aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-if-conv.cc
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/tree-if-conv.cc')
-rw-r--r--gcc/tree-if-conv.cc3510
1 files changed, 3510 insertions, 0 deletions
diff --git a/gcc/tree-if-conv.cc b/gcc/tree-if-conv.cc
new file mode 100644
index 0000000..8baecea
--- /dev/null
+++ b/gcc/tree-if-conv.cc
@@ -0,0 +1,3510 @@
+/* If-conversion for vectorizer.
+ Copyright (C) 2004-2022 Free Software Foundation, Inc.
+ Contributed by Devang Patel <dpatel@apple.com>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+/* This pass implements a tree level if-conversion of loops. Its
+ initial goal is to help the vectorizer to vectorize loops with
+ conditions.
+
+ A short description of if-conversion:
+
+ o Decide if a loop is if-convertible or not.
+ o Walk all loop basic blocks in breadth first order (BFS order).
+ o Remove conditional statements (at the end of basic block)
+ and propagate condition into destination basic blocks'
+ predicate list.
+ o Replace modify expression with conditional modify expression
+ using current basic block's condition.
+ o Merge all basic blocks
+ o Replace phi nodes with conditional modify expr
+ o Merge all basic blocks into header
+
+ Sample transformation:
+
+ INPUT
+ -----
+
+ # i_23 = PHI <0(0), i_18(10)>;
+ <L0>:;
+ j_15 = A[i_23];
+ if (j_15 > 41) goto <L1>; else goto <L17>;
+
+ <L17>:;
+ goto <bb 3> (<L3>);
+
+ <L1>:;
+
+ # iftmp.2_4 = PHI <0(8), 42(2)>;
+ <L3>:;
+ A[i_23] = iftmp.2_4;
+ i_18 = i_23 + 1;
+ if (i_18 <= 15) goto <L19>; else goto <L18>;
+
+ <L19>:;
+ goto <bb 1> (<L0>);
+
+ <L18>:;
+
+ OUTPUT
+ ------
+
+ # i_23 = PHI <0(0), i_18(10)>;
+ <L0>:;
+ j_15 = A[i_23];
+
+ <L3>:;
+ iftmp.2_4 = j_15 > 41 ? 42 : 0;
+ A[i_23] = iftmp.2_4;
+ i_18 = i_23 + 1;
+ if (i_18 <= 15) goto <L19>; else goto <L18>;
+
+ <L19>:;
+ goto <bb 1> (<L0>);
+
+ <L18>:;
+*/
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "backend.h"
+#include "rtl.h"
+#include "tree.h"
+#include "gimple.h"
+#include "cfghooks.h"
+#include "tree-pass.h"
+#include "ssa.h"
+#include "expmed.h"
+#include "optabs-query.h"
+#include "gimple-pretty-print.h"
+#include "alias.h"
+#include "fold-const.h"
+#include "stor-layout.h"
+#include "gimple-fold.h"
+#include "gimplify.h"
+#include "gimple-iterator.h"
+#include "gimplify-me.h"
+#include "tree-cfg.h"
+#include "tree-into-ssa.h"
+#include "tree-ssa.h"
+#include "cfgloop.h"
+#include "tree-data-ref.h"
+#include "tree-scalar-evolution.h"
+#include "tree-ssa-loop.h"
+#include "tree-ssa-loop-niter.h"
+#include "tree-ssa-loop-ivopts.h"
+#include "tree-ssa-address.h"
+#include "dbgcnt.h"
+#include "tree-hash-traits.h"
+#include "varasm.h"
+#include "builtins.h"
+#include "cfganal.h"
+#include "internal-fn.h"
+#include "fold-const.h"
+#include "tree-ssa-sccvn.h"
+#include "tree-cfgcleanup.h"
+#include "tree-ssa-dse.h"
+#include "tree-vectorizer.h"
+#include "tree-eh.h"
+
+/* Only handle PHIs with no more arguments unless we are asked to by
+ simd pragma. */
+#define MAX_PHI_ARG_NUM \
+ ((unsigned) param_max_tree_if_conversion_phi_args)
+
+/* True if we've converted a statement that was only executed when some
+ condition C was true, and if for correctness we need to predicate the
+ statement to ensure that it is a no-op when C is false. See
+ predicate_statements for the kinds of predication we support. */
+static bool need_to_predicate;
+
+/* True if we have to rewrite stmts that may invoke undefined behavior
+ when a condition C was false so it doesn't if it is always executed.
+ See predicate_statements for the kinds of predication we support. */
+static bool need_to_rewrite_undefined;
+
+/* Indicate if there are any complicated PHIs that need to be handled in
+ if-conversion. Complicated PHI has more than two arguments and can't
+ be degenerated to two arguments PHI. See more information in comment
+ before phi_convertible_by_degenerating_args. */
+static bool any_complicated_phi;
+
+/* Hash for struct innermost_loop_behavior. It depends on the user to
+ free the memory. */
+
+struct innermost_loop_behavior_hash : nofree_ptr_hash <innermost_loop_behavior>
+{
+ static inline hashval_t hash (const value_type &);
+ static inline bool equal (const value_type &,
+ const compare_type &);
+};
+
+inline hashval_t
+innermost_loop_behavior_hash::hash (const value_type &e)
+{
+ hashval_t hash;
+
+ hash = iterative_hash_expr (e->base_address, 0);
+ hash = iterative_hash_expr (e->offset, hash);
+ hash = iterative_hash_expr (e->init, hash);
+ return iterative_hash_expr (e->step, hash);
+}
+
+inline bool
+innermost_loop_behavior_hash::equal (const value_type &e1,
+ const compare_type &e2)
+{
+ if ((e1->base_address && !e2->base_address)
+ || (!e1->base_address && e2->base_address)
+ || (!e1->offset && e2->offset)
+ || (e1->offset && !e2->offset)
+ || (!e1->init && e2->init)
+ || (e1->init && !e2->init)
+ || (!e1->step && e2->step)
+ || (e1->step && !e2->step))
+ return false;
+
+ if (e1->base_address && e2->base_address
+ && !operand_equal_p (e1->base_address, e2->base_address, 0))
+ return false;
+ if (e1->offset && e2->offset
+ && !operand_equal_p (e1->offset, e2->offset, 0))
+ return false;
+ if (e1->init && e2->init
+ && !operand_equal_p (e1->init, e2->init, 0))
+ return false;
+ if (e1->step && e2->step
+ && !operand_equal_p (e1->step, e2->step, 0))
+ return false;
+
+ return true;
+}
+
+/* List of basic blocks in if-conversion-suitable order. */
+static basic_block *ifc_bbs;
+
+/* Hash table to store <DR's innermost loop behavior, DR> pairs. */
+static hash_map<innermost_loop_behavior_hash,
+ data_reference_p> *innermost_DR_map;
+
+/* Hash table to store <base reference, DR> pairs. */
+static hash_map<tree_operand_hash, data_reference_p> *baseref_DR_map;
+
+/* List of redundant SSA names: the first should be replaced by the second. */
+static vec< std::pair<tree, tree> > redundant_ssa_names;
+
+/* Structure used to predicate basic blocks. This is attached to the
+ ->aux field of the BBs in the loop to be if-converted. */
+struct bb_predicate {
+
+ /* The condition under which this basic block is executed. */
+ tree predicate;
+
+ /* PREDICATE is gimplified, and the sequence of statements is
+ recorded here, in order to avoid the duplication of computations
+ that occur in previous conditions. See PR44483. */
+ gimple_seq predicate_gimplified_stmts;
+};
+
+/* Returns true when the basic block BB has a predicate. */
+
+static inline bool
+bb_has_predicate (basic_block bb)
+{
+ return bb->aux != NULL;
+}
+
+/* Returns the gimplified predicate for basic block BB. */
+
+static inline tree
+bb_predicate (basic_block bb)
+{
+ return ((struct bb_predicate *) bb->aux)->predicate;
+}
+
+/* Sets the gimplified predicate COND for basic block BB. */
+
+static inline void
+set_bb_predicate (basic_block bb, tree cond)
+{
+ gcc_assert ((TREE_CODE (cond) == TRUTH_NOT_EXPR
+ && is_gimple_condexpr (TREE_OPERAND (cond, 0)))
+ || is_gimple_condexpr (cond));
+ ((struct bb_predicate *) bb->aux)->predicate = cond;
+}
+
+/* Returns the sequence of statements of the gimplification of the
+ predicate for basic block BB. */
+
+static inline gimple_seq
+bb_predicate_gimplified_stmts (basic_block bb)
+{
+ return ((struct bb_predicate *) bb->aux)->predicate_gimplified_stmts;
+}
+
+/* Sets the sequence of statements STMTS of the gimplification of the
+ predicate for basic block BB. */
+
+static inline void
+set_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
+{
+ ((struct bb_predicate *) bb->aux)->predicate_gimplified_stmts = stmts;
+}
+
+/* Adds the sequence of statements STMTS to the sequence of statements
+ of the predicate for basic block BB. */
+
+static inline void
+add_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
+{
+ /* We might have updated some stmts in STMTS via force_gimple_operand
+ calling fold_stmt and that producing multiple stmts. Delink immediate
+ uses so update_ssa after loop versioning doesn't get confused for
+ the not yet inserted predicates.
+ ??? This should go away once we reliably avoid updating stmts
+ not in any BB. */
+ for (gimple_stmt_iterator gsi = gsi_start (stmts);
+ !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple *stmt = gsi_stmt (gsi);
+ delink_stmt_imm_use (stmt);
+ gimple_set_modified (stmt, true);
+ }
+ gimple_seq_add_seq_without_update
+ (&(((struct bb_predicate *) bb->aux)->predicate_gimplified_stmts), stmts);
+}
+
+/* Initializes to TRUE the predicate of basic block BB. */
+
+static inline void
+init_bb_predicate (basic_block bb)
+{
+ bb->aux = XNEW (struct bb_predicate);
+ set_bb_predicate_gimplified_stmts (bb, NULL);
+ set_bb_predicate (bb, boolean_true_node);
+}
+
+/* Release the SSA_NAMEs associated with the predicate of basic block BB. */
+
+static inline void
+release_bb_predicate (basic_block bb)
+{
+ gimple_seq stmts = bb_predicate_gimplified_stmts (bb);
+ if (stmts)
+ {
+ /* Ensure that these stmts haven't yet been added to a bb. */
+ if (flag_checking)
+ for (gimple_stmt_iterator i = gsi_start (stmts);
+ !gsi_end_p (i); gsi_next (&i))
+ gcc_assert (! gimple_bb (gsi_stmt (i)));
+
+ /* Discard them. */
+ gimple_seq_discard (stmts);
+ set_bb_predicate_gimplified_stmts (bb, NULL);
+ }
+}
+
+/* Free the predicate of basic block BB. */
+
+static inline void
+free_bb_predicate (basic_block bb)
+{
+ if (!bb_has_predicate (bb))
+ return;
+
+ release_bb_predicate (bb);
+ free (bb->aux);
+ bb->aux = NULL;
+}
+
+/* Reinitialize predicate of BB with the true predicate. */
+
+static inline void
+reset_bb_predicate (basic_block bb)
+{
+ if (!bb_has_predicate (bb))
+ init_bb_predicate (bb);
+ else
+ {
+ release_bb_predicate (bb);
+ set_bb_predicate (bb, boolean_true_node);
+ }
+}
+
+/* Returns a new SSA_NAME of type TYPE that is assigned the value of
+ the expression EXPR. Inserts the statement created for this
+ computation before GSI and leaves the iterator GSI at the same
+ statement. */
+
+static tree
+ifc_temp_var (tree type, tree expr, gimple_stmt_iterator *gsi)
+{
+ tree new_name = make_temp_ssa_name (type, NULL, "_ifc_");
+ gimple *stmt = gimple_build_assign (new_name, expr);
+ gimple_set_vuse (stmt, gimple_vuse (gsi_stmt (*gsi)));
+ gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
+ return new_name;
+}
+
+/* Return true when COND is a false predicate. */
+
+static inline bool
+is_false_predicate (tree cond)
+{
+ return (cond != NULL_TREE
+ && (cond == boolean_false_node
+ || integer_zerop (cond)));
+}
+
+/* Return true when COND is a true predicate. */
+
+static inline bool
+is_true_predicate (tree cond)
+{
+ return (cond == NULL_TREE
+ || cond == boolean_true_node
+ || integer_onep (cond));
+}
+
+/* Returns true when BB has a predicate that is not trivial: true or
+ NULL_TREE. */
+
+static inline bool
+is_predicated (basic_block bb)
+{
+ return !is_true_predicate (bb_predicate (bb));
+}
+
+/* Parses the predicate COND and returns its comparison code and
+ operands OP0 and OP1. */
+
+static enum tree_code
+parse_predicate (tree cond, tree *op0, tree *op1)
+{
+ gimple *s;
+
+ if (TREE_CODE (cond) == SSA_NAME
+ && is_gimple_assign (s = SSA_NAME_DEF_STMT (cond)))
+ {
+ if (TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison)
+ {
+ *op0 = gimple_assign_rhs1 (s);
+ *op1 = gimple_assign_rhs2 (s);
+ return gimple_assign_rhs_code (s);
+ }
+
+ else if (gimple_assign_rhs_code (s) == TRUTH_NOT_EXPR)
+ {
+ tree op = gimple_assign_rhs1 (s);
+ tree type = TREE_TYPE (op);
+ enum tree_code code = parse_predicate (op, op0, op1);
+
+ return code == ERROR_MARK ? ERROR_MARK
+ : invert_tree_comparison (code, HONOR_NANS (type));
+ }
+
+ return ERROR_MARK;
+ }
+
+ if (COMPARISON_CLASS_P (cond))
+ {
+ *op0 = TREE_OPERAND (cond, 0);
+ *op1 = TREE_OPERAND (cond, 1);
+ return TREE_CODE (cond);
+ }
+
+ return ERROR_MARK;
+}
+
+/* Returns the fold of predicate C1 OR C2 at location LOC. */
+
+static tree
+fold_or_predicates (location_t loc, tree c1, tree c2)
+{
+ tree op1a, op1b, op2a, op2b;
+ enum tree_code code1 = parse_predicate (c1, &op1a, &op1b);
+ enum tree_code code2 = parse_predicate (c2, &op2a, &op2b);
+
+ if (code1 != ERROR_MARK && code2 != ERROR_MARK)
+ {
+ tree t = maybe_fold_or_comparisons (boolean_type_node, code1, op1a, op1b,
+ code2, op2a, op2b);
+ if (t)
+ return t;
+ }
+
