (op1, false, false, &off1);
+ *offset = off1 * st;
+
+ if (top_compref
+ && integer_zerop (op1))
+ {
+ /* Strip the component reference completely. */
+ op0 = TREE_OPERAND (expr, 0);
+ op0 = strip_offset_1 (op0, inside_addr, top_compref, &off0);
+ *offset += off0;
+ return op0;
+ }
+ break;
+
+ case COMPONENT_REF:
+ {
+ tree field;
+
+ if (!inside_addr)
+ return orig_expr;
+
+ tmp = component_ref_field_offset (expr);
+ field = TREE_OPERAND (expr, 1);
+ if (top_compref
+ && cst_and_fits_in_hwi (tmp)
+ && cst_and_fits_in_hwi (DECL_FIELD_BIT_OFFSET (field)))
+ {
+ HOST_WIDE_INT boffset, abs_off;
+
+ /* Strip the component reference completely. */
+ op0 = TREE_OPERAND (expr, 0);
+ op0 = strip_offset_1 (op0, inside_addr, top_compref, &off0);
+ boffset = int_cst_value (DECL_FIELD_BIT_OFFSET (field));
+ abs_off = abs_hwi (boffset) / BITS_PER_UNIT;
+ if (boffset < 0)
+ abs_off = -abs_off;
+
+ *offset = off0 + int_cst_value (tmp) + abs_off;
+ return op0;
+ }
+ }
+ break;
+
+ case ADDR_EXPR:
+ op0 = TREE_OPERAND (expr, 0);
+ op0 = strip_offset_1 (op0, true, true, &off0);
+ *offset += off0;
+
+ if (op0 == TREE_OPERAND (expr, 0))
+ return orig_expr;
+
+ expr = build_fold_addr_expr (op0);
+ return fold_convert (orig_type, expr);
+
+ case MEM_REF:
+ /* ??? Offset operand? */
+ inside_addr = false;
+ break;
+
+ default:
+ if (ptrdiff_tree_p (expr, offset) && maybe_ne (*offset, 0))
+ return build_int_cst (orig_type, 0);
+ return orig_expr;
+ }
+
+ /* Default handling of expressions for that we want to recurse into
+ the first operand. */
+ op0 = TREE_OPERAND (expr, 0);
+ op0 = strip_offset_1 (op0, inside_addr, false, &off0);
+ *offset += off0;
+
+ if (op0 == TREE_OPERAND (expr, 0)
+ && (!op1 || op1 == TREE_OPERAND (expr, 1)))
+ return orig_expr;
+
+ expr = copy_node (expr);
+ TREE_OPERAND (expr, 0) = op0;
+ if (op1)
+ TREE_OPERAND (expr, 1) = op1;
+
+ /* Inside address, we might strip the top level component references,
+ thus changing type of the expression. Handling of ADDR_EXPR
+ will fix that. */
+ expr = fold_convert (orig_type, expr);
+
+ return expr;
+}
+
+/* Strips constant offsets from EXPR and stores them to OFFSET. */
+
+tree
+strip_offset (tree expr, poly_uint64_pod *offset)
+{
+ poly_int64 off;
+ tree core = strip_offset_1 (expr, false, false, &off);
+ *offset = off;
+ return core;
+}
+
+/* Returns variant of TYPE that can be used as base for different uses.
+ We return unsigned type with the same precision, which avoids problems
+ with overflows. */
+
+static tree
+generic_type_for (tree type)
+{
+ if (POINTER_TYPE_P (type))
+ return unsigned_type_for (type);
+
+ if (TYPE_UNSIGNED (type))
+ return type;
+
+ return unsigned_type_for (type);
+}
+
+/* Private data for walk_tree. */
+
+struct walk_tree_data
+{
+ bitmap *inv_vars;
+ struct ivopts_data *idata;
+};
+
+/* Callback function for walk_tree, it records invariants and symbol
+ reference in *EXPR_P. DATA is the structure storing result info. */
+
+static tree
+find_inv_vars_cb (tree *expr_p, int *ws ATTRIBUTE_UNUSED, void *data)
+{
+ tree op = *expr_p;
+ struct version_info *info;
+ struct walk_tree_data *wdata = (struct walk_tree_data*) data;
+
+ if (TREE_CODE (op) != SSA_NAME)
+ return NULL_TREE;
+
+ info = name_info (wdata->idata, op);
+ /* Because we expand simple operations when finding IVs, loop invariant
+ variable that isn't referred by the original loop could be used now.
+ Record such invariant variables here. */
+ if (!info->iv)
+ {
+ struct ivopts_data *idata = wdata->idata;
+ basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (op));
+
+ if (!bb || !flow_bb_inside_loop_p (idata->current_loop, bb))
+ {
+ tree steptype = TREE_TYPE (op);
+ if (POINTER_TYPE_P (steptype))
+ steptype = sizetype;
+ set_iv (idata, op, op, build_int_cst (steptype, 0), true);
+ record_invariant (idata, op, false);
+ }
+ }
+ if (!info->inv_id || info->has_nonlin_use)
+ return NULL_TREE;
+
+ if (!*wdata->inv_vars)
+ *wdata->inv_vars = BITMAP_ALLOC (NULL);
+ bitmap_set_bit (*wdata->inv_vars, info->inv_id);
+
+ return NULL_TREE;
+}
+
+/* Records invariants in *EXPR_P. INV_VARS is the bitmap to that we should
+ store it. */
+
+static inline void
+find_inv_vars (struct ivopts_data *data, tree *expr_p, bitmap *inv_vars)
+{
+ struct walk_tree_data wdata;
+
+ if (!inv_vars)
+ return;
+
+ wdata.idata = data;
+ wdata.inv_vars = inv_vars;
+ walk_tree (expr_p, find_inv_vars_cb, &wdata, NULL);
+}
+
+/* Get entry from invariant expr hash table for INV_EXPR. New entry
+ will be recorded if it doesn't exist yet. Given below two exprs:
+ inv_expr + cst1, inv_expr + cst2
+ It's hard to make decision whether constant part should be stripped
+ or not. We choose to not strip based on below facts:
+ 1) We need to count ADD cost for constant part if it's stripped,
+ which isn't always trivial where this functions is called.
+ 2) Stripping constant away may be conflict with following loop
+ invariant hoisting pass.
+ 3) Not stripping constant away results in more invariant exprs,
+ which usually leads to decision preferring lower reg pressure. */
+
+static iv_inv_expr_ent *
+get_loop_invariant_expr (struct ivopts_data *data, tree inv_expr)
+{
+ STRIP_NOPS (inv_expr);
+
+ if (poly_int_tree_p (inv_expr)
+ || TREE_CODE (inv_expr) == SSA_NAME)
+ return NULL;
+
+ /* Don't strip constant part away as we used to. */
+
+ /* Stores EXPR in DATA->inv_expr_tab, return pointer to iv_inv_expr_ent. */
+ struct iv_inv_expr_ent ent;
+ ent.expr = inv_expr;
+ ent.hash = iterative_hash_expr (inv_expr, 0);
+ struct iv_inv_expr_ent **slot = data->inv_expr_tab->find_slot (&ent, INSERT);
+
+ if (!*slot)
+ {
+ *slot = XNEW (struct iv_inv_expr_ent);
+ (*slot)->expr = inv_expr;
+ (*slot)->hash = ent.hash;
+ (*slot)->id = ++data->max_inv_expr_id;
+ }
+
+ return *slot;
+}
+
+/* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
+ position to POS. If USE is not NULL, the candidate is set as related to
+ it. If both BASE and STEP are NULL, we add a pseudocandidate for the
+ replacement of the final value of the iv by a direct computation. */
+
+static struct iv_cand *
+add_candidate_1 (struct ivopts_data *data, tree base, tree step, bool important,
+ enum iv_position pos, struct iv_use *use,
+ gimple *incremented_at, struct iv *orig_iv = NULL,
+ bool doloop = false)
+{
+ unsigned i;
+ struct iv_cand *cand = NULL;
+ tree type, orig_type;
+
+ gcc_assert (base && step);
+
+ /* -fkeep-gc-roots-live means that we have to keep a real pointer
+ live, but the ivopts code may replace a real pointer with one
+ pointing before or after the memory block that is then adjusted
+ into the memory block during the loop. FIXME: It would likely be
+ better to actually force the pointer live and still use ivopts;
+ for example, it would be enough to write the pointer into memory
+ and keep it there until after the loop. */
+ if (flag_keep_gc_roots_live && POINTER_TYPE_P (TREE_TYPE (base)))
+ return NULL;
+
+ /* For non-original variables, make sure their values are computed in a type
+ that does not invoke undefined behavior on overflows (since in general,
+ we cannot prove that these induction variables are non-wrapping). */
+ if (pos != IP_ORIGINAL)
+ {
+ orig_type = TREE_TYPE (base);
+ type = generic_type_for (orig_type);
+ if (type != orig_type)
+ {
+ base = fold_convert (type, base);
+ step = fold_convert (type, step);
+ }
+ }
+
+ for (i = 0; i < data->vcands.length (); i++)
+ {
+ cand = data->vcands[i];
+
+ if (cand->pos != pos)
+ continue;
+
+ if (cand->incremented_at != incremented_at
+ || ((pos == IP_AFTER_USE || pos == IP_BEFORE_USE)
+ && cand->ainc_use != use))
+ continue;
+
+ if (operand_equal_p (base, cand->iv->base, 0)
+ && operand_equal_p (step, cand->iv->step, 0)
+ && (TYPE_PRECISION (TREE_TYPE (base))
+ == TYPE_PRECISION (TREE_TYPE (cand->iv->base))))
+ break;
+ }
+
+ if (i == data->vcands.length ())
+ {
+ cand = XCNEW (struct iv_cand);
+ cand->id = i;
+ cand->iv = alloc_iv (data, base, step);
+ cand->pos = pos;
+ if (pos != IP_ORIGINAL)
+ {
+ if (doloop)
+ cand->var_before = create_tmp_var_raw (TREE_TYPE (base), "doloop");
+ else
+ cand->var_before = create_tmp_var_raw (TREE_TYPE (base), "ivtmp");
+ cand->var_after = cand->var_before;
+ }
+ cand->important = important;
+ cand->incremented_at = incremented_at;
+ cand->doloop_p = doloop;
+ data->vcands.safe_push (cand);
+
+ if (!poly_int_tree_p (step))
+ {
+ find_inv_vars (data, &step, &cand->inv_vars);
+
+ iv_inv_expr_ent *inv_expr = get_loop_invariant_expr (data, step);
+ /* Share bitmap between inv_vars and inv_exprs for cand. */
+ if (inv_expr != NULL)
+ {
+ cand->inv_exprs = cand->inv_vars;
+ cand->inv_vars = NULL;
+ if (cand->inv_exprs)
+ bitmap_clear (cand->inv_exprs);
+ else
+ cand->inv_exprs = BITMAP_ALLOC (NULL);
+
+ bitmap_set_bit (cand->inv_exprs, inv_expr->id);
+ }
+ }
+
+ if (pos == IP_AFTER_USE || pos == IP_BEFORE_USE)
+ cand->ainc_use = use;
+ else
+ cand->ainc_use = NULL;
+
+ cand->orig_iv = orig_iv;
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ dump_cand (dump_file, cand);
+ }
+
+ cand->important |= important;
+ cand->doloop_p |= doloop;
+
+ /* Relate candidate to the group for which it is added. */
+ if (use)
+ bitmap_set_bit (data->vgroups[use->group_id]->related_cands, i);
+
+ return cand;
+}
+
+/* Returns true if incrementing the induction variable at the end of the LOOP
+ is allowed.
+
+ The purpose is to avoid splitting latch edge with a biv increment, thus
+ creating a jump, possibly confusing other optimization passes and leaving
+ less freedom to scheduler. So we allow IP_END only if IP_NORMAL is not
+ available (so we do not have a better alternative), or if the latch edge
+ is already nonempty. */
+
+static bool
+allow_ip_end_pos_p (class loop *loop)
+{
+ if (!ip_normal_pos (loop))
+ return true;
+
+ if (!empty_block_p (ip_end_pos (loop)))
+ return true;
+
+ return false;
+}
+
+/* If possible, adds autoincrement candidates BASE + STEP * i based on use USE.
+ Important field is set to IMPORTANT. */
+
+static void
+add_autoinc_candidates (struct ivopts_data *data, tree base, tree step,
+ bool important, struct iv_use *use)
+{
+ basic_block use_bb = gimple_bb (use->stmt);
+ machine_mode mem_mode;
+ unsigned HOST_WIDE_INT cstepi;
+
+ /* If we insert the increment in any position other than the standard
+ ones, we must ensure that it is incremented once per iteration.
+ It must not be in an inner nested loop, or one side of an if
+ statement. */
+ if (use_bb->loop_father != data->current_loop
+ || !dominated_by_p (CDI_DOMINATORS, data->current_loop->latch, use_bb)
+ || stmt_can_throw_internal (cfun, use->stmt)
+ || !cst_and_fits_in_hwi (step))
+ return;
+
+ cstepi = int_cst_value (step);
+
+ mem_mode = TYPE_MODE (use->mem_type);
+ if (((USE_LOAD_PRE_INCREMENT (mem_mode)
+ || USE_STORE_PRE_INCREMENT (mem_mode))
+ && known_eq (GET_MODE_SIZE (mem_mode), cstepi))
+ || ((USE_LOAD_PRE_DECREMENT (mem_mode)
+ || USE_STORE_PRE_DECREMENT (mem_mode))
+ && known_eq (GET_MODE_SIZE (mem_mode), -cstepi)))
+ {
+ enum tree_code code = MINUS_EXPR;
+ tree new_base;
+ tree new_step = step;
+
+ if (POINTER_TYPE_P (TREE_TYPE (base)))
+ {
+ new_step = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
+ code = POINTER_PLUS_EXPR;
+ }
+ else
+ new_step = fold_convert (TREE_TYPE (base), new_step);
+ new_base = fold_build2 (code, TREE_TYPE (base), base, new_step);
+ add_candidate_1 (data, new_base, step, important, IP_BEFORE_USE, use,
+ use->stmt);
+ }
+ if (((USE_LOAD_POST_INCREMENT (mem_mode)
+ || USE_STORE_POST_INCREMENT (mem_mode))
+ && known_eq (GET_MODE_SIZE (mem_mode), cstepi))
+ || ((USE_LOAD_POST_DECREMENT (mem_mode)
+ || USE_STORE_POST_DECREMENT (mem_mode))
+ && known_eq (GET_MODE_SIZE (mem_mode), -cstepi)))
+ {
+ add_candidate_1 (data, base, step, important, IP_AFTER_USE, use,
+ use->stmt);
+ }
+}
+
+/* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
+ position to POS. If USE is not NULL, the candidate is set as related to
+ it. The candidate computation is scheduled before exit condition and at
+ the end of loop. */
+
+static void
+add_candidate (struct ivopts_data *data, tree base, tree step, bool important,
+ struct iv_use *use, struct iv *orig_iv = NULL,
+ bool doloop = false)
+{
+ if (ip_normal_pos (data->current_loop))
+ add_candidate_1 (data, base, step, important, IP_NORMAL, use, NULL, orig_iv,
+ doloop);
+ /* Exclude doloop candidate here since it requires decrement then comparison
+ and jump, the IP_END position doesn't match. */
+ if (!doloop && ip_end_pos (data->current_loop)
+ && allow_ip_end_pos_p (data->current_loop))
+ add_candidate_1 (data, base, step, important, IP_END, use, NULL, orig_iv);
+}
+
+/* Adds standard iv candidates. */
+
+static void
+add_standard_iv_candidates (struct ivopts_data *data)
+{
+ add_candidate (data, integer_zero_node, integer_one_node, true, NULL);
+
+ /* The same for a double-integer type if it is still fast enough. */
+ if (TYPE_PRECISION
+ (long_integer_type_node) > TYPE_PRECISION (integer_type_node)
+ && TYPE_PRECISION (long_integer_type_node) <= BITS_PER_WORD)
+ add_candidate (data, build_int_cst (long_integer_type_node, 0),
+ build_int_cst (long_integer_type_node, 1), true, NULL);
+
+ /* The same for a double-integer type if it is still fast enough. */
+ if (TYPE_PRECISION
+ (long_long_integer_type_node) > TYPE_PRECISION (long_integer_type_node)
+ && TYPE_PRECISION (long_long_integer_type_node) <= BITS_PER_WORD)
+ add_candidate (data, build_int_cst (long_long_integer_type_node, 0),
+ build_int_cst (long_long_integer_type_node, 1), true, NULL);
+}
+
+
+/* Adds candidates bases on the old induction variable IV. */
+
+static void
+add_iv_candidate_for_biv (struct ivopts_data *data, struct iv *iv)
+{
+ gimple *phi;
+ tree def;
+ struct iv_cand *cand;
+
+ /* Check if this biv is used in address type use. */
+ if (iv->no_overflow && iv->have_address_use
+ && INTEGRAL_TYPE_P (TREE_TYPE (iv->base))
+ && TYPE_PRECISION (TREE_TYPE (iv->base)) < TYPE_PRECISION (sizetype))
+ {
+ tree base = fold_convert (sizetype, iv->base);
+ tree step = fold_convert (sizetype, iv->step);
+
+ /* Add iv cand of same precision as index part in TARGET_MEM_REF. */
+ add_candidate (data, base, step, true, NULL, iv);
+ /* Add iv cand of the original type only if it has nonlinear use. */
+ if (iv->nonlin_use)
+ add_candidate (data, iv->base, iv->step, true, NULL);
+ }
+ else
+ add_candidate (data, iv->base, iv->step, true, NULL);
+
+ /* The same, but with initial value zero. */
+ if (POINTER_TYPE_P (TREE_TYPE (iv->base)))
+ add_candidate (data, size_int (0), iv->step, true, NULL);
+ else
+ add_candidate (data, build_int_cst (TREE_TYPE (iv->base), 0),
+ iv->step, true, NULL);
+
+ phi = SSA_NAME_DEF_STMT (iv->ssa_name);
+ if (gimple_code (phi) == GIMPLE_PHI)
+ {
+ /* Additionally record the possibility of leaving the original iv
+ untouched. */
+ def = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (data->current_loop));
+ /* Don't add candidate if it's from another PHI node because
+ it's an affine iv appearing in the form of PEELED_CHREC. */
+ phi = SSA_NAME_DEF_STMT (def);
+ if (gimple_code (phi) != GIMPLE_PHI)
+ {
+ cand = add_candidate_1 (data,
+ iv->base, iv->step, true, IP_ORIGINAL, NULL,
+ SSA_NAME_DEF_STMT (def));
+ if (cand)
+ {
+ cand->var_before = iv->ssa_name;
+ cand->var_after = def;
+ }
+ }
+ else
+ gcc_assert (gimple_bb (phi) == data->current_loop->header);
+ }
+}
+
+/* Adds candidates based on the old induction variables. */
+
+static void
+add_iv_candidate_for_bivs (struct ivopts_data *data)
+{
+ unsigned i;
+ struct iv *iv;
+ bitmap_iterator bi;
+
+ EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
+ {
+ iv = ver_info (data, i)->iv;
+ if (iv && iv->biv_p && !integer_zerop (iv->step))
+ add_iv_candidate_for_biv (data, iv);
+ }
+}
+
+/* Record common candidate {BASE, STEP} derived from USE in hashtable. */
+
+static void
+record_common_cand (struct ivopts_data *data, tree base,
+ tree step, struct iv_use *use)
+{
+ class iv_common_cand ent;
+ class iv_common_cand **slot;
+
+ ent.base = base;
+ ent.step = step;
+ ent.hash = iterative_hash_expr (base, 0);
+ ent.hash = iterative_hash_expr (step, ent.hash);
+
+ slot = data->iv_common_cand_tab->find_slot (&ent, INSERT);
+ if (*slot == NULL)
+ {
+ *slot = new iv_common_cand ();
+ (*slot)->base = base;
+ (*slot)->step = step;
+ (*slot)->uses.create (8);
+ (*slot)->hash = ent.hash;
+ data->iv_common_cands.safe_push ((*slot));
+ }
+
+ gcc_assert (use != NULL);
+ (*slot)->uses.safe_push (use);
+ return;
+}
+
+/* Comparison function used to sort common candidates. */
+
+static int
+common_cand_cmp (const void *p1, const void *p2)
+{
+ unsigned n1, n2;
+ const class iv_common_cand *const *const ccand1
+ = (const class iv_common_cand *const *)p1;
+ const class iv_common_cand *const *const ccand2
+ = (const class iv_common_cand *const *)p2;
+
+ n1 = (*ccand1)->uses.length ();
+ n2 = (*ccand2)->uses.length ();
+ return n2 - n1;
+}
+
+/* Adds IV candidates based on common candidated recorded. */
+
+static void
+add_iv_candidate_derived_from_uses (struct ivopts_data *data)
+{
+ unsigned i, j;
+ struct iv_cand *cand_1, *cand_2;
+
+ data->iv_common_cands.qsort (common_cand_cmp);
+ for (i = 0; i < data->iv_common_cands.length (); i++)
+ {
+ class iv_common_cand *ptr = data->iv_common_cands[i];
+
+ /* Only add IV candidate if it's derived from multiple uses. */
+ if (ptr->uses.length () <= 1)
+ break;
+
+ cand_1 = NULL;
+ cand_2 = NULL;
+ if (ip_normal_pos (data->current_loop))
+ cand_1 = add_candidate_1 (data, ptr->base, ptr->step,
+ false, IP_NORMAL, NULL, NULL);
+
+ if (ip_end_pos (data->current_loop)
+ && allow_ip_end_pos_p (data->current_loop))
+ cand_2 = add_candidate_1 (data, ptr->base, ptr->step,
+ false, IP_END, NULL, NULL);
+
+ /* Bind deriving uses and the new candidates. */
+ for (j = 0; j < ptr->uses.length (); j++)
+ {
+ struct iv_group *group = data->vgroups[ptr->uses[j]->group_id];
+ if (cand_1)
+ bitmap_set_bit (group->related_cands, cand_1->id);
+ if (cand_2)
+ bitmap_set_bit (group->related_cands, cand_2->id);
+ }
+ }
+
+ /* Release data since it is useless from this point. */
+ data->iv_common_cand_tab->empty ();
+ data->iv_common_cands.truncate (0);
+}
+
+/* Adds candidates based on the value of USE's iv. */
+
+static void
+add_iv_candidate_for_use (struct ivopts_data *data, struct iv_use *use)
+{
+ poly_uint64 offset;
+ tree base;
+ struct iv *iv = use->iv;
+ tree basetype = TREE_TYPE (iv->base);
+
+ /* Don't add candidate for iv_use with non integer, pointer or non-mode
+ precision types, instead, add candidate for the corresponding scev in
+ unsigned type with the same precision. See PR93674 for more info. */
+ if ((TREE_CODE (basetype) != INTEGER_TYPE && !POINTER_TYPE_P (basetype))
+ || !type_has_mode_precision_p (basetype))
+ {
+ basetype = lang_hooks.types.type_for_mode (TYPE_MODE (basetype),
+ TYPE_UNSIGNED (basetype));
+ add_candidate (data, fold_convert (basetype, iv->base),
+ fold_convert (basetype, iv->step), false, NULL);
+ return;
+ }
+
+ add_candidate (data, iv->base, iv->step, false, use);
+
+ /* Record common candidate for use in case it can be shared by others. */
+ record_common_cand (data, iv->base, iv->step, use);
+
+ /* Record common candidate with initial value zero. */
+ basetype = TREE_TYPE (iv->base);
+ if (POINTER_TYPE_P (basetype))
+ basetype = sizetype;
+ record_common_cand (data, build_int_cst (basetype, 0), iv->step, use);
+
+ /* Compare the cost of an address with an unscaled index with the cost of
+ an address with a scaled index and add candidate if useful. */
+ poly_int64 step;
+ if (use != NULL
+ && poly_int_tree_p (iv->step, &step)
+ && address_p (use->type))
+ {
+ poly_int64 new_step;
+ unsigned int fact = preferred_mem_scale_factor
+ (use->iv->base,
+ TYPE_MODE (use->mem_type),
+ optimize_loop_for_speed_p (data->current_loop));
+
+ if (fact != 1
+ && multiple_p (step, fact, &new_step))
+ add_candidate (data, size_int (0),
+ wide_int_to_tree (sizetype, new_step),
+ true, NULL);
+ }
+
+ /* Record common candidate with constant offset stripped in base.
