aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-data-ref.cc
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/tree-data-ref.cc')
-rw-r--r--gcc/tree-data-ref.cc6386
1 files changed, 6386 insertions, 0 deletions
diff --git a/gcc/tree-data-ref.cc b/gcc/tree-data-ref.cc
new file mode 100644
index 0000000..397792c
--- /dev/null
+++ b/gcc/tree-data-ref.cc
@@ -0,0 +1,6386 @@
+/* Data references and dependences detectors.
+ Copyright (C) 2003-2022 Free Software Foundation, Inc.
+ Contributed by Sebastian Pop <pop@cri.ensmp.fr>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+/* This pass walks a given loop structure searching for array
+ references. The information about the array accesses is recorded
+ in DATA_REFERENCE structures.
+
+ The basic test for determining the dependences is:
+ given two access functions chrec1 and chrec2 to a same array, and
+ x and y two vectors from the iteration domain, the same element of
+ the array is accessed twice at iterations x and y if and only if:
+ | chrec1 (x) == chrec2 (y).
+
+ The goals of this analysis are:
+
+ - to determine the independence: the relation between two
+ independent accesses is qualified with the chrec_known (this
+ information allows a loop parallelization),
+
+ - when two data references access the same data, to qualify the
+ dependence relation with classic dependence representations:
+
+ - distance vectors
+ - direction vectors
+ - loop carried level dependence
+ - polyhedron dependence
+ or with the chains of recurrences based representation,
+
+ - to define a knowledge base for storing the data dependence
+ information,
+
+ - to define an interface to access this data.
+
+
+ Definitions:
+
+ - subscript: given two array accesses a subscript is the tuple
+ composed of the access functions for a given dimension. Example:
+ Given A[f1][f2][f3] and B[g1][g2][g3], there are three subscripts:
+ (f1, g1), (f2, g2), (f3, g3).
+
+ - Diophantine equation: an equation whose coefficients and
+ solutions are integer constants, for example the equation
+ | 3*x + 2*y = 1
+ has an integer solution x = 1 and y = -1.
+
+ References:
+
+ - "Advanced Compilation for High Performance Computing" by Randy
+ Allen and Ken Kennedy.
+ http://citeseer.ist.psu.edu/goff91practical.html
+
+ - "Loop Transformations for Restructuring Compilers - The Foundations"
+ by Utpal Banerjee.
+
+
+*/
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "backend.h"
+#include "rtl.h"
+#include "tree.h"
+#include "gimple.h"
+#include "gimple-pretty-print.h"
+#include "alias.h"
+#include "fold-const.h"
+#include "expr.h"
+#include "gimple-iterator.h"
+#include "tree-ssa-loop-niter.h"
+#include "tree-ssa-loop.h"
+#include "tree-ssa.h"
+#include "cfgloop.h"
+#include "tree-data-ref.h"
+#include "tree-scalar-evolution.h"
+#include "dumpfile.h"
+#include "tree-affine.h"
+#include "builtins.h"
+#include "tree-eh.h"
+#include "ssa.h"
+#include "internal-fn.h"
+#include "vr-values.h"
+#include "range-op.h"
+#include "tree-ssa-loop-ivopts.h"
+
+static struct datadep_stats
+{
+ int num_dependence_tests;
+ int num_dependence_dependent;
+ int num_dependence_independent;
+ int num_dependence_undetermined;
+
+ int num_subscript_tests;
+ int num_subscript_undetermined;
+ int num_same_subscript_function;
+
+ int num_ziv;
+ int num_ziv_independent;
+ int num_ziv_dependent;
+ int num_ziv_unimplemented;
+
+ int num_siv;
+ int num_siv_independent;
+ int num_siv_dependent;
+ int num_siv_unimplemented;
+
+ int num_miv;
+ int num_miv_independent;
+ int num_miv_dependent;
+ int num_miv_unimplemented;
+} dependence_stats;
+
+static bool subscript_dependence_tester_1 (struct data_dependence_relation *,
+ unsigned int, unsigned int,
+ class loop *);
+/* Returns true iff A divides B. */
+
+static inline bool
+tree_fold_divides_p (const_tree a, const_tree b)
+{
+ gcc_assert (TREE_CODE (a) == INTEGER_CST);
+ gcc_assert (TREE_CODE (b) == INTEGER_CST);
+ return integer_zerop (int_const_binop (TRUNC_MOD_EXPR, b, a));
+}
+
+/* Returns true iff A divides B. */
+
+static inline bool
+int_divides_p (lambda_int a, lambda_int b)
+{
+ return ((b % a) == 0);
+}
+
+/* Return true if reference REF contains a union access. */
+
+static bool
+ref_contains_union_access_p (tree ref)
+{
+ while (handled_component_p (ref))
+ {
+ ref = TREE_OPERAND (ref, 0);
+ if (TREE_CODE (TREE_TYPE (ref)) == UNION_TYPE
+ || TREE_CODE (TREE_TYPE (ref)) == QUAL_UNION_TYPE)
+ return true;
+ }
+ return false;
+}
+
+
+
+/* Dump into FILE all the data references from DATAREFS. */
+
+static void
+dump_data_references (FILE *file, vec<data_reference_p> datarefs)
+{
+ for (data_reference *dr : datarefs)
+ dump_data_reference (file, dr);
+}
+
+/* Unified dump into FILE all the data references from DATAREFS. */
+
+DEBUG_FUNCTION void
+debug (vec<data_reference_p> &ref)
+{
+ dump_data_references (stderr, ref);
+}
+
+DEBUG_FUNCTION void
+debug (vec<data_reference_p> *ptr)
+{
+ if (ptr)
+ debug (*ptr);
+ else
+ fprintf (stderr, "<nil>\n");
+}
+
+
+/* Dump into STDERR all the data references from DATAREFS. */
+
+DEBUG_FUNCTION void
+debug_data_references (vec<data_reference_p> datarefs)
+{
+ dump_data_references (stderr, datarefs);
+}
+
+/* Print to STDERR the data_reference DR. */
+
+DEBUG_FUNCTION void
+debug_data_reference (struct data_reference *dr)
+{
+ dump_data_reference (stderr, dr);
+}
+
+/* Dump function for a DATA_REFERENCE structure. */
+
+void
+dump_data_reference (FILE *outf,
+ struct data_reference *dr)
+{
+ unsigned int i;
+
+ fprintf (outf, "#(Data Ref: \n");
+ fprintf (outf, "# bb: %d \n", gimple_bb (DR_STMT (dr))->index);
+ fprintf (outf, "# stmt: ");
+ print_gimple_stmt (outf, DR_STMT (dr), 0);
+ fprintf (outf, "# ref: ");
+ print_generic_stmt (outf, DR_REF (dr));
+ fprintf (outf, "# base_object: ");
+ print_generic_stmt (outf, DR_BASE_OBJECT (dr));
+
+ for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
+ {
+ fprintf (outf, "# Access function %d: ", i);
