diff options
Diffstat (limited to 'gcc/tree-ssa-loop-ivopts.cc')
-rw-r--r-- | gcc/tree-ssa-loop-ivopts.cc | 8188 |
1 files changed, 8188 insertions, 0 deletions
diff --git a/gcc/tree-ssa-loop-ivopts.cc b/gcc/tree-ssa-loop-ivopts.cc new file mode 100644 index 0000000..935d2d4 --- /dev/null +++ b/gcc/tree-ssa-loop-ivopts.cc @@ -0,0 +1,8188 @@ +/* Induction variable optimizations. + Copyright (C) 2003-2022 Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it +under the terms of the GNU General Public License as published by the +Free Software Foundation; either version 3, or (at your option) any +later version. + +GCC is distributed in the hope that it will be useful, but WITHOUT +ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +/* This pass tries to find the optimal set of induction variables for the loop. + It optimizes just the basic linear induction variables (although adding + support for other types should not be too hard). It includes the + optimizations commonly known as strength reduction, induction variable + coalescing and induction variable elimination. It does it in the + following steps: + + 1) The interesting uses of induction variables are found. This includes + + -- uses of induction variables in non-linear expressions + -- addresses of arrays + -- comparisons of induction variables + + Note the interesting uses are categorized and handled in group. + Generally, address type uses are grouped together if their iv bases + are different in constant offset. + + 2) Candidates for the induction variables are found. This includes + + -- old induction variables + -- the variables defined by expressions derived from the "interesting + groups/uses" above + + 3) The optimal (w.r. to a cost function) set of variables is chosen. The + cost function assigns a cost to sets of induction variables and consists + of three parts: + + -- The group/use costs. Each of the interesting groups/uses chooses + the best induction variable in the set and adds its cost to the sum. + The cost reflects the time spent on modifying the induction variables + value to be usable for the given purpose (adding base and offset for + arrays, etc.). + -- The variable costs. Each of the variables has a cost assigned that + reflects the costs associated with incrementing the value of the + variable. The original variables are somewhat preferred. + -- The set cost. Depending on the size of the set, extra cost may be + added to reflect register pressure. + + All the costs are defined in a machine-specific way, using the target + hooks and machine descriptions to determine them. + + 4) The trees are transformed to use the new variables, the dead code is + removed. + + All of this is done loop by loop. Doing it globally is theoretically + possible, it might give a better performance and it might enable us + to decide costs more precisely, but getting all the interactions right + would be complicated. + + For the targets supporting low-overhead loops, IVOPTs has to take care of + the loops which will probably be transformed in RTL doloop optimization, + to try to make selected IV candidate set optimal. The process of doloop + support includes: + + 1) Analyze the current loop will be transformed to doloop or not, find and + mark its compare type IV use as doloop use (iv_group field doloop_p), and + set flag doloop_use_p of ivopts_data to notify subsequent processings on + doloop. See analyze_and_mark_doloop_use and its callees for the details. + The target hook predict_doloop_p can be used for target specific checks. + + 2) Add one doloop dedicated IV cand {(may_be_zero ? 1 : (niter + 1)), +, -1}, + set flag doloop_p of iv_cand, step cost is set as zero and no extra cost + like biv. For cost determination between doloop IV cand and IV use, the + target hooks doloop_cost_for_generic and doloop_cost_for_address are + provided to add on extra costs for generic type and address type IV use. + Zero cost is assigned to the pair between doloop IV cand and doloop IV + use, and bound zero is set for IV elimination. + + 3) With the cost setting in step 2), the current cost model based IV + selection algorithm will process as usual, pick up doloop dedicated IV if + profitable. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "backend.h" +#include "rtl.h" +#include "tree.h" +#include "gimple.h" +#include "cfghooks.h" +#include "tree-pass.h" +#include "memmodel.h" +#include "tm_p.h" +#include "ssa.h" +#include "expmed.h" +#include "insn-config.h" +#include "emit-rtl.h" +#include "recog.h" +#include "cgraph.h" +#include "gimple-pretty-print.h" +#include "alias.h" +#include "fold-const.h" +#include "stor-layout.h" +#include "tree-eh.h" +#include "gimplify.h" +#include "gimple-iterator.h" +#include "gimplify-me.h" +#include "tree-cfg.h" +#include "tree-ssa-loop-ivopts.h" +#include "tree-ssa-loop-manip.h" +#include "tree-ssa-loop-niter.h" +#include "tree-ssa-loop.h" +#include "explow.h" +#include "expr.h" +#include "tree-dfa.h" +#include "tree-ssa.h" +#include "cfgloop.h" +#include "tree-scalar-evolution.h" +#include "tree-affine.h" +#include "tree-ssa-propagate.h" +#include "tree-ssa-address.h" +#include "builtins.h" +#include "tree-vectorizer.h" +#include "dbgcnt.h" + +/* For lang_hooks.types.type_for_mode. */ +#include "langhooks.h" + +/* FIXME: Expressions are expanded to RTL in this pass to determine the + cost of different addressing modes. This should be moved to a TBD + interface between the GIMPLE and RTL worlds. */ + +/* The infinite cost. */ +#define INFTY 1000000000 + +/* Returns the expected number of loop iterations for LOOP. + The average trip count is computed from profile data if it + exists. */ + +static inline HOST_WIDE_INT +avg_loop_niter (class loop *loop) +{ + HOST_WIDE_INT niter = estimated_stmt_executions_int (loop); + if (niter == -1) + { + niter = likely_max_stmt_executions_int (loop); + + if (niter == -1 || niter > param_avg_loop_niter) + return param_avg_loop_niter; + } + + return niter; +} + +struct iv_use; + +/* Representation of the induction variable. */ +struct iv +{ + tree base; /* Initial value of the iv. */ + tree base_object; /* A memory object to that the induction variable points. */ + tree step; /* Step of the iv (constant only). */ + tree ssa_name; /* The ssa name with the value. */ + struct iv_use *nonlin_use; /* The identifier in the use if it is the case. */ + bool biv_p; /* Is it a biv? */ + bool no_overflow; /* True if the iv doesn't overflow. */ + bool have_address_use;/* For biv, indicate if it's used in any address + type use. */ +}; + +/* Per-ssa version information (induction variable descriptions, etc.). */ +struct version_info +{ + tree name; /* The ssa name. */ + struct iv *iv; /* Induction variable description. */ + bool has_nonlin_use; /* For a loop-level invariant, whether it is used in + an expression that is not an induction variable. */ + bool preserve_biv; /* For the original biv, whether to preserve it. */ + unsigned inv_id; /* Id of an invariant. */ +}; + +/* Types of uses. */ +enum use_type +{ + USE_NONLINEAR_EXPR, /* Use in a nonlinear expression. */ + USE_REF_ADDRESS, /* Use is an address for an explicit memory + reference. */ + USE_PTR_ADDRESS, /* Use is a pointer argument to a function in + cases where the expansion of the function + will turn the argument into a normal address. */ + USE_COMPARE /* Use is a compare. */ +}; + +/* Cost of a computation. */ +class comp_cost +{ +public: + comp_cost (): cost (0), complexity (0), scratch (0) + {} + + comp_cost (int64_t cost, unsigned complexity, int64_t scratch = 0) + : cost (cost), complexity (complexity), scratch (scratch) + {} + + /* Returns true if COST is infinite. */ + bool infinite_cost_p (); + + /* Adds costs COST1 and COST2. */ + friend comp_cost operator+ (comp_cost cost1, comp_cost cost2); + + /* Adds COST to the comp_cost. */ + comp_cost operator+= (comp_cost cost); + + /* Adds constant C to this comp_cost. */ + comp_cost operator+= (HOST_WIDE_INT c); + + /* Subtracts constant C to this comp_cost. */ + comp_cost operator-= (HOST_WIDE_INT c); + + /* Divide the comp_cost by constant C. */ + comp_cost operator/= (HOST_WIDE_INT c); + + /* Multiply the comp_cost by constant C. */ + comp_cost operator*= (HOST_WIDE_INT c); + + /* Subtracts costs COST1 and COST2. */ + friend comp_cost operator- (comp_cost cost1, comp_cost cost2); + + /* Subtracts COST from this comp_cost. */ + comp_cost operator-= (comp_cost cost); + + /* Returns true if COST1 is smaller than COST2. */ + friend bool operator< (comp_cost cost1, comp_cost cost2); + + /* Returns true if COST1 and COST2 are equal. */ + friend bool operator== (comp_cost cost1, comp_cost cost2); + + /* Returns true if COST1 is smaller or equal than COST2. */ + friend bool operator<= (comp_cost cost1, comp_cost cost2); + + int64_t cost; /* The runtime cost. */ + unsigned complexity; /* The estimate of the complexity of the code for + the computation (in no concrete units -- + complexity field should be larger for more + complex expressions and addressing modes). */ + int64_t scratch; /* Scratch used during cost computation. */ +}; + +static const comp_cost no_cost; +static const comp_cost infinite_cost (INFTY, 0, INFTY); + +bool +comp_cost::infinite_cost_p () +{ + return cost == INFTY; +} + +comp_cost +operator+ (comp_cost cost1, comp_cost cost2) +{ + if (cost1.infinite_cost_p () || cost2.infinite_cost_p ()) + return infinite_cost; + + gcc_assert (cost1.cost + cost2.cost < infinite_cost.cost); + cost1.cost += cost2.cost; + cost1.complexity += cost2.complexity; + + return cost1; +} + +comp_cost +operator- (comp_cost cost1, comp_cost cost2) +{ + if (cost1.infinite_cost_p ()) + return infinite_cost; + + gcc_assert (!cost2.infinite_cost_p ()); + gcc_assert (cost1.cost - cost2.cost < infinite_cost.cost); + + cost1.cost -= cost2.cost; + cost1.complexity -= cost2.complexity; + + return cost1; +} + +comp_cost +comp_cost::operator+= (comp_cost cost) +{ + *this = *this + cost; + return *this; +} + +comp_cost +comp_cost::operator+= (HOST_WIDE_INT c) +{ + if (c >= INFTY) + this->cost = INFTY; + + if (infinite_cost_p ()) + return *this; + + gcc_assert (this->cost + c < infinite_cost.cost); + this->cost += c; + + return *this; +} + +comp_cost +comp_cost::operator-= (HOST_WIDE_INT c) +{ + if (infinite_cost_p ()) + return *this; + + gcc_assert (this->cost - c < infinite_cost.cost); + this->cost -= c; + + return *this; +} + +comp_cost +comp_cost::operator/= (HOST_WIDE_INT c) +{ + gcc_assert (c != 0); + if (infinite_cost_p ()) + return *this; + + this->cost /= c; + + return *this; +} + +comp_cost +comp_cost::operator*= (HOST_WIDE_INT c) +{ + if (infinite_cost_p ()) + return *this; + + gcc_assert (this->cost * c < infinite_cost.cost); + this->cost *= c; + + return *this; +} + +comp_cost +comp_cost::operator-= (comp_cost cost) +{ + *this = *this - cost; + return *this; +} + +bool +operator< (comp_cost cost1, comp_cost cost2) +{ + if (cost1.cost == cost2.cost) + return cost1.complexity < cost2.complexity; + + return cost1.cost < cost2.cost; +} + +bool +operator== (comp_cost cost1, comp_cost cost2) +{ + return cost1.cost == cost2.cost + && cost1.complexity == cost2.complexity; +} + +bool +operator<= (comp_cost cost1, comp_cost cost2) +{ + return cost1 < cost2 || cost1 == cost2; +} + +struct iv_inv_expr_ent; + +/* The candidate - cost pair. */ +class cost_pair +{ +public: + struct iv_cand *cand; /* The candidate. */ + comp_cost cost; /* The cost. */ + enum tree_code comp; /* For iv elimination, the comparison. */ + bitmap inv_vars; /* The list of invariant ssa_vars that have to be + preserved when representing iv_use with iv_cand. */ + bitmap inv_exprs; /* The list of newly created invariant expressions + when representing iv_use with iv_cand. */ + tree value; /* For final value elimination, the expression for + the final value of the iv. For iv elimination, + the new bound to compare with. */ +}; + +/* Use. */ +struct iv_use +{ + unsigned id; /* The id of the use. */ + unsigned group_id; /* The group id the use belongs to. */ + enum use_type type; /* Type of the use. */ + tree mem_type; /* The memory type to use when testing whether an + address is legitimate, and what the address's + cost is. */ + struct iv *iv; /* The induction variable it is based on. */ + gimple *stmt; /* Statement in that it occurs. */ + tree *op_p; /* The place where it occurs. */ + + tree addr_base; /* Base address with const offset stripped. */ + poly_uint64_pod addr_offset; + /* Const offset stripped from base address. */ +}; + +/* Group of uses. */ +struct iv_group +{ + /* The id of the group. */ + unsigned id; + /* Uses of the group are of the same type. */ + enum use_type type; + /* The set of "related" IV candidates, plus the important ones. */ + bitmap related_cands; + /* Number of IV candidates in the cost_map. */ + unsigned n_map_members; + /* The costs wrto the iv candidates. */ + class cost_pair *cost_map; + /* The selected candidate for the group. */ + struct iv_cand *selected; + /* To indicate this is a doloop use group. */ + bool doloop_p; + /* Uses in the group. */ + vec<struct iv_use *> vuses; +}; + +/* The position where the iv is computed. */ +enum iv_position +{ + IP_NORMAL, /* At the end, just before the exit condition. */ + IP_END, /* At the end of the latch block. */ + IP_BEFORE_USE, /* Immediately before a specific use. */ + IP_AFTER_USE, /* Immediately after a specific use. */ + IP_ORIGINAL /* The original biv. */ +}; + +/* The induction variable candidate. */ +struct iv_cand +{ + unsigned id; /* The number of the candidate. */ + bool important; /* Whether this is an "important" candidate, i.e. such + that it should be considered by all uses. */ + ENUM_BITFIELD(iv_position) pos : 8; /* Where it is computed. */ + gimple *incremented_at;/* For original biv, the statement where it is + incremented. */ + tree var_before; /* The variable used for it before increment. */ + tree var_after; /* The variable used for it after increment. */ + struct iv *iv; /* The value of the candidate. NULL for + "pseudocandidate" used to indicate the possibility + to replace the final value of an iv by direct + computation of the value. */ + unsigned cost; /* Cost of the candidate. */ + unsigned cost_step; /* Cost of the candidate's increment operation. */ + struct iv_use *ainc_use; /* For IP_{BEFORE,AFTER}_USE candidates, the place + where it is incremented. */ + bitmap inv_vars; /* The list of invariant ssa_vars used in step of the + iv_cand. */ + bitmap inv_exprs; /* If step is more complicated than a single ssa_var, + hanlde it as a new invariant expression which will + be hoisted out of loop. */ + struct iv *orig_iv; /* The original iv if this cand is added from biv with + smaller type. */ + bool doloop_p; /* Whether this is a doloop candidate. */ +}; + +/* Hashtable entry for common candidate derived from iv uses. */ +class iv_common_cand +{ +public: + tree base; + tree step; + /* IV uses from which this common candidate is derived. */ + auto_vec<struct iv_use *> uses; + hashval_t hash; +}; + +/* Hashtable helpers. */ + +struct iv_common_cand_hasher : delete_ptr_hash <iv_common_cand> +{ + static inline hashval_t hash (const iv_common_cand *); + static inline bool equal (const iv_common_cand *, const iv_common_cand *); +}; + +/* Hash function for possible common candidates. */ + +inline hashval_t +iv_common_cand_hasher::hash (const iv_common_cand *ccand) +{ + return ccand->hash; +} + +/* Hash table equality function for common candidates. */ + +inline bool +iv_common_cand_hasher::equal (const iv_common_cand *ccand1, + const iv_common_cand *ccand2) +{ + return (ccand1->hash == ccand2->hash + && operand_equal_p (ccand1->base, ccand2->base, 0) + && operand_equal_p (ccand1->step, ccand2->step, 0) + && (TYPE_PRECISION (TREE_TYPE (ccand1->base)) + == TYPE_PRECISION (TREE_TYPE (ccand2->base)))); +} + +/* Loop invariant expression hashtable entry. */ + +struct iv_inv_expr_ent +{ + /* Tree expression of the entry. */ + tree expr; + /* Unique indentifier. */ + int id; + /* Hash value. */ + hashval_t hash; +}; + +/* Sort iv_inv_expr_ent pair A and B by id field. */ + +static int +sort_iv_inv_expr_ent (const void *a, const void *b) +{ + const iv_inv_expr_ent * const *e1 = (const iv_inv_expr_ent * const *) (a); + const iv_inv_expr_ent * const *e2 = (const iv_inv_expr_ent * const *) (b); + + unsigned id1 = (*e1)->id; + unsigned id2 = (*e2)->id; + + if (id1 < id2) + return -1; + else if (id1 > id2) + return 1; + else + return 0; +} + +/* Hashtable helpers. */ + +struct iv_inv_expr_hasher : free_ptr_hash <iv_inv_expr_ent> +{ + static inline hashval_t hash (const iv_inv_expr_ent *); + static inline bool equal (const iv_inv_expr_ent *, const iv_inv_expr_ent *); +}; + +/* Return true if uses of type TYPE represent some form of address. */ + +inline bool +address_p (use_type type) +{ + return type == USE_REF_ADDRESS || type == USE_PTR_ADDRESS; +} + +/* Hash function for loop invariant expressions. */ + +inline hashval_t +iv_inv_expr_hasher::hash (const iv_inv_expr_ent *expr) +{ + return expr->hash; +} + +/* Hash table equality function for expressions. */ + +inline bool +iv_inv_expr_hasher::equal (const iv_inv_expr_ent *expr1, + const iv_inv_expr_ent *expr2) +{ + return expr1->hash == expr2->hash + && operand_equal_p (expr1->expr, expr2->expr, 0); +} + +struct ivopts_data +{ + /* The currently optimized loop. */ + class loop *current_loop; + location_t loop_loc; + + /* Numbers of iterations for all exits of the current loop. */ + hash_map<edge, tree_niter_desc *> *niters; + + /* Number of registers used in it. */ + unsigned regs_used; + + /* The size of version_info array allocated. */ + unsigned version_info_size; + + /* The array of information for the ssa names. */ + struct version_info *version_info; + + /* The hashtable of loop invariant expressions created + by ivopt. */ + hash_table<iv_inv_expr_hasher> *inv_expr_tab; + + /* The bitmap of indices in version_info whose value was changed. */ + bitmap relevant; + + /* The uses of induction variables. */ + vec<iv_group *> vgroups; + + /* The candidates. */ + vec<iv_cand *> vcands; + + /* A bitmap of important candidates. */ + bitmap important_candidates; + + /* Cache used by tree_to_aff_combination_expand. */ + hash_map<tree, name_expansion *> *name_expansion_cache; + + /* The hashtable of common candidates derived from iv uses. */ + hash_table<iv_common_cand_hasher> *iv_common_cand_tab; + + /* The common candidates. */ + vec<iv_common_cand *> iv_common_cands; + + /* Hash map recording base object information of tree exp. */ + hash_map<tree, tree> *base_object_map; + + /* The maximum invariant variable id. */ + unsigned max_inv_var_id; + + /* The maximum invariant expression id. */ + unsigned max_inv_expr_id; + + /* Number of no_overflow BIVs which are not used in memory address. */ + unsigned bivs_not_used_in_addr; + + /* Obstack for iv structure. */ + struct obstack iv_obstack; + + /* Whether to consider just related and important candidates when replacing a + use. */ + bool consider_all_candidates; + + /* Are we optimizing for speed? */ + bool speed; + + /* Whether the loop body includes any function calls. */ + bool body_includes_call; + + /* Whether the loop body can only be exited via single exit. */ + bool loop_single_exit_p; + + /* Whether the loop has doloop comparison use. */ + bool doloop_use_p; +}; + +/* An assignment of iv candidates to uses. */ + +class iv_ca +{ +public: + /* The number of uses covered by the assignment. */ + unsigned upto; + + /* Number of uses that cannot be expressed by the candidates in the set. */ + unsigned bad_groups; + + /* Candidate assigned to a use, together with the related costs. */ + class cost_pair **cand_for_group; + + /* Number of times each candidate is used. */ + unsigned *n_cand_uses; + + /* The candidates used. */ + bitmap cands; + + /* The number of candidates in the set. */ + unsigned n_cands; + + /* The number of invariants needed, including both invariant variants and + invariant expressions. */ + unsigned n_invs; + + /* Total cost of expressing uses. */ + comp_cost cand_use_cost; + + /* Total cost of candidates. */ + int64_t cand_cost; + + /* Number of times each invariant variable is used. */ + unsigned *n_inv_var_uses; + + /* Number of times each invariant expression is used. */ + unsigned *n_inv_expr_uses; + + /* Total cost of the assignment. */ + comp_cost cost; +}; + +/* Difference of two iv candidate assignments. */ + +struct iv_ca_delta +{ + /* Changed group. */ + struct iv_group *group; + + /* An old assignment (for rollback purposes). */ + class cost_pair *old_cp; + + /* A new assignment. */ + class cost_pair *new_cp; + + /* Next change in the list. */ + struct iv_ca_delta *next; +}; + +/* Bound on number of candidates below that all candidates are considered. */ + +#define CONSIDER_ALL_CANDIDATES_BOUND \ + ((unsigned) param_iv_consider_all_candidates_bound) + +/* If there are more iv occurrences, we just give up (it is quite unlikely that + optimizing such a loop would help, and it would take ages). */ + +#define MAX_CONSIDERED_GROUPS \ + ((unsigned) param_iv_max_considered_uses) + +/* If there are at most this number of ivs in the set, try removing unnecessary + ivs from the set always. */ + +#define ALWAYS_PRUNE_CAND_SET_BOUND \ + ((unsigned) param_iv_always_prune_cand_set_bound) + +/* The list of trees for that the decl_rtl field must be reset is stored + here. */ + +static vec<tree> decl_rtl_to_reset; + +static comp_cost force_expr_to_var_cost (tree, bool); + +/* The single loop exit if it dominates the latch, NULL otherwise. */ + +edge +single_dom_exit (class loop *loop) +{ + edge exit = single_exit (loop); + + if (!exit) + return NULL; + + if (!just_once_each_iteration_p (loop, exit->src)) + return NULL; + + return exit; +} + +/* Dumps information about the induction variable IV to FILE. Don't dump + variable's name if DUMP_NAME is FALSE. The information is dumped with + preceding spaces indicated by INDENT_LEVEL. */ + +void +dump_iv (FILE *file, struct iv *iv, bool dump_name, unsigned indent_level) +{ + const char *p; + const char spaces[9] = {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '\0'}; + + if (indent_level > 4) + indent_level = 4; + p = spaces + 8 - (indent_level << 1); + + fprintf (file, "%sIV struct:\n", p); + if (iv->ssa_name && dump_name) + { + fprintf (file, "%s SSA_NAME:\t", p); + print_generic_expr (file, iv->ssa_name, TDF_SLIM); + fprintf (file, "\n"); + } + + fprintf (file, "%s Type:\t", p); + print_generic_expr (file, TREE_TYPE (iv->base), TDF_SLIM); + fprintf (file, "\n"); + + fprintf (file, "%s Base:\t", p); + print_generic_expr (file, iv->base, TDF_SLIM); + fprintf (file, "\n"); + + fprintf (file, "%s Step:\t", p); + print_generic_expr (file, iv->step, TDF_SLIM); + fprintf (file, "\n"); + + if (iv->base_object) + { + fprintf (file, "%s Object:\t", p); + print_generic_expr (file, iv->base_object, TDF_SLIM); + fprintf (file, "\n"); + } + + fprintf (file, "%s Biv:\t%c\n", p, iv->biv_p ? 'Y' : 'N'); + + fprintf (file, "%s Overflowness wrto loop niter:\t%s\n", + p, iv->no_overflow ? "No-overflow" : "Overflow"); +} + +/* Dumps information about the USE to FILE. */ + +void +dump_use (FILE *file, struct iv_use *use) +{ + fprintf (file, " Use %d.%d:\n", use->group_id, use->id); + fprintf (file, " At stmt:\t"); + print_gimple_stmt (file, use->stmt, 0); + fprintf (file, " At pos:\t"); + if (use->op_p) + print_generic_expr (file, *use->op_p, TDF_SLIM); + fprintf (file, "\n"); + dump_iv (file, use->iv, false, 2); +} + +/* Dumps information about the uses to FILE. */ + +void +dump_groups (FILE *file, struct ivopts_data *data) +{ + unsigned i, j; + struct iv_group *group; + + for (i = 0; i < data->vgroups.length (); i++) + { + group = data->vgroups[i]; + fprintf (file, "Group %d:\n", group->id); + if (group->type == USE_NONLINEAR_EXPR) + fprintf (file, " Type:\tGENERIC\n"); + else if (group->type == USE_REF_ADDRESS) + fprintf (file, " Type:\tREFERENCE ADDRESS\n"); + else if (group->type == USE_PTR_ADDRESS) + fprintf (file, " Type:\tPOINTER ARGUMENT ADDRESS\n"); + else + { + gcc_assert (group->type == USE_COMPARE); + fprintf (file, " Type:\tCOMPARE\n"); + } + for (j = 0; j < group->vuses.length (); j++) + dump_use (file, group->vuses[j]); + } +} + +/* Dumps information about induction variable candidate CAND to FILE. */ + +void +dump_cand (FILE *file, struct iv_cand *cand) +{ + struct iv *iv = cand->iv; + + fprintf (file, "Candidate %d:\n", cand->id); + if (cand->inv_vars) + { + fprintf (file, " Depend on inv.vars: "); + dump_bitmap (file, cand->inv_vars); + } + if (cand->inv_exprs) + { + fprintf (file, " Depend on inv.exprs: "); + dump_bitmap (file, cand->inv_exprs); + } + + if (cand->var_before) + { + fprintf (file, " Var befor: "); + print_generic_expr (file, cand->var_before, TDF_SLIM); + fprintf (file, "\n"); + } + if (cand->var_after) + { + fprintf (file, " Var after: "); + print_generic_expr (file, cand->var_after, TDF_SLIM); + fprintf (file, "\n"); + } + + switch (cand->pos) + { + case IP_NORMAL: + fprintf (file, " Incr POS: before exit test\n"); + break; + + case IP_BEFORE_USE: + fprintf (file, " Incr POS: before use %d\n", cand->ainc_use->id); + break; + + case IP_AFTER_USE: + fprintf (file, " Incr POS: after use %d\n", cand->ainc_use->id); + break; + + case IP_END: + fprintf (file, " Incr POS: at end\n"); + break; + + case IP_ORIGINAL: + fprintf (file, " Incr POS: orig biv\n"); + break; + } + + dump_iv (file, iv, false, 1); +} + +/* Returns the info for ssa version VER. */ + +static inline struct version_info * +ver_info (struct ivopts_data *data, unsigned ver) +{ + return data->version_info + ver; +} + +/* Returns the info for ssa name NAME. */ + +static inline struct version_info * +name_info (struct ivopts_data *data, tree name) +{ + return ver_info (data, SSA_NAME_VERSION (name)); +} + +/* Returns true if STMT is after the place where the IP_NORMAL ivs will be + emitted in LOOP. */ + +static bool +stmt_after_ip_normal_pos (class loop *loop, gimple *stmt) +{ + basic_block bb = ip_normal_pos (loop), sbb = gimple_bb (stmt); + + gcc_assert (bb); + + if (sbb == loop->latch) + return true; + + if (sbb != bb) + return false; + + return stmt == last_stmt (bb); +} + +/* Returns true if STMT if after the place where the original induction + variable CAND is incremented. If TRUE_IF_EQUAL is set, we return true + if the positions are identical. */ + +static bool +stmt_after_inc_pos (struct iv_cand *cand, gimple *stmt, bool true_if_equal) +{ + basic_block cand_bb = gimple_bb (cand->incremented_at); + basic_block stmt_bb = gimple_bb (stmt); + + if (!dominated_by_p (CDI_DOMINATORS, stmt_bb, cand_bb)) + return false; + + if (stmt_bb != cand_bb) + return true; + + if (true_if_equal + && gimple_uid (stmt) == gimple_uid (cand->incremented_at)) + return true; + return gimple_uid (stmt) > gimple_uid (cand->incremented_at); +} + +/* Returns true if STMT if after the place where the induction variable + CAND is incremented in LOOP. */ + +static bool +stmt_after_increment (class loop *loop, struct iv_cand *cand, gimple *stmt) +{ + switch (cand->pos) + { + case IP_END: + return false; + + case IP_NORMAL: + return stmt_after_ip_normal_pos (loop, stmt); + + case IP_ORIGINAL: + case IP_AFTER_USE: + return stmt_after_inc_pos (cand, stmt, false); + + case IP_BEFORE_USE: + return stmt_after_inc_pos (cand, stmt, true); + + default: + gcc_unreachable (); + } +} + +/* walk_tree callback for contains_abnormal_ssa_name_p. */ + +static tree +contains_abnormal_ssa_name_p_1 (tree *tp, int *walk_subtrees, void *) +{ + if (TREE_CODE (*tp) == SSA_NAME + && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (*tp)) + return *tp; + + if (!EXPR_P (*tp)) + *walk_subtrees = 0; + + return NULL_TREE; +} + +/* Returns true if EXPR contains a ssa name that occurs in an + abnormal phi node. */ + +bool +contains_abnormal_ssa_name_p (tree expr) +{ + return walk_tree_without_duplicates + (&expr, contains_abnormal_ssa_name_p_1, NULL) != NULL_TREE; +} + +/* Returns the structure describing number of iterations determined from + EXIT of DATA->current_loop, or NULL if something goes wrong. */ + +static class tree_niter_desc * +niter_for_exit (struct ivopts_data *data, edge exit) +{ + class tree_niter_desc *desc; + tree_niter_desc **slot; + + if (!data->niters) + { + data->niters = new hash_map<edge, tree_niter_desc *>; + slot = NULL; + } + else + slot = data->niters->get (exit); + + if (!slot) + { + /* Try to determine number of iterations. We cannot safely work with ssa + names that appear in phi nodes on abnormal edges, so that we do not + create overlapping life ranges for them (PR 27283). */ + desc = XNEW (class tree_niter_desc); + if (!number_of_iterations_exit (data->current_loop, + exit, desc, true) + || contains_abnormal_ssa_name_p (desc->niter)) + { + XDELETE (desc); + desc = NULL; + } + data->niters->put (exit, desc); + } + else + desc = *slot; + + return desc; +} + +/* Returns the structure describing number of iterations determined from + single dominating exit of DATA->current_loop, or NULL if something + goes wrong. */ + +static class tree_niter_desc * +niter_for_single_dom_exit (struct ivopts_data *data) +{ + edge exit = single_dom_exit (data->current_loop); + + if (!exit) + return NULL; + + return niter_for_exit (data, exit); +} + +/* Initializes data structures used by the iv optimization pass, stored + in DATA. */ + +static void +tree_ssa_iv_optimize_init (struct ivopts_data *data) +{ + data->version_info_size = 2 * num_ssa_names; + data->version_info = XCNEWVEC (struct version_info, data->version_info_size); + data->relevant = BITMAP_ALLOC (NULL); + data->important_candidates = BITMAP_ALLOC (NULL); + data->max_inv_var_id = 0; + data->max_inv_expr_id = 0; + data->niters = NULL; + data->vgroups.create (20); + data->vcands.create (20); + data->inv_expr_tab = new hash_table<iv_inv_expr_hasher> (10); + data->name_expansion_cache = NULL; + data->base_object_map = NULL; + data->iv_common_cand_tab = new hash_table<iv_common_cand_hasher> (10); + data->iv_common_cands.create (20); + decl_rtl_to_reset.create (20); + gcc_obstack_init (&data->iv_obstack); +} + +/* walk_tree callback for determine_base_object. */ + +static tree +determine_base_object_1 (tree *tp, int *walk_subtrees, void *wdata) +{ + tree_code code = TREE_CODE (*tp); + tree obj = NULL_TREE; + if (code == ADDR_EXPR) + { + tree base = get_base_address (TREE_OPERAND (*tp, 0)); + if (!base) + obj = *tp; + else if (TREE_CODE (base) != MEM_REF) + obj = fold_convert (ptr_type_node, build_fold_addr_expr (base)); + } + else if (code == SSA_NAME && POINTER_TYPE_P (TREE_TYPE (*tp))) + obj = fold_convert (ptr_type_node, *tp); + + if (!obj) + { + if (!EXPR_P (*tp)) + *walk_subtrees = 0; + + return NULL_TREE; + } + /* Record special node for multiple base objects and stop. */ + if (*static_cast<tree *> (wdata)) + { + *static_cast<tree *> (wdata) = integer_zero_node; + return integer_zero_node; + } + /* Record the base object and continue looking. */ + *static_cast<tree *> (wdata) = obj; + return NULL_TREE; +} + +/* Returns a memory object to that EXPR points with caching. Return NULL if we + are able to determine that it does not point to any such object; specially + return integer_zero_node if EXPR contains multiple base objects. */ + +static tree +determine_base_object (struct ivopts_data *data, tree expr) +{ + tree *slot, obj = NULL_TREE; + if (data->base_object_map) + { + if ((slot = data->base_object_map->get(expr)) != NULL) + return *slot; + } + else + data->base_object_map = new hash_map<tree, tree>; + + (void) walk_tree_without_duplicates (&expr, determine_base_object_1, &obj); + data->base_object_map->put (expr, obj); + return obj; +} + +/* Return true if address expression with non-DECL_P operand appears + in EXPR. */ + +static bool +contain_complex_addr_expr (tree expr) +{ + bool res = false; + + STRIP_NOPS (expr); + switch (TREE_CODE (expr)) + { + case POINTER_PLUS_EXPR: + case PLUS_EXPR: + case MINUS_EXPR: + res |= contain_complex_addr_expr (TREE_OPERAND (expr, 0)); + res |= contain_complex_addr_expr (TREE_OPERAND (expr, 1)); + break; + + case ADDR_EXPR: + return (!DECL_P (TREE_OPERAND (expr, 0))); + + default: + return false; + } + + return res; +} + +/* Allocates an induction variable with given initial value BASE and step STEP + for loop LOOP. NO_OVERFLOW implies the iv doesn't overflow. */ + +static struct iv * +alloc_iv (struct ivopts_data *data, tree base, tree step, + bool no_overflow = false) +{ + tree expr = base; + struct iv *iv = (struct iv*) obstack_alloc (&data->iv_obstack, + sizeof (struct iv)); + gcc_assert (step != NULL_TREE); + + /* Lower address expression in base except ones with DECL_P as operand. + By doing this: + 1) More accurate cost can be computed for address expressions; + 2) Duplicate candidates won't be created for bases in different + forms, like &a[0] and &a. */ + STRIP_NOPS (expr); + if ((TREE_CODE (expr) == ADDR_EXPR && !DECL_P (TREE_OPERAND (expr, 0))) + || contain_complex_addr_expr (expr)) + { + aff_tree comb; + tree_to_aff_combination (expr, TREE_TYPE (expr), &comb); + base = fold_convert (TREE_TYPE (base), aff_combination_to_tree (&comb)); + } + + iv->base = base; + iv->base_object = determine_base_object (data, base); + iv->step = step; + iv->biv_p = false; + iv->nonlin_use = NULL; + iv->ssa_name = NULL_TREE; + if (!no_overflow + && !iv_can_overflow_p (data->current_loop, TREE_TYPE (base), + base, step)) + no_overflow = true; + iv->no_overflow = no_overflow; + iv->have_address_use = false; + + return iv; +} + +/* Sets STEP and BASE for induction variable IV. NO_OVERFLOW implies the IV + doesn't overflow. */ + +static void +set_iv (struct ivopts_data *data, tree iv, tree base, tree step, + bool no_overflow) +{ + struct version_info *info = name_info (data, iv); + + gcc_assert (!info->iv); + + bitmap_set_bit (data->relevant, SSA_NAME_VERSION (iv)); + info->iv = alloc_iv (data, base, step, no_overflow); + info->iv->ssa_name = iv; +} + +/* Finds induction variable declaration for VAR. */ + +static struct iv * +get_iv (struct ivopts_data *data, tree var) +{ + basic_block bb; + tree type = TREE_TYPE (var); + + if (!POINTER_TYPE_P (type) + && !INTEGRAL_TYPE_P (type)) + return NULL; + + if (!name_info (data, var)->iv) + { + bb = gimple_bb (SSA_NAME_DEF_STMT (var)); + + if (!bb + || !flow_bb_inside_loop_p (data->current_loop, bb)) + { + if (POINTER_TYPE_P (type)) + type = sizetype; + set_iv (data, var, var, build_int_cst (type, 0), true); + } + } + + return name_info (data, var)->iv; +} + +/* Return the first non-invariant ssa var found in EXPR. */ + +static tree +extract_single_var_from_expr (tree expr) +{ + int i, n; + tree tmp; + enum tree_code code; + + if (!expr || is_gimple_min_invariant (expr)) + return NULL; + + code = TREE_CODE (expr); + if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code))) + { + n = TREE_OPERAND_LENGTH (expr); + for (i = 0; i < n; i++) + { + tmp = extract_single_var_from_expr (TREE_OPERAND (expr, i)); + + if (tmp) + return tmp; + } + } + return (TREE_CODE (expr) == SSA_NAME) ? expr : NULL; +} + +/* Finds basic ivs. */ + +static bool +find_bivs (struct ivopts_data *data) +{ + gphi *phi; + affine_iv iv; + tree step, type, base, stop; + bool found = false; + class loop *loop = data->current_loop; + gphi_iterator psi; + + for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi)) + { + phi = psi.phi (); + + if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi))) + continue; + + if (virtual_operand_p (PHI_RESULT (phi))) + continue; + + if (!simple_iv (loop, loop, PHI_RESULT (phi), &iv, true)) + continue; + + if (integer_zerop (iv.step)) + continue; + + step = iv.step; + base = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop)); + /* Stop expanding iv base at the first ssa var referred by iv step. + Ideally we should stop at any ssa var, because that's expensive + and unusual to happen, we just do it on the first one. + + See PR64705 for the rationale. */ + stop = extract_single_var_from_expr (step); + base = expand_simple_operations (base, stop); + if (contains_abnormal_ssa_name_p (base) + || contains_abnormal_ssa_name_p (step)) + continue; + + type = TREE_TYPE (PHI_RESULT (phi)); + base = fold_convert (type, base); + if (step) + { + if (POINTER_TYPE_P (type)) + step = convert_to_ptrofftype (step); + else + step = fold_convert (type, step); + } + + set_iv (data, PHI_RESULT (phi), base, step, iv.no_overflow); + found = true; + } + + return found; +} + +/* Marks basic ivs. */ + +static void +mark_bivs (struct ivopts_data *data) +{ + gphi *phi; + gimple *def; + tree var; + struct iv *iv, *incr_iv; + class loop *loop = data->current_loop; + basic_block incr_bb; + gphi_iterator psi; + + data->bivs_not_used_in_addr = 0; + for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi)) + { + phi = psi.phi (); + + iv = get_iv (data, PHI_RESULT (phi)); + if (!iv) + continue; + + var = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop)); + def = SSA_NAME_DEF_STMT (var); + /* Don't mark iv peeled from other one as biv. */ + if (def + && gimple_code (def) == GIMPLE_PHI + && gimple_bb (def) == loop->header) + continue; + + incr_iv = get_iv (data, var); + if (!incr_iv) + continue; + + /* If the increment is in the subloop, ignore it. */ + incr_bb = gimple_bb (SSA_NAME_DEF_STMT (var)); + if (incr_bb->loop_father != data->current_loop + || (incr_bb->flags & BB_IRREDUCIBLE_LOOP)) + continue; + + iv->biv_p = true; + incr_iv->biv_p = true; + if (iv->no_overflow) + data->bivs_not_used_in_addr++; + if (incr_iv->no_overflow) + data->bivs_not_used_in_addr++; + } +} + +/* Checks whether STMT defines a linear induction variable and stores its + parameters to IV. */ + +static bool +find_givs_in_stmt_scev (struct ivopts_data *data, gimple *stmt, affine_iv *iv) +{ + tree lhs, stop; + class loop *loop = data->current_loop; + + iv->base = NULL_TREE; + iv->step = NULL_TREE; + + if (gimple_code (stmt) != GIMPLE_ASSIGN) + return false; + + lhs = gimple_assign_lhs (stmt); + if (TREE_CODE (lhs) != SSA_NAME) + return false; + + if (!simple_iv (loop, loop_containing_stmt (stmt), lhs, iv, true)) + return false; + + /* Stop expanding iv base at the first ssa var referred by iv step. + Ideally we should stop at any ssa var, because that's expensive + and unusual to happen, we just do it on the first one. + + See PR64705 for the rationale. */ + stop = extract_single_var_from_expr (iv->step); + iv->base = expand_simple_operations (iv->base, stop); + if (contains_abnormal_ssa_name_p (iv->base) + || contains_abnormal_ssa_name_p (iv->step)) + return false; + + /* If STMT could throw, then do not consider STMT as defining a GIV. + While this will suppress optimizations, we cannot safely delete this + GIV and associated statements, even if it appears it is not used. */ + if (stmt_could_throw_p (cfun, stmt)) + return false; + + return true; +} + +/* Finds general ivs in statement STMT. */ + +static void +find_givs_in_stmt (struct ivopts_data *data, gimple *stmt) +{ + affine_iv iv; + + if (!find_givs_in_stmt_scev (data, stmt, &iv)) + return; + + set_iv (data, gimple_assign_lhs (stmt), iv.base, iv.step, iv.no_overflow); +} + +/* Finds general ivs in basic block BB. */ + +static void +find_givs_in_bb (struct ivopts_data *data, basic_block bb) +{ + gimple_stmt_iterator bsi; + + for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi)) + find_givs_in_stmt (data, gsi_stmt (bsi)); +} + +/* Finds general ivs. */ + +static void +find_givs (struct ivopts_data *data, basic_block *body) +{ + class loop *loop = data->current_loop; + unsigned i; + + for (i = 0; i < loop->num_nodes; i++) + find_givs_in_bb (data, body[i]); +} + +/* For each ssa name defined in LOOP determines whether it is an induction + variable and if so, its initial value and step. */ + +static bool +find_induction_variables (struct ivopts_data *data, basic_block *body) +{ + unsigned i; + bitmap_iterator bi; + + if (!find_bivs (data)) + return false; + + find_givs (data, body); + mark_bivs (data); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + class tree_niter_desc *niter = niter_for_single_dom_exit (data); + + if (niter) + { + fprintf (dump_file, " number of iterations "); + print_generic_expr (dump_file, niter->niter, TDF_SLIM); + if (!integer_zerop (niter->may_be_zero)) + { + fprintf (dump_file, "; zero if "); + print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM); + } + fprintf (dump_file, "\n"); + }; + + fprintf (dump_file, "\n<Induction Vars>:\n"); + EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi) + { + struct version_info *info = ver_info (data, i); + if (info->iv && info->iv->step && !integer_zerop (info->iv->step)) + dump_iv (dump_file, ver_info (data, i)->iv, true, 0); + } + } + + return true; +} + +/* Records a use of TYPE at *USE_P in STMT whose value is IV in GROUP. + For address type use, ADDR_BASE is the stripped IV base, ADDR_OFFSET + is the const offset stripped from IV base and MEM_TYPE is the type + of the memory being addressed. For uses of other types, ADDR_BASE + and ADDR_OFFSET are zero by default and MEM_TYPE is NULL_TREE. */ + +static struct iv_use * +record_use (struct iv_group *group, tree *use_p, struct iv *iv, + gimple *stmt, enum use_type type, tree mem_type, + tree addr_base, poly_uint64 addr_offset) +{ + struct iv_use *use = XCNEW (struct iv_use); + + use->id = group->vuses.length (); + use->group_id = group->id; + use->type = type; + use->mem_type = mem_type; + use->iv = iv; + use->stmt = stmt; + use->op_p = use_p; + use->addr_base = addr_base; + use->addr_offset = addr_offset; + + group->vuses.safe_push (use); + return use; +} + +/* Checks whether OP is a loop-level invariant and if so, records it. + NONLINEAR_USE is true if the invariant is used in a way we do not + handle specially. */ + +static void +record_invariant (struct ivopts_data *data, tree op, bool nonlinear_use) +{ + basic_block bb; + struct version_info *info; + + if (TREE_CODE (op) != SSA_NAME + || virtual_operand_p (op)) + return; + + bb = gimple_bb (SSA_NAME_DEF_STMT (op)); + if (bb + && flow_bb_inside_loop_p (data->current_loop, bb)) + return; + + info = name_info (data, op); + info->name = op; + info->has_nonlin_use |= nonlinear_use; + if (!info->inv_id) + info->inv_id = ++data->max_inv_var_id; + bitmap_set_bit (data->relevant, SSA_NAME_VERSION (op)); +} + +/* Record a group of TYPE. */ + +static struct iv_group * +record_group (struct ivopts_data *data, enum use_type type) +{ + struct iv_group *group = XCNEW (struct iv_group); + + group->id = data->vgroups.length (); + group->type = type; + group->related_cands = BITMAP_ALLOC (NULL); + group->vuses.create (1); + group->doloop_p = false; + + data->vgroups.safe_push (group); + return group; +} + +/* Record a use of TYPE at *USE_P in STMT whose value is IV in a group. + New group will be created if there is no existing group for the use. + MEM_TYPE is the type of memory being addressed, or NULL if this + isn't an address reference. */ + +static struct iv_use * +record_group_use (struct ivopts_data *data, tree *use_p, + struct iv *iv, gimple *stmt, enum use_type type, + tree mem_type) +{ + tree addr_base = NULL; + struct iv_group *group = NULL; + poly_uint64 addr_offset = 0; + + /* Record non address type use in a new group. */ + if (address_p (type)) + { + unsigned int i; + + addr_base = strip_offset (iv->base, &addr_offset); + for (i = 0; i < data->vgroups.length (); i++) + { + struct iv_use *use; + + group = data->vgroups[i]; + use = group->vuses[0]; + if (!address_p (use->type)) + continue; + + /* Check if it has the same stripped base and step. */ + if (operand_equal_p (iv->base_object, use->iv->base_object, 0) + && operand_equal_p (iv->step, use->iv->step, 0) + && operand_equal_p (addr_base, use->addr_base, 0)) + break; + } + if (i == data->vgroups.length ()) + group = NULL; + } + + if (!group) + group = record_group (data, type); + + return record_use (group, use_p, iv, stmt, type, mem_type, + addr_base, addr_offset); +} + +/* Checks whether the use OP is interesting and if so, records it. */ + +static struct iv_use * +find_interesting_uses_op (struct ivopts_data *data, tree op) +{ + struct iv *iv; + gimple *stmt; + struct iv_use *use; + + if (TREE_CODE (op) != SSA_NAME) + return NULL; + + iv = get_iv (data, op); + if (!iv) + return NULL; + + if (iv->nonlin_use) + { + gcc_assert (iv->nonlin_use->type == USE_NONLINEAR_EXPR); + return iv->nonlin_use; + } + + if (integer_zerop (iv->step)) + { + record_invariant (data, op, true); + return NULL; + } + + stmt = SSA_NAME_DEF_STMT (op); + gcc_assert (gimple_code (stmt) == GIMPLE_PHI || is_gimple_assign (stmt)); + + use = record_group_use (data, NULL, iv, stmt, USE_NONLINEAR_EXPR, NULL_TREE); + iv->nonlin_use = use; + return use; +} + +/* Indicate how compare type iv_use can be handled. */ +enum comp_iv_rewrite +{ + COMP_IV_NA, + /* We may rewrite compare type iv_use by expressing value of the iv_use. */ + COMP_IV_EXPR, + /* We may rewrite compare type iv_uses on both sides of comparison by + expressing value of each iv_use. */ + COMP_IV_EXPR_2, + /* We may rewrite compare type iv_use by expressing value of the iv_use + or by eliminating it with other iv_cand. */ + COMP_IV_ELIM +}; + +/* Given a condition in statement STMT, checks whether it is a compare + of an induction variable and an invariant. If this is the case, + CONTROL_VAR is set to location of the iv, BOUND to the location of + the invariant, IV_VAR and IV_BOUND are set to the corresponding + induction variable descriptions, and true is returned. If this is not + the case, CONTROL_VAR and BOUND are set to the arguments of the + condition and false is returned. */ + +static enum comp_iv_rewrite +extract_cond_operands (struct ivopts_data *data, gimple *stmt, + tree **control_var, tree **bound, + struct iv **iv_var, struct iv **iv_bound) +{ + /* The objects returned when COND has constant operands. */ + static struct iv const_iv; + static tree zero; + tree *op0 = &zero, *op1 = &zero; + struct iv *iv0 = &const_iv, *iv1 = &const_iv; + enum comp_iv_rewrite rewrite_type = COMP_IV_NA; + + if (gimple_code (stmt) == GIMPLE_COND) + { + gcond *cond_stmt = as_a <gcond *> (stmt); + op0 = gimple_cond_lhs_ptr (cond_stmt); + op1 = gimple_cond_rhs_ptr (cond_stmt); + } + else + { + op0 = gimple_assign_rhs1_ptr (stmt); + op1 = gimple_assign_rhs2_ptr (stmt); + } + + zero = integer_zero_node; + const_iv.step = integer_zero_node; + + if (TREE_CODE (*op0) == SSA_NAME) + iv0 = get_iv (data, *op0); + if (TREE_CODE (*op1) == SSA_NAME) + iv1 = get_iv (data, *op1); + + /* If both sides of comparison are IVs. We can express ivs on both end. */ + if (iv0 && iv1 && !integer_zerop (iv0->step) && !integer_zerop (iv1->step)) + { + rewrite_type = COMP_IV_EXPR_2; + goto end; + } + + /* If none side of comparison is IV. */ + if ((!iv0 || integer_zerop (iv0->step)) + && (!iv1 || integer_zerop (iv1->step))) + goto end; + + /* Control variable may be on the other side. */ + if (!iv0 || integer_zerop (iv0->step)) + { + std::swap (op0, op1); + std::swap (iv0, iv1); + } + /* If one side is IV and the other side isn't loop invariant. */ + if (!iv1) + rewrite_type = COMP_IV_EXPR; + /* If one side is IV and the other side is loop invariant. */ + else if (!integer_zerop (iv0->step) && integer_zerop (iv1->step)) + rewrite_type = COMP_IV_ELIM; + +end: + if (control_var) + *control_var = op0; + if (iv_var) + *iv_var = iv0; + if (bound) + *bound = op1; + if (iv_bound) + *iv_bound = iv1; + + return rewrite_type; +} + +/* Checks whether the condition in STMT is interesting and if so, + records it. */ + +static void +find_interesting_uses_cond (struct ivopts_data *data, gimple *stmt) +{ + tree *var_p, *bound_p; + struct iv *var_iv, *bound_iv; + enum comp_iv_rewrite ret; + + ret = extract_cond_operands (data, stmt, + &var_p, &bound_p, &var_iv, &bound_iv); + if (ret == COMP_IV_NA) + { + find_interesting_uses_op (data, *var_p); + find_interesting_uses_op (data, *bound_p); + return; + } + + record_group_use (data, var_p, var_iv, stmt, USE_COMPARE, NULL_TREE); + /* Record compare type iv_use for iv on the other side of comparison. */ + if (ret == COMP_IV_EXPR_2) + record_group_use (data, bound_p, bound_iv, stmt, USE_COMPARE, NULL_TREE); +} + +/* Returns the outermost loop EXPR is obviously invariant in + relative to the loop LOOP, i.e. if all its operands are defined + outside of the returned loop. Returns NULL if EXPR is not + even obviously invariant in LOOP. */ + +class loop * +outermost_invariant_loop_for_expr (class loop *loop, tree expr) +{ + basic_block def_bb; + unsigned i, len; + + if (is_gimple_min_invariant (expr)) + return current_loops->tree_root; + + if (TREE_CODE (expr) == SSA_NAME) + { + def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr)); + if (def_bb) + { + if (flow_bb_inside_loop_p (loop, def_bb)) + return NULL; + return superloop_at_depth (loop, + loop_depth (def_bb->loop_father) + 1); + } + + return current_loops->tree_root; + } + + if (!EXPR_P (expr)) + return NULL; + + unsigned maxdepth = 0; + len = TREE_OPERAND_LENGTH (expr); + for (i = 0; i < len; i++) + { + class loop *ivloop; + if (!TREE_OPERAND (expr, i)) + continue; + + ivloop = outermost_invariant_loop_for_expr (loop, TREE_OPERAND (expr, i)); + if (!ivloop) + return NULL; + maxdepth = MAX (maxdepth, loop_depth (ivloop)); + } + + return superloop_at_depth (loop, maxdepth); +} + +/* Returns true if expression EXPR is obviously invariant in LOOP, + i.e. if all its operands are defined outside of the LOOP. LOOP + should not be the function body. */ + +bool +expr_invariant_in_loop_p (class loop *loop, tree expr) +{ + basic_block def_bb; + unsigned i, len; + + gcc_assert (loop_depth (loop) > 0); + + if (is_gimple_min_invariant (expr)) + return true; + + if (TREE_CODE (expr) == SSA_NAME) + { + def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr)); + if (def_bb + && flow_bb_inside_loop_p (loop, def_bb)) + return false; + + return true; + } + + if (!EXPR_P (expr)) + return false; + + len = TREE_OPERAND_LENGTH (expr); + for (i = 0; i < len; i++) + if (TREE_OPERAND (expr, i) + && !expr_invariant_in_loop_p (loop, TREE_OPERAND (expr, i))) + return false; + + return true; +} + +/* Given expression EXPR which computes inductive values with respect + to loop recorded in DATA, this function returns biv from which EXPR + is derived by tracing definition chains of ssa variables in EXPR. */ + +static struct iv* +find_deriving_biv_for_expr (struct ivopts_data *data, tree expr) +{ + struct iv *iv; + unsigned i, n; + tree e2, e1; + enum tree_code code; + gimple *stmt; + + if (expr == NULL_TREE) + return NULL; + + if (is_gimple_min_invariant (expr)) + return NULL; + + code = TREE_CODE (expr); + if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code))) + { + n = TREE_OPERAND_LENGTH (expr); + for (i = 0; i < n; i++) + { + iv = find_deriving_biv_for_expr (data, TREE_OPERAND (expr, i)); + if (iv) + return iv; + } + } + + /* Stop if it's not ssa name. */ + if (code != SSA_NAME) + return NULL; + + iv = get_iv (data, expr); + if (!iv || integer_zerop (iv->step)) + return NULL; + else if (iv->biv_p) + return iv; + + stmt = SSA_NAME_DEF_STMT (expr); + if (gphi *phi = dyn_cast <gphi *> (stmt)) + { + ssa_op_iter iter; + use_operand_p use_p; + basic_block phi_bb = gimple_bb (phi); + + /* Skip loop header PHI that doesn't define biv. */ + if (phi_bb->loop_father == data->current_loop) + return NULL; + + if (virtual_operand_p (gimple_phi_result (phi))) + return NULL; + + FOR_EACH_PHI_ARG (use_p, phi, iter, SSA_OP_USE) + { + tree use = USE_FROM_PTR (use_p); + iv = find_deriving_biv_for_expr (data, use); + if (iv) + return iv; + } + return NULL; + } + if (gimple_code (stmt) != GIMPLE_ASSIGN) + return NULL; + + e1 = gimple_assign_rhs1 (stmt); + code = gimple_assign_rhs_code (stmt); + if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS) + return find_deriving_biv_for_expr (data, e1); + + switch (code) + { + case MULT_EXPR: + case PLUS_EXPR: + case MINUS_EXPR: + case POINTER_PLUS_EXPR: + /* Increments, decrements and multiplications by a constant + are simple. */ + e2 = gimple_assign_rhs2 (stmt); + iv = find_deriving_biv_for_expr (data, e2); + if (iv) + return iv; + gcc_fallthrough (); + + CASE_CONVERT: + /* Casts are simple. */ + return find_deriving_biv_for_expr (data, e1); + + default: + break; + } + + return NULL; +} + +/* Record BIV, its predecessor and successor that they are used in + address type uses. */ + +static void +record_biv_for_address_use (struct ivopts_data *data, struct iv *biv) +{ + unsigned i; + tree type, base_1, base_2; + bitmap_iterator bi; + + if (!biv || !biv->biv_p || integer_zerop (biv->step) + || biv->have_address_use || !biv->no_overflow) + return; + + type = TREE_TYPE (biv->base); + if (!INTEGRAL_TYPE_P (type)) + return; + + biv->have_address_use = true; + data->bivs_not_used_in_addr--; + base_1 = fold_build2 (PLUS_EXPR, type, biv->base, biv->step); + EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi) + { + struct iv *iv = ver_info (data, i)->iv; + + if (!iv || !iv->biv_p || integer_zerop (iv->step) + || iv->have_address_use || !iv->no_overflow) + continue; + + if (type != TREE_TYPE (iv->base) + || !INTEGRAL_TYPE_P (TREE_TYPE (iv->base))) + continue; + + if (!operand_equal_p (biv->step, iv->step, 0)) + continue; + + base_2 = fold_build2 (PLUS_EXPR, type, iv->base, iv->step); + if (operand_equal_p (base_1, iv->base, 0) + || operand_equal_p (base_2, biv->base, 0)) + { + iv->have_address_use = true; + data->bivs_not_used_in_addr--; + } + } +} + +/* Cumulates the steps of indices into DATA and replaces their values with the + initial ones. Returns false when the value of the index cannot be determined. + Callback for for_each_index. */ + +struct ifs_ivopts_data +{ + struct ivopts_data *ivopts_data; + gimple *stmt; + tree step; +}; + +static bool +idx_find_step (tree base, tree *idx, void *data) +{ + struct ifs_ivopts_data *dta = (struct ifs_ivopts_data *) data; + struct iv *iv; + bool use_overflow_semantics = false; + tree step, iv_base, iv_step, lbound, off; + class loop *loop = dta->ivopts_data->current_loop; + + /* If base is a component ref, require that the offset of the reference + be invariant. */ + if (TREE_CODE (base) == COMPONENT_REF) + { + off = component_ref_field_offset (base); + return expr_invariant_in_loop_p (loop, off); + } + + /* If base is array, first check whether we will be able to move the + reference out of the loop (in order to take its address in strength + reduction). In order for this to work we need both lower bound + and step to be loop invariants. */ + if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF) + { + /* Moreover, for a range, the size needs to be invariant as well. */ + if (TREE_CODE (base) == ARRAY_RANGE_REF + && !expr_invariant_in_loop_p (loop, TYPE_SIZE (TREE_TYPE (base)))) + return false; + + step = array_ref_element_size (base); + lbound = array_ref_low_bound (base); + + if (!expr_invariant_in_loop_p (loop, step) + || !expr_invariant_in_loop_p (loop, lbound)) + return false; + } + + if (TREE_CODE (*idx) != SSA_NAME) + return true; + + iv = get_iv (dta->ivopts_data, *idx); + if (!iv) + return false; + + /* XXX We produce for a base of *D42 with iv->base being &x[0] + *&x[0], which is not folded and does not trigger the + ARRAY_REF path below. */ + *idx = iv->base; + + if (integer_zerop (iv->step)) + return true; + + if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF) + { + step = array_ref_element_size (base); + + /* We only handle addresses whose step is an integer constant. */ + if (TREE_CODE (step) != INTEGER_CST) + return false; + } + else + /* The step for pointer arithmetics already is 1 byte. */ + step = size_one_node; + + iv_base = iv->base; + iv_step = iv->step; + if (iv->no_overflow && nowrap_type_p (TREE_TYPE (iv_step))) + use_overflow_semantics = true; + + if (!convert_affine_scev (dta->ivopts_data->current_loop, + sizetype, &iv_base, &iv_step, dta->stmt, + use_overflow_semantics)) + { + /* The