+ return fold_build2_loc (loc, TRUTH_OR_EXPR, boolean_type_node, c1, c2);
+}
+
+/* Returns either a COND_EXPR or the folded expression if the folded
+ expression is a MIN_EXPR, a MAX_EXPR, an ABS_EXPR,
+ a constant or a SSA_NAME. */
+
+static tree
+fold_build_cond_expr (tree type, tree cond, tree rhs, tree lhs)
+{
+ tree rhs1, lhs1, cond_expr;
+
+ /* If COND is comparison r != 0 and r has boolean type, convert COND
+ to SSA_NAME to accept by vect bool pattern. */
+ if (TREE_CODE (cond) == NE_EXPR)
+ {
+ tree op0 = TREE_OPERAND (cond, 0);
+ tree op1 = TREE_OPERAND (cond, 1);
+ if (TREE_CODE (op0) == SSA_NAME
+ && TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
+ && (integer_zerop (op1)))
+ cond = op0;
+ }
+ cond_expr = fold_ternary (COND_EXPR, type, cond, rhs, lhs);
+
+ if (cond_expr == NULL_TREE)
+ return build3 (COND_EXPR, type, cond, rhs, lhs);
+
+ STRIP_USELESS_TYPE_CONVERSION (cond_expr);
+
+ if (is_gimple_val (cond_expr))
+ return cond_expr;
+
+ if (TREE_CODE (cond_expr) == ABS_EXPR)
+ {
+ rhs1 = TREE_OPERAND (cond_expr, 1);
+ STRIP_USELESS_TYPE_CONVERSION (rhs1);
+ if (is_gimple_val (rhs1))
+ return build1 (ABS_EXPR, type, rhs1);
+ }
+
+ if (TREE_CODE (cond_expr) == MIN_EXPR
+ || TREE_CODE (cond_expr) == MAX_EXPR)
+ {
+ lhs1 = TREE_OPERAND (cond_expr, 0);
+ STRIP_USELESS_TYPE_CONVERSION (lhs1);
+ rhs1 = TREE_OPERAND (cond_expr, 1);
+ STRIP_USELESS_TYPE_CONVERSION (rhs1);
+ if (is_gimple_val (rhs1) && is_gimple_val (lhs1))
+ return build2 (TREE_CODE (cond_expr), type, lhs1, rhs1);
+ }
+ return build3 (COND_EXPR, type, cond, rhs, lhs);
+}
+
+/* Add condition NC to the predicate list of basic block BB. LOOP is
+ the loop to be if-converted. Use predicate of cd-equivalent block
+ for join bb if it exists: we call basic blocks bb1 and bb2
+ cd-equivalent if they are executed under the same condition. */
+
+static inline void
+add_to_predicate_list (class loop *loop, basic_block bb, tree nc)
+{
+ tree bc, *tp;
+ basic_block dom_bb;
+
+ if (is_true_predicate (nc))
+ return;
+
+ /* If dominance tells us this basic block is always executed,
+ don't record any predicates for it. */
+ if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
+ return;
+
+ dom_bb = get_immediate_dominator (CDI_DOMINATORS, bb);
+ /* We use notion of cd equivalence to get simpler predicate for
+ join block, e.g. if join block has 2 predecessors with predicates
+ p1 & p2 and p1 & !p2, we'd like to get p1 for it instead of
+ p1 & p2 | p1 & !p2. */
+ if (dom_bb != loop->header
+ && get_immediate_dominator (CDI_POST_DOMINATORS, dom_bb) == bb)
+ {
+ gcc_assert (flow_bb_inside_loop_p (loop, dom_bb));
+ bc = bb_predicate (dom_bb);
+ if (!is_true_predicate (bc))
+ set_bb_predicate (bb, bc);
+ else
+ gcc_assert (is_true_predicate (bb_predicate (bb)));
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Use predicate of bb#%d for bb#%d\n",
+ dom_bb->index, bb->index);
+ return;
+ }
+
+ if (!is_predicated (bb))
+ bc = nc;
+ else
+ {
+ bc = bb_predicate (bb);
+ bc = fold_or_predicates (EXPR_LOCATION (bc), nc, bc);
+ if (is_true_predicate (bc))
+ {
+ reset_bb_predicate (bb);
+ return;
+ }
+ }
+
+ /* Allow a TRUTH_NOT_EXPR around the main predicate. */
+ if (TREE_CODE (bc) == TRUTH_NOT_EXPR)
+ tp = &TREE_OPERAND (bc, 0);
+ else
+ tp = &bc;
+ if (!is_gimple_condexpr (*tp))
+ {
+ gimple_seq stmts;
+ *tp = force_gimple_operand_1 (*tp, &stmts, is_gimple_condexpr, NULL_TREE);
+ add_bb_predicate_gimplified_stmts (bb, stmts);
+ }
+ set_bb_predicate (bb, bc);
+}
+
+/* Add the condition COND to the previous condition PREV_COND, and add
+ this to the predicate list of the destination of edge E. LOOP is
+ the loop to be if-converted. */
+
+static void
+add_to_dst_predicate_list (class loop *loop, edge e,
+ tree prev_cond, tree cond)
+{
+ if (!flow_bb_inside_loop_p (loop, e->dest))
+ return;
+
+ if (!is_true_predicate (prev_cond))
+ cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
+ prev_cond, cond);
+
+ if (!dominated_by_p (CDI_DOMINATORS, loop->latch, e->dest))
+ add_to_predicate_list (loop, e->dest, cond);
+}
+
+/* Return true if one of the successor edges of BB exits LOOP. */
+
+static bool
+bb_with_exit_edge_p (class loop *loop, basic_block bb)
+{
+ edge e;
+ edge_iterator ei;
+
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ if (loop_exit_edge_p (loop, e))
+ return true;
+
+ return false;
+}
+
+/* Given PHI which has more than two arguments, this function checks if
+ it's if-convertible by degenerating its arguments. Specifically, if
+ below two conditions are satisfied:
+
+ 1) Number of PHI arguments with different values equals to 2 and one
+ argument has the only occurrence.
+ 2) The edge corresponding to the unique argument isn't critical edge.
+
+ Such PHI can be handled as PHIs have only two arguments. For example,
+ below PHI:
+
+ res = PHI <A_1(e1), A_1(e2), A_2(e3)>;
+
+ can be transformed into:
+
+ res = (predicate of e3) ? A_2 : A_1;
+
+ Return TRUE if it is the case, FALSE otherwise. */
+
+static bool
+phi_convertible_by_degenerating_args (gphi *phi)
+{
+ edge e;
+ tree arg, t1 = NULL, t2 = NULL;
+ unsigned int i, i1 = 0, i2 = 0, n1 = 0, n2 = 0;
+ unsigned int num_args = gimple_phi_num_args (phi);
+
+ gcc_assert (num_args > 2);
+
+ for (i = 0; i < num_args; i++)
+ {
+ arg = gimple_phi_arg_def (phi, i);
+ if (t1 == NULL || operand_equal_p (t1, arg, 0))
+ {
+ n1++;
+ i1 = i;
+ t1 = arg;
+ }
+ else if (t2 == NULL || operand_equal_p (t2, arg, 0))
+ {
+ n2++;
+ i2 = i;
+ t2 = arg;
+ }
+ else
+ return false;
+ }
+
+ if (n1 != 1 && n2 != 1)
+ return false;
+
+ /* Check if the edge corresponding to the unique arg is critical. */
+ e = gimple_phi_arg_edge (phi, (n1 == 1) ? i1 : i2);
+ if (EDGE_COUNT (e->src->succs) > 1)
+ return false;
+
+ return true;
+}
+
+/* Return true when PHI is if-convertible. PHI is part of loop LOOP
+ and it belongs to basic block BB. Note at this point, it is sure
+ that PHI is if-convertible. This function updates global variable
+ ANY_COMPLICATED_PHI if PHI is complicated. */
+
+static bool
+if_convertible_phi_p (class loop *loop, basic_block bb, gphi *phi)
+{
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "-------------------------\n");
+ print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
+ }
+
+ if (bb != loop->header
+ && gimple_phi_num_args (phi) > 2
+ && !phi_convertible_by_degenerating_args (phi))
+ any_complicated_phi = true;
+
+ return true;
+}
+
+/* Records the status of a data reference. This struct is attached to
+ each DR->aux field. */
+
+struct ifc_dr {
+ bool rw_unconditionally;
+ bool w_unconditionally;
+ bool written_at_least_once;
+
+ tree rw_predicate;
+ tree w_predicate;
+ tree base_w_predicate;
+};
+
+#define IFC_DR(DR) ((struct ifc_dr *) (DR)->aux)
+#define DR_BASE_W_UNCONDITIONALLY(DR) (IFC_DR (DR)->written_at_least_once)
+#define DR_RW_UNCONDITIONALLY(DR) (IFC_DR (DR)->rw_unconditionally)
+#define DR_W_UNCONDITIONALLY(DR) (IFC_DR (DR)->w_unconditionally)
+
+/* Iterates over DR's and stores refs, DR and base refs, DR pairs in
+ HASH tables. While storing them in HASH table, it checks if the
+ reference is unconditionally read or written and stores that as a flag
+ information. For base reference it checks if it is written atlest once
+ unconditionally and stores it as flag information along with DR.
+ In other words for every data reference A in STMT there exist other
+ accesses to a data reference with the same base with predicates that
+ add up (OR-up) to the true predicate: this ensures that the data
+ reference A is touched (read or written) on every iteration of the
+ if-converted loop. */
+static void
+hash_memrefs_baserefs_and_store_DRs_read_written_info (data_reference_p a)
+{
+
+ data_reference_p *master_dr, *base_master_dr;
+ tree base_ref = DR_BASE_OBJECT (a);
+ innermost_loop_behavior *innermost = &DR_INNERMOST (a);
+ tree ca = bb_predicate (gimple_bb (DR_STMT (a)));
+ bool exist1, exist2;
+
+ master_dr = &innermost_DR_map->get_or_insert (innermost, &exist1);
+ if (!exist1)
+ *master_dr = a;
+
+ if (DR_IS_WRITE (a))
+ {
+ IFC_DR (*master_dr)->w_predicate
+ = fold_or_predicates (UNKNOWN_LOCATION, ca,
+ IFC_DR (*master_dr)->w_predicate);
+ if (is_true_predicate (IFC_DR (*master_dr)->w_predicate))
+ DR_W_UNCONDITIONALLY (*master_dr) = true;
+ }
+ IFC_DR (*master_dr)->rw_predicate
+ = fold_or_predicates (UNKNOWN_LOCATION, ca,
+ IFC_DR (*master_dr)->rw_predicate);
+ if (is_true_predicate (IFC_DR (*master_dr)->rw_predicate))
+ DR_RW_UNCONDITIONALLY (*master_dr) = true;
+
+ if (DR_IS_WRITE (a))
+ {
+ base_master_dr = &baseref_DR_map->get_or_insert (base_ref, &exist2);
+ if (!exist2)
+ *base_master_dr = a;
+ IFC_DR (*base_master_dr)->base_w_predicate
+ = fold_or_predicates (UNKNOWN_LOCATION, ca,
+ IFC_DR (*base_master_dr)->base_w_predicate);
+ if (is_true_predicate (IFC_DR (*base_master_dr)->base_w_predicate))
+ DR_BASE_W_UNCONDITIONALLY (*base_master_dr) = true;
+ }
+}
+
+/* Return TRUE if can prove the index IDX of an array reference REF is
+ within array bound. Return false otherwise. */
+
+static bool
+idx_within_array_bound (tree ref, tree *idx, void *dta)
+{
+ wi::overflow_type overflow;
+ widest_int niter, valid_niter, delta, wi_step;
+ tree ev, init, step;
+ tree low, high;
+ class loop *loop = (class loop*) dta;
+
+ /* Only support within-bound access for array references. */
+ if (TREE_CODE (ref) != ARRAY_REF)
+ return false;
+
+ /* For arrays at the end of the structure, we are not guaranteed that they
+ do not really extend over their declared size. However, for arrays of
+ size greater than one, this is unlikely to be intended. */
+ if (array_at_struct_end_p (ref))
+ return false;
+
+ ev = analyze_scalar_evolution (loop, *idx);
+ ev = instantiate_parameters (loop, ev);
+ init = initial_condition (ev);
+ step = evolution_part_in_loop_num (ev, loop->num);
+
+ if (!init || TREE_CODE (init) != INTEGER_CST
+ || (step && TREE_CODE (step) != INTEGER_CST))
+ return false;
+
+ low = array_ref_low_bound (ref);
+ high = array_ref_up_bound (ref);
+
+ /* The case of nonconstant bounds could be handled, but it would be
+ complicated. */
+ if (TREE_CODE (low) != INTEGER_CST
+ || !high || TREE_CODE (high) != INTEGER_CST)
+ return false;
+
+ /* Check if the intial idx is within bound. */
+ if (wi::to_widest (init) < wi::to_widest (low)
+ || wi::to_widest (init) > wi::to_widest (high))
+ return false;
+
+ /* The idx is always within bound. */
+ if (!step || integer_zerop (step))
+ return true;
+
+ if (!max_loop_iterations (loop, &niter))
+ return false;
+
+ if (wi::to_widest (step) < 0)
+ {
+ delta = wi::to_widest (init) - wi::to_widest (low);
+ wi_step = -wi::to_widest (step);
+ }
+ else
+ {
+ delta = wi::to_widest (high) - wi::to_widest (init);
+ wi_step = wi::to_widest (step);
+ }
+
+ valid_niter = wi::div_floor (delta, wi_step, SIGNED, &overflow);
+ /* The iteration space of idx is within array bound. */
+ if (!overflow && niter <= valid_niter)
+ return true;
+
+ return false;
+}
+
+/* Return TRUE if ref is a within bound array reference. */
+
+static bool
+ref_within_array_bound (gimple *stmt, tree ref)
+{
+ class loop *loop = loop_containing_stmt (stmt);
+
+ gcc_assert (loop != NULL);
+ return for_each_index (&ref, idx_within_array_bound, loop);
+}
+
+
+/* Given a memory reference expression T, return TRUE if base object
+ it refers to is writable. The base object of a memory reference
+ is the main object being referenced, which is returned by function
+ get_base_address. */
+
+static bool
+base_object_writable (tree ref)
+{
+ tree base_tree = get_base_address (ref);
+
+ return (base_tree
+ && DECL_P (base_tree)
+ && decl_binds_to_current_def_p (base_tree)
+ && !TREE_READONLY (base_tree));
+}
+
+/* Return true when the memory references of STMT won't trap in the
+ if-converted code. There are two things that we have to check for:
+
+ - writes to memory occur to writable memory: if-conversion of
+ memory writes transforms the conditional memory writes into
+ unconditional writes, i.e. "if (cond) A[i] = foo" is transformed
+ into "A[i] = cond ? foo : A[i]", and as the write to memory may not
+ be executed at all in the original code, it may be a readonly
+ memory. To check that A is not const-qualified, we check that
+ there exists at least an unconditional write to A in the current
+ function.