+ print_generic_stmt (outf, DR_ACCESS_FN (dr, i));
+ }
+ fprintf (outf, "#)\n");
+}
+
+/* Unified dump function for a DATA_REFERENCE structure. */
+
+DEBUG_FUNCTION void
+debug (data_reference &ref)
+{
+ dump_data_reference (stderr, &ref);
+}
+
+DEBUG_FUNCTION void
+debug (data_reference *ptr)
+{
+ if (ptr)
+ debug (*ptr);
+ else
+ fprintf (stderr, "<nil>\n");
+}
+
+
+/* Dumps the affine function described by FN to the file OUTF. */
+
+DEBUG_FUNCTION void
+dump_affine_function (FILE *outf, affine_fn fn)
+{
+ unsigned i;
+ tree coef;
+
+ print_generic_expr (outf, fn[0], TDF_SLIM);
+ for (i = 1; fn.iterate (i, &coef); i++)
+ {
+ fprintf (outf, " + ");
+ print_generic_expr (outf, coef, TDF_SLIM);
+ fprintf (outf, " * x_%u", i);
+ }
+}
+
+/* Dumps the conflict function CF to the file OUTF. */
+
+DEBUG_FUNCTION void
+dump_conflict_function (FILE *outf, conflict_function *cf)
+{
+ unsigned i;
+
+ if (cf->n == NO_DEPENDENCE)
+ fprintf (outf, "no dependence");
+ else if (cf->n == NOT_KNOWN)
+ fprintf (outf, "not known");
+ else
+ {
+ for (i = 0; i < cf->n; i++)
+ {
+ if (i != 0)
+ fprintf (outf, " ");
+ fprintf (outf, "[");
+ dump_affine_function (outf, cf->fns[i]);
+ fprintf (outf, "]");
+ }
+ }
+}
+
+/* Dump function for a SUBSCRIPT structure. */
+
+DEBUG_FUNCTION void
+dump_subscript (FILE *outf, struct subscript *subscript)
+{
+ conflict_function *cf = SUB_CONFLICTS_IN_A (subscript);
+
+ fprintf (outf, "\n (subscript \n");
+ fprintf (outf, " iterations_that_access_an_element_twice_in_A: ");
+ dump_conflict_function (outf, cf);
+ if (CF_NONTRIVIAL_P (cf))
+ {
+ tree last_iteration = SUB_LAST_CONFLICT (subscript);
+ fprintf (outf, "\n last_conflict: ");
+ print_generic_expr (outf, last_iteration);
+ }
+
+ cf = SUB_CONFLICTS_IN_B (subscript);
+ fprintf (outf, "\n iterations_that_access_an_element_twice_in_B: ");
+ dump_conflict_function (outf, cf);
+ if (CF_NONTRIVIAL_P (cf))
+ {
+ tree last_iteration = SUB_LAST_CONFLICT (subscript);
+ fprintf (outf, "\n last_conflict: ");
+ print_generic_expr (outf, last_iteration);
+ }
+
+ fprintf (outf, "\n (Subscript distance: ");
+ print_generic_expr (outf, SUB_DISTANCE (subscript));
+ fprintf (outf, " ))\n");
+}
+
+/* Print the classic direction vector DIRV to OUTF. */
+
+DEBUG_FUNCTION void
+print_direction_vector (FILE *outf,
+ lambda_vector dirv,
+ int length)
+{
+ int eq;
+
+ for (eq = 0; eq < length; eq++)
+ {
+ enum data_dependence_direction dir = ((enum data_dependence_direction)
+ dirv[eq]);
+
+ switch (dir)
+ {
+ case dir_positive:
+ fprintf (outf, " +");
+ break;
+ case dir_negative:
+ fprintf (outf, " -");
+ break;
+ case dir_equal:
+ fprintf (outf, " =");
+ break;
+ case dir_positive_or_equal:
+ fprintf (outf, " +=");
+ break;
+ case dir_positive_or_negative:
+ fprintf (outf, " +-");
+ break;
+ case dir_negative_or_equal:
+ fprintf (outf, " -=");
+ break;
+ case dir_star:
+ fprintf (outf, " *");
+ break;
+ default:
+ fprintf (outf, "indep");
+ break;
+ }
+ }
+ fprintf (outf, "\n");
+}
+
+/* Print a vector of direction vectors. */
+
+DEBUG_FUNCTION void
+print_dir_vectors (FILE *outf, vec<lambda_vector> dir_vects,
+ int length)
+{
+ for (lambda_vector v : dir_vects)
+ print_direction_vector (outf, v, length);
+}
+
+/* Print out a vector VEC of length N to OUTFILE. */
+
+DEBUG_FUNCTION void
+print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
+{
+ int i;
+
+ for (i = 0; i < n; i++)
+ fprintf (outfile, HOST_WIDE_INT_PRINT_DEC " ", vector[i]);
+ fprintf (outfile, "\n");
+}
+
+/* Print a vector of distance vectors. */
+
+DEBUG_FUNCTION void
+print_dist_vectors (FILE *outf, vec<lambda_vector> dist_vects,
+ int length)
+{
+ for (lambda_vector v : dist_vects)
+ print_lambda_vector (outf, v, length);
+}
+
+/* Dump function for a DATA_DEPENDENCE_RELATION structure. */
+
+DEBUG_FUNCTION void
+dump_data_dependence_relation (FILE *outf, const data_dependence_relation *ddr)
+{
+ struct data_reference *dra, *drb;
+
+ fprintf (outf, "(Data Dep: \n");
+
+ if (!ddr || DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
+ {
+ if (ddr)
+ {
+ dra = DDR_A (ddr);
+ drb = DDR_B (ddr);
+ if (dra)
+ dump_data_reference (outf, dra);
+ else
+ fprintf (outf, " (nil)\n");
+ if (drb)
+ dump_data_reference (outf, drb);
+ else
+ fprintf (outf, " (nil)\n");
+ }
+ fprintf (outf, " (don't know)\n)\n");
+ return;
+ }
+
+ dra = DDR_A (ddr);
+ drb = DDR_B (ddr);
+ dump_data_reference (outf, dra);
+ dump_data_reference (outf, drb);
+
+ if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
+ fprintf (outf, " (no dependence)\n");
+
+ else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
+ {
+ unsigned int i;
+ class loop *loopi;
+
+ subscript *sub;
+ FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
+ {
+ fprintf (outf, " access_fn_A: ");
+ print_generic_stmt (outf, SUB_ACCESS_FN (sub, 0));
+ fprintf (outf, " access_fn_B: ");
+ print_generic_stmt (outf, SUB_ACCESS_FN (sub, 1));
+ dump_subscript (outf, sub);
+ }
+
+ fprintf (outf, " loop nest: (");
+ FOR_EACH_VEC_ELT (DDR_LOOP_NEST (ddr), i, loopi)
+ fprintf (outf, "%d ", loopi->num);
+ fprintf (outf, ")\n");
+
+ for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
+ {
+ fprintf (outf, " distance_vector: ");
+ print_lambda_vector (outf, DDR_DIST_VECT (ddr, i),
+ DDR_NB_LOOPS (ddr));
+ }
+
+ for (i = 0; i < DDR_NUM_DIR_VECTS (ddr); i++)
+ {
+ fprintf (outf, " direction_vector: ");
+ print_direction_vector (outf, DDR_DIR_VECT (ddr, i),
+ DDR_NB_LOOPS (ddr));
+ }
+ }
+
+ fprintf (outf, ")\n");
+}
+
+/* Debug version. */
+
+DEBUG_FUNCTION void
+debug_data_dependence_relation (const struct data_dependence_relation *ddr)
+{
+ dump_data_dependence_relation (stderr, ddr);
+}
+
+/* Dump into FILE all the dependence relations from DDRS. */
+
+DEBUG_FUNCTION void
+dump_data_dependence_relations (FILE *file, const vec<ddr_p> &ddrs)
+{
+ for (auto ddr : ddrs)
+ dump_data_dependence_relation (file, ddr);
+}
+
+DEBUG_FUNCTION void