index might wrap. */ + return false; + } + + step = fold_build2 (MULT_EXPR, sizetype, step, iv_step); + dta->step = fold_build2 (PLUS_EXPR, sizetype, dta->step, step); + + if (dta->ivopts_data->bivs_not_used_in_addr) + { + if (!iv->biv_p) + iv = find_deriving_biv_for_expr (dta->ivopts_data, iv->ssa_name); + + record_biv_for_address_use (dta->ivopts_data, iv); + } + return true; +} + +/* Records use in index IDX. Callback for for_each_index. Ivopts data + object is passed to it in DATA. */ + +static bool +idx_record_use (tree base, tree *idx, + void *vdata) +{ + struct ivopts_data *data = (struct ivopts_data *) vdata; + find_interesting_uses_op (data, *idx); + if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF) + { + find_interesting_uses_op (data, array_ref_element_size (base)); + find_interesting_uses_op (data, array_ref_low_bound (base)); + } + return true; +} + +/* If we can prove that TOP = cst * BOT for some constant cst, + store cst to MUL and return true. Otherwise return false. + The returned value is always sign-extended, regardless of the + signedness of TOP and BOT. */ + +static bool +constant_multiple_of (tree top, tree bot, widest_int *mul) +{ + tree mby; + enum tree_code code; + unsigned precision = TYPE_PRECISION (TREE_TYPE (top)); + widest_int res, p0, p1; + + STRIP_NOPS (top); + STRIP_NOPS (bot); + + if (operand_equal_p (top, bot, 0)) + { + *mul = 1; + return true; + } + + code = TREE_CODE (top); + switch (code) + { + case MULT_EXPR: + mby = TREE_OPERAND (top, 1); + if (TREE_CODE (mby) != INTEGER_CST) + return false; + + if (!constant_multiple_of (TREE_OPERAND (top, 0), bot, &res)) + return false; + + *mul = wi::sext (res * wi::to_widest (mby), precision); + return true; + + case PLUS_EXPR: + case MINUS_EXPR: + if (!constant_multiple_of (TREE_OPERAND (top, 0), bot, &p0) + || !constant_multiple_of (TREE_OPERAND (top, 1), bot, &p1)) + return false; + + if (code == MINUS_EXPR) + p1 = -p1; + *mul = wi::sext (p0 + p1, precision); + return true; + + case INTEGER_CST: + if (TREE_CODE (bot) != INTEGER_CST) + return false; + + p0 = widest_int::from (wi::to_wide (top), SIGNED); + p1 = widest_int::from (wi::to_wide (bot), SIGNED); + if (p1 == 0) + return false; + *mul = wi::sext (wi::divmod_trunc (p0, p1, SIGNED, &res), precision); + return res == 0; + + default: + if (POLY_INT_CST_P (top) + && POLY_INT_CST_P (bot) + && constant_multiple_p (wi::to_poly_widest (top), + wi::to_poly_widest (bot), mul)) + return true; + + return false; + } +} + +/* Return true if memory reference REF with step STEP may be unaligned. */ + +static bool +may_be_unaligned_p (tree ref, tree step) +{ + /* TARGET_MEM_REFs are translated directly to valid MEMs on the target, + thus they are not misaligned. */ + if (TREE_CODE (ref) == TARGET_MEM_REF) + return false; + + unsigned int align = TYPE_ALIGN (TREE_TYPE (ref)); + if (GET_MODE_ALIGNMENT (TYPE_MODE (TREE_TYPE (ref))) > align) + align = GET_MODE_ALIGNMENT (TYPE_MODE (TREE_TYPE (ref))); + + unsigned HOST_WIDE_INT bitpos; + unsigned int ref_align; + get_object_alignment_1 (ref, &ref_align, &bitpos); + if (ref_align < align + || (bitpos % align) != 0 + || (bitpos % BITS_PER_UNIT) != 0) + return true; + + unsigned int trailing_zeros = tree_ctz (step); + if (trailing_zeros < HOST_BITS_PER_INT + && (1U << trailing_zeros) * BITS_PER_UNIT < align) + return true; + + return false; +} + +/* Return true if EXPR may be non-addressable. */ + +bool +may_be_nonaddressable_p (tree expr) +{ + switch (TREE_CODE (expr)) + { + case VAR_DECL: + /* Check if it's a register variable. */ + return DECL_HARD_REGISTER (expr); + + case TARGET_MEM_REF: + /* TARGET_MEM_REFs are translated directly to valid MEMs on the + target, thus they are always addressable. */ + return false; + + case MEM_REF: + /* Likewise for MEM_REFs, modulo the storage order. */ + return REF_REVERSE_STORAGE_ORDER (expr); + + case BIT_FIELD_REF: + if (REF_REVERSE_STORAGE_ORDER (expr)) + return true; + return may_be_nonaddressable_p (TREE_OPERAND (expr, 0)); + + case COMPONENT_REF: + if (TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (TREE_OPERAND (expr, 0)))) + return true; + return DECL_NONADDRESSABLE_P (TREE_OPERAND (expr, 1)) + || may_be_nonaddressable_p (TREE_OPERAND (expr, 0)); + + case ARRAY_REF: + case ARRAY_RANGE_REF: + if (TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (TREE_OPERAND (expr, 0)))) + return true; + return may_be_nonaddressable_p (TREE_OPERAND (expr, 0)); + + case VIEW_CONVERT_EXPR: + /* This kind of view-conversions may wrap non-addressable objects + and make them look addressable. After some processing the + non-addressability may be uncovered again, causing ADDR_EXPRs + of inappropriate objects to be built. */ + if (is_gimple_reg (TREE_OPERAND (expr, 0)) + || !is_gimple_addressable (TREE_OPERAND (expr, 0))) + return true; + return may_be_nonaddressable_p (TREE_OPERAND (expr, 0)); + + CASE_CONVERT: + return true; + + default: + break; + } + + return false; +} + +/* Finds addresses in *OP_P inside STMT. */ + +static void +find_interesting_uses_address (struct ivopts_data *data, gimple *stmt, + tree *op_p) +{ + tree base = *op_p, step = size_zero_node; + struct iv *civ; + struct ifs_ivopts_data ifs_ivopts_data; + + /* Do not play with volatile memory references. A bit too conservative, + perhaps, but safe. */ + if (gimple_has_volatile_ops (stmt)) + goto fail; + + /* Ignore bitfields for now. Not really something terribly complicated + to handle. TODO. */ + if (TREE_CODE (base) == BIT_FIELD_REF) + goto fail; + + base = unshare_expr (base); + + if (TREE_CODE (base) == TARGET_MEM_REF) + { + tree type = build_pointer_type (TREE_TYPE (base)); + tree astep; + + if (TMR_BASE (base) + && TREE_CODE (TMR_BASE (base)) == SSA_NAME) + { + civ = get_iv (data, TMR_BASE (base)); + if (!civ) + goto fail; + + TMR_BASE (base) = civ->base; + step = civ->step; + } + if (TMR_INDEX2 (base) + && TREE_CODE (TMR_INDEX2 (base)) == SSA_NAME) + { + civ = get_iv (data, TMR_INDEX2 (base)); + if (!civ) + goto fail; + + TMR_INDEX2 (base) = civ->base; + step = civ->step; + } + if (TMR_INDEX (base) + && TREE_CODE (TMR_INDEX (base)) == SSA_NAME) + { + civ = get_iv (data, TMR_INDEX (base)); + if (!civ) + goto fail; + + TMR_INDEX (base) = civ->base; + astep = civ->step; + + if (astep) + { + if (TMR_STEP (base)) + astep = fold_build2 (MULT_EXPR, type, TMR_STEP (base), astep); + + step = fold_build2 (PLUS_EXPR, type, step, astep); + } + } + + if (integer_zerop (step)) + goto fail; + base = tree_mem_ref_addr (type, base); + } + else + { + ifs_ivopts_data.ivopts_data = data; + ifs_ivopts_data.stmt = stmt; + ifs_ivopts_data.step = size_zero_node; + if (!for_each_index (&base, idx_find_step, &ifs_ivopts_data) + || integer_zerop (ifs_ivopts_data.step)) + goto fail; + step = ifs_ivopts_data.step; + + /* Check that the base expression is addressable. This needs + to be done after substituting bases of IVs into it. */ + if (may_be_nonaddressable_p (base)) + goto fail; + + /* Moreover, on strict alignment platforms, check that it is + sufficiently aligned. */ + if (STRICT_ALIGNMENT && may_be_unaligned_p (base, step)) + goto fail; + + base = build_fold_addr_expr (base); + + /* Substituting bases of IVs into the base expression might + have caused folding opportunities. */ + if (TREE_CODE (base) == ADDR_EXPR) + { + tree *ref = &TREE_OPERAND (base, 0); + while (handled_component_p (*ref)) + ref = &TREE_OPERAND (*ref, 0); + if (TREE_CODE (*ref) == MEM_REF) + { + tree tem = fold_binary (MEM_REF, TREE_TYPE (*ref), + TREE_OPERAND (*ref, 0), + TREE_OPERAND (*ref, 1)); + if (tem) + *ref = tem; + } + } + } + + civ = alloc_iv (data, base, step); + /* Fail if base object of this memory reference is unknown. */ + if (civ->base_object == NULL_TREE) + goto fail; + + record_group_use (data, op_p, civ, stmt, USE_REF_ADDRESS, TREE_TYPE (*op_p)); + return; + +fail: + for_each_index (op_p, idx_record_use, data); +} + +/* Finds and records invariants used in STMT. */ + +static void +find_invariants_stmt (struct ivopts_data *data, gimple *stmt) +{ + ssa_op_iter iter; + use_operand_p use_p; + tree op; + + FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE) + { + op = USE_FROM_PTR (use_p); + record_invariant (data, op, false); + } +} + +/* CALL calls an internal function. If operand *OP_P will become an + address when the call is expanded, return the type of the memory + being addressed, otherwise return null. */ + +static tree +get_mem_type_for_internal_fn (gcall *call, tree *op_p) +{ + switch (gimple_call_internal_fn (call)) + { + case IFN_MASK_LOAD: + case IFN_MASK_LOAD_LANES: + case IFN_LEN_LOAD: + if (op_p == gimple_call_arg_ptr (call, 0)) + return TREE_TYPE (gimple_call_lhs (call)); + return NULL_TREE; + + case IFN_MASK_STORE: + case IFN_MASK_STORE_LANES: + case IFN_LEN_STORE: + if (op_p == gimple_call_arg_ptr (call, 0)) + return TREE_TYPE (gimple_call_arg (call, 3)); + return NULL_TREE; + + default: + return NULL_TREE; + } +} + +/* IV is a (non-address) iv that describes operand *OP_P of STMT. + Return true if the operand will become an address when STMT + is expanded and record the associated address use if so. */ + +static bool +find_address_like_use (struct ivopts_data *data, gimple *stmt, tree *op_p, + struct iv *iv) +{ + /* Fail if base object of this memory reference is unknown. */ + if (iv->base_object == NULL_TREE) + return false; + + tree mem_type = NULL_TREE; + if (gcall *call = dyn_cast <gcall *> (stmt)) + if (gimple_call_internal_p (call)) + mem_type = get_mem_type_for_internal_fn (call, op_p); + if (mem_type) + { + iv = alloc_iv (data, iv->base, iv->step); + record_group_use (data, op_p, iv, stmt, USE_PTR_ADDRESS, mem_type); + return true; + } + return false; +} + +/* Finds interesting uses of induction variables in the statement STMT. */ + +static void +find_interesting_uses_stmt (struct ivopts_data *data, gimple *stmt) +{ + struct iv *iv; + tree op, *lhs, *rhs; + ssa_op_iter iter; + use_operand_p use_p; + enum tree_code code; + + find_invariants_stmt (data, stmt); + + if (gimple_code (stmt) == GIMPLE_COND) + { + find_interesting_uses_cond (data, stmt); + return; + } + + if (is_gimple_assign (stmt)) + { + lhs = gimple_assign_lhs_ptr (stmt); + rhs = gimple_assign_rhs1_ptr (stmt); + + if (TREE_CODE (*lhs) == SSA_NAME) + { + /* If the statement defines an induction variable, the uses are not + interesting by themselves. */ + + iv = get_iv (data, *lhs); + + if (iv && !integer_zerop (iv->step)) + return; + } + + code = gimple_assign_rhs_code (stmt); + if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS + && (REFERENCE_CLASS_P (*rhs) + || is_gimple_val (*rhs))) + { + if (REFERENCE_CLASS_P (*rhs)) + find_interesting_uses_address (data, stmt, rhs); + else + find_interesting_uses_op (data, *rhs); + + if (REFERENCE_CLASS_P (*lhs)) + find_interesting_uses_address (data, stmt, lhs); + return; + } + else if (TREE_CODE_CLASS (code) == tcc_comparison) + { + find_interesting_uses_cond (data, stmt); + return; + } + + /* TODO -- we should also handle address uses of type + + memory = call (whatever); + + and + + call (memory). */ + } + + if (gimple_code (stmt) == GIMPLE_PHI + && gimple_bb (stmt) == data->current_loop->header) + { + iv = get_iv (data, PHI_RESULT (stmt)); + + if (iv && !integer_zerop (iv->step)) + return; + } + + FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE) + { + op = USE_FROM_PTR (use_p); + + if (TREE_CODE (op) != SSA_NAME) + continue; + + iv = get_iv (data, op); + if (!iv) + continue; + + if (!find_address_like_use (data, stmt, use_p->use, iv)) + find_interesting_uses_op (data, op); + } +} + +/* Finds interesting uses of induction variables outside of loops + on loop exit edge EXIT. */ + +static void +find_interesting_uses_outside (struct ivopts_data *data, edge exit) +{ + gphi *phi; + gphi_iterator psi; + tree def; + + for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); gsi_next (&psi)) + { + phi = psi.phi (); + def = PHI_ARG_DEF_FROM_EDGE (phi, exit); + if (!virtual_operand_p (def)) + find_interesting_uses_op (data, def); + } +} + +/* Return TRUE if OFFSET is within the range of [base + offset] addressing + mode for memory reference represented by USE. */ + +static GTY (()) vec<rtx, va_gc> *addr_list; + +static bool +addr_offset_valid_p (struct iv_use *use, poly_int64 offset) +{ + rtx reg, addr; + unsigned list_index; + addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (use->iv->base)); + machine_mode addr_mode, mem_mode = TYPE_MODE (use->mem_type); + + list_index = (unsigned) as * MAX_MACHINE_MODE + (unsigned) mem_mode; + if (list_index >= vec_safe_length (addr_list)) + vec_safe_grow_cleared (addr_list, list_index + MAX_MACHINE_MODE, true); + + addr = (*addr_list)[list_index]; + if (!addr) + { + addr_mode = targetm.addr_space.address_mode (as); + reg = gen_raw_REG (addr_mode, LAST_VIRTUAL_REGISTER + 1); + addr = gen_rtx_fmt_ee (PLUS, addr_mode, reg, NULL_RTX); + (*addr_list)[list_index] = addr; + } + else + addr_mode = GET_MODE (addr); + + XEXP (addr, 1) = gen_int_mode (offset, addr_mode); + return (memory_address_addr_space_p (mem_mode, addr, as)); +} + +/* Comparison function to sort group in ascending order of addr_offset. */ + +static int +group_compare_offset (const void *a, const void *b) +{ + const struct iv_use *const *u1 = (const struct iv_use *const *) a; + const struct iv_use *const *u2 = (const struct iv_use *const *) b; + + return compare_sizes_for_sort ((*u1)->addr_offset, (*u2)->addr_offset); +} + +/* Check if small groups should be split. Return true if no group + contains more than two uses with distinct addr_offsets. Return + false otherwise. We want to split such groups because: + + 1) Small groups don't have much benefit and may interfer with + general candidate selection. + 2) Size for problem with only small groups is usually small and + general algorithm can handle it well. + + TODO -- Above claim may not hold when we want to merge memory + accesses with conseuctive addresses. */ + +static bool +split_small_address_groups_p (struct ivopts_data *data) +{ + unsigned int i, j, distinct = 1; + struct iv_use *pre; + struct iv_group *group; + + for (i = 0; i < data->vgroups.length (); i++) + { + group = data->vgroups[i]; + if (group->vuses.length () == 1) + continue; + + gcc_assert (address_p (group->type)); + if (group->vuses.length () == 2) + { + if (compare_sizes_for_sort (group->vuses[0]->addr_offset, + group->vuses[1]->addr_offset) > 0) + std::swap (group->vuses[0], group->vuses[1]); + } + else + group->vuses.qsort (group_compare_offset); + + if (distinct > 2) + continue; + + distinct = 1; + for (pre = group->vuses[0], j = 1; j < group->vuses.length (); j++) + { + if (maybe_ne (group->vuses[j]->addr_offset, pre->addr_offset)) + { + pre = group->vuses[j]; + distinct++; + } + + if (distinct > 2) + break; + } + } + + return (distinct <= 2); +} + +/* For each group of address type uses, this function further groups + these uses according to the maximum offset supported by target's + [base + offset] addressing mode. */ + +static void +split_address_groups (struct ivopts_data *data) +{ + unsigned int i, j; + /* Always split group. */ + bool split_p = split_small_address_groups_p (data); + + for (i = 0; i < data->vgroups.length (); i++) + { + struct iv_group *new_group = NULL; + struct iv_group *group = data->vgroups[i]; + struct iv_use *use = group->vuses[0]; + + use->id = 0; + use->group_id = group->id; + if (group->vuses.length () == 1) + continue; + + gcc_assert (address_p (use->type)); + + for (j = 1; j < group->vuses.length ();) + { + struct iv_use *next = group->vuses[j]; + poly_int64 offset = next->addr_offset - use->addr_offset; + + /* Split group if aksed to, or the offset against the first + use can't fit in offset part of addressing mode. IV uses + having the same offset are still kept in one group. */ + if (maybe_ne (offset, 0) + && (split_p || !addr_offset_valid_p (use, offset))) + { + if (!new_group) + new_group = record_group (data, group->type); + group->vuses.ordered_remove (j); + new_group->vuses.safe_push (next); + continue; + } + + next->id = j; + next->group_id = group->id; + j++; + } + } +} + +/* Finds uses of the induction variables that are interesting. */ + +static void +find_interesting_uses (struct ivopts_data *data, basic_block *body) +{ + basic_block bb; + gimple_stmt_iterator bsi; + unsigned i; + edge e; + + for (i = 0; i < data->current_loop->num_nodes; i++) + { + edge_iterator ei; + bb = body[i]; + + FOR_EACH_EDGE (e, ei, bb->succs) + if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) + && !flow_bb_inside_loop_p (data->current_loop, e->dest)) + find_interesting_uses_outside (data, e); + + for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi)) + find_interesting_uses_stmt (data, gsi_stmt (bsi)); + for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi)) + if (!is_gimple_debug (gsi_stmt (bsi))) + find_interesting_uses_stmt (data, gsi_stmt (bsi)); + } + + split_address_groups (data); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "\n<IV Groups>:\n"); + dump_groups (dump_file, data); + fprintf (dump_file, "\n"); + } +} + +/* Strips constant offsets from EXPR and stores them to OFFSET. If INSIDE_ADDR + is true, assume we are inside an address. If TOP_COMPREF is true, assume + we are at the top-level of the processed address. */ + +static tree +strip_offset_1 (tree expr, bool inside_addr, bool top_compref, + poly_int64 *offset) +{ + tree op0 = NULL_TREE, op1 = NULL_TREE, tmp, step; + enum tree_code code; + tree type, orig_type = TREE_TYPE (expr); + poly_int64 off0, off1; + HOST_WIDE_INT st; + tree orig_expr = expr; + + STRIP_NOPS (expr); + + type = TREE_TYPE (expr); + code = TREE_CODE (expr); + *offset = 0; + + switch (code) + { + case POINTER_PLUS_EXPR: + case PLUS_EXPR: + case MINUS_EXPR: + op0 = TREE_OPERAND (expr, 0); + op1 = TREE_OPERAND (expr, 1); + + op0 = strip_offset_1 (op0, false, false, &off0); + op1 = strip_offset_1 (op1, false, false, &off1); + + *offset = (code == MINUS_EXPR ? off0 - off1 : off0 + off1); + if (op0 == TREE_OPERAND (expr, 0) + && op1 == TREE_OPERAND (expr, 1)) + return orig_expr; + + if (integer_zerop (op1)) + expr = op0; + else if (integer_zerop (op0)) + { + if (code == MINUS_EXPR) + expr = fold_build1 (NEGATE_EXPR, type, op1); + else + expr = op1; + } + else + expr = fold_build2 (code, type, op0, op1); + + return fold_convert (orig_type, expr); + + case MULT_EXPR: + op1 = TREE_OPERAND (expr, 1); + if (!cst_and_fits_in_hwi (op1)) + return orig_expr; + + op0 = TREE_OPERAND (expr, 0); + op0 = strip_offset_1 (op0, false, false, &off0); + if (op0 == TREE_OPERAND (expr, 0)) + return orig_expr; + + *offset = off0 * int_cst_value (op1); + if (integer_zerop (op0)) + expr = op0; + else + expr = fold_build2 (MULT_EXPR, type, op0, op1); + + return fold_convert (orig_type, expr); + + case ARRAY_REF: + case ARRAY_RANGE_REF: + if (!inside_addr) + return orig_expr; + + step = array_ref_element_size (expr); + if (!cst_and_fits_in_hwi (step)) + break; + + st = int_cst_value (step); + op1 = TREE_OPERAND (expr, 1); + op1 = strip_offset_1 (op1, false, false, &off1); + *offset = off1 * st; + + if (top_compref + && integer_zerop (op1)) + { + /* Strip the component reference completely. */ + op0 = TREE_OPERAND (expr, 0); + op0 = strip_offset_1 (op0, inside_addr, top_compref, &off0); + *offset += off0; + return op0; + } + break; + + case COMPONENT_REF: + { + tree field; + + if (!inside_addr) + return orig_expr; + + tmp = component_ref_field_offset (expr); + field = TREE_OPERAND (expr, 1); + if (top_compref + && cst_and_fits_in_hwi (tmp) + && cst_and_fits_in_hwi (DECL_FIELD_BIT_OFFSET (field))) + { + HOST_WIDE_INT boffset, abs_off; + + /* Strip the component reference completely. */ + op0 = TREE_OPERAND (expr, 0); + op0 = strip_offset_1 (op0, inside_addr, top_compref, &off0); + boffset = int_cst_value (DECL_FIELD_BIT_OFFSET (field)); + abs_off = abs_hwi (boffset) / BITS_PER_UNIT; + if (boffset < 0) + abs_off = -abs_off; + + *offset = off0 + int_cst_value (tmp) + abs_off; + return op0; + } + } + break; + + case ADDR_EXPR: + op0 = TREE_OPERAND (expr, 0); + op0 = strip_offset_1 (op0, true, true, &off0); + *offset += off0; + + if (op0 == TREE_OPERAND (expr, 0)) + return orig_expr; + + expr = build_fold_addr_expr (op0); + return fold_convert (orig_type, expr); + + case MEM_REF: + /* ??? Offset operand? */ + inside_addr = false; + break; + + default: + if (ptrdiff_tree_p (expr, offset) && maybe_ne (*offset, 0)) + return build_int_cst (orig_type, 0); + return orig_expr; + } + + /* Default handling of expressions for that we want to recurse into + the first operand. */ + op0 = TREE_OPERAND (expr, 0); + op0 = strip_offset_1 (op0, inside_addr, false, &off0); + *offset += off0; + + if (op0 == TREE_OPERAND (expr, 0) + && (!op1 || op1 == TREE_OPERAND (expr, 1))) + return orig_expr; + + expr = copy_node (expr); + TREE_OPERAND (expr, 0) = op0; + if (op1) + TREE_OPERAND (expr, 1) = op1; + + /* Inside address, we might strip the top level component references, + thus changing type of the expression. Handling of ADDR_EXPR + will fix that. */ + expr = fold_convert (orig_type, expr); + + return expr; +} + +/* Strips constant offsets from EXPR and stores them to OFFSET. */ + +tree +strip_offset (tree expr, poly_uint64_pod *offset) +{ + poly_int64 off; + tree core = strip_offset_1 (expr, false, false, &off); + *offset = off; + return core; +} + +/* Returns variant of TYPE that can be used as base for different uses. + We return unsigned type with the same precision, which avoids problems + with overflows. */ + +static tree +generic_type_for (tree type) +{ + if (POINTER_TYPE_P (type)) + return unsigned_type_for (type); + + if (TYPE_UNSIGNED (type)) + return type; + + return unsigned_type_for (type); +} + +/* Private data for walk_tree. */ + +struct walk_tree_data +{ + bitmap *inv_vars; + struct ivopts_data *idata; +}; + +/* Callback function for walk_tree, it records invariants and symbol + reference in *EXPR_P. DATA is the structure storing result info. */ + +static tree +find_inv_vars_cb (tree *expr_p, int *ws ATTRIBUTE_UNUSED, void *data) +{ + tree op = *expr_p; + struct version_info *info; + struct walk_tree_data *wdata = (struct walk_tree_data*) data; + + if (TREE_CODE (op) != SSA_NAME) + return NULL_TREE; + + info = name_info (wdata->idata, op); + /* Because we expand simple operations when finding IVs, loop invariant + variable that isn't referred by the original loop could be used now. + Record such invariant variables here. */ + if (!info->iv) + { + struct ivopts_data *idata = wdata->idata; + basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (op)); + + if (!bb || !flow_bb_inside_loop_p (idata->current_loop, bb)) + { + tree steptype = TREE_TYPE (op); + if (POINTER_TYPE_P (steptype)) + steptype = sizetype; + set_iv (idata, op, op, build_int_cst (steptype, 0), true); + record_invariant (idata, op, false); + } + } + if (!info->inv_id || info->has_nonlin_use) + return NULL_TREE; + + if (!*wdata->inv_vars) + *wdata->inv_vars = BITMAP_ALLOC (NULL); + bitmap_set_bit (*wdata->inv_vars, info->inv_id); + + return NULL_TREE; +} + +/* Records invariants in *EXPR_P. INV_VARS is the bitmap to that we should + store it. */ + +static inline void +find_inv_vars (struct ivopts_data *data, tree *expr_p, bitmap *inv_vars) +{ + struct walk_tree_data wdata; + + if (!inv_vars) + return; + + wdata.idata = data; + wdata.inv_vars = inv_vars; + walk_tree (expr_p, find_inv_vars_cb, &wdata, NULL); +} + +/* Get entry from invariant expr hash table for INV_EXPR. New entry + will be recorded if it doesn't exist yet. Given below two exprs: + inv_expr + cst1, inv_expr + cst2 + It's hard to make decision whether constant part should be stripped + or not. We choose to not strip based on below facts: + 1) We need to count ADD cost for constant part if it's stripped, + which isn't always trivial where this functions is called. + 2) Stripping constant away may be conflict with following loop + invariant hoisting pass. + 3) Not stripping constant away results in more invariant exprs, + which usually leads to decision preferring lower reg pressure. */ + +static iv_inv_expr_ent * +get_loop_invariant_expr (struct ivopts_data *data, tree inv_expr) +{ + STRIP_NOPS (inv_expr); + + if (poly_int_tree_p (inv_expr) + || TREE_CODE (inv_expr) == SSA_NAME) + return NULL; + + /* Don't strip constant part away as we used to. */ + + /* Stores EXPR in DATA->inv_expr_tab, return pointer to iv_inv_expr_ent. */ + struct iv_inv_expr_ent ent; + ent.expr = inv_expr; + ent.hash = iterative_hash_expr (inv_expr, 0); + struct iv_inv_expr_ent **slot = data->inv_expr_tab->find_slot (&ent, INSERT); + + if (!