+ Like the use itself, we also add candidate directly for it. */
+ base = strip_offset (iv->base, &offset);
+ if (maybe_ne (offset, 0U) || base != iv->base)
+ {
+ record_common_cand (data, base, iv->step, use);
+ add_candidate (data, base, iv->step, false, use);
+ }
+
+ /* Record common candidate with base_object removed in base. */
+ base = iv->base;
+ STRIP_NOPS (base);
+ if (iv->base_object != NULL && TREE_CODE (base) == POINTER_PLUS_EXPR)
+ {
+ tree step = iv->step;
+
+ STRIP_NOPS (step);
+ base = TREE_OPERAND (base, 1);
+ step = fold_convert (sizetype, step);
+ record_common_cand (data, base, step, use);
+ /* Also record common candidate with offset stripped. */
+ base = strip_offset (base, &offset);
+ if (maybe_ne (offset, 0U))
+ record_common_cand (data, base, step, use);
+ }
+
+ /* At last, add auto-incremental candidates. Make such variables
+ important since other iv uses with same base object may be based
+ on it. */
+ if (use != NULL && address_p (use->type))
+ add_autoinc_candidates (data, iv->base, iv->step, true, use);
+}
+
+/* Adds candidates based on the uses. */
+
+static void
+add_iv_candidate_for_groups (struct ivopts_data *data)
+{
+ unsigned i;
+
+ /* Only add candidate for the first use in group. */
+ for (i = 0; i < data->vgroups.length (); i++)
+ {
+ struct iv_group *group = data->vgroups[i];
+
+ gcc_assert (group->vuses[0] != NULL);
+ add_iv_candidate_for_use (data, group->vuses[0]);
+ }
+ add_iv_candidate_derived_from_uses (data);
+}
+
+/* Record important candidates and add them to related_cands bitmaps. */
+
+static void
+record_important_candidates (struct ivopts_data *data)
+{
+ unsigned i;
+ struct iv_group *group;
+
+ for (i = 0; i < data->vcands.length (); i++)
+ {
+ struct iv_cand *cand = data->vcands[i];
+
+ if (cand->important)
+ bitmap_set_bit (data->important_candidates, i);
+ }
+
+ data->consider_all_candidates = (data->vcands.length ()
+ <= CONSIDER_ALL_CANDIDATES_BOUND);
+
+ /* Add important candidates to groups' related_cands bitmaps. */
+ for (i = 0; i < data->vgroups.length (); i++)
+ {
+ group = data->vgroups[i];
+ bitmap_ior_into (group->related_cands, data->important_candidates);
+ }
+}
+
+/* Allocates the data structure mapping the (use, candidate) pairs to costs.
+ If consider_all_candidates is true, we use a two-dimensional array, otherwise
+ we allocate a simple list to every use. */
+
+static void
+alloc_use_cost_map (struct ivopts_data *data)
+{
+ unsigned i, size, s;
+
+ for (i = 0; i < data->vgroups.length (); i++)
+ {
+ struct iv_group *group = data->vgroups[i];
+
+ if (data->consider_all_candidates)
+ size = data->vcands.length ();
+ else
+ {
+ s = bitmap_count_bits (group->related_cands);
+
+ /* Round up to the power of two, so that moduling by it is fast. */
+ size = s ? (1 << ceil_log2 (s)) : 1;
+ }
+
+ group->n_map_members = size;
+ group->cost_map = XCNEWVEC (class cost_pair, size);
+ }
+}
+
+/* Sets cost of (GROUP, CAND) pair to COST and record that it depends
+ on invariants INV_VARS and that the value used in expressing it is
+ VALUE, and in case of iv elimination the comparison operator is COMP. */
+
+static void
+set_group_iv_cost (struct ivopts_data *data,
+ struct iv_group *group, struct iv_cand *cand,
+ comp_cost cost, bitmap inv_vars, tree value,
+ enum tree_code comp, bitmap inv_exprs)
+{
+ unsigned i, s;
+
+ if (cost.infinite_cost_p ())
+ {
+ BITMAP_FREE (inv_vars);
+ BITMAP_FREE (inv_exprs);
+ return;
+ }
+
+ if (data->consider_all_candidates)
+ {
+ group->cost_map[cand->id].cand = cand;
+ group->cost_map[cand->id].cost = cost;
+ group->cost_map[cand->id].inv_vars = inv_vars;
+ group->cost_map[cand->id].inv_exprs = inv_exprs;
+ group->cost_map[cand->id].value = value;
+ group->cost_map[cand->id].comp = comp;
+ return;
+ }
+
+ /* n_map_members is a power of two, so this computes modulo. */
+ s = cand->id & (group->n_map_members - 1);
+ for (i = s; i < group->n_map_members; i++)
+ if (!group->cost_map[i].cand)
+ goto found;
+ for (i = 0; i < s; i++)
+ if (!group->cost_map[i].cand)
+ goto found;
+
+ gcc_unreachable ();
+
+found:
+ group->cost_map[i].cand = cand;
+ group->cost_map[i].cost = cost;
+ group->cost_map[i].inv_vars = inv_vars;
+ group->cost_map[i].inv_exprs = inv_exprs;
+ group->cost_map[i].value = value;
+ group->cost_map[i].comp = comp;
+}
+
+/* Gets cost of (GROUP, CAND) pair. */
+
+static class cost_pair *
+get_group_iv_cost (struct ivopts_data *data, struct iv_group *group,
+ struct iv_cand *cand)
+{
+ unsigned i, s;
+ class cost_pair *ret;
+
+ if (!cand)
+ return NULL;
+
+ if (data->consider_all_candidates)
+ {
+ ret = group->cost_map + cand->id;
+ if (!ret->cand)
+ return NULL;
+
+ return ret;
+ }
+
+ /* n_map_members is a power of two, so this computes modulo. */
+ s = cand->id & (group->n_map_members - 1);
+ for (i = s; i < group->n_map_members; i++)
+ if (group->cost_map[i].cand == cand)
+ return group->cost_map + i;
+ else if (group->cost_map[i].cand == NULL)
+ return NULL;
+ for (i = 0; i < s; i++)
+ if (group->cost_map[i].cand == cand)
+ return group->cost_map + i;
+ else if (group->cost_map[i].cand == NULL)
+ return NULL;
+
+ return NULL;
+}
+
+/* Produce DECL_RTL for object obj so it looks like it is stored in memory. */
+static rtx
+produce_memory_decl_rtl (tree obj, int *regno)
+{
+ addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (obj));
+ machine_mode address_mode = targetm.addr_space.address_mode (as);
+ rtx x;
+
+ gcc_assert (obj);
+ if (TREE_STATIC (obj) || DECL_EXTERNAL (obj))
+ {
+ const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (obj));
+ x = gen_rtx_SYMBOL_REF (address_mode, name);
+ SET_SYMBOL_REF_DECL (x, obj);
+ x = gen_rtx_MEM (DECL_MODE (obj), x);
+ set_mem_addr_space (x, as);
+ targetm.encode_section_info (obj, x, true);
+ }
+ else
+ {
+ x = gen_raw_REG (address_mode, (*regno)++);
+ x = gen_rtx_MEM (DECL_MODE (obj), x);
+ set_mem_addr_space (x, as);
+ }
+
+ return x;
+}
+
+/* Prepares decl_rtl for variables referred in *EXPR_P. Callback for
+ walk_tree. DATA contains the actual fake register number. */
+
+static tree
+prepare_decl_rtl (tree *expr_p, int *ws, void *data)
+{
+ tree obj = NULL_TREE;
+ rtx x = NULL_RTX;
+ int *regno = (int *) data;
+
+ switch (TREE_CODE (*expr_p))
+ {
+ case ADDR_EXPR:
+ for (expr_p = &TREE_OPERAND (*expr_p, 0);
+ handled_component_p (*expr_p);
+ expr_p = &TREE_OPERAND (*expr_p, 0))
+ continue;
+ obj = *expr_p;
+ if (DECL_P (obj) && HAS_RTL_P (obj) && !DECL_RTL_SET_P (obj))
+ x = produce_memory_decl_rtl (obj, regno);
+ break;
+
+ case SSA_NAME:
+ *ws = 0;
+ obj = SSA_NAME_VAR (*expr_p);
+ /* Defer handling of anonymous SSA_NAMEs to the expander. */
+ if (!obj)
+ return NULL_TREE;
+ if (!DECL_RTL_SET_P (obj))
+ x = gen_raw_REG (DECL_MODE (obj), (*regno)++);
+ break;
+
+ case VAR_DECL:
+ case PARM_DECL:
+ case RESULT_DECL:
+ *ws = 0;
+ obj = *expr_p;
+
+ if (DECL_RTL_SET_P (obj))
+ break;
+
+ if (DECL_MODE (obj) == BLKmode)
+ x = produce_memory_decl_rtl (obj, regno);
+ else
+ x = gen_raw_REG (DECL_MODE (obj), (*regno)++);
+
+ break;
+
+ default:
+ break;
+ }
+
+ if (x)
+ {
+ decl_rtl_to_reset.safe_push (obj);
+ SET_DECL_RTL (obj, x);
+ }
+
+ return NULL_TREE;
+}
+
+/* Predict whether the given loop will be transformed in the RTL
+ doloop_optimize pass. Attempt to duplicate some doloop_optimize checks.
+ This is only for target independent checks, see targetm.predict_doloop_p
+ for the target dependent ones.
+
+ Note that according to some initial investigation, some checks like costly
+ niter check and invalid stmt scanning don't have much gains among general
+ cases, so keep this as simple as possible first.
+
+ Some RTL specific checks seems unable to be checked in gimple, if any new
+ checks or easy checks _are_ missing here, please add them. */
+
+static bool
+generic_predict_doloop_p (struct ivopts_data *data)
+{
+ class loop *loop = data->current_loop;
+
+ /* Call target hook for target dependent checks. */
+ if (!targetm.predict_doloop_p (loop))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Predict doloop failure due to"
+ " target specific checks.\n");
+ return false;
+ }
+
+ /* Similar to doloop_optimize, check iteration description to know it's
+ suitable or not. Keep it as simple as possible, feel free to extend it
+ if you find any multiple exits cases matter. */
+ edge exit = single_dom_exit (loop);
+ class tree_niter_desc *niter_desc;
+ if (!exit || !(niter_desc = niter_for_exit (data, exit)))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Predict doloop failure due to"
+ " unexpected niters.\n");
+ return false;
+ }
+
+ /* Similar to doloop_optimize, check whether iteration count too small
+ and not profitable. */
+ HOST_WIDE_INT est_niter = get_estimated_loop_iterations_int (loop);
+ if (est_niter == -1)
+ est_niter = get_likely_max_loop_iterations_int (loop);
+ if (est_niter >= 0 && est_niter < 3)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "Predict doloop failure due to"
+ " too few iterations (%u).\n",
+ (unsigned int) est_niter);
+ return false;
+ }
+
+ return true;
+}
+
+/* Determines cost of the computation of EXPR. */
+
+static unsigned
+computation_cost (tree expr, bool speed)
+{
+ rtx_insn *seq;
+ rtx rslt;
+ tree type = TREE_TYPE (expr);
+ unsigned cost;
+ /* Avoid using hard regs in ways which may be unsupported. */
+ int regno = LAST_VIRTUAL_REGISTER + 1;
+ struct cgraph_node *node = cgraph_node::get (current_function_decl);
+ enum node_frequency real_frequency = node->frequency;
+
+ node->frequency = NODE_FREQUENCY_NORMAL;
+ crtl->maybe_hot_insn_p = speed;
+ walk_tree (&expr, prepare_decl_rtl, &regno, NULL);
+ start_sequence ();
+ rslt = expand_expr (expr, NULL_RTX, TYPE_MODE (type), EXPAND_NORMAL);
+ seq = get_insns ();
+ end_sequence ();
+ default_rtl_profile ();
+ node->frequency = real_frequency;
+
+ cost = seq_cost (seq, speed);
+ if (MEM_P (rslt))
+ cost += address_cost (XEXP (rslt, 0), TYPE_MODE (type),
+ TYPE_ADDR_SPACE (type), speed);
+ else if (!REG_P (rslt))
+ cost += set_src_cost (rslt, TYPE_MODE (type), speed);
+
+ return cost;
+}
+
+/* Returns variable containing the value of candidate CAND at statement AT. */
+
+static tree
+var_at_stmt (class loop *loop, struct iv_cand *cand, gimple *stmt)
+{
+ if (stmt_after_increment (loop, cand, stmt))
+ return cand->var_after;
+ else
+ return cand->var_before;
+}
+
+/* If A is (TYPE) BA and B is (TYPE) BB, and the types of BA and BB have the
+ same precision that is at least as wide as the precision of TYPE, stores
+ BA to A and BB to B, and returns the type of BA. Otherwise, returns the
+ type of A and B. */
+
+static tree
+determine_common_wider_type (tree *a, tree *b)
+{
+ tree wider_type = NULL;
+ tree suba, subb;
+ tree atype = TREE_TYPE (*a);
+
+ if (CONVERT_EXPR_P (*a))
+ {
+ suba = TREE_OPERAND (*a, 0);
+ wider_type = TREE_TYPE (suba);
+ if (TYPE_PRECISION (wider_type) < TYPE_PRECISION (atype))
+ return atype;
+ }
+ else
+ return atype;
+
+ if (CONVERT_EXPR_P (*b))
+ {
+ subb = TREE_OPERAND (*b, 0);
+ if (TYPE_PRECISION (wider_type) != TYPE_PRECISION (TREE_TYPE (subb)))
+ return atype;
+ }
+ else
+ return atype;
+
+ *a = suba;
+ *b = subb;
+ return wider_type;
+}
+
+/* Determines the expression by that USE is expressed from induction variable
+ CAND at statement AT in LOOP. The expression is stored in two parts in a
+ decomposed form. The invariant part is stored in AFF_INV; while variant
+ part in AFF_VAR. Store ratio of CAND.step over USE.step in PRAT if it's
+ non-null. Returns false if USE cannot be expressed using CAND. */
+
+static bool
+get_computation_aff_1 (class loop *loop, gimple *at, struct iv_use *use,
+ struct iv_cand *cand, class aff_tree *aff_inv,
+ class aff_tree *aff_var, widest_int *prat = NULL)
+{
+ tree ubase = use->iv->base, ustep = use->iv->step;
+ tree cbase = cand->iv->base, cstep = cand->iv->step;
+ tree common_type, uutype, var, cstep_common;
+ tree utype = TREE_TYPE (ubase), ctype = TREE_TYPE (cbase);
+ aff_tree aff_cbase;
+ widest_int rat;
+
+ /* We must have a precision to express the values of use. */
+ if (TYPE_PRECISION (utype) > TYPE_PRECISION (ctype))
+ return false;
+
+ var = var_at_stmt (loop, cand, at);
+ uutype = unsigned_type_for (utype);
+
+ /* If the conversion is not noop, perform it. */
+ if (TYPE_PRECISION (utype) < TYPE_PRECISION (ctype))
+ {
+ if (cand->orig_iv != NULL && CONVERT_EXPR_P (cbase)
+ && (CONVERT_EXPR_P (cstep) || poly_int_tree_p (cstep)))
+ {
+ tree inner_base, inner_step, inner_type;
+ inner_base = TREE_OPERAND (cbase, 0);
+ if (CONVERT_EXPR_P (cstep))
+ inner_step = TREE_OPERAND (cstep, 0);
+ else
+ inner_step = cstep;
+
+ inner_type = TREE_TYPE (inner_base);
+ /* If candidate is added from a biv whose type is smaller than
+ ctype, we know both candidate and the biv won't overflow.
+ In this case, it's safe to skip the convertion in candidate.
+ As an example, (unsigned short)((unsigned long)A) equals to
+ (unsigned short)A, if A has a type no larger than short. */
+ if (TYPE_PRECISION (inner_type) <= TYPE_PRECISION (uutype))
+ {
+ cbase = inner_base;
+ cstep = inner_step;
+ }
+ }
+ cbase = fold_convert (uutype, cbase);
+ cstep = fold_convert (uutype, cstep);
+ var = fold_convert (uutype, var);
+ }
+
+ /* Ratio is 1 when computing the value of biv cand by itself.
+ We can't rely on constant_multiple_of in this case because the
+ use is created after the original biv is selected. The call
+ could fail because of inconsistent fold behavior. See PR68021
+ for more information. */
+ if (cand->pos == IP_ORIGINAL && cand->incremented_at == use->stmt)
+ {
+ gcc_assert (is_gimple_assign (use->stmt));
+ gcc_assert (use->iv->ssa_name == cand->var_after);
+ gcc_assert (gimple_assign_lhs (use->stmt) == cand->var_after);
+ rat = 1;
+ }
+ else if (!constant_multiple_of (ustep, cstep, &rat))
+ return false;
+
+ if (prat)
+ *prat = rat;
+
+ /* In case both UBASE and CBASE are shortened to UUTYPE from some common
+ type, we achieve better folding by computing their difference in this
+ wider type, and cast the result to UUTYPE. We do not need to worry about
+ overflows, as all the arithmetics will in the end be performed in UUTYPE
+ anyway. */
+ common_type = determine_common_wider_type (&ubase, &cbase);
+
+ /* use = ubase - ratio * cbase + ratio * var. */
+ tree_to_aff_combination (ubase, common_type, aff_inv);
+ tree_to_aff_combination (cbase, common_type, &aff_cbase);
+ tree_to_aff_combination (var, uutype, aff_var);
+
+ /* We need to shift the value if we are after the increment. */
+ if (stmt_after_increment (loop, cand, at))
+ {
+ aff_tree cstep_aff;
+
+ if (common_type != uutype)
+ cstep_common = fold_convert (common_type, cstep);
+ else
+ cstep_common = cstep;
+
+ tree_to_aff_combination (cstep_common, common_type, &cstep_aff);
+ aff_combination_add (&aff_cbase, &cstep_aff);
+ }
+
+ aff_combination_scale (&aff_cbase, -rat);
+ aff_combination_add (aff_inv, &aff_cbase);
+ if (common_type != uutype)
+ aff_combination_convert (aff_inv, uutype);
+
+ aff_combination_scale (aff_var, rat);
+ return true;
+}
+
+/* Determines the expression by that USE is expressed from induction variable
+ CAND at statement AT in LOOP. The expression is stored in a decomposed
+ form into AFF. Returns false if USE cannot be expressed using CAND. */
+
+static bool
+get_computation_aff (class loop *loop, gimple *at, struct iv_use *use,
+ struct iv_cand *cand, class aff_tree *aff)
+{
+ aff_tree aff_var;
+
+ if (!get_computation_aff_1 (loop, at, use, cand, aff, &aff_var))
+ return false;
+
+ aff_combination_add (aff, &aff_var);
+ return true;
+}
+
+/* Return the type of USE. */
+
+static tree
+get_use_type (struct iv_use *use)
+{
+ tree base_type = TREE_TYPE (use->iv->base);
+ tree type;
+
+ if (use->type == USE_REF_ADDRESS)
+ {
+ /* The base_type may be a void pointer. Create a pointer type based on
+ the mem_ref instead. */
+ type = build_pointer_type (TREE_TYPE (*use->op_p));
+ gcc_assert (TYPE_ADDR_SPACE (TREE_TYPE (type))
+ == TYPE_ADDR_SPACE (TREE_TYPE (base_type)));
+ }
+ else
+ type = base_type;
+
+ return type;
+}
+
+/* Determines the expression by that USE is expressed from induction variable
+ CAND at statement AT in LOOP. The computation is unshared. */
+
+static tree
+get_computation_at (class loop *loop, gimple *at,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ aff_tree aff;
+ tree type = get_use_type (use);
+
+ if (!get_computation_aff (loop, at, use, cand, &aff))
+ return NULL_TREE;
+ unshare_aff_combination (&aff);
+ return fold_convert (type, aff_combination_to_tree (&aff));
+}
+
+/* Like get_computation_at, but try harder, even if the computation
+ is more expensive. Intended for debug stmts. */
+
+static tree
+get_debug_computation_at (class loop *loop, gimple *at,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ if (tree ret = get_computation_at (loop, at, use, cand))
+ return ret;
+
+ tree ubase = use->iv->base, ustep = use->iv->step;
+ tree cbase = cand->iv->base, cstep = cand->iv->step;
+ tree var;
+ tree utype = TREE_TYPE (ubase), ctype = TREE_TYPE (cbase);
+ widest_int rat;
+
+ /* We must have a precision to express the values of use. */
+ if (TYPE_PRECISION (utype) >= TYPE_PRECISION (ctype))
+ return NULL_TREE;
+
+ /* Try to handle the case that get_computation_at doesn't,
+ try to express
+ use = ubase + (var - cbase) / ratio. */
+ if (!constant_multiple_of (cstep, fold_convert (TREE_TYPE (cstep), ustep),
+ &rat))
+ return NULL_TREE;
+
+ bool neg_p = false;
+ if (wi::neg_p (rat))
+ {
+ if (TYPE_UNSIGNED (ctype))
+ return NULL_TREE;
+ neg_p = true;
+ rat = wi::neg (rat);
+ }
+
+ /* If both IVs can wrap around and CAND doesn't have a power of two step,
+ it is unsafe. Consider uint16_t CAND with step 9, when wrapping around,
+ the values will be ... 0xfff0, 0xfff9, 2, 11 ... and when use is say
+ uint8_t with step 3, those values divided by 3 cast to uint8_t will be
+ ... 0x50, 0x53, 0, 3 ... rather than expected 0x50, 0x53, 0x56, 0x59. */
+ if (!use->iv->no_overflow
+ && !cand->iv->no_overflow
+ && !integer_pow2p (cstep))
+ return NULL_TREE;
+
+ int bits = wi::exact_log2 (rat);
+ if (bits == -1)
+ bits = wi::floor_log2 (rat) + 1;
+ if (!cand->iv->no_overflow
+ && TYPE_PRECISION (utype) + bits > TYPE_PRECISION (ctype))
+ return NULL_TREE;
+
+ var = var_at_stmt (loop, cand, at);
+
+ if (POINTER_TYPE_P (ctype))
+ {
+ ctype = unsigned_type_for (ctype);
+ cbase = fold_convert (ctype, cbase);
+ cstep = fold_convert (ctype, cstep);
+ var = fold_convert (ctype, var);
+ }
+
+ if (stmt_after_increment (loop, cand, at))
+ var = fold_build2 (MINUS_EXPR, TREE_TYPE (var), var,
+ unshare_expr (cstep));
+
+ var = fold_build2 (MINUS_EXPR, TREE_TYPE (var), var, cbase);
+ var = fold_build2 (EXACT_DIV_EXPR, TREE_TYPE (var), var,
+ wide_int_to_tree (TREE_TYPE (var), rat));
+ if (POINTER_TYPE_P (utype))
+ {
+ var = fold_convert (sizetype, var);
+ if (neg_p)
+ var = fold_build1 (NEGATE_EXPR, sizetype, var);
+ var = fold_build2 (POINTER_PLUS_EXPR, utype, ubase, var);
+ }
+ else
+ {
+ var = fold_convert (utype, var);
+ var = fold_build2 (neg_p ? MINUS_EXPR : PLUS_EXPR, utype,
+ ubase, var);
+ }
+ return var;
+}
+
+/* Adjust the cost COST for being in loop setup rather than loop body.