+debug (vec<ddr_p> &ref)
+{
+ dump_data_dependence_relations (stderr, ref);
+}
+
+DEBUG_FUNCTION void
+debug (vec<ddr_p> *ptr)
+{
+ if (ptr)
+ debug (*ptr);
+ else
+ fprintf (stderr, "<nil>\n");
+}
+
+
+/* Dump to STDERR all the dependence relations from DDRS. */
+
+DEBUG_FUNCTION void
+debug_data_dependence_relations (vec<ddr_p> ddrs)
+{
+ dump_data_dependence_relations (stderr, ddrs);
+}
+
+/* Dumps the distance and direction vectors in FILE. DDRS contains
+ the dependence relations, and VECT_SIZE is the size of the
+ dependence vectors, or in other words the number of loops in the
+ considered nest. */
+
+DEBUG_FUNCTION void
+dump_dist_dir_vectors (FILE *file, vec<ddr_p> ddrs)
+{
+ for (data_dependence_relation *ddr : ddrs)
+ if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE && DDR_AFFINE_P (ddr))
+ {
+ for (lambda_vector v : DDR_DIST_VECTS (ddr))
+ {
+ fprintf (file, "DISTANCE_V (");
+ print_lambda_vector (file, v, DDR_NB_LOOPS (ddr));
+ fprintf (file, ")\n");
+ }
+
+ for (lambda_vector v : DDR_DIR_VECTS (ddr))
+ {
+ fprintf (file, "DIRECTION_V (");
+ print_direction_vector (file, v, DDR_NB_LOOPS (ddr));
+ fprintf (file, ")\n");
+ }
+ }
+
+ fprintf (file, "\n\n");
+}
+
+/* Dumps the data dependence relations DDRS in FILE. */
+
+DEBUG_FUNCTION void
+dump_ddrs (FILE *file, vec<ddr_p> ddrs)
+{
+ for (data_dependence_relation *ddr : ddrs)
+ dump_data_dependence_relation (file, ddr);
+
+ fprintf (file, "\n\n");
+}
+
+DEBUG_FUNCTION void
+debug_ddrs (vec<ddr_p> ddrs)
+{
+ dump_ddrs (stderr, ddrs);
+}
+
+/* If RESULT_RANGE is nonnull, set *RESULT_RANGE to the range of
+ OP0 CODE OP1, where:
+
+ - OP0 CODE OP1 has integral type TYPE
+ - the range of OP0 is given by OP0_RANGE and
+ - the range of OP1 is given by OP1_RANGE.
+
+ Independently of RESULT_RANGE, try to compute:
+
+ DELTA = ((sizetype) OP0 CODE (sizetype) OP1)
+ - (sizetype) (OP0 CODE OP1)
+
+ as a constant and subtract DELTA from the ssizetype constant in *OFF.
+ Return true on success, or false if DELTA is not known at compile time.
+
+ Truncation and sign changes are known to distribute over CODE, i.e.
+
+ (itype) (A CODE B) == (itype) A CODE (itype) B
+
+ for any integral type ITYPE whose precision is no greater than the
+ precision of A and B. */
+
+static bool
+compute_distributive_range (tree type, value_range &op0_range,
+ tree_code code, value_range &op1_range,
+ tree *off, value_range *result_range)
+{
+ gcc_assert (INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_TRAPS (type));
+ if (result_range)
+ {
+ range_operator *op = range_op_handler (code, type);
+ op->fold_range (*result_range, type, op0_range, op1_range);
+ }
+
+ /* The distributive property guarantees that if TYPE is no narrower
+ than SIZETYPE,
+
+ (sizetype) (OP0 CODE OP1) == (sizetype) OP0 CODE (sizetype) OP1
+
+ and so we can treat DELTA as zero. */
+ if (TYPE_PRECISION (type) >= TYPE_PRECISION (sizetype))
+ return true;
+
+ /* If overflow is undefined, we can assume that:
+
+ X == (ssizetype) OP0 CODE (ssizetype) OP1
+
+ is within the range of TYPE, i.e.:
+
+ X == (ssizetype) (TYPE) X
+
+ Distributing the (TYPE) truncation over X gives:
+
+ X == (ssizetype) (OP0 CODE OP1)
+
+ Casting both sides to sizetype and distributing the sizetype cast
+ over X gives:
+
+ (sizetype) OP0 CODE (sizetype) OP1 == (sizetype) (OP0 CODE OP1)
+
+ and so we can treat DELTA as zero. */
+ if (TYPE_OVERFLOW_UNDEFINED (type))
+ return true;
+
+ /* Compute the range of:
+
+ (ssizetype) OP0 CODE (ssizetype) OP1
+
+ The distributive property guarantees that this has the same bitpattern as:
+
+ (sizetype) OP0 CODE (sizetype) OP1
+
+ but its range is more conducive to analysis. */
+ range_cast (op0_range, ssizetype);
+ range_cast (op1_range, ssizetype);
+ value_range wide_range;
+ range_operator *op = range_op_handler (code, ssizetype);
+ bool saved_flag_wrapv = flag_wrapv;
+ flag_wrapv = 1;
+ op->fold_range (wide_range, ssizetype, op0_range, op1_range);
+ flag_wrapv = saved_flag_wrapv;
+ if (wide_range.num_pairs () != 1 || !range_int_cst_p (&wide_range))
+ return false;
+
+ wide_int lb = wide_range.lower_bound ();
+ wide_int ub = wide_range.upper_bound ();
+
+ /* Calculate the number of times that each end of the range overflows or
+ underflows TYPE. We can only calculate DELTA if the numbers match. */
+ unsigned int precision = TYPE_PRECISION (type);
+ if (!TYPE_UNSIGNED (type))
+ {
+ wide_int type_min = wi::mask (precision - 1, true, lb.get_precision ());
+ lb -= type_min;
+ ub -= type_min;
+ }
+ wide_int upper_bits = wi::mask (precision, true, lb.get_precision ());
+ lb &= upper_bits;
+ ub &= upper_bits;
+ if (lb != ub)
+ return false;
+
+ /* OP0 CODE OP1 overflows exactly arshift (LB, PRECISION) times, with
+ negative values indicating underflow. The low PRECISION bits of LB
+ are clear, so DELTA is therefore LB (== UB). */
+ *off = wide_int_to_tree (ssizetype, wi::to_wide (*off) - lb);
+ return true;
+}
+
+/* Return true if (sizetype) OP == (sizetype) (TO_TYPE) OP,
+ given that OP has type FROM_TYPE and range RANGE. Both TO_TYPE and
+ FROM_TYPE are integral types. */
+
+static bool
+nop_conversion_for_offset_p (tree to_type, tree from_type, value_range &range)
+{
+ gcc_assert (INTEGRAL_TYPE_P (to_type)
+ && INTEGRAL_TYPE_P (from_type)
+ && !TYPE_OVERFLOW_TRAPS (to_type)
+ && !TYPE_OVERFLOW_TRAPS (from_type));
+
+ /* Converting to something no narrower than sizetype and then to sizetype
+ is equivalent to converting directly to sizetype. */
+ if (TYPE_PRECISION (to_type) >= TYPE_PRECISION (sizetype))
+ return true;
+
+ /* Check whether TO_TYPE can represent all values that FROM_TYPE can. */
+ if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type)
+ && (TYPE_UNSIGNED (from_type) || !TYPE_UNSIGNED (to_type)))
+ return true;
+
+ /* For narrowing conversions, we could in principle test whether
+ the bits in FROM_TYPE but not in TO_TYPE have a fixed value
+ and apply a constant adjustment.