*slot) + { + *slot = XNEW (struct iv_inv_expr_ent); + (*slot)->expr = inv_expr; + (*slot)->hash = ent.hash; + (*slot)->id = ++data->max_inv_expr_id; + } + + return *slot; +} + +/* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and + position to POS. If USE is not NULL, the candidate is set as related to + it. If both BASE and STEP are NULL, we add a pseudocandidate for the + replacement of the final value of the iv by a direct computation. */ + +static struct iv_cand * +add_candidate_1 (struct ivopts_data *data, tree base, tree step, bool important, + enum iv_position pos, struct iv_use *use, + gimple *incremented_at, struct iv *orig_iv = NULL, + bool doloop = false) +{ + unsigned i; + struct iv_cand *cand = NULL; + tree type, orig_type; + + gcc_assert (base && step); + + /* -fkeep-gc-roots-live means that we have to keep a real pointer + live, but the ivopts code may replace a real pointer with one + pointing before or after the memory block that is then adjusted + into the memory block during the loop. FIXME: It would likely be + better to actually force the pointer live and still use ivopts; + for example, it would be enough to write the pointer into memory + and keep it there until after the loop. */ + if (flag_keep_gc_roots_live && POINTER_TYPE_P (TREE_TYPE (base))) + return NULL; + + /* For non-original variables, make sure their values are computed in a type + that does not invoke undefined behavior on overflows (since in general, + we cannot prove that these induction variables are non-wrapping). */ + if (pos != IP_ORIGINAL) + { + orig_type = TREE_TYPE (base); + type = generic_type_for (orig_type); + if (type != orig_type) + { + base = fold_convert (type, base); + step = fold_convert (type, step); + } + } + + for (i = 0; i < data->vcands.length (); i++) + { + cand = data->vcands[i]; + + if (cand->pos != pos) + continue; + + if (cand->incremented_at != incremented_at + || ((pos == IP_AFTER_USE || pos == IP_BEFORE_USE) + && cand->ainc_use != use)) + continue; + + if (operand_equal_p (base, cand->iv->base, 0) + && operand_equal_p (step, cand->iv->step, 0) + && (TYPE_PRECISION (TREE_TYPE (base)) + == TYPE_PRECISION (TREE_TYPE (cand->iv->base)))) + break; + } + + if (i == data->vcands.length ()) + { + cand = XCNEW (struct iv_cand); + cand->id = i; + cand->iv = alloc_iv (data, base, step); + cand->pos = pos; + if (pos != IP_ORIGINAL) + { + if (doloop) + cand->var_before = create_tmp_var_raw (TREE_TYPE (base), "doloop"); + else + cand->var_before = create_tmp_var_raw (TREE_TYPE (base), "ivtmp"); + cand->var_after = cand->var_before; + } + cand->important = important; + cand->incremented_at = incremented_at; + cand->doloop_p = doloop; + data->vcands.safe_push (cand); + + if (!poly_int_tree_p (step)) + { + find_inv_vars (data, &step, &cand->inv_vars); + + iv_inv_expr_ent *inv_expr = get_loop_invariant_expr (data, step); + /* Share bitmap between inv_vars and inv_exprs for cand. */ + if (inv_expr != NULL) + { + cand->inv_exprs = cand->inv_vars; + cand->inv_vars = NULL; + if (cand->inv_exprs) + bitmap_clear (cand->inv_exprs); + else + cand->inv_exprs = BITMAP_ALLOC (NULL); + + bitmap_set_bit (cand->inv_exprs, inv_expr->id); + } + } + + if (pos == IP_AFTER_USE || pos == IP_BEFORE_USE) + cand->ainc_use = use; + else + cand->ainc_use = NULL; + + cand->orig_iv = orig_iv; + if (dump_file && (dump_flags & TDF_DETAILS)) + dump_cand (dump_file, cand); + } + + cand->important |= important; + cand->doloop_p |= doloop; + + /* Relate candidate to the group for which it is added. */ + if (use) + bitmap_set_bit (data->vgroups[use->group_id]->related_cands, i); + + return cand; +} + +/* Returns true if incrementing the induction variable at the end of the LOOP + is allowed. + + The purpose is to avoid splitting latch edge with a biv increment, thus + creating a jump, possibly confusing other optimization passes and leaving + less freedom to scheduler. So we allow IP_END only if IP_NORMAL is not + available (so we do not have a better alternative), or if the latch edge + is already nonempty. */ + +static bool +allow_ip_end_pos_p (class loop *loop) +{ + if (!ip_normal_pos (loop)) + return true; + + if (!empty_block_p (ip_end_pos (loop))) + return true; + + return false; +} + +/* If possible, adds autoincrement candidates BASE + STEP * i based on use USE. + Important field is set to IMPORTANT. */ + +static void +add_autoinc_candidates (struct ivopts_data *data, tree base, tree step, + bool important, struct iv_use *use) +{ + basic_block use_bb = gimple_bb (use->stmt); + machine_mode mem_mode; + unsigned HOST_WIDE_INT cstepi; + + /* If we insert the increment in any position other than the standard + ones, we must ensure that it is incremented once per iteration. + It must not be in an inner nested loop, or one side of an if + statement. */ + if (use_bb->loop_father != data->current_loop + || !dominated_by_p (CDI_DOMINATORS, data->current_loop->latch, use_bb) + || stmt_can_throw_internal (cfun, use->stmt) + || !cst_and_fits_in_hwi (step)) + return; + + cstepi = int_cst_value (step); + + mem_mode = TYPE_MODE (use->mem_type); + if (((USE_LOAD_PRE_INCREMENT (mem_mode) + || USE_STORE_PRE_INCREMENT (mem_mode)) + && known_eq (GET_MODE_SIZE (mem_mode), cstepi)) + || ((USE_LOAD_PRE_DECREMENT (mem_mode) + || USE_STORE_PRE_DECREMENT (mem_mode)) + && known_eq (GET_MODE_SIZE (mem_mode), -cstepi))) + { + enum tree_code code = MINUS_EXPR; + tree new_base; + tree new_step = step; + + if (POINTER_TYPE_P (TREE_TYPE (base))) + { + new_step = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step); + code = POINTER_PLUS_EXPR; + } + else + new_step = fold_convert (TREE_TYPE (base), new_step); + new_base = fold_build2 (code, TREE_TYPE (base), base, new_step); + add_candidate_1 (data, new_base, step, important, IP_BEFORE_USE, use, + use->stmt); + } + if (((USE_LOAD_POST_INCREMENT (mem_mode) + || USE_STORE_POST_INCREMENT (mem_mode)) + && known_eq (GET_MODE_SIZE (mem_mode), cstepi)) + || ((USE_LOAD_POST_DECREMENT (mem_mode) + || USE_STORE_POST_DECREMENT (mem_mode)) + && known_eq (GET_MODE_SIZE (mem_mode), -cstepi))) + { + add_candidate_1 (data, base, step, important, IP_AFTER_USE, use, + use->stmt); + } +} + +/* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and + position to POS. If USE is not NULL, the candidate is set as related to + it. The candidate computation is scheduled before exit condition and at + the end of loop. */ + +static void +add_candidate (struct ivopts_data *data, tree base, tree step, bool important, + struct iv_use *use, struct iv *orig_iv = NULL, + bool doloop = false) +{ + if (ip_normal_pos (data->current_loop)) + add_candidate_1 (data, base, step, important, IP_NORMAL, use, NULL, orig_iv, + doloop); + /* Exclude doloop candidate here since it requires decrement then comparison + and jump, the IP_END position doesn't match. */ + if (!doloop && ip_end_pos (data->current_loop) + && allow_ip_end_pos_p (data->current_loop)) + add_candidate_1 (data, base, step, important, IP_END, use, NULL, orig_iv); +} + +/* Adds standard iv candidates. */ + +static void +add_standard_iv_candidates (struct ivopts_data *data) +{ + add_candidate (data, integer_zero_node, integer_one_node, true, NULL); + + /* The same for a double-integer type if it is still fast enough. */ + if (TYPE_PRECISION + (long_integer_type_node) > TYPE_PRECISION (integer_type_node) + && TYPE_PRECISION (long_integer_type_node) <= BITS_PER_WORD) + add_candidate (data, build_int_cst (long_integer_type_node, 0), + build_int_cst (long_integer_type_node, 1), true, NULL); + + /* The same for a double-integer type if it is still fast enough. */ + if (TYPE_PRECISION + (long_long_integer_type_node) > TYPE_PRECISION (long_integer_type_node) + && TYPE_PRECISION (long_long_integer_type_node) <= BITS_PER_WORD) + add_candidate (data, build_int_cst (long_long_integer_type_node, 0), + build_int_cst (long_long_integer_type_node, 1), true, NULL); +} + + +/* Adds candidates bases on the old induction variable IV. */ + +static void +add_iv_candidate_for_biv (struct ivopts_data *data, struct iv *iv) +{ + gimple *phi; + tree def; + struct iv_cand *cand; + + /* Check if this biv is used in address type use. */ + if (iv->no_overflow && iv->have_address_use + && INTEGRAL_TYPE_P (TREE_TYPE (iv->base)) + && TYPE_PRECISION (TREE_TYPE (iv->base)) < TYPE_PRECISION (sizetype)) + { + tree base = fold_convert (sizetype, iv->base); + tree step = fold_convert (sizetype, iv->step); + + /* Add iv cand of same precision as index part in TARGET_MEM_REF. */ + add_candidate (data, base, step, true, NULL, iv); + /* Add iv cand of the original type only if it has nonlinear use. */ + if (iv->nonlin_use) + add_candidate (data, iv->base, iv->step, true, NULL); + } + else + add_candidate (data, iv->base, iv->step, true, NULL); + + /* The same, but with initial value zero. */ + if (POINTER_TYPE_P (TREE_TYPE (iv->base))) + add_candidate (data, size_int (0), iv->step, true, NULL); + else + add_candidate (data, build_int_cst (TREE_TYPE (iv->base), 0), + iv->step, true, NULL); + + phi = SSA_NAME_DEF_STMT (iv->ssa_name); + if (gimple_code (phi) == GIMPLE_PHI) + { + /* Additionally record the possibility of leaving the original iv + untouched. */ + def = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (data->current_loop)); + /* Don't add candidate if it's from another PHI node because + it's an affine iv appearing in the form of PEELED_CHREC. */ + phi = SSA_NAME_DEF_STMT (def); + if (gimple_code (phi) != GIMPLE_PHI) + { + cand = add_candidate_1 (data, + iv->base, iv->step, true, IP_ORIGINAL, NULL, + SSA_NAME_DEF_STMT (def)); + if (cand) + { + cand->var_before = iv->ssa_name; + cand->var_after = def; + } + } + else + gcc_assert (gimple_bb (phi) == data->current_loop->header); + } +} + +/* Adds candidates based on the old induction variables. */ + +static void +add_iv_candidate_for_bivs (struct ivopts_data *data) +{ + unsigned i; + struct iv *iv; + bitmap_iterator bi; + + EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi) + { + iv = ver_info (data, i)->iv; + if (iv && iv->biv_p && !integer_zerop (iv->step)) + add_iv_candidate_for_biv (data, iv); + } +} + +/* Record common candidate {BASE, STEP} derived from USE in hashtable. */ + +static void +record_common_cand (struct ivopts_data *data, tree base, + tree step, struct iv_use *use) +{ + class iv_common_cand ent; + class iv_common_cand **slot; + + ent.base = base; + ent.step = step; + ent.hash = iterative_hash_expr (base, 0); + ent.hash = iterative_hash_expr (step, ent.hash); + + slot = data->iv_common_cand_tab->find_slot (&ent, INSERT); + if (*slot == NULL) + { + *slot = new iv_common_cand (); + (*slot)->base = base; + (*slot)->step = step; + (*slot)->uses.create (8); + (*slot)->hash = ent.hash; + data->iv_common_cands.safe_push ((*slot)); + } + + gcc_assert (use != NULL); + (*slot)->uses.safe_push (use); + return; +} + +/* Comparison function used to sort common candidates. */ + +static int +common_cand_cmp (const void *p1, const void *p2) +{ + unsigned n1, n2; + const class iv_common_cand *const *const ccand1 + = (const class iv_common_cand *const *)p1; + const class iv_common_cand *const *const ccand2 + = (const class iv_common_cand *const *)p2; + + n1 = (*ccand1)->uses.length (); + n2 = (*ccand2)->uses.length (); + return n2 - n1; +} + +/* Adds IV candidates based on common candidated recorded. */ + +static void +add_iv_candidate_derived_from_uses (struct ivopts_data *data) +{ + unsigned i, j; + struct iv_cand *cand_1, *cand_2; + + data->iv_common_cands.qsort (common_cand_cmp); + for (i = 0; i < data->iv_common_cands.length (); i++) + { + class iv_common_cand *ptr = data->iv_common_cands[i]; + + /* Only add IV candidate if it's derived from multiple uses. */ + if (ptr->uses.length () <= 1) + break; + + cand_1 = NULL; + cand_2 = NULL; + if (ip_normal_pos (data->current_loop)) + cand_1 = add_candidate_1 (data, ptr->base, ptr->step, + false, IP_NORMAL, NULL, NULL); + + if (ip_end_pos (data->current_loop) + && allow_ip_end_pos_p (data->current_loop)) + cand_2 = add_candidate_1 (data, ptr->base, ptr->step, + false, IP_END, NULL, NULL); + + /* Bind deriving uses and the new candidates. */ + for (j = 0; j < ptr->uses.length (); j++) + { + struct iv_group *group = data->vgroups[ptr->uses[j]->group_id]; + if (cand_1) + bitmap_set_bit (group->related_cands, cand_1->id); + if (cand_2) + bitmap_set_bit (group->related_cands, cand_2->id); + } + } + + /* Release data since it is useless from this point. */ + data->iv_common_cand_tab->empty (); + data->iv_common_cands.truncate (0); +} + +/* Adds candidates based on the value of USE's iv. */ + +static void +add_iv_candidate_for_use (struct ivopts_data *data, struct iv_use *use) +{ + poly_uint64 offset; + tree base; + struct iv *iv = use->iv; + tree basetype = TREE_TYPE (iv->base); + + /* Don't add candidate for iv_use with non integer, pointer or non-mode + precision types, instead, add candidate for the corresponding scev in + unsigned type with the same precision. See PR93674 for more info. */ + if ((TREE_CODE (basetype) != INTEGER_TYPE && !POINTER_TYPE_P (basetype)) + || !type_has_mode_precision_p (basetype)) + { + basetype = lang_hooks.types.type_for_mode (TYPE_MODE (basetype), + TYPE_UNSIGNED (basetype)); + add_candidate (data, fold_convert (basetype, iv->base), + fold_convert (basetype, iv->step), false, NULL); + return; + } + + add_candidate (data, iv->base, iv->step, false, use); + + /* Record common candidate for use in case it can be shared by others. */ + record_common_cand (data, iv->base, iv->step, use); + + /* Record common candidate with initial value zero. */ + basetype = TREE_TYPE (iv->base); + if (POINTER_TYPE_P (basetype)) + basetype = sizetype; + record_common_cand (data, build_int_cst (basetype, 0), iv->step, use); + + /* Compare the cost of an address with an unscaled index with the cost of + an address with a scaled index and add candidate if useful. */ + poly_int64 step; + if (use != NULL + && poly_int_tree_p (iv->step, &step) + && address_p (use->type)) + { + poly_int64 new_step; + unsigned int fact = preferred_mem_scale_factor + (use->iv->base, + TYPE_MODE (use->mem_type), + optimize_loop_for_speed_p (data->current_loop)); + + if (fact != 1 + && multiple_p (step, fact, &new_step)) + add_candidate (data, size_int (0), + wide_int_to_tree (sizetype, new_step), + true, NULL); + } + + /* Record common candidate with constant offset stripped in base. + Like the use itself, we also add candidate directly for it. */ + base = strip_offset (iv->base, &offset); + if (maybe_ne (offset, 0U) || base != iv->base) + { + record_common_cand (data, base, iv->step, use); + add_candidate (data, base, iv->step, false, use); + } + + /* Record common candidate with base_object removed in base. */ + base = iv->base; + STRIP_NOPS (base); + if (iv->base_object != NULL && TREE_CODE (base) == POINTER_PLUS_EXPR) + { + tree step = iv->step; + + STRIP_NOPS (step); + base = TREE_OPERAND (base, 1); + step = fold_convert (sizetype, step); + record_common_cand (data, base, step, use); + /* Also record common candidate with offset stripped. */ + base = strip_offset (base, &offset); + if (maybe_ne (offset, 0U)) + record_common_cand (data, base, step, use); + } + + /* At last, add auto-incremental candidates. Make such variables + important since other iv uses with same base object may be based + on it. */ + if (use != NULL && address_p (use->type)) + add_autoinc_candidates (data, iv->base, iv->step, true, use); +} + +/* Adds candidates based on the uses. */ + +static void +add_iv_candidate_for_groups (struct ivopts_data *data) +{ + unsigned i; + + /* Only add candidate for the first use in group. */ + for (i = 0; i < data->vgroups.length (); i++) + { + struct iv_group *group = data->vgroups[i]; + + gcc_assert (group->vuses[0] != NULL); + add_iv_candidate_for_use (data, group->vuses[0]); + } + add_iv_candidate_derived_from_uses (data); +} + +/* Record important candidates and add them to related_cands bitmaps. */ + +static void +record_important_candidates (struct ivopts_data *data) +{ + unsigned i; + struct iv_group *group; + + for (i = 0; i < data->vcands.length (); i++) + { + struct iv_cand *cand = data->vcands[i]; + + if (cand->important) + bitmap_set_bit (data->important_candidates, i); + } + + data->consider_all_candidates = (data->vcands.length () + <= CONSIDER_ALL_CANDIDATES_BOUND); + + /* Add important candidates to groups' related_cands bitmaps. */ + for (i = 0; i < data->vgroups.length (); i++) + { + group = data->vgroups[i]; + bitmap_ior_into (group->related_cands, data->important_candidates); + } +} + +/* Allocates the data structure mapping the (use, candidate) pairs to costs. + If consider_all_candidates is true, we use a two-dimensional array, otherwise + we allocate a simple list to every use. */ + +static void +alloc_use_cost_map (struct ivopts_data *data) +{ + unsigned i, size, s; + + for (i = 0; i < data->vgroups.length (); i++) + { + struct iv_group *group = data->vgroups[i]; + + if (data->consider_all_candidates) + size = data->vcands.length (); + else + { + s = bitmap_count_bits (group->related_cands); + + /* Round up to the power of two, so that moduling by it is fast. */ + size = s ? (1 << ceil_log2 (s)) : 1; + } + + group->n_map_members = size; + group->cost_map = XCNEWVEC (class cost_pair, size); + } +} + +/* Sets cost of (GROUP, CAND) pair to COST and record that it depends + on invariants INV_VARS and that the value used in expressing it is + VALUE, and in case of iv elimination the comparison operator is COMP. */ + +static void +set_group_iv_cost (struct ivopts_data *data, + struct iv_group *group, struct iv_cand *cand, + comp_cost cost, bitmap inv_vars, tree value, + enum tree_code comp, bitmap inv_exprs) +{ + unsigned i, s; + + if (cost.infinite_cost_p ()) + { + BITMAP_FREE (inv_vars); + BITMAP_FREE (inv_exprs); + return; + } + + if (data->consider_all_candidates) + { + group->cost_map[cand->id].cand = cand; + group->cost_map[cand->id].cost = cost; + group->cost_map[cand->id].inv_vars = inv_vars; + group->cost_map[cand->id].inv_exprs = inv_exprs; + group->cost_map[cand->id].value = value; + group->cost_map[cand->id].comp = comp; + return; + } + + /* n_map_members is a power of two, so this computes modulo. */ + s = cand->id & (group->n_map_members - 1); + for (i = s; i < group->n_map_members; i++) + if (!group->cost_map[i].cand) + goto found; + for (i = 0; i < s; i++) + if (!group->cost_map[i].cand) + goto found; + + gcc_unreachable (); + +found: + group->cost_map[i].cand = cand; + group->cost_map[i].cost = cost; + group->cost_map[i].inv_vars = inv_vars; + group->cost_map[i].inv_exprs = inv_exprs; + group->cost_map[i].value = value; + group->cost_map[i].comp = comp; +} + +/* Gets cost of (GROUP, CAND) pair. */ + +static class cost_pair * +get_group_iv_cost (struct ivopts_data *data, struct iv_group *group, + struct iv_cand *cand) +{ + unsigned i, s; + class cost_pair *ret; + + if (!cand) + return NULL; + + if (data->consider_all_candidates) + { + ret = group->cost_map + cand->id; + if (!ret->cand) + return NULL; + + return ret; + } + + /* n_map_members is a power of two, so this computes modulo. */ + s = cand->id & (group->n_map_members - 1); + for (i = s; i < group->n_map_members; i++) + if (group->cost_map[i].cand == cand) + return group->cost_map + i; + else if (group->cost_map[i].cand == NULL) + return NULL; + for (i = 0; i < s; i++) + if (group->cost_map[i].cand == cand) + return group->cost_map + i; + else if (group->cost_map[i].cand == NULL) + return NULL; + + return NULL; +} + +/* Produce DECL_RTL for object obj so it looks like it is stored in memory. */ +static rtx +produce_memory_decl_rtl (tree obj, int *regno) +{ + addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (obj)); + machine_mode address_mode = targetm.addr_space.address_mode (as); + rtx x; + + gcc_assert (obj); + if (TREE_STATIC (obj) || DECL_EXTERNAL (obj)) + { + const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (obj)); + x = gen_rtx_SYMBOL_REF (address_mode, name); + SET_SYMBOL_REF_DECL (x, obj); + x = gen_rtx_MEM (DECL_MODE (obj), x); + set_mem_addr_space (x, as); + targetm.encode_section_info (obj, x, true); + } + else + { + x = gen_raw_REG (address_mode, (*regno)++); + x = gen_rtx_MEM (DECL_MODE (obj), x); + set_mem_addr_space (x, as); + } + + return x; +} + +/* Prepares decl_rtl for variables referred in *EXPR_P. Callback for + walk_tree. DATA contains the actual fake register number. */ + +static tree +prepare_decl_rtl (tree *expr_p, int *ws, void *data) +{ + tree obj = NULL_TREE; + rtx x = NULL_RTX; + int *regno = (int *) data; + + switch (TREE_CODE (*expr_p)) + { + case ADDR_EXPR: + for (expr_p = &TREE_OPERAND (*expr_p, 0); + handled_component_p (*expr_p); + expr_p = &TREE_OPERAND (*expr_p, 0)) + continue; + obj = *expr_p; + if (DECL_P (obj) && HAS_RTL_P (obj) && !DECL_RTL_SET_P (obj)) + x = produce_memory_decl_rtl (obj, regno); + break; + + case SSA_NAME: + *ws = 0; + obj = SSA_NAME_VAR (*expr_p); + /* Defer handling of anonymous SSA_NAMEs to the expander. */ + if (!obj) + return NULL_TREE; + if (!DECL_RTL_SET_P (obj)) + x = gen_raw_REG (DECL_MODE (obj), (*regno)++); + break; + + case VAR_DECL: + case PARM_DECL: + case RESULT_DECL: + *ws = 0; + obj = *expr_p; + + if (DECL_RTL_SET_P (obj)) + break; + + if (DECL_MODE (obj) == BLKmode) + x = produce_memory_decl_rtl (obj, regno); + else + x = gen_raw_REG (DECL_MODE (obj), (*regno)++); + + break; + + default: + break; + } + + if (x) + { + decl_rtl_to_reset.safe_push (obj); + SET_DECL_RTL (obj, x); + } + + return NULL_TREE; +} + +/* Predict whether the given loop will be transformed in the RTL + doloop_optimize pass. Attempt to duplicate some doloop_optimize checks. + This is only for target independent checks, see targetm.predict_doloop_p + for the target dependent ones. + + Note that according to some initial investigation, some checks like costly + niter check and invalid stmt scanning don't have much gains among general + cases, so keep this as simple as possible first. + + Some RTL specific checks seems unable to be checked in gimple, if any new + checks or easy checks _are_ missing here, please add them. */ + +static bool +generic_predict_doloop_p (struct ivopts_data *data) +{ + class loop *loop = data->current_loop; + + /* Call target hook for target dependent checks. */ + if (!targetm.predict_doloop_p (loop)) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "Predict doloop failure due to" + " target specific checks.\n"); + return false; + } + + /* Similar to doloop_optimize, check iteration description to know it's + suitable or not. Keep it as simple as possible, feel free to extend it + if you find any multiple exits cases matter. */ + edge exit = single_dom_exit (loop); + class tree_niter_desc *niter_desc; + if (!exit || !(niter_desc = niter_for_exit (data, exit))) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "Predict doloop failure due to" + " unexpected niters.\n"); + return false; + } + + /* Similar to doloop_optimize, check whether iteration count too small + and not profitable. */ + HOST_WIDE_INT est_niter = get_estimated_loop_iterations_int (loop); + if (est_niter == -1) + est_niter = get_likely_max_loop_iterations_int (loop); + if (est_niter >= 0 && est_niter < 3) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, + "Predict doloop failure due to" + " too few iterations (%u).\n", + (unsigned int) est_niter); + return false; + } + + return true; +} + +/* Determines cost of the computation of EXPR. */ + +static unsigned +computation_cost (tree expr, bool speed) +{ + rtx_insn *seq; + rtx rslt; + tree type = TREE_TYPE (expr); + unsigned cost; + /* Avoid using hard regs in ways which may be unsupported. */ + int regno = LAST_VIRTUAL_REGISTER + 1; + struct cgraph_node *node = cgraph_node::get (current_function_decl); + enum node_frequency real_frequency = node->frequency; + + node->frequency = NODE_FREQUENCY_NORMAL; + crtl->maybe_hot_insn_p = speed; + walk_tree (&expr, prepare_decl_rtl, ®no, NULL); + start_sequence (); + rslt = expand_expr (expr, NULL_RTX, TYPE_MODE (type), EXPAND_NORMAL); + seq = get_insns (); + end_sequence (); + default_rtl_profile (); + node->frequency = real_frequency; + + cost = seq_cost (seq, speed); + if (MEM_P (rslt)) + cost += address_cost (XEXP (rslt, 0), TYPE_MODE (type), + TYPE_ADDR_SPACE (type), speed); + else if (!REG_P (rslt)) + cost += set_src_cost (rslt, TYPE_MODE (type), speed); + + return cost; +} + +/* Returns variable containing the value of candidate CAND at statement AT. */ + +static tree +var_at_stmt (class loop *loop, struct iv_cand *cand, gimple *stmt) +{ + if (stmt_after_increment (loop, cand, stmt)) + return cand->var_after; + else + return cand->var_before; +} + +/* If A is (TYPE) BA and B is (TYPE) BB, and the types of BA and BB have the + same precision that is at least as wide as the precision of TYPE, stores + BA to A and BB to B, and returns the type of BA. Otherwise, returns the + type of A and B. */ + +static tree +determine_common_wider_type (tree *a, tree *b) +{ + tree wider_type = NULL; + tree suba, subb; + tree atype = TREE_TYPE (*a); + + if (CONVERT_EXPR_P (*a)) + { + suba = TREE_OPERAND (*a, 0); + wider_type = TREE_TYPE (suba); + if (TYPE_PRECISION (wider_type) < TYPE_PRECISION (atype)) + return atype; + } + else + return atype; + + if (CONVERT_EXPR_P (*b)) + { + subb = TREE_OPERAND (*b, 0); + if (TYPE_PRECISION (wider_type) != TYPE_PRECISION (TREE_TYPE (subb))) + return atype; + } + else + return atype; + + *a = suba; + *b = subb; + return wider_type; +} + +/* Determines the expression by that USE is expressed from induction variable + CAND at statement AT in LOOP. The expression is stored in two parts in a + decomposed form. The invariant part is stored in AFF_INV; while variant + part in AFF_VAR. Store ratio of CAND.step over USE.step in PRAT if it's + non-null. Returns false if USE cannot be expressed using CAND. */ + +static bool +get_computation_aff_1 (class loop *loop, gimple *at, struct iv_use *use, + struct iv_cand *cand, class aff_tree *aff_inv, + class aff_tree *aff_var, widest_int *prat = NULL) +{ + tree ubase = use->iv->base, ustep = use->iv->step; + tree cbase = cand->iv->base, cstep = cand->iv->step; + tree common_type, uutype, var, cstep_common; + tree utype = TREE_TYPE (ubase), ctype = TREE_TYPE (cbase); + aff_tree aff_cbase; + widest_int rat; + + /* We must have a precision to express the values of use. */ + if (TYPE_PRECISION (utype) > TYPE_PRECISION (ctype)) + return false; + + var = var_at_stmt (loop, cand, at); + uutype = unsigned_type_for (utype); + + /* If the conversion is not noop, perform it. */ + if (TYPE_PRECISION (utype) < TYPE_PRECISION (ctype)) + { + if (cand->orig_iv != NULL && CONVERT_EXPR_P (cbase) + && (CONVERT_EXPR_P (cstep) || poly_int_tree_p (cstep))) + { + tree inner_base, inner_step, inner_type; + inner_base = TREE_OPERAND (cbase, 0); + if (CONVERT_EXPR_P (cstep)) + inner_step = TREE_OPERAND (cstep, 0); + else + inner_step = cstep; + + inner_type = TREE_TYPE (inner_base); + /* If candidate is added from a biv whose type is smaller than + ctype, we know both candidate and the biv won't overflow. + In this case, it's safe to skip the convertion in candidate. + As an example, (unsigned short)((unsigned long)A) equals to + (unsigned short)A, if A has a type no larger than short. */ + if (TYPE_PRECISION (inner_type) <= TYPE_PRECISION (uutype)) + { + cbase = inner_base; + cstep = inner_step; + } + } + cbase = fold_convert (uutype, cbase); + cstep = fold_convert (uutype, cstep); + var = fold_convert (uutype, var); + } + + /* Ratio is 1 when computing the value of biv cand by itself. + We can't rely on constant_multiple_of in this case because the + use is created after the original biv is selected. The call + could fail because of inconsistent fold behavior. See PR68021 + for more information. */ + if (cand->pos == IP_ORIGINAL && cand->incremented_at == use->stmt) + { + gcc_assert (is_gimple_assign (use->stmt)); + gcc_assert (use->iv->ssa_name == cand->var_after); + gcc_assert (gimple_assign_lhs (use->stmt) == cand->var_after); + rat = 1; + } + else if (!constant_multiple_of (ustep, cstep, &rat)) + return false; + + if (prat) + *prat = rat; + + /* In case both UBASE and CBASE are shortened to UUTYPE from some common + type, we achieve better folding by computing their difference in this + wider type, and cast the result to UUTYPE. We do not need to worry about + overflows, as all the arithmetics will in the end be performed in UUTYPE + anyway. */ + common_type = determine_common_wider_type (&ubase, &cbase); + + /* use = ubase - ratio * cbase + ratio * var. */ + tree_to_aff_combination (ubase, common_type, aff_inv); + tree_to_aff_combination (cbase, common_type, &aff_cbase); + tree_to_aff_combination (var, uutype, aff_var); + + /* We need to shift the value if we are after the increment. */ + if (stmt_after_increment (loop, cand, at)) + { + aff_tree cstep_aff; + + if (common_type != uutype) + cstep_common = fold_convert (common_type, cstep); + else + cstep_common = cstep; + + tree_to_aff_combination (cstep_common, common_type, &cstep_aff); + aff_combination_add (&aff_cbase, &cstep_aff); + } + + aff_combination_scale (&aff_cbase, -rat); + aff_combination_add (aff_inv, &aff_cbase); + if (common_type != uutype) + aff_combination_convert (aff_inv, uutype); + + aff_combination_scale (aff_var, rat); + return true; +} + +/* Determines the expression by that USE is expressed from induction variable + CAND at statement AT in LOOP. The expression is stored in a decomposed + form into AFF. Returns false if USE cannot be expressed using CAND. */ + +static bool +get_computation_aff (class loop *loop, gimple *at, struct iv_use *use, + struct iv_cand *cand, class aff_tree *aff) +{ + aff_tree aff_var; + + if (!get_computation_aff_1 (loop, at, use, cand, aff, &aff_var)) + return false; + + aff_combination_add (aff, &aff_var); + return true; +} + +/* Return the type of USE. */ + +static tree +get_use_type (struct iv_use *use) +{ + tree base_type = TREE_TYPE (use->iv->base); + tree type; + + if (use->type == USE_REF_ADDRESS) + { + /* The base_type may be a void pointer. Create a pointer type based on + the mem_ref instead. */ + type = build_pointer_type (TREE_TYPE (*use->op_p)); + gcc_assert (TYPE_ADDR_SPACE (TREE_TYPE (type)) + == TYPE_ADDR_SPACE (TREE_TYPE (base_type))); + } + else + type = base_type; + + return type; +} + +/* Determines the expression by that USE is expressed from induction variable + CAND at statement AT in LOOP. The computation is unshared. */ + +static tree +get_computation_at (class loop *loop, gimple *at, + struct iv_use *use, struct iv_cand *cand) +{ + aff_tree aff; + tree type = get_use_type (use); + + if (!get_computation_aff (loop, at, use, cand, &aff)) + return NULL_TREE; + unshare_aff_combination (&aff); + return fold_convert (type, aff_combination_to_tree (&aff)); +} + +/* Like get_computation_at, but try harder, even if the computation + is more expensive. Intended for debug stmts. */ + +static tree +get_debug_computation_at (class loop *loop, gimple *at, + struct iv_use *use, struct iv_cand *cand) +{ + if (tree ret = get_computation_at (loop, at, use, cand)) + return ret; + + tree ubase = use->iv->base, ustep = use->iv->step; + tree cbase = cand->iv->base, cstep = cand->iv->step; + tree var; + tree utype = TREE_TYPE (ubase), ctype = TREE_TYPE (cbase); + widest_int rat; + + /* We must have a precision to express the values of use. */ + if (TYPE_PRECISION (utype) >= TYPE_PRECISION (ctype)) + return NULL_TREE; + + /* Try to handle the case that get_computation_at doesn't, + try to express + use = ubase + (var - cbase) / ratio. */ + if (!constant_multiple_of (cstep, fold_convert (TREE_TYPE (cstep), ustep), + &rat)) + return NULL_TREE; + + bool neg_p = false; + if (wi::neg_p (rat)) + { + if (TYPE_UNSIGNED (ctype)) + return NULL_TREE; + neg_p = true; + rat = wi::neg (rat); + } + + /* If both IVs can wrap around and CAND doesn't have a power of two step, + it is unsafe. Consider uint16_t CAND with step 9, when wrapping around, + the values will be ... 