diff options
Diffstat (limited to 'gcc/tree-ssa-dom.cc')
-rw-r--r-- | gcc/tree-ssa-dom.cc | 2339 |
1 files changed, 2339 insertions, 0 deletions
diff --git a/gcc/tree-ssa-dom.cc b/gcc/tree-ssa-dom.cc new file mode 100644 index 0000000..fc90c20 --- /dev/null +++ b/gcc/tree-ssa-dom.cc @@ -0,0 +1,2339 @@ +/* SSA Dominator optimizations for trees + Copyright (C) 2001-2022 Free Software Foundation, Inc. + Contributed by Diego Novillo <dnovillo@redhat.com> + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 3, or (at your option) +any later version. + +GCC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "backend.h" +#include "tree.h" +#include "gimple.h" +#include "tree-pass.h" +#include "ssa.h" +#include "gimple-pretty-print.h" +#include "fold-const.h" +#include "cfganal.h" +#include "cfgloop.h" +#include "gimple-fold.h" +#include "tree-eh.h" +#include "tree-inline.h" +#include "gimple-iterator.h" +#include "tree-cfg.h" +#include "tree-into-ssa.h" +#include "domwalk.h" +#include "tree-ssa-propagate.h" +#include "tree-ssa-threadupdate.h" +#include "tree-ssa-scopedtables.h" +#include "tree-ssa-threadedge.h" +#include "tree-ssa-dom.h" +#include "gimplify.h" +#include "tree-cfgcleanup.h" +#include "dbgcnt.h" +#include "alloc-pool.h" +#include "tree-vrp.h" +#include "vr-values.h" +#include "gimple-ssa-evrp-analyze.h" +#include "alias.h" + +/* This file implements optimizations on the dominator tree. */ + +/* Structure for recording edge equivalences. + + Computing and storing the edge equivalences instead of creating + them on-demand can save significant amounts of time, particularly + for pathological cases involving switch statements. + + These structures live for a single iteration of the dominator + optimizer in the edge's AUX field. At the end of an iteration we + free each of these structures. */ +class edge_info +{ + public: + typedef std::pair <tree, tree> equiv_pair; + edge_info (edge); + ~edge_info (); + + /* Record a simple LHS = RHS equivalence. This may trigger + calls to derive_equivalences. */ + void record_simple_equiv (tree, tree); + + /* If traversing this edge creates simple equivalences, we store + them as LHS/RHS pairs within this vector. */ + vec<equiv_pair> simple_equivalences; + + /* Traversing an edge may also indicate one or more particular conditions + are true or false. */ + vec<cond_equivalence> cond_equivalences; + + private: + /* Derive equivalences by walking the use-def chains. */ + void derive_equivalences (tree, tree, int); +}; + +/* Track whether or not we have changed the control flow graph. */ +static bool cfg_altered; + +/* Bitmap of blocks that have had EH statements cleaned. We should + remove their dead edges eventually. */ +static bitmap need_eh_cleanup; +static vec<gimple *> need_noreturn_fixup; + +/* Statistics for dominator optimizations. */ +struct opt_stats_d +{ + long num_stmts; + long num_exprs_considered; + long num_re; + long num_const_prop; + long num_copy_prop; +}; + +static struct opt_stats_d opt_stats; + +/* Local functions. */ +static void record_equality (tree, tree, class const_and_copies *); +static void record_equivalences_from_phis (basic_block); +static void record_equivalences_from_incoming_edge (basic_block, + class const_and_copies *, + class avail_exprs_stack *); +static void eliminate_redundant_computations (gimple_stmt_iterator *, + class const_and_copies *, + class avail_exprs_stack *); +static void record_equivalences_from_stmt (gimple *, int, + class avail_exprs_stack *); +static void dump_dominator_optimization_stats (FILE *file, + hash_table<expr_elt_hasher> *); + +/* Constructor for EDGE_INFO. An EDGE_INFO instance is always + associated with an edge E. */ + +edge_info::edge_info (edge e) +{ + /* Free the old one associated with E, if it exists and + associate our new object with E. */ + free_dom_edge_info (e); + e->aux = this; + + /* And initialize the embedded vectors. */ + simple_equivalences = vNULL; + cond_equivalences = vNULL; +} + +/* Destructor just needs to release the vectors. */ + +edge_info::~edge_info (void) +{ + this->cond_equivalences.release (); + this->simple_equivalences.release (); +} + +/* NAME is known to have the value VALUE, which must be a constant. + + Walk through its use-def chain to see if there are other equivalences + we might be able to derive. + + RECURSION_LIMIT controls how far back we recurse through the use-def + chains. */ + +void +edge_info::derive_equivalences (tree name, tree value, int recursion_limit) +{ + if (TREE_CODE (name) != SSA_NAME || TREE_CODE (value) != INTEGER_CST) + return; + + /* This records the equivalence for the toplevel object. Do + this before checking the recursion limit. */ + simple_equivalences.safe_push (equiv_pair (name, value)); + + /* Limit how far up the use-def chains we are willing to walk. */ + if (recursion_limit == 0) + return; + + /* We can walk up the use-def chains to potentially find more + equivalences. */ + gimple *def_stmt = SSA_NAME_DEF_STMT (name); + if (is_gimple_assign (def_stmt)) + { + enum tree_code code = gimple_assign_rhs_code (def_stmt); + switch (code) + { + /* If the result of an OR is zero, then its operands are, too. */ + case BIT_IOR_EXPR: + if (integer_zerop (value)) + { + tree rhs1 = gimple_assign_rhs1 (def_stmt); + tree rhs2 = gimple_assign_rhs2 (def_stmt); + + value = build_zero_cst (TREE_TYPE (rhs1)); + derive_equivalences (rhs1, value, recursion_limit - 1); + value = build_zero_cst (TREE_TYPE (rhs2)); + derive_equivalences (rhs2, value, recursion_limit - 1); + } + break; + + /* If the result of an AND is nonzero, then its operands are, too. */ + case BIT_AND_EXPR: + if (!integer_zerop (value)) + { + tree rhs1 = gimple_assign_rhs1 (def_stmt); + tree rhs2 = gimple_assign_rhs2 (def_stmt); + + /* If either operand has a boolean range, then we + know its value must be one, otherwise we just know it + is nonzero. The former is clearly useful, I haven't + seen cases where the latter is helpful yet. */ + if (TREE_CODE (rhs1) == SSA_NAME) + { + if (ssa_name_has_boolean_range (rhs1)) + { + value = build_one_cst (TREE_TYPE (rhs1)); + derive_equivalences (rhs1, value, recursion_limit - 1); + } + } + if (TREE_CODE (rhs2) == SSA_NAME) + { + if (ssa_name_has_boolean_range (rhs2)) + { + value = build_one_cst (TREE_TYPE (rhs2)); + derive_equivalences (rhs2, value, recursion_limit - 1); + } + } + } + break; + + /* If LHS is an SSA_NAME and RHS is a constant integer and LHS was + set via a widening type conversion, then we may be able to record + additional equivalences. */ + case NOP_EXPR: + case CONVERT_EXPR: + { + tree rhs = gimple_assign_rhs1 (def_stmt); + tree rhs_type = TREE_TYPE (rhs); + if (INTEGRAL_TYPE_P (rhs_type) + && (TYPE_PRECISION (TREE_TYPE (name)) + >= TYPE_PRECISION (rhs_type)) + && int_fits_type_p (value, rhs_type)) + derive_equivalences (rhs, + fold_convert (rhs_type, value), + recursion_limit - 1); + break; + } + + /* We can invert the operation of these codes trivially if + one of the RHS operands is a constant to produce a known + value for the other RHS operand. */ + case POINTER_PLUS_EXPR: + case PLUS_EXPR: + { + tree rhs1 = gimple_assign_rhs1 (def_stmt); + tree rhs2 = gimple_assign_rhs2 (def_stmt); + + /* If either argument is a constant, then we can compute + a constant value for the nonconstant argument. */ + if (TREE_CODE (rhs1) == INTEGER_CST + && TREE_CODE (rhs2) == SSA_NAME) + derive_equivalences (rhs2, + fold_binary (MINUS_EXPR, TREE_TYPE (rhs1), + value, rhs1), + recursion_limit - 1); + else if (TREE_CODE (rhs2) == INTEGER_CST + && TREE_CODE (rhs1) == SSA_NAME) + derive_equivalences (rhs1, + fold_binary (MINUS_EXPR, TREE_TYPE (rhs1), + value, rhs2), + recursion_limit - 1); + break; + } + + /* If one of the operands is a constant, then we can compute + the value of the other operand. If both operands are + SSA_NAMEs, then they must be equal if the result is zero. */ + case MINUS_EXPR: + { + tree rhs1 = gimple_assign_rhs1 (def_stmt); + tree rhs2 = gimple_assign_rhs2 (def_stmt); + + /* If either argument is a constant, then we can compute + a constant value for the nonconstant argument. */ + if (TREE_CODE (rhs1) == INTEGER_CST + && TREE_CODE (rhs2) == SSA_NAME) + derive_equivalences (rhs2, + fold_binary (MINUS_EXPR, TREE_TYPE (rhs1), + rhs1, value), + recursion_limit - 1); + else if (TREE_CODE (rhs2) == INTEGER_CST + && TREE_CODE (rhs1) == SSA_NAME) + derive_equivalences (rhs1, + fold_binary (PLUS_EXPR, TREE_TYPE (rhs1), + value, rhs2), + recursion_limit - 1); + else if (integer_zerop (value)) + { + tree cond = build2 (EQ_EXPR, boolean_type_node, + gimple_assign_rhs1 (def_stmt), + gimple_assign_rhs2 (def_stmt)); + tree inverted = invert_truthvalue (cond); + record_conditions (&this->cond_equivalences, cond, inverted); + } + break; + } + + case