+
+ For other conversions (which involve a sign change) we could
+ check that the signs are always equal, and apply a constant
+ adjustment if the signs are negative.
+
+ However, both cases should be rare. */
+ return range_fits_type_p (&range, TYPE_PRECISION (to_type),
+ TYPE_SIGN (to_type));
+}
+
+static void
+split_constant_offset (tree type, tree *var, tree *off,
+ value_range *result_range,
+ hash_map<tree, std::pair<tree, tree> > &cache,
+ unsigned *limit);
+
+/* Helper function for split_constant_offset. If TYPE is a pointer type,
+ try to express OP0 CODE OP1 as:
+
+ POINTER_PLUS <*VAR, (sizetype) *OFF>
+
+ where:
+
+ - *VAR has type TYPE
+ - *OFF is a constant of type ssizetype.
+
+ If TYPE is an integral type, try to express (sizetype) (OP0 CODE OP1) as:
+
+ *VAR + (sizetype) *OFF
+
+ where:
+
+ - *VAR has type sizetype
+ - *OFF is a constant of type ssizetype.
+
+ In both cases, OP0 CODE OP1 has type TYPE.
+
+ Return true on success. A false return value indicates that we can't
+ do better than set *OFF to zero.
+
+ When returning true, set RESULT_RANGE to the range of OP0 CODE OP1,
+ if RESULT_RANGE is nonnull and if we can do better than assume VR_VARYING.
+
+ CACHE caches {*VAR, *OFF} pairs for SSA names that we've previously
+ visited. LIMIT counts down the number of SSA names that we are
+ allowed to process before giving up. */
+
+static bool
+split_constant_offset_1 (tree type, tree op0, enum tree_code code, tree op1,
+ tree *var, tree *off, value_range *result_range,
+ hash_map<tree, std::pair<tree, tree> > &cache,
+ unsigned *limit)
+{
+ tree var0, var1;
+ tree off0, off1;
+ value_range op0_range, op1_range;
+
+ *var = NULL_TREE;
+ *off = NULL_TREE;
+
+ if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type))
+ return false;
+
+ switch (code)
+ {
+ case INTEGER_CST:
+ *var = size_int (0);
+ *off = fold_convert (ssizetype, op0);
+ if (result_range)
+ result_range->set (op0, op0);
+ return true;
+
+ case POINTER_PLUS_EXPR:
+ split_constant_offset (op0, &var0, &off0, nullptr, cache, limit);
+ split_constant_offset (op1, &var1, &off1, nullptr, cache, limit);
+ *var = fold_build2 (POINTER_PLUS_EXPR, type, var0, var1);
+ *off = size_binop (PLUS_EXPR, off0, off1);
+ return true;
+
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ split_constant_offset (op0, &var0, &off0, &op0_range, cache, limit);
+ split_constant_offset (op1, &var1, &off1, &op1_range, cache, limit);
+ *off = size_binop (code, off0, off1);
+ if (!compute_distributive_range (type, op0_range, code, op1_range,
+ off, result_range))
+ return false;
+ *var = fold_build2 (code, sizetype, var0, var1);
+ return true;
+
+ case MULT_EXPR:
+ if (TREE_CODE (op1) != INTEGER_CST)
+ return false;
+
+ split_constant_offset (op0, &var0, &off0, &op0_range, cache, limit);
+ op1_range.set (op1, op1);
+ *off = size_binop (MULT_EXPR, off0, fold_convert (ssizetype, op1));
+ if (!compute_distributive_range (type, op0_range, code, op1_range,
+ off, result_range))
+ return false;
+ *var = fold_build2 (MULT_EXPR, sizetype, var0,
+ fold_convert (sizetype, op1));
+ return true;
+
+ case ADDR_EXPR:
+ {
+ tree base, poffset;
+ poly_int64 pbitsize, pbitpos, pbytepos;
+ machine_mode pmode;
+ int punsignedp, preversep, pvolatilep;
+
+ op0 = TREE_OPERAND (op0, 0);
+ base
+ = get_inner_reference (op0, &pbitsize, &pbitpos, &poffset, &pmode,
+ &punsignedp, &preversep, &pvolatilep);
+
+ if (!multiple_p (pbitpos, BITS_PER_UNIT, &pbytepos))
+ return false;
+ base = build_fold_addr_expr (base);
+ off0 = ssize_int (pbytepos);
+
+ if (poffset)
+ {
+ split_constant_offset (poffset, &poffset, &off1, nullptr,
+ cache, limit);
+ off0 = size_binop (PLUS_EXPR, off0, off1);
+ base = fold_build_pointer_plus (base, poffset);
+ }
+
+ var0 = fold_convert (type, base);
+
+ /* If variable length types are involved, punt, otherwise casts
+ might be converted into ARRAY_REFs in gimplify_conversion.
+ To compute that ARRAY_REF's element size TYPE_SIZE_UNIT, which
+ possibly no longer appears in current GIMPLE, might resurface.
+ This perhaps could run
+ if (CONVERT_EXPR_P (var0))
+ {
+ gimplify_conversion (&var0);
+ // Attempt to fill in any within var0 found ARRAY_REF's
+ // element size from corresponding op embedded ARRAY_REF,
+ // if unsuccessful, just punt.
+ } */
+ while (POINTER_TYPE_P (type))
+ type = TREE_TYPE (type);
+ if (int_size_in_bytes (type) < 0)
+ return false;
+
+ *var = var0;
+ *off = off0;
+ return true;
+ }
+
+ case SSA_NAME:
+ {
+ if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0))
+ return false;
+
+ gimple *def_stmt = SSA_NAME_DEF_STMT (op0);
+ enum tree_code subcode;
+
+ if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
+ return false;
+
+ subcode = gimple_assign_rhs_code (def_stmt);
+
+ /* We are using a cache to avoid un-CSEing large amounts of code. */
+ bool use_cache = false;
+ if (!has_single_use (op0)
+ && (subcode == POINTER_PLUS_EXPR
+ || subcode == PLUS_EXPR
+ || subcode == MINUS_EXPR
+ || subcode == MULT_EXPR
+ || subcode == ADDR_EXPR
+ || CONVERT_EXPR_CODE_P (subcode)))
+ {
+ use_cache = true;
+ bool existed;
+ std::pair<tree, tree> &e = cache.get_or_insert (op0, &existed);
+ if (existed)
+ {
+ if (integer_zerop (e.second))
+ return false;
+ *var = e.first;
+ *off = e.second;
+ /* The caller sets the range in this case. */
+ return true;
+ }
+ e = std::make_pair (op0, ssize_int (0));
+ }
+
+ if (*limit == 0)
+ return false;
+ --*limit;
+
+ var0 = gimple_assign_rhs1 (def_stmt);
+ var1 = gimple_assign_rhs2 (def_stmt);
+
+ bool res = split_constant_offset_1 (type, var0, subcode, var1,
+ var, off, nullptr, cache, limit);
+ if (res && use_cache)
+ *cache.get (op0) = std::make_pair (*var, *off);
+ /* The caller sets the range in this case. */
+ return res;
+ }
+ CASE_CONVERT:
+ {
+ /* We can only handle the following conversions:
+
+ - Conversions from one pointer type to another pointer type.