+ If we're optimizing for space, the loop setup overhead is constant;
+ if we're optimizing for speed, amortize it over the per-iteration cost.
+ If ROUND_UP_P is true, the result is round up rather than to zero when
+ optimizing for speed. */
+static int64_t
+adjust_setup_cost (struct ivopts_data *data, int64_t cost,
+ bool round_up_p = false)
+{
+ if (cost == INFTY)
+ return cost;
+ else if (optimize_loop_for_speed_p (data->current_loop))
+ {
+ int64_t niters = (int64_t) avg_loop_niter (data->current_loop);
+ return (cost + (round_up_p ? niters - 1 : 0)) / niters;
+ }
+ else
+ return cost;
+}
+
+/* Calculate the SPEED or size cost of shiftadd EXPR in MODE. MULT is the
+ EXPR operand holding the shift. COST0 and COST1 are the costs for
+ calculating the operands of EXPR. Returns true if successful, and returns
+ the cost in COST. */
+
+static bool
+get_shiftadd_cost (tree expr, scalar_int_mode mode, comp_cost cost0,
+ comp_cost cost1, tree mult, bool speed, comp_cost *cost)
+{
+ comp_cost res;
+ tree op1 = TREE_OPERAND (expr, 1);
+ tree cst = TREE_OPERAND (mult, 1);
+ tree multop = TREE_OPERAND (mult, 0);
+ int m = exact_log2 (int_cst_value (cst));
+ int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
+ int as_cost, sa_cost;
+ bool mult_in_op1;
+
+ if (!(m >= 0 && m < maxm))
+ return false;
+
+ STRIP_NOPS (op1);
+ mult_in_op1 = operand_equal_p (op1, mult, 0);
+
+ as_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
+
+ /* If the target has a cheap shift-and-add or shift-and-sub instruction,
+ use that in preference to a shift insn followed by an add insn. */
+ sa_cost = (TREE_CODE (expr) != MINUS_EXPR
+ ? shiftadd_cost (speed, mode, m)
+ : (mult_in_op1
+ ? shiftsub1_cost (speed, mode, m)
+ : shiftsub0_cost (speed, mode, m)));
+
+ res = comp_cost (MIN (as_cost, sa_cost), 0);
+ res += (mult_in_op1 ? cost0 : cost1);
+
+ STRIP_NOPS (multop);
+ if (!is_gimple_val (multop))
+ res += force_expr_to_var_cost (multop, speed);
+
+ *cost = res;
+ return true;
+}
+
+/* Estimates cost of forcing expression EXPR into a variable. */
+
+static comp_cost
+force_expr_to_var_cost (tree expr, bool speed)
+{
+ static bool costs_initialized = false;
+ static unsigned integer_cost [2];
+ static unsigned symbol_cost [2];
+ static unsigned address_cost [2];
+ tree op0, op1;
+ comp_cost cost0, cost1, cost;
+ machine_mode mode;
+ scalar_int_mode int_mode;
+
+ if (!costs_initialized)
+ {
+ tree type = build_pointer_type (integer_type_node);
+ tree var, addr;
+ rtx x;
+ int i;
+
+ var = create_tmp_var_raw (integer_type_node, "test_var");
+ TREE_STATIC (var) = 1;
+ x = produce_memory_decl_rtl (var, NULL);
+ SET_DECL_RTL (var, x);
+
+ addr = build1 (ADDR_EXPR, type, var);
+
+
+ for (i = 0; i < 2; i++)
+ {
+ integer_cost[i] = computation_cost (build_int_cst (integer_type_node,
+ 2000), i);
+
+ symbol_cost[i] = computation_cost (addr, i) + 1;
+
+ address_cost[i]
+ = computation_cost (fold_build_pointer_plus_hwi (addr, 2000), i) + 1;
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "force_expr_to_var_cost %s costs:\n", i ? "speed" : "size");
+ fprintf (dump_file, " integer %d\n", (int) integer_cost[i]);
+ fprintf (dump_file, " symbol %d\n", (int) symbol_cost[i]);
+ fprintf (dump_file, " address %d\n", (int) address_cost[i]);
+ fprintf (dump_file, " other %d\n", (int) target_spill_cost[i]);
+ fprintf (dump_file, "\n");
+ }
+ }
+
+ costs_initialized = true;
+ }
+
+ STRIP_NOPS (expr);
+
+ if (SSA_VAR_P (expr))
+ return no_cost;
+
+ if (is_gimple_min_invariant (expr))
+ {
+ if (poly_int_tree_p (expr))
+ return comp_cost (integer_cost [speed], 0);
+
+ if (TREE_CODE (expr) == ADDR_EXPR)
+ {
+ tree obj = TREE_OPERAND (expr, 0);
+
+ if (VAR_P (obj)
+ || TREE_CODE (obj) == PARM_DECL
+ || TREE_CODE (obj) == RESULT_DECL)
+ return comp_cost (symbol_cost [speed], 0);
+ }
+
+ return comp_cost (address_cost [speed], 0);
+ }
+
+ switch (TREE_CODE (expr))
+ {
+ case POINTER_PLUS_EXPR:
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ case MULT_EXPR:
+ case TRUNC_DIV_EXPR:
+ case BIT_AND_EXPR:
+ case BIT_IOR_EXPR:
+ case LSHIFT_EXPR:
+ case RSHIFT_EXPR:
+ op0 = TREE_OPERAND (expr, 0);
+ op1 = TREE_OPERAND (expr, 1);
+ STRIP_NOPS (op0);
+ STRIP_NOPS (op1);
+ break;
+
+ CASE_CONVERT:
+ case NEGATE_EXPR:
+ case BIT_NOT_EXPR:
+ op0 = TREE_OPERAND (expr, 0);
+ STRIP_NOPS (op0);
+ op1 = NULL_TREE;
+ break;
+ /* See add_iv_candidate_for_doloop, for doloop may_be_zero case, we
+ introduce COND_EXPR for IV base, need to support better cost estimation
+ for this COND_EXPR and tcc_comparison. */
+ case COND_EXPR:
+ op0 = TREE_OPERAND (expr, 1);
+ STRIP_NOPS (op0);
+ op1 = TREE_OPERAND (expr, 2);
+ STRIP_NOPS (op1);
+ break;
+ case LT_EXPR:
+ case LE_EXPR:
+ case GT_EXPR:
+ case GE_EXPR:
+ case EQ_EXPR:
+ case NE_EXPR:
+ case UNORDERED_EXPR:
+ case ORDERED_EXPR:
+ case UNLT_EXPR:
+ case UNLE_EXPR:
+ case UNGT_EXPR:
+ case UNGE_EXPR:
+ case UNEQ_EXPR:
+ case LTGT_EXPR:
+ case MAX_EXPR:
+ case MIN_EXPR:
+ op0 = TREE_OPERAND (expr, 0);
+ STRIP_NOPS (op0);
+ op1 = TREE_OPERAND (expr, 1);
+ STRIP_NOPS (op1);
+ break;
+
+ default:
+ /* Just an arbitrary value, FIXME. */
+ return comp_cost (target_spill_cost[speed], 0);
+ }
+
+ if (op0 == NULL_TREE
+ || TREE_CODE (op0) == SSA_NAME || CONSTANT_CLASS_P (op0))
+ cost0 = no_cost;
+ else
+ cost0 = force_expr_to_var_cost (op0, speed);
+
+ if (op1 == NULL_TREE
+ || TREE_CODE (op1) == SSA_NAME || CONSTANT_CLASS_P (op1))
+ cost1 = no_cost;
+ else
+ cost1 = force_expr_to_var_cost (op1, speed);
+
+ mode = TYPE_MODE (TREE_TYPE (expr));
+ switch (TREE_CODE (expr))
+ {
+ case POINTER_PLUS_EXPR:
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ case NEGATE_EXPR:
+ cost = comp_cost (add_cost (speed, mode), 0);
+ if (TREE_CODE (expr) != NEGATE_EXPR)
+ {
+ tree mult = NULL_TREE;
+ comp_cost sa_cost;
+ if (TREE_CODE (op1) == MULT_EXPR)
+ mult = op1;
+ else if (TREE_CODE (op0) == MULT_EXPR)
+ mult = op0;
+
+ if (mult != NULL_TREE
+ && is_a <scalar_int_mode> (mode, &int_mode)
+ && cst_and_fits_in_hwi (TREE_OPERAND (mult, 1))
+ && get_shiftadd_cost (expr, int_mode, cost0, cost1, mult,
+ speed, &sa_cost))
+ return sa_cost;
+ }
+ break;
+
+ CASE_CONVERT:
+ {
+ tree inner_mode, outer_mode;
+ outer_mode = TREE_TYPE (expr);
+ inner_mode = TREE_TYPE (op0);
+ cost = comp_cost (convert_cost (TYPE_MODE (outer_mode),
+ TYPE_MODE (inner_mode), speed), 0);
+ }
+ break;
+
+ case MULT_EXPR:
+ if (cst_and_fits_in_hwi (op0))
+ cost = comp_cost (mult_by_coeff_cost (int_cst_value (op0),
+ mode, speed), 0);
+ else if (cst_and_fits_in_hwi (op1))
+ cost = comp_cost (mult_by_coeff_cost (int_cst_value (op1),
+ mode, speed), 0);
+ else
+ return comp_cost (target_spill_cost [speed], 0);
+ break;
+
+ case TRUNC_DIV_EXPR:
+ /* Division by power of two is usually cheap, so we allow it. Forbid
+ anything else. */
+ if (integer_pow2p (TREE_OPERAND (expr, 1)))
+ cost = comp_cost (add_cost (speed, mode), 0);
+ else
+ cost = comp_cost (target_spill_cost[speed], 0);
+ break;
+
+ case BIT_AND_EXPR:
+ case BIT_IOR_EXPR:
+ case BIT_NOT_EXPR:
+ case LSHIFT_EXPR:
+ case RSHIFT_EXPR:
+ cost = comp_cost (add_cost (speed, mode), 0);
+ break;
+ case COND_EXPR:
+ op0 = TREE_OPERAND (expr, 0);
+ STRIP_NOPS (op0);
+ if (op0 == NULL_TREE || TREE_CODE (op0) == SSA_NAME
+ || CONSTANT_CLASS_P (op0))
+ cost = no_cost;
+ else
+ cost = force_expr_to_var_cost (op0, speed);
+ break;
+ case LT_EXPR:
+ case LE_EXPR:
+ case GT_EXPR:
+ case GE_EXPR:
+ case EQ_EXPR:
+ case NE_EXPR:
+ case UNORDERED_EXPR:
+ case ORDERED_EXPR:
+ case UNLT_EXPR:
+ case UNLE_EXPR:
+ case UNGT_EXPR:
+ case UNGE_EXPR:
+ case UNEQ_EXPR:
+ case LTGT_EXPR:
+ case MAX_EXPR:
+ case MIN_EXPR:
+ /* Simply use add cost for now, FIXME if there is some more accurate cost
+ evaluation way. */
+ cost = comp_cost (add_cost (speed, mode), 0);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ cost += cost0;
+ cost += cost1;
+ return cost;
+}
+
+/* Estimates cost of forcing EXPR into a variable. INV_VARS is a set of the
+ invariants the computation depends on. */
+
+static comp_cost
+force_var_cost (struct ivopts_data *data, tree expr, bitmap *inv_vars)
+{
+ if (!expr)
+ return no_cost;
+
+ find_inv_vars (data, &expr, inv_vars);
+ return force_expr_to_var_cost (expr, data->speed);
+}
+
+/* Returns cost of auto-modifying address expression in shape base + offset.
+ AINC_STEP is step size of the address IV. AINC_OFFSET is offset of the
+ address expression. The address expression has ADDR_MODE in addr space
+ AS. The memory access has MEM_MODE. SPEED means we are optimizing for
+ speed or size. */
+
+enum ainc_type
+{
+ AINC_PRE_INC, /* Pre increment. */
+ AINC_PRE_DEC, /* Pre decrement. */
+ AINC_POST_INC, /* Post increment. */
+ AINC_POST_DEC, /* Post decrement. */
+ AINC_NONE /* Also the number of auto increment types. */
+};
+
+struct ainc_cost_data
+{
+ int64_t costs[AINC_NONE];
+};
+
+static comp_cost
+get_address_cost_ainc (poly_int64 ainc_step, poly_int64 ainc_offset,
+ machine_mode addr_mode, machine_mode mem_mode,
+ addr_space_t as, bool speed)
+{
+ if (!USE_LOAD_PRE_DECREMENT (mem_mode)
+ && !USE_STORE_PRE_DECREMENT (mem_mode)
+ && !USE_LOAD_POST_DECREMENT (mem_mode)
+ && !USE_STORE_POST_DECREMENT (mem_mode)
+ && !USE_LOAD_PRE_INCREMENT (mem_mode)
+ && !USE_STORE_PRE_INCREMENT (mem_mode)
+ && !USE_LOAD_POST_INCREMENT (mem_mode)
+ && !USE_STORE_POST_INCREMENT (mem_mode))
+ return infinite_cost;
+
+ static vec<ainc_cost_data *> ainc_cost_data_list;
+ unsigned idx = (unsigned) as * MAX_MACHINE_MODE + (unsigned) mem_mode;
+ if (idx >= ainc_cost_data_list.length ())
+ {
+ unsigned nsize = ((unsigned) as + 1) *MAX_MACHINE_MODE;
+
+ gcc_assert (nsize > idx);
+ ainc_cost_data_list.safe_grow_cleared (nsize, true);
+ }
+
+ ainc_cost_data *data = ainc_cost_data_list[idx];
+ if (data == NULL)
+ {
+ rtx reg = gen_raw_REG (addr_mode, LAST_VIRTUAL_REGISTER + 1);
+
+ data = (ainc_cost_data *) xcalloc (1, sizeof (*data));
+ data->costs[AINC_PRE_DEC] = INFTY;
+ data->costs[AINC_POST_DEC] = INFTY;
+ data->costs[AINC_PRE_INC] = INFTY;
+ data->costs[AINC_POST_INC] = INFTY;
+ if (USE_LOAD_PRE_DECREMENT (mem_mode)
+ || USE_STORE_PRE_DECREMENT (mem_mode))
+ {
+ rtx addr = gen_rtx_PRE_DEC (addr_mode, reg);
+
+ if (memory_address_addr_space_p (mem_mode, addr, as))
+ data->costs[AINC_PRE_DEC]
+ = address_cost (addr, mem_mode, as, speed);
+ }
+ if (USE_LOAD_POST_DECREMENT (mem_mode)
+ || USE_STORE_POST_DECREMENT (mem_mode))
+ {
+ rtx addr = gen_rtx_POST_DEC (addr_mode, reg);
+
+ if (memory_address_addr_space_p (mem_mode, addr, as))
+ data->costs[AINC_POST_DEC]
+ = address_cost (addr, mem_mode, as, speed);
+ }
+ if (USE_LOAD_PRE_INCREMENT (mem_mode)
+ || USE_STORE_PRE_INCREMENT (mem_mode))
+ {
+ rtx addr = gen_rtx_PRE_INC (addr_mode, reg);
+
+ if (memory_address_addr_space_p (mem_mode, addr, as))
+ data->costs[AINC_PRE_INC]
+ = address_cost (addr, mem_mode, as, speed);
+ }
+ if (USE_LOAD_POST_INCREMENT (mem_mode)
+ || USE_STORE_POST_INCREMENT (mem_mode))
+ {
+ rtx addr = gen_rtx_POST_INC (addr_mode, reg);
+
+ if (memory_address_addr_space_p (mem_mode, addr, as))
+ data->costs[AINC_POST_INC]
+ = address_cost (addr, mem_mode, as, speed);
+ }
+ ainc_cost_data_list[idx] = data;
+ }
+
+ poly_int64 msize = GET_MODE_SIZE (mem_mode);
+ if (known_eq (ainc_offset, 0) && known_eq (msize, ainc_step))
+ return comp_cost (data->costs[AINC_POST_INC], 0);
+ if (known_eq (ainc_offset, 0) && known_eq (msize, -ainc_step))
+ return comp_cost (data->costs[AINC_POST_DEC], 0);
+ if (known_eq (ainc_offset, msize) && known_eq (msize, ainc_step))
+ return comp_cost (data->costs[AINC_PRE_INC], 0);
+ if (known_eq (ainc_offset, -msize) && known_eq (msize, -ainc_step))
+ return comp_cost (data->costs[AINC_PRE_DEC], 0);
+
+ return infinite_cost;
+}
+
+/* Return cost of computing USE's address expression by using CAND.
+ AFF_INV and AFF_VAR represent invariant and variant parts of the
+ address expression, respectively. If AFF_INV is simple, store
+ the loop invariant variables which are depended by it in INV_VARS;
+ if AFF_INV is complicated, handle it as a new invariant expression
+ and record it in INV_EXPR. RATIO indicates multiple times between
+ steps of USE and CAND. If CAN_AUTOINC is nonNULL, store boolean
+ value to it indicating if this is an auto-increment address. */
+
+static comp_cost
+get_address_cost (struct ivopts_data *data, struct iv_use *use,
+ struct iv_cand *cand, aff_tree *aff_inv,
+ aff_tree *aff_var, HOST_WIDE_INT ratio,
+ bitmap *inv_vars, iv_inv_expr_ent **inv_expr,
+ bool *can_autoinc, bool speed)
+{
+ rtx addr;
+ bool simple_inv = true;
+ tree comp_inv = NULL_TREE, type = aff_var->type;
+ comp_cost var_cost = no_cost, cost = no_cost;
+ struct mem_address parts = {NULL_TREE, integer_one_node,
+ NULL_TREE, NULL_TREE, NULL_TREE};
+ machine_mode addr_mode = TYPE_MODE (type);
+ machine_mode mem_mode = TYPE_MODE (use->mem_type);
+ addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (use->iv->base));
+ /* Only true if ratio != 1. */
+ bool ok_with_ratio_p = false;
+ bool ok_without_ratio_p = false;
+
+ if (!aff_combination_const_p (aff_inv))
+ {
+ parts.index = integer_one_node;
+ /* Addressing mode "base + index". */
+ ok_without_ratio_p = valid_mem_ref_p (mem_mode, as, &parts);
+ if (ratio != 1)
+ {
+ parts.step = wide_int_to_tree (type, ratio);
+ /* Addressing mode "base + index << scale". */
+ ok_with_ratio_p = valid_mem_ref_p (mem_mode, as, &parts);
+ if (!ok_with_ratio_p)
+ parts.step = NULL_TREE;
+ }
+ if (ok_with_ratio_p || ok_without_ratio_p)
+ {
+ if (maybe_ne (aff_inv->offset, 0))
+ {
+ parts.offset = wide_int_to_tree (sizetype, aff_inv->offset);
+ /* Addressing mode "base + index [<< scale] + offset". */
+ if (!valid_mem_ref_p (mem_mode, as, &parts))
+ parts.offset = NULL_TREE;
+ else
+ aff_inv->offset = 0;
+ }
+
+ move_fixed_address_to_symbol (&parts, aff_inv);
+ /* Base is fixed address and is moved to symbol part. */
+ if (parts.symbol != NULL_TREE && aff_combination_zero_p (aff_inv))
+ parts.base = NULL_TREE;
+
+ /* Addressing mode "symbol + base + index [<< scale] [+ offset]". */
+ if (parts.symbol != NULL_TREE
+ && !valid_mem_ref_p (mem_mode, as, &parts))
+ {
+ aff_combination_add_elt (aff_inv, parts.symbol, 1);
+ parts.symbol = NULL_TREE;
+ /* Reset SIMPLE_INV since symbol address needs to be computed
+ outside of address expression in this case. */
+ simple_inv = false;
+ /* Symbol part is moved back to base part, it can't be NULL. */
+ parts.base = integer_one_node;
+ }
+ }
+ else
+ parts.index = NULL_TREE;
+ }
+ else
+ {
+ poly_int64 ainc_step;
+ if (can_autoinc
+ && ratio == 1
+ && ptrdiff_tree_p (cand->iv->step, &ainc_step))
+ {
+ poly_int64 ainc_offset = (aff_inv->offset).force_shwi ();
+
+ if (stmt_after_increment (data->current_loop, cand, use->stmt))
+ ainc_offset += ainc_step;
+ cost = get_address_cost_ainc (ainc_step, ainc_offset,
+ addr_mode, mem_mode, as, speed);
+ if (!cost.infinite_cost_p ())
+ {
+ *can_autoinc = true;
+ return cost;
+ }
+ cost = no_cost;
+ }
+ if (!aff_combination_zero_p (aff_inv))
+ {
+ parts.offset = wide_int_to_tree (sizetype, aff_inv->offset);
+ /* Addressing mode "base + offset". */
+ if (!valid_mem_ref_p (mem_mode, as, &parts))
+ parts.offset = NULL_TREE;
+ else
+ aff_inv->offset = 0;
+ }
+ }
+
+ if (simple_inv)
+ simple_inv = (aff_inv == NULL
+ || aff_combination_const_p (aff_inv)
+ || aff_combination_singleton_var_p (aff_inv));
+ if (!aff_combination_zero_p (aff_inv))
+ comp_inv = aff_combination_to_tree (aff_inv);
+ if (comp_inv != NULL_TREE)
+ cost = force_var_cost (data, comp_inv, inv_vars);
+ if (ratio != 1 && parts.step == NULL_TREE)
+ var_cost += mult_by_coeff_cost (ratio, addr_mode, speed);
+ if (comp_inv != NULL_TREE && parts.index == NULL_TREE)
+ var_cost += add_cost (speed, addr_mode);
+
+ if (comp_inv && inv_expr && !simple_inv)
+ {
+ *inv_expr = get_loop_invariant_expr (data, comp_inv);
+ /* Clear depends on. */
+ if (*inv_expr != NULL && inv_vars && *inv_vars)
+ bitmap_clear (*inv_vars);
+
+ /* Cost of small invariant expression adjusted against loop niters
+ is usually zero, which makes it difficult to be differentiated
+ from candidate based on loop invariant variables. Secondly, the
+ generated invariant expression may not be hoisted out of loop by
+ following pass. We penalize the cost by rounding up in order to
+ neutralize such effects. */
+ cost.cost = adjust_setup_cost (data, cost.cost, true);
+ cost.scratch = cost.cost;
+ }
+
+ cost += var_cost;
+ addr = addr_for_mem_ref (&parts, as, false);
+ gcc_assert (memory_address_addr_space_p (mem_mode, addr, as));
+ cost += address_cost (addr, mem_mode, as, speed);
+
+ if (parts.symbol != NULL_TREE)
+ cost.complexity += 1;
+ /* Don't increase the complexity of adding a scaled index if it's
+ the only kind of index that the target allows. */
+ if (parts.step != NULL_TREE && ok_without_ratio_p)
+ cost.complexity += 1;
+ if (parts.base != NULL_TREE && parts.index != NULL_TREE)
+ cost.complexity += 1;
+ if (parts.offset != NULL_TREE && !integer_zerop (parts.offset))
+ cost.complexity += 1;
+
+ return cost;
+}
+
+/* Scale (multiply) the computed COST (except scratch part that should be
+ hoisted out a loop) by header->frequency / AT->frequency, which makes
+ expected cost more accurate. */
+
+static comp_cost
+get_scaled_computation_cost_at (ivopts_data *data, gimple *at, comp_cost cost)
+{
+ if (data->speed
+ && data->current_loop->header->count.to_frequency (cfun) > 0)
+ {
+ basic_block bb = gimple_bb (at);
+ gcc_assert (cost.scratch <= cost.cost);
+ int scale_factor = (int)(intptr_t) bb->aux;
+ if (scale_factor == 1)
+ return cost;
+
+ int64_t scaled_cost
+ = cost.scratch + (cost.cost - cost.scratch) * scale_factor;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Scaling cost based on bb prob by %2.2f: "
+ "%" PRId64 " (scratch: %" PRId64 ") -> %" PRId64 "\n",
+ 1.0f * scale_factor, cost.cost, cost.scratch, scaled_cost);
+
+ cost.cost = scaled_cost;
+ }
+
+ return cost;
+}
+
+/* Determines the cost of the computation by that USE is expressed
+ from induction variable CAND. If ADDRESS_P is true, we just need
+ to create an address from it, otherwise we want to get it into
+ register. A set of invariants we depend on is stored in INV_VARS.