EQ_EXPR: + case NE_EXPR: + { + if ((code == EQ_EXPR && integer_onep (value)) + || (code == NE_EXPR && integer_zerop (value))) + { + tree rhs1 = gimple_assign_rhs1 (def_stmt); + tree rhs2 = gimple_assign_rhs2 (def_stmt); + + /* If either argument is a constant, then record the + other argument as being the same as that constant. + + If neither operand is a constant, then we have a + conditional name == name equivalence. */ + if (TREE_CODE (rhs1) == INTEGER_CST) + derive_equivalences (rhs2, rhs1, recursion_limit - 1); + else if (TREE_CODE (rhs2) == INTEGER_CST) + derive_equivalences (rhs1, rhs2, recursion_limit - 1); + } + else + { + tree cond = build2 (code, boolean_type_node, + gimple_assign_rhs1 (def_stmt), + gimple_assign_rhs2 (def_stmt)); + tree inverted = invert_truthvalue (cond); + if (integer_zerop (value)) + std::swap (cond, inverted); + record_conditions (&this->cond_equivalences, cond, inverted); + } + break; + } + + /* For BIT_NOT and NEGATE, we can just apply the operation to the + VALUE to get the new equivalence. It will always be a constant + so we can recurse. */ + case BIT_NOT_EXPR: + case NEGATE_EXPR: + { + tree rhs = gimple_assign_rhs1 (def_stmt); + tree res; + /* If this is a NOT and the operand has a boolean range, then we + know its value must be zero or one. We are not supposed to + have a BIT_NOT_EXPR for boolean types with precision > 1 in + the general case, see e.g. the handling of TRUTH_NOT_EXPR in + the gimplifier, but it can be generated by match.pd out of + a BIT_XOR_EXPR wrapped in a BIT_AND_EXPR. Now the handling + of BIT_AND_EXPR above already forces a specific semantics for + boolean types with precision > 1 so we must do the same here, + otherwise we could change the semantics of TRUTH_NOT_EXPR for + boolean types with precision > 1. */ + if (code == BIT_NOT_EXPR + && TREE_CODE (rhs) == SSA_NAME + && ssa_name_has_boolean_range (rhs)) + { + if ((TREE_INT_CST_LOW (value) & 1) == 0) + res = build_one_cst (TREE_TYPE (rhs)); + else + res = build_zero_cst (TREE_TYPE (rhs)); + } + else + res = fold_build1 (code, TREE_TYPE (rhs), value); + derive_equivalences (rhs, res, recursion_limit - 1); + break; + } + + default: + { + if (TREE_CODE_CLASS (code) == tcc_comparison) + { + tree cond = build2 (code, boolean_type_node, + gimple_assign_rhs1 (def_stmt), + gimple_assign_rhs2 (def_stmt)); + tree inverted = invert_truthvalue (cond); + if (integer_zerop (value)) + std::swap (cond, inverted); + record_conditions (&this->cond_equivalences, cond, inverted); + break; + } + break; + } + } + } +} + +void +edge_info::record_simple_equiv (tree lhs, tree rhs) +{ + /* If the RHS is a constant, then we may be able to derive + further equivalences. Else just record the name = name + equivalence. */ + if (TREE_CODE (rhs) == INTEGER_CST) + derive_equivalences (lhs, rhs, 4); + else + simple_equivalences.safe_push (equiv_pair (lhs, rhs)); +} + +/* Free the edge_info data attached to E, if it exists. */ + +void +free_dom_edge_info (edge e) +{ + class edge_info *edge_info = (class edge_info *)e->aux; + + if (edge_info) + delete edge_info; +} + +/* Free all EDGE_INFO structures associated with edges in the CFG. + If a particular edge can be threaded, copy the redirection + target from the EDGE_INFO structure into the edge's AUX field + as required by code to update the CFG and SSA graph for + jump threading. */ + +static void +free_all_edge_infos (void) +{ + basic_block bb; + edge_iterator ei; + edge e; + + FOR_EACH_BB_FN (bb, cfun) + { + FOR_EACH_EDGE (e, ei, bb->preds) + { + free_dom_edge_info (e); + e->aux = NULL; + } + } +} + +/* We have finished optimizing BB, record any information implied by + taking a specific outgoing edge from BB. */ + +static void +record_edge_info (basic_block bb) +{ + gimple_stmt_iterator gsi = gsi_last_bb (bb); + class edge_info *edge_info; + + if (! gsi_end_p (gsi)) + { + gimple *stmt = gsi_stmt (gsi); + location_t loc = gimple_location (stmt); + + if (gimple_code (stmt) == GIMPLE_SWITCH) + { + gswitch *switch_stmt = as_a <gswitch *> (stmt); + tree index = gimple_switch_index (switch_stmt); + + if (TREE_CODE (index) == SSA_NAME) + { + int i; + int n_labels = gimple_switch_num_labels (switch_stmt); + tree *info = XCNEWVEC (tree, last_basic_block_for_fn (cfun)); + edge e; + edge_iterator ei; + + for (i = 0; i < n_labels; i++) + { + tree label = gimple_switch_label (switch_stmt, i); + basic_block target_bb + = label_to_block (cfun, CASE_LABEL (label)); + if (CASE_HIGH (label) + || !CASE_LOW (label) + || info[target_bb->index]) + info[target_bb->index] = error_mark_node; + else + info[target_bb->index] = label; + } + + FOR_EACH_EDGE (e, ei, bb->succs) + { + basic_block target_bb = e->dest; + tree label = info[target_bb->index]; + + if (label != NULL && label != error_mark_node) + { + tree x = fold_convert_loc (loc, TREE_TYPE (index), + CASE_LOW (label)); + edge_info = new class edge_info (e); + edge_info->record_simple_equiv (index, x); + } + } + free (info); + } + } + + /* A COND_EXPR may create equivalences too. */ + if (gimple_code (stmt) == GIMPLE_COND) + { + edge true_edge; + edge false_edge; + + tree op0 = gimple_cond_lhs (stmt); + tree op1 = gimple_cond_rhs (stmt); + enum tree_code code = gimple_cond_code (stmt); + + extract_true_false_edges_from_block (bb, &true_edge, &false_edge); + + /* Special case comparing booleans against a constant as we + know the value of OP0 on both arms of the branch. i.e., we + can record an equivalence for OP0 rather than COND. + + However, don't do this if the constant isn't zero or one. + Such conditionals will get optimized more thoroughly during + the domwalk. */ + if ((code == EQ_EXPR || code == NE_EXPR) + && TREE_CODE (op0) == SSA_NAME + && ssa_name_has_boolean_range (op0) + && is_gimple_min_invariant (op1) + && (integer_zerop (op1) || integer_onep (op1))) + { + tree true_val = constant_boolean_node (true, TREE_TYPE (op0)); + tree false_val = constant_boolean_node (false, TREE_TYPE (op0)); + + if (code == EQ_EXPR) + { + edge_info = new class edge_info (true_edge); + edge_info->record_simple_equiv (op0, + (integer_zerop (op1) + ? false_val : true_val)); + edge_info = new class edge_info (false_edge); + edge_info->record_simple_equiv (op0, + (integer_zerop (op1) + ? true_val : false_val)); + } + else + { + edge_info = new class edge_info (true_edge); + edge_info->record_simple_equiv (op0, + (integer_zerop (op1) + ? true_val : false_val)); + edge_info = new class edge_info (false_edge); + edge_info->record_simple_equiv (op0, + (integer_zerop (op1) + ? false_val : true_val)); + } + } + /* This can show up in the IL as a result of copy propagation + it will eventually be canonicalized, but we have to cope + with this case within the pass. */ + else if (is_gimple_min_invariant (op0) + && TREE_CODE (op1) == SSA_NAME) + { + tree cond = build2 (code, boolean_type_node, op0, op1); + tree inverted = invert_truthvalue_loc (loc, cond); + bool can_infer_simple_equiv + = !(HONOR_SIGNED_ZEROS (op0) + && real_zerop (op0)); + class edge_info *edge_info; + + edge_info = new class edge_info (true_edge); + record_conditions (&edge_info->cond_equivalences, cond, inverted); + + if (can_infer_simple_equiv && code == EQ_EXPR) + edge_info->record_simple_equiv (op1, op0); + + edge_info = new class edge_info (false_edge); + record_conditions (&edge_info->cond_equivalences, inverted, cond); + + if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR) + edge_info->record_simple_equiv (op1, op0); + } + + else if (TREE_CODE (op0) == SSA_NAME + && (TREE_CODE (op1) == SSA_NAME + || is_gimple_min_invariant (op1))) + { + tree cond = build2 (code, boolean_type_node, op0, op1); + tree inverted = invert_truthvalue_loc (loc, cond); + bool can_infer_simple_equiv + = !