+
+ - reads or writes to memory are valid memory accesses for every
+ iteration. To check that the memory accesses are correctly formed
+ and that we are allowed to read and write in these locations, we
+ check that the memory accesses to be if-converted occur at every
+ iteration unconditionally.
+
+ Returns true for the memory reference in STMT, same memory reference
+ is read or written unconditionally atleast once and the base memory
+ reference is written unconditionally once. This is to check reference
+ will not write fault. Also retuns true if the memory reference is
+ unconditionally read once then we are conditionally writing to memory
+ which is defined as read and write and is bound to the definition
+ we are seeing. */
+static bool
+ifcvt_memrefs_wont_trap (gimple *stmt, vec<data_reference_p> drs)
+{
+ /* If DR didn't see a reference here we can't use it to tell
+ whether the ref traps or not. */
+ if (gimple_uid (stmt) == 0)
+ return false;
+
+ data_reference_p *master_dr, *base_master_dr;
+ data_reference_p a = drs[gimple_uid (stmt) - 1];
+
+ tree base = DR_BASE_OBJECT (a);
+ innermost_loop_behavior *innermost = &DR_INNERMOST (a);
+
+ gcc_assert (DR_STMT (a) == stmt);
+ gcc_assert (DR_BASE_ADDRESS (a) || DR_OFFSET (a)
+ || DR_INIT (a) || DR_STEP (a));
+
+ master_dr = innermost_DR_map->get (innermost);
+ gcc_assert (master_dr != NULL);
+
+ base_master_dr = baseref_DR_map->get (base);
+
+ /* If a is unconditionally written to it doesn't trap. */
+ if (DR_W_UNCONDITIONALLY (*master_dr))
+ return true;
+
+ /* If a is unconditionally accessed then ...
+
+ Even a is conditional access, we can treat it as an unconditional
+ one if it's an array reference and all its index are within array
+ bound. */
+ if (DR_RW_UNCONDITIONALLY (*master_dr)
+ || ref_within_array_bound (stmt, DR_REF (a)))
+ {
+ /* an unconditional read won't trap. */
+ if (DR_IS_READ (a))
+ return true;
+
+ /* an unconditionaly write won't trap if the base is written
+ to unconditionally. */
+ if (base_master_dr
+ && DR_BASE_W_UNCONDITIONALLY (*base_master_dr))
+ return flag_store_data_races;
+ /* or the base is known to be not readonly. */
+ else if (base_object_writable (DR_REF (a)))
+ return flag_store_data_races;
+ }
+
+ return false;
+}
+
+/* Return true if STMT could be converted into a masked load or store
+ (conditional load or store based on a mask computed from bb predicate). */
+
+static bool
+ifcvt_can_use_mask_load_store (gimple *stmt)
+{
+ /* Check whether this is a load or store. */
+ tree lhs = gimple_assign_lhs (stmt);
+ bool is_load;
+ tree ref;
+ if (gimple_store_p (stmt))
+ {
+ if (!is_gimple_val (gimple_assign_rhs1 (stmt)))
+ return false;
+ is_load = false;
+ ref = lhs;
+ }
+ else if (gimple_assign_load_p (stmt))
+ {
+ is_load = true;
+ ref = gimple_assign_rhs1 (stmt);
+ }
+ else
+ return false;
+
+ if (may_be_nonaddressable_p (ref))
+ return false;
+
+ /* Mask should be integer mode of the same size as the load/store
+ mode. */
+ machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
+ if (!int_mode_for_mode (mode).exists () || VECTOR_MODE_P (mode))
+ return false;
+
+ if (can_vec_mask_load_store_p (mode, VOIDmode, is_load))
+ return true;
+
+ return false;
+}
+
+/* Return true if STMT could be converted from an operation that is
+ unconditional to one that is conditional on a bb predicate mask. */
+
+static bool
+ifcvt_can_predicate (gimple *stmt)
+{
+ basic_block bb = gimple_bb (stmt);
+
+ if (!(flag_tree_loop_vectorize || bb->loop_father->force_vectorize)
+ || bb->loop_father->dont_vectorize
+ || gimple_has_volatile_ops (stmt))
+ return false;
+
+ if (gimple_assign_single_p (stmt))
+ return ifcvt_can_use_mask_load_store (stmt);
+
+ tree_code code = gimple_assign_rhs_code (stmt);
+ tree lhs_type = TREE_TYPE (gimple_assign_lhs (stmt));
+ tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
+ if (!types_compatible_p (lhs_type, rhs_type))
+ return false;
+ internal_fn cond_fn = get_conditional_internal_fn (code);
+ return (cond_fn != IFN_LAST
+ && vectorized_internal_fn_supported_p (cond_fn, lhs_type));
+}
+
+/* Return true when STMT is if-convertible.
+
+ GIMPLE_ASSIGN statement is not if-convertible if,
+ - it is not movable,
+ - it could trap,
+ - LHS is not var decl. */
+
+static bool
+if_convertible_gimple_assign_stmt_p (gimple *stmt,
+ vec<data_reference_p> refs)
+{
+ tree lhs = gimple_assign_lhs (stmt);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "-------------------------\n");
+ print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
+ }
+
+ if (!is_gimple_reg_type (TREE_TYPE (lhs)))
+ return false;
+
+ /* Some of these constrains might be too conservative. */
+ if (stmt_ends_bb_p (stmt)
+ || gimple_has_volatile_ops (stmt)
+ || (TREE_CODE (lhs) == SSA_NAME
+ && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
+ || gimple_has_side_effects (stmt))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "stmt not suitable for ifcvt\n");
+ return false;
+ }
+
+ /* tree-into-ssa.c uses GF_PLF_1, so avoid it, because
+ in between if_convertible_loop_p and combine_blocks
+ we can perform loop versioning. */
+ gimple_set_plf (stmt, GF_PLF_2, false);
+
+ if ((! gimple_vuse (stmt)
+ || gimple_could_trap_p_1 (stmt, false, false)
+ || ! ifcvt_memrefs_wont_trap (stmt, refs))
+ && gimple_could_trap_p (stmt))
+ {
+ if (ifcvt_can_predicate (stmt))
+ {
+ gimple_set_plf (stmt, GF_PLF_2, true);
+ need_to_predicate = true;
+ return true;
+ }
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "tree could trap...\n");
+ return false;
+ }
+ else if ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
+ || POINTER_TYPE_P (TREE_TYPE (lhs)))
+ && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (lhs))
+ && arith_code_with_undefined_signed_overflow
+ (gimple_assign_rhs_code (stmt)))
+ /* We have to rewrite stmts with undefined overflow. */
+ need_to_rewrite_undefined = true;
+
+ /* When if-converting stores force versioning, likewise if we
+ ended up generating store data races. */
+ if (gimple_vdef (stmt))
+ need_to_predicate = true;
+
+ return true;
+}
+
+/* Return true when STMT is if-convertible.
+
+ A statement is if-convertible if:
+ - it is an if-convertible GIMPLE_ASSIGN,
+ - it is a GIMPLE_LABEL or a GIMPLE_COND,
+ - it is builtins call. */
+
+static bool
+if_convertible_stmt_p (gimple *stmt, vec<data_reference_p> refs)
+{
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_LABEL:
+ case GIMPLE_DEBUG:
+ case GIMPLE_COND:
+ return true;
+
+ case GIMPLE_ASSIGN:
+ return if_convertible_gimple_assign_stmt_p (stmt, refs);
+
+ case GIMPLE_CALL:
+ {
+ tree fndecl = gimple_call_fndecl (stmt);
+ if (fndecl)
+ {
+ int flags = gimple_call_flags (stmt);
+ if ((flags & ECF_CONST)
+ && !(flags & ECF_LOOPING_CONST_OR_PURE)
+ /* We can only vectorize some builtins at the moment,
+ so restrict if-conversion to those. */
+ && fndecl_built_in_p (fndecl))
+ return true;
+ }
+ return false;
+ }
+
+ default:
+ /* Don't know what to do with 'em so don't do anything. */
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "don't know what to do\n");
+ print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
+ }
+ return false;
+ }
+}
+
+/* Assumes that BB has more than 1 predecessors.
+ Returns false if at least one successor is not on critical edge
+ and true otherwise. */
+
+static inline bool
+all_preds_critical_p (basic_block bb)
+{
+ edge e;
+ edge_iterator ei;
+
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ if (EDGE_COUNT (e->src->succs) == 1)
+ return false;
+ return true;
+}
+
+/* Return true when BB is if-convertible. This routine does not check
+ basic block's statements and phis.
+
+ A basic block is not if-convertible if:
+ - it is non-empty and it is after the exit block (in BFS order),
+ - it is after the exit block but before the latch,
+ - its edges are not normal.
+
+ EXIT_BB is the basic block containing the exit of the LOOP. BB is
+ inside LOOP. */
+
+static bool
+if_convertible_bb_p (class loop *loop, basic_block bb, basic_block exit_bb)
+{
+ edge e;
+ edge_iterator ei;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "----------[%d]-------------\n", bb->index);
+
+ if (EDGE_COUNT (bb->succs) > 2)
+ return false;
+
+ gimple *last = last_stmt (bb);
+ if (gcall *call = safe_dyn_cast <gcall *> (last))
+ if (gimple_call_ctrl_altering_p (call))
+ return false;
+
+ if (exit_bb)
+ {
+ if (bb != loop->latch)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "basic block after exit bb but before latch\n");
+ return false;
+ }
+ else if (!empty_block_p (bb))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "non empty basic block after exit bb\n");
+ return false;
+ }
+ else if (bb == loop->latch
+ && bb != exit_bb
+ && !dominated_by_p (CDI_DOMINATORS, bb, exit_bb))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "latch is not dominated by exit_block\n");
+ return false;
+ }
+ }
+
+ /* Be less adventurous and handle only normal edges. */
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ if (e->flags & (EDGE_EH | EDGE_ABNORMAL | EDGE_IRREDUCIBLE_LOOP))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Difficult to handle edges\n");
+ return false;
+ }
+
+ return true;
+}
+
+/* Return true when all predecessor blocks of BB are visited. The
+ VISITED bitmap keeps track of the visited blocks. */
+
+static bool
+pred_blocks_visited_p (basic_block bb, bitmap *visited)
+{
+ edge e;
+ edge_iterator ei;
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ if (!bitmap_bit_p (*visited, e->src->index))
+ return false;
+
+ return true;
+}
+
+/* Get body of a LOOP in suitable order for if-conversion. It is
+ caller's responsibility to deallocate basic block list.
+ If-conversion suitable order is, breadth first sort (BFS) order
+ with an additional constraint: select a block only if all its
+ predecessors are already selected. */
+
+static basic_block *
+get_loop_body_in_if_conv_order (const class loop *loop)
+{
+ basic_block *blocks, *blocks_in_bfs_order;
+ basic_block bb;
+ bitmap visited;
+ unsigned int index = 0;
+ unsigned int visited_count = 0;
+
+ gcc_assert (loop->num_nodes);
+ gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
+
+ blocks = XCNEWVEC (basic_block, loop->num_nodes);
+ visited = BITMAP_ALLOC (NULL);
+
+ blocks_in_bfs_order = get_loop_body_in_bfs_order (loop);
+
+ index = 0;
+ while (index < loop->num_nodes)
+ {
+ bb = blocks_in_bfs_order [index];
+
+ if (bb->flags & BB_IRREDUCIBLE_LOOP)
+ {
+ free (blocks_in_bfs_order);
+ BITMAP_FREE (visited);
+ free (blocks);
+ return NULL;
+ }
+
+ if (!bitmap_bit_p (visited, bb->index))
+ {
+ if (pred_blocks_visited_p (bb, &visited)
+ || bb == loop->header)
+ {
+ /* This block is now visited. */
+ bitmap_set_bit (visited, bb->index);
+ blocks[visited_count++] = bb;
+ }
+ }
+
+ index++;
+
+ if (index == loop->num_nodes
+ && visited_count != loop->num_nodes)
+ /* Not done yet. */
+ index = 0;
+ }
+ free (blocks_in_bfs_order);
+ BITMAP_FREE (visited);
+ return blocks;
+}
+
+/* Returns true when the analysis of the predicates for all the basic
+ blocks in LOOP succeeded.
+
+ predicate_bbs first allocates the predicates of the basic blocks.