0xfff0, 0xfff9, 2, 11 ... and when use is say + uint8_t with step 3, those values divided by 3 cast to uint8_t will be + ... 0x50, 0x53, 0, 3 ... rather than expected 0x50, 0x53, 0x56, 0x59. */ + if (!use->iv->no_overflow + && !cand->iv->no_overflow + && !integer_pow2p (cstep)) + return NULL_TREE; + + int bits = wi::exact_log2 (rat); + if (bits == -1) + bits = wi::floor_log2 (rat) + 1; + if (!cand->iv->no_overflow + && TYPE_PRECISION (utype) + bits > TYPE_PRECISION (ctype)) + return NULL_TREE; + + var = var_at_stmt (loop, cand, at); + + if (POINTER_TYPE_P (ctype)) + { + ctype = unsigned_type_for (ctype); + cbase = fold_convert (ctype, cbase); + cstep = fold_convert (ctype, cstep); + var = fold_convert (ctype, var); + } + + if (stmt_after_increment (loop, cand, at)) + var = fold_build2 (MINUS_EXPR, TREE_TYPE (var), var, + unshare_expr (cstep)); + + var = fold_build2 (MINUS_EXPR, TREE_TYPE (var), var, cbase); + var = fold_build2 (EXACT_DIV_EXPR, TREE_TYPE (var), var, + wide_int_to_tree (TREE_TYPE (var), rat)); + if (POINTER_TYPE_P (utype)) + { + var = fold_convert (sizetype, var); + if (neg_p) + var = fold_build1 (NEGATE_EXPR, sizetype, var); + var = fold_build2 (POINTER_PLUS_EXPR, utype, ubase, var); + } + else + { + var = fold_convert (utype, var); + var = fold_build2 (neg_p ? MINUS_EXPR : PLUS_EXPR, utype, + ubase, var); + } + return var; +} + +/* Adjust the cost COST for being in loop setup rather than loop body. + If we're optimizing for space, the loop setup overhead is constant; + if we're optimizing for speed, amortize it over the per-iteration cost. + If ROUND_UP_P is true, the result is round up rather than to zero when + optimizing for speed. */ +static int64_t +adjust_setup_cost (struct ivopts_data *data, int64_t cost, + bool round_up_p = false) +{ + if (cost == INFTY) + return cost; + else if (optimize_loop_for_speed_p (data->current_loop)) + { + int64_t niters = (int64_t) avg_loop_niter (data->current_loop); + return (cost + (round_up_p ? niters - 1 : 0)) / niters; + } + else + return cost; +} + +/* Calculate the SPEED or size cost of shiftadd EXPR in MODE. MULT is the + EXPR operand holding the shift. COST0 and COST1 are the costs for + calculating the operands of EXPR. Returns true if successful, and returns + the cost in COST. */ + +static bool +get_shiftadd_cost (tree expr, scalar_int_mode mode, comp_cost cost0, + comp_cost cost1, tree mult, bool speed, comp_cost *cost) +{ + comp_cost res; + tree op1 = TREE_OPERAND (expr, 1); + tree cst = TREE_OPERAND (mult, 1); + tree multop = TREE_OPERAND (mult, 0); + int m = exact_log2 (int_cst_value (cst)); + int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode)); + int as_cost, sa_cost; + bool mult_in_op1; + + if (!(m >= 0 && m < maxm)) + return false; + + STRIP_NOPS (op1); + mult_in_op1 = operand_equal_p (op1, mult, 0); + + as_cost = add_cost (speed, mode) + shift_cost (speed, mode, m); + + /* If the target has a cheap shift-and-add or shift-and-sub instruction, + use that in preference to a shift insn followed by an add insn. */ + sa_cost = (TREE_CODE (expr) != MINUS_EXPR + ? shiftadd_cost (speed, mode, m) + : (mult_in_op1 + ? shiftsub1_cost (speed, mode, m) + : shiftsub0_cost (speed, mode, m))); + + res = comp_cost (MIN (as_cost, sa_cost), 0); + res += (mult_in_op1 ? cost0 : cost1); + + STRIP_NOPS (multop); + if (!is_gimple_val (multop)) + res += force_expr_to_var_cost (multop, speed); + + *cost = res; + return true; +} + +/* Estimates cost of forcing expression EXPR into a variable. */ + +static comp_cost +force_expr_to_var_cost (tree expr, bool speed) +{ + static bool costs_initialized = false; + static unsigned integer_cost [2]; + static unsigned symbol_cost [2]; + static unsigned address_cost [2]; + tree op0, op1; + comp_cost cost0, cost1, cost; + machine_mode mode; + scalar_int_mode int_mode; + + if (!costs_initialized) + { + tree type = build_pointer_type (integer_type_node); + tree var, addr; + rtx x; + int i; + + var = create_tmp_var_raw (integer_type_node, "test_var"); + TREE_STATIC (var) = 1; + x = produce_memory_decl_rtl (var, NULL); + SET_DECL_RTL (var, x); + + addr = build1 (ADDR_EXPR, type, var); + + + for (i = 0; i < 2; i++) + { + integer_cost[i] = computation_cost (build_int_cst (integer_type_node, + 2000), i); + + symbol_cost[i] = computation_cost (addr, i) + 1; + + address_cost[i] + = computation_cost (fold_build_pointer_plus_hwi (addr, 2000), i) + 1; + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "force_expr_to_var_cost %s costs:\n", i ? "speed" : "size"); + fprintf (dump_file, " integer %d\n", (int) integer_cost[i]); + fprintf (dump_file, " symbol %d\n", (int) symbol_cost[i]); + fprintf (dump_file, " address %d\n", (int) address_cost[i]); + fprintf (dump_file, " other %d\n", (int) target_spill_cost[i]); + fprintf (dump_file, "\n"); + } + } + + costs_initialized = true; + } + + STRIP_NOPS (expr); + + if (SSA_VAR_P (expr)) + return no_cost; + + if (is_gimple_min_invariant (expr)) + { + if (poly_int_tree_p (expr)) + return comp_cost (integer_cost [speed], 0); + + if (TREE_CODE (expr) == ADDR_EXPR) + { + tree obj = TREE_OPERAND (expr, 0); + + if (VAR_P (obj) + || TREE_CODE (obj) == PARM_DECL + || TREE_CODE (obj) == RESULT_DECL) + return comp_cost (symbol_cost [speed], 0); + } + + return comp_cost (address_cost [speed], 0); + } + + switch (TREE_CODE (expr)) + { + case POINTER_PLUS_EXPR: + case PLUS_EXPR: + case MINUS_EXPR: + case MULT_EXPR: + case TRUNC_DIV_EXPR: + case BIT_AND_EXPR: + case BIT_IOR_EXPR: + case LSHIFT_EXPR: + case RSHIFT_EXPR: + op0 = TREE_OPERAND (expr, 0); + op1 = TREE_OPERAND (expr, 1); + STRIP_NOPS (op0); + STRIP_NOPS (op1); + break; + + CASE_CONVERT: + case NEGATE_EXPR: + case BIT_NOT_EXPR: + op0 = TREE_OPERAND (expr, 0); + STRIP_NOPS (op0); + op1 = NULL_TREE; + break; + /* See add_iv_candidate_for_doloop, for doloop may_be_zero case, we + introduce COND_EXPR for IV base, need to support better cost estimation + for this COND_EXPR and tcc_comparison. */ + case COND_EXPR: + op0 = TREE_OPERAND (expr, 1); + STRIP_NOPS (op0); + op1 = TREE_OPERAND (expr, 2); + STRIP_NOPS (op1); + break; + case LT_EXPR: + case LE_EXPR: + case GT_EXPR: + case GE_EXPR: + case EQ_EXPR: + case NE_EXPR: + case UNORDERED_EXPR: + case ORDERED_EXPR: + case UNLT_EXPR: + case UNLE_EXPR: + case UNGT_EXPR: + case UNGE_EXPR: + case UNEQ_EXPR: + case LTGT_EXPR: + case MAX_EXPR: + case MIN_EXPR: + op0 = TREE_OPERAND (expr, 0); + STRIP_NOPS (op0); + op1 = TREE_OPERAND (expr, 1); + STRIP_NOPS (op1); + break; + + default: + /* Just an arbitrary value, FIXME. */ + return comp_cost (target_spill_cost[speed], 0); + } + + if (op0 == NULL_TREE + || TREE_CODE (op0) == SSA_NAME || CONSTANT_CLASS_P (op0)) + cost0 = no_cost; + else + cost0 = force_expr_to_var_cost (op0, speed); + + if (op1 == NULL_TREE + || TREE_CODE (op1) == SSA_NAME || CONSTANT_CLASS_P (op1)) + cost1 = no_cost; + else + cost1 = force_expr_to_var_cost (op1, speed); + + mode = TYPE_MODE (TREE_TYPE (expr)); + switch (TREE_CODE (expr)) + { + case POINTER_PLUS_EXPR: + case PLUS_EXPR: + case MINUS_EXPR: + case NEGATE_EXPR: + cost = comp_cost (add_cost (speed, mode), 0); + if (TREE_CODE (expr) != NEGATE_EXPR) + { + tree mult = NULL_TREE; + comp_cost sa_cost; + if (TREE_CODE (op1) == MULT_EXPR) + mult = op1; + else if (TREE_CODE (op0) == MULT_EXPR) + mult = op0; + + if (mult != NULL_TREE + && is_a <scalar_int_mode> (mode, &int_mode) + && cst_and_fits_in_hwi (TREE_OPERAND (mult, 1)) + && get_shiftadd_cost (expr, int_mode, cost0, cost1, mult, + speed, &sa_cost)) + return sa_cost; + } + break; + + CASE_CONVERT: + { + tree inner_mode, outer_mode; + outer_mode = TREE_TYPE (expr); + inner_mode = TREE_TYPE (op0); + cost = comp_cost (convert_cost (TYPE_MODE (outer_mode), + TYPE_MODE (inner_mode), speed), 0); + } + break; + + case MULT_EXPR: + if (cst_and_fits_in_hwi (op0)) + cost = comp_cost (mult_by_coeff_cost (int_cst_value (op0), + mode, speed), 0); + else if (cst_and_fits_in_hwi (op1)) + cost = comp_cost (mult_by_coeff_cost (int_cst_value (op1), + mode, speed), 0); + else + return comp_cost (target_spill_cost [speed], 0); + break; + + case TRUNC_DIV_EXPR: + /* Division by power of two is usually cheap, so we allow it. Forbid + anything else. */ + if (integer_pow2p (TREE_OPERAND (expr, 1))) + cost = comp_cost (add_cost (speed, mode), 0); + else + cost = comp_cost (target_spill_cost[speed], 0); + break; + + case BIT_AND_EXPR: + case BIT_IOR_EXPR: + case BIT_NOT_EXPR: + case LSHIFT_EXPR: + case RSHIFT_EXPR: + cost = comp_cost (add_cost (speed, mode), 0); + break; + case COND_EXPR: + op0 = TREE_OPERAND (expr, 0); + STRIP_NOPS (op0); + if (op0 == NULL_TREE || TREE_CODE (op0) == SSA_NAME + || CONSTANT_CLASS_P (op0)) + cost = no_cost; + else + cost = force_expr_to_var_cost (op0, speed); + break; + case LT_EXPR: + case LE_EXPR: + case GT_EXPR: + case GE_EXPR: + case EQ_EXPR: + case NE_EXPR: + case UNORDERED_EXPR: + case ORDERED_EXPR: + case UNLT_EXPR: + case UNLE_EXPR: + case UNGT_EXPR: + case UNGE_EXPR: + case UNEQ_EXPR: + case LTGT_EXPR: + case MAX_EXPR: + case MIN_EXPR: + /* Simply use add cost for now, FIXME if there is some more accurate cost + evaluation way. */ + cost = comp_cost (add_cost (speed, mode), 0); + break; + + default: + gcc_unreachable (); + } + + cost += cost0; + cost += cost1; + return cost; +} + +/* Estimates cost of forcing EXPR into a variable. INV_VARS is a set of the + invariants the computation depends on. */ + +static comp_cost +force_var_cost (struct ivopts_data *data, tree expr, bitmap *inv_vars) +{ + if (!expr) + return no_cost; + + find_inv_vars (data, &expr, inv_vars); + return force_expr_to_var_cost (expr, data->speed); +} + +/* Returns cost of auto-modifying address expression in shape base + offset. + AINC_STEP is step size of the address IV. AINC_OFFSET is offset of the + address expression. The address expression has ADDR_MODE in addr space + AS. The memory access has MEM_MODE. SPEED means we are optimizing for + speed or size. */ + +enum ainc_type +{ + AINC_PRE_INC, /* Pre increment. */ + AINC_PRE_DEC, /* Pre decrement. */ + AINC_POST_INC, /* Post increment. */ + AINC_POST_DEC, /* Post decrement. */ + AINC_NONE /* Also the number of auto increment types. */ +}; + +struct ainc_cost_data +{ + int64_t costs[AINC_NONE]; +}; + +static comp_cost +get_address_cost_ainc (poly_int64 ainc_step, poly_int64 ainc_offset, + machine_mode addr_mode, machine_mode mem_mode, + addr_space_t as, bool speed) +{ + if (!USE_LOAD_PRE_DECREMENT (mem_mode) + && !USE_STORE_PRE_DECREMENT (mem_mode) + && !USE_LOAD_POST_DECREMENT (mem_mode) + && !USE_STORE_POST_DECREMENT (mem_mode) + && !USE_LOAD_PRE_INCREMENT (mem_mode) + && !USE_STORE_PRE_INCREMENT (mem_mode) + && !USE_LOAD_POST_INCREMENT (mem_mode) + && !USE_STORE_POST_INCREMENT (mem_mode)) + return infinite_cost; + + static vec<ainc_cost_data *> ainc_cost_data_list; + unsigned idx = (unsigned) as * MAX_MACHINE_MODE + (unsigned) mem_mode; + if (idx >= ainc_cost_data_list.length ()) + { + unsigned nsize = ((unsigned) as + 1) *MAX_MACHINE_MODE; + + gcc_assert (nsize > idx); + ainc_cost_data_list.safe_grow_cleared (nsize, true); + } + + ainc_cost_data *data = ainc_cost_data_list[idx]; + if (data == NULL) + { + rtx reg = gen_raw_REG (addr_mode, LAST_VIRTUAL_REGISTER + 1); + + data = (ainc_cost_data *) xcalloc (1, sizeof (*data)); + data->costs[AINC_PRE_DEC] = INFTY; + data->costs[AINC_POST_DEC] = INFTY; + data->costs[AINC_PRE_INC] = INFTY; + data->costs[AINC_POST_INC] = INFTY; + if (USE_LOAD_PRE_DECREMENT (mem_mode) + || USE_STORE_PRE_DECREMENT (mem_mode)) + { + rtx addr = gen_rtx_PRE_DEC (addr_mode, reg); + + if (memory_address_addr_space_p (mem_mode, addr, as)) + data->costs[AINC_PRE_DEC] + = address_cost (addr, mem_mode, as, speed); + } + if (USE_LOAD_POST_DECREMENT (mem_mode) + || USE_STORE_POST_DECREMENT (mem_mode)) + { + rtx addr = gen_rtx_POST_DEC (addr_mode, reg); + + if (memory_address_addr_space_p (mem_mode, addr, as)) + data->costs[AINC_POST_DEC] + = address_cost (addr, mem_mode, as, speed); + } + if (USE_LOAD_PRE_INCREMENT (mem_mode) + || USE_STORE_PRE_INCREMENT (mem_mode)) + { + rtx addr = gen_rtx_PRE_INC (addr_mode, reg); + + if (memory_address_addr_space_p (mem_mode, addr, as)) + data->costs[AINC_PRE_INC] + = address_cost (addr, mem_mode, as, speed); + } + if (USE_LOAD_POST_INCREMENT (mem_mode) + || USE_STORE_POST_INCREMENT (mem_mode)) + { + rtx addr = gen_rtx_POST_INC (addr_mode, reg); + + if (memory_address_addr_space_p (mem_mode, addr, as)) + data->costs[AINC_POST_INC] + = address_cost (addr, mem_mode, as, speed); + } + ainc_cost_data_list[idx] = data; + } + + poly_int64 msize = GET_MODE_SIZE (mem_mode); + if (known_eq (ainc_offset, 0) && known_eq (msize, ainc_step)) + return comp_cost (data->costs[AINC_POST_INC], 0); + if (known_eq (ainc_offset, 0) && known_eq (msize, -ainc_step)) + return comp_cost (data->costs[AINC_POST_DEC], 0); + if (known_eq (ainc_offset, msize) && known_eq (msize, ainc_step)) + return comp_cost (data->costs[AINC_PRE_INC], 0); + if (known_eq (ainc_offset, -msize) && known_eq (msize, -ainc_step)) + return comp_cost (data->costs[AINC_PRE_DEC], 0); + + return infinite_cost; +} + +/* Return cost of computing USE's address expression by using CAND. + AFF_INV and AFF_VAR represent invariant and variant parts of the + address expression, respectively. If AFF_INV is simple, store + the loop invariant variables which are depended by it in INV_VARS; + if AFF_INV is complicated, handle it as a new invariant expression + and record it in INV_EXPR. RATIO indicates multiple times between + steps of USE and CAND. If CAN_AUTOINC is nonNULL, store boolean + value to it indicating if this is an auto-increment address. */ + +static comp_cost +get_address_cost (struct ivopts_data *data, struct iv_use *use, + struct iv_cand *cand, aff_tree *aff_inv, + aff_tree *aff_var, HOST_WIDE_INT ratio, + bitmap *inv_vars, iv_inv_expr_ent **inv_expr, + bool *can_autoinc, bool speed) +{ + rtx addr; + bool simple_inv = true; + tree comp_inv = NULL_TREE, type = aff_var->type; + comp_cost var_cost = no_cost, cost = no_cost; + struct mem_address parts = {NULL_TREE, integer_one_node, + NULL_TREE, NULL_TREE, NULL_TREE}; + machine_mode addr_mode = TYPE_MODE (type); + machine_mode mem_mode = TYPE_MODE (use->mem_type); + addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (use->iv->base)); + /* Only true if ratio != 1. */ + bool ok_with_ratio_p = false; + bool ok_without_ratio_p = false; + + if (!aff_combination_const_p (aff_inv)) + { + parts.index = integer_one_node; + /* Addressing mode "base + index". */ + ok_without_ratio_p = valid_mem_ref_p (mem_mode, as, &parts); + if (ratio != 1) + { + parts.step = wide_int_to_tree (type, ratio); + /* Addressing mode "base + index << scale". */ + ok_with_ratio_p = valid_mem_ref_p (mem_mode, as, &parts); + if (!ok_with_ratio_p) + parts.step = NULL_TREE; + } + if (ok_with_ratio_p || ok_without_ratio_p) + { + if (maybe_ne (aff_inv->offset, 0)) + { + parts.offset = wide_int_to_tree (sizetype, aff_inv->offset); + /* Addressing mode "base + index [<< scale] + offset". */ + if (!valid_mem_ref_p (mem_mode, as, &parts)) + parts.offset = NULL_TREE; + else + aff_inv->offset = 0; + } + + move_fixed_address_to_symbol (&parts, aff_inv); + /* Base is fixed address and is moved to symbol part. */ + if (parts.symbol != NULL_TREE && aff_combination_zero_p (aff_inv)) + parts.base = NULL_TREE; + + /* Addressing mode "symbol + base + index [<< scale] [+ offset]". */ + if (parts.symbol != NULL_TREE + && !valid_mem_ref_p (mem_mode, as, &parts)) + { + aff_combination_add_elt (aff_inv, parts.symbol, 1); + parts.symbol = NULL_TREE; + /* Reset SIMPLE_INV since symbol address needs to be computed + outside of address expression in this case. */ + simple_inv = false; + /* Symbol part is moved back to base part, it can't be NULL. */ + parts.base = integer_one_node; + } + } + else + parts.index = NULL_TREE; + } + else + { + poly_int64 ainc_step; + if (can_autoinc + && ratio == 1 + && ptrdiff_tree_p (cand->iv->step, &ainc_step)) + { + poly_int64 ainc_offset = (aff_inv->offset).force_shwi (); + + if (stmt_after_increment (data->current_loop, cand, use->stmt)) + ainc_offset += ainc_step; + cost = get_address_cost_ainc (ainc_step, ainc_offset, + addr_mode, mem_mode, as, speed); + if (!cost.infinite_cost_p ()) + { + *can_autoinc = true; + return cost; + } + cost = no_cost; + } + if (!aff_combination_zero_p (aff_inv)) + { + parts.offset = wide_int_to_tree (sizetype, aff_inv->offset); + /* Addressing mode "base + offset". */ + if (!valid_mem_ref_p (mem_mode, as, &parts)) + parts.offset = NULL_TREE; + else + aff_inv->offset = 0; + } + } + + if (simple_inv) + simple_inv = (aff_inv == NULL + || aff_combination_const_p (aff_inv) + || aff_combination_singleton_var_p (aff_inv)); + if (!aff_combination_zero_p (aff_inv)) + comp_inv = aff_combination_to_tree (aff_inv); + if (comp_inv != NULL_TREE) + cost = force_var_cost (data, comp_inv, inv_vars); + if (ratio != 1 && parts.step == NULL_TREE) + var_cost += mult_by_coeff_cost (ratio, addr_mode, speed); + if (comp_inv != NULL_TREE && parts.index == NULL_TREE) + var_cost += add_cost (speed, addr_mode); + + if (comp_inv && inv_expr && !simple_inv) + { + *inv_expr = get_loop_invariant_expr (data, comp_inv); + /* Clear depends on. */ + if (*inv_expr != NULL && inv_vars && *inv_vars) + bitmap_clear (*inv_vars); + + /* Cost of small invariant expression adjusted against loop niters + is usually zero, which makes it difficult to be differentiated + from candidate based on loop invariant variables. Secondly, the + generated invariant expression may not be hoisted out of loop by + following pass. We penalize the cost by rounding up in order to + neutralize such effects. */ + cost.cost = adjust_setup_cost (data, cost.cost, true); + cost.scratch = cost.cost; + } + + cost += var_cost; + addr = addr_for_mem_ref (&parts, as, false); + gcc_assert (memory_address_addr_space_p (mem_mode, addr, as)); + cost += address_cost (addr, mem_mode, as, speed); + + if (parts.symbol != NULL_TREE) + cost.complexity += 1; + /* Don't increase the complexity of adding a scaled index if it's + the only kind of index that the target allows. */ + if (parts.step != NULL_TREE && ok_without_ratio_p) + cost.complexity += 1; + if (parts.base != NULL_TREE && parts.index != NULL_TREE) + cost.complexity += 1; + if (parts.offset != NULL_TREE && !integer_zerop (parts.offset)) + cost.complexity += 1; + + return cost; +} + +/* Scale (multiply) the computed COST (except scratch part that should be + hoisted out a loop) by header->frequency / AT->frequency, which makes + expected cost more accurate. */ + +static comp_cost +get_scaled_computation_cost_at (ivopts_data *data, gimple *at, comp_cost cost) +{ + if (data->speed + && data->current_loop->header->count.to_frequency (cfun) > 0) + { + basic_block bb = gimple_bb (at); + gcc_assert (cost.scratch <= cost.cost); + int scale_factor = (int)(intptr_t) bb->aux; + if (scale_factor == 1) + return cost; + + int64_t scaled_cost + = cost.scratch + (cost.cost - cost.scratch) * scale_factor; + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "Scaling cost based on bb prob by %2.2f: " + "%" PRId64 " (scratch: %" PRId64 ") -> %" PRId64 "\n", + 1.0f * scale_factor, cost.cost, cost.scratch, scaled_cost); + + cost.cost = scaled_cost; + } + + return cost; +} + +/* Determines the cost of the computation by that USE is expressed + from induction variable CAND. If ADDRESS_P is true, we just need + to create an address from it, otherwise we want to get it into + register. A set of invariants we depend on is stored in INV_VARS. + If CAN_AUTOINC is nonnull, use it to record whether autoinc + addressing is likely. If INV_EXPR is nonnull, record invariant + expr entry in it. */ + +static comp_cost +get_computation_cost (struct ivopts_data *data, struct iv_use *use, + struct iv_cand *cand, bool address_p, bitmap *inv_vars, + bool *can_autoinc, iv_inv_expr_ent **inv_expr) +{ + gimple *at = use->stmt; + tree ubase = use->iv->base, cbase = cand->iv->base; + tree utype = TREE_TYPE (ubase), ctype = TREE_TYPE (cbase); + tree comp_inv = NULL_TREE; + HOST_WIDE_INT ratio, aratio; + comp_cost cost; + widest_int rat; + aff_tree aff_inv, aff_var; + bool speed = optimize_bb_for_speed_p (gimple_bb (at)); + + if (inv_vars) + *inv_vars = NULL; + if (can_autoinc) + *can_autoinc = false; + if (inv_expr) + *inv_expr = NULL; + + /* Check if we have enough precision to express the values of use. */ + if (TYPE_PRECISION (utype) > TYPE_PRECISION (ctype)) + return infinite_cost; + + if (address_p + || (use->iv->base_object + && cand->iv->base_object + && POINTER_TYPE_P (TREE_TYPE (use->iv->base_object)) + && POINTER_TYPE_P (TREE_TYPE (cand->iv->base_object)))) + { + /* Do not try to express address of an object with computation based + on address of a different object. This may cause problems in rtl + level alias analysis (that does not expect this to be happening, + as this is illegal in C), and would be unlikely to be useful + anyway. */ + if (use->iv->base_object + && cand->iv->base_object + && !operand_equal_p (use->iv->base_object, cand->iv->base_object, 0)) + return infinite_cost; + } + + if (!get_computation_aff_1 (data->current_loop, at, use, + cand, &aff_inv, &aff_var, &rat) + || !wi::fits_shwi_p (rat)) + return infinite_cost; + + ratio = rat.to_shwi (); + if (address_p) + { + cost = get_address_cost (data, use, cand, &aff_inv, &aff_var, ratio, + inv_vars, inv_expr, can_autoinc, speed); + cost = get_scaled_computation_cost_at (data, at, cost); + /* For doloop IV cand, add on the extra cost. */ + cost += cand->doloop_p ? targetm.doloop_cost_for_address : 0; + return cost; + } + + bool simple_inv = (aff_combination_const_p (&aff_inv) + || aff_combination_singleton_var_p (&aff_inv)); + tree signed_type = signed_type_for (aff_combination_type (&aff_inv)); + aff_combination_convert (&aff_inv, signed_type); + if (!aff_combination_zero_p (&aff_inv)) + comp_inv = aff_combination_to_tree (&aff_inv); + + cost = force_var_cost (data, comp_inv, inv_vars); + if (comp_inv && inv_expr && !simple_inv) + { + *inv_expr = get_loop_invariant_expr (data, comp_inv); + /* Clear depends on. */ + if (*inv_expr != NULL && inv_vars && *inv_vars) + bitmap_clear (*inv_vars); + + cost.cost = adjust_setup_cost (data, cost.cost); + /* Record setup cost in scratch field. */ + cost.scratch = cost.cost; + } + /* Cost of constant integer can be covered when adding invariant part to + variant part. */ + else if (comp_inv && CONSTANT_CLASS_P (comp_inv)) + cost = no_cost; + + /* Need type narrowing to represent use with cand. */ + if (TYPE_PRECISION (utype) < TYPE_PRECISION (ctype)) + { + machine_mode outer_mode = TYPE_MODE (utype); + machine_mode inner_mode = TYPE_MODE (ctype); + cost += comp_cost (convert_cost (outer_mode, inner_mode, speed), 0); + } + + /* Turn a + i * (-c) into a - i * c. */ + if (ratio < 0 && comp_inv && !integer_zerop (comp_inv)) + aratio = -ratio; + else + aratio = ratio; + + if (ratio != 1) + cost += mult_by_coeff_cost (aratio, TYPE_MODE (utype), speed); + + /* TODO: We may also need to check if we can compute a + i * 4 in one + instruction. */ + /* Need to add up the invariant and variant parts. */ + if (comp_inv && !integer_zerop (comp_inv)) + cost += add_cost (speed, TYPE_MODE (utype)); + + cost = get_scaled_computation_cost_at (data, at, cost); + + /* For doloop IV cand, add on the extra cost. */ + if (cand->doloop_p && use->type == USE_NONLINEAR_EXPR) + cost += targetm.doloop_cost_for_generic; + + return cost; +} + +/* Determines cost of computing the use in GROUP with CAND in a generic + expression. */ + +static bool +determine_group_iv_cost_generic (struct ivopts_data *data, + struct iv_group *group, struct iv_cand *cand) +{ + comp_cost cost; + iv_inv_expr_ent *inv_expr = NULL; + bitmap inv_vars = NULL, inv_exprs = NULL; + struct iv_use *use = group->vuses[0]; + + /* The simple case first -- if we need to express value of the preserved + original biv, the cost is 0. This also prevents us from counting the + cost of increment twice -- once at this use and once in the cost of + the candidate. */ + if (cand->pos == IP_ORIGINAL && cand->incremented_at == use->stmt) + cost = no_cost; + else + cost = get_computation_cost (data, use, cand, false, + &inv_vars, NULL, &inv_expr); + + if (inv_expr) + { + inv_exprs = BITMAP_ALLOC (NULL); + bitmap_set_bit (inv_exprs, inv_expr->id); + } + set_group_iv_cost (data, group, cand, cost, inv_vars, + NULL_TREE, ERROR_MARK, inv_exprs); + return !cost.infinite_cost_p (); +} + +/* Determines cost of computing uses in GROUP with CAND in addresses. */ + +static bool +determine_group_iv_cost_address (struct ivopts_data *data, + struct iv_group *group, struct iv_cand *cand) +{ + unsigned i; + bitmap inv_vars = NULL, inv_exprs = NULL; + bool can_autoinc; + iv_inv_expr_ent *inv_expr = NULL; + struct iv_use *use = group->vuses[0]; + comp_cost sum_cost = no_cost, cost; + + cost = get_computation_cost (data, use, cand, true, + &inv_vars, &can_autoinc, &inv_expr); + + if (inv_expr) + { + inv_exprs = BITMAP_ALLOC (NULL); + bitmap_set_bit (inv_exprs, inv_expr->id); + } + sum_cost = cost; + if (!sum_cost.infinite_cost_p () && cand->ainc_use == use) + { + if (can_autoinc) + sum_cost -= cand->cost_step; + /* If we generated the candidate solely for exploiting autoincrement + opportunities, and it turns out it can't be used, set the cost to + infinity to make sure we ignore it. */ + else if (cand->pos == IP_AFTER_USE || cand->pos == IP_BEFORE_USE) + sum_cost = infinite_cost; + } + + /* Uses in a group can share setup code, so only add setup cost once. */ + cost -= cost.scratch; + /* Compute and add costs for rest uses of this group. */ + for (i = 1; i < group->vuses.length () && !sum_cost.infinite_cost_p (); i++) + { + struct iv_use *next = group->vuses[i]; + + /* TODO: We could skip computing cost for sub iv_use when it has the + same cost as the first iv_use, but the cost really depends on the + offset and where the iv_use is. */ + cost = get_computation_cost (data, next, cand, true, + NULL, &can_autoinc, &inv_expr); + if (inv_expr) + { + if (!inv_exprs) + inv_exprs = BITMAP_ALLOC (NULL); + + bitmap_set_bit (inv_exprs, inv_expr->id); + } + sum_cost += cost; + } + set_group_iv_cost (data, group, cand, sum_cost, inv_vars, + NULL_TREE, ERROR_MARK, inv_exprs); + + return !sum_cost.infinite_cost_p (); +} + +/* Computes value of candidate CAND at position AT in iteration DESC->NITER, + and stores it to VAL. */ + +static void +cand_value_at (class loop *loop, struct iv_cand *cand, gimple *at, + class tree_niter_desc *desc, aff_tree *val) +{ + aff_tree step, delta, nit; + struct iv *iv = cand->iv; + tree type = TREE_TYPE (iv->base); + tree niter = desc->niter; + bool after_adjust = stmt_after_increment (loop, cand, at); + tree steptype; + + if (POINTER_TYPE_P (type)) + steptype = sizetype; + else + steptype = unsigned_type_for (type); + + /* If AFTER_ADJUST is required, the code below generates the equivalent + of BASE + NITER * STEP + STEP, when ideally we'd prefer the expression + BASE + (NITER + 1) * STEP, especially when NITER is often of the form + SSA_NAME - 1. Unfortunately, guaranteeing that adding 1 to