(HONOR_SIGNED_ZEROS (op1) + && (TREE_CODE (op1) == SSA_NAME || real_zerop (op1))); + class edge_info *edge_info; + + edge_info = new class edge_info (true_edge); + record_conditions (&edge_info->cond_equivalences, cond, inverted); + + if (can_infer_simple_equiv && code == EQ_EXPR) + edge_info->record_simple_equiv (op0, op1); + + edge_info = new class edge_info (false_edge); + record_conditions (&edge_info->cond_equivalences, inverted, cond); + + if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR) + edge_info->record_simple_equiv (op0, op1); + } + } + } +} + +class dom_jt_state : public jt_state +{ +public: + dom_jt_state (const_and_copies *copies, avail_exprs_stack *avails, + evrp_range_analyzer *evrp) + : m_copies (copies), m_avails (avails), m_evrp (evrp) + { + } + void push (edge e) override + { + m_copies->push_marker (); + m_avails->push_marker (); + m_evrp->push_marker (); + jt_state::push (e); + } + void pop () override + { + m_copies->pop_to_marker (); + m_avails->pop_to_marker (); + m_evrp->pop_to_marker (); + jt_state::pop (); + } + void register_equivs_edge (edge e) override + { + record_temporary_equivalences (e, m_copies, m_avails); + } + void record_ranges_from_stmt (gimple *stmt, bool temporary) override + { + m_evrp->record_ranges_from_stmt (stmt, temporary); + } + void register_equiv (tree dest, tree src, bool update) override; +private: + const_and_copies *m_copies; + avail_exprs_stack *m_avails; + evrp_range_analyzer *m_evrp; +}; + +void +dom_jt_state::register_equiv (tree dest, tree src, bool update) +{ + m_copies->record_const_or_copy (dest, src); + + /* If requested, update the value range associated with DST, using + the range from SRC. */ + if (update) + { + /* Get new VR we can pass to push_value_range. */ + value_range_equiv *new_vr = m_evrp->allocate_value_range_equiv (); + new (new_vr) value_range_equiv (); + + /* There are three cases to consider: + + First if SRC is an SSA_NAME, then we can copy the value range + from SRC into NEW_VR. + + Second if SRC is an INTEGER_CST, then we can just set NEW_VR + to a singleton range. Note that even if SRC is a constant we + need to set a suitable output range so that VR_UNDEFINED + ranges do not leak through. + + Otherwise set NEW_VR to varying. This may be overly + conservative. */ + if (TREE_CODE (src) == SSA_NAME) + new_vr->deep_copy (m_evrp->get_value_range (src)); + else if (TREE_CODE (src) == INTEGER_CST) + new_vr->set (src); + else + new_vr->set_varying (TREE_TYPE (src)); + + /* This is a temporary range for DST, so push it. */ + m_evrp->push_value_range (dest, new_vr); + } +} + +class dom_jt_simplifier : public jt_simplifier +{ +public: + dom_jt_simplifier (vr_values *v, avail_exprs_stack *avails) + : m_vr_values (v), m_avails (avails) { } + +private: + tree simplify (gimple *, gimple *, basic_block, jt_state *) override; + vr_values *m_vr_values; + avail_exprs_stack *m_avails; +}; + +tree +dom_jt_simplifier::simplify (gimple *stmt, gimple *within_stmt, + basic_block, jt_state *) +{ + /* First see if the conditional is in the hash table. */ + tree cached_lhs = m_avails->lookup_avail_expr (stmt, false, true); + if (cached_lhs) + return cached_lhs; + + if (gcond *cond_stmt = dyn_cast <gcond *> (stmt)) + { + simplify_using_ranges simplifier (m_vr_values); + return simplifier.vrp_evaluate_conditional (gimple_cond_code (cond_stmt), + gimple_cond_lhs (cond_stmt), + gimple_cond_rhs (cond_stmt), + within_stmt); + } + if (gswitch *switch_stmt = dyn_cast <gswitch *> (stmt)) + { + tree op = gimple_switch_index (switch_stmt); + if (TREE_CODE (op) != SSA_NAME) + return NULL_TREE; + + const value_range_equiv *vr = m_vr_values->get_value_range (op); + return find_case_label_range (switch_stmt, vr); + } + if (gassign *assign_stmt = dyn_cast <gassign *> (stmt)) + { + tree lhs = gimple_assign_lhs (assign_stmt); + if (TREE_CODE (lhs) == SSA_NAME + && (INTEGRAL_TYPE_P (TREE_TYPE (lhs)) + || POINTER_TYPE_P (TREE_TYPE (lhs))) + && stmt_interesting_for_vrp (stmt)) + { + edge dummy_e; + tree dummy_tree; + value_range_equiv new_vr; + m_vr_values->extract_range_from_stmt (stmt, &dummy_e, &dummy_tree, + &new_vr); + tree singleton; + if (new_vr.singleton_p (&singleton)) + return singleton; + } + } + return NULL; +} + +class dom_opt_dom_walker : public dom_walker +{ +public: + dom_opt_dom_walker (cdi_direction direction, + jump_threader *threader, + jt_state *state, + evrp_range_analyzer *analyzer, + const_and_copies *const_and_copies, + avail_exprs_stack *avail_exprs_stack) + : dom_walker (direction, REACHABLE_BLOCKS) + { + m_evrp_range_analyzer = analyzer; + m_state = state; + m_dummy_cond = gimple_build_cond (NE_EXPR, integer_zero_node, + integer_zero_node, NULL, NULL); + m_const_and_copies = const_and_copies; + m_avail_exprs_stack = avail_exprs_stack; + m_threader = threader; + } + + virtual edge before_dom_children (basic_block); + virtual void after_dom_children (basic_block); + +private: + + /* Unwindable equivalences, both const/copy and expression varieties. */ + class const_and_copies *m_const_and_copies; + class avail_exprs_stack *m_avail_exprs_stack; + + /* Dummy condition to avoid creating lots of throw away statements. */ + gcond *m_dummy_cond; + + /* Optimize a single statement within a basic block using the + various tables mantained by DOM. Returns the taken edge if + the statement is a conditional with a statically determined + value. */ + edge optimize_stmt (basic_block, gimple_stmt_iterator *, bool *); + + + void test_for_singularity (gimple *, avail_exprs_stack *); + + jump_threader *m_threader; + evrp_range_analyzer *m_evrp_range_analyzer; + jt_state *m_state; +}; + +/* Jump threading, redundancy elimination and const/copy propagation. + + This pass may expose new symbols that need to be renamed into SSA. For + every new symbol exposed, its corresponding bit will be set in + VARS_TO_RENAME. */ + +namespace { + +const pass_data pass_data_dominator = +{ + GIMPLE_PASS, /* type */ + "dom", /* name */ + OPTGROUP_NONE, /* optinfo_flags */ + TV_TREE_SSA_DOMINATOR_OPTS, /* tv_id */ + ( PROP_cfg | PROP_ssa ), /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */ +}; + +class pass_dominator : public gimple_opt_pass +{ +public: + pass_dominator (gcc::context *ctxt) + : gimple_opt_pass (pass_data_dominator, ctxt), + may_peel_loop_headers_p (false) + {} + + /* opt_pass methods: */ + opt_pass * clone () { return new pass_dominator (m_ctxt); } + void set_pass_param (unsigned int n, bool param) + { + gcc_assert (n == 0); + may_peel_loop_headers_p = param; + } + virtual bool gate (function *) { return flag_tree_dom != 0; } + virtual unsigned int execute (function *); + + private: + /* This flag is used to prevent loops from being peeled repeatedly in jump + threading; it will be removed once we preserve loop structures throughout + the compilation -- we will be able to mark the affected loops directly in + jump threading, and avoid peeling them next time. */ + bool may_peel_loop_headers_p; +}; // class pass_dominator + +unsigned int +pass_dominator::execute (function *fun) +{ + memset (&opt_stats, 0, sizeof (opt_stats)); + + /* Create our hash tables. */ + hash_table<expr_elt_hasher> *avail_exprs + = new hash_table<expr_elt_hasher> (1024); + class avail_exprs_stack *avail_exprs_stack + = new class avail_exprs_stack (avail_exprs); + class const_and_copies *const_and_copies = new class const_and_copies (); + need_eh_cleanup = BITMAP_ALLOC (NULL); + need_noreturn_fixup.create (0); + + calculate_dominance_info (CDI_DOMINATORS); + cfg_altered = false; + + /* We need to know loop structures in order to avoid destroying them + in jump threading. Note that we still can e.g. thread through loop + headers to an exit edge, or through loop header to the loop body, assuming + that we update the loop info. + + TODO: We don't need to set LOOPS_HAVE_PREHEADERS generally, but due + to several overly conservative bail-outs in jump threading, case + gcc.dg/tree-ssa/pr21417.c can't be threaded if loop preheader is + missing. We should improve jump threading in future then + LOOPS_HAVE_PREHEADERS won't be needed here. */ + loop_optimizer_init (LOOPS_HAVE_PREHEADERS | LOOPS_HAVE_SIMPLE_LATCHES + | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS); + + /* We need accurate information regarding back edges in the CFG + for jump threading; this may include back edges that are not part of + a single loop. */ + mark_dfs_back_edges (); + + /* We want to create the edge info structures before the dominator walk + so that they'll be in place for the jump threader, particularly when + threading through a join block. + + The conditions will be lazily updated with global equivalences as + we reach them during the dominator walk. */ + basic_block bb; + FOR_EACH_BB_FN (bb, fun) + record_edge_info (bb); + + /* Recursively walk the dominator tree optimizing statements. */ + evrp_range_analyzer analyzer (true); + dom_jt_simplifier simplifier (&analyzer, avail_exprs_stack); + dom_jt_state state (const_and_copies, avail_exprs_stack, &analyzer); + jump_threader threader (&simplifier, &state); + dom_opt_dom_walker walker (CDI_DOMINATORS, + &threader, + &state, + &analyzer, + const_and_copies, + avail_exprs_stack); + walker.walk (fun->cfg->x_entry_block_ptr); + + /* Look for blocks where we cleared EDGE_EXECUTABLE on an outgoing + edge. When found, remove jump threads which contain any outgoing + edge from the affected block. */ + if (cfg_altered) + { + FOR_EACH_BB_FN (bb, fun) + { + edge_iterator ei; + edge e; + + /* First see if there are any edges without EDGE_EXECUTABLE + set. */ + bool found = false; + FOR_EACH_EDGE (e, ei, bb->succs) + { + if ((e->flags & EDGE_EXECUTABLE) == 0) + { + found = true; + break; + } + } + + /* If there were any such edges found, then remove jump threads + containing any edge leaving BB. */ + if (found) + FOR_EACH_EDGE (e, ei, bb->succs) + threader.remove_jump_threads_including (e); + } + } + + { + gimple_stmt_iterator gsi; + basic_block bb; + FOR_EACH_BB_FN (bb, fun) + { + for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) + update_stmt_if_modified (gsi_stmt (gsi)); + } + } + + /* If we exposed any new variables, go ahead and put them into + SSA form now, before we handle jump threading. This simplifies + interactions between rewriting of _DECL nodes into SSA form + and rewriting SSA_NAME nodes into SSA form after block + duplication and CFG manipulation. */ + update_ssa (TODO_update_ssa); + + free_all_edge_infos (); + + /* Thread jumps, creating duplicate blocks as needed. */ + cfg_altered |= threader.thread_through_all_blocks (may_peel_loop_headers_p); + + if (cfg_altered) + free_dominance_info (CDI_DOMINATORS); + + /* Removal of statements may make some EH edges dead. Purge + such edges from the CFG as needed. */ + if (!bitmap_empty_p (need_eh_cleanup)) + { + unsigned i; + bitmap_iterator bi; + + /* Jump threading may have created forwarder blocks from blocks + needing EH cleanup; the new successor of these blocks, which + has inherited from the original block, needs the cleanup. + Don't clear bits in the bitmap, as that can break the bitmap + iterator. */ + EXECUTE_IF_SET_IN_BITMAP (need_eh_cleanup, 0, i, bi) + { + basic_block bb = BASIC_BLOCK_FOR_FN (fun, i); + if (bb == NULL) + continue; + while (single_succ_p (bb) + && (single_succ_edge (bb)->flags + & (EDGE_EH|EDGE_DFS_BACK)) == 0) + bb = single_succ (bb); + if (bb == EXIT_BLOCK_PTR_FOR_FN (fun)) + continue; + if ((unsigned) bb->index != i) + bitmap_set_bit (need_eh_cleanup, bb->index); + } + + gimple_purge_all_dead_eh_edges (need_eh_cleanup); + bitmap_clear (need_eh_cleanup); + } + + /* Fixup stmts that became noreturn calls. This may require splitting + blocks and thus isn't possible during the dominator walk or before + jump threading finished. Do this in reverse order so we don't + inadvertedly remove a stmt we want to fixup by visiting a dominating + now noreturn call first. */ + while (!need_noreturn_fixup.is_empty ()) + { + gimple *stmt = need_noreturn_fixup.pop (); + if (dump_file && dump_flags & TDF_DETAILS) + { + fprintf (dump_file, "Fixing up noreturn call "); + print_gimple_stmt (dump_file, stmt, 0); + fprintf (dump_file, "\n"); + } + fixup_noreturn_call (stmt); + } + + statistics_counter_event (fun, "Redundant expressions eliminated", + opt_stats.num_re); + statistics_counter_event (fun, "Constants propagated", + opt_stats.num_const_prop); + statistics_counter_event (fun, "Copies propagated", + opt_stats.num_copy_prop); + + /* Debugging dumps. */ + if (dump_file && (dump_flags & TDF_STATS)) + dump_dominator_optimization_stats (dump_file, avail_exprs); + + loop_optimizer_finalize (); + + /* Delete our main hashtable. */ + delete avail_exprs; + avail_exprs = NULL; + + /* Free asserted bitmaps and stacks. */ + BITMAP_FREE (need_eh_cleanup); + need_noreturn_fixup.release (); + delete avail_exprs_stack; + delete const_and_copies; + + return 0; +} + +} // anon namespace + +gimple_opt_pass * +make_pass_dominator (gcc::context *ctxt) +{ + return new pass_dominator (ctxt); +} + +/* Valueize hook for gimple_fold_stmt_to_constant_1. */ + +static tree +dom_valueize (tree t) +{ + if (TREE_CODE (t) == SSA_NAME) + { + tree tem = SSA_NAME_VALUE (t); + if (tem) + return tem; + } + return t; +} + +/* We have just found an equivalence for LHS on an edge E. + Look backwards to other uses of LHS and see if we can derive + additional equivalences that are valid on edge E. */ +static void +back_propagate_equivalences (tree lhs, edge e, + class const_and_copies *const_and_copies) +{ + use_operand_p use_p; + imm_use_iterator iter; + bitmap domby = NULL; + basic_block dest = e->dest; + + /* Iterate over the uses of LHS to see if any dominate E->dest. + If so, they may create useful equivalences too. + + ??? If the code gets re-organized to a worklist to catch more + indirect opportunities and it is made to handle PHIs then this + should only consider use_stmts in basic-blocks we have already visited. */ + FOR_EACH_IMM_USE_FAST (use_p, iter, lhs) + { + gimple *use_stmt = USE_STMT (use_p); + + /* Often the use is in DEST, which we trivially know we can't use. + This is cheaper than the dominator set tests below. */ + if (dest == gimple_bb (use_stmt)) + continue; + + /* Filter out statements that can never produce a useful + equivalence. */ + tree lhs2 = gimple_get_lhs (use_stmt); + if (!lhs2 || TREE_CODE (lhs2) != SSA_NAME) + continue; + + /* Profiling has shown the domination tests here can be fairly + expensive. We get significant improvements by building the + set of blocks that dominate BB. We can then just test + for set membership below. + + We also initialize the set lazily since often the only uses + are going to be in the same block as DEST. */ + if (!domby) + { + domby = BITMAP_ALLOC (NULL); + basic_block bb = get_immediate_dominator (CDI_DOMINATORS, dest); + while (bb) + { + bitmap_set_bit (domby, bb->index); + bb = get_immediate_dominator (CDI_DOMINATORS, bb); + } + } + + /* This tests if USE_STMT does not dominate DEST. */ + if (!bitmap_bit_p (domby, gimple_bb (use_stmt)->index)) + continue; + + /* At this point USE_STMT dominates DEST and may result in a + useful equivalence. Try to simplify its RHS to a constant + or SSA_NAME. */ + tree res = gimple_fold_stmt_to_constant_1 (use_stmt, dom_valueize, + no_follow_ssa_edges); + if (res && (TREE_CODE (res) == SSA_NAME || is_gimple_min_invariant (res))) + record_equality (lhs2, res, const_and_copies); + } + + if (domby) + BITMAP_FREE (domby); +} + +/* Record into CONST_AND_COPIES and AVAIL_EXPRS_STACK any equivalences implied + by traversing edge E (which are cached in E->aux). + + Callers are responsible for managing the unwinding markers. */ +void +record_temporary_equivalences (edge e, + class const_and_copies *const_and_copies, + class avail_exprs_stack *avail_exprs_stack) +{ + int i; + class edge_info *edge_info = (class edge_info *) e->aux; + + /* If we have info associated with this edge, record it into + our equivalence tables. */ + if (edge_info) + { + cond_equivalence *eq; + /* If we have 0 = COND or 1 = COND equivalences, record them + into our expression hash tables. */ + for (i = 0; edge_info->cond_equivalences.iterate (i, &eq); ++i) + avail_exprs_stack->record_cond (eq); + + edge_info::equiv_pair *seq; + for (i = 0; edge_info->simple_equivalences.iterate (i, &seq); ++i) + { + tree lhs = seq->first; + if (!lhs || TREE_CODE (lhs) != SSA_NAME) + continue; + + /* Record the simple NAME = VALUE equivalence. */ + tree rhs = seq->second; + + /* If this is a SSA_NAME = SSA_NAME equivalence and one operand is + cheaper to compute than the other, then set up the equivalence + such that we replace the expensive one with the cheap one. + + If they are the same cost to compute, then do not record + anything. */ + if (TREE_CODE (lhs) == SSA_NAME && TREE_CODE (rhs) == SSA_NAME) + { + gimple *rhs_def = SSA_NAME_DEF_STMT (rhs); + int rhs_cost = estimate_num_insns (rhs_def, &eni_size_weights); + + gimple *lhs_def = SSA_NAME_DEF_STMT (lhs); + int lhs_cost = estimate_num_insns (lhs_def, &eni_size_weights); + + if (rhs_cost > lhs_cost) + record_equality (rhs, lhs, const_and_copies); + else if (rhs_cost < lhs_cost) + record_equality (lhs, rhs, const_and_copies); + } + else + record_equality (lhs, rhs, const_and_copies); + + + /* Any equivalence found for LHS may result in additional + equivalences for other uses of LHS that we have already + processed. */ + back_propagate_equivalences (lhs, e, const_and_copies); + } + } +} + +/* PHI nodes can create equivalences too. + + Ignoring any alternatives which are the same as the result, if + all the alternatives are equal, then the PHI node creates an + equivalence. */ + +static void +record_equivalences_from_phis (basic_block bb) +{ + gphi_iterator gsi; + + for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); ) + { + gphi *phi = gsi.phi (); + + /* We might eliminate the PHI, so advance GSI now. */ + gsi_next (&gsi); + + tree lhs = gimple_phi_result (phi); + tree rhs = NULL; + size_t i; + + for (i = 0; i < gimple_phi_num_args (phi); i++) + { + tree t = gimple_phi_arg_def (phi, i); + + /* Ignore alternatives which are the same as our LHS. Since + LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we + can simply compare pointers. */ + if (lhs == t) + continue; + + /* If the associated edge is not marked as executable, then it + can be ignored. */ + if ((gimple_phi_arg_edge (phi, i)->flags & EDGE_EXECUTABLE) == 0) + continue; + + t = dom_valueize (t); + + /* If T is an SSA_NAME and its associated edge is a backedge, + then quit as we cannot utilize this equivalence. */ + if (TREE_CODE (t) == SSA_NAME + && (gimple_phi_arg_edge (phi, i)->flags & EDGE_DFS_BACK)) + break; + + /* If we have not processed an alternative yet, then set + RHS to this alternative. */ + if (rhs == NULL) + rhs = t; + /* If we have processed an alternative (stored in RHS), then + see if it is equal to this one. If it isn't, then stop + the search. */ + else if (! operand_equal_for_phi_arg_p (rhs, t)) + break; + } + + /* If we had no interesting alternatives, then all the RHS alternatives + must have been the same as LHS. */ + if (!rhs) + rhs = lhs; + + /* If we managed to iterate through each PHI alternative without + breaking out of the loop, then we have a PHI which may create + a useful equivalence. We do not need to record unwind data for + this, since this is a true assignment and not an equivalence + inferred from a comparison. All uses of this ssa name are dominated + by this assignment, so unwinding just costs time and space. */ + if (i == gimple_phi_num_args (phi)) + { + if (may_propagate_copy (lhs, rhs)) + set_ssa_name_value (lhs, rhs); + else if (virtual_operand_p (lhs)) + { + gimple *use_stmt; + imm_use_iterator iter; + use_operand_p use_p; + /* For virtual operands we have to propagate into all uses as + otherwise we will create overlapping life-ranges. */ + FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs) + FOR_EACH_IMM_USE_ON_STMT (use_p, iter) + SET_USE (use_p, rhs); + if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)) + SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1; + gimple_stmt_iterator tmp_gsi = gsi_for_stmt (phi); + remove_phi_node (&tmp_gsi, true); + } + } + } +} + +/* Record any equivalences created by the incoming edge to BB into + CONST_AND_COPIES and AVAIL_EXPRS_STACK. If BB has more than one + incoming edge, then no equivalence is created. */ + +static void +record_equivalences_from_incoming_edge (basic_block bb, + class const_and_copies *const_and_copies, + class avail_exprs_stack *avail_exprs_stack) +{ + edge e; + basic_block parent; + + /* If our parent block ended with a control statement, then we may be + able to record some equivalences based on which outgoing edge from + the parent was followed. */ + parent = get_immediate_dominator (CDI_DOMINATORS, bb); + + e = single_pred_edge_ignoring_loop_edges (bb, true); + + /* If we had a single incoming edge from our parent block, then enter + any data associated with the edge into our tables. */ + if (e && e->src == parent) + record_temporary_equivalences (e, const_and_copies, avail_exprs_stack); +} + +/* Dump statistics for the hash table HTAB. */ + +static void +htab_statistics (FILE *file, const hash_table<expr_elt_hasher> &htab) +{ + fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n", + (long) htab.size (), + (long) htab.elements (), + htab.collisions ()); +} + +/* Dump SSA statistics on FILE. */ + +static void +dump_dominator_optimization_stats (FILE *file, + hash_table<expr_elt_hasher> *avail_exprs) +{ + fprintf (file, "Total number of statements: %6ld\n\n", + opt_stats.num_stmts); + fprintf (file, "Exprs considered for dominator optimizations: %6ld\n", + opt_stats.num_exprs_considered); + + fprintf (file, "\nHash table statistics:\n"); + + fprintf (file, " avail_exprs: "); + htab_statistics (file, *avail_exprs); +} + + +/* Similarly, but assume that X and Y are the two operands of an EQ_EXPR. + This constrains the cases in which we may treat this as assignment. */ + +static void +record_equality (tree x, tree y, class const_and_copies *const_and_copies) +{ + tree prev_x = NULL, prev_y = NULL; + + if (tree_swap_operands_p (x, y)) + std::swap (x, y); + + /* Most of the time tree_swap_operands_p does what we want. But there + are cases where we know one operand is better for copy propagation than + the other. Given no other code cares about ordering of equality + comparison operators for that purpose, we just handle the special cases + here. */ + if (TREE_CODE (x) == SSA_NAME && TREE_CODE (y) == SSA_NAME) + { + /* If one operand is a single use operand, then make it + X. This will preserve its single use properly and if this + conditional is eliminated, the computation of X can be + eliminated as well. */ + if (has_single_use (y) && ! has_single_use (x)) + std::swap (x, y); + } + if (TREE_CODE (x) == SSA_NAME) + prev_x = SSA_NAME_VALUE (x); + if (TREE_CODE (y) == SSA_NAME) + prev_y = SSA_NAME_VALUE (y); + + /* If one of the previous values is invariant, or invariant in more loops + (by depth), then use that. + Otherwise it doesn't matter which value we choose, just so + long as we canonicalize on one value. */ + if (is_gimple_min_invariant (y)) + ; + else if (is_gimple_min_invariant (x)) + prev_x = x, x = y, y = prev_x, prev_x = prev_y; + else if (prev_x && is_gimple_min_invariant (prev_x)) + x = y, y = prev_x, prev_x = prev_y; + else if (prev_y) + y = prev_y; + + /* After the swapping, we must have one SSA_NAME. */ + if (TREE_CODE (x) != SSA_NAME) + return; + + /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a + variable compared against zero. If we're honoring signed zeros, + then we cannot record this value unless we know that the value is + nonzero. */ + if (HONOR_SIGNED_ZEROS (x) + && (TREE_CODE (y) != REAL_CST + || real_equal (&dconst0, &TREE_REAL_CST (y)))) + return; + + const_and_copies->record_const_or_copy (x, y, prev_x); +} + +/* Returns true when STMT is a simple iv increment. It detects the + following situation: + + i_1 = phi (..., i_k) + [...] + i_j = i_{j-1} for each j : 2 <= j <= k-1 + [...] + i_k = i_{k-1} +/- ... */ + +bool +simple_iv_increment_p (gimple *stmt) +{ + enum tree_code code; + tree lhs, preinc; + gimple *phi; + size_t i; + + if (gimple_code (stmt) != GIMPLE_ASSIGN) + return false; + + lhs = gimple_assign_lhs (stmt); + if (TREE_CODE (lhs) != SSA_NAME) + return false; + + code = gimple_assign_rhs_code (stmt); + if (code != PLUS_EXPR + && code != MINUS_EXPR + && code != POINTER_PLUS_EXPR) + return false; + + preinc = gimple_assign_rhs1 (stmt); + if (TREE_CODE (preinc) != SSA_NAME) + return false; + + phi = SSA_NAME_DEF_STMT (preinc); + while (gimple_code (phi) != GIMPLE_PHI) + { + /* Follow trivial copies, but not the DEF used in a back edge, + so that we don't prevent coalescing. */ + if (!gimple_assign_ssa_name_copy_p (phi)) + return false; + preinc = gimple_assign_rhs1 (phi); + phi = SSA_NAME_DEF_STMT (preinc); + } + + for (i = 0; i < gimple_phi_num_args (phi); i++) + if (gimple_phi_arg_def (phi, i) == lhs) + return true; + + return false; +} + +/* Propagate know values from SSA_NAME_VALUE into the PHI nodes of the + successors of BB. */ + +static void +cprop_into_successor_phis (basic_block bb, + class const_and_copies *const_and_copies) +{ + edge e; + edge_iterator ei; + + FOR_EACH_EDGE (e, ei, bb->succs) + { + int indx; + gphi_iterator gsi; + + /* If this is an abnormal edge, then we do not want to copy propagate + into the PHI alternative associated with this edge. */ + if (e->flags & EDGE_ABNORMAL) + continue; + + gsi = gsi_start_phis (e->dest); + if (gsi_end_p (gsi)) + continue; + + /* We may have an equivalence associated with this edge. While + we cannot propagate it into non-dominated blocks, we can + propagate them into PHIs in non-dominated blocks. */ + + /* Push the unwind marker so we can reset the const and copies + table back to its original state after processing this edge. */ + const_and_copies->push_marker (); + + /* Extract and record any simple NAME = VALUE equivalences. + + Don't bother with [01] = COND equivalences, they're not useful + here. */ + class edge_info *edge_info = (class edge_info *) e->aux; + + if (edge_info) + { + edge_info::equiv_pair *seq; + for (int i = 0; edge_info->simple_equivalences.iterate (i, &seq); ++i) + { + tree lhs = seq->first; + tree rhs = seq->second; + + if (lhs && TREE_CODE (lhs) == SSA_NAME) + const_and_copies->record_const_or_copy (lhs, rhs); + } + + } + + indx = e->dest_idx; + for ( ; !gsi_end_p (gsi); gsi_next (&gsi)) + { + tree new_val; + use_operand_p orig_p; + tree orig_val; + gphi *phi = gsi.phi (); + + /* The alternative may be associated with a constant, so verify + it is an SSA_NAME before doing anything with it. */ + orig_p = gimple_phi_arg_imm_use_ptr (phi, indx); + orig_val = get_use_from_ptr (orig_p); + if (TREE_CODE (orig_val) != SSA_NAME) + continue; + + /* If we have *ORIG_P in our constant/copy table, then replace + ORIG_P with its value in our constant/copy table. */ + new_val = SSA_NAME_VALUE (orig_val); + if (new_val + && new_val != orig_val + && may_propagate_copy (orig_val, new_val)) + propagate_value (orig_p, new_val); + } + + const_and_copies->pop_to_marker (); + } +} + +edge +dom_opt_dom_walker::before_dom_children (basic_block bb) +{ + gimple_stmt_iterator