+ These fields are then initialized with the tree expressions
+ representing the predicates under which a basic block is executed
+ in the LOOP. As the loop->header is executed at each iteration, it
+ has the "true" predicate. Other statements executed under a
+ condition are predicated with that condition, for example
+
+ | if (x)
+ | S1;
+ | else
+ | S2;
+
+ S1 will be predicated with "x", and
+ S2 will be predicated with "!x". */
+
+static void
+predicate_bbs (loop_p loop)
+{
+ unsigned int i;
+
+ for (i = 0; i < loop->num_nodes; i++)
+ init_bb_predicate (ifc_bbs[i]);
+
+ for (i = 0; i < loop->num_nodes; i++)
+ {
+ basic_block bb = ifc_bbs[i];
+ tree cond;
+ gimple *stmt;
+
+ /* The loop latch and loop exit block are always executed and
+ have no extra conditions to be processed: skip them. */
+ if (bb == loop->latch
+ || bb_with_exit_edge_p (loop, bb))
+ {
+ reset_bb_predicate (bb);
+ continue;
+ }
+
+ cond = bb_predicate (bb);
+ stmt = last_stmt (bb);
+ if (stmt && gimple_code (stmt) == GIMPLE_COND)
+ {
+ tree c2;
+ edge true_edge, false_edge;
+ location_t loc = gimple_location (stmt);
+ tree c = build2_loc (loc, gimple_cond_code (stmt),
+ boolean_type_node,
+ gimple_cond_lhs (stmt),
+ gimple_cond_rhs (stmt));
+
+ /* Add new condition into destination's predicate list. */
+ extract_true_false_edges_from_block (gimple_bb (stmt),
+ &true_edge, &false_edge);
+
+ /* If C is true, then TRUE_EDGE is taken. */
+ add_to_dst_predicate_list (loop, true_edge, unshare_expr (cond),
+ unshare_expr (c));
+
+ /* If C is false, then FALSE_EDGE is taken. */
+ c2 = build1_loc (loc, TRUTH_NOT_EXPR, boolean_type_node,
+ unshare_expr (c));
+ add_to_dst_predicate_list (loop, false_edge,
+ unshare_expr (cond), c2);
+
+ cond = NULL_TREE;
+ }
+
+ /* If current bb has only one successor, then consider it as an
+ unconditional goto. */
+ if (single_succ_p (bb))
+ {
+ basic_block bb_n = single_succ (bb);
+
+ /* The successor bb inherits the predicate of its
+ predecessor. If there is no predicate in the predecessor
+ bb, then consider the successor bb as always executed. */
+ if (cond == NULL_TREE)
+ cond = boolean_true_node;
+
+ add_to_predicate_list (loop, bb_n, cond);
+ }
+ }
+
+ /* The loop header is always executed. */
+ reset_bb_predicate (loop->header);
+ gcc_assert (bb_predicate_gimplified_stmts (loop->header) == NULL
+ && bb_predicate_gimplified_stmts (loop->latch) == NULL);
+}
+
+/* Build region by adding loop pre-header and post-header blocks. */
+
+static vec<basic_block>
+build_region (class loop *loop)
+{
+ vec<basic_block> region = vNULL;
+ basic_block exit_bb = NULL;
+
+ gcc_assert (ifc_bbs);
+ /* The first element is loop pre-header. */
+ region.safe_push (loop_preheader_edge (loop)->src);
+
+ for (unsigned int i = 0; i < loop->num_nodes; i++)
+ {
+ basic_block bb = ifc_bbs[i];
+ region.safe_push (bb);
+ /* Find loop postheader. */
+ edge e;
+ edge_iterator ei;
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ if (loop_exit_edge_p (loop, e))
+ {
+ exit_bb = e->dest;
+ break;
+ }
+ }
+ /* The last element is loop post-header. */
+ gcc_assert (exit_bb);
+ region.safe_push (exit_bb);
+ return region;
+}
+
+/* Return true when LOOP is if-convertible. This is a helper function
+ for if_convertible_loop_p. REFS and DDRS are initialized and freed
+ in if_convertible_loop_p. */
+
+static bool
+if_convertible_loop_p_1 (class loop *loop, vec<data_reference_p> *refs)
+{
+ unsigned int i;
+ basic_block exit_bb = NULL;
+ vec<basic_block> region;
+
+ if (find_data_references_in_loop (loop, refs) == chrec_dont_know)
+ return false;
+
+ calculate_dominance_info (CDI_DOMINATORS);
+
+ /* Allow statements that can be handled during if-conversion. */
+ ifc_bbs = get_loop_body_in_if_conv_order (loop);
+ if (!ifc_bbs)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Irreducible loop\n");
+ return false;
+ }
+
+ for (i = 0; i < loop->num_nodes; i++)
+ {
+ basic_block bb = ifc_bbs[i];
+
+ if (!if_convertible_bb_p (loop, bb, exit_bb))
+ return false;
+
+ if (bb_with_exit_edge_p (loop, bb))
+ exit_bb = bb;
+ }
+
+ for (i = 0; i < loop->num_nodes; i++)
+ {
+ basic_block bb = ifc_bbs[i];
+ gimple_stmt_iterator gsi;
+
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ switch (gimple_code (gsi_stmt (gsi)))
+ {
+ case GIMPLE_LABEL:
+ case GIMPLE_ASSIGN:
+ case GIMPLE_CALL:
+ case GIMPLE_DEBUG:
+ case GIMPLE_COND:
+ gimple_set_uid (gsi_stmt (gsi), 0);
+ break;
+ default:
+ return false;
+ }
+ }
+
+ data_reference_p dr;
+
+ innermost_DR_map
+ = new hash_map<innermost_loop_behavior_hash, data_reference_p>;
+ baseref_DR_map = new hash_map<tree_operand_hash, data_reference_p>;
+
+ /* Compute post-dominator tree locally. */
+ region = build_region (loop);
+ calculate_dominance_info_for_region (CDI_POST_DOMINATORS, region);
+
+ predicate_bbs (loop);
+
+ /* Free post-dominator tree since it is not used after predication. */
+ free_dominance_info_for_region (cfun, CDI_POST_DOMINATORS, region);
+ region.release ();
+
+ for (i = 0; refs->iterate (i, &dr); i++)
+ {
+ tree ref = DR_REF (dr);
+
+ dr->aux = XNEW (struct ifc_dr);
+ DR_BASE_W_UNCONDITIONALLY (dr) = false;
+ DR_RW_UNCONDITIONALLY (dr) = false;
+ DR_W_UNCONDITIONALLY (dr) = false;
+ IFC_DR (dr)->rw_predicate = boolean_false_node;
+ IFC_DR (dr)->w_predicate = boolean_false_node;
+ IFC_DR (dr)->base_w_predicate = boolean_false_node;
+ if (gimple_uid (DR_STMT (dr)) == 0)
+ gimple_set_uid (DR_STMT (dr), i + 1);
+
+ /* If DR doesn't have innermost loop behavior or it's a compound
+ memory reference, we synthesize its innermost loop behavior
+ for hashing. */
+ if (TREE_CODE (ref) == COMPONENT_REF
+ || TREE_CODE (ref) == IMAGPART_EXPR
+ || TREE_CODE (ref) == REALPART_EXPR
+ || !(DR_BASE_ADDRESS (dr) || DR_OFFSET (dr)
+ || DR_INIT (dr) || DR_STEP (dr)))
+ {
+ while (TREE_CODE (ref) == COMPONENT_REF
+ || TREE_CODE (ref) == IMAGPART_EXPR
+ || TREE_CODE (ref) == REALPART_EXPR)
+ ref = TREE_OPERAND (ref, 0);
+
+ memset (&DR_INNERMOST (dr), 0, sizeof (DR_INNERMOST (dr)));
+ DR_BASE_ADDRESS (dr) = ref;
+ }
+ hash_memrefs_baserefs_and_store_DRs_read_written_info (dr);
+ }
+
+ for (i = 0; i < loop->num_nodes; i++)
+ {
+ basic_block bb = ifc_bbs[i];
+ gimple_stmt_iterator itr;
+
+ /* Check the if-convertibility of statements in predicated BBs. */
+ if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
+ for (itr = gsi_start_bb (bb); !gsi_end_p (itr); gsi_next (&itr))
+ if (!if_convertible_stmt_p (gsi_stmt (itr), *refs))
+ return false;
+ }
+
+ /* Checking PHIs needs to be done after stmts, as the fact whether there
+ are any masked loads or stores affects the tests. */
+ for (i = 0; i < loop->num_nodes; i++)
+ {
+ basic_block bb = ifc_bbs[i];
+ gphi_iterator itr;
+
+ for (itr = gsi_start_phis (bb); !gsi_end_p (itr); gsi_next (&itr))
+ if (!if_convertible_phi_p (loop, bb, itr.phi ()))
+ return false;
+ }
+
+ if (dump_file)
+ fprintf (dump_file, "Applying if-conversion\n");
+
+ return true;
+}
+
+/* Return true when LOOP is if-convertible.
+ LOOP is if-convertible if:
+ - it is innermost,
+ - it has two or more basic blocks,
+ - it has only one exit,
+ - loop header is not the exit edge,
+ - if its basic blocks and phi nodes are if convertible. */
+
+static bool
+if_convertible_loop_p (class loop *loop)
+{
+ edge e;
+ edge_iterator ei;
+ bool res = false;
+ vec<data_reference_p> refs;
+
+ /* Handle only innermost loop. */
+ if (!loop || loop->inner)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "not innermost loop\n");
+ return false;
+ }
+
+ /* If only one block, no need for if-conversion. */
+ if (loop->num_nodes <= 2)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "less than 2 basic blocks\n");
+ return false;
+ }
+
+ /* More than one loop exit is too much to handle. */
+ if (!single_exit (loop))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "multiple exits\n");
+ return false;
+ }
+
+ /* If one of the loop header's edge is an exit edge then do not
+ apply if-conversion. */
+ FOR_EACH_EDGE (e, ei, loop->header->succs)
+ if (loop_exit_edge_p (loop, e))
+ return false;
+
+ refs.create (5);
+ res = if_convertible_loop_p_1 (loop, &refs);
+
+ data_reference_p dr;
+ unsigned int i;
+ for (i = 0; refs.iterate (i, &dr); i++)
+ free (dr->aux);
+
+ free_data_refs (refs);
+
+ delete innermost_DR_map;
+ innermost_DR_map = NULL;
+
+ delete baseref_DR_map;
+ baseref_DR_map = NULL;
+
+ return res;
+}
+
+/* Return reduc_1 if has_nop.
+
+ if (...)
+ tmp1 = (unsigned type) reduc_1;
+ tmp2 = tmp1 + rhs2;
+ reduc_3 = (signed type) tmp2. */
+static tree
+strip_nop_cond_scalar_reduction (bool has_nop, tree op)
+{
+ if (!has_nop)
+ return op;
+
+ if (TREE_CODE (op) != SSA_NAME)
+ return NULL_TREE;
+
+ gassign *stmt = safe_dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op));
+ if (!stmt
+ || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt))
+ || !tree_nop_conversion_p (TREE_TYPE (op), TREE_TYPE
+ (gimple_assign_rhs1 (stmt))))
+ return NULL_TREE;
+
+ return gimple_assign_rhs1 (stmt);
+}
+
+/* Returns true if def-stmt for phi argument ARG is simple increment/decrement
+ which is in predicated basic block.
+ In fact, the following PHI pattern is searching:
+ loop-header:
+ reduc_1 = PHI <..., reduc_2>
+ ...
+ if (...)
+ reduc_3 = ...
+ reduc_2 = PHI <reduc_1, reduc_3>
+
+ ARG_0 and ARG_1 are correspondent PHI arguments.
+ REDUC, OP0 and OP1 contain reduction stmt and its operands.
+ EXTENDED is true if PHI has > 2 arguments. */
+
+static bool
+is_cond_scalar_reduction (gimple *phi, gimple **reduc, tree arg_0, tree arg_1,
+ tree *op0, tree *op1, bool extended, bool* has_nop,
+ gimple **nop_reduc)
+{
+ tree lhs, r_op1, r_op2, r_nop1, r_nop2;
+ gimple *stmt;
+ gimple *header_phi = NULL;
+ enum tree_code reduction_op;
+ basic_block bb = gimple_bb (phi);
+ class loop *loop = bb->loop_father;
+ edge latch_e = loop_latch_edge (loop);
+ imm_use_iterator imm_iter;
+ use_operand_p use_p;
+ edge e;
+ edge_iterator ei;
+ bool result = *has_nop = false;
+ if (TREE_CODE (arg_0) != SSA_NAME || TREE_CODE (arg_1) != SSA_NAME)
+ return false;
+
+ if (!extended && gimple_code (SSA_NAME_DEF_STMT (arg_0)) == GIMPLE_PHI)
+ {
+ lhs = arg_1;
+ header_phi = SSA_NAME_DEF_STMT (arg_0);
+ stmt = SSA_NAME_DEF_STMT (arg_1);
+ }
+ else if (gimple_code (SSA_NAME_DEF_STMT (arg_1)) == GIMPLE_PHI)
+ {
+ lhs = arg_0;
+ header_phi = SSA_NAME_DEF_STMT (arg_1);
+ stmt = SSA_NAME_DEF_STMT (arg_0);
+ }
+ else
+ return false;
+ if (gimple_bb (header_phi) != loop->header)
+ return false;
+
+ if (PHI_ARG_DEF_FROM_EDGE (header_phi, latch_e) != PHI_RESULT (phi))
+ return false;
+
+ if (gimple_code (stmt) != GIMPLE_ASSIGN
+ || gimple_has_volatile_ops (stmt))
+ return false;
+
+ if (!flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
+ return false;
+
+ if (!is_predicated (gimple_bb (stmt)))
+ return false;
+
+ /* Check that stmt-block is predecessor of phi-block. */
+ FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
+ if (e->dest == bb)
+ {
+ result = true;
+ break;
+ }
+ if (!result)
+ return false;
+
+ if (!has_single_use (lhs))
+ return false;
+
+ reduction_op = gimple_assign_rhs_code (stmt);
+
+ /* Catch something like below
+
+ loop-header:
+ reduc_1 = PHI <..., reduc_2>
+ ...
+ if (...)
+ tmp1 = (unsigned type) reduc_1;
+ tmp2 = tmp1 + rhs2;
+ reduc_3 = (signed type) tmp2;
+
+ reduc_2 = PHI <reduc_1, reduc_3>
+
+ and convert to
+
+ reduc_2 = PHI <0, reduc_3>
+ tmp1 = (unsigned type)reduce_1;
+ ifcvt = cond_expr ? rhs2 : 0
+ tmp2 = tmp1 +/- ifcvt;
+ reduce_1 = (signed type)tmp2; */
+
+ if (CONVERT_EXPR_CODE_P (reduction_op))
+ {
+ lhs = gimple_assign_rhs1 (stmt);
+ if (TREE_CODE (lhs) != SSA_NAME
+ || !has_single_use (lhs))
+ return false;
+
+ *nop_reduc = stmt;
+ stmt = SSA_NAME_DEF_STMT (lhs);
+ if (gimple_bb (stmt) != gimple_bb (*nop_reduc)
+ || !is_gimple_assign (stmt))
+ return false;
+
+ *has_nop = true;
+ reduction_op = gimple_assign_rhs_code (stmt);
+ }
+
+ if (reduction_op != PLUS_EXPR
+ && reduction_op != MINUS_EXPR
+ && reduction_op != BIT_IOR_EXPR
+ && reduction_op != BIT_XOR_EXPR
+ && reduction_op != BIT_AND_EXPR)
+ return false;
+ r_op1 = gimple_assign_rhs1 (stmt);
+ r_op2 = gimple_assign_rhs2 (stmt);
+
+ r_nop1 = strip_nop_cond_scalar_reduction (*has_nop, r_op1);
+ r_nop2 = strip_nop_cond_scalar_reduction (*has_nop, r_op2);
+
+ /* Make R_OP1 to hold reduction variable. */
+ if (r_nop2 == PHI_RESULT (header_phi)
+ && commutative_tree_code (reduction_op))
+ {
+ std::swap (r_op1, r_op2);
+ std::swap (r_nop1, r_nop2);
+ }
+ else if (r_nop1 != PHI_RESULT (header_phi))
+ return false;
+
+ if (*has_nop)
+ {
+ /* Check that R_NOP1 is used in nop_stmt or in PHI only. */
+ FOR_EACH_IMM_USE_FAST (use_p, imm_iter, r_nop1)
+ {
+ gimple *use_stmt = USE_STMT (use_p);
+ if (is_gimple_debug (use_stmt))
+ continue;
+ if (use_stmt == SSA_NAME_DEF_STMT (r_op1))
+ continue;
+ if (use_stmt != phi)
+ return false;
+ }
+ }
+
+ /* Check that R_OP1 is used in reduction stmt or in PHI only. */
+ FOR_EACH_IMM_USE_FAST (use_p, imm_iter, r_op1)
+ {
+ gimple *use_stmt = USE_STMT (use_p);
+ if (is_gimple_debug (use_stmt))
+ continue;
+ if (use_stmt == stmt)
+ continue;
+ if (gimple_code (use_stmt) != GIMPLE_PHI)
+ return false;
+ }
+
+ *op0 = r_op1; *op1 = r_op2;
+ *reduc = stmt;
+ return true;
+}
+
+/* Converts conditional scalar reduction into unconditional form, e.g.