+
+ - Conversions from one non-trapping integral type to another
+ non-trapping integral type. In this case, the recursive
+ call makes sure that:
+
+ (sizetype) OP0
+
+ can be expressed as a sizetype operation involving VAR and OFF,
+ and all we need to do is check whether:
+
+ (sizetype) OP0 == (sizetype) (TYPE) OP0
+
+ - Conversions from a non-trapping sizetype-size integral type to
+ a like-sized pointer type. In this case, the recursive call
+ makes sure that:
+
+ (sizetype) OP0 == *VAR + (sizetype) *OFF
+
+ and we can convert that to:
+
+ POINTER_PLUS <(TYPE) *VAR, (sizetype) *OFF>
+
+ - Conversions from a sizetype-sized pointer type to a like-sized
+ non-trapping integral type. In this case, the recursive call
+ makes sure that:
+
+ OP0 == POINTER_PLUS <*VAR, (sizetype) *OFF>
+
+ where the POINTER_PLUS and *VAR have the same precision as
+ TYPE (and the same precision as sizetype). Then:
+
+ (sizetype) (TYPE) OP0 == (sizetype) *VAR + (sizetype) *OFF. */
+ tree itype = TREE_TYPE (op0);
+ if ((POINTER_TYPE_P (itype)
+ || (INTEGRAL_TYPE_P (itype) && !TYPE_OVERFLOW_TRAPS (itype)))
+ && (POINTER_TYPE_P (type)
+ || (INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_TRAPS (type)))
+ && (POINTER_TYPE_P (type) == POINTER_TYPE_P (itype)
+ || (TYPE_PRECISION (type) == TYPE_PRECISION (sizetype)
+ && TYPE_PRECISION (itype) == TYPE_PRECISION (sizetype))))
+ {
+ if (POINTER_TYPE_P (type))
+ {
+ split_constant_offset (op0, var, off, nullptr, cache, limit);
+ *var = fold_convert (type, *var);
+ }
+ else if (POINTER_TYPE_P (itype))
+ {
+ split_constant_offset (op0, var, off, nullptr, cache, limit);
+ *var = fold_convert (sizetype, *var);
+ }
+ else
+ {
+ split_constant_offset (op0, var, off, &op0_range,
+ cache, limit);
+ if (!nop_conversion_for_offset_p (type, itype, op0_range))
+ return false;
+ if (result_range)
+ {
+ *result_range = op0_range;
+ range_cast (*result_range, type);
+ }
+ }
+ return true;
+ }
+ return false;
+ }
+
+ default:
+ return false;
+ }
+}
+
+/* If EXP has pointer type, try to express it as:
+
+ POINTER_PLUS <*VAR, (sizetype) *OFF>
+
+ where:
+
+ - *VAR has the same type as EXP
+ - *OFF is a constant of type ssizetype.
+
+ If EXP has an integral type, try to express (sizetype) EXP as:
+
+ *VAR + (sizetype) *OFF
+
+ where:
+
+ - *VAR has type sizetype
+ - *OFF is a constant of type ssizetype.
+
+ If EXP_RANGE is nonnull, set it to the range of EXP.
+
+ CACHE caches {*VAR, *OFF} pairs for SSA names that we've previously
+ visited. LIMIT counts down the number of SSA names that we are
+ allowed to process before giving up. */
+
+static void
+split_constant_offset (tree exp, tree *var, tree *off, value_range *exp_range,
+ hash_map<tree, std::pair<tree, tree> > &cache,
+ unsigned *limit)
+{
+ tree type = TREE_TYPE (exp), op0, op1;
+ enum tree_code code;
+
+ code = TREE_CODE (exp);
+ if (exp_range)
+ {
+ *exp_range = type;
+ if (code == SSA_NAME)
+ {
+ value_range vr;
+ get_range_query (cfun)->range_of_expr (vr, exp);
+ if (vr.undefined_p ())
+ vr.set_varying (TREE_TYPE (exp));
+ wide_int var_min = wi::to_wide (vr.min ());
+ wide_int var_max = wi::to_wide (vr.max ());
+ value_range_kind vr_kind = vr.kind ();
+ wide_int var_nonzero = get_nonzero_bits (exp);
+ vr_kind = intersect_range_with_nonzero_bits (vr_kind,
+ &var_min, &var_max,
+ var_nonzero,
+ TYPE_SIGN (type));
+ /* This check for VR_VARYING is here because the old code
+ using get_range_info would return VR_RANGE for the entire
+ domain, instead of VR_VARYING. The new code normalizes
+ full-domain ranges to VR_VARYING. */
+ if (vr_kind == VR_RANGE || vr_kind == VR_VARYING)
+ *exp_range = value_range (type, var_min, var_max);
+ }
+ }
+
+ if (!tree_is_chrec (exp)
+ && get_gimple_rhs_class (TREE_CODE (exp)) != GIMPLE_TERNARY_RHS)
+ {
+ extract_ops_from_tree (exp, &code, &op0, &op1);
+ if (split_constant_offset_1 (type, op0, code, op1, var, off,
+ exp_range, cache, limit))
+ return;
+ }
+
+ *var = exp;
+ if (INTEGRAL_TYPE_P (type))
+ *var = fold_convert (sizetype, *var);
+ *off = ssize_int (0);
+
+ value_range r;
+ if (exp_range && code != SSA_NAME
+ && get_range_query (cfun)->range_of_expr (r, exp)
+ && !r.undefined_p ())
+ *exp_range = r;
+}
+
+/* Expresses EXP as VAR + OFF, where OFF is a constant. VAR has the same
+ type as EXP while OFF has type ssizetype. */
+
+void
+split_constant_offset (tree exp, tree *var, tree *off)
+{
+ unsigned limit = param_ssa_name_def_chain_limit;
+ static hash_map<tree, std::pair<tree, tree> > *cache;
+ if (!cache)
+ cache = new hash_map<tree, std::pair<tree, tree> > (37);
+ split_constant_offset (exp, var, off, nullptr, *cache, &limit);
+ *var = fold_convert (TREE_TYPE (exp), *var);
+ cache->empty ();
+}
+
+/* Returns the address ADDR of an object in a canonical shape (without nop
+ casts, and with type of pointer to the object). */
+
+static tree
+canonicalize_base_object_address (tree addr)
+{
+ tree orig = addr;
+
+ STRIP_NOPS (addr);
+
+ /* The base address may be obtained by casting from integer, in that case
+ keep the cast. */
+ if (!POINTER_TYPE_P (TREE_TYPE (addr)))
+ return orig;
+
+ if (TREE_CODE (addr) != ADDR_EXPR)
+ return addr;
+
+ return build_fold_addr_expr (TREE_OPERAND (addr, 0));
+}
+
+/* Analyze the behavior of memory reference REF within STMT.
+ There are two modes:
+
+ - BB analysis. In this case we simply split the address into base,
+ init and offset components, without reference to any containing loop.
+ The resulting base and offset are general expressions and they can
+ vary arbitrarily from one iteration of the containing loop to the next.