gsi; + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "\n\nOptimizing block #%d\n\n", bb->index); + + m_evrp_range_analyzer->enter (bb); + + /* Push a marker on the stacks of local information so that we know how + far to unwind when we finalize this block. */ + m_avail_exprs_stack->push_marker (); + m_const_and_copies->push_marker (); + + record_equivalences_from_incoming_edge (bb, m_const_and_copies, + m_avail_exprs_stack); + + /* PHI nodes can create equivalences too. */ + record_equivalences_from_phis (bb); + + /* Create equivalences from redundant PHIs. PHIs are only truly + redundant when they exist in the same block, so push another + marker and unwind right afterwards. */ + m_avail_exprs_stack->push_marker (); + for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) + eliminate_redundant_computations (&gsi, m_const_and_copies, + m_avail_exprs_stack); + m_avail_exprs_stack->pop_to_marker (); + + edge taken_edge = NULL; + /* Initialize visited flag ahead of us, it has undefined state on + pass entry. */ + for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) + gimple_set_visited (gsi_stmt (gsi), false); + for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);) + { + /* Do not optimize a stmt twice, substitution might end up with + _3 = _3 which is not valid. */ + if (gimple_visited_p (gsi_stmt (gsi))) + { + gsi_next (&gsi); + continue; + } + + m_state->record_ranges_from_stmt (gsi_stmt (gsi), false); + bool removed_p = false; + taken_edge = this->optimize_stmt (bb, &gsi, &removed_p); + if (!removed_p) + gimple_set_visited (gsi_stmt (gsi), true); + + /* Go back and visit stmts inserted by folding after substituting + into the stmt at gsi. */ + if (gsi_end_p (gsi)) + { + gcc_checking_assert (removed_p); + gsi = gsi_last_bb (bb); + while (!gsi_end_p (gsi) && !gimple_visited_p (gsi_stmt (gsi))) + gsi_prev (&gsi); + } + else + { + do + { + gsi_prev (&gsi); + } + while (!gsi_end_p (gsi) && !gimple_visited_p (gsi_stmt (gsi))); + } + if (gsi_end_p (gsi)) + gsi = gsi_start_bb (bb); + else + gsi_next (&gsi); + } + + /* Now prepare to process dominated blocks. */ + record_edge_info (bb); + cprop_into_successor_phis (bb, m_const_and_copies); + if (taken_edge && !dbg_cnt (dom_unreachable_edges)) + return NULL; + + return taken_edge; +} + +/* We have finished processing the dominator children of BB, perform + any finalization actions in preparation for leaving this node in + the dominator tree. */ + +void +dom_opt_dom_walker::after_dom_children (basic_block bb) +{ + m_threader->thread_outgoing_edges (bb); + m_avail_exprs_stack->pop_to_marker (); + m_const_and_copies->pop_to_marker (); + m_evrp_range_analyzer->leave (bb); +} + +/* Search for redundant computations in STMT. If any are found, then + replace them with the variable holding the result of the computation. + + If safe, record this expression into AVAIL_EXPRS_STACK and + CONST_AND_COPIES. */ + +static void +eliminate_redundant_computations (gimple_stmt_iterator* gsi, + class const_and_copies *const_and_copies, + class avail_exprs_stack *avail_exprs_stack) +{ + tree expr_type; + tree cached_lhs; + tree def; + bool insert = true; + bool assigns_var_p = false; + + gimple *stmt = gsi_stmt (*gsi); + + if (gimple_code (stmt) == GIMPLE_PHI) + def = gimple_phi_result (stmt); + else + def = gimple_get_lhs (stmt); + + /* Certain expressions on the RHS can be optimized away, but cannot + themselves be entered into the hash tables. */ + if (! def + || TREE_CODE (def) != SSA_NAME + || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def) + || gimple_vdef (stmt) + /* Do not record equivalences for increments of ivs. This would create + overlapping live ranges for a very questionable gain. */ + || simple_iv_increment_p (stmt)) + insert = false; + + /* Check if the expression has been computed before. */ + cached_lhs = avail_exprs_stack->lookup_avail_expr (stmt, insert, true); + + opt_stats.num_exprs_considered++; + + /* Get the type of the expression we are trying to optimize. */ + if (is_gimple_assign (stmt)) + { + expr_type = TREE_TYPE (gimple_assign_lhs (stmt)); + assigns_var_p = true; + } + else if (gimple_code (stmt) == GIMPLE_COND) + expr_type = boolean_type_node; + else if (is_gimple_call (stmt)) + { + gcc_assert (gimple_call_lhs (stmt)); + expr_type = TREE_TYPE (gimple_call_lhs (stmt)); + assigns_var_p = true; + } + else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt)) + expr_type = TREE_TYPE (gimple_switch_index (swtch_stmt)); + else if (gimple_code (stmt) == GIMPLE_PHI) + /* We can't propagate into a phi, so the logic below doesn't apply. + Instead record an equivalence between the cached LHS and the + PHI result of this statement, provided they are in the same block. + This should be sufficient to kill the redundant phi. */ + { + if (def && cached_lhs) + const_and_copies->record_const_or_copy (def, cached_lhs); + return; + } + else + gcc_unreachable (); + + if (!cached_lhs) + return; + + /* It is safe to ignore types here since we have already done + type checking in the hashing and equality routines. In fact + type checking here merely gets in the way of constant + propagation. Also, make sure that it is safe to propagate + CACHED_LHS into the expression in STMT. */ + if ((TREE_CODE (cached_lhs) != SSA_NAME + && (assigns_var_p + || useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs)))) + || may_propagate_copy_into_stmt (stmt, cached_lhs)) + { + gcc_checking_assert (TREE_CODE (cached_lhs) == SSA_NAME + || is_gimple_min_invariant (cached_lhs)); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, " Replaced redundant expr '"); + print_gimple_expr (dump_file, stmt, 0, dump_flags); + fprintf (dump_file, "' with '"); + print_generic_expr (dump_file, cached_lhs, dump_flags); + fprintf (dump_file, "'\n"); + } + + opt_stats.num_re++; + + if (assigns_var_p + && !useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs))) + cached_lhs = fold_convert (expr_type, cached_lhs); + + propagate_tree_value_into_stmt (gsi, cached_lhs); + + /* Since it is always necessary to mark the result as modified, + perhaps we should move this into propagate_tree_value_into_stmt + itself. */ + gimple_set_modified (gsi_stmt (*gsi), true); + } +} + +/* STMT, a GIMPLE_ASSIGN, may create certain equivalences, in either + the available expressions table or the const_and_copies table. + Detect and record those equivalences into AVAIL_EXPRS_STACK. + + We handle only very simple copy equivalences here. The heavy + lifing is done by eliminate_redundant_computations. */ + +static void +record_equivalences_from_stmt (gimple *stmt, int may_optimize_p, + class avail_exprs_stack *avail_exprs_stack) +{ + tree lhs; + enum tree_code lhs_code; + + gcc_assert (is_gimple_assign (stmt)); + + lhs = gimple_assign_lhs (stmt); + lhs_code = TREE_CODE (lhs); + + if (lhs_code == SSA_NAME + && gimple_assign_single_p (stmt)) + { + tree rhs = gimple_assign_rhs1 (stmt); + + /* If the RHS of the assignment is a constant or another variable that + may be propagated, register it in the CONST_AND_COPIES table. We + do not need to record unwind data for this, since this is a true + assignment and not an equivalence inferred from a comparison. All + uses of this ssa name are dominated by this assignment, so unwinding + just costs time and space. */ + if (may_optimize_p + && (TREE_CODE (rhs) == SSA_NAME + || is_gimple_min_invariant (rhs))) + { + rhs = dom_valueize (rhs); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "==== ASGN "); + print_generic_expr (dump_file, lhs); + fprintf (dump_file, " = "); + print_generic_expr (dump_file, rhs); + fprintf (dump_file, "\n"); + } + + set_ssa_name_value (lhs, rhs); + } + } + + /* Make sure we can propagate &x + CST. */ + if (lhs_code == SSA_NAME + && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR + && TREE_CODE (gimple_assign_rhs1 (stmt)) == ADDR_EXPR + && TREE_CODE (gimple_assign_rhs2 (stmt)) == INTEGER_CST) + { + tree op0 = gimple_assign_rhs1 (stmt); + tree op1 = gimple_assign_rhs2 (stmt); + tree new_rhs + = build1 (ADDR_EXPR, TREE_TYPE (op0), + fold_build2 (MEM_REF, TREE_TYPE (TREE_TYPE (op0)), + unshare_expr (op0), fold_convert (ptr_type_node, + op1))); + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "==== ASGN "); + print_generic_expr (dump_file, lhs); + fprintf (dump_file, " = "); + print_generic_expr (dump_file, new_rhs); + fprintf (dump_file, "\n"); + } + + set_ssa_name_value (lhs, new_rhs); + } + + /* A memory store, even an aliased store, creates a useful + equivalence. By exchanging the LHS and RHS, creating suitable + vops and recording the result in the available expression table, + we may be able to expose more redundant loads. */ + if (!gimple_has_volatile_ops (stmt) + && gimple_references_memory_p (stmt) + && gimple_assign_single_p (stmt) + && (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME + || is_gimple_min_invariant (gimple_assign_rhs1 (stmt))) + && !is_gimple_reg (lhs)) + { + tree rhs = gimple_assign_rhs1 (stmt); + gassign *new_stmt; + + /* Build a new statement with the RHS and LHS exchanged. */ + if (TREE_CODE (rhs) == SSA_NAME) + { + /* NOTE tuples. The call to gimple_build_assign below replaced + a call to build_gimple_modify_stmt, which did not set the + SSA_NAME_DEF_STMT on the LHS of the assignment. Doing so + may cause an SSA validation failure, as the LHS may be a + default-initialized name and should have no definition. I'm + a bit dubious of this, as the artificial statement that we + generate here may in fact be ill-formed, but it is simply + used as an internal device in this pass, and never becomes + part of the CFG. */ + gimple *defstmt = SSA_NAME_DEF_STMT (rhs); + new_stmt = gimple_build_assign (rhs, lhs); + SSA_NAME_DEF_STMT (rhs) = defstmt; + } + else + new_stmt = gimple_build_assign (rhs, lhs); + + gimple_set_vuse (new_stmt, gimple_vdef (stmt)); + + /* Finally enter the statement into the available expression + table. */ + avail_exprs_stack->lookup_avail_expr (new_stmt, true, true); + } +} + +/* Replace *OP_P in STMT with any known equivalent value for *OP_P from + CONST_AND_COPIES. */ + +static void +cprop_operand (gimple *stmt, use_operand_p op_p, range_query *query) +{ + tree val; + tree op = USE_FROM_PTR (op_p); + + /* If the operand has a known constant value or it is known to be a + copy of some other variable, use the value or copy stored in + CONST_AND_COPIES. */ + val = SSA_NAME_VALUE (op); + if (!val) + { + value_range r; + tree single; + if (query->range_of_expr (r, op, stmt) && r.singleton_p (&single)) + val = single; + } + + if (val && val != op) + { + /* Do not replace hard register operands in asm statements. */ + if (gimple_code (stmt) == GIMPLE_ASM + && !may_propagate_copy_into_asm (op)) + return; + + /* Certain operands are not allowed to be copy propagated due + to their interaction with exception handling and some GCC + extensions. */ + if (!may_propagate_copy (op, val)) + return; + + /* Do not propagate copies into BIVs. + See PR23821 and PR62217 for how this can disturb IV and + number of iteration analysis. */ + if (TREE_CODE (val) != INTEGER_CST) + { + gimple *def = SSA_NAME_DEF_STMT (op); + if (gimple_code (def) == GIMPLE_PHI + && gimple_bb (def)->loop_father->header == gimple_bb (def)) + return; + } + + /* Dump details. */ + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, " Replaced '"); + print_generic_expr (dump_file, op, dump_flags); + fprintf (dump_file, "' with %s '", + (TREE_CODE (val) != SSA_NAME ? "constant" : "variable")); + print_generic_expr (dump_file, val, dump_flags); + fprintf (dump_file, "'\n"); + } + + if (TREE_CODE (val) != SSA_NAME) + opt_stats.num_const_prop++; + else + opt_stats.num_copy_prop++; + + propagate_value (op_p, val); + + /* And note that we modified this statement. This is now + safe, even if we changed virtual operands since we will + rescan the statement and rewrite its operands again. */ + gimple_set_modified (stmt, true); + } +} + +/* CONST_AND_COPIES is a table which maps an SSA_NAME to the current + known value for that SSA_NAME (or NULL if no value is known). + + Propagate values from CONST_AND_COPIES into the uses, vuses and + vdef_ops of STMT. */ + +static void +cprop_into_stmt (gimple *stmt, range_query *query) +{ + use_operand_p op_p; + ssa_op_iter iter; + tree last_copy_propagated_op = NULL; + + FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_USE) + { + tree old_op = USE_FROM_PTR (op_p); + + /* If we have A = B and B = A in the copy propagation tables + (due to an equality comparison), avoid substituting B for A + then A for B in the trivially discovered cases. This allows + optimization of statements were A and B appear as input + operands. */ + if (old_op != last_copy_propagated_op) + { + cprop_operand (stmt, op_p, query); + + tree new_op = USE_FROM_PTR (op_p); + if (new_op != old_op && TREE_CODE (new_op) == SSA_NAME) + last_copy_propagated_op = new_op; + } + } +} + +/* If STMT contains a relational test, try to convert it into an + equality test if there is only a single value which can ever + make the test true. + + For example, if the expression hash table contains: + + TRUE = (i <= 1) + + And we have a test within statement of i >= 1, then we can safely + rewrite the test as i == 1 since there only a single value where + the test is true. + + This is similar to code in VRP. */ + +void +dom_opt_dom_walker::test_for_singularity (gimple *stmt, + avail_exprs_stack *avail_exprs_stack) +{ + /* We want to support gimple conditionals as well as assignments + where the RHS contains a conditional. */ + if (is_gimple_assign (stmt) || gimple_code (stmt) == GIMPLE_COND) + { + enum tree_code code = ERROR_MARK; + tree lhs, rhs; + + /* Extract the condition of interest from both forms we support. */ + if (is_gimple_assign (stmt)) + { + code = gimple_assign_rhs_code (stmt); + lhs = gimple_assign_rhs1 (stmt); + rhs = gimple_assign_rhs2 (stmt); + } + else if (gimple_code (stmt) == GIMPLE_COND) + { + code = gimple_cond_code (as_a <gcond *> (stmt)); + lhs = gimple_cond_lhs (as_a <gcond *> (stmt)); + rhs = gimple_cond_rhs (as_a <gcond *> (stmt)); + } + + /* We're looking for a relational test using LE/GE. Also note we can + canonicalize LT/GT tests against constants into LE/GT tests. */ + if (code == LE_EXPR || code == GE_EXPR + || ((code == LT_EXPR || code == GT_EXPR) + && TREE_CODE (rhs) == INTEGER_CST)) + { + /* For LT_EXPR and GT_EXPR, canonicalize to LE_EXPR and GE_EXPR. */ + if (code == LT_EXPR) + rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (rhs), + rhs, build_int_cst (TREE_TYPE (rhs), 1)); + + if (code == GT_EXPR) + rhs = fold_build2 (PLUS_EXPR, TREE_TYPE (rhs), + rhs, build_int_cst (TREE_TYPE (rhs), 1)); + + /* Determine the code we want to check for in the hash table. */ + enum tree_code test_code; + if (code == GE_EXPR || code == GT_EXPR) + test_code = LE_EXPR; + else + test_code = GE_EXPR; + + /* Update the dummy statement so we can query the hash tables. */ + gimple_cond_set_code (m_dummy_cond, test_code); + gimple_cond_set_lhs (m_dummy_cond, lhs); + gimple_cond_set_rhs (m_dummy_cond, rhs); + tree cached_lhs + = avail_exprs_stack->lookup_avail_expr (m_dummy_cond, + false, false); + + /* If the lookup returned 1 (true), then the expression we + queried was in the hash table. As a result there is only + one value that makes the original conditional true. Update + STMT accordingly. */ + if (cached_lhs && integer_onep (cached_lhs)) + { + if (is_gimple_assign (stmt)) + { + gimple_assign_set_rhs_code (stmt, EQ_EXPR); + gimple_assign_set_rhs2 (stmt, rhs); + gimple_set_modified (stmt, true); + } + else + { + gimple_set_modified (stmt, true); + gimple_cond_set_code (as_a <gcond *> (stmt), EQ_EXPR); + gimple_cond_set_rhs (as_a <gcond *> (stmt), rhs); + gimple_set_modified (stmt, true); + } + } + } + } +} + +/* If STMT is a comparison of two uniform vectors reduce it to a comparison + of scalar objects, otherwise leave STMT unchanged. */ + +static void +reduce_vector_comparison_to_scalar_comparison (gimple *stmt) +{ + if (gimple_code (stmt) == GIMPLE_COND) + { + tree lhs = gimple_cond_lhs (stmt); + tree rhs = gimple_cond_rhs (stmt); + + /* We may have a vector comparison where both arms are uniform + vectors. If so, we can simplify the vector comparison down + to a scalar comparison. */ + if (TREE_CODE (TREE_TYPE (lhs)) == VECTOR_TYPE + && TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE) + { + /* If either operand is an SSA_NAME, then look back to its + defining statement to try and get at a suitable source. */ + if (TREE_CODE (rhs) == SSA_NAME) + { + gimple *def_stmt = SSA_NAME_DEF_STMT (rhs); + if (gimple_assign_single_p (def_stmt)) + rhs = gimple_assign_rhs1 (def_stmt); + } + + if (TREE_CODE (lhs) == SSA_NAME) + { + gimple *def_stmt = SSA_NAME_DEF_STMT (lhs); + if (gimple_assign_single_p (def_stmt)) + lhs = gimple_assign_rhs1 (def_stmt); + } + + /* Now see if they are both uniform vectors and if so replace + the vector comparison with a scalar comparison. */ + tree rhs_elem = rhs ? uniform_vector_p (rhs) : NULL_TREE; + tree lhs_elem = lhs ? uniform_vector_p (lhs) : NULL_TREE; + if (rhs_elem && lhs_elem) + { + if (dump_file && dump_flags & TDF_DETAILS) + { + fprintf (dump_file, "Reducing vector comparison: "); + print_gimple_stmt (dump_file, stmt, 0); + } + + gimple_cond_set_rhs (as_a <gcond *>(stmt), rhs_elem); + gimple_cond_set_lhs (as_a <gcond *>(stmt), lhs_elem); + gimple_set_modified (stmt, true); + + if (dump_file && dump_flags & TDF_DETAILS) + { + fprintf (dump_file, "To scalar equivalent: "); + print_gimple_stmt (dump_file, stmt, 0); + fprintf (dump_file, "\n"); + } + } + } + } +} + +/* Optimize the statement in block BB pointed to by iterator SI. + + We try to perform some simplistic global redundancy elimination and + constant propagation: + + 1- To detect global redundancy, we keep track of expressions that have + been computed in this block and its dominators. If we find that the + same expression is computed more than once, we eliminate repeated + computations by using the target of the first one. + + 2- Constant values and copy assignments. This is used to do very + simplistic constant and copy propagation. When a constant or copy + assignment is found, we map the value on the RHS of the assignment to + the variable in the LHS in the CONST_AND_COPIES table. + + 3- Very simple redundant store elimination is performed. + + 4- We can simplify a condition to a constant or from a relational + condition to an equality condition. */ + +edge +dom_opt_dom_walker::optimize_stmt (basic_block bb, gimple_stmt_iterator *si, + bool *removed_p) +{ + gimple *stmt, *old_stmt; + bool may_optimize_p; + bool modified_p = false; + bool was_noreturn; + edge retval = NULL; + + old_stmt = stmt = gsi_stmt (*si); + was_noreturn = is_gimple_call (stmt) && gimple_call_noreturn_p (stmt); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Optimizing statement "); + print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); + } + + /* STMT may be a comparison of uniform vectors that we can simplify + down to a comparison of scalars. Do that transformation first + so that all the scalar optimizations from here onward apply. */ + reduce_vector_comparison_to_scalar_comparison (stmt); + + update_stmt_if_modified (stmt); + opt_stats.num_stmts++; + + /* Const/copy propagate into USES, VUSES and the RHS of VDEFs. */ + cprop_into_stmt (stmt, m_evrp_range_analyzer); + + /* If the statement has been modified with constant replacements, + fold its RHS before checking for redundant computations. */ + if (gimple_modified_p (stmt)) + { + tree rhs = NULL; + + /* Try to fold the statement making sure that STMT is kept + up to date. */ + if (fold_stmt (si)) + { + stmt = gsi_stmt (*si); + gimple_set_modified (stmt, true); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, " Folded to: "); + print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); + } + } + + /* We only need to consider cases that can yield a gimple operand. */ + if (gimple_assign_single_p (stmt)) + rhs = gimple_assign_rhs1 (stmt); + else if (gimple_code (stmt) == GIMPLE_GOTO) + rhs = gimple_goto_dest (stmt); + else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt)) + /* This should never be an ADDR_EXPR. */ + rhs = gimple_switch_index (swtch_stmt); + + if (rhs && TREE_CODE (rhs) == ADDR_EXPR) + recompute_tree_invariant_for_addr_expr (rhs); + + /* Indicate that maybe_clean_or_replace_eh_stmt needs to be called, + even if fold_stmt updated the stmt already and thus cleared + gimple_modified_p flag on it. */ + modified_p = true; + } + + /* Check for redundant computations. Do this optimization only + for assignments that have no volatile ops and conditionals. */ + may_optimize_p = (!gimple_has_side_effects (stmt) + && (is_gimple_assign (stmt) + || (is_gimple_call (stmt) + && gimple_call_lhs (stmt) != NULL_TREE) + || gimple_code (stmt) == GIMPLE_COND + || gimple_code (stmt) == GIMPLE_SWITCH)); + + if (may_optimize_p) + { + if (gimple_code (stmt) == GIMPLE_CALL) + { + /* Resolve __builtin_constant_p. If it hasn't been + folded to integer_one_node by now, it's fairly + certain that the value simply isn't constant. */ + tree callee = gimple_call_fndecl (stmt); + if (callee + && fndecl_built_in_p (callee, BUILT_IN_CONSTANT_P)) + { + propagate_tree_value_into_stmt (si, integer_zero_node); + stmt = gsi_stmt (*si); + } + } + + if (gimple_code (stmt) == GIMPLE_COND) + { + tree lhs = gimple_cond_lhs (stmt); + tree rhs = gimple_cond_rhs (stmt); + + /* If the LHS has a range [0..1] and the RHS has a range ~[0..1], + then this conditional is computable at compile time. We can just + shove either 0 or 1 into the LHS, mark the statement as modified + and all the right things will just happen below. + + Note this would apply to any case where LHS has a range + narrower than its type implies and RHS is outside that + narrower range. Future work. */ + if (TREE_CODE (lhs) == SSA_NAME + && ssa_name_has_boolean_range (lhs) + && TREE_CODE (rhs) == INTEGER_CST + && ! (integer_zerop (rhs) || integer_onep (rhs))) + { + gimple_cond_set_lhs (as_a <gcond *> (stmt), + fold_convert (TREE_TYPE (lhs), + integer_zero_node)); + gimple_set_modified (stmt, true); + } + else if (TREE_CODE (lhs) == SSA_NAME) + { + /* Exploiting EVRP data is not yet fully integrated into DOM + but we need to do something for this case to avoid regressing + udr4.f90 and new1.C which have unexecutable blocks with + undefined behavior that get diagnosed if they're left in the + IL because we've attached range information to new + SSA_NAMES. */ + update_stmt_if_modified (stmt); + edge taken_edge = NULL; + simplify_using_ranges simpl (m_evrp_range_analyzer); + simpl.vrp_visit_cond_stmt (as_a <gcond *> (stmt), &taken_edge); + if (taken_edge) + { + if (taken_edge->flags & EDGE_TRUE_VALUE) + gimple_cond_make_true (as_a <gcond *> (stmt)); + else if (taken_edge->flags & EDGE_FALSE_VALUE) + gimple_cond_make_false (as_a <gcond *> (stmt)); + else + gcc_unreachable (); + gimple_set_modified (stmt, true); + update_stmt (stmt); + cfg_altered = true; + return taken_edge; + } + } + } + + update_stmt_if_modified (stmt); + eliminate_redundant_computations (si, m_const_and_copies, + m_avail_exprs_stack); + stmt = gsi_stmt (*si); + + /* Perform simple redundant store elimination. */ + if (gimple_assign_single_p (stmt) + && TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME) + { + tree lhs = gimple_assign_lhs (stmt); + tree rhs = gimple_assign_rhs1 (stmt); + tree cached_lhs; + gassign *new_stmt; + rhs = dom_valueize (rhs); + /* Build a new statement with the RHS and LHS exchanged. */ + if (TREE_CODE (rhs) == SSA_NAME) + { + gimple *defstmt = SSA_NAME_DEF_STMT (rhs); + new_stmt = gimple_build_assign (rhs, lhs); + SSA_NAME_DEF_STMT (rhs) = defstmt; + } + else + new_stmt = gimple_build_assign (rhs, lhs); + gimple_set_vuse (new_stmt, gimple_vuse (stmt)); + expr_hash_elt *elt = NULL; + cached_lhs = m_avail_exprs_stack->lookup_avail_expr (new_stmt, false, + false, &elt); + if (cached_lhs + && operand_equal_p (rhs, cached_lhs, 0) + && refs_same_for_tbaa_p (elt->expr ()->kind == EXPR_SINGLE + ? elt->expr ()->ops.single.rhs + : NULL_TREE, lhs)) + { + basic_block bb = gimple_bb (stmt); + unlink_stmt_vdef (stmt); + if (gsi_remove (si, true)) + { + bitmap_set_bit (need_eh_cleanup, bb->index); + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, " Flagged to clear EH edges.\n"); + } + release_defs (stmt); + *removed_p = true; + return retval; + } + } + + /* If this statement was not redundant, we may still be able to simplify + it, which may in turn allow other part of DOM or other passes to do + a better job. */ + test_for_singularity (stmt, m_avail_exprs_stack); + } + + /* Record any additional equivalences created by this statement. */ + if (is_gimple_assign (stmt)) + record_equivalences_from_stmt (stmt, may_optimize_p, m_avail_exprs_stack); + + /* If STMT is a COND_EXPR or SWITCH_EXPR and it was modified, then we may + know where it goes. */ + if (gimple_modified_p (stmt) || modified_p) + { + tree val = NULL; + + if (gimple_code (stmt) == GIMPLE_COND) + val = fold_binary_loc (gimple_location (stmt), + gimple_cond_code (stmt), boolean_type_node, + gimple_cond_lhs (stmt), + gimple_cond_rhs (stmt)); + else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt)) + val = gimple_switch_index (swtch_stmt); + + if (val && TREE_CODE (val) == INTEGER_CST) + { + retval = find_taken_edge (bb, val); + if (retval) + { + /* Fix the condition to be either true or false. */ + if (gimple_code (stmt) == GIMPLE_COND) + { + if (integer_zerop (val)) + gimple_cond_make_false (as_a <gcond *> (stmt)); + else if (integer_onep (val)) + gimple_cond_make_true (as_a <gcond *> (stmt)); + else + gcc_unreachable (); + + gimple_set_modified (stmt, true); + } + + /* Further simplifications may be possible. */ + cfg_altered = true; + } + } + + update_stmt_if_modified (stmt); + + /* If we simplified a statement in such a way as to be shown that it + cannot trap, update the eh information and the cfg to match. */ + if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)) + { + bitmap_set_bit (need_eh_cleanup, bb->index); + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, " Flagged to clear EH edges.\n"); + } + + if (!was_noreturn + && is_gimple_call (stmt) && gimple_call_noreturn_p (stmt)) + need_noreturn_fixup.safe_push (stmt); + } + return retval; +} |