NITER + doesn't overflow is tricky, so we peek inside the TREE_NITER_DESC + class for common idioms that we know are safe. */ + if (after_adjust + && desc->control.no_overflow + && integer_onep (desc->control.step) + && (desc->cmp == LT_EXPR + || desc->cmp == NE_EXPR) + && TREE_CODE (desc->bound) == SSA_NAME) + { + if (integer_onep (desc->control.base)) + { + niter = desc->bound; + after_adjust = false; + } + else if (TREE_CODE (niter) == MINUS_EXPR + && integer_onep (TREE_OPERAND (niter, 1))) + { + niter = TREE_OPERAND (niter, 0); + after_adjust = false; + } + } + + tree_to_aff_combination (iv->step, TREE_TYPE (iv->step), &step); + aff_combination_convert (&step, steptype); + tree_to_aff_combination (niter, TREE_TYPE (niter), &nit); + aff_combination_convert (&nit, steptype); + aff_combination_mult (&nit, &step, &delta); + if (after_adjust) + aff_combination_add (&delta, &step); + + tree_to_aff_combination (iv->base, type, val); + if (!POINTER_TYPE_P (type)) + aff_combination_convert (val, steptype); + aff_combination_add (val, &delta); +} + +/* Returns period of induction variable iv. */ + +static tree +iv_period (struct iv *iv) +{ + tree step = iv->step, period, type; + tree pow2div; + + gcc_assert (step && TREE_CODE (step) == INTEGER_CST); + + type = unsigned_type_for (TREE_TYPE (step)); + /* Period of the iv is lcm (step, type_range)/step -1, + i.e., N*type_range/step - 1. Since type range is power + of two, N == (step >> num_of_ending_zeros_binary (step), + so the final result is + + (type_range >> num_of_ending_zeros_binary (step)) - 1 + + */ + pow2div = num_ending_zeros (step); + + period = build_low_bits_mask (type, + (TYPE_PRECISION (type) + - tree_to_uhwi (pow2div))); + + return period; +} + +/* Returns the comparison operator used when eliminating the iv USE. */ + +static enum tree_code +iv_elimination_compare (struct ivopts_data *data, struct iv_use *use) +{ + class loop *loop = data->current_loop; + basic_block ex_bb; + edge exit; + + ex_bb = gimple_bb (use->stmt); + exit = EDGE_SUCC (ex_bb, 0); + if (flow_bb_inside_loop_p (loop, exit->dest)) + exit = EDGE_SUCC (ex_bb, 1); + + return (exit->flags & EDGE_TRUE_VALUE ? EQ_EXPR : NE_EXPR); +} + +/* Returns true if we can prove that BASE - OFFSET does not overflow. For now, + we only detect the situation that BASE = SOMETHING + OFFSET, where the + calculation is performed in non-wrapping type. + + TODO: More generally, we could test for the situation that + BASE = SOMETHING + OFFSET' and OFFSET is between OFFSET' and zero. + This would require knowing the sign of OFFSET. */ + +static bool +difference_cannot_overflow_p (struct ivopts_data *data, tree base, tree offset) +{ + enum tree_code code; + tree e1, e2; + aff_tree aff_e1, aff_e2, aff_offset; + + if (!nowrap_type_p (TREE_TYPE (base))) + return false; + + base = expand_simple_operations (base); + + if (TREE_CODE (base) == SSA_NAME) + { + gimple *stmt = SSA_NAME_DEF_STMT (base); + + if (gimple_code (stmt) != GIMPLE_ASSIGN) + return false; + + code = gimple_assign_rhs_code (stmt); + if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS) + return false; + + e1 = gimple_assign_rhs1 (stmt); + e2 = gimple_assign_rhs2 (stmt); + } + else + { + code = TREE_CODE (base); + if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS) + return false; + e1 = TREE_OPERAND (base, 0); + e2 = TREE_OPERAND (base, 1); + } + + /* Use affine expansion as deeper inspection to prove the equality. */ + tree_to_aff_combination_expand (e2, TREE_TYPE (e2), + &aff_e2, &data->name_expansion_cache); + tree_to_aff_combination_expand (offset, TREE_TYPE (offset), + &aff_offset, &data->name_expansion_cache); + aff_combination_scale (&aff_offset, -1); + switch (code) + { + case PLUS_EXPR: + aff_combination_add (&aff_e2, &aff_offset); + if (aff_combination_zero_p (&aff_e2)) + return true; + + tree_to_aff_combination_expand (e1, TREE_TYPE (e1), + &aff_e1, &data->name_expansion_cache); + aff_combination_add (&aff_e1, &aff_offset); + return aff_combination_zero_p (&aff_e1); + + case POINTER_PLUS_EXPR: + aff_combination_add (&aff_e2, &aff_offset); + return aff_combination_zero_p (&aff_e2); + + default: + return false; + } +} + +/* Tries to replace loop exit by one formulated in terms of a LT_EXPR + comparison with CAND. NITER describes the number of iterations of + the loops. If successful, the comparison in COMP_P is altered accordingly. + + We aim to handle the following situation: + + sometype *base, *p; + int a, b, i; + + i = a; + p = p_0 = base + a; + + do + { + bla (*p); + p++; + i++; + } + while (i < b); + + Here, the number of iterations of the loop is (a + 1 > b) ? 0 : b - a - 1. + We aim to optimize this to + + p = p_0 = base + a; + do + { + bla (*p); + p++; + } + while (p < p_0 - a + b); + + This preserves the correctness, since the pointer arithmetics does not + overflow. More precisely: + + 1) if a + 1 <= b, then p_0 - a + b is the final value of p, hence there is no + overflow in computing it or the values of p. + 2) if a + 1 > b, then we need to verify that the expression p_0 - a does not + overflow. To prove this, we use the fact that p_0 = base + a. */ + +static bool +iv_elimination_compare_lt (struct ivopts_data *data, + struct iv_cand *cand, enum tree_code *comp_p, + class tree_niter_desc *niter) +{ + tree cand_type, a, b, mbz, nit_type = TREE_TYPE (niter->niter), offset; + class aff_tree nit, tmpa, tmpb; + enum tree_code comp; + HOST_WIDE_INT step; + + /* We need to know that the candidate induction variable does not overflow. + While more complex analysis may be used to prove this, for now just + check that the variable appears in the original program and that it + is computed in a type that guarantees no overflows. */ + cand_type = TREE_TYPE (cand->iv->base); + if (cand->pos != IP_ORIGINAL || !nowrap_type_p (cand_type)) + return false; + + /* Make sure that the loop iterates till the loop bound is hit, as otherwise + the calculation of the BOUND could overflow, making the comparison + invalid. */ + if (!data->loop_single_exit_p) + return false; + + /* We need to be able to decide whether candidate is increasing or decreasing + in order to choose the right comparison operator. */ + if (!cst_and_fits_in_hwi (cand->iv->step)) + return false; + step = int_cst_value (cand->iv->step); + + /* Check that the number of iterations matches the expected pattern: + a + 1 > b ? 0 : b - a - 1. */ + mbz = niter->may_be_zero; + if (TREE_CODE (mbz) == GT_EXPR) + { + /* Handle a + 1 > b. */ + tree op0 = TREE_OPERAND (mbz, 0); + if (TREE_CODE (op0) == PLUS_EXPR && integer_onep (TREE_OPERAND (op0, 1))) + { + a = TREE_OPERAND (op0, 0); + b = TREE_OPERAND (mbz, 1); + } + else + return false; + } + else if (TREE_CODE (mbz) == LT_EXPR) + { + tree op1 = TREE_OPERAND (mbz, 1); + + /* Handle b < a + 1. */ + if (TREE_CODE (op1) == PLUS_EXPR && integer_onep (TREE_OPERAND (op1, 1))) + { + a = TREE_OPERAND (op1, 0); + b = TREE_OPERAND (mbz, 0); + } + else + return false; + } + else + return false; + + /* Expected number of iterations is B - A - 1. Check that it matches + the actual number, i.e., that B - A - NITER = 1. */ + tree_to_aff_combination (niter->niter, nit_type, &nit); + tree_to_aff_combination (fold_convert (nit_type, a), nit_type, &tmpa); + tree_to_aff_combination (fold_convert (nit_type, b), nit_type, &tmpb); + aff_combination_scale (&nit, -1); + aff_combination_scale (&tmpa, -1); + aff_combination_add (&tmpb, &tmpa); + aff_combination_add (&tmpb, &nit); + if (tmpb.n != 0 || maybe_ne (tmpb.offset, 1)) + return false; + + /* Finally, check that CAND->IV->BASE - CAND->IV->STEP * A does not + overflow. */ + offset = fold_build2 (MULT_EXPR, TREE_TYPE (cand->iv->step), + cand->iv->step, + fold_convert (TREE_TYPE (cand->iv->step), a)); + if (!difference_cannot_overflow_p (data, cand->iv->base, offset)) + return false; + + /* Determine the new comparison operator. */ + comp = step < 0 ? GT_EXPR : LT_EXPR; + if (*comp_p == NE_EXPR) + *comp_p = comp; + else if (*comp_p == EQ_EXPR) + *comp_p = invert_tree_comparison (comp, false); + else + gcc_unreachable (); + + return true; +} + +/* Check whether it is possible to express the condition in USE by comparison + of candidate CAND. If so, store the value compared with to BOUND, and the + comparison operator to COMP. */ + +static bool +may_eliminate_iv (struct ivopts_data *data, + struct iv_use *use, struct iv_cand *cand, tree *bound, + enum tree_code *comp) +{ + basic_block ex_bb; + edge exit; + tree period; + class loop *loop = data->current_loop; + aff_tree bnd; + class tree_niter_desc *desc = NULL; + + if (TREE_CODE (cand->iv->step) != INTEGER_CST) + return false; + + /* For now works only for exits that dominate the loop latch. + TODO: extend to other conditions inside loop body. */ + ex_bb = gimple_bb (use->stmt); + if (use->stmt != last_stmt (ex_bb) + || gimple_code (use->stmt) != GIMPLE_COND + || !dominated_by_p (CDI_DOMINATORS, loop->latch, ex_bb)) + return false; + + exit = EDGE_SUCC (ex_bb, 0); + if (flow_bb_inside_loop_p (loop, exit->dest)) + exit = EDGE_SUCC (ex_bb, 1); + if (flow_bb_inside_loop_p (loop, exit->dest)) + return false; + + desc = niter_for_exit (data, exit); + if (!desc) + return false; + + /* Determine whether we can use the variable to test the exit condition. + This is the case iff the period of the induction variable is greater + than the number of iterations for which the exit condition is true. */ + period = iv_period (cand->iv); + + /* If the number of iterations is constant, compare against it directly. */ + if (TREE_CODE (desc->niter) == INTEGER_CST) + { + /* See cand_value_at. */ + if (stmt_after_increment (loop, cand, use->stmt)) + { + if (!tree_int_cst_lt (desc->niter, period)) + return false; + } + else + { + if (tree_int_cst_lt (period, desc->niter)) + return false; + } + } + + /* If not, and if this is the only possible exit of the loop, see whether + we can get a conservative estimate on the number of iterations of the + entire loop and compare against that instead. */ + else + { + widest_int period_value, max_niter; + + max_niter = desc->max; + if (stmt_after_increment (loop, cand, use->stmt)) + max_niter += 1; + period_value = wi::to_widest (period); + if (wi::gtu_p (max_niter, period_value)) + { + /* See if we can take advantage of inferred loop bound + information. */ + if (data->loop_single_exit_p) + { + if (!max_loop_iterations (loop, &max_niter)) + return false; + /* The loop bound is already adjusted by adding 1. */ + if (wi::gtu_p (max_niter, period_value)) + return false; + } + else + return false; + } + } + + /* For doloop IV cand, the bound would be zero. It's safe whether + may_be_zero set or not. */ + if (cand->doloop_p) + { + *bound = build_int_cst (TREE_TYPE (cand->iv->base), 0); + *comp = iv_elimination_compare (data, use); + return true; + } + + cand_value_at (loop, cand, use->stmt, desc, &bnd); + + *bound = fold_convert (TREE_TYPE (cand->iv->base), + aff_combination_to_tree (&bnd)); + *comp = iv_elimination_compare (data, use); + + /* It is unlikely that computing the number of iterations using division + would be more profitable than keeping the original induction variable. */ + if (expression_expensive_p (*bound)) + return false; + + /* Sometimes, it is possible to handle the situation that the number of + iterations may be zero unless additional assumptions by using < + instead of != in the exit condition. + + TODO: we could also calculate the value MAY_BE_ZERO ? 0 : NITER and + base the exit condition on it. However, that is often too + expensive. */ + if (!integer_zerop (desc->may_be_zero)) + return iv_elimination_compare_lt (data, cand, comp, desc); + + return true; +} + + /* Calculates the cost of BOUND, if it is a PARM_DECL. A PARM_DECL must + be copied, if it is used in the loop body and DATA->body_includes_call. */ + +static int +parm_decl_cost (struct ivopts_data *data, tree bound) +{ + tree sbound = bound; + STRIP_NOPS (sbound); + + if (TREE_CODE (sbound) == SSA_NAME + && SSA_NAME_IS_DEFAULT_DEF (sbound) + && TREE_CODE (SSA_NAME_VAR (sbound)) == PARM_DECL + && data->body_includes_call) + return COSTS_N_INSNS (1); + + return 0; +} + +/* Determines cost of computing the use in GROUP with CAND in a condition. */ + +static bool +determine_group_iv_cost_cond (struct ivopts_data *data, + struct iv_group *group, struct iv_cand *cand) +{ + tree bound = NULL_TREE; + struct iv *cmp_iv; + bitmap inv_exprs = NULL; + bitmap inv_vars_elim = NULL, inv_vars_express = NULL, inv_vars; + comp_cost elim_cost = infinite_cost, express_cost, cost, bound_cost; + enum comp_iv_rewrite rewrite_type; + iv_inv_expr_ent *inv_expr_elim = NULL, *inv_expr_express = NULL, *inv_expr; + tree *control_var, *bound_cst; + enum tree_code comp = ERROR_MARK; + struct iv_use *use = group->vuses[0]; + + /* Extract condition operands. */ + rewrite_type = extract_cond_operands (data, use->stmt, &control_var, + &bound_cst, NULL, &cmp_iv); + gcc_assert (rewrite_type != COMP_IV_NA); + + /* Try iv elimination. */ + if (rewrite_type == COMP_IV_ELIM + && may_eliminate_iv (data, use, cand, &bound, &comp)) + { + elim_cost = force_var_cost (data, bound, &inv_vars_elim); + if (elim_cost.cost == 0) + elim_cost.cost = parm_decl_cost (data, bound); + else if (TREE_CODE (bound) == INTEGER_CST) + elim_cost.cost = 0; + /* If we replace a loop condition 'i < n' with 'p < base + n', + inv_vars_elim will have 'base' and 'n' set, which implies that both + 'base' and 'n' will be live during the loop. More likely, + 'base + n' will be loop invariant, resulting in only one live value + during the loop. So in that case we clear inv_vars_elim and set + inv_expr_elim instead. */ + if (inv_vars_elim && bitmap_count_bits (inv_vars_elim) > 1) + { + inv_expr_elim = get_loop_invariant_expr (data, bound); + bitmap_clear (inv_vars_elim); + } + /* The bound is a loop invariant, so it will be only computed + once. */ + elim_cost.cost = adjust_setup_cost (data, elim_cost.cost); + } + + /* When the condition is a comparison of the candidate IV against + zero, prefer this IV. + + TODO: The constant that we're subtracting from the cost should + be target-dependent. This information should be added to the + target costs for each backend. */ + if (!elim_cost.infinite_cost_p () /* Do not try to decrease infinite! */ + && integer_zerop (*bound_cst) + && (operand_equal_p (*control_var, cand->var_after, 0) + || operand_equal_p (*control_var, cand->var_before, 0))) + elim_cost -= 1; + + express_cost = get_computation_cost (data, use, cand, false, + &inv_vars_express, NULL, + &inv_expr_express); + if (cmp_iv != NULL) + find_inv_vars (data, &cmp_iv->base, &inv_vars_express); + + /* Count the cost of the original bound as well. */ + bound_cost = force_var_cost (data, *bound_cst, NULL); + if (bound_cost.cost == 0) + bound_cost.cost = parm_decl_cost (data, *bound_cst); + else if (TREE_CODE (*bound_cst) == INTEGER_CST) + bound_cost.cost = 0; + express_cost += bound_cost; + + /* Choose the better approach, preferring the eliminated IV. */ + if (elim_cost <= express_cost) + { + cost = elim_cost; + inv_vars = inv_vars_elim; + inv_vars_elim = NULL; + inv_expr = inv_expr_elim; + /* For doloop candidate/use pair, adjust to zero cost. */ + if (group->doloop_p && cand->doloop_p && elim_cost.cost > no_cost.cost) + cost = no_cost; + } + else + { + cost = express_cost; + inv_vars = inv_vars_express; + inv_vars_express = NULL; + bound = NULL_TREE; + comp = ERROR_MARK; + inv_expr = inv_expr_express; + } + + if (inv_expr) + { + inv_exprs = BITMAP_ALLOC (NULL); + bitmap_set_bit (inv_exprs, inv_expr->id); + } + set_group_iv_cost (data, group, cand, cost, + inv_vars, bound, comp, inv_exprs); + + if (inv_vars_elim) + BITMAP_FREE (inv_vars_elim); + if (inv_vars_express) + BITMAP_FREE (inv_vars_express); + + return !cost.infinite_cost_p (); +} + +/* Determines cost of computing uses in GROUP with CAND. Returns false + if USE cannot be represented with CAND. */ + +static bool +determine_group_iv_cost (struct ivopts_data *data, + struct iv_group *group, struct iv_cand *cand) +{ + switch (group->type) + { + case USE_NONLINEAR_EXPR: + return determine_group_iv_cost_generic (data, group, cand); + + case USE_REF_ADDRESS: + case USE_PTR_ADDRESS: + return determine_group_iv_cost_address (data, group, cand); + + case USE_COMPARE: + return determine_group_iv_cost_cond (data, group, cand); + + default: + gcc_unreachable (); + } +} + +/* Return true if get_computation_cost indicates that autoincrement is + a possibility for the pair of USE and CAND, false otherwise. */ + +static bool +autoinc_possible_for_pair (struct ivopts_data *data, struct iv_use *use, + struct iv_cand *cand) +{ + if (!address_p (use->type)) + return false; + + bool can_autoinc = false; + get_computation_cost (data, use, cand, true, NULL, &can_autoinc, NULL); + return can_autoinc; +} + +/* Examine IP_ORIGINAL candidates to see if they are incremented next to a + use that allows autoincrement, and set their AINC_USE if possible. */ + +static void +set_autoinc_for_original_candidates (struct ivopts_data *data) +{ + unsigned i, j; + + for (i = 0; i < data->vcands.length (); i++) + { + struct iv_cand *cand = data->vcands[i]; + struct iv_use *closest_before = NULL; + struct iv_use *closest_after = NULL; + if (cand->pos != IP_ORIGINAL) + continue; + + for (j = 0; j < data->vgroups.length (); j++) + { + struct iv_group *group = data->vgroups[j]; + struct iv_use *use = group->vuses[0]; + unsigned uid = gimple_uid (use->stmt); + + if (gimple_bb (use->stmt) != gimple_bb (cand->incremented_at)) + continue; + + if (uid < gimple_uid (cand->incremented_at) + && (closest_before == NULL + || uid > gimple_uid (closest_before->stmt))) + closest_before = use; + + if (uid > gimple_uid (cand->incremented_at) + && (closest_after == NULL + || uid < gimple_uid (closest_after->stmt))) + closest_after = use; + } + + if (closest_before != NULL + && autoinc_possible_for_pair (data, closest_before, cand)) + cand->ainc_use = closest_before; + else if (closest_after != NULL + && autoinc_possible_for_pair (data, closest_after, cand)) + cand->ainc_use = closest_after; + } +} + +/* Relate compare use with all candidates. */ + +static void +relate_compare_use_with_all_cands (struct ivopts_data *data) +{ + unsigned i, count = data->vcands.length (); + for (i = 0; i < data->vgroups.length (); i++) + { + struct iv_group *group = data->vgroups[i]; + + if (group->type == USE_COMPARE) + bitmap_set_range (group->related_cands, 0, count); + } +} + +/* If PREFERRED_MODE is suitable and profitable, use the preferred + PREFERRED_MODE to compute doloop iv base from niter: base = niter + 1. */ + +static tree +compute_doloop_base_on_mode (machine_mode preferred_mode, tree niter, + const widest_int &iterations_max) +{ + tree ntype = TREE_TYPE (niter); + tree pref_type = lang_hooks.types.type_for_mode (preferred_mode, 1); + if (!pref_type) + return fold_build2 (PLUS_EXPR, ntype, unshare_expr (niter), + build_int_cst (ntype, 1)); + + gcc_assert (TREE_CODE (pref_type) == INTEGER_TYPE); + + int prec = TYPE_PRECISION (ntype); + int pref_prec = TYPE_PRECISION (pref_type); + + tree base; + + /* Check if the PREFERRED_MODED is able to present niter. */ + if (pref_prec > prec + || wi::ltu_p (iterations_max, + widest_int::from (wi::max_value (pref_prec, UNSIGNED), + UNSIGNED))) + { + /* No wrap, it is safe to use preferred type after niter + 1. */ + if (wi::ltu_p (iterations_max, + widest_int::from (wi::max_value (prec, UNSIGNED), + UNSIGNED))) + { + /* This could help to optimize "-1 +1" pair when niter looks + like "n-1": n is in original mode. "base = (n - 1) + 1" + in PREFERRED_MODED: it could be base = (PREFERRED_TYPE)n. */ + base = fold_build2 (PLUS_EXPR, ntype, unshare_expr (niter), + build_int_cst (ntype, 1)); + base = fold_convert (pref_type, base); + } + + /* To avoid wrap, convert niter to preferred type before plus 1. */ + else + { + niter = fold_convert (pref_type, niter); + base = fold_build2 (PLUS_EXPR, pref_type, unshare_expr (niter), + build_int_cst (pref_type, 1)); + } + } + else + base = fold_build2 (PLUS_EXPR, ntype, unshare_expr (niter), + build_int_cst (ntype, 1)); + return base; +} + +/* Add one doloop dedicated IV candidate: + - Base is (may_be_zero ? 1 : (niter + 1)). + - Step is -1. */ + +static void +add_iv_candidate_for_doloop (struct ivopts_data *data) +{ + tree_niter_desc *niter_desc = niter_for_single_dom_exit (data); + gcc_assert (niter_desc && niter_desc->assumptions); + + tree niter = niter_desc->niter; + tree ntype = TREE_TYPE (niter); + gcc_assert (TREE_CODE (ntype) == INTEGER_TYPE); + + tree may_be_zero = niter_desc->may_be_zero; + if (may_be_zero && integer_zerop (may_be_zero)) + may_be_zero = NULL_TREE; + if (may_be_zero) + { + if (COMPARISON_CLASS_P (may_be_zero)) + { + niter = fold_build3 (COND_EXPR, ntype, may_be_zero, + build_int_cst (ntype, 0), + rewrite_to_non_trapping_overflow (niter)); + } + /* Don't try to obtain the iteration count expression when may_be_zero is + integer_nonzerop (actually iteration count is one) or else. */ + else + return; + } + + machine_mode mode = TYPE_MODE (ntype); + machine_mode pref_mode = targetm.preferred_doloop_mode (mode); + + tree base; + if (mode != pref_mode) + { + base = compute_doloop_base_on_mode (pref_mode, niter, niter_desc->max); + ntype = TREE_TYPE (base); + } + else + base = fold_build2 (PLUS_EXPR, ntype, unshare_expr (niter), + build_int_cst (ntype, 1)); + + + add_candidate (data, base, build_int_cst (ntype, -1), true, NULL, NULL, true); +} + +/* Finds the candidates for the induction variables. */ + +static void +find_iv_candidates (struct ivopts_data *data) +{ + /* Add commonly used ivs. */ + add_standard_iv_candidates (data); + + /* Add doloop dedicated ivs. */ + if (data->doloop_use_p) + add_iv_candidate_for_doloop (data); + + /* Add old induction variables. */ + add_iv_candidate_for_bivs (data); + + /* Add induction variables derived from uses. */ + add_iv_candidate_for_groups (data); + + set_autoinc_for_original_candidates (data); + + /* Record the important candidates. */ + record_important_candidates (data); + + /* Relate compare iv_use with all candidates. */ + if (!data->consider_all_candidates) + relate_compare_use_with_all_cands (data); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + unsigned i; + + fprintf (dump_file, "\n<Important Candidates>:\t"); + for (i = 0; i < data->vcands.length (); i++) + if (data->vcands[i]->important) + fprintf (dump_file, " %d,", data->vcands[i]->id); + fprintf (dump_file, "\n"); + + fprintf (dump_file, "\n<Group, Cand> Related:\n"); + for (i = 0; i < data->vgroups.length (); i++) + { + struct iv_group *group = data->vgroups[i]; + + if (group->related_cands) + { + fprintf (dump_file, " Group %d:\t", group->id); + dump_bitmap (dump_file, group->related_cands); + } + } + fprintf (dump_file, "\n"); + } +} + +/* Determines costs of computing use of iv with an iv candidate. */ + +static void +determine_group_iv_costs (struct ivopts_data *data) +{ + unsigned i, j; + struct iv_cand *cand; + struct iv_group *group; + bitmap to_clear = BITMAP_ALLOC (NULL); + + alloc_use_cost_map (data); + + for (i = 0; i < data->vgroups.length (); i++) + { + group = data->vgroups[i]; + + if (data->consider_all_candidates) + { + for (j = 0; j < data->vcands.length (); j++) + { + cand = data->vcands[j]; + determine_group_iv_cost (data, group, cand); + } + } + else + { + bitmap_iterator bi; + + EXECUTE_IF_SET_IN_BITMAP (group->related_cands, 0, j, bi) + { + cand = data->vcands[j]; + if (!determine_group_iv_cost (data, group, cand)) + bitmap_set_bit (to_clear, j); + } + + /* Remove the candidates for that the cost is infinite from + the list of related candidates. */ + bitmap_and_compl_into (group->related_cands, to_clear); + bitmap_clear (to_clear); + } + } + + BITMAP_FREE (to_clear); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + bitmap_iterator bi; + + /* Dump invariant variables. */ + fprintf (dump_file, "\n<Invariant Vars>:\n"); + EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi) + { + struct version_info *info = ver_info (data, i); + if (info->inv_id) + { + fprintf (dump_file, "Inv %d:\t", info->inv_id); + print_generic_expr (dump_file, info->name, TDF_SLIM); + fprintf (dump_file, "%s\n", + info->has_nonlin_use ? "" : "\t(eliminable)"); + } + } + + /* Dump invariant expressions. */ + fprintf (dump_file, "\n<Invariant Expressions>:\n"); + auto_vec <iv_inv_expr_ent *> list (data->inv_expr_tab->elements ()); + + for (hash_table<iv_inv_expr_hasher>::iterator it + = data->inv_expr_tab->begin (); it != data->inv_expr_tab->end (); + ++it) + list.safe_push (*it); + + list.qsort (sort_iv_inv_expr_ent); + + for (i = 0; i < list.length (); ++i) + { + fprintf (dump_file, "inv_expr %d: \t", list[i]->id); + print_generic_expr (dump_file, list[i]->expr, TDF_SLIM); + fprintf (dump_file, "\n"); + } + + fprintf (dump_file, "\n<Group-candidate Costs>:\n"); + + for (i = 0; i < data->vgroups.length (); i++) + { + group = data->vgroups[i]; + + fprintf (dump_file, "Group %d:\n", i); + fprintf (dump_file, " cand\tcost\tcompl.\tinv.expr.