+ If CAN_AUTOINC is nonnull, use it to record whether autoinc
+ addressing is likely. If INV_EXPR is nonnull, record invariant
+ expr entry in it. */
+
+static comp_cost
+get_computation_cost (struct ivopts_data *data, struct iv_use *use,
+ struct iv_cand *cand, bool address_p, bitmap *inv_vars,
+ bool *can_autoinc, iv_inv_expr_ent **inv_expr)
+{
+ gimple *at = use->stmt;
+ tree ubase = use->iv->base, cbase = cand->iv->base;
+ tree utype = TREE_TYPE (ubase), ctype = TREE_TYPE (cbase);
+ tree comp_inv = NULL_TREE;
+ HOST_WIDE_INT ratio, aratio;
+ comp_cost cost;
+ widest_int rat;
+ aff_tree aff_inv, aff_var;
+ bool speed = optimize_bb_for_speed_p (gimple_bb (at));
+
+ if (inv_vars)
+ *inv_vars = NULL;
+ if (can_autoinc)
+ *can_autoinc = false;
+ if (inv_expr)
+ *inv_expr = NULL;
+
+ /* Check if we have enough precision to express the values of use. */
+ if (TYPE_PRECISION (utype) > TYPE_PRECISION (ctype))
+ return infinite_cost;
+
+ if (address_p
+ || (use->iv->base_object
+ && cand->iv->base_object
+ && POINTER_TYPE_P (TREE_TYPE (use->iv->base_object))
+ && POINTER_TYPE_P (TREE_TYPE (cand->iv->base_object))))
+ {
+ /* Do not try to express address of an object with computation based
+ on address of a different object. This may cause problems in rtl
+ level alias analysis (that does not expect this to be happening,
+ as this is illegal in C), and would be unlikely to be useful
+ anyway. */
+ if (use->iv->base_object
+ && cand->iv->base_object
+ && !operand_equal_p (use->iv->base_object, cand->iv->base_object, 0))
+ return infinite_cost;
+ }
+
+ if (!get_computation_aff_1 (data->current_loop, at, use,
+ cand, &aff_inv, &aff_var, &rat)
+ || !wi::fits_shwi_p (rat))
+ return infinite_cost;
+
+ ratio = rat.to_shwi ();
+ if (address_p)
+ {
+ cost = get_address_cost (data, use, cand, &aff_inv, &aff_var, ratio,
+ inv_vars, inv_expr, can_autoinc, speed);
+ cost = get_scaled_computation_cost_at (data, at, cost);
+ /* For doloop IV cand, add on the extra cost. */
+ cost += cand->doloop_p ? targetm.doloop_cost_for_address : 0;
+ return cost;
+ }
+
+ bool simple_inv = (aff_combination_const_p (&aff_inv)
+ || aff_combination_singleton_var_p (&aff_inv));
+ tree signed_type = signed_type_for (aff_combination_type (&aff_inv));
+ aff_combination_convert (&aff_inv, signed_type);
+ if (!aff_combination_zero_p (&aff_inv))
+ comp_inv = aff_combination_to_tree (&aff_inv);
+
+ cost = force_var_cost (data, comp_inv, inv_vars);
+ if (comp_inv && inv_expr && !simple_inv)
+ {
+ *inv_expr = get_loop_invariant_expr (data, comp_inv);
+ /* Clear depends on. */
+ if (*inv_expr != NULL && inv_vars && *inv_vars)
+ bitmap_clear (*inv_vars);
+
+ cost.cost = adjust_setup_cost (data, cost.cost);
+ /* Record setup cost in scratch field. */
+ cost.scratch = cost.cost;
+ }
+ /* Cost of constant integer can be covered when adding invariant part to
+ variant part. */
+ else if (comp_inv && CONSTANT_CLASS_P (comp_inv))
+ cost = no_cost;
+
+ /* Need type narrowing to represent use with cand. */
+ if (TYPE_PRECISION (utype) < TYPE_PRECISION (ctype))
+ {
+ machine_mode outer_mode = TYPE_MODE (utype);
+ machine_mode inner_mode = TYPE_MODE (ctype);
+ cost += comp_cost (convert_cost (outer_mode, inner_mode, speed), 0);
+ }
+
+ /* Turn a + i * (-c) into a - i * c. */
+ if (ratio < 0 && comp_inv && !integer_zerop (comp_inv))
+ aratio = -ratio;
+ else
+ aratio = ratio;
+
+ if (ratio != 1)
+ cost += mult_by_coeff_cost (aratio, TYPE_MODE (utype), speed);
+
+ /* TODO: We may also need to check if we can compute a + i * 4 in one
+ instruction. */
+ /* Need to add up the invariant and variant parts. */
+ if (comp_inv && !integer_zerop (comp_inv))
+ cost += add_cost (speed, TYPE_MODE (utype));
+
+ cost = get_scaled_computation_cost_at (data, at, cost);
+
+ /* For doloop IV cand, add on the extra cost. */
+ if (cand->doloop_p && use->type == USE_NONLINEAR_EXPR)
+ cost += targetm.doloop_cost_for_generic;
+
+ return cost;
+}
+
+/* Determines cost of computing the use in GROUP with CAND in a generic
+ expression. */
+
+static bool
+determine_group_iv_cost_generic (struct ivopts_data *data,
+ struct iv_group *group, struct iv_cand *cand)
+{
+ comp_cost cost;
+ iv_inv_expr_ent *inv_expr = NULL;
+ bitmap inv_vars = NULL, inv_exprs = NULL;
+ struct iv_use *use = group->vuses[0];
+
+ /* The simple case first -- if we need to express value of the preserved
+ original biv, the cost is 0. This also prevents us from counting the
+ cost of increment twice -- once at this use and once in the cost of
+ the candidate. */
+ if (cand->pos == IP_ORIGINAL && cand->incremented_at == use->stmt)
+ cost = no_cost;
+ else
+ cost = get_computation_cost (data, use, cand, false,
+ &inv_vars, NULL, &inv_expr);
+
+ if (inv_expr)
+ {
+ inv_exprs = BITMAP_ALLOC (NULL);
+ bitmap_set_bit (inv_exprs, inv_expr->id);
+ }
+ set_group_iv_cost (data, group, cand, cost, inv_vars,
+ NULL_TREE, ERROR_MARK, inv_exprs);
+ return !cost.infinite_cost_p ();
+}
+
+/* Determines cost of computing uses in GROUP with CAND in addresses. */
+
+static bool
+determine_group_iv_cost_address (struct ivopts_data *data,
+ struct iv_group *group, struct iv_cand *cand)
+{
+ unsigned i;
+ bitmap inv_vars = NULL, inv_exprs = NULL;
+ bool can_autoinc;
+ iv_inv_expr_ent *inv_expr = NULL;
+ struct iv_use *use = group->vuses[0];
+ comp_cost sum_cost = no_cost, cost;
+
+ cost = get_computation_cost (data, use, cand, true,
+ &inv_vars, &can_autoinc, &inv_expr);
+
+ if (inv_expr)
+ {
+ inv_exprs = BITMAP_ALLOC (NULL);
+ bitmap_set_bit (inv_exprs, inv_expr->id);
+ }
+ sum_cost = cost;
+ if (!sum_cost.infinite_cost_p () && cand->ainc_use == use)
+ {
+ if (can_autoinc)
+ sum_cost -= cand->cost_step;
+ /* If we generated the candidate solely for exploiting autoincrement
+ opportunities, and it turns out it can't be used, set the cost to
+ infinity to make sure we ignore it. */
+ else if (cand->pos == IP_AFTER_USE || cand->pos == IP_BEFORE_USE)
+ sum_cost = infinite_cost;
+ }
+
+ /* Uses in a group can share setup code, so only add setup cost once. */
+ cost -= cost.scratch;
+ /* Compute and add costs for rest uses of this group. */
+ for (i = 1; i < group->vuses.length () && !sum_cost.infinite_cost_p (); i++)
+ {
+ struct iv_use *next = group->vuses[i];
+
+ /* TODO: We could skip computing cost for sub iv_use when it has the
+ same cost as the first iv_use, but the cost really depends on the
+ offset and where the iv_use is. */
+ cost = get_computation_cost (data, next, cand, true,
+ NULL, &can_autoinc, &inv_expr);
+ if (inv_expr)
+ {
+ if (!inv_exprs)
+ inv_exprs = BITMAP_ALLOC (NULL);
+
+ bitmap_set_bit (inv_exprs, inv_expr->id);
+ }
+ sum_cost += cost;
+ }
+ set_group_iv_cost (data, group, cand, sum_cost, inv_vars,
+ NULL_TREE, ERROR_MARK, inv_exprs);
+
+ return !sum_cost.infinite_cost_p ();
+}
+
+/* Computes value of candidate CAND at position AT in iteration DESC->NITER,
+ and stores it to VAL. */
+
+static void
+cand_value_at (class loop *loop, struct iv_cand *cand, gimple *at,
+ class tree_niter_desc *desc, aff_tree *val)
+{
+ aff_tree step, delta, nit;
+ struct iv *iv = cand->iv;
+ tree type = TREE_TYPE (iv->base);
+ tree niter = desc->niter;
+ bool after_adjust = stmt_after_increment (loop, cand, at);
+ tree steptype;
+
+ if (POINTER_TYPE_P (type))
+ steptype = sizetype;
+ else
+ steptype = unsigned_type_for (type);
+
+ /* If AFTER_ADJUST is required, the code below generates the equivalent
+ of BASE + NITER * STEP + STEP, when ideally we'd prefer the expression
+ BASE + (NITER + 1) * STEP, especially when NITER is often of the form
+ SSA_NAME - 1. Unfortunately, guaranteeing that adding 1 to NITER
+ doesn't overflow is tricky, so we peek inside the TREE_NITER_DESC
+ class for common idioms that we know are safe. */
+ if (after_adjust
+ && desc->control.no_overflow
+ && integer_onep (desc->control.step)
+ && (desc->cmp == LT_EXPR
+ || desc->cmp == NE_EXPR)
+ && TREE_CODE (desc->bound) == SSA_NAME)
+ {
+ if (integer_onep (desc->control.base))
+ {
+ niter = desc->bound;
+ after_adjust = false;
+ }
+ else if (TREE_CODE (niter) == MINUS_EXPR
+ && integer_onep (TREE_OPERAND (niter, 1)))
+ {
+ niter = TREE_OPERAND (niter, 0);
+ after_adjust = false;
+ }
+ }
+
+ tree_to_aff_combination (iv->step, TREE_TYPE (iv->step), &step);
+ aff_combination_convert (&step, steptype);
+ tree_to_aff_combination (niter, TREE_TYPE (niter), &nit);
+ aff_combination_convert (&nit, steptype);
+ aff_combination_mult (&nit, &step, &delta);
+ if (after_adjust)
+ aff_combination_add (&delta, &step);
+
+ tree_to_aff_combination (iv->base, type, val);
+ if (!POINTER_TYPE_P (type))
+ aff_combination_convert (val, steptype);
+ aff_combination_add (val, &delta);
+}
+
+/* Returns period of induction variable iv. */
+
+static tree
+iv_period (struct iv *iv)
+{
+ tree step = iv->step, period, type;
+ tree pow2div;
+
+ gcc_assert (step && TREE_CODE (step) == INTEGER_CST);
+
+ type = unsigned_type_for (TREE_TYPE (step));
+ /* Period of the iv is lcm (step, type_range)/step -1,
+ i.e., N*type_range/step - 1. Since type range is power
+ of two, N == (step >> num_of_ending_zeros_binary (step),
+ so the final result is
+
+ (type_range >> num_of_ending_zeros_binary (step)) - 1
+
+ */
+ pow2div = num_ending_zeros (step);
+
+ period = build_low_bits_mask (type,
+ (TYPE_PRECISION (type)
+ - tree_to_uhwi (pow2div)));
+
+ return period;
+}
+
+/* Returns the comparison operator used when eliminating the iv USE. */
+
+static enum tree_code
+iv_elimination_compare (struct ivopts_data *data, struct iv_use *use)
+{
+ class loop *loop = data->current_loop;
+ basic_block ex_bb;
+ edge exit;
+
+ ex_bb = gimple_bb (use->stmt);
+ exit = EDGE_SUCC (ex_bb, 0);
+ if (flow_bb_inside_loop_p (loop, exit->dest))
+ exit = EDGE_SUCC (ex_bb, 1);
+
+ return (exit->flags & EDGE_TRUE_VALUE ? EQ_EXPR : NE_EXPR);
+}
+
+/* Returns true if we can prove that BASE - OFFSET does not overflow. For now,
+ we only detect the situation that BASE = SOMETHING + OFFSET, where the
+ calculation is performed in non-wrapping type.
+
+ TODO: More generally, we could test for the situation that
+ BASE = SOMETHING + OFFSET' and OFFSET is between OFFSET' and zero.
+ This would require knowing the sign of OFFSET. */
+
+static bool
+difference_cannot_overflow_p (struct ivopts_data *data, tree base, tree offset)
+{
+ enum tree_code code;
+ tree e1, e2;
+ aff_tree aff_e1, aff_e2, aff_offset;
+
+ if (!nowrap_type_p (TREE_TYPE (base)))
+ return false;
+
+ base = expand_simple_operations (base);
+
+ if (TREE_CODE (base) == SSA_NAME)
+ {
+ gimple *stmt = SSA_NAME_DEF_STMT (base);
+
+ if (gimple_code (stmt) != GIMPLE_ASSIGN)
+ return false;
+
+ code = gimple_assign_rhs_code (stmt);
+ if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
+ return false;
+
+ e1 = gimple_assign_rhs1 (stmt);
+ e2 = gimple_assign_rhs2 (stmt);
+ }
+ else
+ {
+ code = TREE_CODE (base);
+ if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
+ return false;
+ e1 = TREE_OPERAND (base, 0);
+ e2 = TREE_OPERAND (base, 1);
+ }
+
+ /* Use affine expansion as deeper inspection to prove the equality. */
+ tree_to_aff_combination_expand (e2, TREE_TYPE (e2),
+ &aff_e2, &data->name_expansion_cache);
+ tree_to_aff_combination_expand (offset, TREE_TYPE (offset),
+ &aff_offset, &data->name_expansion_cache);
+ aff_combination_scale (&aff_offset, -1);
+ switch (code)
+ {
+ case PLUS_EXPR:
+ aff_combination_add (&aff_e2, &aff_offset);
+ if (aff_combination_zero_p (&aff_e2))
+ return true;
+
+ tree_to_aff_combination_expand (e1, TREE_TYPE (e1),
+ &aff_e1, &data->name_expansion_cache);
+ aff_combination_add (&aff_e1, &aff_offset);
+ return aff_combination_zero_p (&aff_e1);
+
+ case POINTER_PLUS_EXPR:
+ aff_combination_add (&aff_e2, &aff_offset);
+ return aff_combination_zero_p (&aff_e2);
+
+ default:
+ return false;
+ }
+}
+
+/* Tries to replace loop exit by one formulated in terms of a LT_EXPR
+ comparison with CAND. NITER describes the number of iterations of
+ the loops. If successful, the comparison in COMP_P is altered accordingly.
+
+ We aim to handle the following situation:
+
+ sometype *base, *p;
+ int a, b, i;
+
+ i = a;
+ p = p_0 = base + a;
+
+ do
+ {
+ bla (*p);
+ p++;
+ i++;
+ }
+ while (i < b);
+
+ Here, the number of iterations of the loop is (a + 1 > b) ? 0 : b - a - 1.
+ We aim to optimize this to
+
+ p = p_0 = base + a;
+ do
+ {
+ bla (*p);
+ p++;
+ }
+ while (p < p_0 - a + b);
+
+ This preserves the correctness, since the pointer arithmetics does not
+ overflow. More precisely:
+
+ 1) if a + 1 <= b, then p_0 - a + b is the final value of p, hence there is no
+ overflow in computing it or the values of p.
+ 2) if a + 1 > b, then we need to verify that the expression p_0 - a does not
+ overflow. To prove this, we use the fact that p_0 = base + a. */
+
+static bool
+iv_elimination_compare_lt (struct ivopts_data *data,
+ struct iv_cand *cand, enum tree_code *comp_p,
+ class tree_niter_desc *niter)
+{
+ tree cand_type, a, b, mbz, nit_type = TREE_TYPE (niter->niter), offset;
+ class aff_tree nit, tmpa, tmpb;
+ enum tree_code comp;
+ HOST_WIDE_INT step;
+
+ /* We need to know that the candidate induction variable does not overflow.
+ While more complex analysis may be used to prove this, for now just
+ check that the variable appears in the original program and that it
+ is computed in a type that guarantees no overflows. */
+ cand_type = TREE_TYPE (cand->iv->base);
+ if (cand->pos != IP_ORIGINAL || !nowrap_type_p (cand_type))
+ return false;
+
+ /* Make sure that the loop iterates till the loop bound is hit, as otherwise
+ the calculation of the BOUND could overflow, making the comparison
+ invalid. */
+ if (!data->loop_single_exit_p)
+ return false;
+
+ /* We need to be able to decide whether candidate is increasing or decreasing
+ in order to choose the right comparison operator. */
+ if (!cst_and_fits_in_hwi (cand->iv->step))
+ return false;
+ step = int_cst_value (cand->iv->step);
+
+ /* Check that the number of iterations matches the expected pattern:
+ a + 1 > b ? 0 : b - a - 1. */
+ mbz = niter->may_be_zero;
+ if (TREE_CODE (mbz) == GT_EXPR)
+ {
+ /* Handle a + 1 > b. */
+ tree op0 = TREE_OPERAND (mbz, 0);
+ if (TREE_CODE (op0) == PLUS_EXPR && integer_onep (TREE_OPERAND (op0, 1)))
+ {
+ a = TREE_OPERAND (op0, 0);
+ b = TREE_OPERAND (mbz, 1);
+ }
+ else
+ return false;
+ }
+ else if (TREE_CODE (mbz) == LT_EXPR)
+ {
+ tree op1 = TREE_OPERAND (mbz, 1);
+
+ /* Handle b < a + 1. */
+ if (TREE_CODE (op1) == PLUS_EXPR && integer_onep (TREE_OPERAND (op1, 1)))
+ {
+ a = TREE_OPERAND (op1, 0);
+ b = TREE_OPERAND (mbz, 0);
+ }
+ else
+ return false;
+ }
+ else
+ return false;
+
+ /* Expected number of iterations is B - A - 1. Check that it matches
+ the actual number, i.e., that B - A - NITER = 1. */
+ tree_to_aff_combination (niter->niter, nit_type, &nit);
+ tree_to_aff_combination (fold_convert (nit_type, a), nit_type, &tmpa);
+ tree_to_aff_combination (fold_convert (nit_type, b), nit_type, &tmpb);
+ aff_combination_scale (&nit, -1);
+ aff_combination_scale (&tmpa, -1);
+ aff_combination_add (&tmpb, &tmpa);
+ aff_combination_add (&tmpb, &nit);
+ if (tmpb.n != 0 || maybe_ne (tmpb.offset, 1))
+ return false;
+
+ /* Finally, check that CAND->IV->BASE - CAND->IV->STEP * A does not
+ overflow. */
+ offset = fold_build2 (MULT_EXPR, TREE_TYPE (cand->iv->step),
+ cand->iv->step,
+ fold_convert (TREE_TYPE (cand->iv->step), a));
+ if (!difference_cannot_overflow_p (data, cand->iv->base, offset))
+ return false;
+
+ /* Determine the new comparison operator. */
+ comp = step < 0 ? GT_EXPR : LT_EXPR;
+ if (*comp_p == NE_EXPR)
+ *comp_p = comp;
+ else if (*comp_p == EQ_EXPR)
+ *comp_p = invert_tree_comparison (comp, false);
+ else
+ gcc_unreachable ();
+
+ return true;
+}
+
+/* Check whether it is possible to express the condition in USE by comparison
+ of candidate CAND. If so, store the value compared with to BOUND, and the
+ comparison operator to COMP. */
+
+static bool
+may_eliminate_iv (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand, tree *bound,
+ enum tree_code *comp)
+{
+ basic_block ex_bb;
+ edge exit;
+ tree period;
+ class loop *loop = data->current_loop;
+ aff_tree bnd;
+ class tree_niter_desc *desc = NULL;
+
+ if (TREE_CODE (cand->iv->step) != INTEGER_CST)
+ return false;
+
+ /* For now works only for exits that dominate the loop latch.
+ TODO: extend to other conditions inside loop body. */
+ ex_bb = gimple_bb (use->stmt);
+ if (use->stmt != last_stmt (ex_bb)
+ || gimple_code (use->stmt) != GIMPLE_COND
+ || !dominated_by_p (CDI_DOMINATORS, loop->latch, ex_bb))
+ return false;
+
+ exit = EDGE_SUCC (ex_bb, 0);
+ if (flow_bb_inside_loop_p (loop, exit->dest))
+ exit = EDGE_SUCC (ex_bb, 1);
+ if (flow_bb_inside_loop_p (loop, exit->dest))
+ return false;
+
+ desc = niter_for_exit (data, exit);
+ if (!desc)
+ return false;
+
+ /* Determine whether we can use the variable to test the exit condition.