+ bb_4
+ if (_5 != 0) goto bb_5 else goto bb_6
+ end_bb_4
+ bb_5
+ res_6 = res_13 + 1;
+ end_bb_5
+ bb_6
+ # res_2 = PHI <res_13(4), res_6(5)>
+ end_bb_6
+
+ will be converted into sequence
+ _ifc__1 = _5 != 0 ? 1 : 0;
+ res_2 = res_13 + _ifc__1;
+ Argument SWAP tells that arguments of conditional expression should be
+ swapped.
+ Returns rhs of resulting PHI assignment. */
+
+static tree
+convert_scalar_cond_reduction (gimple *reduc, gimple_stmt_iterator *gsi,
+ tree cond, tree op0, tree op1, bool swap,
+ bool has_nop, gimple* nop_reduc)
+{
+ gimple_stmt_iterator stmt_it;
+ gimple *new_assign;
+ tree rhs;
+ tree rhs1 = gimple_assign_rhs1 (reduc);
+ tree tmp = make_temp_ssa_name (TREE_TYPE (rhs1), NULL, "_ifc_");
+ tree c;
+ enum tree_code reduction_op = gimple_assign_rhs_code (reduc);
+ tree op_nochange = neutral_op_for_reduction (TREE_TYPE (rhs1), reduction_op, NULL);
+ gimple_seq stmts = NULL;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Found cond scalar reduction.\n");
+ print_gimple_stmt (dump_file, reduc, 0, TDF_SLIM);
+ }
+
+ /* Build cond expression using COND and constant operand
+ of reduction rhs. */
+ c = fold_build_cond_expr (TREE_TYPE (rhs1),
+ unshare_expr (cond),
+ swap ? op_nochange : op1,
+ swap ? op1 : op_nochange);
+
+ /* Create assignment stmt and insert it at GSI. */
+ new_assign = gimple_build_assign (tmp, c);
+ gsi_insert_before (gsi, new_assign, GSI_SAME_STMT);
+ /* Build rhs for unconditional increment/decrement/logic_operation. */
+ rhs = gimple_build (&stmts, reduction_op,
+ TREE_TYPE (rhs1), op0, tmp);
+
+ if (has_nop)
+ {
+ rhs = gimple_convert (&stmts,
+ TREE_TYPE (gimple_assign_lhs (nop_reduc)), rhs);
+ stmt_it = gsi_for_stmt (nop_reduc);
+ gsi_remove (&stmt_it, true);
+ release_defs (nop_reduc);
+ }
+ gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
+
+ /* Delete original reduction stmt. */
+ stmt_it = gsi_for_stmt (reduc);
+ gsi_remove (&stmt_it, true);
+ release_defs (reduc);
+ return rhs;
+}
+
+/* Produce condition for all occurrences of ARG in PHI node. */
+
+static tree
+gen_phi_arg_condition (gphi *phi, vec<int> *occur,
+ gimple_stmt_iterator *gsi)
+{
+ int len;
+ int i;
+ tree cond = NULL_TREE;
+ tree c;
+ edge e;
+
+ len = occur->length ();
+ gcc_assert (len > 0);
+ for (i = 0; i < len; i++)
+ {
+ e = gimple_phi_arg_edge (phi, (*occur)[i]);
+ c = bb_predicate (e->src);
+ if (is_true_predicate (c))
+ {
+ cond = c;
+ break;
+ }
+ c = force_gimple_operand_gsi_1 (gsi, unshare_expr (c),
+ is_gimple_condexpr, NULL_TREE,
+ true, GSI_SAME_STMT);
+ if (cond != NULL_TREE)
+ {
+ /* Must build OR expression. */
+ cond = fold_or_predicates (EXPR_LOCATION (c), c, cond);
+ cond = force_gimple_operand_gsi_1 (gsi, unshare_expr (cond),
+ is_gimple_condexpr, NULL_TREE,
+ true, GSI_SAME_STMT);
+ }
+ else
+ cond = c;
+ }
+ gcc_assert (cond != NULL_TREE);
+ return cond;
+}
+
+/* Local valueization callback that follows all-use SSA edges. */
+
+static tree
+ifcvt_follow_ssa_use_edges (tree val)
+{
+ return val;
+}
+
+/* Replace a scalar PHI node with a COND_EXPR using COND as condition.
+ This routine can handle PHI nodes with more than two arguments.
+
+ For example,
+ S1: A = PHI <x1(1), x2(5)>
+ is converted into,
+ S2: A = cond ? x1 : x2;
+
+ The generated code is inserted at GSI that points to the top of
+ basic block's statement list.
+ If PHI node has more than two arguments a chain of conditional
+ expression is produced. */
+
+
+static void
+predicate_scalar_phi (gphi *phi, gimple_stmt_iterator *gsi)
+{
+ gimple *new_stmt = NULL, *reduc, *nop_reduc;
+ tree rhs, res, arg0, arg1, op0, op1, scev;
+ tree cond;
+ unsigned int index0;
+ unsigned int max, args_len;
+ edge e;
+ basic_block bb;
+ unsigned int i;
+ bool has_nop;
+
+ res = gimple_phi_result (phi);
+ if (virtual_operand_p (res))
+ return;
+
+ if ((rhs = degenerate_phi_result (phi))
+ || ((scev = analyze_scalar_evolution (gimple_bb (phi)->loop_father,
+ res))
+ && !chrec_contains_undetermined (scev)
+ && scev != res
+ && (rhs = gimple_phi_arg_def (phi, 0))))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Degenerate phi!\n");
+ print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
+ }
+ new_stmt = gimple_build_assign (res, rhs);
+ gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
+ update_stmt (new_stmt);
+ return;
+ }
+
+ bb = gimple_bb (phi);
+ if (EDGE_COUNT (bb->preds) == 2)
+ {
+ /* Predicate ordinary PHI node with 2 arguments. */
+ edge first_edge, second_edge;
+ basic_block true_bb;
+ first_edge = EDGE_PRED (bb, 0);
+ second_edge = EDGE_PRED (bb, 1);
+ cond = bb_predicate (first_edge->src);
+ if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
+ std::swap (first_edge, second_edge);
+ if (EDGE_COUNT (first_edge->src->succs) > 1)
+ {
+ cond = bb_predicate (second_edge->src);
+ if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
+ cond = TREE_OPERAND (cond, 0);
+ else
+ first_edge = second_edge;
+ }
+ else
+ cond = bb_predicate (first_edge->src);
+ /* Gimplify the condition to a valid cond-expr conditonal operand. */
+ cond = force_gimple_operand_gsi_1 (gsi, unshare_expr (cond),
+ is_gimple_condexpr, NULL_TREE,
+ true, GSI_SAME_STMT);
+ true_bb = first_edge->src;
+ if (EDGE_PRED (bb, 1)->src == true_bb)
+ {
+ arg0 = gimple_phi_arg_def (phi, 1);
+ arg1 = gimple_phi_arg_def (phi, 0);
+ }
+ else
+ {
+ arg0 = gimple_phi_arg_def (phi, 0);
+ arg1 = gimple_phi_arg_def (phi, 1);
+ }
+ if (is_cond_scalar_reduction (phi, &reduc, arg0, arg1,
+ &op0, &op1, false, &has_nop,
+ &nop_reduc))
+ {
+ /* Convert reduction stmt into vectorizable form. */
+ rhs = convert_scalar_cond_reduction (reduc, gsi, cond, op0, op1,
+ true_bb != gimple_bb (reduc),
+ has_nop, nop_reduc);
+ redundant_ssa_names.safe_push (std::make_pair (res, rhs));
+ }
+ else
+ /* Build new RHS using selected condition and arguments. */
+ rhs = fold_build_cond_expr (TREE_TYPE (res), unshare_expr (cond),
+ arg0, arg1);
+ new_stmt = gimple_build_assign (res, rhs);
+ gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
+ gimple_stmt_iterator new_gsi = gsi_for_stmt (new_stmt);
+ if (fold_stmt (&new_gsi, ifcvt_follow_ssa_use_edges))
+ {
+ new_stmt = gsi_stmt (new_gsi);
+ update_stmt (new_stmt);
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "new phi replacement stmt\n");
+ print_gimple_stmt (dump_file, new_stmt, 0, TDF_SLIM);
+ }
+ return;
+ }
+
+ /* Create hashmap for PHI node which contain vector of argument indexes
+ having the same value. */
+ bool swap = false;
+ hash_map<tree_operand_hash, auto_vec<int> > phi_arg_map;
+ unsigned int num_args = gimple_phi_num_args (phi);
+ int max_ind = -1;
+ /* Vector of different PHI argument values. */
+ auto_vec<tree> args (num_args);
+
+ /* Compute phi_arg_map. */
+ for (i = 0; i < num_args; i++)
+ {
+ tree arg;
+
+ arg = gimple_phi_arg_def (phi, i);
+ if (!phi_arg_map.get (arg))
+ args.quick_push (arg);
+ phi_arg_map.get_or_insert (arg).safe_push (i);
+ }
+
+ /* Determine element with max number of occurrences. */
+ max_ind = -1;
+ max = 1;
+ args_len = args.length ();
+ for (i = 0; i < args_len; i++)
+ {
+ unsigned int len;
+ if ((len = phi_arg_map.get (args[i])->length ()) > max)
+ {
+ max_ind = (int) i;
+ max = len;
+ }
+ }
+
+ /* Put element with max number of occurences to the end of ARGS. */
+ if (max_ind != -1 && max_ind +1 != (int) args_len)
+ std::swap (args[args_len - 1], args[max_ind]);
+
+ /* Handle one special case when number of arguments with different values
+ is equal 2 and one argument has the only occurrence. Such PHI can be
+ handled as if would have only 2 arguments. */
+ if (args_len == 2 && phi_arg_map.get (args[0])->length () == 1)
+ {
+ vec<int> *indexes;
+ indexes = phi_arg_map.get (args[0]);
+ index0 = (*indexes)[0];
+ arg0 = args[0];
+ arg1 = args[1];
+ e = gimple_phi_arg_edge (phi, index0);
+ cond = bb_predicate (e->src);
+ if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
+ {
+ swap = true;
+ cond = TREE_OPERAND (cond, 0);
+ }
+ /* Gimplify the condition to a valid cond-expr conditonal operand. */
+ cond = force_gimple_operand_gsi_1 (gsi, unshare_expr (cond),
+ is_gimple_condexpr, NULL_TREE,
+ true, GSI_SAME_STMT);
+ if (!(is_cond_scalar_reduction (phi, &reduc, arg0 , arg1,
+ &op0, &op1, true, &has_nop, &nop_reduc)))
+ rhs = fold_build_cond_expr (TREE_TYPE (res), unshare_expr (cond),
+ swap? arg1 : arg0,
+ swap? arg0 : arg1);
+ else
+ {
+ /* Convert reduction stmt into vectorizable form. */
+ rhs = convert_scalar_cond_reduction (reduc, gsi, cond, op0, op1,
+ swap,has_nop, nop_reduc);
+ redundant_ssa_names.safe_push (std::make_pair (res, rhs));
+ }
+ new_stmt = gimple_build_assign (res, rhs);
+ gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
+ update_stmt (new_stmt);
+ }
+ else
+ {
+ /* Common case. */
+ vec<int> *indexes;
+ tree type = TREE_TYPE (gimple_phi_result (phi));
+ tree lhs;
+ arg1 = args[1];
+ for (i = 0; i < args_len; i++)
+ {
+ arg0 = args[i];
+ indexes = phi_arg_map.get (args[i]);
+ if (i != args_len - 1)
+ lhs = make_temp_ssa_name (type, NULL, "_ifc_");
+ else
+ lhs = res;
+ cond = gen_phi_arg_condition (phi, indexes, gsi);
+ rhs = fold_build_cond_expr (type, unshare_expr (cond),
+ arg0, arg1);
+ new_stmt = gimple_build_assign (lhs, rhs);
+ gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
+ update_stmt (new_stmt);
+ arg1 = lhs;
+ }
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "new extended phi replacement stmt\n");
+ print_gimple_stmt (dump_file, new_stmt, 0, TDF_SLIM);
+ }
+}
+
+/* Replaces in LOOP all the scalar phi nodes other than those in the
+ LOOP->header block with conditional modify expressions. */
+
+static void
+predicate_all_scalar_phis (class loop *loop)
+{
+ basic_block bb;
+ unsigned int orig_loop_num_nodes = loop->num_nodes;
+ unsigned int i;
+
+ for (i = 1; i < orig_loop_num_nodes; i++)
+ {
+ gphi *phi;
+ gimple_stmt_iterator gsi;
+ gphi_iterator phi_gsi;
+ bb = ifc_bbs[i];
+
+ if (bb == loop->header)
+ continue;
+
+ phi_gsi = gsi_start_phis (bb);
+ if (gsi_end_p (phi_gsi))
+ continue;
+
+ gsi = gsi_after_labels (bb);
+ while (!gsi_end_p (phi_gsi))
+ {
+ phi = phi_gsi.phi ();
+ if (virtual_operand_p (gimple_phi_result (phi)))
+ gsi_next (&phi_gsi);
+ else
+ {
+ predicate_scalar_phi (phi, &gsi);
+ remove_phi_node (&phi_gsi, false);
+ }
+ }
+ }
+}
+
+/* Insert in each basic block of LOOP the statements produced by the
+ gimplification of the predicates. */
+
+static void
+insert_gimplified_predicates (loop_p loop)
+{
+ unsigned int i;
+
+ for (i = 0; i < loop->num_nodes; i++)
+ {
+ basic_block bb = ifc_bbs[i];
+ gimple_seq stmts;
+ if (!is_predicated (bb))
+ gcc_assert (bb_predicate_gimplified_stmts (bb) == NULL);
+ if (!is_predicated (bb))
+ {
+ /* Do not insert statements for a basic block that is not
+ predicated. Also make sure that the predicate of the
+ basic block is set to true. */