+ The step is always zero.
+
+ - loop analysis. In this case we analyze the reference both wrt LOOP
+ and on the basis that the reference occurs (is "used") in LOOP;
+ see the comment above analyze_scalar_evolution_in_loop for more
+ information about this distinction. The base, init, offset and
+ step fields are all invariant in LOOP.
+
+ Perform BB analysis if LOOP is null, or if LOOP is the function's
+ dummy outermost loop. In other cases perform loop analysis.
+
+ Return true if the analysis succeeded and store the results in DRB if so.
+ BB analysis can only fail for bitfield or reversed-storage accesses. */
+
+opt_result
+dr_analyze_innermost (innermost_loop_behavior *drb, tree ref,
+ class loop *loop, const gimple *stmt)
+{
+ poly_int64 pbitsize, pbitpos;
+ tree base, poffset;
+ machine_mode pmode;
+ int punsignedp, preversep, pvolatilep;
+ affine_iv base_iv, offset_iv;
+ tree init, dinit, step;
+ bool in_loop = (loop && loop->num);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "analyze_innermost: ");
+
+ base = get_inner_reference (ref, &pbitsize, &pbitpos, &poffset, &pmode,
+ &punsignedp, &preversep, &pvolatilep);
+ gcc_assert (base != NULL_TREE);
+
+ poly_int64 pbytepos;
+ if (!multiple_p (pbitpos, BITS_PER_UNIT, &pbytepos))
+ return opt_result::failure_at (stmt,
+ "failed: bit offset alignment.\n");
+
+ if (preversep)
+ return opt_result::failure_at (stmt,
+ "failed: reverse storage order.\n");
+
+ /* Calculate the alignment and misalignment for the inner reference. */
+ unsigned int HOST_WIDE_INT bit_base_misalignment;
+ unsigned int bit_base_alignment;
+ get_object_alignment_1 (base, &bit_base_alignment, &bit_base_misalignment);
+
+ /* There are no bitfield references remaining in BASE, so the values
+ we got back must be whole bytes. */
+ gcc_assert (bit_base_alignment % BITS_PER_UNIT == 0
+ && bit_base_misalignment % BITS_PER_UNIT == 0);
+ unsigned int base_alignment = bit_base_alignment / BITS_PER_UNIT;
+ poly_int64 base_misalignment = bit_base_misalignment / BITS_PER_UNIT;
+
+ if (TREE_CODE (base) == MEM_REF)
+ {
+ if (!integer_zerop (TREE_OPERAND (base, 1)))
+ {
+ /* Subtract MOFF from the base and add it to POFFSET instead.
+ Adjust the misalignment to reflect the amount we subtracted. */
+ poly_offset_int moff = mem_ref_offset (base);
+ base_misalignment -= moff.force_shwi ();
+ tree mofft = wide_int_to_tree (sizetype, moff);
+ if (!poffset)
+ poffset = mofft;
+ else
+ poffset = size_binop (PLUS_EXPR, poffset, mofft);
+ }
+ base = TREE_OPERAND (base, 0);
+ }
+ else
+ base = build_fold_addr_expr (base);
+
+ if (in_loop)
+ {
+ if (!simple_iv (loop, loop, base, &base_iv, true))
+ return opt_result::failure_at
+ (stmt, "failed: evolution of base is not affine.\n");
+ }
+ else
+ {
+ base_iv.base = base;
+ base_iv.step = ssize_int (0);
+ base_iv.no_overflow = true;
+ }
+
+ if (!poffset)
+ {
+ offset_iv.base = ssize_int (0);
+ offset_iv.step = ssize_int (0);
+ }
+ else
+ {
+ if (!in_loop)
+ {
+ offset_iv.base = poffset;
+ offset_iv.step = ssize_int (0);
+ }
+ else if (!simple_iv (loop, loop, poffset, &offset_iv, true))
+ return opt_result::failure_at
+ (stmt, "failed: evolution of offset is not affine.\n");
+ }
+
+ init = ssize_int (pbytepos);
+
+ /* Subtract any constant component from the base and add it to INIT instead.
+ Adjust the misalignment to reflect the amount we subtracted. */
+ split_constant_offset (base_iv.base, &base_iv.base, &dinit);
+ init = size_binop (PLUS_EXPR, init, dinit);
+ base_misalignment -= TREE_INT_CST_LOW (dinit);
+
+ split_constant_offset (offset_iv.base, &offset_iv.base, &dinit);
+ init = size_binop (PLUS_EXPR, init, dinit);
+
+ step = size_binop (PLUS_EXPR,
+ fold_convert (ssizetype, base_iv.step),
+ fold_convert (ssizetype, offset_iv.step));
+
+ base = canonicalize_base_object_address (base_iv.base);
+
+ /* See if get_pointer_alignment can guarantee a higher alignment than
+ the one we calculated above. */
+ unsigned int HOST_WIDE_INT alt_misalignment;
+ unsigned int alt_alignment;
+ get_pointer_alignment_1 (base, &alt_alignment, &alt_misalignment);
+
+ /* As above, these values must be whole bytes. */
+ gcc_assert (alt_alignment % BITS_PER_UNIT == 0
+ && alt_misalignment % BITS_PER_UNIT == 0);
+ alt_alignment /= BITS_PER_UNIT;
+ alt_misalignment /= BITS_PER_UNIT;
+
+ if (base_alignment < alt_alignment)
+ {
+ base_alignment = alt_alignment;
+ base_misalignment = alt_misalignment;
+ }
+
+ drb->base_address = base;
+ drb->offset = fold_convert (ssizetype, offset_iv.base);
+ drb->init = init;
+ drb->step = step;
+ if (known_misalignment (base_misalignment, base_alignment,
+ &drb->base_misalignment))
+ drb->base_alignment = base_alignment;
+ else
+ {
+ drb->base_alignment = known_alignment (base_misalignment);
+ drb->base_misalignment = 0;
+ }
+ drb->offset_alignment = highest_pow2_factor (offset_iv.base);
+ drb->step_alignment = highest_pow2_factor (step);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "success.\n");
+
+ return opt_result::success ();
+}
+
+/* Return true if OP is a valid component reference for a DR access
+ function. This accepts a subset of what handled_component_p accepts. */
+
+static bool
+access_fn_component_p (tree op)
+{
+ switch (TREE_CODE (op))
+ {
+ case REALPART_EXPR:
+ case IMAGPART_EXPR:
+ case ARRAY_REF:
+ return true;
+
+ case COMPONENT_REF:
+ return TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == RECORD_TYPE;
+
+ default:
+ return false;
+ }
+}
+
+/* Returns whether BASE can have a access_fn_component_p with BASE
+ as base. */
+
+static bool
+base_supports_access_fn_components_p (tree base)
+{
+ switch (TREE_CODE (TREE_TYPE (base)))
+ {
+ case COMPLEX_TYPE:
+ case ARRAY_TYPE:
+ case RECORD_TYPE:
+ return true;
+ default:
+ return false;
+ }
+}
+
+/* Determines the base object and the list of indices of memory reference
+ DR, analyzed in LOOP and instantiated before NEST. */
+
+static void
+dr_analyze_indices (struct indices *dri, tree ref, edge nest, loop_p loop)
+{
+ /* If analyzing a basic-block there are no indices to analyze
+ and thus no access functions. */
+ if (!nest)
+ {
+ dri->base_object = ref;
+ dri->access_fns.create (0);
+ return;
+ }
+
+ vec<tree> access_fns = vNULL;
+
+ /* REALPART_EXPR and IMAGPART_EXPR can be handled like accesses
+ into a two element array with a constant index. The base is
+ then just the immediate underlying object. */
+ if (TREE_CODE (ref) == REALPART_EXPR)
+ {
+ ref = TREE_OPERAND (ref, 0);
+ access_fns.safe_push (integer_zero_node);
+ }
+ else if (TREE_CODE (ref) == IMAGPART_EXPR)
+ {
+ ref = TREE_OPERAND (ref, 0);
+ access_fns.safe_push (integer_one_node);
+ }
+
+ /* Analyze access functions of dimensions we know to be independent.