+ This is the case iff the period of the induction variable is greater
+ than the number of iterations for which the exit condition is true. */
+ period = iv_period (cand->iv);
+
+ /* If the number of iterations is constant, compare against it directly. */
+ if (TREE_CODE (desc->niter) == INTEGER_CST)
+ {
+ /* See cand_value_at. */
+ if (stmt_after_increment (loop, cand, use->stmt))
+ {
+ if (!tree_int_cst_lt (desc->niter, period))
+ return false;
+ }
+ else
+ {
+ if (tree_int_cst_lt (period, desc->niter))
+ return false;
+ }
+ }
+
+ /* If not, and if this is the only possible exit of the loop, see whether
+ we can get a conservative estimate on the number of iterations of the
+ entire loop and compare against that instead. */
+ else
+ {
+ widest_int period_value, max_niter;
+
+ max_niter = desc->max;
+ if (stmt_after_increment (loop, cand, use->stmt))
+ max_niter += 1;
+ period_value = wi::to_widest (period);
+ if (wi::gtu_p (max_niter, period_value))
+ {
+ /* See if we can take advantage of inferred loop bound
+ information. */
+ if (data->loop_single_exit_p)
+ {
+ if (!max_loop_iterations (loop, &max_niter))
+ return false;
+ /* The loop bound is already adjusted by adding 1. */
+ if (wi::gtu_p (max_niter, period_value))
+ return false;
+ }
+ else
+ return false;
+ }
+ }
+
+ /* For doloop IV cand, the bound would be zero. It's safe whether
+ may_be_zero set or not. */
+ if (cand->doloop_p)
+ {
+ *bound = build_int_cst (TREE_TYPE (cand->iv->base), 0);
+ *comp = iv_elimination_compare (data, use);
+ return true;
+ }
+
+ cand_value_at (loop, cand, use->stmt, desc, &bnd);
+
+ *bound = fold_convert (TREE_TYPE (cand->iv->base),
+ aff_combination_to_tree (&bnd));
+ *comp = iv_elimination_compare (data, use);
+
+ /* It is unlikely that computing the number of iterations using division
+ would be more profitable than keeping the original induction variable. */
+ if (expression_expensive_p (*bound))
+ return false;
+
+ /* Sometimes, it is possible to handle the situation that the number of
+ iterations may be zero unless additional assumptions by using <
+ instead of != in the exit condition.
+
+ TODO: we could also calculate the value MAY_BE_ZERO ? 0 : NITER and
+ base the exit condition on it. However, that is often too
+ expensive. */
+ if (!integer_zerop (desc->may_be_zero))
+ return iv_elimination_compare_lt (data, cand, comp, desc);
+
+ return true;
+}
+
+ /* Calculates the cost of BOUND, if it is a PARM_DECL. A PARM_DECL must
+ be copied, if it is used in the loop body and DATA->body_includes_call. */
+
+static int
+parm_decl_cost (struct ivopts_data *data, tree bound)
+{
+ tree sbound = bound;
+ STRIP_NOPS (sbound);
+
+ if (TREE_CODE (sbound) == SSA_NAME
+ && SSA_NAME_IS_DEFAULT_DEF (sbound)
+ && TREE_CODE (SSA_NAME_VAR (sbound)) == PARM_DECL
+ && data->body_includes_call)
+ return COSTS_N_INSNS (1);
+
+ return 0;
+}
+
+/* Determines cost of computing the use in GROUP with CAND in a condition. */
+
+static bool
+determine_group_iv_cost_cond (struct ivopts_data *data,
+ struct iv_group *group, struct iv_cand *cand)
+{
+ tree bound = NULL_TREE;
+ struct iv *cmp_iv;
+ bitmap inv_exprs = NULL;
+ bitmap inv_vars_elim = NULL, inv_vars_express = NULL, inv_vars;
+ comp_cost elim_cost = infinite_cost, express_cost, cost, bound_cost;
+ enum comp_iv_rewrite rewrite_type;
+ iv_inv_expr_ent *inv_expr_elim = NULL, *inv_expr_express = NULL, *inv_expr;
+ tree *control_var, *bound_cst;
+ enum tree_code comp = ERROR_MARK;
+ struct iv_use *use = group->vuses[0];
+
+ /* Extract condition operands. */
+ rewrite_type = extract_cond_operands (data, use->stmt, &control_var,
+ &bound_cst, NULL, &cmp_iv);
+ gcc_assert (rewrite_type != COMP_IV_NA);
+
+ /* Try iv elimination. */
+ if (rewrite_type == COMP_IV_ELIM
+ && may_eliminate_iv (data, use, cand, &bound, &comp))
+ {
+ elim_cost = force_var_cost (data, bound, &inv_vars_elim);
+ if (elim_cost.cost == 0)
+ elim_cost.cost = parm_decl_cost (data, bound);
+ else if (TREE_CODE (bound) == INTEGER_CST)
+ elim_cost.cost = 0;
+ /* If we replace a loop condition 'i < n' with 'p < base + n',
+ inv_vars_elim will have 'base' and 'n' set, which implies that both
+ 'base' and 'n' will be live during the loop. More likely,
+ 'base + n' will be loop invariant, resulting in only one live value
+ during the loop. So in that case we clear inv_vars_elim and set
+ inv_expr_elim instead. */
+ if (inv_vars_elim && bitmap_count_bits (inv_vars_elim) > 1)
+ {
+ inv_expr_elim = get_loop_invariant_expr (data, bound);
+ bitmap_clear (inv_vars_elim);
+ }
+ /* The bound is a loop invariant, so it will be only computed
+ once. */
+ elim_cost.cost = adjust_setup_cost (data, elim_cost.cost);
+ }
+
+ /* When the condition is a comparison of the candidate IV against
+ zero, prefer this IV.
+
+ TODO: The constant that we're subtracting from the cost should
+ be target-dependent. This information should be added to the
+ target costs for each backend. */
+ if (!elim_cost.infinite_cost_p () /* Do not try to decrease infinite! */
+ && integer_zerop (*bound_cst)
+ && (operand_equal_p (*control_var, cand->var_after, 0)
+ || operand_equal_p (*control_var, cand->var_before, 0)))
+ elim_cost -= 1;
+
+ express_cost = get_computation_cost (data, use, cand, false,
+ &inv_vars_express, NULL,
+ &inv_expr_express);
+ if (cmp_iv != NULL)
+ find_inv_vars (data, &cmp_iv->base, &inv_vars_express);
+
+ /* Count the cost of the original bound as well. */
+ bound_cost = force_var_cost (data, *bound_cst, NULL);
+ if (bound_cost.cost == 0)
+ bound_cost.cost = parm_decl_cost (data, *bound_cst);
+ else if (TREE_CODE (*bound_cst) == INTEGER_CST)
+ bound_cost.cost = 0;
+ express_cost += bound_cost;
+
+ /* Choose the better approach, preferring the eliminated IV. */
+ if (elim_cost <= express_cost)
+ {
+ cost = elim_cost;
+ inv_vars = inv_vars_elim;
+ inv_vars_elim = NULL;
+ inv_expr = inv_expr_elim;
+ /* For doloop candidate/use pair, adjust to zero cost. */
+ if (group->doloop_p && cand->doloop_p && elim_cost.cost > no_cost.cost)
+ cost = no_cost;
+ }
+ else
+ {
+ cost = express_cost;
+ inv_vars = inv_vars_express;
+ inv_vars_express = NULL;
+ bound = NULL_TREE;
+ comp = ERROR_MARK;
+ inv_expr = inv_expr_express;
+ }
+
+ if (inv_expr)
+ {
+ inv_exprs = BITMAP_ALLOC (NULL);
+ bitmap_set_bit (inv_exprs, inv_expr->id);
+ }
+ set_group_iv_cost (data, group, cand, cost,
+ inv_vars, bound, comp, inv_exprs);
+
+ if (inv_vars_elim)
+ BITMAP_FREE (inv_vars_elim);
+ if (inv_vars_express)
+ BITMAP_FREE (inv_vars_express);
+
+ return !cost.infinite_cost_p ();
+}
+
+/* Determines cost of computing uses in GROUP with CAND. Returns false
+ if USE cannot be represented with CAND. */
+
+static bool
+determine_group_iv_cost (struct ivopts_data *data,
+ struct iv_group *group, struct iv_cand *cand)
+{
+ switch (group->type)
+ {
+ case USE_NONLINEAR_EXPR:
+ return determine_group_iv_cost_generic (data, group, cand);
+
+ case USE_REF_ADDRESS:
+ case USE_PTR_ADDRESS:
+ return determine_group_iv_cost_address (data, group, cand);
+
+ case USE_COMPARE:
+ return determine_group_iv_cost_cond (data, group, cand);
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Return true if get_computation_cost indicates that autoincrement is
+ a possibility for the pair of USE and CAND, false otherwise. */
+
+static bool
+autoinc_possible_for_pair (struct ivopts_data *data, struct iv_use *use,
+ struct iv_cand *cand)
+{
+ if (!address_p (use->type))
+ return false;
+
+ bool can_autoinc = false;
+ get_computation_cost (data, use, cand, true, NULL, &can_autoinc, NULL);
+ return can_autoinc;
+}
+
+/* Examine IP_ORIGINAL candidates to see if they are incremented next to a
+ use that allows autoincrement, and set their AINC_USE if possible. */
+
+static void
+set_autoinc_for_original_candidates (struct ivopts_data *data)
+{
+ unsigned i, j;
+
+ for (i = 0; i < data->vcands.length (); i++)
+ {
+ struct iv_cand *cand = data->vcands[i];
+ struct iv_use *closest_before = NULL;
+ struct iv_use *closest_after = NULL;
+ if (cand->pos != IP_ORIGINAL)
+ continue;
+
+ for (j = 0; j < data->vgroups.length (); j++)
+ {
+ struct iv_group *group = data->vgroups[j];
+ struct iv_use *use = group->vuses[0];
+ unsigned uid = gimple_uid (use->stmt);
+
+ if (gimple_bb (use->stmt) != gimple_bb (cand->incremented_at))
+ continue;
+
+ if (uid < gimple_uid (cand->incremented_at)
+ && (closest_before == NULL
+ || uid > gimple_uid (closest_before->stmt)))
+ closest_before = use;
+
+ if (uid > gimple_uid (cand->incremented_at)
+ && (closest_after == NULL
+ || uid < gimple_uid (closest_after->stmt)))
+ closest_after = use;
+ }
+
+ if (closest_before != NULL
+ && autoinc_possible_for_pair (data, closest_before, cand))
+ cand->ainc_use = closest_before;
+ else if (closest_after != NULL
+ && autoinc_possible_for_pair (data, closest_after, cand))
+ cand->ainc_use = closest_after;
+ }
+}
+
+/* Relate compare use with all candidates. */
+
+static void
+relate_compare_use_with_all_cands (struct ivopts_data *data)
+{
+ unsigned i, count = data->vcands.length ();
+ for (i = 0; i < data->vgroups.length (); i++)
+ {
+ struct iv_group *group = data->vgroups[i];
+
+ if (group->type == USE_COMPARE)
+ bitmap_set_range (group->related_cands, 0, count);
+ }
+}
+
+/* If PREFERRED_MODE is suitable and profitable, use the preferred
+ PREFERRED_MODE to compute doloop iv base from niter: base = niter + 1. */
+
+static tree
+compute_doloop_base_on_mode (machine_mode preferred_mode, tree niter,
+ const widest_int &iterations_max)
+{
+ tree ntype = TREE_TYPE (niter);
+ tree pref_type = lang_hooks.types.type_for_mode (preferred_mode, 1);
+ if (!pref_type)
+ return fold_build2 (PLUS_EXPR, ntype, unshare_expr (niter),
+ build_int_cst (ntype, 1));
+
+ gcc_assert (TREE_CODE (pref_type) == INTEGER_TYPE);
+
+ int prec = TYPE_PRECISION (ntype);
+ int pref_prec = TYPE_PRECISION (pref_type);
+
+ tree base;
+
+ /* Check if the PREFERRED_MODED is able to present niter. */
+ if (pref_prec > prec
+ || wi::ltu_p (iterations_max,
+ widest_int::from (wi::max_value (pref_prec, UNSIGNED),
+ UNSIGNED)))
+ {
+ /* No wrap, it is safe to use preferred type after niter + 1. */
+ if (wi::ltu_p (iterations_max,
+ widest_int::from (wi::max_value (prec, UNSIGNED),
+ UNSIGNED)))
+ {
+ /* This could help to optimize "-1 +1" pair when niter looks
+ like "n-1": n is in original mode. "base = (n - 1) + 1"
+ in PREFERRED_MODED: it could be base = (PREFERRED_TYPE)n. */
+ base = fold_build2 (PLUS_EXPR, ntype, unshare_expr (niter),
+ build_int_cst (ntype, 1));
+ base = fold_convert (pref_type, base);
+ }
+
+ /* To avoid wrap, convert niter to preferred type before plus 1. */
+ else
+ {
+ niter = fold_convert (pref_type, niter);
+ base = fold_build2 (PLUS_EXPR, pref_type, unshare_expr (niter),
+ build_int_cst (pref_type, 1));
+ }
+ }
+ else
+ base = fold_build2 (PLUS_EXPR, ntype, unshare_expr (niter),
+ build_int_cst (ntype, 1));
+ return base;
+}
+
+/* Add one doloop dedicated IV candidate:
+ - Base is (may_be_zero ? 1 : (niter + 1)).
+ - Step is -1. */
+
+static void
+add_iv_candidate_for_doloop (struct ivopts_data *data)
+{
+ tree_niter_desc *niter_desc = niter_for_single_dom_exit (data);
+ gcc_assert (niter_desc && niter_desc->assumptions);
+
+ tree niter = niter_desc->niter;
+ tree ntype = TREE_TYPE (niter);
+ gcc_assert (TREE_CODE (ntype) == INTEGER_TYPE);
+
+ tree may_be_zero = niter_desc->may_be_zero;
+ if (may_be_zero && integer_zerop (may_be_zero))
+ may_be_zero = NULL_TREE;
+ if (may_be_zero)
+ {
+ if (COMPARISON_CLASS_P (may_be_zero))
+ {
+ niter = fold_build3 (COND_EXPR, ntype, may_be_zero,
+ build_int_cst (ntype, 0),
+ rewrite_to_non_trapping_overflow (niter));
+ }
+ /* Don't try to obtain the iteration count expression when may_be_zero is
+ integer_nonzerop (actually iteration count is one) or else. */
+ else
+ return;
+ }
+
+ machine_mode mode = TYPE_MODE (ntype);
+ machine_mode pref_mode = targetm.preferred_doloop_mode (mode);
+
+ tree base;
+ if (mode != pref_mode)
+ {
+ base = compute_doloop_base_on_mode (pref_mode, niter, niter_desc->max);
+ ntype = TREE_TYPE (base);
+ }
+ else
+ base = fold_build2 (PLUS_EXPR, ntype, unshare_expr (niter),
+ build_int_cst (ntype, 1));
+
+
+ add_candidate (data, base, build_int_cst (ntype, -1), true, NULL, NULL, true);
+}
+
+/* Finds the candidates for the induction variables. */
+
+static void
+find_iv_candidates (struct ivopts_data *data)
+{
+ /* Add commonly used ivs. */
+ add_standard_iv_candidates (data);
+
+ /* Add doloop dedicated ivs. */
+ if (data->doloop_use_p)
+ add_iv_candidate_for_doloop (data);
+
+ /* Add old induction variables. */
+ add_iv_candidate_for_bivs (data);
+
+ /* Add induction variables derived from uses. */
+ add_iv_candidate_for_groups (data);
+
+ set_autoinc_for_original_candidates (data);
+
+ /* Record the important candidates. */
+ record_important_candidates (data);
+
+ /* Relate compare iv_use with all candidates. */
+ if (!data->consider_all_candidates)
+ relate_compare_use_with_all_cands (data);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ unsigned i;
+
+ fprintf (dump_file, "\n<Important Candidates>:\t");
+ for (i = 0; i < data->vcands.length (); i++)
+ if (data->vcands[i]->important)
+ fprintf (dump_file, " %d,", data->vcands[i]->id);
+ fprintf (dump_file, "\n");
+
+ fprintf (dump_file, "\n<Group, Cand> Related:\n");
+ for (i = 0; i < data->vgroups.length (); i++)
+ {
+ struct iv_group *group = data->vgroups[i];
+
+ if (group->related_cands)
+ {
+ fprintf (dump_file, " Group %d:\t", group->id);
+ dump_bitmap (dump_file, group->related_cands);
+ }
+ }
+ fprintf (dump_file, "\n");
+ }
+}
+
+/* Determines costs of computing use of iv with an iv candidate. */
+
+static void
+determine_group_iv_costs (struct ivopts_data *data)
+{
+ unsigned i, j;
+ struct iv_cand *cand;
+ struct iv_group *group;
+ bitmap to_clear = BITMAP_ALLOC (NULL);
+
+ alloc_use_cost_map (data);
+
+ for (i = 0; i < data->vgroups.length (); i++)
+ {
+ group = data->vgroups[i];
+
+ if (data->consider_all_candidates)
+ {
+ for (j = 0; j < data->vcands.length (); j++)
+ {
+ cand = data->vcands[j];
+ determine_group_iv_cost (data, group, cand);
+ }
+ }
+ else
+ {
+ bitmap_iterator bi;
+
+ EXECUTE_IF_SET_IN_BITMAP (group->related_cands, 0, j, bi)
+ {
+ cand = data->vcands[j];
+ if (!determine_group_iv_cost (data, group, cand))
+ bitmap_set_bit (to_clear, j);
+ }
+
+ /* Remove the candidates for that the cost is infinite from
+ the list of related candidates. */
+ bitmap_and_compl_into (group->related_cands, to_clear);
+ bitmap_clear (to_clear);
+ }
+ }
+
+ BITMAP_FREE (to_clear);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ bitmap_iterator bi;
+
+ /* Dump invariant variables. */
+ fprintf (dump_file, "\n<Invariant Vars>:\n");
+ EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
+ {
+ struct version_info *info = ver_info (data, i);
+ if (info->inv_id)
+ {
+ fprintf (dump_file, "Inv %d:\t", info->inv_id);
+ print_generic_expr (dump_file, info->name, TDF_SLIM);
+ fprintf (dump_file, "%s\n",
+ info->has_nonlin_use ? "" : "\t(eliminable)");
+ }
+ }
+
+ /* Dump invariant expressions. */
+ fprintf (dump_file, "\n<Invariant Expressions>:\n");
+ auto_vec <iv_inv_expr_ent *> list (data->inv_expr_tab->elements ());
+
+ for (hash_table<iv_inv_expr_hasher>::iterator it
+ = data->inv_expr_tab->begin (); it != data->inv_expr_tab->end ();
+ ++it)
+ list.safe_push (*it);
+
+ list.qsort (sort_iv_inv_expr_ent);
+
+ for (i = 0; i < list.length (); ++i)
+ {
+ fprintf (dump_file, "inv_expr %d: \t", list[i]->id);
+ print_generic_expr (dump_file, list[i]->expr, TDF_SLIM);
+ fprintf (dump_file, "\n");
+ }
+
+ fprintf (dump_file, "\n<Group-candidate Costs>:\n");
+
+ for (i = 0; i < data->vgroups.length (); i++)
+ {
+ group = data->vgroups[i];
+
+ fprintf (dump_file, "Group %d:\n", i);
+ fprintf (dump_file, " cand\tcost\tcompl.\tinv.expr.\tinv.vars\n");
+ for (j = 0; j < group->n_map_members; j++)
+ {
+ if (!group->cost_map[j].cand
+ || group->cost_map[j].cost.infinite_cost_p ())
+ continue;
+
+ fprintf (dump_file, " %d\t%" PRId64 "\t%d\t",
+ group->cost_map[j].cand->id,
+ group->cost_map[j].cost.cost,
+ group->cost_map[j].cost.complexity);
+ if (!group->cost_map[j].inv_exprs
+ || bitmap_empty_p (group->cost_map[j].inv_exprs))
+ fprintf (dump_file, "NIL;\t");
+ else
+ bitmap_print (dump_file,
+ group->cost_map[j].inv_exprs, "", ";\t");
+ if (!group->cost_map[j].inv_vars
+ || bitmap_empty_p (group->cost_map[j].inv_vars))
+ fprintf (dump_file, "NIL;\n");
+ else
+ bitmap_print (dump_file,
+ group->cost_map[j].inv_vars, "", "\n");
+ }
+
+ fprintf (dump_file, "\n");
+ }
+ fprintf (dump_file, "\n");
+ }
+}
+
+/* Determines cost of the candidate CAND. */
+
+static void
+determine_iv_cost (struct ivopts_data *data, struct iv_cand *cand)
+{
+ comp_cost cost_base;
+ int64_t cost, cost_step;
+ tree base;
+
+ gcc_assert (cand->iv != NULL);
+
+ /* There are two costs associated with the candidate -- its increment
+ and its initialization. The second is almost negligible for any loop
+ that rolls enough, so we take it just very little into account. */
+
+ base = cand->iv->base;
+ cost_base = force_var_cost (data, base, NULL);
+ /* It will be exceptional that the iv register happens to be initialized with
+ the proper value at no cost. In general, there will at least be a regcopy
+ or a const set. */
+ if (cost_base.cost == 0)
+ cost_base.cost = COSTS_N_INSNS (1);
+ /* Doloop decrement should be considered as zero cost. */
+ if (cand->doloop_p)
+ cost_step = 0;
+ else
+ cost_step = add_cost (data->speed, TYPE_MODE (TREE_TYPE (base)));
+ cost = cost_step + adjust_setup_cost (data, cost_base.cost);
+
+ /* Prefer the original ivs unless we may gain something by replacing it.