+ reset_bb_predicate (bb);
+ continue;
+ }
+
+ stmts = bb_predicate_gimplified_stmts (bb);
+ if (stmts)
+ {
+ if (need_to_predicate)
+ {
+ /* Insert the predicate of the BB just after the label,
+ as the if-conversion of memory writes will use this
+ predicate. */
+ gimple_stmt_iterator gsi = gsi_after_labels (bb);
+ gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
+ }
+ else
+ {
+ /* Insert the predicate of the BB at the end of the BB
+ as this would reduce the register pressure: the only
+ use of this predicate will be in successor BBs. */
+ gimple_stmt_iterator gsi = gsi_last_bb (bb);
+
+ if (gsi_end_p (gsi)
+ || stmt_ends_bb_p (gsi_stmt (gsi)))
+ gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
+ else
+ gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
+ }
+
+ /* Once the sequence is code generated, set it to NULL. */
+ set_bb_predicate_gimplified_stmts (bb, NULL);
+ }
+ }
+}
+
+/* Helper function for predicate_statements. Returns index of existent
+ mask if it was created for given SIZE and -1 otherwise. */
+
+static int
+mask_exists (int size, const vec<int> &vec)
+{
+ unsigned int ix;
+ int v;
+ FOR_EACH_VEC_ELT (vec, ix, v)
+ if (v == size)
+ return (int) ix;
+ return -1;
+}
+
+/* Helper function for predicate_statements. STMT is a memory read or
+ write and it needs to be predicated by MASK. Return a statement
+ that does so. */
+
+static gimple *
+predicate_load_or_store (gimple_stmt_iterator *gsi, gassign *stmt, tree mask)
+{
+ gcall *new_stmt;
+
+ tree lhs = gimple_assign_lhs (stmt);
+ tree rhs = gimple_assign_rhs1 (stmt);
+ tree ref = TREE_CODE (lhs) == SSA_NAME ? rhs : lhs;
+ mark_addressable (ref);
+ tree addr = force_gimple_operand_gsi (gsi, build_fold_addr_expr (ref),
+ true, NULL_TREE, true, GSI_SAME_STMT);
+ tree ptr = build_int_cst (reference_alias_ptr_type (ref),
+ get_object_alignment (ref));
+ /* Copy points-to info if possible. */
+ if (TREE_CODE (addr) == SSA_NAME && !SSA_NAME_PTR_INFO (addr))
+ copy_ref_info (build2 (MEM_REF, TREE_TYPE (ref), addr, ptr),
+ ref);
+ if (TREE_CODE (lhs) == SSA_NAME)
+ {
+ new_stmt
+ = gimple_build_call_internal (IFN_MASK_LOAD, 3, addr,
+ ptr, mask);
+ gimple_call_set_lhs (new_stmt, lhs);
+ gimple_set_vuse (new_stmt, gimple_vuse (stmt));
+ }
+ else
+ {
+ new_stmt
+ = gimple_build_call_internal (IFN_MASK_STORE, 4, addr, ptr,
+ mask, rhs);
+ gimple_move_vops (new_stmt, stmt);
+ }
+ gimple_call_set_nothrow (new_stmt, true);
+ return new_stmt;
+}
+
+/* STMT uses OP_LHS. Check whether it is equivalent to:
+
+ ... = OP_MASK ? OP_LHS : X;
+
+ Return X if so, otherwise return null. OP_MASK is an SSA_NAME that is
+ known to have value OP_COND. */
+
+static tree
+check_redundant_cond_expr (gimple *stmt, tree op_mask, tree op_cond,
+ tree op_lhs)
+{
+ gassign *assign = dyn_cast <gassign *> (stmt);
+ if (!assign || gimple_assign_rhs_code (assign) != COND_EXPR)
+ return NULL_TREE;
+
+ tree use_cond = gimple_assign_rhs1 (assign);
+ tree if_true = gimple_assign_rhs2 (assign);
+ tree if_false = gimple_assign_rhs3 (assign);
+
+ if ((use_cond == op_mask || operand_equal_p (use_cond, op_cond, 0))
+ && if_true == op_lhs)
+ return if_false;
+
+ if (inverse_conditions_p (use_cond, op_cond) && if_false == op_lhs)
+ return if_true;
+
+ return NULL_TREE;
+}
+
+/* Return true if VALUE is available for use at STMT. SSA_NAMES is
+ the set of SSA names defined earlier in STMT's block. */
+
+static bool
+value_available_p (gimple *stmt, hash_set<tree_ssa_name_hash> *ssa_names,
+ tree value)
+{
+ if (is_gimple_min_invariant (value))
+ return true;
+
+ if (TREE_CODE (value) == SSA_NAME)
+ {
+ if (SSA_NAME_IS_DEFAULT_DEF (value))
+ return true;
+
+ basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (value));
+ basic_block use_bb = gimple_bb (stmt);
+ return (def_bb == use_bb
+ ? ssa_names->contains (value)
+ : dominated_by_p (CDI_DOMINATORS, use_bb, def_bb));
+ }
+
+ return false;
+}
+
+/* Helper function for predicate_statements. STMT is a potentially-trapping
+ arithmetic operation that needs to be predicated by MASK, an SSA_NAME that
+ has value COND. Return a statement that does so. SSA_NAMES is the set of
+ SSA names defined earlier in STMT's block. */
+
+static gimple *
+predicate_rhs_code (gassign *stmt, tree mask, tree cond,
+ hash_set<tree_ssa_name_hash> *ssa_names)
+{
+ tree lhs = gimple_assign_lhs (stmt);
+ tree_code code = gimple_assign_rhs_code (stmt);
+ unsigned int nops = gimple_num_ops (stmt);
+ internal_fn cond_fn = get_conditional_internal_fn (code);
+
+ /* Construct the arguments to the conditional internal function. */
+ auto_vec<tree, 8> args;
+ args.safe_grow (nops + 1, true);
+ args[0] = mask;
+ for (unsigned int i = 1; i < nops; ++i)
+ args[i] = gimple_op (stmt, i);
+ args[nops] = NULL_TREE;
+
+ /* Look for uses of the result to see whether they are COND_EXPRs that can
+ be folded into the conditional call. */
+ imm_use_iterator imm_iter;
+ gimple *use_stmt;
+ FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, lhs)
+ {
+ tree new_else = check_redundant_cond_expr (use_stmt, mask, cond, lhs);
+ if (new_else && value_available_p (stmt, ssa_names, new_else))
+ {
+ if (!args[nops])
+ args[nops] = new_else;
+ if (operand_equal_p (new_else, args[nops], 0))
+ {
+ /* We have:
+
+ LHS = IFN_COND (MASK, ..., ELSE);
+ X = MASK ? LHS : ELSE;
+
+ which makes X equivalent to LHS. */
+ tree use_lhs = gimple_assign_lhs (use_stmt);
+ redundant_ssa_names.safe_push (std::make_pair (use_lhs, lhs));
+ }
+ }
+ }
+ if (!args[nops])
+ args[nops] = targetm.preferred_else_value (cond_fn, TREE_TYPE (lhs),
+ nops - 1, &args[1]);
+
+ /* Create and insert the call. */
+ gcall *new_stmt = gimple_build_call_internal_vec (cond_fn, args);
+ gimple_call_set_lhs (new_stmt, lhs);
+ gimple_call_set_nothrow (new_stmt, true);
+
+ return new_stmt;
+}
+
+/* Predicate each write to memory in LOOP.
+
+ This function transforms control flow constructs containing memory
+ writes of the form:
+
+ | for (i = 0; i < N; i++)
+ | if (cond)
+ | A[i] = expr;
+
+ into the following form that does not contain control flow:
+
+ | for (i = 0; i < N; i++)
+ | A[i] = cond ? expr : A[i];
+
+ The original CFG looks like this:
+
+ | bb_0
+ | i = 0
+ | end_bb_0
+ |
+ | bb_1
+ | if (i < N) goto bb_5 else goto bb_2
+ | end_bb_1
+ |
+ | bb_2
+ | cond = some_computation;
+ | if (cond) goto bb_3 else goto bb_4
+ | end_bb_2
+ |
+ | bb_3
+ | A[i] = expr;
+ | goto bb_4
+ | end_bb_3
+ |
+ | bb_4
+ | goto bb_1
+ | end_bb_4
+
+ insert_gimplified_predicates inserts the computation of the COND
+ expression at the beginning of the destination basic block:
+
+ | bb_0
+ | i = 0
+ | end_bb_0
+ |
+ | bb_1
+ | if (i < N) goto bb_5 else goto bb_2
+ | end_bb_1
+ |
+ | bb_2
+ | cond = some_computation;
+ | if (cond) goto bb_3 else goto bb_4
+ | end_bb_2
+ |
+ | bb_3
+ | cond = some_computation;
+ | A[i] = expr;
+ | goto bb_4
+ | end_bb_3
+ |
+ | bb_4
+ | goto bb_1
+ | end_bb_4
+
+ predicate_statements is then predicating the memory write as follows:
+
+ | bb_0
+ | i = 0
+ | end_bb_0
+ |
+ | bb_1
+ | if (i < N) goto bb_5 else goto bb_2
+ | end_bb_1
+ |
+ | bb_2
+ | if (cond) goto bb_3 else goto bb_4
+ | end_bb_2
+ |
+ | bb_3
+ | cond = some_computation;
+ | A[i] = cond ? expr : A[i];
+ | goto bb_4
+ | end_bb_3
+ |
+ | bb_4
+ | goto bb_1
+ | end_bb_4
+
+ and finally combine_blocks removes the basic block boundaries making
+ the loop vectorizable:
+
+ | bb_0
+ | i = 0
+ | if (i < N) goto bb_5 else goto bb_1
+ | end_bb_0
+ |
+ | bb_1
+ | cond = some_computation;
+ | A[i] = cond ? expr : A[i];
+ | if (i < N) goto bb_5 else goto bb_4
+ | end_bb_1
+ |
+ | bb_4
+ | goto bb_1
+ | end_bb_4
+*/
+
+static void
+predicate_statements (loop_p loop)
+{
+ unsigned int i, orig_loop_num_nodes = loop->num_nodes;
+ auto_vec<int, 1> vect_sizes;
+ auto_vec<tree, 1> vect_masks;
+ hash_set<tree_ssa_name_hash> ssa_names;
+
+ for (i = 1; i < orig_loop_num_nodes; i++)
+ {
+ gimple_stmt_iterator gsi;
+ basic_block bb = ifc_bbs[i];
+ tree cond = bb_predicate (bb);
+ bool swap;
+ int index;
+
+ if (is_true_predicate (cond))
+ continue;
+
+ swap = false;
+ if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
+ {
+ swap = true;
+ cond = TREE_OPERAND (cond, 0);
+ }
+
+ vect_sizes.truncate (0);
+ vect_masks.truncate (0);
+
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
+ {
+ gassign *stmt = dyn_cast <gassign *> (gsi_stmt (gsi));
+ tree lhs;
+ if (!stmt)
+ ;
+ else if (is_false_predicate (cond)
+ && gimple_vdef (stmt))
+ {
+ unlink_stmt_vdef (stmt);
+ gsi_remove (&gsi, true);
+ release_defs (stmt);
+ continue;
+ }
+ else if (gimple_plf (stmt, GF_PLF_2))
+ {
+ tree lhs = gimple_assign_lhs (stmt);
+ tree mask;
+ gimple *new_stmt;
+ gimple_seq stmts = NULL;
+ machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
+ /* We checked before setting GF_PLF_2 that an equivalent
+ integer mode exists. */
+ int bitsize = GET_MODE_BITSIZE (mode).to_constant ();
+ if (!vect_sizes.is_empty ()
+ && (index = mask_exists (bitsize, vect_sizes)) != -1)
+ /* Use created mask. */
+ mask = vect_masks[index];
+ else
+ {
+ if (COMPARISON_CLASS_P (cond))
+ mask = gimple_build (&stmts, TREE_CODE (cond),
+ boolean_type_node,
+ TREE_OPERAND (cond, 0),
+ TREE_OPERAND (cond, 1));
+ else
+ mask = cond;
+
+ if (swap)
+ {
+ tree true_val
+ = constant_boolean_node (true, TREE_TYPE (mask));
+ mask = gimple_build (&stmts, BIT_XOR_EXPR,
+ TREE_TYPE (mask), mask, true_val);
+ }
+ gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
+
+ /* Save mask and its size for further use. */
+ vect_sizes.safe_push (bitsize);
+ vect_masks.safe_push (mask);
+ }
+ if (gimple_assign_single_p (stmt))
+ new_stmt = predicate_load_or_store (&gsi, stmt, mask);
+ else
+ new_stmt = predicate_rhs_code (stmt, mask, cond, &ssa_names);
+
+ gsi_replace (&gsi, new_stmt, true);
+ }
+ else if (((lhs = gimple_assign_lhs (stmt)), true)
+ && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
+ || POINTER_TYPE_P (TREE_TYPE (lhs)))
+ && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (lhs))
+ && arith_code_with_undefined_signed_overflow
+ (gimple_assign_rhs_code (stmt)))
+ {
+ gsi_remove (&gsi, true);
+ gimple_seq stmts = rewrite_to_defined_overflow (stmt);
+ bool first = true;
+ for (gimple_stmt_iterator gsi2 = gsi_start (stmts);
+ !gsi_end_p (gsi2);)
+ {
+ gassign *stmt2 = as_a <gassign *> (gsi_stmt (gsi2));
+ gsi_remove (&gsi2, false);
+ if (first)
+ {
+ gsi_insert_before (&gsi, stmt2, GSI_NEW_STMT);
+ first = false;
+ }
+ else
+ gsi_insert_after (&gsi, stmt2, GSI_NEW_STMT);
+ }
+ }
+ else if (gimple_vdef (stmt))
+ {
+ tree lhs = gimple_assign_lhs (stmt);
+ tree rhs = gimple_assign_rhs1 (stmt);
+ tree type = TREE_TYPE (lhs);
+
+ lhs = ifc_temp_var (type, unshare_expr (lhs), &gsi);
+ rhs = ifc_temp_var (type, unshare_expr (rhs), &gsi);
+ if (swap)
+ std::swap (lhs, rhs);