+ The list of component references handled here should be kept in
+ sync with access_fn_component_p. */
+ while (handled_component_p (ref))
+ {
+ if (TREE_CODE (ref) == ARRAY_REF)
+ {
+ tree op = TREE_OPERAND (ref, 1);
+ tree access_fn = analyze_scalar_evolution (loop, op);
+ access_fn = instantiate_scev (nest, loop, access_fn);
+ access_fns.safe_push (access_fn);
+ }
+ else if (TREE_CODE (ref) == COMPONENT_REF
+ && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
+ {
+ /* For COMPONENT_REFs of records (but not unions!) use the
+ FIELD_DECL offset as constant access function so we can
+ disambiguate a[i].f1 and a[i].f2. */
+ tree off = component_ref_field_offset (ref);
+ off = size_binop (PLUS_EXPR,
+ size_binop (MULT_EXPR,
+ fold_convert (bitsizetype, off),
+ bitsize_int (BITS_PER_UNIT)),
+ DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1)));
+ access_fns.safe_push (off);
+ }
+ else
+ /* If we have an unhandled component we could not translate
+ to an access function stop analyzing. We have determined
+ our base object in this case. */
+ break;
+
+ ref = TREE_OPERAND (ref, 0);
+ }
+
+ /* If the address operand of a MEM_REF base has an evolution in the
+ analyzed nest, add it as an additional independent access-function. */
+ if (TREE_CODE (ref) == MEM_REF)
+ {
+ tree op = TREE_OPERAND (ref, 0);
+ tree access_fn = analyze_scalar_evolution (loop, op);
+ access_fn = instantiate_scev (nest, loop, access_fn);
+ STRIP_NOPS (access_fn);
+ if (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
+ {
+ tree memoff = TREE_OPERAND (ref, 1);
+ tree base = initial_condition (access_fn);
+ tree orig_type = TREE_TYPE (base);
+ STRIP_USELESS_TYPE_CONVERSION (base);
+ tree off;
+ split_constant_offset (base, &base, &off);
+ STRIP_USELESS_TYPE_CONVERSION (base);
+ /* Fold the MEM_REF offset into the evolutions initial
+ value to make more bases comparable. */
+ if (!integer_zerop (memoff))
+ {
+ off = size_binop (PLUS_EXPR, off,
+ fold_convert (ssizetype, memoff));
+ memoff = build_int_cst (TREE_TYPE (memoff), 0);
+ }
+ /* Adjust the offset so it is a multiple of the access type
+ size and thus we separate bases that can possibly be used
+ to produce partial overlaps (which the access_fn machinery
+ cannot handle). */
+ wide_int rem;
+ if (TYPE_SIZE_UNIT (TREE_TYPE (ref))
+ && TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (ref))) == INTEGER_CST
+ && !integer_zerop (TYPE_SIZE_UNIT (TREE_TYPE (ref))))
+ rem = wi::mod_trunc
+ (wi::to_wide (off),
+ wi::to_wide (TYPE_SIZE_UNIT (TREE_TYPE (ref))),
+ SIGNED);
+ else
+ /* If we can't compute the remainder simply force the initial
+ condition to zero. */
+ rem = wi::to_wide (off);
+ off = wide_int_to_tree (ssizetype, wi::to_wide (off) - rem);
+ memoff = wide_int_to_tree (TREE_TYPE (memoff), rem);
+ /* And finally replace the initial condition. */
+ access_fn = chrec_replace_initial_condition
+ (access_fn, fold_convert (orig_type, off));
+ /* ??? This is still not a suitable base object for
+ dr_may_alias_p - the base object needs to be an
+ access that covers the object as whole. With
+ an evolution in the pointer this cannot be
+ guaranteed.
+ As a band-aid, mark the access so we can special-case
+ it in dr_may_alias_p. */
+ tree old = ref;
+ ref = fold_build2_loc (EXPR_LOCATION (ref),
+ MEM_REF, TREE_TYPE (ref),
+ base, memoff);
+ MR_DEPENDENCE_CLIQUE (ref) = MR_DEPENDENCE_CLIQUE (old);
+ MR_DEPENDENCE_BASE (ref) = MR_DEPENDENCE_BASE (old);
+ dri->unconstrained_base = true;
+ access_fns.safe_push (access_fn);
+ }
+ }
+ else if (DECL_P (ref))
+ {
+ /* Canonicalize DR_BASE_OBJECT to MEM_REF form. */
+ ref = build2 (MEM_REF, TREE_TYPE (ref),
+ build_fold_addr_expr (ref),
+ build_int_cst (reference_alias_ptr_type (ref), 0));
+ }
+
+ dri->base_object = ref;
+ dri->access_fns = access_fns;
+}
+
+/* Extracts the alias analysis information from the memory reference DR. */
+
+static void
+dr_analyze_alias (struct data_reference *dr)
+{
+ tree ref = DR_REF (dr);
+ tree base = get_base_address (ref), addr;
+
+ if (INDIRECT_REF_P (base)
+ || TREE_CODE (base) == MEM_REF)
+ {
+ addr = TREE_OPERAND (base, 0);
+ if (TREE_CODE (addr) == SSA_NAME)
+ DR_PTR_INFO (dr) = SSA_NAME_PTR_INFO (addr);
+ }
+}
+
+/* Frees data reference DR. */
+
+void
+free_data_ref (data_reference_p dr)
+{
+ DR_ACCESS_FNS (dr).release ();
+ if (dr->alt_indices.base_object)
+ dr->alt_indices.access_fns.release ();
+ free (dr);
+}
+
+/* Analyze memory reference MEMREF, which is accessed in STMT.
+ The reference is a read if IS_READ is true, otherwise it is a write.
+ IS_CONDITIONAL_IN_STMT indicates that the reference is conditional
+ within STMT, i.e. that it might not occur even if STMT is executed
+ and runs to completion.