+ The reason is to make debugging simpler; so this is not relevant for
+ artificial ivs created by other optimization passes. */
+ if ((cand->pos != IP_ORIGINAL
+ || !SSA_NAME_VAR (cand->var_before)
+ || DECL_ARTIFICIAL (SSA_NAME_VAR (cand->var_before)))
+ /* Prefer doloop as well. */
+ && !cand->doloop_p)
+ cost++;
+
+ /* Prefer not to insert statements into latch unless there are some
+ already (so that we do not create unnecessary jumps). */
+ if (cand->pos == IP_END
+ && empty_block_p (ip_end_pos (data->current_loop)))
+ cost++;
+
+ cand->cost = cost;
+ cand->cost_step = cost_step;
+}
+
+/* Determines costs of computation of the candidates. */
+
+static void
+determine_iv_costs (struct ivopts_data *data)
+{
+ unsigned i;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "<Candidate Costs>:\n");
+ fprintf (dump_file, " cand\tcost\n");
+ }
+
+ for (i = 0; i < data->vcands.length (); i++)
+ {
+ struct iv_cand *cand = data->vcands[i];
+
+ determine_iv_cost (data, cand);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, " %d\t%d\n", i, cand->cost);
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "\n");
+}
+
+/* Estimate register pressure for loop having N_INVS invariants and N_CANDS
+ induction variables. Note N_INVS includes both invariant variables and
+ invariant expressions. */
+
+static unsigned
+ivopts_estimate_reg_pressure (struct ivopts_data *data, unsigned n_invs,
+ unsigned n_cands)
+{
+ unsigned cost;
+ unsigned n_old = data->regs_used, n_new = n_invs + n_cands;
+ unsigned regs_needed = n_new + n_old, available_regs = target_avail_regs;
+ bool speed = data->speed;
+
+ /* If there is a call in the loop body, the call-clobbered registers
+ are not available for loop invariants. */
+ if (data->body_includes_call)
+ available_regs = available_regs - target_clobbered_regs;
+
+ /* If we have enough registers. */
+ if (regs_needed + target_res_regs < available_regs)
+ cost = n_new;
+ /* If close to running out of registers, try to preserve them. */
+ else if (regs_needed <= available_regs)
+ cost = target_reg_cost [speed] * regs_needed;
+ /* If we run out of available registers but the number of candidates
+ does not, we penalize extra registers using target_spill_cost. */
+ else if (n_cands <= available_regs)
+ cost = target_reg_cost [speed] * available_regs
+ + target_spill_cost [speed] * (regs_needed - available_regs);
+ /* If the number of candidates runs out available registers, we penalize
+ extra candidate registers using target_spill_cost * 2. Because it is
+ more expensive to spill induction variable than invariant. */
+ else
+ cost = target_reg_cost [speed] * available_regs
+ + target_spill_cost [speed] * (n_cands - available_regs) * 2
+ + target_spill_cost [speed] * (regs_needed - n_cands);
+
+ /* Finally, add the number of candidates, so that we prefer eliminating
+ induction variables if possible. */
+ return cost + n_cands;
+}
+
+/* For each size of the induction variable set determine the penalty. */
+
+static void
+determine_set_costs (struct ivopts_data *data)
+{
+ unsigned j, n;
+ gphi *phi;
+ gphi_iterator psi;
+ tree op;
+ class loop *loop = data->current_loop;
+ bitmap_iterator bi;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "<Global Costs>:\n");
+ fprintf (dump_file, " target_avail_regs %d\n", target_avail_regs);
+ fprintf (dump_file, " target_clobbered_regs %d\n", target_clobbered_regs);
+ fprintf (dump_file, " target_reg_cost %d\n", target_reg_cost[data->speed]);
+ fprintf (dump_file, " target_spill_cost %d\n", target_spill_cost[data->speed]);
+ }
+
+ n = 0;
+ for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
+ {
+ phi = psi.phi ();
+ op = PHI_RESULT (phi);
+
+ if (virtual_operand_p (op))
+ continue;
+
+ if (get_iv (data, op))
+ continue;
+
+ if (!POINTER_TYPE_P (TREE_TYPE (op))
+ && !INTEGRAL_TYPE_P (TREE_TYPE (op)))
+ continue;
+
+ n++;
+ }
+
+ EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, j, bi)
+ {
+ struct version_info *info = ver_info (data, j);
+
+ if (info->inv_id && info->has_nonlin_use)
+ n++;
+ }
+
+ data->regs_used = n;
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, " regs_used %d\n", n);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, " cost for size:\n");
+ fprintf (dump_file, " ivs\tcost\n");
+ for (j = 0; j <= 2 * target_avail_regs; j++)
+ fprintf (dump_file, " %d\t%d\n", j,
+ ivopts_estimate_reg_pressure (data, 0, j));
+ fprintf (dump_file, "\n");
+ }
+}
+
+/* Returns true if A is a cheaper cost pair than B. */
+
+static bool
+cheaper_cost_pair (class cost_pair *a, class cost_pair *b)
+{
+ if (!a)
+ return false;
+
+ if (!b)
+ return true;
+
+ if (a->cost < b->cost)
+ return true;
+
+ if (b->cost < a->cost)
+ return false;
+
+ /* In case the costs are the same, prefer the cheaper candidate. */
+ if (a->cand->cost < b->cand->cost)
+ return true;
+
+ return false;
+}
+
+/* Compare if A is a more expensive cost pair than B. Return 1, 0 and -1
+ for more expensive, equal and cheaper respectively. */
+
+static int
+compare_cost_pair (class cost_pair *a, class cost_pair *b)
+{
+ if (cheaper_cost_pair (a, b))
+ return -1;
+ if (cheaper_cost_pair (b, a))
+ return 1;
+
+ return 0;
+}
+
+/* Returns candidate by that USE is expressed in IVS. */
+
+static class cost_pair *
+iv_ca_cand_for_group (class iv_ca *ivs, struct iv_group *group)
+{
+ return ivs->cand_for_group[group->id];
+}
+
+/* Computes the cost field of IVS structure. */
+
+static void
+iv_ca_recount_cost (struct ivopts_data *data, class iv_ca *ivs)
+{
+ comp_cost cost = ivs->cand_use_cost;
+
+ cost += ivs->cand_cost;
+ cost += ivopts_estimate_reg_pressure (data, ivs->n_invs, ivs->n_cands);
+ ivs->cost = cost;
+}
+
+/* Remove use of invariants in set INVS by decreasing counter in N_INV_USES
+ and IVS. */
+
+static void
+iv_ca_set_remove_invs (class iv_ca *ivs, bitmap invs, unsigned *n_inv_uses)
+{
+ bitmap_iterator bi;
+ unsigned iid;
+
+ if (!invs)
+ return;
+
+ gcc_assert (n_inv_uses != NULL);
+ EXECUTE_IF_SET_IN_BITMAP (invs, 0, iid, bi)
+ {
+ n_inv_uses[iid]--;
+ if (n_inv_uses[iid] == 0)
+ ivs->n_invs--;
+ }
+}
+
+/* Set USE not to be expressed by any candidate in IVS. */
+
+static void
+iv_ca_set_no_cp (struct ivopts_data *data, class iv_ca *ivs,
+ struct iv_group *group)
+{
+ unsigned gid = group->id, cid;
+ class cost_pair *cp;
+
+ cp = ivs->cand_for_group[gid];
+ if (!cp)
+ return;
+ cid = cp->cand->id;
+
+ ivs->bad_groups++;
+ ivs->cand_for_group[gid] = NULL;
+ ivs->n_cand_uses[cid]--;
+
+ if (ivs->n_cand_uses[cid] == 0)
+ {
+ bitmap_clear_bit (ivs->cands, cid);
+ if (!cp->cand->doloop_p || !targetm.have_count_reg_decr_p)
+ ivs->n_cands--;
+ ivs->cand_cost -= cp->cand->cost;
+ iv_ca_set_remove_invs (ivs, cp->cand->inv_vars, ivs->n_inv_var_uses);
+ iv_ca_set_remove_invs (ivs, cp->cand->inv_exprs, ivs->n_inv_expr_uses);
+ }
+
+ ivs->cand_use_cost -= cp->cost;
+ iv_ca_set_remove_invs (ivs, cp->inv_vars, ivs->n_inv_var_uses);
+ iv_ca_set_remove_invs (ivs, cp->inv_exprs, ivs->n_inv_expr_uses);
+ iv_ca_recount_cost (data, ivs);
+}
+
+/* Add use of invariants in set INVS by increasing counter in N_INV_USES and
+ IVS. */
+
+static void
+iv_ca_set_add_invs (class iv_ca *ivs, bitmap invs, unsigned *n_inv_uses)
+{
+ bitmap_iterator bi;
+ unsigned iid;
+
+ if (!invs)
+ return;
+
+ gcc_assert (n_inv_uses != NULL);
+ EXECUTE_IF_SET_IN_BITMAP (invs, 0, iid, bi)
+ {
+ n_inv_uses[iid]++;
+ if (n_inv_uses[iid] == 1)
+ ivs->n_invs++;
+ }
+}
+
+/* Set cost pair for GROUP in set IVS to CP. */
+
+static void
+iv_ca_set_cp (struct ivopts_data *data, class iv_ca *ivs,
+ struct iv_group *group, class cost_pair *cp)
+{
+ unsigned gid = group->id, cid;
+
+ if (ivs->cand_for_group[gid] == cp)
+ return;
+
+ if (ivs->cand_for_group[gid])
+ iv_ca_set_no_cp (data, ivs, group);
+
+ if (cp)
+ {
+ cid = cp->cand->id;
+
+ ivs->bad_groups--;
+ ivs->cand_for_group[gid] = cp;
+ ivs->n_cand_uses[cid]++;
+ if (ivs->n_cand_uses[cid] == 1)
+ {
+ bitmap_set_bit (ivs->cands, cid);
+ if (!cp->cand->doloop_p || !targetm.have_count_reg_decr_p)
+ ivs->n_cands++;
+ ivs->cand_cost += cp->cand->cost;
+ iv_ca_set_add_invs (ivs, cp->cand->inv_vars, ivs->n_inv_var_uses);
+ iv_ca_set_add_invs (ivs, cp->cand->inv_exprs, ivs->n_inv_expr_uses);
+ }
+
+ ivs->cand_use_cost += cp->cost;
+ iv_ca_set_add_invs (ivs, cp->inv_vars, ivs->n_inv_var_uses);
+ iv_ca_set_add_invs (ivs, cp->inv_exprs, ivs->n_inv_expr_uses);
+ iv_ca_recount_cost (data, ivs);
+ }
+}
+
+/* Extend set IVS by expressing USE by some of the candidates in it
+ if possible. Consider all important candidates if candidates in
+ set IVS don't give any result. */
+
+static void
+iv_ca_add_group (struct ivopts_data *data, class iv_ca *ivs,
+ struct iv_group *group)
+{
+ class cost_pair *best_cp = NULL, *cp;
+ bitmap_iterator bi;
+ unsigned i;
+ struct iv_cand *cand;
+
+ gcc_assert (ivs->upto >= group->id);
+ ivs->upto++;
+ ivs->bad_groups++;
+
+ EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, i, bi)
+ {
+ cand = data->vcands[i];
+ cp = get_group_iv_cost (data, group, cand);
+ if (cheaper_cost_pair (cp, best_cp))
+ best_cp = cp;
+ }
+
+ if (best_cp == NULL)
+ {
+ EXECUTE_IF_SET_IN_BITMAP (data->important_candidates, 0, i, bi)
+ {
+ cand = data->vcands[i];
+ cp = get_group_iv_cost (data, group, cand);
+ if (cheaper_cost_pair (cp, best_cp))
+ best_cp = cp;
+ }
+ }
+
+ iv_ca_set_cp (data, ivs, group, best_cp);
+}
+
+/* Get cost for assignment IVS. */
+
+static comp_cost
+iv_ca_cost (class iv_ca *ivs)
+{
+ /* This was a conditional expression but it triggered a bug in
+ Sun C 5.5. */
+ if (ivs->bad_groups)
+ return infinite_cost;
+ else
+ return ivs->cost;
+}
+
+/* Compare if applying NEW_CP to GROUP for IVS introduces more invariants
+ than OLD_CP. Return 1, 0 and -1 for more, equal and fewer invariants
+ respectively. */
+
+static int
+iv_ca_compare_deps (struct ivopts_data *data, class iv_ca *ivs,
+ struct iv_group *group, class cost_pair *old_cp,
+ class cost_pair *new_cp)
+{
+ gcc_assert (old_cp && new_cp && old_cp != new_cp);
+ unsigned old_n_invs = ivs->n_invs;
+ iv_ca_set_cp (data, ivs, group, new_cp);
+ unsigned new_n_invs = ivs->n_invs;
+ iv_ca_set_cp (data, ivs, group, old_cp);
+
+ return new_n_invs > old_n_invs ? 1 : (new_n_invs < old_n_invs ? -1 : 0);
+}
+
+/* Creates change of expressing GROUP by NEW_CP instead of OLD_CP and chains
+ it before NEXT. */
+
+static struct iv_ca_delta *
+iv_ca_delta_add (struct iv_group *group, class cost_pair *old_cp,
+ class cost_pair *new_cp, struct iv_ca_delta *next)
+{
+ struct iv_ca_delta *change = XNEW (struct iv_ca_delta);
+
+ change->group = group;
+ change->old_cp = old_cp;
+ change->new_cp = new_cp;
+ change->next = next;
+
+ return change;
+}
+
+/* Joins two lists of changes L1 and L2. Destructive -- old lists
+ are rewritten. */
+
+static struct iv_ca_delta *
+iv_ca_delta_join (struct iv_ca_delta *l1, struct iv_ca_delta *l2)
+{
+ struct iv_ca_delta *last;
+
+ if (!l2)
+ return l1;
+
+ if (!l1)
+ return l2;
+
+ for (last = l1; last->next; last = last->next)
+ continue;
+ last->next = l2;
+
+ return l1;
+}
+
+/* Reverse the list of changes DELTA, forming the inverse to it. */
+
+static struct iv_ca_delta *
+iv_ca_delta_reverse (struct iv_ca_delta *delta)
+{
+ struct iv_ca_delta *act, *next, *prev = NULL;
+
+ for (act = delta; act; act = next)
+ {
+ next = act->next;
+ act->next = prev;
+ prev = act;
+
+ std::swap (act->old_cp, act->new_cp);
+ }
+
+ return prev;
+}
+
+/* Commit changes in DELTA to IVS. If FORWARD is false, the changes are
+ reverted instead. */
+
+static void
+iv_ca_delta_commit (struct ivopts_data *data, class iv_ca *ivs,
+ struct iv_ca_delta *delta, bool forward)
+{
+ class cost_pair *from, *to;
+ struct iv_ca_delta *act;
+
+ if (!forward)
+ delta = iv_ca_delta_reverse (delta);
+
+ for (act = delta; act; act = act->next)
+ {
+ from = act->old_cp;
+ to = act->new_cp;
+ gcc_assert (iv_ca_cand_for_group (ivs, act->group) == from);
+ iv_ca_set_cp (data, ivs, act->group, to);
+ }
+
+ if (!forward)
+ iv_ca_delta_reverse (delta);
+}
+
+/* Returns true if CAND is used in IVS. */
+
+static bool
+iv_ca_cand_used_p (class iv_ca *ivs, struct iv_cand *cand)
+{
+ return ivs->n_cand_uses[cand->id] > 0;
+}
+
+/* Returns number of induction variable candidates in the set IVS. */
+
+static unsigned
+iv_ca_n_cands (class iv_ca *ivs)
+{
+ return ivs->n_cands;
+}
+
+/* Free the list of changes DELTA. */
+
+static void
+iv_ca_delta_free (struct iv_ca_delta **delta)
+{
+ struct iv_ca_delta *act, *next;
+
+ for (act = *delta; act; act = next)
+ {
+ next = act->next;
+ free (act);
+ }
+
+ *delta = NULL;
+}
+
+/* Allocates new iv candidates assignment. */
+
+static class iv_ca *
+iv_ca_new (struct ivopts_data *data)
+{
+ class iv_ca *nw = XNEW (class iv_ca);
+
+ nw->upto = 0;
+ nw->bad_groups = 0;
+ nw->cand_for_group = XCNEWVEC (class cost_pair *,
+ data->vgroups.length ());
+ nw->n_cand_uses = XCNEWVEC (unsigned, data->vcands.length ());
+ nw->cands = BITMAP_ALLOC (NULL);
+ nw->n_cands = 0;
+ nw->n_invs = 0;
+ nw->cand_use_cost = no_cost;
+ nw->cand_cost = 0;
+ nw->n_inv_var_uses = XCNEWVEC (unsigned, data->max_inv_var_id + 1);
+ nw->n_inv_expr_uses = XCNEWVEC (unsigned, data->max_inv_expr_id + 1);
+ nw->cost = no_cost;
+
+ return nw;
+}
+
+/* Free memory occupied by the set IVS. */
+
+static void
+iv_ca_free (class iv_ca **ivs)
+{
+ free ((*ivs)->cand_for_group);
+ free ((*ivs)->n_cand_uses);
+ BITMAP_FREE ((*ivs)->cands);
+ free ((*ivs)->n_inv_var_uses);
+ free ((*ivs)->n_inv_expr_uses);
+ free (*ivs);
+ *ivs = NULL;
+}
+
+/* Dumps IVS to FILE. */
+
+static void
+iv_ca_dump (struct ivopts_data *data, FILE *file, class iv_ca *ivs)
+{
+ unsigned i;
+ comp_cost cost = iv_ca_cost (ivs);
+
+ fprintf (file, " cost: %" PRId64 " (complexity %d)\n", cost.cost,
+ cost.complexity);
+ fprintf (file, " reg_cost: %d\n",
+ ivopts_estimate_reg_pressure (data, ivs->n_invs, ivs->n_cands));
+ fprintf (file, " cand_cost: %" PRId64 "\n cand_group_cost: "
+ "%" PRId64 " (complexity %d)\n", ivs->cand_cost,
+ ivs->cand_use_cost.cost, ivs->cand_use_cost.complexity);
+ bitmap_print (file, ivs->cands, " candidates: ","\n");
+
+ for (i = 0; i < ivs->upto; i++)
+ {
+ struct iv_group *group = data->vgroups[i];
+ class cost_pair *cp = iv_ca_cand_for_group (ivs, group);
+ if (cp)
+ fprintf (file, " group:%d --> iv_cand:%d, cost=("
+ "%" PRId64 ",%d)\n", group->id, cp->cand->id,
+ cp->cost.cost, cp->cost.complexity);
+ else
+ fprintf (file, " group:%d --> ??\n", group->id);
+ }
+
+ const char *pref = "";
+ fprintf (file, " invariant variables: ");
+ for (i = 1; i <= data->max_inv_var_id; i++)
+ if (ivs->n_inv_var_uses[i])
+ {
+ fprintf (file, "%s%d", pref, i);
+ pref = ", ";
+ }
+
+ pref = "";
+ fprintf (file, "\n invariant expressions: ");
+ for (i = 1; i <= data->max_inv_expr_id; i++)
+ if (ivs->n_inv_expr_uses[i])
+ {
+ fprintf (file, "%s%d", pref, i);
+ pref = ", ";
+ }
+
+ fprintf (file, "\n\n");
+}
+
+/* Try changing candidate in IVS to CAND for each use. Return cost of the
+ new set, and store differences in DELTA. Number of induction variables
+ in the new set is stored to N_IVS. MIN_NCAND is a flag. When it is true
+ the function will try to find a solution with mimimal iv candidates. */
+
+static comp_cost
+iv_ca_extend (struct ivopts_data *data, class iv_ca *ivs,
+ struct iv_cand *cand, struct iv_ca_delta **delta,
+ unsigned *n_ivs, bool min_ncand)
+{
+ unsigned i;
+ comp_cost cost;
+ struct iv_group *group;
+ class cost_pair *old_cp, *new_cp;
+
+ *delta = NULL;
+ for (i = 0; i < ivs->upto; i++)
+ {
+ group = data->vgroups[i];
+ old_cp = iv_ca_cand_for_group (ivs, group);
+
+ if (old_cp
+ && old_cp->cand == cand)
+ continue;
+
+ new_cp = get_group_iv_cost (data, group, cand);
+ if (!new_cp)
+ continue;
+
+ if (!min_ncand)
+ {
+ int cmp_invs = iv_ca_compare_deps (data, ivs, group, old_cp, new_cp);
+ /* Skip if new_cp depends on more invariants. */
+ if (cmp_invs > 0)
+ continue;
+
+ int cmp_cost = compare_cost_pair (new_cp, old_cp);
+ /* Skip if new_cp is not cheaper. */
+ if (cmp_cost > 0 || (cmp_cost == 0 && cmp_invs == 0))
+ continue;
+ }
+
+ *delta = iv_ca_delta_add (group, old_cp, new_cp, *delta);
+ }
+
+ iv_ca_delta_commit (data, ivs, *delta, true);
+ cost = iv_ca_cost (ivs);
+ if (n_ivs)
+ *n_ivs = iv_ca_n_cands (ivs);
+ iv_ca_delta_commit (data, ivs, *delta, false);
+
+ return cost;
+}
+
+/* Try narrowing set IVS by removing CAND. Return the cost of
+ the new set and store the differences in DELTA. START is
+ the candidate with which we start narrowing. */
+
+static comp_cost
+iv_ca_narrow (struct ivopts_data *data, class iv_ca *ivs,
+ struct iv_cand *cand, struct iv_cand *start,
+ struct iv_ca_delta **delta)
+{
+ unsigned i, ci;
+ struct iv_group *group;
+ class cost_pair *old_cp, *new_cp, *cp;
+ bitmap_iterator bi;
+ struct iv_cand *cnd;
+ comp_cost cost, best_cost, acost;
+
+ *delta = NULL;
+ for (i = 0; i < data->vgroups.length (); i++)
+ {
+ group = data->vgroups[i];
+
+ old_cp = iv_ca_cand_for_group (ivs, group);
+ if (old_cp->cand != cand)
+ continue;
+
+ best_cost = iv_ca_cost (ivs);
+ /* Start narrowing with START. */
+ new_cp = get_group_iv_cost (data, group, start);
+
+ if (data->consider_all_candidates)
+ {
+ EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, ci, bi)
+ {
+ if (ci == cand->id || (start && ci == start->id))
+ continue;
+
+ cnd = data->vcands[ci];
+
+ cp = get_group_iv_cost (data, group, cnd);
+ if (!cp)
+ continue;
+
+ iv_ca_set_cp (data, ivs, group, cp);
+ acost = iv_ca_cost (ivs);
+
+ if (acost < best_cost)
+ {
+ best_cost = acost;
+ new_cp = cp;
+ }
+ }
+ }
+ else
+ {
+ EXECUTE_IF_AND_IN_BITMAP (group->related_cands, ivs->cands, 0, ci, bi)
+ {
+ if (ci == cand->id || (start && ci == start->id))
+ continue;
+
+ cnd = data->vcands[ci];
+
+ cp = get_group_iv_cost (data, group, cnd);
+ if (!cp)
+ continue;
+
+ iv_ca_set_cp (data, ivs, group, cp);
+ acost = iv_ca_cost (ivs);
+
+ if (acost < best_cost)
+ {
+ best_cost = acost;
+ new_cp = cp;
+ }
+ }
+ }
+ /* Restore to old cp for use. */
+ iv_ca_set_cp (data, ivs, group, old_cp);
+
+ if (!new_cp)
+ {
+ iv_ca_delta_free (delta);
+ return infinite_cost;
+ }
+
+ *delta = iv_ca_delta_add (group, old_cp, new_cp, *delta);
+ }
+
+ iv_ca_delta_commit (data, ivs, *delta, true);
+ cost = iv_ca_cost (ivs);
+ iv_ca_delta_commit (data, ivs, *delta, false);
+
+ return cost;
+}
+
+/* Try optimizing the set of candidates IVS by removing candidates different
+ from to EXCEPT_CAND from it. Return cost of the new set, and store
+ differences in DELTA. */
+
+static comp_cost
+iv_ca_prune (struct ivopts_data *data, class iv_ca *ivs,
+ struct iv_cand *except_cand, struct iv_ca_delta **delta)
+{
+ bitmap_iterator bi;
+ struct iv_ca_delta *act_delta, *best_delta;
+ unsigned i;
+ comp_cost best_cost, acost;
+ struct iv_cand *cand;
+
+ best_delta = NULL;
+ best_cost = iv_ca_cost (ivs);
+
+ EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, i, bi)
+ {
+ cand = data->vcands[i];
+
+ if (cand == except_cand)
+ continue;
+
+ acost = iv_ca_narrow (data, ivs, cand, except_cand, &act_delta);
+
+ if (acost < best_cost)
+ {
+ best_cost = acost;
+ iv_ca_delta_free (&best_delta);
+ best_delta = act_delta;
+ }
+ else
+ iv_ca_delta_free (&act_delta);
+ }
+
+ if (!best_delta)
+ {
+ *delta = NULL;
+ return best_cost;
+ }
+
+ /* Recurse to possibly remove other unnecessary ivs. */
+ iv_ca_delta_commit (data, ivs, best_delta, true);
+ best_cost = iv_ca_prune (data, ivs, except_cand, delta);
+ iv_ca_delta_commit (data, ivs, best_delta, false);
+ *delta = iv_ca_delta_join (best_delta, *delta);
+ return best_cost;
+}
+
+/* Check if CAND_IDX is a candidate other than OLD_CAND and has
+ cheaper local cost for GROUP than BEST_CP. Return pointer to
+ the corresponding cost_pair, otherwise just return BEST_CP. */
+
+static class cost_pair*
+cheaper_cost_with_cand (struct ivopts_data *data, struct iv_group *group,
+ unsigned int cand_idx, struct iv_cand *old_cand,
+ class cost_pair *best_cp)
+{
+ struct iv_cand *cand;
+ class cost_pair *cp;
+
+ gcc_assert (old_cand != NULL && best_cp != NULL);
+ if (cand_idx == old_cand->id)
+ return best_cp;
+
+ cand = data->vcands[cand_idx];
+ cp = get_group_iv_cost (data, group, cand);
+ if (cp != NULL && cheaper_cost_pair (cp, best_cp))
+ return cp;
+
+ return best_cp;
+}
+
+/* Try breaking local optimal fixed-point for IVS by replacing candidates
+ which are used by more than one iv uses. For each of those candidates,
+ this function tries to represent iv uses under that candidate using
+ other ones with lower local cost, then tries to prune the new set.