+ cond = force_gimple_operand_gsi_1 (&gsi, unshare_expr (cond),
+ is_gimple_condexpr, NULL_TREE,
+ true, GSI_SAME_STMT);
+ rhs = fold_build_cond_expr (type, unshare_expr (cond), rhs, lhs);
+ gimple_assign_set_rhs1 (stmt, ifc_temp_var (type, rhs, &gsi));
+ update_stmt (stmt);
+ }
+ lhs = gimple_get_lhs (gsi_stmt (gsi));
+ if (lhs && TREE_CODE (lhs) == SSA_NAME)
+ ssa_names.add (lhs);
+ gsi_next (&gsi);
+ }
+ ssa_names.empty ();
+ }
+}
+
+/* Remove all GIMPLE_CONDs and GIMPLE_LABELs of all the basic blocks
+ other than the exit and latch of the LOOP. Also resets the
+ GIMPLE_DEBUG information. */
+
+static void
+remove_conditions_and_labels (loop_p loop)
+{
+ gimple_stmt_iterator gsi;
+ unsigned int i;
+
+ for (i = 0; i < loop->num_nodes; i++)
+ {
+ basic_block bb = ifc_bbs[i];
+
+ if (bb_with_exit_edge_p (loop, bb)
+ || bb == loop->latch)
+ continue;
+
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
+ switch (gimple_code (gsi_stmt (gsi)))
+ {
+ case GIMPLE_COND:
+ case GIMPLE_LABEL:
+ gsi_remove (&gsi, true);
+ break;
+
+ case GIMPLE_DEBUG:
+ /* ??? Should there be conditional GIMPLE_DEBUG_BINDs? */
+ if (gimple_debug_bind_p (gsi_stmt (gsi)))
+ {
+ gimple_debug_bind_reset_value (gsi_stmt (gsi));
+ update_stmt (gsi_stmt (gsi));
+ }
+ gsi_next (&gsi);
+ break;
+
+ default:
+ gsi_next (&gsi);
+ }
+ }
+}
+
+/* Combine all the basic blocks from LOOP into one or two super basic
+ blocks. Replace PHI nodes with conditional modify expressions. */
+
+static void
+combine_blocks (class loop *loop)
+{
+ basic_block bb, exit_bb, merge_target_bb;
+ unsigned int orig_loop_num_nodes = loop->num_nodes;
+ unsigned int i;
+ edge e;
+ edge_iterator ei;
+
+ remove_conditions_and_labels (loop);
+ insert_gimplified_predicates (loop);
+ predicate_all_scalar_phis (loop);
+
+ if (need_to_predicate || need_to_rewrite_undefined)
+ predicate_statements (loop);
+
+ /* Merge basic blocks. */
+ exit_bb = NULL;
+ bool *predicated = XNEWVEC (bool, orig_loop_num_nodes);
+ for (i = 0; i < orig_loop_num_nodes; i++)
+ {
+ bb = ifc_bbs[i];
+ predicated[i] = !is_true_predicate (bb_predicate (bb));
+ free_bb_predicate (bb);
+ if (bb_with_exit_edge_p (loop, bb))
+ {
+ gcc_assert (exit_bb == NULL);
+ exit_bb = bb;
+ }
+ }
+ gcc_assert (exit_bb != loop->latch);
+
+ merge_target_bb = loop->header;
+
+ /* Get at the virtual def valid for uses starting at the first block
+ we merge into the header. Without a virtual PHI the loop has the
+ same virtual use on all stmts. */
+ gphi *vphi = get_virtual_phi (loop->header);
+ tree last_vdef = NULL_TREE;
+ if (vphi)
+ {
+ last_vdef = gimple_phi_result (vphi);
+ for (gimple_stmt_iterator gsi = gsi_start_bb (loop->header);
+ ! gsi_end_p (gsi); gsi_next (&gsi))
+ if (gimple_vdef (gsi_stmt (gsi)))
+ last_vdef = gimple_vdef (gsi_stmt (gsi));
+ }
+ for (i = 1; i < orig_loop_num_nodes; i++)
+ {
+ gimple_stmt_iterator gsi;
+ gimple_stmt_iterator last;
+
+ bb = ifc_bbs[i];
+
+ if (bb == exit_bb || bb == loop->latch)
+ continue;
+
+ /* We release virtual PHIs late because we have to propagate them
+ out using the current VUSE. The def might be the one used
+ after the loop. */
+ vphi = get_virtual_phi (bb);
+ if (vphi)
+ {
+ /* When there's just loads inside the loop a stray virtual
+ PHI merging the uses can appear, update last_vdef from
+ it. */
+ if (!last_vdef)
+ last_vdef = gimple_phi_arg_def (vphi, 0);
+ imm_use_iterator iter;
+ use_operand_p use_p;
+ gimple *use_stmt;
+ FOR_EACH_IMM_USE_STMT (use_stmt, iter, gimple_phi_result (vphi))
+ {
+ FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
+ SET_USE (use_p, last_vdef);
+ }
+ if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (vphi)))
+ SSA_NAME_OCCURS_IN_ABNORMAL_PHI (last_vdef) = 1;
+ gsi = gsi_for_stmt (vphi);
+ remove_phi_node (&gsi, true);
+ }
+
+ /* Make stmts member of loop->header and clear range info from all stmts
+ in BB which is now no longer executed conditional on a predicate we
+ could have derived it from. */
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple *stmt = gsi_stmt (gsi);
+ gimple_set_bb (stmt, merge_target_bb);
+ /* Update virtual operands. */
+ if (last_vdef)
+ {
+ use_operand_p use_p = ssa_vuse_operand (stmt);
+ if (use_p
+ && USE_FROM_PTR (use_p) != last_vdef)
+ SET_USE (use_p, last_vdef);
+ if (gimple_vdef (stmt))
+ last_vdef = gimple_vdef (stmt);
+ }
+ else
+ /* If this is the first load we arrive at update last_vdef
+ so we handle stray PHIs correctly. */
+ last_vdef = gimple_vuse (stmt);
+ if (predicated[i])
+ {
+ ssa_op_iter i;
+ tree op;
+ FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
+ reset_flow_sensitive_info (op);
+ }
+ }
+
+ /* Update stmt list. */
+ last = gsi_last_bb (merge_target_bb);
+ gsi_insert_seq_after_without_update (&last, bb_seq (bb), GSI_NEW_STMT);
+ set_bb_seq (bb, NULL);
+ }
+
+ /* Fixup virtual operands in the exit block. */
+ if (exit_bb
+ && exit_bb != loop->header)
+ {
+ /* We release virtual PHIs late because we have to propagate them
+ out using the current VUSE. The def might be the one used
+ after the loop. */
+ vphi = get_virtual_phi (exit_bb);
+ if (vphi)
+ {
+ /* When there's just loads inside the loop a stray virtual
+ PHI merging the uses can appear, update last_vdef from
+ it. */
+ if (!last_vdef)
+ last_vdef = gimple_phi_arg_def (vphi, 0);
+ imm_use_iterator iter;
+ use_operand_p use_p;
+ gimple *use_stmt;
+ FOR_EACH_IMM_USE_STMT (use_stmt, iter, gimple_phi_result (vphi))
+ {
+ FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
+ SET_USE (use_p, last_vdef);
+ }
+ if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (vphi)))
+ SSA_NAME_OCCURS_IN_ABNORMAL_PHI (last_vdef) = 1;
+ gimple_stmt_iterator gsi = gsi_for_stmt (vphi);
+ remove_phi_node (&gsi, true);
+ }
+ }
+
+ /* Now remove all the edges in the loop, except for those from the exit
+ block and delete the blocks we elided. */
+ for (i = 1; i < orig_loop_num_nodes; i++)
+ {
+ bb = ifc_bbs[i];
+
+ for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei));)
+ {
+ if (e->src == exit_bb)
+ ei_next (&ei);
+ else
+ remove_edge (e);
+ }
+ }
+ for (i = 1; i < orig_loop_num_nodes; i++)
+ {
+ bb = ifc_bbs[i];
+
+ if (bb == exit_bb || bb == loop->latch)
+ continue;
+
+ delete_basic_block (bb);
+ }
+
+ /* Re-connect the exit block. */
+ if (exit_bb != NULL)
+ {
+ if (exit_bb != loop->header)
+ {
+ /* Connect this node to loop header. */
+ make_single_succ_edge (loop->header, exit_bb, EDGE_FALLTHRU);
+ set_immediate_dominator (CDI_DOMINATORS, exit_bb, loop->header);
+ }
+
+ /* Redirect non-exit edges to loop->latch. */
+ FOR_EACH_EDGE (e, ei, exit_bb->succs)
+ {
+ if (!loop_exit_edge_p (loop, e))
+ redirect_edge_and_branch (e, loop->latch);
+ }
+ set_immediate_dominator (CDI_DOMINATORS, loop->latch, exit_bb);
+ }
+ else
+ {
+ /* If the loop does not have an exit, reconnect header and latch. */
+ make_edge (loop->header, loop->latch, EDGE_FALLTHRU);
+ set_immediate_dominator (CDI_DOMINATORS, loop->latch, loop->header);
+ }
+
+ /* If possible, merge loop header to the block with the exit edge.
+ This reduces the number of basic blocks to two, to please the
+ vectorizer that handles only loops with two nodes. */
+ if (exit_bb
+ && exit_bb != loop->header)
+ {
+ if (can_merge_blocks_p (loop->header, exit_bb))
+ merge_blocks (loop->header, exit_bb);
+ }
+
+ free (ifc_bbs);
+ ifc_bbs = NULL;
+ free (predicated);
+}
+
+/* Version LOOP before if-converting it; the original loop
+ will be if-converted, the new copy of the loop will not,
+ and the LOOP_VECTORIZED internal call will be guarding which
+ loop to execute. The vectorizer pass will fold this
+ internal call into either true or false.
+
+ Note that this function intentionally invalidates profile. Both edges
+ out of LOOP_VECTORIZED must have 100% probability so the profile remains
+ consistent after the condition is folded in the vectorizer. */
+
+static class loop *
+version_loop_for_if_conversion (class loop *loop, vec<gimple *> *preds)
+{
+ basic_block cond_bb;
+ tree cond = make_ssa_name (boolean_type_node);
+ class loop *new_loop;
+ gimple *g;
+ gimple_stmt_iterator gsi;
+ unsigned int save_length;
+
+ g = gimple_build_call_internal (IFN_LOOP_VECTORIZED, 2,
+ build_int_cst (integer_type_node, loop->num),
+ integer_zero_node);
+ gimple_call_set_lhs (g, cond);
+
+ /* Save BB->aux around loop_version as that uses the same field. */
+ save_length = loop->inner ? loop->inner->num_nodes : loop->num_nodes;
+ void **saved_preds = XALLOCAVEC (void *, save_length);
+ for (unsigned i = 0; i < save_length; i++)
+ saved_preds[i] = ifc_bbs[i]->aux;
+
+ initialize_original_copy_tables ();
+ /* At this point we invalidate porfile confistency until IFN_LOOP_VECTORIZED
+ is re-merged in the vectorizer. */
+ new_loop = loop_version (loop, cond, &cond_bb,
+ profile_probability::always (),
+ profile_probability::always (),
+ profile_probability::always (),
+ profile_probability::always (), true);
+ free_original_copy_tables ();
+
+ for (unsigned i = 0; i < save_length; i++)
+ ifc_bbs[i]->aux = saved_preds[i];
+
+ if (new_loop == NULL)
+ return NULL;
+
+ new_loop->dont_vectorize = true;
+ new_loop->force_vectorize = false;
+ gsi = gsi_last_bb (cond_bb);
+ gimple_call_set_arg (g, 1, build_int_cst (integer_type_node, new_loop->num));
+ if (preds)
+ preds->safe_push (g);
+ gsi_insert_before (&gsi, g, GSI_SAME_STMT);
+ update_ssa (TODO_update_ssa);
+ return new_loop;
+}
+
+/* Return true when LOOP satisfies the follow conditions that will
+ allow it to be recognized by the vectorizer for outer-loop
+ vectorization:
+ - The loop is not the root node of the loop tree.
+ - The loop has exactly one inner loop.
+ - The loop has a single exit.
+ - The loop header has a single successor, which is the inner
+ loop header.
+ - Each of the inner and outer loop latches have a single
+ predecessor.
+ - The loop exit block has a single predecessor, which is the
+ inner loop's exit block. */
+
+static bool
+versionable_outer_loop_p (class loop *loop)
+{
+ if (!loop_outer (loop)
+ || loop->dont_vectorize
+ || !loop->inner
+ || loop->inner->next
+ || !single_exit (loop)
+ || !single_succ_p (loop->header)
+ || single_succ (loop->header) != loop->inner->header
+ || !single_pred_p (loop->latch)
+ || !single_pred_p (loop->inner->latch))
+ return false;
+
+ basic_block outer_exit = single_pred (loop->latch);
+ basic_block inner_exit = single_pred (loop->inner->latch);
+
+ if (!single_pred_p (outer_exit) || single_pred (outer_exit) != inner_exit)
+ return false;
+
+ if (dump_file)
+ fprintf (dump_file, "Found vectorizable outer loop for versioning\n");
+
+ return true;
+}
+
+/* Performs splitting of critical edges. Skip splitting and return false
+ if LOOP will not be converted because:
+
+ - LOOP is not well formed.
+ - LOOP has PHI with more than MAX_PHI_ARG_NUM arguments.