\tinv.vars\n"); + for (j = 0; j < group->n_map_members; j++) + { + if (!group->cost_map[j].cand + || group->cost_map[j].cost.infinite_cost_p ()) + continue; + + fprintf (dump_file, " %d\t%" PRId64 "\t%d\t", + group->cost_map[j].cand->id, + group->cost_map[j].cost.cost, + group->cost_map[j].cost.complexity); + if (!group->cost_map[j].inv_exprs + || bitmap_empty_p (group->cost_map[j].inv_exprs)) + fprintf (dump_file, "NIL;\t"); + else + bitmap_print (dump_file, + group->cost_map[j].inv_exprs, "", ";\t"); + if (!group->cost_map[j].inv_vars + || bitmap_empty_p (group->cost_map[j].inv_vars)) + fprintf (dump_file, "NIL;\n"); + else + bitmap_print (dump_file, + group->cost_map[j].inv_vars, "", "\n"); + } + + fprintf (dump_file, "\n"); + } + fprintf (dump_file, "\n"); + } +} + +/* Determines cost of the candidate CAND. */ + +static void +determine_iv_cost (struct ivopts_data *data, struct iv_cand *cand) +{ + comp_cost cost_base; + int64_t cost, cost_step; + tree base; + + gcc_assert (cand->iv != NULL); + + /* There are two costs associated with the candidate -- its increment + and its initialization. The second is almost negligible for any loop + that rolls enough, so we take it just very little into account. */ + + base = cand->iv->base; + cost_base = force_var_cost (data, base, NULL); + /* It will be exceptional that the iv register happens to be initialized with + the proper value at no cost. In general, there will at least be a regcopy + or a const set. */ + if (cost_base.cost == 0) + cost_base.cost = COSTS_N_INSNS (1); + /* Doloop decrement should be considered as zero cost. */ + if (cand->doloop_p) + cost_step = 0; + else + cost_step = add_cost (data->speed, TYPE_MODE (TREE_TYPE (base))); + cost = cost_step + adjust_setup_cost (data, cost_base.cost); + + /* Prefer the original ivs unless we may gain something by replacing it. + The reason is to make debugging simpler; so this is not relevant for + artificial ivs created by other optimization passes. */ + if ((cand->pos != IP_ORIGINAL + || !SSA_NAME_VAR (cand->var_before) + || DECL_ARTIFICIAL (SSA_NAME_VAR (cand->var_before))) + /* Prefer doloop as well. */ + && !cand->doloop_p) + cost++; + + /* Prefer not to insert statements into latch unless there are some + already (so that we do not create unnecessary jumps). */ + if (cand->pos == IP_END + && empty_block_p (ip_end_pos (data->current_loop))) + cost++; + + cand->cost = cost; + cand->cost_step = cost_step; +} + +/* Determines costs of computation of the candidates. */ + +static void +determine_iv_costs (struct ivopts_data *data) +{ + unsigned i; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "<Candidate Costs>:\n"); + fprintf (dump_file, " cand\tcost\n"); + } + + for (i = 0; i < data->vcands.length (); i++) + { + struct iv_cand *cand = data->vcands[i]; + + determine_iv_cost (data, cand); + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, " %d\t%d\n", i, cand->cost); + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "\n"); +} + +/* Estimate register pressure for loop having N_INVS invariants and N_CANDS + induction variables. Note N_INVS includes both invariant variables and + invariant expressions. */ + +static unsigned +ivopts_estimate_reg_pressure (struct ivopts_data *data, unsigned n_invs, + unsigned n_cands) +{ + unsigned cost; + unsigned n_old = data->regs_used, n_new = n_invs + n_cands; + unsigned regs_needed = n_new + n_old, available_regs = target_avail_regs; + bool speed = data->speed; + + /* If there is a call in the loop body, the call-clobbered registers + are not available for loop invariants. */ + if (data->body_includes_call) + available_regs = available_regs - target_clobbered_regs; + + /* If we have enough registers. */ + if (regs_needed + target_res_regs < available_regs) + cost = n_new; + /* If close to running out of registers, try to preserve them. */ + else if (regs_needed <= available_regs) + cost = target_reg_cost [speed] * regs_needed; + /* If we run out of available registers but the number of candidates + does not, we penalize extra registers using target_spill_cost. */ + else if (n_cands <= available_regs) + cost = target_reg_cost [speed] * available_regs + + target_spill_cost [speed] * (regs_needed - available_regs); + /* If the number of candidates runs out available registers, we penalize + extra candidate registers using target_spill_cost * 2. Because it is + more expensive to spill induction variable than invariant. */ + else + cost = target_reg_cost [speed] * available_regs + + target_spill_cost [speed] * (n_cands - available_regs) * 2 + + target_spill_cost [speed] * (regs_needed - n_cands); + + /* Finally, add the number of candidates, so that we prefer eliminating + induction variables if possible. */ + return cost + n_cands; +} + +/* For each size of the induction variable set determine the penalty. */ + +static void +determine_set_costs (struct ivopts_data *data) +{ + unsigned j, n; + gphi *phi; + gphi_iterator psi; + tree op; + class loop *loop = data->current_loop; + bitmap_iterator bi; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "<Global Costs>:\n"); + fprintf (dump_file, " target_avail_regs %d\n", target_avail_regs); + fprintf (dump_file, " target_clobbered_regs %d\n", target_clobbered_regs); + fprintf (dump_file, " target_reg_cost %d\n", target_reg_cost[data->speed]); + fprintf (dump_file, " target_spill_cost %d\n", target_spill_cost[data->speed]); + } + + n = 0; + for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi)) + { + phi = psi.phi (); + op = PHI_RESULT (phi); + + if (virtual_operand_p (op)) + continue; + + if (get_iv (data, op)) + continue; + + if (!POINTER_TYPE_P (TREE_TYPE (op)) + && !INTEGRAL_TYPE_P (TREE_TYPE (op))) + continue; + + n++; + } + + EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, j, bi) + { + struct version_info *info = ver_info (data, j); + + if (info->inv_id && info->has_nonlin_use) + n++; + } + + data->regs_used = n; + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, " regs_used %d\n", n); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, " cost for size:\n"); + fprintf (dump_file, " ivs\tcost\n"); + for (j = 0; j <= 2 * target_avail_regs; j++) + fprintf (dump_file, " %d\t%d\n", j, + ivopts_estimate_reg_pressure (data, 0, j)); + fprintf (dump_file, "\n"); + } +} + +/* Returns true if A is a cheaper cost pair than B. */ + +static bool +cheaper_cost_pair (class cost_pair *a, class cost_pair *b) +{ + if (!a) + return false; + + if (!b) + return true; + + if (a->cost < b->cost) + return true; + + if (b->cost < a->cost) + return false; + + /* In case the costs are the same, prefer the cheaper candidate. */ + if (a->cand->cost < b->cand->cost) + return true; + + return false; +} + +/* Compare if A is a more expensive cost pair than B. Return 1, 0 and -1 + for more expensive, equal and cheaper respectively. */ + +static int +compare_cost_pair (class cost_pair *a, class cost_pair *b) +{ + if (cheaper_cost_pair (a, b)) + return -1; + if (cheaper_cost_pair (b, a)) + return 1; + + return 0; +} + +/* Returns candidate by that USE is expressed in IVS. */ + +static class cost_pair * +iv_ca_cand_for_group (class iv_ca *ivs, struct iv_group *group) +{ + return ivs->cand_for_group[group->id]; +} + +/* Computes the cost field of IVS structure. */ + +static void +iv_ca_recount_cost (struct ivopts_data *data, class iv_ca *ivs) +{ + comp_cost cost = ivs->cand_use_cost; + + cost += ivs->cand_cost; + cost += ivopts_estimate_reg_pressure (data, ivs->n_invs, ivs->n_cands); + ivs->cost = cost; +} + +/* Remove use of invariants in set INVS by decreasing counter in N_INV_USES + and IVS. */ + +static void +iv_ca_set_remove_invs (class iv_ca *ivs, bitmap invs, unsigned *n_inv_uses) +{ + bitmap_iterator bi; + unsigned iid; + + if (!invs) + return; + + gcc_assert (n_inv_uses != NULL); + EXECUTE_IF_SET_IN_BITMAP (invs, 0, iid, bi) + { + n_inv_uses[iid]--; + if (n_inv_uses[iid] == 0) + ivs->n_invs--; + } +} + +/* Set USE not to be expressed by any candidate in IVS. */ + +static void +iv_ca_set_no_cp (struct ivopts_data *data, class iv_ca *ivs, + struct iv_group *group) +{ + unsigned gid = group->id, cid; + class cost_pair *cp; + + cp = ivs->cand_for_group[gid]; + if (!cp) + return; + cid = cp->cand->id; + + ivs->bad_groups++; + ivs->cand_for_group[gid] = NULL; + ivs->n_cand_uses[cid]--; + + if (ivs->n_cand_uses[cid] == 0) + { + bitmap_clear_bit (ivs->cands, cid); + if (!cp->cand->doloop_p || !targetm.have_count_reg_decr_p) + ivs->n_cands--; + ivs->cand_cost -= cp->cand->cost; + iv_ca_set_remove_invs (ivs, cp->cand->inv_vars, ivs->n_inv_var_uses); + iv_ca_set_remove_invs (ivs, cp->cand->inv_exprs, ivs->n_inv_expr_uses); + } + + ivs->cand_use_cost -= cp->cost; + iv_ca_set_remove_invs (ivs, cp->inv_vars, ivs->n_inv_var_uses); + iv_ca_set_remove_invs (ivs, cp->inv_exprs, ivs->n_inv_expr_uses); + iv_ca_recount_cost (data, ivs); +} + +/* Add use of invariants in set INVS by increasing counter in N_INV_USES and + IVS. */ + +static void +iv_ca_set_add_invs (class iv_ca *ivs, bitmap invs, unsigned *n_inv_uses) +{ + bitmap_iterator bi; + unsigned iid; + + if (!invs) + return; + + gcc_assert (n_inv_uses != NULL); + EXECUTE_IF_SET_IN_BITMAP (invs, 0, iid, bi) + { + n_inv_uses[iid]++; + if (n_inv_uses[iid] == 1) + ivs->n_invs++; + } +} + +/* Set cost pair for GROUP in set IVS to CP. */ + +static void +iv_ca_set_cp (struct ivopts_data *data, class iv_ca *ivs, + struct iv_group *group, class cost_pair *cp) +{ + unsigned gid = group->id, cid; + + if (ivs->cand_for_group[gid] == cp) + return; + + if (ivs->cand_for_group[gid]) + iv_ca_set_no_cp (data, ivs, group); + + if (cp) + { + cid = cp->cand->id; + + ivs->bad_groups--; + ivs->cand_for_group[gid] = cp; + ivs->n_cand_uses[cid]++; + if (ivs->n_cand_uses[cid] == 1) + { + bitmap_set_bit (ivs->cands, cid); + if (!cp->cand->doloop_p || !targetm.have_count_reg_decr_p) + ivs->n_cands++; + ivs->cand_cost += cp->cand->cost; + iv_ca_set_add_invs (ivs, cp->cand->inv_vars, ivs->n_inv_var_uses); + iv_ca_set_add_invs (ivs, cp->cand->inv_exprs, ivs->n_inv_expr_uses); + } + + ivs->cand_use_cost += cp->cost; + iv_ca_set_add_invs (ivs, cp->inv_vars, ivs->n_inv_var_uses); + iv_ca_set_add_invs (ivs, cp->inv_exprs, ivs->n_inv_expr_uses); + iv_ca_recount_cost (data, ivs); + } +} + +/* Extend set IVS by expressing USE by some of the candidates in it + if possible. Consider all important candidates if candidates in + set IVS don't give any result. */ + +static void +iv_ca_add_group (struct ivopts_data *data, class iv_ca *ivs, + struct iv_group *group) +{ + class cost_pair *best_cp = NULL, *cp; + bitmap_iterator bi; + unsigned i; + struct iv_cand *cand; + + gcc_assert (ivs->upto >= group->id); + ivs->upto++; + ivs->bad_groups++; + + EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, i, bi) + { + cand = data->vcands[i]; + cp = get_group_iv_cost (data, group, cand); + if (cheaper_cost_pair (cp, best_cp)) + best_cp = cp; + } + + if (best_cp == NULL) + { + EXECUTE_IF_SET_IN_BITMAP (data->important_candidates, 0, i, bi) + { + cand = data->vcands[i]; + cp = get_group_iv_cost (data, group, cand); + if (cheaper_cost_pair (cp, best_cp)) + best_cp = cp; + } + } + + iv_ca_set_cp (data, ivs, group, best_cp); +} + +/* Get cost for assignment IVS. */ + +static comp_cost +iv_ca_cost (class iv_ca *ivs) +{ + /* This was a conditional expression but it triggered a bug in + Sun C 5.5. */ + if (ivs->bad_groups) + return infinite_cost; + else + return ivs->cost; +} + +/* Compare if applying NEW_CP to GROUP for IVS introduces more invariants + than OLD_CP. Return 1, 0 and -1 for more, equal and fewer invariants + respectively. */ + +static int +iv_ca_compare_deps (struct ivopts_data *data, class iv_ca *ivs, + struct iv_group *group, class cost_pair *old_cp, + class cost_pair *new_cp) +{ + gcc_assert (old_cp && new_cp && old_cp != new_cp); + unsigned old_n_invs = ivs->n_invs; + iv_ca_set_cp (data, ivs, group, new_cp); + unsigned new_n_invs = ivs->n_invs; + iv_ca_set_cp (data, ivs, group, old_cp); + + return new_n_invs > old_n_invs ? 1 : (new_n_invs < old_n_invs ? -1 : 0); +} + +/* Creates change of expressing GROUP by NEW_CP instead of OLD_CP and chains + it before NEXT. */ + +static struct iv_ca_delta * +iv_ca_delta_add (struct iv_group *group, class cost_pair *old_cp, + class cost_pair *new_cp, struct iv_ca_delta *next) +{ + struct iv_ca_delta *change = XNEW (struct iv_ca_delta); + + change->group = group; + change->old_cp = old_cp; + change->new_cp = new_cp; + change->next = next; + + return change; +} + +/* Joins two lists of changes L1 and L2. Destructive -- old lists + are rewritten. */ + +static struct iv_ca_delta * +iv_ca_delta_join (struct iv_ca_delta *l1, struct iv_ca_delta *l2) +{ + struct iv_ca_delta *last; + + if (!l2) + return l1; + + if (!l1) + return l2; + + for (last = l1; last->next; last = last->next) + continue; + last->next = l2; + + return l1; +} + +/* Reverse the list of changes DELTA, forming the inverse to it. */ + +static struct iv_ca_delta * +iv_ca_delta_reverse (struct iv_ca_delta *delta) +{ + struct iv_ca_delta *act, *next, *prev = NULL; + + for (act = delta; act; act = next) + { + next = act->next; + act->next = prev; + prev = act; + + std::swap (act->old_cp, act->new_cp); + } + + return prev; +} + +/* Commit changes in DELTA to IVS. If FORWARD is false, the changes are + reverted instead. */ + +static void +iv_ca_delta_commit (struct ivopts_data *data, class iv_ca *ivs, + struct iv_ca_delta *delta, bool forward) +{ + class cost_pair *from, *to; + struct iv_ca_delta *act; + + if (!forward) + delta = iv_ca_delta_reverse (delta); + + for (act = delta; act; act = act->next) + { + from = act->old_cp; + to = act->new_cp; + gcc_assert (iv_ca_cand_for_group (ivs, act->group) == from); + iv_ca_set_cp (data, ivs, act->group, to); + } + + if (!forward) + iv_ca_delta_reverse (delta); +} + +/* Returns true if CAND is used in IVS. */ + +static bool +iv_ca_cand_used_p (class iv_ca *ivs, struct iv_cand *cand) +{ + return ivs->n_cand_uses[cand->id] > 0; +} + +/* Returns number of induction variable candidates in the set IVS. */ + +static unsigned +iv_ca_n_cands (class iv_ca *ivs) +{ + return ivs->n_cands; +} + +/* Free the list of changes DELTA. */ + +static void +iv_ca_delta_free (struct iv_ca_delta **delta) +{ + struct iv_ca_delta *act, *next; + + for (act = *delta; act; act = next) + { + next = act->next; + free (act); + } + + *delta = NULL; +} + +/* Allocates new iv candidates assignment. */ + +static class iv_ca * +iv_ca_new (struct ivopts_data *data) +{ + class iv_ca *nw = XNEW (class iv_ca); + + nw->upto = 0; + nw->bad_groups = 0; + nw->cand_for_group = XCNEWVEC (class cost_pair *, + data->vgroups.length ()); + nw->n_cand_uses = XCNEWVEC (unsigned, data->vcands.length ()); + nw->cands = BITMAP_ALLOC (NULL); + nw->n_cands = 0; + nw->n_invs = 0; + nw->cand_use_cost = no_cost; + nw->cand_cost = 0; + nw->n_inv_var_uses = XCNEWVEC (unsigned, data->max_inv_var_id + 1); + nw->n_inv_expr_uses = XCNEWVEC (unsigned, data->max_inv_expr_id + 1); + nw->cost = no_cost; + + return nw; +} + +/* Free memory occupied by the set IVS. */ + +static void +iv_ca_free (class iv_ca **ivs) +{ + free ((*ivs)->cand_for_group); + free ((*ivs)->n_cand_uses); + BITMAP_FREE ((*ivs)->cands); + free ((*ivs)->n_inv_var_uses); + free ((*ivs)->n_inv_expr_uses); + free (*ivs); + *ivs = NULL; +} + +/* Dumps IVS to FILE. */ + +static void +iv_ca_dump (struct ivopts_data *data, FILE *file, class iv_ca *ivs) +{ + unsigned i; + comp_cost cost = iv_ca_cost (ivs); + + fprintf (file, " cost: %" PRId64 " (complexity %d)\n", cost.cost, + cost.complexity); + fprintf (file, " reg_cost: %d\n", + ivopts_estimate_reg_pressure (data, ivs->n_invs, ivs->n_cands)); + fprintf (file, " cand_cost: %" PRId64 "\n cand_group_cost: " + "%" PRId64 " (complexity %d)\n", ivs->cand_cost, + ivs->cand_use_cost.cost, ivs->cand_use_cost.complexity); + bitmap_print (file, ivs->cands, " candidates: ","\n"); + + for (i = 0; i < ivs->upto; i++) + { + struct iv_group *group = data->vgroups[i]; + class cost_pair *cp = iv_ca_cand_for_group (ivs, group); + if (cp) + fprintf (file, " group:%d --> iv_cand:%d, cost=(" + "%" PRId64 ",%d)\n", group->id, cp->cand->id, + cp->cost.cost, cp->cost.complexity); + else + fprintf (file, " group:%d --> ??\n", group->id); + } + + const char *pref = ""; + fprintf (file, " invariant variables: "); + for (i = 1; i <= data->max_inv_var_id; i++) + if (ivs->n_inv_var_uses[i]) + { + fprintf (file, "%s%d", pref, i); + pref = ", "; + } + + pref = ""; + fprintf (file, "\n invariant expressions: "); + for (i = 1; i <= data->max_inv_expr_id; i++) + if (ivs->n_inv_expr_uses[i]) + { + fprintf (file, "%s%d", pref, i); + pref = ", "; + } + + fprintf (file, "\n\n"); +} + +/* Try changing candidate in IVS to CAND for each use. Return cost of the + new set, and store differences in DELTA. Number of induction variables + in the new set is stored to N_IVS. MIN_NCAND is a flag. When it is true + the function will try to find a solution with mimimal iv candidates. */ + +static comp_cost +iv_ca_extend (struct ivopts_data *data, class iv_ca *ivs, + struct iv_cand *cand, struct iv_ca_delta **delta, + unsigned *n_ivs, bool min_ncand) +{ + unsigned i; + comp_cost cost; + struct iv_group *group; + class cost_pair *old_cp, *new_cp; + + *delta = NULL; + for (i = 0; i < ivs->upto; i++) + { + group = data->vgroups[i]; + old_cp = iv_ca_cand_for_group (ivs, group); + + if (old_cp + && old_cp->cand == cand) + continue; + + new_cp = get_group_iv_cost (data, group, cand); + if (!new_cp) + continue; + + if (!min_ncand) + { + int cmp_invs = iv_ca_compare_deps (data, ivs, group, old_cp, new_cp); + /* Skip if new_cp depends on more invariants. */ + if (cmp_invs > 0) + continue; + + int cmp_cost = compare_cost_pair (new_cp, old_cp); + /* Skip if new_cp is not cheaper. */ + if (cmp_cost > 0 || (cmp_cost == 0 && cmp_invs == 0)) + continue; + } + + *delta = iv_ca_delta_add (group, old_cp, new_cp, *delta); + } + + iv_ca_delta_commit (data, ivs, *delta, true); + cost = iv_ca_cost (ivs); + if (n_ivs) + *n_ivs = iv_ca_n_cands (ivs); + iv_ca_delta_commit (data, ivs, *delta, false); + + return cost; +} + +/* Try narrowing set IVS by removing CAND. Return the cost of + the new set and store the differences in DELTA. START is + the candidate with which we start narrowing. */ + +static comp_cost +iv_ca_narrow (struct ivopts_data *data, class iv_ca *ivs, + struct iv_cand *cand, struct iv_cand *start, + struct iv_ca_delta **delta) +{ + unsigned i, ci; + struct iv_group *group; + class cost_pair *old_cp, *new_cp, *cp; + bitmap_iterator bi; + struct iv_cand *cnd; + comp_cost cost, best_cost, acost; + + *delta = NULL; + for (i = 0; i < data->vgroups.length (); i++) + { + group = data->vgroups[i]; + + old_cp = iv_ca_cand_for_group (ivs, group); + if (old_cp->cand != cand) + continue; + + best_cost = iv_ca_cost (ivs); + /* Start narrowing with START. */ + new_cp = get_group_iv_cost (data, group, start); + + if (data->consider_all_candidates) + { + EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, ci, bi) + { + if (ci == cand->id || (start && ci == start->id)) + continue; + + cnd = data->vcands[ci]; + + cp = get_group_iv_cost (data, group, cnd); + if (!cp) + continue; + + iv_ca_set_cp (data, ivs, group, cp); + acost = iv_ca_cost (ivs); + + if (acost < best_cost) + { + best_cost = acost; + new_cp = cp; + } + } + } + else + { + EXECUTE_IF_AND_IN_BITMAP (group->related_cands, ivs->cands, 0, ci, bi) + { + if (ci == cand->id || (start && ci == start->id)) + continue; + + cnd = data->vcands[ci]; + + cp = get_group_iv_cost (data, group, cnd); + if (!cp) + continue; + + iv_ca_set_cp (data, ivs, group, cp); + acost = iv_ca_cost (ivs); + + if (acost < best_cost) + { + best_cost = acost; + new_cp = cp; + } + } + } + /* Restore to old cp for use. */ + iv_ca_set_cp (data, ivs, group, old_cp); + + if (!new_cp) + { + iv_ca_delta_free (delta); + return infinite_cost; + } + + *delta = iv_ca_delta_add (group, old_cp, new_cp, *delta); + } + + iv_ca_delta_commit (data, ivs, *delta, true); + cost = iv_ca_cost (ivs); + iv_ca_delta_commit (data, ivs, *delta, false); + + return cost; +} + +/* Try optimizing the set of candidates IVS by removing candidates different + from to EXCEPT_CAND from it. Return cost of the new set, and store + differences in DELTA. */ + +static comp_cost +iv_ca_prune (struct ivopts_data *data, class iv_ca *ivs, + struct iv_cand *except_cand, struct iv_ca_delta **delta) +{ + bitmap_iterator bi; + struct iv_ca_delta *act_delta, *best_delta; + unsigned i; + comp_cost best_cost, acost; + struct iv_cand *cand; + + best_delta = NULL; + best_cost = iv_ca_cost (ivs); + + EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, i, bi) + { + cand = data->vcands[i]; + + if (cand == except_cand) + continue; + + acost = iv_ca_narrow (data, ivs, cand, except_cand, &act_delta); + + if (acost < best_cost) + { + best_cost = acost; + iv_ca_delta_free (&best_delta); + best_delta = act_delta; + } + else + iv_ca_delta_free (&act_delta); + } + + if (!best_delta) + { + *delta = NULL; + return best_cost; + } + + /* Recurse to possibly remove other unnecessary ivs. */ + iv_ca_delta_commit (data, ivs, best_delta, true); + best_cost = iv_ca_prune (data, ivs, except_cand, delta); + iv_ca_delta_commit (data, ivs, best_delta, false); + *delta = iv_ca_delta_join (best_delta, *delta); + return best_cost; +} + +/* Check if CAND_IDX is a candidate other than OLD_CAND and has + cheaper local cost for GROUP than BEST_CP. Return pointer to + the corresponding cost_pair, otherwise just return BEST_CP. */ + +static class cost_pair* +cheaper_cost_with_cand (struct ivopts_data *data, struct iv_group *group, + unsigned int cand_idx, struct iv_cand *old_cand, + class cost_pair *best_cp) +{ + struct iv_cand *cand; + class cost_pair *cp; + + gcc_assert (old_cand != NULL && best_cp != NULL); + if (cand_idx == old_cand->id) + return best_cp; + + cand = data->vcands[cand_idx]; + cp = get_group_iv_cost (data, group, cand); + if (cp != NULL && cheaper_cost_pair (cp, best_cp)) + return cp; + + return best_cp; +} + +/* Try breaking local optimal fixed-point for IVS by replacing candidates + which are used by more than one iv uses. For each of those candidates, + this function tries to represent iv uses under that candidate using + other ones with lower local cost, then tries to prune the new set. + If the new set has lower cost, It returns the new cost after recording + candidate replacement in list DELTA. */ + +static comp_cost +iv_ca_replace (struct ivopts_data *data, class iv_ca *ivs, + struct iv_ca_delta **delta) +{ + bitmap_iterator bi, bj; + unsigned int i, j, k; + struct iv_cand *cand; + comp_cost orig_cost, acost; + struct iv_ca_delta *act_delta, *tmp_delta; + class cost_pair *old_cp, *best_cp = NULL; + + *delta = NULL; + orig_cost = iv_ca_cost (ivs); + + EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, i, bi) + { + if (ivs->n_cand_uses[i] == 1 + || ivs->n_cand_uses[i] > ALWAYS_PRUNE_CAND_SET_BOUND) + continue; + + cand = data->vcands[i]; + + act_delta = NULL; + /* Represent uses under current candidate using other ones with + lower local cost. */ + for (j = 0; j < ivs->upto; j++) + { + struct iv_group *group = data->vgroups[j]; + old_cp = iv_ca_cand_for_group (ivs, group); + + if (old_cp->cand != cand) + continue; + + best_cp = old_cp; + if (data->consider_all_candidates) + for (k = 0; k < data->vcands.length (); k++) + best_cp = cheaper_cost_with_cand (data, group, k, + old_cp->cand, best_cp); + else + EXECUTE_IF_SET_IN_BITMAP (group->related_cands, 0, k, bj) + best_cp = cheaper_cost_with_cand (data, group, k, + old_cp->cand, best_cp); + + if (best_cp == old_cp) + continue; + + act_delta = iv_ca_delta_add (group, old_cp, best_cp, act_delta); + } + /* No need for further prune. */ + if (!act_delta) + continue; + + /* Prune the new candidate set. */ + iv_ca_delta_commit (data, ivs, act_delta, true); + acost = iv_ca_prune (data, ivs, NULL, &tmp_delta); + iv_ca_delta_commit (data, ivs, act_delta, false); + act_delta = iv_ca_delta_join (act_delta, tmp_delta); + + if (acost < orig_cost) + { + *delta = act_delta; + return acost; + } + else + iv_ca_delta_free (&act_delta); + } + + return orig_cost; +} + +/* Tries to extend the sets IVS in the best possible way in order to + express the GROUP. If ORIGINALP is true, prefer candidates from + the original set of IVs, otherwise favor important candidates not + based on any memory object. */ + +static bool +try_add_cand_for (struct ivopts_data *data, class iv_ca *ivs, + struct iv_group *group, bool originalp) +{ + comp_cost best_cost, act_cost; + unsigned i; + bitmap_iterator bi; + struct iv_cand *cand; + struct iv_ca_delta *best_delta = NULL, *act_delta; + class cost_pair *cp; + + iv_ca_add_group (data, ivs, group); + best_cost = iv_ca_cost (ivs); + cp = iv_ca_cand_for_group (ivs, group); + if (cp) + { + best_delta = iv_ca_delta_add (group, NULL, cp, NULL); + iv_ca_set_no_cp (data, ivs, group); + } + + /* If ORIGINALP is true, try to find the original IV for the use. Otherwise + first try important candidates not based on any memory object. Only if + this fails, try the specific ones. Rationale -- in loops with many + variables the best choice often is to use just one generic biv. If we + added here many ivs specific to the uses, the optimization algorithm later + would be likely to get stuck in a local minimum, thus causing us to create + too many ivs. The approach from few ivs to more seems more likely to be + successful -- starting from few ivs, replacing an expensive use by a + specific iv should always be a win. */ + EXECUTE_IF_SET_IN_BITMAP (group->related_cands, 0, i, bi) + { + cand = data->vcands[i]; + + if (originalp && cand->pos !=IP_ORIGINAL) + continue; + + if (!originalp && cand->iv->base_object != NULL_TREE) + continue; + + if (iv_ca_cand_used_p (ivs, cand)) + continue; + + cp = get_group_iv_cost (data, group, cand); + if (!cp) + continue; + + iv_ca_set_cp (data, ivs, group, cp); + act_cost = iv_ca_extend (data, ivs, cand, &act_delta, NULL, + true); + iv_ca_set_no_cp (data, ivs, group); + act_delta = iv_ca_delta_add (group, NULL, cp, act_delta); + + if (act_cost < best_cost) + { + best_cost = act_cost; + + iv_ca_delta_free (&best_delta); + best_delta = act_delta; + } + else + iv_ca_delta_free (&act_delta); + } + + if (best_cost.infinite_cost_p ()) + { + for (i = 0; i < group->n_map_members; i++) + { + cp = group->cost_map + i; + cand = cp->cand; + if (!cand) + continue; + + /* Already tried this. */ + if (cand->important) + { + if (originalp && cand->pos == IP_ORIGINAL) + continue; + if (!originalp && cand->iv->base_object == NULL_TREE) + continue; + } + + if (iv_ca_cand_used_p (ivs, cand)) + continue; + + act_delta = NULL; + iv_ca_set_cp (data, ivs, group, cp); + act_cost = iv_ca_extend (data, ivs, cand, &act_delta, NULL, true); + iv_ca_set_no_cp (data, ivs, group); + act_delta = iv_ca_delta_add (group, + iv_ca_cand_for_group (ivs, group), + cp, act_delta); + + if (act_cost < best_cost) + { + best_cost = act_cost; + + if (best_delta) + iv_ca_delta_free (&best_delta); + best_delta = act_delta; + } + else + iv_ca_delta_free (&act_delta); + } + } + + iv_ca_delta_commit (data, ivs, best_delta, true); + iv_ca_delta_free (&best_delta); + + return !best_cost.infinite_cost_p (); +} + +/* Finds an initial assignment of candidates to uses. */ + +static class iv_ca * +get_initial_solution (struct ivopts_data *data, bool originalp) +{ + unsigned i; + class iv_ca *ivs = iv_ca_new (data); + + for (i = 0; i < data->vgroups.length (); i++) + if (!try_add_cand_for (data, ivs, data->vgroups[i], originalp)) + { + iv_ca_free (&ivs); + return NULL; + } + + return ivs; +} + +/* Tries to improve set of induction variables IVS. TRY_REPLACE_P + points to a bool variable, this function tries to break local + optimal fixed-point by replacing candidates in IVS if it's true. */ + +static bool +try_improve_iv_set (struct ivopts_data *data, + class iv_ca *ivs, bool *try_replace_p) +{ + unsigned i, n_ivs; + comp_cost acost, best_cost = iv_ca_cost (ivs); + struct iv_ca_delta *best_delta = NULL, *act_delta, *tmp_delta; + struct iv_cand *cand; + + /* Try extending the set of induction variables by one. */ + for (i = 0; i < data->vcands.length (); i++) + { + cand = data->vcands[i]; + + if (iv_ca_cand_used_p (ivs, cand)) + continue; + + acost = iv_ca_extend (data, ivs, cand, &act_delta, &n_ivs, false); + if (!act_delta) + continue; + + /* If we successfully added the candidate and the set is small enough, + try optimizing it by removing other candidates. */ + if (n_ivs <= ALWAYS_PRUNE_CAND_SET_BOUND) + { + iv_ca_delta_commit (data, ivs, act_delta, true); + acost = iv_ca_prune (data, ivs, cand, &tmp_delta); + iv_ca_delta_commit (data, ivs, act_delta, false); + act_delta = iv_ca_delta_join (act_delta, tmp_delta); + } + + if (acost < best_cost) + { + best_cost = acost; + iv_ca_delta_free (&best_delta); + best_delta = act_delta; + } + else + iv_ca_delta_free (&act_delta); + } + + if (!best_delta) + { + /* Try removing the candidates from the set instead. */ + best_cost = iv_ca_prune (data, ivs, NULL, &best_delta); + + if (!best_delta && *try_replace_p) + { + *try_replace_p = false; + /* So far candidate selecting algorithm tends to choose fewer IVs + so that it can handle cases in which loops have many variables + but the best choice is often to use only one general biv. One + weakness is it can't handle opposite cases, in which different + candidates should be chosen with respect to each use. To solve + the problem, we replace candidates in a manner described by the + comments of iv_ca_replace, thus give general algorithm a chance + to break local optimal fixed-point in these cases. */ + best_cost = iv_ca_replace (data, ivs, &best_delta); + } + + if (!best_delta) + return false; + } + + iv_ca_delta_commit (data, ivs, best_delta, true); + iv_ca_delta_free (&best_delta); + return best_cost == iv_ca_cost (ivs); +} + +/* Attempts to find the optimal set of induction variables. We do simple + greedy heuristic -- we try to replace at most one candidate in the selected + solution and remove the unused ivs while this improves the cost. */ + +static class iv_ca * +find_optimal_iv_set_1 (struct ivopts_data *data, bool originalp) +{ + class iv_ca *set; + bool try_replace_p = true; + + /* Get the initial solution. */ + set = get_initial_solution (data, originalp); + if (!set) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "Unable to substitute for ivs, failed.\n"); + return NULL; + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Initial set of candidates:\n"); + iv_ca_dump (data, dump_file, set); + } + + while (try_improve_iv_set (data, set, &try_replace_p)) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Improved to:\n"); + iv_ca_dump (data, dump_file, set); + } + } + + /* If the set has infinite_cost, it can't be optimal. */ + if (iv_ca_cost (set).infinite_cost_p ()) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, + "Overflow to infinite cost in try_improve_iv_set.