+ If the new set has lower cost, It returns the new cost after recording
+ candidate replacement in list DELTA. */
+
+static comp_cost
+iv_ca_replace (struct ivopts_data *data, class iv_ca *ivs,
+ struct iv_ca_delta **delta)
+{
+ bitmap_iterator bi, bj;
+ unsigned int i, j, k;
+ struct iv_cand *cand;
+ comp_cost orig_cost, acost;
+ struct iv_ca_delta *act_delta, *tmp_delta;
+ class cost_pair *old_cp, *best_cp = NULL;
+
+ *delta = NULL;
+ orig_cost = iv_ca_cost (ivs);
+
+ EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, i, bi)
+ {
+ if (ivs->n_cand_uses[i] == 1
+ || ivs->n_cand_uses[i] > ALWAYS_PRUNE_CAND_SET_BOUND)
+ continue;
+
+ cand = data->vcands[i];
+
+ act_delta = NULL;
+ /* Represent uses under current candidate using other ones with
+ lower local cost. */
+ for (j = 0; j < ivs->upto; j++)
+ {
+ struct iv_group *group = data->vgroups[j];
+ old_cp = iv_ca_cand_for_group (ivs, group);
+
+ if (old_cp->cand != cand)
+ continue;
+
+ best_cp = old_cp;
+ if (data->consider_all_candidates)
+ for (k = 0; k < data->vcands.length (); k++)
+ best_cp = cheaper_cost_with_cand (data, group, k,
+ old_cp->cand, best_cp);
+ else
+ EXECUTE_IF_SET_IN_BITMAP (group->related_cands, 0, k, bj)
+ best_cp = cheaper_cost_with_cand (data, group, k,
+ old_cp->cand, best_cp);
+
+ if (best_cp == old_cp)
+ continue;
+
+ act_delta = iv_ca_delta_add (group, old_cp, best_cp, act_delta);
+ }
+ /* No need for further prune. */
+ if (!act_delta)
+ continue;
+
+ /* Prune the new candidate set. */
+ iv_ca_delta_commit (data, ivs, act_delta, true);
+ acost = iv_ca_prune (data, ivs, NULL, &tmp_delta);
+ iv_ca_delta_commit (data, ivs, act_delta, false);
+ act_delta = iv_ca_delta_join (act_delta, tmp_delta);
+
+ if (acost < orig_cost)
+ {
+ *delta = act_delta;
+ return acost;
+ }
+ else
+ iv_ca_delta_free (&act_delta);
+ }
+
+ return orig_cost;
+}
+
+/* Tries to extend the sets IVS in the best possible way in order to
+ express the GROUP. If ORIGINALP is true, prefer candidates from
+ the original set of IVs, otherwise favor important candidates not
+ based on any memory object. */
+
+static bool
+try_add_cand_for (struct ivopts_data *data, class iv_ca *ivs,
+ struct iv_group *group, bool originalp)
+{
+ comp_cost best_cost, act_cost;
+ unsigned i;
+ bitmap_iterator bi;
+ struct iv_cand *cand;
+ struct iv_ca_delta *best_delta = NULL, *act_delta;
+ class cost_pair *cp;
+
+ iv_ca_add_group (data, ivs, group);
+ best_cost = iv_ca_cost (ivs);
+ cp = iv_ca_cand_for_group (ivs, group);
+ if (cp)
+ {
+ best_delta = iv_ca_delta_add (group, NULL, cp, NULL);
+ iv_ca_set_no_cp (data, ivs, group);
+ }
+
+ /* If ORIGINALP is true, try to find the original IV for the use. Otherwise
+ first try important candidates not based on any memory object. Only if
+ this fails, try the specific ones. Rationale -- in loops with many
+ variables the best choice often is to use just one generic biv. If we
+ added here many ivs specific to the uses, the optimization algorithm later
+ would be likely to get stuck in a local minimum, thus causing us to create
+ too many ivs. The approach from few ivs to more seems more likely to be
+ successful -- starting from few ivs, replacing an expensive use by a
+ specific iv should always be a win. */
+ EXECUTE_IF_SET_IN_BITMAP (group->related_cands, 0, i, bi)
+ {
+ cand = data->vcands[i];
+
+ if (originalp && cand->pos !=IP_ORIGINAL)
+ continue;
+
+ if (!originalp && cand->iv->base_object != NULL_TREE)
+ continue;
+
+ if (iv_ca_cand_used_p (ivs, cand))
+ continue;
+
+ cp = get_group_iv_cost (data, group, cand);
+ if (!cp)
+ continue;
+
+ iv_ca_set_cp (data, ivs, group, cp);
+ act_cost = iv_ca_extend (data, ivs, cand, &act_delta, NULL,
+ true);
+ iv_ca_set_no_cp (data, ivs, group);
+ act_delta = iv_ca_delta_add (group, NULL, cp, act_delta);
+
+ if (act_cost < best_cost)
+ {
+ best_cost = act_cost;
+
+ iv_ca_delta_free (&best_delta);
+ best_delta = act_delta;
+ }
+ else
+ iv_ca_delta_free (&act_delta);
+ }
+
+ if (best_cost.infinite_cost_p ())
+ {
+ for (i = 0; i < group->n_map_members; i++)
+ {
+ cp = group->cost_map + i;
+ cand = cp->cand;
+ if (!cand)
+ continue;
+
+ /* Already tried this. */
+ if (cand->important)
+ {
+ if (originalp && cand->pos == IP_ORIGINAL)
+ continue;
+ if (!originalp && cand->iv->base_object == NULL_TREE)
+ continue;
+ }
+
+ if (iv_ca_cand_used_p (ivs, cand))
+ continue;
+
+ act_delta = NULL;
+ iv_ca_set_cp (data, ivs, group, cp);
+ act_cost = iv_ca_extend (data, ivs, cand, &act_delta, NULL, true);
+ iv_ca_set_no_cp (data, ivs, group);
+ act_delta = iv_ca_delta_add (group,
+ iv_ca_cand_for_group (ivs, group),
+ cp, act_delta);
+
+ if (act_cost < best_cost)
+ {
+ best_cost = act_cost;
+
+ if (best_delta)
+ iv_ca_delta_free (&best_delta);
+ best_delta = act_delta;
+ }
+ else
+ iv_ca_delta_free (&act_delta);
+ }
+ }
+
+ iv_ca_delta_commit (data, ivs, best_delta, true);
+ iv_ca_delta_free (&best_delta);
+
+ return !best_cost.infinite_cost_p ();
+}
+
+/* Finds an initial assignment of candidates to uses. */
+
+static class iv_ca *
+get_initial_solution (struct ivopts_data *data, bool originalp)
+{
+ unsigned i;
+ class iv_ca *ivs = iv_ca_new (data);
+
+ for (i = 0; i < data->vgroups.length (); i++)
+ if (!try_add_cand_for (data, ivs, data->vgroups[i], originalp))
+ {
+ iv_ca_free (&ivs);
+ return NULL;
+ }
+
+ return ivs;
+}
+
+/* Tries to improve set of induction variables IVS. TRY_REPLACE_P
+ points to a bool variable, this function tries to break local
+ optimal fixed-point by replacing candidates in IVS if it's true. */
+
+static bool
+try_improve_iv_set (struct ivopts_data *data,
+ class iv_ca *ivs, bool *try_replace_p)
+{
+ unsigned i, n_ivs;
+ comp_cost acost, best_cost = iv_ca_cost (ivs);
+ struct iv_ca_delta *best_delta = NULL, *act_delta, *tmp_delta;
+ struct iv_cand *cand;
+
+ /* Try extending the set of induction variables by one. */
+ for (i = 0; i < data->vcands.length (); i++)
+ {
+ cand = data->vcands[i];
+
+ if (iv_ca_cand_used_p (ivs, cand))
+ continue;
+
+ acost = iv_ca_extend (data, ivs, cand, &act_delta, &n_ivs, false);
+ if (!act_delta)
+ continue;
+
+ /* If we successfully added the candidate and the set is small enough,
+ try optimizing it by removing other candidates. */
+ if (n_ivs <= ALWAYS_PRUNE_CAND_SET_BOUND)
+ {
+ iv_ca_delta_commit (data, ivs, act_delta, true);
+ acost = iv_ca_prune (data, ivs, cand, &tmp_delta);
+ iv_ca_delta_commit (data, ivs, act_delta, false);
+ act_delta = iv_ca_delta_join (act_delta, tmp_delta);
+ }
+
+ if (acost < best_cost)
+ {
+ best_cost = acost;
+ iv_ca_delta_free (&best_delta);
+ best_delta = act_delta;
+ }
+ else
+ iv_ca_delta_free (&act_delta);
+ }
+
+ if (!best_delta)
+ {
+ /* Try removing the candidates from the set instead. */
+ best_cost = iv_ca_prune (data, ivs, NULL, &best_delta);
+
+ if (!best_delta && *try_replace_p)
+ {
+ *try_replace_p = false;
+ /* So far candidate selecting algorithm tends to choose fewer IVs
+ so that it can handle cases in which loops have many variables
+ but the best choice is often to use only one general biv. One
+ weakness is it can't handle opposite cases, in which different
+ candidates should be chosen with respect to each use. To solve
+ the problem, we replace candidates in a manner described by the
+ comments of iv_ca_replace, thus give general algorithm a chance
+ to break local optimal fixed-point in these cases. */
+ best_cost = iv_ca_replace (data, ivs, &best_delta);
+ }
+
+ if (!best_delta)
+ return false;
+ }
+
+ iv_ca_delta_commit (data, ivs, best_delta, true);
+ iv_ca_delta_free (&best_delta);
+ return best_cost == iv_ca_cost (ivs);
+}
+
+/* Attempts to find the optimal set of induction variables. We do simple
+ greedy heuristic -- we try to replace at most one candidate in the selected
+ solution and remove the unused ivs while this improves the cost. */
+
+static class iv_ca *
+find_optimal_iv_set_1 (struct ivopts_data *data, bool originalp)
+{
+ class iv_ca *set;
+ bool try_replace_p = true;
+
+ /* Get the initial solution. */
+ set = get_initial_solution (data, originalp);
+ if (!set)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Unable to substitute for ivs, failed.\n");
+ return NULL;
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Initial set of candidates:\n");
+ iv_ca_dump (data, dump_file, set);
+ }
+
+ while (try_improve_iv_set (data, set, &try_replace_p))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Improved to:\n");
+ iv_ca_dump (data, dump_file, set);
+ }
+ }
+
+ /* If the set has infinite_cost, it can't be optimal. */
+ if (iv_ca_cost (set).infinite_cost_p ())
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "Overflow to infinite cost in try_improve_iv_set.\n");
+ iv_ca_free (&set);
+ }
+ return set;
+}
+
+static class iv_ca *
+find_optimal_iv_set (struct ivopts_data *data)
+{
+ unsigned i;
+ comp_cost cost, origcost;
+ class iv_ca *set, *origset;
+
+ /* Determine the cost based on a strategy that starts with original IVs,
+ and try again using a strategy that prefers candidates not based
+ on any IVs. */
+ origset = find_optimal_iv_set_1 (data, true);
+ set = find_optimal_iv_set_1 (data, false);
+
+ if (!origset && !set)
+ return NULL;
+
+ origcost = origset ? iv_ca_cost (origset) : infinite_cost;
+ cost = set ? iv_ca_cost (set) : infinite_cost;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Original cost %" PRId64 " (complexity %d)\n\n",
+ origcost.cost, origcost.complexity);
+ fprintf (dump_file, "Final cost %" PRId64 " (complexity %d)\n\n",
+ cost.cost, cost.complexity);
+ }
+
+ /* Choose the one with the best cost. */
+ if (origcost <= cost)
+ {
+ if (set)
+ iv_ca_free (&set);
+ set = origset;
+ }
+ else if (origset)
+ iv_ca_free (&origset);
+
+ for (i = 0; i < data->vgroups.length (); i++)
+ {
+ struct iv_group *group = data->vgroups[i];
+ group->selected = iv_ca_cand_for_group (set, group)->cand;
+ }
+
+ return set;
+}
+
+/* Creates a new induction variable corresponding to CAND. */
+
+static void
+create_new_iv (struct ivopts_data *data, struct iv_cand *cand)
+{
+ gimple_stmt_iterator incr_pos;
+ tree base;
+ struct iv_use *use;
+ struct iv_group *group;
+ bool after = false;
+
+ gcc_assert (cand->iv != NULL);
+
+ switch (cand->pos)
+ {
+ case IP_NORMAL:
+ incr_pos = gsi_last_bb (ip_normal_pos (data->current_loop));
+ break;
+
+ case IP_END:
+ incr_pos = gsi_last_bb (ip_end_pos (data->current_loop));
+ after = true;
+ break;
+
+ case IP_AFTER_USE:
+ after = true;
+ /* fall through */
+ case IP_BEFORE_USE:
+ incr_pos = gsi_for_stmt (cand->incremented_at);
+ break;
+
+ case IP_ORIGINAL:
+ /* Mark that the iv is preserved. */
+ name_info (data, cand->var_before)->preserve_biv = true;
+ name_info (data, cand->var_after)->preserve_biv = true;
+
+ /* Rewrite the increment so that it uses var_before directly. */
+ use = find_interesting_uses_op (data, cand->var_after);
+ group = data->vgroups[use->group_id];
+ group->selected = cand;
+ return;
+ }
+
+ gimple_add_tmp_var (cand->var_before);
+
+ base = unshare_expr (cand->iv->base);
+
+ create_iv (base, unshare_expr (cand->iv->step),
+ cand->var_before, data->current_loop,
+ &incr_pos, after, &cand->var_before, &cand->var_after);
+}
+
+/* Creates new induction variables described in SET. */
+
+static void
+create_new_ivs (struct ivopts_data *data, class iv_ca *set)
+{
+ unsigned i;
+ struct iv_cand *cand;
+ bitmap_iterator bi;
+
+ EXECUTE_IF_SET_IN_BITMAP (set->cands, 0, i, bi)
+ {
+ cand = data->vcands[i];
+ create_new_iv (data, cand);
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Selected IV set for loop %d",
+ data->current_loop->num);
+ if (data->loop_loc != UNKNOWN_LOCATION)
+ fprintf (dump_file, " at %s:%d", LOCATION_FILE (data->loop_loc),
+ LOCATION_LINE (data->loop_loc));
+ fprintf (dump_file, ", " HOST_WIDE_INT_PRINT_DEC " avg niters",
+ avg_loop_niter (data->current_loop));
+ fprintf (dump_file, ", %lu IVs:\n", bitmap_count_bits (set->cands));
+ EXECUTE_IF_SET_IN_BITMAP (set->cands, 0, i, bi)
+ {
+ cand = data->vcands[i];
+ dump_cand (dump_file, cand);
+ }
+ fprintf (dump_file, "\n");
+ }
+}
+
+/* Rewrites USE (definition of iv used in a nonlinear expression)
+ using candidate CAND. */
+
+static void
+rewrite_use_nonlinear_expr (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ gassign *ass;
+ gimple_stmt_iterator bsi;
+ tree comp, type = get_use_type (use), tgt;
+
+ /* An important special case -- if we are asked to express value of
+ the original iv by itself, just exit; there is no need to
+ introduce a new computation (that might also need casting the
+ variable to unsigned and back). */
+ if (cand->pos == IP_ORIGINAL
+ && cand->incremented_at == use->stmt)
+ {
+ tree op = NULL_TREE;
+ enum tree_code stmt_code;
+
+ gcc_assert (is_gimple_assign (use->stmt));
+ gcc_assert (gimple_assign_lhs (use->stmt) == cand->var_after);
+
+ /* Check whether we may leave the computation unchanged.
+ This is the case only if it does not rely on other
+ computations in the loop -- otherwise, the computation
+ we rely upon may be removed in remove_unused_ivs,
+ thus leading to ICE. */
+ stmt_code = gimple_assign_rhs_code (use->stmt);
+ if (stmt_code == PLUS_EXPR
+ || stmt_code == MINUS_EXPR
+ || stmt_code == POINTER_PLUS_EXPR)
+ {
+ if (gimple_assign_rhs1 (use->stmt) == cand->var_before)
+ op = gimple_assign_rhs2 (use->stmt);
+ else if (gimple_assign_rhs2 (use->stmt) == cand->var_before)
+ op = gimple_assign_rhs1 (use->stmt);
+ }
+
+ if (op != NULL_TREE)
+ {
+ if (expr_invariant_in_loop_p (data->current_loop, op))
+ return;
+ if (TREE_CODE (op) == SSA_NAME)
+ {
+ struct iv *iv = get_iv (data, op);
+ if (iv != NULL && integer_zerop (iv->step))
+ return;
+ }
+ }
+ }
+
+ switch (gimple_code (use->stmt))
+ {
+ case GIMPLE_PHI:
+ tgt = PHI_RESULT (use->stmt);
+
+ /* If we should keep the biv, do not replace it. */
+ if (name_info (data, tgt)->preserve_biv)
+ return;
+
+ bsi = gsi_after_labels (gimple_bb (use->stmt));
+ break;
+
+ case GIMPLE_ASSIGN:
+ tgt = gimple_assign_lhs (use->stmt);
+ bsi = gsi_for_stmt (use->stmt);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ aff_tree aff_inv, aff_var;
+ if (!get_computation_aff_1 (data->current_loop, use->stmt,
+ use, cand, &aff_inv, &aff_var))
+ gcc_unreachable ();
+
+ unshare_aff_combination (&aff_inv);
+ unshare_aff_combination (&aff_var);
+ /* Prefer CSE opportunity than loop invariant by adding offset at last
+ so that iv_uses have different offsets can be CSEed. */
+ poly_widest_int offset = aff_inv.offset;
+ aff_inv.offset = 0;
+
+ gimple_seq stmt_list = NULL, seq = NULL;
+ tree comp_op1 = aff_combination_to_tree (&aff_inv);
+ tree comp_op2 = aff_combination_to_tree (&aff_var);
+ gcc_assert (comp_op1 && comp_op2);
+
+ comp_op1 = force_gimple_operand (comp_op1, &seq, true, NULL);
+ gimple_seq_add_seq (&stmt_list, seq);
+ comp_op2 = force_gimple_operand (comp_op2, &seq, true, NULL);
+ gimple_seq_add_seq (&stmt_list, seq);
+
+ if (POINTER_TYPE_P (TREE_TYPE (comp_op2)))
+ std::swap (comp_op1, comp_op2);
+
+ if (POINTER_TYPE_P (TREE_TYPE (comp_op1)))
+ {
+ comp = fold_build_pointer_plus (comp_op1,
+ fold_convert (sizetype, comp_op2));
+ comp = fold_build_pointer_plus (comp,
+ wide_int_to_tree (sizetype, offset));
+ }
+ else
+ {
+ comp = fold_build2 (PLUS_EXPR, TREE_TYPE (comp_op1), comp_op1,
+ fold_convert (TREE_TYPE (comp_op1), comp_op2));
+ comp = fold_build2 (PLUS_EXPR, TREE_TYPE (comp_op1), comp,
+ wide_int_to_tree (TREE_TYPE (comp_op1), offset));
+ }
+
+ comp = fold_convert (type, comp);
+ comp = force_gimple_operand (comp, &seq, false, NULL);
+ gimple_seq_add_seq (&stmt_list, seq);
+ if (gimple_code (use->stmt) != GIMPLE_PHI
+ /* We can't allow re-allocating the stmt as it might be pointed
+ to still. */
+ && (get_gimple_rhs_num_ops (TREE_CODE (comp))
+ >= gimple_num_ops (gsi_stmt (bsi))))
+ {
+ comp = force_gimple_operand (comp, &seq, true, NULL);
+ gimple_seq_add_seq (&stmt_list, seq);
+ if (POINTER_TYPE_P (TREE_TYPE (tgt)))
+ {
+ duplicate_ssa_name_ptr_info (comp, SSA_NAME_PTR_INFO (tgt));
+ /* As this isn't a plain copy we have to reset alignment
+ information. */
+ if (SSA_NAME_PTR_INFO (comp))
+ mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (comp));
+ }
+ }
+
+ gsi_insert_seq_before (&bsi, stmt_list, GSI_SAME_STMT);
+ if (gimple_code (use->stmt) == GIMPLE_PHI)
+ {
+ ass = gimple_build_assign (tgt, comp);
+ gsi_insert_before (&bsi, ass, GSI_SAME_STMT);
+
+ bsi = gsi_for_stmt (use->stmt);
+ remove_phi_node (&bsi, false);
+ }
+ else
+ {
+ gimple_assign_set_rhs_from_tree (&bsi, comp);
+ use->stmt = gsi_stmt (bsi);
+ }
+}
+
+/* Performs a peephole optimization to reorder the iv update statement with
+ a mem ref to enable instruction combining in later phases. The mem ref uses
+ the iv value before the update, so the reordering transformation requires
+ adjustment of the offset. CAND is the selected IV_CAND.