+
+ Last restriction is valid only if AGGRESSIVE_IF_CONV is false. */
+
+static bool
+ifcvt_split_critical_edges (class loop *loop, bool aggressive_if_conv)
+{
+ basic_block *body;
+ basic_block bb;
+ unsigned int num = loop->num_nodes;
+ unsigned int i;
+ gimple *stmt;
+ edge e;
+ edge_iterator ei;
+ auto_vec<edge> critical_edges;
+
+ /* Loop is not well formed. */
+ if (num <= 2 || loop->inner || !single_exit (loop))
+ return false;
+
+ body = get_loop_body (loop);
+ for (i = 0; i < num; i++)
+ {
+ bb = body[i];
+ if (!aggressive_if_conv
+ && phi_nodes (bb)
+ && EDGE_COUNT (bb->preds) > MAX_PHI_ARG_NUM)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "BB %d has complicated PHI with more than %u args.\n",
+ bb->index, MAX_PHI_ARG_NUM);
+
+ free (body);
+ return false;
+ }
+ if (bb == loop->latch || bb_with_exit_edge_p (loop, bb))
+ continue;
+
+ stmt = last_stmt (bb);
+ /* Skip basic blocks not ending with conditional branch. */
+ if (!stmt || gimple_code (stmt) != GIMPLE_COND)
+ continue;
+
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ if (EDGE_CRITICAL_P (e) && e->dest->loop_father == loop)
+ critical_edges.safe_push (e);
+ }
+ free (body);
+
+ while (critical_edges.length () > 0)
+ {
+ e = critical_edges.pop ();
+ /* Don't split if bb can be predicated along non-critical edge. */
+ if (EDGE_COUNT (e->dest->preds) > 2 || all_preds_critical_p (e->dest))
+ split_edge (e);
+ }
+
+ return true;
+}
+
+/* Delete redundant statements produced by predication which prevents
+ loop vectorization. */
+
+static void
+ifcvt_local_dce (class loop *loop)
+{
+ gimple *stmt;
+ gimple *stmt1;
+ gimple *phi;
+ gimple_stmt_iterator gsi;
+ auto_vec<gimple *> worklist;
+ enum gimple_code code;
+ use_operand_p use_p;
+ imm_use_iterator imm_iter;
+
+ /* The loop has a single BB only. */
+ basic_block bb = loop->header;
+ tree latch_vdef = NULL_TREE;
+
+ worklist.create (64);
+ /* Consider all phi as live statements. */
+ for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ phi = gsi_stmt (gsi);
+ gimple_set_plf (phi, GF_PLF_2, true);
+ worklist.safe_push (phi);
+ if (virtual_operand_p (gimple_phi_result (phi)))
+ latch_vdef = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
+ }
+ /* Consider load/store statements, CALL and COND as live. */
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ stmt = gsi_stmt (gsi);
+ if (is_gimple_debug (stmt))
+ {
+ gimple_set_plf (stmt, GF_PLF_2, true);
+ continue;
+ }
+ if (gimple_store_p (stmt) || gimple_assign_load_p (stmt))
+ {
+ gimple_set_plf (stmt, GF_PLF_2, true);
+ worklist.safe_push (stmt);
+ continue;
+ }
+ code = gimple_code (stmt);
+ if (code == GIMPLE_COND || code == GIMPLE_CALL)
+ {
+ gimple_set_plf (stmt, GF_PLF_2, true);
+ worklist.safe_push (stmt);
+ continue;
+ }
+ gimple_set_plf (stmt, GF_PLF_2, false);
+
+ if (code == GIMPLE_ASSIGN)
+ {
+ tree lhs = gimple_assign_lhs (stmt);
+ FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
+ {
+ stmt1 = USE_STMT (use_p);
+ if (!is_gimple_debug (stmt1) && gimple_bb (stmt1) != bb)
+ {
+ gimple_set_plf (stmt, GF_PLF_2, true);
+ worklist.safe_push (stmt);
+ break;
+ }
+ }
+ }
+ }
+ /* Propagate liveness through arguments of live stmt. */
+ while (worklist.length () > 0)
+ {
+ ssa_op_iter iter;
+ use_operand_p use_p;
+ tree use;
+
+ stmt = worklist.pop ();
+ FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
+ {
+ use = USE_FROM_PTR (use_p);
+ if (TREE_CODE (use) != SSA_NAME)
+ continue;
+ stmt1 = SSA_NAME_DEF_STMT (use);
+ if (gimple_bb (stmt1) != bb || gimple_plf (stmt1, GF_PLF_2))
+ continue;
+ gimple_set_plf (stmt1, GF_PLF_2, true);
+ worklist.safe_push (stmt1);
+ }
+ }
+ /* Delete dead statements. */
+ gsi = gsi_last_bb (bb);
+ while (!gsi_end_p (gsi))
+ {
+ gimple_stmt_iterator gsiprev = gsi;
+ gsi_prev (&gsiprev);
+ stmt = gsi_stmt (gsi);
+ if (gimple_store_p (stmt))
+ {
+ tree lhs = gimple_get_lhs (stmt);
+ ao_ref write;
+ ao_ref_init (&write, lhs);
+
+ if (dse_classify_store (&write, stmt, false, NULL, NULL, latch_vdef)
+ == DSE_STORE_DEAD)
+ delete_dead_or_redundant_assignment (&gsi, "dead");
+ gsi = gsiprev;
+ continue;
+ }
+
+ if (gimple_plf (stmt, GF_PLF_2))
+ {
+ gsi = gsiprev;
+ continue;
+ }
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Delete dead stmt in bb#%d\n", bb->index);
+ print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
+ }
+ gsi_remove (&gsi, true);
+ release_defs (stmt);
+ gsi = gsiprev;
+ }
+}
+
+/* Return true if VALUE is already available on edge PE. */
+
+static bool
+ifcvt_available_on_edge_p (edge pe, tree value)
+{
+ if (is_gimple_min_invariant (value))
+ return true;
+
+ if (TREE_CODE (value) == SSA_NAME)
+ {
+ basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (value));
+ if (!def_bb || dominated_by_p (CDI_DOMINATORS, pe->dest, def_bb))
+ return true;
+ }
+
+ return false;
+}
+
+/* Return true if STMT can be hoisted from if-converted loop LOOP to
+ edge PE. */
+
+static bool
+ifcvt_can_hoist (class loop *loop, edge pe, gimple *stmt)
+{
+ if (auto *call = dyn_cast<gcall *> (stmt))
+ {
+ if (gimple_call_internal_p (call)
+ && internal_fn_mask_index (gimple_call_internal_fn (call)) >= 0)
+ return false;
+ }
+ else if (auto *assign = dyn_cast<gassign *> (stmt))
+ {
+ if (gimple_assign_rhs_code (assign) == COND_EXPR)
+ return false;
+ }
+ else
+ return false;
+
+ if (gimple_has_side_effects (stmt)
+ || gimple_could_trap_p (stmt)
+ || stmt_could_throw_p (cfun, stmt)
+ || gimple_vdef (stmt)
+ || gimple_vuse (stmt))
+ return false;
+
+ int num_args = gimple_num_args (stmt);
+ if (pe != loop_preheader_edge (loop))
+ {
+ for (int i = 0; i < num_args; ++i)
+ if (!ifcvt_available_on_edge_p (pe, gimple_arg (stmt, i)))
+ return false;
+ }
+ else
+ {
+ for (int i = 0; i < num_args; ++i)
+ if (!expr_invariant_in_loop_p (loop, gimple_arg (stmt, i)))
+ return false;
+ }
+
+ return true;
+}
+
+/* Hoist invariant statements from LOOP to edge PE. */
+
+static void
+ifcvt_hoist_invariants (class loop *loop, edge pe)
+{
+ gimple_stmt_iterator hoist_gsi = {};
+ unsigned int num_blocks = loop->num_nodes;
+ basic_block *body = get_loop_body (loop);
+ for (unsigned int i = 0; i < num_blocks; ++i)
+ for (gimple_stmt_iterator gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi);)
+ {
+ gimple *stmt = gsi_stmt (gsi);
+ if (ifcvt_can_hoist (loop, pe, stmt))
+ {
+ /* Once we've hoisted one statement, insert other statements
+ after it. */
+ gsi_remove (&gsi, false);
+ if (hoist_gsi.ptr)
+ gsi_insert_after (&hoist_gsi, stmt, GSI_NEW_STMT);
+ else
+ {
+ gsi_insert_on_edge_immediate (pe, stmt);
+ hoist_gsi = gsi_for_stmt (stmt);
+ }
+ continue;
+ }
+ gsi_next (&gsi);
+ }
+ free (body);
+}
+
+/* If-convert LOOP when it is legal. For the moment this pass has no
+ profitability analysis. Returns non-zero todo flags when something
+ changed. */
+
+unsigned int
+tree_if_conversion (class loop *loop, vec<gimple *> *preds)
+{
+ unsigned int todo = 0;
+ bool aggressive_if_conv;
+ class loop *rloop;
+ bitmap exit_bbs;
+ edge pe;
+
+ again:
+ rloop = NULL;
+ ifc_bbs = NULL;
+ need_to_predicate = false;
+ need_to_rewrite_undefined = false;
+ any_complicated_phi = false;
+
+ /* Apply more aggressive if-conversion when loop or its outer loop were
+ marked with simd pragma. When that's the case, we try to if-convert
+ loop containing PHIs with more than MAX_PHI_ARG_NUM arguments. */
+ aggressive_if_conv = loop->force_vectorize;
+ if (!aggressive_if_conv)
+ {
+ class loop *outer_loop = loop_outer (loop);
+ if (outer_loop && outer_loop->force_vectorize)
+ aggressive_if_conv = true;
+ }
+
+ if (!ifcvt_split_critical_edges (loop, aggressive_if_conv))
+ goto cleanup;
+
+ if (!if_convertible_loop_p (loop)
+ || !dbg_cnt (if_conversion_tree))
+ goto cleanup;
+
+ if ((need_to_predicate || any_complicated_phi)
+ && ((!flag_tree_loop_vectorize && !loop->force_vectorize)
+ || loop->dont_vectorize))
+ goto cleanup;
+
+ /* The edge to insert invariant stmts on. */
+ pe = loop_preheader_edge (loop);
+
+ /* Since we have no cost model, always version loops unless the user
+ specified -ftree-loop-if-convert or unless versioning is required.
+ Either version this loop, or if the pattern is right for outer-loop
+ vectorization, version the outer loop. In the latter case we will
+ still if-convert the original inner loop. */
+ if (need_to_predicate
+ || any_complicated_phi
+ || flag_tree_loop_if_convert != 1)
+ {
+ class loop *vloop
+ = (versionable_outer_loop_p (loop_outer (loop))
+ ? loop_outer (loop) : loop);
+ class loop *nloop = version_loop_for_if_conversion (vloop, preds);
+ if (nloop == NULL)
+ goto cleanup;
+ if (vloop != loop)
+ {
+ /* If versionable_outer_loop_p decided to version the
+ outer loop, version also the inner loop of the non-vectorized
+ loop copy. So we transform:
+ loop1
+ loop2
+ into:
+ if (LOOP_VECTORIZED (1, 3))
+ {
+ loop1
+ loop2
+ }
+ else
+ loop3 (copy of loop1)
+ if (LOOP_VECTORIZED (4, 5))
+ loop4 (copy of loop2)
+ else
+ loop5 (copy of loop4) */
+ gcc_assert (nloop->inner && nloop->inner->next == NULL);
+ rloop = nloop->inner;
+ }
+ else
+ /* If we versioned loop then make sure to insert invariant
+ stmts before the .LOOP_VECTORIZED check since the vectorizer
+ will re-use that for things like runtime alias versioning
+ whose condition can end up using those invariants. */
+ pe = single_pred_edge (gimple_bb (preds->last ()));
+ }
+
+ /* Now all statements are if-convertible. Combine all the basic
+ blocks into one huge basic block doing the if-conversion
+ on-the-fly. */
+ combine_blocks (loop);
+
+ /* Perform local CSE, this esp. helps the vectorizer analysis if loads
+ and stores are involved. CSE only the loop body, not the entry
+ PHIs, those are to be kept in sync with the non-if-converted copy.
+ ??? We'll still keep dead stores though. */
+ exit_bbs = BITMAP_ALLOC (NULL);
+ bitmap_set_bit (exit_bbs, single_exit (loop)->dest->index);
+ bitmap_set_bit (exit_bbs, loop->latch->index);
+
+ std::pair <tree, tree> *name_pair;
+ unsigned ssa_names_idx;
+ FOR_EACH_VEC_ELT (redundant_ssa_names, ssa_names_idx, name_pair)
+ replace_uses_by (name_pair->first, name_pair->second);
+ redundant_ssa_names.release ();
+
+ todo |= do_rpo_vn (cfun, loop_preheader_edge (loop), exit_bbs);
+
+ /* Delete dead predicate computations. */
+ ifcvt_local_dce (loop);
+ BITMAP_FREE (exit_bbs);
+
+ ifcvt_hoist_invariants (loop, pe);
+
+ todo |= TODO_cleanup_cfg;
+
+ cleanup:
+ if (ifc_bbs)
+ {
+ unsigned int i;
+
+ for (i = 0; i < loop->num_nodes; i++)
+ free_bb_predicate (ifc_bbs[i]);
+
+ free (ifc_bbs);
+ ifc_bbs = NULL;
+ }
+ if (rloop != NULL)
+ {
+ loop = rloop;
+ goto again;
+ }
+
+ return todo;
+}
+
+/* Tree if-conversion pass management. */
+
+namespace {
+
+const pass_data pass_data_if_conversion =
+{
+ GIMPLE_PASS, /* type */
+ "ifcvt", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ TV_TREE_LOOP_IFCVT, /* tv_id */
+ ( PROP_cfg | PROP_ssa ), /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ 0, /* todo_flags_finish */
+};
+
+class pass_if_conversion : public gimple_opt_pass
+{
+public:
+ pass_if_conversion (gcc::context *ctxt)
+ : gimple_opt_pass (pass_data_if_conversion, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ virtual bool gate (function *);
+ virtual unsigned int execute (function *);
+
+}; // class pass_if_conversion
+
+bool
+pass_if_conversion::gate (function *fun)
+{
+ return (((flag_tree_loop_vectorize || fun->has_force_vectorize_loops)
+ && flag_tree_loop_if_convert != 0)
+ || flag_tree_loop_if_convert == 1);
+}
+
+unsigned int
+pass_if_conversion::execute (function *fun)
+{
+ unsigned todo = 0;
+
+ if (number_of_loops (fun) <= 1)
+ return 0;
+
+ auto_vec<gimple *> preds;
+ for (auto loop : loops_list (cfun, 0))
+ if (flag_tree_loop_if_convert == 1
+ || ((flag_tree_loop_vectorize || loop->force_vectorize)
+ && !loop->dont_vectorize))
+ todo |= tree_if_conversion (loop, &preds);
+
+ if (todo)
+ {
+ free_numbers_of_iterations_estimates (fun);
+ scev_reset ();
+ }
+
+ if (flag_checking)
+ {
+ basic_block bb;
+ FOR_EACH_BB_FN (bb, fun)
+ gcc_assert (!bb->aux);
+ }
+
+ /* Perform IL update now, it might elide some loops. */
+ if (todo & TODO_cleanup_cfg)
+ {
+ cleanup_tree_cfg ();
+ if (need_ssa_update_p (fun))
+ todo |= TODO_update_ssa;
+ }
+ if (todo & TODO_update_ssa_any)
+ update_ssa (todo & TODO_update_ssa_any);
+
+ /* If if-conversion elided the loop fall back to the original one. */
+ for (unsigned i = 0; i < preds.length (); ++i)
+ {
+ gimple *g = preds[i];
+ if (!gimple_bb (g))
+ continue;
+ unsigned ifcvt_loop = tree_to_uhwi (gimple_call_arg (g, 0));
+ if (!get_loop (fun, ifcvt_loop))
+ {
+ if (dump_file)
+ fprintf (dump_file, "If-converted loop vanished\n");
+ fold_loop_internal_call (g, boolean_false_node);
+ }
+ }
+
+ return 0;
+}
+
+} // anon namespace
+
+gimple_opt_pass *
+make_pass_if_conversion (gcc::context *ctxt)
+{
+ return new pass_if_conversion (ctxt);
+}