\n"); + iv_ca_free (&set); + } + return set; +} + +static class iv_ca * +find_optimal_iv_set (struct ivopts_data *data) +{ + unsigned i; + comp_cost cost, origcost; + class iv_ca *set, *origset; + + /* Determine the cost based on a strategy that starts with original IVs, + and try again using a strategy that prefers candidates not based + on any IVs. */ + origset = find_optimal_iv_set_1 (data, true); + set = find_optimal_iv_set_1 (data, false); + + if (!origset && !set) + return NULL; + + origcost = origset ? iv_ca_cost (origset) : infinite_cost; + cost = set ? iv_ca_cost (set) : infinite_cost; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Original cost %" PRId64 " (complexity %d)\n\n", + origcost.cost, origcost.complexity); + fprintf (dump_file, "Final cost %" PRId64 " (complexity %d)\n\n", + cost.cost, cost.complexity); + } + + /* Choose the one with the best cost. */ + if (origcost <= cost) + { + if (set) + iv_ca_free (&set); + set = origset; + } + else if (origset) + iv_ca_free (&origset); + + for (i = 0; i < data->vgroups.length (); i++) + { + struct iv_group *group = data->vgroups[i]; + group->selected = iv_ca_cand_for_group (set, group)->cand; + } + + return set; +} + +/* Creates a new induction variable corresponding to CAND. */ + +static void +create_new_iv (struct ivopts_data *data, struct iv_cand *cand) +{ + gimple_stmt_iterator incr_pos; + tree base; + struct iv_use *use; + struct iv_group *group; + bool after = false; + + gcc_assert (cand->iv != NULL); + + switch (cand->pos) + { + case IP_NORMAL: + incr_pos = gsi_last_bb (ip_normal_pos (data->current_loop)); + break; + + case IP_END: + incr_pos = gsi_last_bb (ip_end_pos (data->current_loop)); + after = true; + break; + + case IP_AFTER_USE: + after = true; + /* fall through */ + case IP_BEFORE_USE: + incr_pos = gsi_for_stmt (cand->incremented_at); + break; + + case IP_ORIGINAL: + /* Mark that the iv is preserved. */ + name_info (data, cand->var_before)->preserve_biv = true; + name_info (data, cand->var_after)->preserve_biv = true; + + /* Rewrite the increment so that it uses var_before directly. */ + use = find_interesting_uses_op (data, cand->var_after); + group = data->vgroups[use->group_id]; + group->selected = cand; + return; + } + + gimple_add_tmp_var (cand->var_before); + + base = unshare_expr (cand->iv->base); + + create_iv (base, unshare_expr (cand->iv->step), + cand->var_before, data->current_loop, + &incr_pos, after, &cand->var_before, &cand->var_after); +} + +/* Creates new induction variables described in SET. */ + +static void +create_new_ivs (struct ivopts_data *data, class iv_ca *set) +{ + unsigned i; + struct iv_cand *cand; + bitmap_iterator bi; + + EXECUTE_IF_SET_IN_BITMAP (set->cands, 0, i, bi) + { + cand = data->vcands[i]; + create_new_iv (data, cand); + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Selected IV set for loop %d", + data->current_loop->num); + if (data->loop_loc != UNKNOWN_LOCATION) + fprintf (dump_file, " at %s:%d", LOCATION_FILE (data->loop_loc), + LOCATION_LINE (data->loop_loc)); + fprintf (dump_file, ", " HOST_WIDE_INT_PRINT_DEC " avg niters", + avg_loop_niter (data->current_loop)); + fprintf (dump_file, ", %lu IVs:\n", bitmap_count_bits (set->cands)); + EXECUTE_IF_SET_IN_BITMAP (set->cands, 0, i, bi) + { + cand = data->vcands[i]; + dump_cand (dump_file, cand); + } + fprintf (dump_file, "\n"); + } +} + +/* Rewrites USE (definition of iv used in a nonlinear expression) + using candidate CAND. */ + +static void +rewrite_use_nonlinear_expr (struct ivopts_data *data, + struct iv_use *use, struct iv_cand *cand) +{ + gassign *ass; + gimple_stmt_iterator bsi; + tree comp, type = get_use_type (use), tgt; + + /* An important special case -- if we are asked to express value of + the original iv by itself, just exit; there is no need to + introduce a new computation (that might also need casting the + variable to unsigned and back). */ + if (cand->pos == IP_ORIGINAL + && cand->incremented_at == use->stmt) + { + tree op = NULL_TREE; + enum tree_code stmt_code; + + gcc_assert (is_gimple_assign (use->stmt)); + gcc_assert (gimple_assign_lhs (use->stmt) == cand->var_after); + + /* Check whether we may leave the computation unchanged. + This is the case only if it does not rely on other + computations in the loop -- otherwise, the computation + we rely upon may be removed in remove_unused_ivs, + thus leading to ICE. */ + stmt_code = gimple_assign_rhs_code (use->stmt); + if (stmt_code == PLUS_EXPR + || stmt_code == MINUS_EXPR + || stmt_code == POINTER_PLUS_EXPR) + { + if (gimple_assign_rhs1 (use->stmt) == cand->var_before) + op = gimple_assign_rhs2 (use->stmt); + else if (gimple_assign_rhs2 (use->stmt) == cand->var_before) + op = gimple_assign_rhs1 (use->stmt); + } + + if (op != NULL_TREE) + { + if (expr_invariant_in_loop_p (data->current_loop, op)) + return; + if (TREE_CODE (op) == SSA_NAME) + { + struct iv *iv = get_iv (data, op); + if (iv != NULL && integer_zerop (iv->step)) + return; + } + } + } + + switch (gimple_code (use->stmt)) + { + case GIMPLE_PHI: + tgt = PHI_RESULT (use->stmt); + + /* If we should keep the biv, do not replace it. */ + if (name_info (data, tgt)->preserve_biv) + return; + + bsi = gsi_after_labels (gimple_bb (use->stmt)); + break; + + case GIMPLE_ASSIGN: + tgt = gimple_assign_lhs (use->stmt); + bsi = gsi_for_stmt (use->stmt); + break; + + default: + gcc_unreachable (); + } + + aff_tree aff_inv, aff_var; + if (!get_computation_aff_1 (data->current_loop, use->stmt, + use, cand, &aff_inv, &aff_var)) + gcc_unreachable (); + + unshare_aff_combination (&aff_inv); + unshare_aff_combination (&aff_var); + /* Prefer CSE opportunity than loop invariant by adding offset at last + so that iv_uses have different offsets can be CSEed. */ + poly_widest_int offset = aff_inv.offset; + aff_inv.offset = 0; + + gimple_seq stmt_list = NULL, seq = NULL; + tree comp_op1 = aff_combination_to_tree (&aff_inv); + tree comp_op2 = aff_combination_to_tree (&aff_var); + gcc_assert (comp_op1 && comp_op2); + + comp_op1 = force_gimple_operand (comp_op1, &seq, true, NULL); + gimple_seq_add_seq (&stmt_list, seq); + comp_op2 = force_gimple_operand (comp_op2, &seq, true, NULL); + gimple_seq_add_seq (&stmt_list, seq); + + if (POINTER_TYPE_P (TREE_TYPE (comp_op2))) + std::swap (comp_op1, comp_op2); + + if (POINTER_TYPE_P (TREE_TYPE (comp_op1))) + { + comp = fold_build_pointer_plus (comp_op1, + fold_convert (sizetype, comp_op2)); + comp = fold_build_pointer_plus (comp, + wide_int_to_tree (sizetype, offset)); + } + else + { + comp = fold_build2 (PLUS_EXPR, TREE_TYPE (comp_op1), comp_op1, + fold_convert (TREE_TYPE (comp_op1), comp_op2)); + comp = fold_build2 (PLUS_EXPR, TREE_TYPE (comp_op1), comp, + wide_int_to_tree (TREE_TYPE (comp_op1), offset)); + } + + comp = fold_convert (type, comp); + comp = force_gimple_operand (comp, &seq, false, NULL); + gimple_seq_add_seq (&stmt_list, seq); + if (gimple_code (use->stmt) != GIMPLE_PHI + /* We can't allow re-allocating the stmt as it might be pointed + to still. */ + && (get_gimple_rhs_num_ops (TREE_CODE (comp)) + >= gimple_num_ops (gsi_stmt (bsi)))) + { + comp = force_gimple_operand (comp, &seq, true, NULL); + gimple_seq_add_seq (&stmt_list, seq); + if (POINTER_TYPE_P (TREE_TYPE (tgt))) + { + duplicate_ssa_name_ptr_info (comp, SSA_NAME_PTR_INFO (tgt)); + /* As this isn't a plain copy we have to reset alignment + information. */ + if (SSA_NAME_PTR_INFO (comp)) + mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (comp)); + } + } + + gsi_insert_seq_before (&bsi, stmt_list, GSI_SAME_STMT); + if (gimple_code (use->stmt) == GIMPLE_PHI) + { + ass = gimple_build_assign (tgt, comp); + gsi_insert_before (&bsi, ass, GSI_SAME_STMT); + + bsi = gsi_for_stmt (use->stmt); + remove_phi_node (&bsi, false); + } + else + { + gimple_assign_set_rhs_from_tree (&bsi, comp); + use->stmt = gsi_stmt (bsi); + } +} + +/* Performs a peephole optimization to reorder the iv update statement with + a mem ref to enable instruction combining in later phases. The mem ref uses + the iv value before the update, so the reordering transformation requires + adjustment of the offset. CAND is the selected IV_CAND. + + Example: + + t = MEM_REF (base, iv1, 8, 16); // base, index, stride, offset + iv2 = iv1 + 1; + + if (t < val) (1) + goto L; + goto Head; + + + directly propagating t over to (1) will introduce overlapping live range + thus increase register pressure. This peephole transform it into: + + + iv2 = iv1 + 1; + t = MEM_REF (base, iv2, 8, 8); + if (t < val) + goto L; + goto Head; +*/ + +static void +adjust_iv_update_pos (struct iv_cand *cand, struct iv_use *use) +{ + tree var_after; + gimple *iv_update, *stmt; + basic_block bb; + gimple_stmt_iterator gsi, gsi_iv; + + if (cand->pos != IP_NORMAL) + return; + + var_after = cand->var_after; + iv_update = SSA_NAME_DEF_STMT (var_after); + + bb = gimple_bb (iv_update); + gsi = gsi_last_nondebug_bb (bb); + stmt = gsi_stmt (gsi); + + /* Only handle conditional statement for now. */ + if (gimple_code (stmt) != GIMPLE_COND) + return; + + gsi_prev_nondebug (&gsi); + stmt = gsi_stmt (gsi); + if (stmt != iv_update) + return; + + gsi_prev_nondebug (&gsi); + if (gsi_end_p (gsi)) + return; + + stmt = gsi_stmt (gsi); + if (gimple_code (stmt) != GIMPLE_ASSIGN) + return; + + if (stmt != use->stmt) + return; + + if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME) + return; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Reordering \n"); + print_gimple_stmt (dump_file, iv_update, 0); + print_gimple_stmt (dump_file, use->stmt, 0); + fprintf (dump_file, "\n"); + } + + gsi = gsi_for_stmt (use->stmt); + gsi_iv = gsi_for_stmt (iv_update); + gsi_move_before (&gsi_iv, &gsi); + + cand->pos = IP_BEFORE_USE; + cand->incremented_at = use->stmt; +} + +/* Return the alias pointer type that should be used for a MEM_REF + associated with USE, which has type USE_PTR_ADDRESS. */ + +static tree +get_alias_ptr_type_for_ptr_address (iv_use *use) +{ + gcall *call = as_a <gcall *> (use->stmt); + switch (gimple_call_internal_fn (call)) + { + case IFN_MASK_LOAD: + case IFN_MASK_STORE: + case IFN_MASK_LOAD_LANES: + case IFN_MASK_STORE_LANES: + case IFN_LEN_LOAD: + case IFN_LEN_STORE: + /* The second argument contains the correct alias type. */ + gcc_assert (use->op_p = gimple_call_arg_ptr (call, 0)); + return TREE_TYPE (gimple_call_arg (call, 1)); + + default: + gcc_unreachable (); + } +} + + +/* Rewrites USE (address that is an iv) using candidate CAND. */ + +static void +rewrite_use_address (struct ivopts_data *data, + struct iv_use *use, struct iv_cand *cand) +{ + aff_tree aff; + bool ok; + + adjust_iv_update_pos (cand, use); + ok = get_computation_aff (data->current_loop, use->stmt, use, cand, &aff); + gcc_assert (ok); + unshare_aff_combination (&aff); + + /* To avoid undefined overflow problems, all IV candidates use unsigned + integer types. The drawback is that this makes it impossible for + create_mem_ref to distinguish an IV that is based on a memory object + from one that represents simply an offset. + + To work around this problem, we pass a hint to create_mem_ref that + indicates which variable (if any) in aff is an IV based on a memory + object. Note that we only consider the candidate. If this is not + based on an object, the base of the reference is in some subexpression + of the use -- but these will use pointer types, so they are recognized + by the create_mem_ref heuristics anyway. */ + tree iv = var_at_stmt (data->current_loop, cand, use->stmt); + tree base_hint = (cand->iv->base_object) ? iv : NULL_TREE; + gimple_stmt_iterator bsi = gsi_for_stmt (use->stmt); + tree type = use->mem_type; + tree alias_ptr_type; + if (use->type == USE_PTR_ADDRESS) + alias_ptr_type = get_alias_ptr_type_for_ptr_address (use); + else + { + gcc_assert (type == TREE_TYPE (*use->op_p)); + unsigned int align = get_object_alignment (*use->op_p); + if (align != TYPE_ALIGN (type)) + type = build_aligned_type (type, align); + alias_ptr_type = reference_alias_ptr_type (*use->op_p); + } + tree ref = create_mem_ref (&bsi, type, &aff, alias_ptr_type, + iv, base_hint, data->speed); + + if (use->type == USE_PTR_ADDRESS) + { + ref = fold_build1 (ADDR_EXPR, build_pointer_type (use->mem_type), ref); + ref = fold_convert (get_use_type (use), ref); + ref = force_gimple_operand_gsi (&bsi, ref, true, NULL_TREE, + true, GSI_SAME_STMT); + } + else + copy_ref_info (ref, *use->op_p); + + *use->op_p = ref; +} + +/* Rewrites USE (the condition such that one of the arguments is an iv) using + candidate CAND. */ + +static void +rewrite_use_compare (struct ivopts_data *data, + struct iv_use *use, struct iv_cand *cand) +{ + tree comp, op, bound; + gimple_stmt_iterator bsi = gsi_for_stmt (use->stmt); + enum tree_code compare; + struct iv_group *group = data->vgroups[use->group_id]; + class cost_pair *cp = get_group_iv_cost (data, group, cand); + + bound = cp->value; + if (bound) + { + tree var = var_at_stmt (data->current_loop, cand, use->stmt); + tree var_type = TREE_TYPE (var); + gimple_seq stmts; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Replacing exit test: "); + print_gimple_stmt (dump_file, use->stmt, 0, TDF_SLIM); + } + compare = cp->comp; + bound = unshare_expr (fold_convert (var_type, bound)); + op = force_gimple_operand (bound, &stmts, true, NULL_TREE); + if (stmts) + gsi_insert_seq_on_edge_immediate ( + loop_preheader_edge (data->current_loop), + stmts); + + gcond *cond_stmt = as_a <gcond *> (use->stmt); + gimple_cond_set_lhs (cond_stmt, var); + gimple_cond_set_code (cond_stmt, compare); + gimple_cond_set_rhs (cond_stmt, op); + return; + } + + /* The induction variable elimination failed; just express the original + giv. */ + comp = get_computation_at (data->current_loop, use->stmt, use, cand); + gcc_assert (comp != NULL_TREE); + gcc_assert (use->op_p != NULL); + *use->op_p = force_gimple_operand_gsi (&bsi, comp, true, + SSA_NAME_VAR (*use->op_p), + true, GSI_SAME_STMT); +} + +/* Rewrite the groups using the selected induction variables. */ + +static void +rewrite_groups (struct ivopts_data *data) +{ + unsigned i, j; + + for (i = 0; i < data->vgroups.length (); i++) + { + struct iv_group *group = data->vgroups[i]; + struct iv_cand *cand = group->selected; + + gcc_assert (cand); + + if (group->type == USE_NONLINEAR_EXPR) + { + for (j = 0; j < group->vuses.length (); j++) + { + rewrite_use_nonlinear_expr (data, group->vuses[j], cand); + update_stmt (group->vuses[j]->stmt); + } + } + else if (address_p (group->type)) + { + for (j = 0; j < group->vuses.length (); j++) + { + rewrite_use_address (data, group->vuses[j], cand); + update_stmt (group->vuses[j]->stmt); + } + } + else + { + gcc_assert (group->type == USE_COMPARE); + + for (j = 0; j < group->vuses.length (); j++) + { + rewrite_use_compare (data, group->vuses[j], cand); + update_stmt (group->vuses[j]->stmt); + } + } + } +} + +/* Removes the ivs that are not used after rewriting. */ + +static void +remove_unused_ivs (struct ivopts_data *data, bitmap toremove) +{ + unsigned j; + bitmap_iterator bi; + + /* Figure out an order in which to release SSA DEFs so that we don't + release something that we'd have to propagate into a debug stmt + afterwards. */ + EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, j, bi) + { + struct version_info *info; + + info = ver_info (data, j); + if (info->iv + && !integer_zerop (info->iv->step) + && !info->inv_id + && !info->iv->nonlin_use + && !info->preserve_biv) + { + bitmap_set_bit (toremove, SSA_NAME_VERSION (info->iv->ssa_name)); + + tree def = info->iv->ssa_name; + + if (MAY_HAVE_DEBUG_BIND_STMTS && SSA_NAME_DEF_STMT (def)) + { + imm_use_iterator imm_iter; + use_operand_p use_p; + gimple *stmt; + int count = 0; + + FOR_EACH_IMM_USE_STMT (stmt, imm_iter, def) + { + if (!gimple_debug_bind_p (stmt)) + continue; + + /* We just want to determine whether to do nothing + (count == 0), to substitute the computed + expression into a single use of the SSA DEF by + itself (count == 1), or to use a debug temp + because the SSA DEF is used multiple times or as + part of a larger expression (count > 1). */ + count++; + if (gimple_debug_bind_get_value (stmt) != def) + count++; + + if (count > 1) + break; + } + + if (!count) + continue; + + struct iv_use dummy_use; + struct iv_cand *best_cand = NULL, *cand; + unsigned i, best_pref = 0, cand_pref; + tree comp = NULL_TREE; + + memset (&dummy_use, 0, sizeof (dummy_use)); + dummy_use.iv = info->iv; + for (i = 0; i < data->vgroups.length () && i < 64; i++) + { + cand = data->vgroups[i]->selected; + if (cand == best_cand) + continue; + cand_pref = operand_equal_p (cand->iv->step, + info->iv->step, 0) + ? 4 : 0; + cand_pref + += TYPE_MODE (TREE_TYPE (cand->iv->base)) + == TYPE_MODE (TREE_TYPE (info->iv->base)) + ? 2 : 0; + cand_pref + += TREE_CODE (cand->iv->base) == INTEGER_CST + ? 1 : 0; + if (best_cand == NULL || best_pref < cand_pref) + { + tree this_comp + = get_debug_computation_at (data->current_loop, + SSA_NAME_DEF_STMT (def), + &dummy_use, cand); + if (this_comp) + { + best_cand = cand; + best_pref = cand_pref; + comp = this_comp; + } + } + } + + if (!best_cand) + continue; + + comp = unshare_expr (comp); + if (count > 1) + { + tree vexpr = build_debug_expr_decl (TREE_TYPE (comp)); + /* FIXME: Is setting the mode really necessary? */ + if (SSA_NAME_VAR (def)) + SET_DECL_MODE (vexpr, DECL_MODE (SSA_NAME_VAR (def))); + else + SET_DECL_MODE (vexpr, TYPE_MODE (TREE_TYPE (vexpr))); + gdebug *def_temp + = gimple_build_debug_bind (vexpr, comp, NULL); + gimple_stmt_iterator gsi; + + if (gimple_code (SSA_NAME_DEF_STMT (def)) == GIMPLE_PHI) + gsi = gsi_after_labels (gimple_bb + (SSA_NAME_DEF_STMT (def))); + else + gsi = gsi_for_stmt (SSA_NAME_DEF_STMT (def)); + + gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT); + comp = vexpr; + } + + FOR_EACH_IMM_USE_STMT (stmt, imm_iter, def) + { + if (!gimple_debug_bind_p (stmt)) + continue; + + FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter) + SET_USE (use_p, comp); + + update_stmt (stmt); + } + } + } + } +} + +/* Frees memory occupied by class tree_niter_desc in *VALUE. Callback + for hash_map::traverse. */ + +bool +free_tree_niter_desc (edge const &, tree_niter_desc *const &value, void *) +{ + free (value); + return true; +} + +/* Frees data allocated by the optimization of a single loop. */ + +static void +free_loop_data (struct ivopts_data *data) +{ + unsigned i, j; + bitmap_iterator bi; + tree obj; + + if (data->niters) + { + data->niters->traverse<void *, free_tree_niter_desc> (NULL); + delete data->niters; + data->niters = NULL; + } + + EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi) + { + struct version_info *info; + + info = ver_info (data, i); + info->iv = NULL; + info->has_nonlin_use = false; + info->preserve_biv = false; + info->inv_id = 0; + } + bitmap_clear (data->relevant); + bitmap_clear (data->important_candidates); + + for (i = 0; i < data->vgroups.length (); i++) + { + struct iv_group *group = data->vgroups[i]; + + for (j = 0; j < group->vuses.length (); j++) + free (group->vuses[j]); + group->vuses.release (); + + BITMAP_FREE (group->related_cands); + for (j = 0; j < group->n_map_members; j++) + { + if (group->cost_map[j].inv_vars) + BITMAP_FREE (group->cost_map[j].inv_vars); + if (group->cost_map[j].inv_exprs) + BITMAP_FREE (group->cost_map[j].inv_exprs); + } + + free (group->cost_map); + free (group); + } + data->vgroups.truncate (0); + + for (i = 0; i < data->vcands.length (); i++) + { + struct iv_cand *cand = data->vcands[i]; + + if (cand->inv_vars) + BITMAP_FREE (cand->inv_vars); + if (cand->inv_exprs) + BITMAP_FREE (cand->inv_exprs); + free (cand); + } + data->vcands.truncate (0); + + if (data->version_info_size < num_ssa_names) + { + data->version_info_size = 2 * num_ssa_names; + free (data->version_info); + data->version_info = XCNEWVEC (struct version_info, data->version_info_size); + } + + data->max_inv_var_id = 0; + data->max_inv_expr_id = 0; + + FOR_EACH_VEC_ELT (decl_rtl_to_reset, i, obj) + SET_DECL_RTL (obj, NULL_RTX); + + decl_rtl_to_reset.truncate (0); + + data->inv_expr_tab->empty (); + + data->iv_common_cand_tab->empty (); + data->iv_common_cands.truncate (0); +} + +/* Finalizes data structures used by the iv optimization pass. LOOPS is the + loop tree. */ + +static void +tree_ssa_iv_optimize_finalize (struct ivopts_data *data) +{ + free_loop_data (data); + free (data->version_info); + BITMAP_FREE (data->relevant); + BITMAP_FREE (data->important_candidates); + + decl_rtl_to_reset.release (); + data->vgroups.release (); + data->vcands.release (); + delete data->inv_expr_tab; + data->inv_expr_tab = NULL; + free_affine_expand_cache (&data->name_expansion_cache); + if (data->base_object_map) + delete data->base_object_map; + delete data->iv_common_cand_tab; + data->iv_common_cand_tab = NULL; + data->iv_common_cands.release (); + obstack_free (&data->iv_obstack, NULL); +} + +/* Returns true if the loop body BODY includes any function calls. */ + +static bool +loop_body_includes_call (basic_block *body, unsigned num_nodes) +{ + gimple_stmt_iterator gsi; + unsigned i; + + for (i = 0; i < num_nodes; i++) + for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi); gsi_next (&gsi)) + { + gimple *stmt = gsi_stmt (gsi); + if (is_gimple_call (stmt) + && !gimple_call_internal_p (stmt) + && !is_inexpensive_builtin (gimple_call_fndecl (stmt))) + return true; + } + return false; +} + +/* Determine cost scaling factor for basic blocks in loop. */ +#define COST_SCALING_FACTOR_BOUND (20) + +static void +determine_scaling_factor (struct ivopts_data *data, basic_block *body) +{ + int lfreq = data->current_loop->header->count.to_frequency (cfun); + if (!data->speed || lfreq <= 0) + return; + + int max_freq = lfreq; + for (unsigned i = 0; i < data->current_loop->num_nodes; i++) + { + body[i]->aux = (void *)(intptr_t) 1; + if (max_freq < body[i]->count.to_frequency (cfun)) + max_freq = body[i]->count.to_frequency (cfun); + } + if (max_freq > lfreq) + { + int divisor, factor; + /* Check if scaling factor itself needs to be scaled by the bound. This + is to avoid overflow when scaling cost according to profile info. */ + if (max_freq / lfreq > COST_SCALING_FACTOR_BOUND) + { + divisor = max_freq; + factor = COST_SCALING_FACTOR_BOUND; + } + else + { + divisor = lfreq; + factor = 1; + } + for (unsigned i = 0; i < data->current_loop->num_nodes; i++) + { + int bfreq = body[i]->count.to_frequency (cfun); + if (bfreq <= lfreq) + continue; + + body[i]->aux = (void*)(intptr_t) (factor * bfreq / divisor); + } + } +} + +/* Find doloop comparison use and set its doloop_p on if found. */ + +static bool +find_doloop_use (struct ivopts_data *data) +{ + struct loop *loop = data->current_loop; + + for (unsigned i = 0; i < data->vgroups.length (); i++) + { + struct iv_group *group = data->vgroups[i]; + if (group->type == USE_COMPARE) + { + gcc_assert (group->vuses.length () == 1); + struct iv_use *use = group->vuses[0]; + gimple *stmt = use->stmt; + if (gimple_code (stmt) == GIMPLE_COND) + { + basic_block bb = gimple_bb (stmt); + edge true_edge, false_edge; + extract_true_false_edges_from_block (bb, &true_edge, &false_edge); + /* This comparison is used for loop latch. Require latch is empty + for now. */ + if ((loop->latch == true_edge->dest + || loop->latch == false_edge->dest) + && empty_block_p (loop->latch)) + { + group->doloop_p = true; + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Doloop cmp iv use: "); + print_gimple_stmt (dump_file, stmt, TDF_DETAILS); + } + return true; + } + } + } + } + + return false; +} + +/* For the targets which support doloop, to predict whether later RTL doloop + transformation will perform on this loop, further detect the doloop use and + mark the flag doloop_use_p if predicted. */ + +void +analyze_and_mark_doloop_use (struct ivopts_data *data) +{ + data->doloop_use_p = false; + + if (!flag_branch_on_count_reg) + return; + + if (data->current_loop->unroll == USHRT_MAX) + return; + + if (!generic_predict_doloop_p (data)) + return; + + if (find_doloop_use (data)) + { + data->doloop_use_p = true; + if (dump_file && (dump_flags & TDF_DETAILS)) + { + struct loop *loop = data->current_loop; + fprintf (dump_file, + "Predict loop %d can perform" + " doloop optimization later.\n", + loop->num); + flow_loop_dump (loop, dump_file, NULL, 1); + } + } +} + +/* Optimizes the LOOP. Returns true if anything changed. */ + +static bool +tree_ssa_iv_optimize_loop (struct ivopts_data *data, class loop *loop, + bitmap toremove) +{ + bool changed = false; + class iv_ca *iv_ca; + edge exit = single_dom_exit (loop); + basic_block *body; + + gcc_assert (!data->niters); + data->current_loop = loop; + data->loop_loc = find_loop_location (loop).get_location_t (); + data->speed = optimize_loop_for_speed_p (loop); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Processing loop %d", loop->num); + if (data->loop_loc != UNKNOWN_LOCATION) + fprintf (dump_file, " at %s:%d", LOCATION_FILE (data->loop_loc), + LOCATION_LINE (data->loop_loc)); + fprintf (dump_file, "\n"); + + if (exit) + { + fprintf (dump_file, " single exit %d -> %d, exit condition ", + exit->src->index, exit->dest->index); + print_gimple_stmt (dump_file, last_stmt (exit->src), 0, TDF_SLIM); + fprintf (dump_file, "\n"); + } + + fprintf (dump_file, "\n"); + } + + body = get_loop_body (loop); + data->body_includes_call = loop_body_includes_call (body, loop->num_nodes); + renumber_gimple_stmt_uids_in_blocks (body, loop->num_nodes); + + data->loop_single_exit_p + = exit != NULL && loop_only_exit_p (loop, body, exit); + + /* For each ssa name determines whether it behaves as an induction variable + in some loop. */ + if (!find_induction_variables (data, body)) + goto finish; + + /* Finds interesting uses (item 1). */ + find_interesting_uses (data, body); + if (data->vgroups.length () > MAX_CONSIDERED_GROUPS) + goto finish; + + /* Determine cost scaling factor for basic blocks in loop. */ + determine_scaling_factor (data, body); + + /* Analyze doloop possibility and mark the doloop use if predicted. */ + analyze_and_mark_doloop_use (data); + + /* Finds candidates for the induction variables (item 2). */ + find_iv_candidates (data); + + /* Calculates the costs (item 3, part 1). */ + determine_iv_costs (data); + determine_group_iv_costs (data); + determine_set_costs (data); + + /* Find the optimal set of induction variables (item 3, part 2). */ + iv_ca = find_optimal_iv_set (data); + /* Cleanup basic block aux field. */ + for (unsigned i = 0; i < data->current_loop->num_nodes; i++) + body[i]->aux = NULL; + if (!iv_ca) + goto finish; + changed = true; + + /* Create the new induction variables (item 4, part 1). */ + create_new_ivs (data, iv_ca); + iv_ca_free (&iv_ca); + + /* Rewrite the uses (item 4, part 2). */ + rewrite_groups (data); + + /* Remove the ivs that are unused after rewriting. */ + remove_unused_ivs (data, toremove); + +finish: + free (body); + free_loop_data (data); + + return changed; +} + +/* Main entry point. Optimizes induction variables in loops. */ + +void +tree_ssa_iv_optimize (void) +{ + struct ivopts_data data; + auto_bitmap toremove; + + tree_ssa_iv_optimize_init (&data); + + /* Optimize the loops starting with the innermost ones. */ + for (auto loop : loops_list (cfun, LI_FROM_INNERMOST)) + { + if (!dbg_cnt (ivopts_loop)) + continue; + + if (dump_file && (dump_flags & TDF_DETAILS)) + flow_loop_dump (loop, dump_file, NULL, 1); + + tree_ssa_iv_optimize_loop (&data, loop, toremove); + } + + /* Remove eliminated IV defs. */ + release_defs_bitset (toremove); + + /* We have changed the structure of induction variables; it might happen + that definitions in the scev database refer to some of them that were + eliminated. */ + scev_reset_htab (); + /* Likewise niter and control-IV information. */ + free_numbers_of_iterations_estimates (cfun); + + tree_ssa_iv_optimize_finalize (&data); +} + +#include "gt-tree-ssa-loop-ivopts.h" |