+
+ Example:
+
+ t = MEM_REF (base, iv1, 8, 16); // base, index, stride, offset
+ iv2 = iv1 + 1;
+
+ if (t < val) (1)
+ goto L;
+ goto Head;
+
+
+ directly propagating t over to (1) will introduce overlapping live range
+ thus increase register pressure. This peephole transform it into:
+
+
+ iv2 = iv1 + 1;
+ t = MEM_REF (base, iv2, 8, 8);
+ if (t < val)
+ goto L;
+ goto Head;
+*/
+
+static void
+adjust_iv_update_pos (struct iv_cand *cand, struct iv_use *use)
+{
+ tree var_after;
+ gimple *iv_update, *stmt;
+ basic_block bb;
+ gimple_stmt_iterator gsi, gsi_iv;
+
+ if (cand->pos != IP_NORMAL)
+ return;
+
+ var_after = cand->var_after;
+ iv_update = SSA_NAME_DEF_STMT (var_after);
+
+ bb = gimple_bb (iv_update);
+ gsi = gsi_last_nondebug_bb (bb);
+ stmt = gsi_stmt (gsi);
+
+ /* Only handle conditional statement for now. */
+ if (gimple_code (stmt) != GIMPLE_COND)
+ return;
+
+ gsi_prev_nondebug (&gsi);
+ stmt = gsi_stmt (gsi);
+ if (stmt != iv_update)
+ return;
+
+ gsi_prev_nondebug (&gsi);
+ if (gsi_end_p (gsi))
+ return;
+
+ stmt = gsi_stmt (gsi);
+ if (gimple_code (stmt) != GIMPLE_ASSIGN)
+ return;
+
+ if (stmt != use->stmt)
+ return;
+
+ if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
+ return;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Reordering \n");
+ print_gimple_stmt (dump_file, iv_update, 0);
+ print_gimple_stmt (dump_file, use->stmt, 0);
+ fprintf (dump_file, "\n");
+ }
+
+ gsi = gsi_for_stmt (use->stmt);
+ gsi_iv = gsi_for_stmt (iv_update);
+ gsi_move_before (&gsi_iv, &gsi);
+
+ cand->pos = IP_BEFORE_USE;
+ cand->incremented_at = use->stmt;
+}
+
+/* Return the alias pointer type that should be used for a MEM_REF
+ associated with USE, which has type USE_PTR_ADDRESS. */
+
+static tree
+get_alias_ptr_type_for_ptr_address (iv_use *use)
+{
+ gcall *call = as_a <gcall *> (use->stmt);
+ switch (gimple_call_internal_fn (call))
+ {
+ case IFN_MASK_LOAD:
+ case IFN_MASK_STORE:
+ case IFN_MASK_LOAD_LANES:
+ case IFN_MASK_STORE_LANES:
+ case IFN_LEN_LOAD:
+ case IFN_LEN_STORE:
+ /* The second argument contains the correct alias type. */
+ gcc_assert (use->op_p = gimple_call_arg_ptr (call, 0));
+ return TREE_TYPE (gimple_call_arg (call, 1));
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+
+/* Rewrites USE (address that is an iv) using candidate CAND. */
+
+static void
+rewrite_use_address (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ aff_tree aff;
+ bool ok;
+
+ adjust_iv_update_pos (cand, use);
+ ok = get_computation_aff (data->current_loop, use->stmt, use, cand, &aff);
+ gcc_assert (ok);
+ unshare_aff_combination (&aff);
+
+ /* To avoid undefined overflow problems, all IV candidates use unsigned
+ integer types. The drawback is that this makes it impossible for
+ create_mem_ref to distinguish an IV that is based on a memory object
+ from one that represents simply an offset.
+
+ To work around this problem, we pass a hint to create_mem_ref that
+ indicates which variable (if any) in aff is an IV based on a memory
+ object. Note that we only consider the candidate. If this is not
+ based on an object, the base of the reference is in some subexpression
+ of the use -- but these will use pointer types, so they are recognized
+ by the create_mem_ref heuristics anyway. */
+ tree iv = var_at_stmt (data->current_loop, cand, use->stmt);
+ tree base_hint = (cand->iv->base_object) ? iv : NULL_TREE;
+ gimple_stmt_iterator bsi = gsi_for_stmt (use->stmt);
+ tree type = use->mem_type;
+ tree alias_ptr_type;
+ if (use->type == USE_PTR_ADDRESS)
+ alias_ptr_type = get_alias_ptr_type_for_ptr_address (use);
+ else
+ {
+ gcc_assert (type == TREE_TYPE (*use->op_p));
+ unsigned int align = get_object_alignment (*use->op_p);
+ if (align != TYPE_ALIGN (type))
+ type = build_aligned_type (type, align);
+ alias_ptr_type = reference_alias_ptr_type (*use->op_p);
+ }
+ tree ref = create_mem_ref (&bsi, type, &aff, alias_ptr_type,
+ iv, base_hint, data->speed);
+
+ if (use->type == USE_PTR_ADDRESS)
+ {
+ ref = fold_build1 (ADDR_EXPR, build_pointer_type (use->mem_type), ref);
+ ref = fold_convert (get_use_type (use), ref);
+ ref = force_gimple_operand_gsi (&bsi, ref, true, NULL_TREE,
+ true, GSI_SAME_STMT);
+ }
+ else
+ copy_ref_info (ref, *use->op_p);
+
+ *use->op_p = ref;
+}
+
+/* Rewrites USE (the condition such that one of the arguments is an iv) using
+ candidate CAND. */
+
+static void
+rewrite_use_compare (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ tree comp, op, bound;
+ gimple_stmt_iterator bsi = gsi_for_stmt (use->stmt);
+ enum tree_code compare;
+ struct iv_group *group = data->vgroups[use->group_id];
+ class cost_pair *cp = get_group_iv_cost (data, group, cand);
+
+ bound = cp->value;
+ if (bound)
+ {
+ tree var = var_at_stmt (data->current_loop, cand, use->stmt);
+ tree var_type = TREE_TYPE (var);
+ gimple_seq stmts;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Replacing exit test: ");
+ print_gimple_stmt (dump_file, use->stmt, 0, TDF_SLIM);
+ }
+ compare = cp->comp;
+ bound = unshare_expr (fold_convert (var_type, bound));
+ op = force_gimple_operand (bound, &stmts, true, NULL_TREE);
+ if (stmts)
+ gsi_insert_seq_on_edge_immediate (
+ loop_preheader_edge (data->current_loop),
+ stmts);
+
+ gcond *cond_stmt = as_a <gcond *> (use->stmt);
+ gimple_cond_set_lhs (cond_stmt, var);
+ gimple_cond_set_code (cond_stmt, compare);
+ gimple_cond_set_rhs (cond_stmt, op);
+ return;
+ }
+
+ /* The induction variable elimination failed; just express the original
+ giv. */
+ comp = get_computation_at (data->current_loop, use->stmt, use, cand);
+ gcc_assert (comp != NULL_TREE);
+ gcc_assert (use->op_p != NULL);
+ *use->op_p = force_gimple_operand_gsi (&bsi, comp, true,
+ SSA_NAME_VAR (*use->op_p),
+ true, GSI_SAME_STMT);
+}
+
+/* Rewrite the groups using the selected induction variables. */
+
+static void
+rewrite_groups (struct ivopts_data *data)
+{
+ unsigned i, j;
+
+ for (i = 0; i < data->vgroups.length (); i++)
+ {
+ struct iv_group *group = data->vgroups[i];
+ struct iv_cand *cand = group->selected;
+
+ gcc_assert (cand);
+
+ if (group->type == USE_NONLINEAR_EXPR)
+ {
+ for (j = 0; j < group->vuses.length (); j++)
+ {
+ rewrite_use_nonlinear_expr (data, group->vuses[j], cand);
+ update_stmt (group->vuses[j]->stmt);
+ }
+ }
+ else if (address_p (group->type))
+ {
+ for (j = 0; j < group->vuses.length (); j++)
+ {
+ rewrite_use_address (data, group->vuses[j], cand);
+ update_stmt (group->vuses[j]->stmt);
+ }
+ }
+ else
+ {
+ gcc_assert (group->type == USE_COMPARE);
+
+ for (j = 0; j < group->vuses.length (); j++)
+ {
+ rewrite_use_compare (data, group->vuses[j], cand);
+ update_stmt (group->vuses[j]->stmt);
+ }
+ }
+ }
+}
+
+/* Removes the ivs that are not used after rewriting. */
+
+static void
+remove_unused_ivs (struct ivopts_data *data, bitmap toremove)
+{
+ unsigned j;
+ bitmap_iterator bi;
+
+ /* Figure out an order in which to release SSA DEFs so that we don't
+ release something that we'd have to propagate into a debug stmt
+ afterwards. */
+ EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, j, bi)
+ {
+ struct version_info *info;
+
+ info = ver_info (data, j);
+ if (info->iv
+ && !integer_zerop (info->iv->step)
+ && !info->inv_id
+ && !info->iv->nonlin_use
+ && !info->preserve_biv)
+ {
+ bitmap_set_bit (toremove, SSA_NAME_VERSION (info->iv->ssa_name));
+
+ tree def = info->iv->ssa_name;
+
+ if (MAY_HAVE_DEBUG_BIND_STMTS && SSA_NAME_DEF_STMT (def))
+ {
+ imm_use_iterator imm_iter;
+ use_operand_p use_p;
+ gimple *stmt;
+ int count = 0;
+
+ FOR_EACH_IMM_USE_STMT (stmt, imm_iter, def)
+ {
+ if (!gimple_debug_bind_p (stmt))
+ continue;
+
+ /* We just want to determine whether to do nothing
+ (count == 0), to substitute the computed
+ expression into a single use of the SSA DEF by
+ itself (count == 1), or to use a debug temp
+ because the SSA DEF is used multiple times or as
+ part of a larger expression (count > 1). */
+ count++;
+ if (gimple_debug_bind_get_value (stmt) != def)
+ count++;
+
+ if (count > 1)
+ break;
+ }
+
+ if (!count)
+ continue;
+
+ struct iv_use dummy_use;
+ struct iv_cand *best_cand = NULL, *cand;
+ unsigned i, best_pref = 0, cand_pref;
+ tree comp = NULL_TREE;
+
+ memset (&dummy_use, 0, sizeof (dummy_use));
+ dummy_use.iv = info->iv;
+ for (i = 0; i < data->vgroups.length () && i < 64; i++)
+ {
+ cand = data->vgroups[i]->selected;
+ if (cand == best_cand)
+ continue;
+ cand_pref = operand_equal_p (cand->iv->step,
+ info->iv->step, 0)
+ ? 4 : 0;
+ cand_pref
+ += TYPE_MODE (TREE_TYPE (cand->iv->base))
+ == TYPE_MODE (TREE_TYPE (info->iv->base))
+ ? 2 : 0;
+ cand_pref
+ += TREE_CODE (cand->iv->base) == INTEGER_CST
+ ? 1 : 0;
+ if (best_cand == NULL || best_pref < cand_pref)
+ {
+ tree this_comp
+ = get_debug_computation_at (data->current_loop,
+ SSA_NAME_DEF_STMT (def),
+ &dummy_use, cand);
+ if (this_comp)
+ {
+ best_cand = cand;
+ best_pref = cand_pref;
+ comp = this_comp;
+ }
+ }
+ }
+
+ if (!best_cand)
+ continue;
+
+ comp = unshare_expr (comp);
+ if (count > 1)
+ {
+ tree vexpr = build_debug_expr_decl (TREE_TYPE (comp));
+ /* FIXME: Is setting the mode really necessary? */
+ if (SSA_NAME_VAR (def))
+ SET_DECL_MODE (vexpr, DECL_MODE (SSA_NAME_VAR (def)));
+ else
+ SET_DECL_MODE (vexpr, TYPE_MODE (TREE_TYPE (vexpr)));
+ gdebug *def_temp
+ = gimple_build_debug_bind (vexpr, comp, NULL);
+ gimple_stmt_iterator gsi;
+
+ if (gimple_code (SSA_NAME_DEF_STMT (def)) == GIMPLE_PHI)
+ gsi = gsi_after_labels (gimple_bb
+ (SSA_NAME_DEF_STMT (def)));
+ else
+ gsi = gsi_for_stmt (SSA_NAME_DEF_STMT (def));
+
+ gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
+ comp = vexpr;
+ }
+
+ FOR_EACH_IMM_USE_STMT (stmt, imm_iter, def)
+ {
+ if (!gimple_debug_bind_p (stmt))
+ continue;
+
+ FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
+ SET_USE (use_p, comp);
+
+ update_stmt (stmt);
+ }
+ }
+ }
+ }
+}
+
+/* Frees memory occupied by class tree_niter_desc in *VALUE. Callback
+ for hash_map::traverse. */
+
+bool
+free_tree_niter_desc (edge const &, tree_niter_desc *const &value, void *)
+{
+ free (value);
+ return true;
+}
+
+/* Frees data allocated by the optimization of a single loop. */
+
+static void
+free_loop_data (struct ivopts_data *data)
+{
+ unsigned i, j;
+ bitmap_iterator bi;
+ tree obj;
+
+ if (data->niters)
+ {
+ data->niters->traverse<void *, free_tree_niter_desc> (NULL);
+ delete data->niters;
+ data->niters = NULL;
+ }
+
+ EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
+ {
+ struct version_info *info;
+
+ info = ver_info (data, i);
+ info->iv = NULL;
+ info->has_nonlin_use = false;
+ info->preserve_biv = false;
+ info->inv_id = 0;
+ }
+ bitmap_clear (data->relevant);
+ bitmap_clear (data->important_candidates);
+
+ for (i = 0; i < data->vgroups.length (); i++)
+ {
+ struct iv_group *group = data->vgroups[i];
+
+ for (j = 0; j < group->vuses.length (); j++)
+ free (group->vuses[j]);
+ group->vuses.release ();
+
+ BITMAP_FREE (group->related_cands);
+ for (j = 0; j < group->n_map_members; j++)
+ {
+ if (group->cost_map[j].inv_vars)
+ BITMAP_FREE (group->cost_map[j].inv_vars);
+ if (group->cost_map[j].inv_exprs)
+ BITMAP_FREE (group->cost_map[j].inv_exprs);
+ }
+
+ free (group->cost_map);
+ free (group);
+ }
+ data->vgroups.truncate (0);
+
+ for (i = 0; i < data->vcands.length (); i++)
+ {
+ struct iv_cand *cand = data->vcands[i];
+
+ if (cand->inv_vars)
+ BITMAP_FREE (cand->inv_vars);
+ if (cand->inv_exprs)
+ BITMAP_FREE (cand->inv_exprs);
+ free (cand);
+ }
+ data->vcands.truncate (0);
+
+ if (data->version_info_size < num_ssa_names)
+ {
+ data->version_info_size = 2 * num_ssa_names;
+ free (data->version_info);
+ data->version_info = XCNEWVEC (struct version_info, data->version_info_size);
+ }
+
+ data->max_inv_var_id = 0;
+ data->max_inv_expr_id = 0;
+
+ FOR_EACH_VEC_ELT (decl_rtl_to_reset, i, obj)
+ SET_DECL_RTL (obj, NULL_RTX);
+
+ decl_rtl_to_reset.truncate (0);
+
+ data->inv_expr_tab->empty ();
+
+ data->iv_common_cand_tab->empty ();
+ data->iv_common_cands.truncate (0);
+}
+
+/* Finalizes data structures used by the iv optimization pass. LOOPS is the
+ loop tree. */
+
+static void
+tree_ssa_iv_optimize_finalize (struct ivopts_data *data)
+{
+ free_loop_data (data);
+ free (data->version_info);
+ BITMAP_FREE (data->relevant);
+ BITMAP_FREE (data->important_candidates);
+
+ decl_rtl_to_reset.release ();
+ data->vgroups.release ();
+ data->vcands.release ();
+ delete data->inv_expr_tab;
+ data->inv_expr_tab = NULL;
+ free_affine_expand_cache (&data->name_expansion_cache);
+ if (data->base_object_map)
+ delete data->base_object_map;
+ delete data->iv_common_cand_tab;
+ data->iv_common_cand_tab = NULL;
+ data->iv_common_cands.release ();
+ obstack_free (&data->iv_obstack, NULL);
+}
+
+/* Returns true if the loop body BODY includes any function calls. */
+
+static bool
+loop_body_includes_call (basic_block *body, unsigned num_nodes)
+{
+ gimple_stmt_iterator gsi;
+ unsigned i;
+
+ for (i = 0; i < num_nodes; i++)
+ for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple *stmt = gsi_stmt (gsi);
+ if (is_gimple_call (stmt)
+ && !gimple_call_internal_p (stmt)
+ && !is_inexpensive_builtin (gimple_call_fndecl (stmt)))
+ return true;
+ }
+ return false;
+}
+
+/* Determine cost scaling factor for basic blocks in loop. */
+#define COST_SCALING_FACTOR_BOUND (20)
+
+static void
+determine_scaling_factor (struct ivopts_data *data, basic_block *body)
+{
+ int lfreq = data->current_loop->header->count.to_frequency (cfun);
+ if (!data->speed || lfreq <= 0)
+ return;
+
+ int max_freq = lfreq;
+ for (unsigned i = 0; i < data->current_loop->num_nodes; i++)
+ {
+ body[i]->aux = (void *)(intptr_t) 1;
+ if (max_freq < body[i]->count.to_frequency (cfun))
+ max_freq = body[i]->count.to_frequency (cfun);
+ }
+ if (max_freq > lfreq)
+ {
+ int divisor, factor;
+ /* Check if scaling factor itself needs to be scaled by the bound. This
+ is to avoid overflow when scaling cost according to profile info. */
+ if (max_freq / lfreq > COST_SCALING_FACTOR_BOUND)
+ {
+ divisor = max_freq;
+ factor = COST_SCALING_FACTOR_BOUND;
+ }
+ else
+ {
+ divisor = lfreq;
+ factor = 1;
+ }
+ for (unsigned i = 0; i < data->current_loop->num_nodes; i++)
+ {
+ int bfreq = body[i]->count.to_frequency (cfun);
+ if (bfreq <= lfreq)
+ continue;
+
+ body[i]->aux = (void*)(intptr_t) (factor * bfreq / divisor);
+ }
+ }
+}
+
+/* Find doloop comparison use and set its doloop_p on if found. */
+
+static bool
+find_doloop_use (struct ivopts_data *data)
+{
+ struct loop *loop = data->current_loop;
+
+ for (unsigned i = 0; i < data->vgroups.length (); i++)
+ {
+ struct iv_group *group = data->vgroups[i];
+ if (group->type == USE_COMPARE)
+ {
+ gcc_assert (group->vuses.length () == 1);
+ struct iv_use *use = group->vuses[0];
+ gimple *stmt = use->stmt;
+ if (gimple_code (stmt) == GIMPLE_COND)
+ {
+ basic_block bb = gimple_bb (stmt);
+ edge true_edge, false_edge;
+ extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
+ /* This comparison is used for loop latch. Require latch is empty
+ for now. */
+ if ((loop->latch == true_edge->dest
+ || loop->latch == false_edge->dest)
+ && empty_block_p (loop->latch))
+ {
+ group->doloop_p = true;
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Doloop cmp iv use: ");
+ print_gimple_stmt (dump_file, stmt, TDF_DETAILS);
+ }
+ return true;
+ }
+ }
+ }
+ }
+
+ return false;
+}
+
+/* For the targets which support doloop, to predict whether later RTL doloop
+ transformation will perform on this loop, further detect the doloop use and
+ mark the flag doloop_use_p if predicted. */
+
+void
+analyze_and_mark_doloop_use (struct ivopts_data *data)
+{
+ data->doloop_use_p = false;
+
+ if (!flag_branch_on_count_reg)
+ return;
+
+ if (data->current_loop->unroll == USHRT_MAX)
+ return;
+
+ if (!generic_predict_doloop_p (data))
+ return;
+
+ if (find_doloop_use (data))
+ {
+ data->doloop_use_p = true;
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ struct loop *loop = data->current_loop;
+ fprintf (dump_file,
+ "Predict loop %d can perform"
+ " doloop optimization later.\n",
+ loop->num);
+ flow_loop_dump (loop, dump_file, NULL, 1);
+ }
+ }
+}
+
+/* Optimizes the LOOP. Returns true if anything changed. */
+
+static bool
+tree_ssa_iv_optimize_loop (struct ivopts_data *data, class loop *loop,
+ bitmap toremove)
+{
+ bool changed = false;
+ class iv_ca *iv_ca;
+ edge exit = single_dom_exit (loop);
+ basic_block *body;
+
+ gcc_assert (!data->niters);
+ data->current_loop = loop;
+ data->loop_loc = find_loop_location (loop).get_location_t ();
+ data->speed = optimize_loop_for_speed_p (loop);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Processing loop %d", loop->num);
+ if (data->loop_loc != UNKNOWN_LOCATION)
+ fprintf (dump_file, " at %s:%d", LOCATION_FILE (data->loop_loc),
+ LOCATION_LINE (data->loop_loc));
+ fprintf (dump_file, "\n");
+
+ if (exit)
+ {
+ fprintf (dump_file, " single exit %d -> %d, exit condition ",
+ exit->src->index, exit->dest->index);
+ print_gimple_stmt (dump_file, last_stmt (exit->src), 0, TDF_SLIM);
+ fprintf (dump_file, "\n");
+ }
+
+ fprintf (dump_file, "\n");
+ }
+
+ body = get_loop_body (loop);
+ data->body_includes_call = loop_body_includes_call (body, loop->num_nodes);
+ renumber_gimple_stmt_uids_in_blocks (body, loop->num_nodes);
+
+ data->loop_single_exit_p
+ = exit != NULL && loop_only_exit_p (loop, body, exit);
+
+ /* For each ssa name determines whether it behaves as an induction variable
+ in some loop. */
+ if (!find_induction_variables (data, body))
+ goto finish;
+
+ /* Finds interesting uses (item 1). */
+ find_interesting_uses (data, body);
+ if (data->vgroups.length () > MAX_CONSIDERED_GROUPS)
+ goto finish;
+
+ /* Determine cost scaling factor for basic blocks in loop. */
+ determine_scaling_factor (data, body);
+
+ /* Analyze doloop possibility and mark the doloop use if predicted. */
+ analyze_and_mark_doloop_use (data);
+
+ /* Finds candidates for the induction variables (item 2). */
+ find_iv_candidates (data);
+
+ /* Calculates the costs (item 3, part 1). */
+ determine_iv_costs (data);
+ determine_group_iv_costs (data);
+ determine_set_costs (data);
+
+ /* Find the optimal set of induction variables (item 3, part 2). */
+ iv_ca = find_optimal_iv_set (data);
+ /* Cleanup basic block aux field. */
+ for (unsigned i = 0; i < data->current_loop->num_nodes; i++)
+ body[i]->aux = NULL;
+ if (!iv_ca)
+ goto finish;
+ changed = true;
+
+ /* Create the new induction variables (item 4, part 1). */
+ create_new_ivs (data, iv_ca);
+ iv_ca_free (&iv_ca);
+
+ /* Rewrite the uses (item 4, part 2). */
+ rewrite_groups (data);
+
+ /* Remove the ivs that are unused after rewriting. */
+ remove_unused_ivs (data, toremove);
+
+finish:
+ free (body);
+ free_loop_data (data);
+
+ return changed;
+}
+
+/* Main entry point. Optimizes induction variables in loops. */
+
+void
+tree_ssa_iv_optimize (void)
+{
+ struct ivopts_data data;
+ auto_bitmap toremove;
+
+ tree_ssa_iv_optimize_init (&data);
+
+ /* Optimize the loops starting with the innermost ones. */
+ for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
+ {
+ if (!dbg_cnt (ivopts_loop))
+ continue;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ flow_loop_dump (loop, dump_file, NULL, 1);
+
+ tree_ssa_iv_optimize_loop (&data, loop, toremove);
+ }
+
+ /* Remove eliminated IV defs. */
+ release_defs_bitset (toremove);
+
+ /* We have changed the structure of induction variables; it might happen
+ that definitions in the scev database refer to some of them that were
+ eliminated. */
+ scev_reset_htab ();
+ /* Likewise niter and control-IV information. */
+ free_numbers_of_iterations_estimates (cfun);
+
+ tree_ssa_iv_optimize_finalize (&data);
+}
+
+#include "gt-tree-ssa-loop-ivopts.h"