+
+ Return the data_reference description of MEMREF. NEST is the outermost
+ loop in which the reference should be instantiated, LOOP is the loop
+ in which the data reference should be analyzed. */
+
+struct data_reference *
+create_data_ref (edge nest, loop_p loop, tree memref, gimple *stmt,
+ bool is_read, bool is_conditional_in_stmt)
+{
+ struct data_reference *dr;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Creating dr for ");
+ print_generic_expr (dump_file, memref, TDF_SLIM);
+ fprintf (dump_file, "\n");
+ }
+
+ dr = XCNEW (struct data_reference);
+ DR_STMT (dr) = stmt;
+ DR_REF (dr) = memref;
+ DR_IS_READ (dr) = is_read;
+ DR_IS_CONDITIONAL_IN_STMT (dr) = is_conditional_in_stmt;
+
+ dr_analyze_innermost (&DR_INNERMOST (dr), memref,
+ nest != NULL ? loop : NULL, stmt);
+ dr_analyze_indices (&dr->indices, DR_REF (dr), nest, loop);
+ dr_analyze_alias (dr);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ unsigned i;
+ fprintf (dump_file, "\tbase_address: ");
+ print_generic_expr (dump_file, DR_BASE_ADDRESS (dr), TDF_SLIM);
+ fprintf (dump_file, "\n\toffset from base address: ");
+ print_generic_expr (dump_file, DR_OFFSET (dr), TDF_SLIM);
+ fprintf (dump_file, "\n\tconstant offset from base address: ");
+ print_generic_expr (dump_file, DR_INIT (dr), TDF_SLIM);
+ fprintf (dump_file, "\n\tstep: ");
+ print_generic_expr (dump_file, DR_STEP (dr), TDF_SLIM);
+ fprintf (dump_file, "\n\tbase alignment: %d", DR_BASE_ALIGNMENT (dr));
+ fprintf (dump_file, "\n\tbase misalignment: %d",
+ DR_BASE_MISALIGNMENT (dr));
+ fprintf (dump_file, "\n\toffset alignment: %d",
+ DR_OFFSET_ALIGNMENT (dr));
+ fprintf (dump_file, "\n\tstep alignment: %d", DR_STEP_ALIGNMENT (dr));
+ fprintf (dump_file, "\n\tbase_object: ");
+ print_generic_expr (dump_file, DR_BASE_OBJECT (dr), TDF_SLIM);
+ fprintf (dump_file, "\n");
+ for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
+ {
+ fprintf (dump_file, "\tAccess function %d: ", i);
+ print_generic_stmt (dump_file, DR_ACCESS_FN (dr, i), TDF_SLIM);
+ }
+ }
+
+ return dr;
+}
+
+/* A helper function computes order between two tree expressions T1 and T2.
+ This is used in comparator functions sorting objects based on the order
+ of tree expressions. The function returns -1, 0, or 1. */
+
+int
+data_ref_compare_tree (tree t1, tree t2)
+{
+ int i, cmp;
+ enum tree_code code;
+ char tclass;
+
+ if (t1 == t2)
+ return 0;
+ if (t1 == NULL)
+ return -1;
+ if (t2 == NULL)
+ return 1;
+
+ STRIP_USELESS_TYPE_CONVERSION (t1);
+ STRIP_USELESS_TYPE_CONVERSION (t2);
+ if (t1 == t2)
+ return 0;
+
+ if (TREE_CODE (t1) != TREE_CODE (t2)
+ && ! (CONVERT_EXPR_P (t1) && CONVERT_EXPR_P (t2)))
+ return TREE_CODE (t1) < TREE_CODE (t2) ? -1 : 1;
+
+ code = TREE_CODE (t1);
+ switch (code)
+ {
+ case INTEGER_CST:
+ return tree_int_cst_compare (t1, t2);
+
+ case STRING_CST:
+ if (TREE_STRING_LENGTH (t1) != TREE_STRING_LENGTH (t2))
+ return TREE_STRING_LENGTH (t1) < TREE_STRING_LENGTH (t2) ? -1 : 1;
+ return memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
+ TREE_STRING_LENGTH (t1));
+
+ case SSA_NAME:
+ if (SSA_NAME_VERSION (t1) != SSA_NAME_VERSION (t2))
+ return SSA_NAME_VERSION (t1) < SSA_NAME_VERSION (t2) ? -1 : 1;
+ break;
+
+ default:
+ if (POLY_INT_CST_P (t1))
+ return compare_sizes_for_sort (wi::to_poly_widest (t1),
+ wi::to_poly_widest (t2));
+
+ tclass = TREE_CODE_CLASS (code);
+
+ /* For decls, compare their UIDs. */
+ if (tclass == tcc_declaration)
+ {
+ if (DECL_UID (t1) != DECL_UID (t2))
+ return DECL_UID (t1) < DECL_UID (t2) ? -1 : 1;
+ break;
+ }
+ /* For expressions, compare their operands recursively. */
+ else if (IS_EXPR_CODE_CLASS (tclass))
+ {
+ for (i = TREE_OPERAND_LENGTH (t1) - 1; i >= 0; --i)
+ {
+ cmp = data_ref_compare_tree (TREE_OPERAND (t1, i),
+ TREE_OPERAND (t2, i));
+ if (cmp != 0)
+ return cmp;
+ }
+ }
+ else
+ gcc_unreachable ();
+ }
+
+ return 0;
+}
+
+/* Return TRUE it's possible to resolve data dependence DDR by runtime alias
+ check. */
+
+opt_result
+runtime_alias_check_p (ddr_p ddr, class loop *loop, bool speed_p)
+{
+ if (dump_enabled_p ())
+ dump_printf (MSG_NOTE,
+ "consider run-time aliasing test between %T and %T\n",
+ DR_REF (DDR_A (ddr)), DR_REF (DDR_B (ddr)));
+
+ if (!speed_p)
+ return opt_result::failure_at (DR_STMT (DDR_A (ddr)),
+ "runtime alias check not supported when"
+ " optimizing for size.\n");
+
+ /* FORNOW: We don't support versioning with outer-loop in either
+ vectorization or loop distribution. */
+ if (loop != NULL && loop->inner != NULL)
+ return opt_result::failure_at (DR_STMT (DDR_A (ddr)),
+ "runtime alias check not supported for"
+ " outer loop.\n");
+
+ return opt_result::success ();
+}
+
+/* Operator == between two dr_with_seg_len objects.
+
+ This equality operator is used to make sure two data refs
+ are the same one so that we will consider to combine the
+ aliasing checks of those two pairs of data dependent data
+ refs. */
+
+static bool
+operator == (const dr_with_seg_len& d1,
+ const dr_with_seg_len& d2)
+{
+ return (operand_equal_p (DR_BASE_ADDRESS (d1.dr),
+ DR_BASE_ADDRESS (d2.dr), 0)
+ && data_ref_compare_tree (DR_OFFSET (d1.dr), DR_OFFSET (d2.dr)) == 0
+ && data_ref_compare_tree (DR_INIT (d1.dr), DR_INIT (d2.dr)) == 0
+ && data_ref_compare_tree (d1.seg_len, d2.seg_len) == 0
+ && known_eq (d1.access_size, d2.access_size)
+ && d1.align == d2.align);
+}
+
+/* Comparison function for sorting objects of dr_with_seg_len_pair_t
+ so that we can combine aliasing checks in one scan. */
+
+static int
+comp_dr_with_seg_len_pair (const void *pa_, const void *pb_)
+{
+ const dr_with_seg_len_pair_t* pa = (const dr_with_seg_len_pair_t *) pa_;
+ const dr_with_seg_len_pair_t* pb = (const dr_with_seg_len_pair_t *) pb_;
+ const dr_with_seg_len &a1 = pa->first, &a2 = pa->second;
+ const dr_with_seg_len &b1 = pb->first, &b2 = pb->second;
+
+ /* For DR pairs (a, b) and (c, d), we only consider to merge the alias checks
+ if a and c have the same basic address snd step, and b and d have the same
+ address and step. Therefore, if any a&c or b&d don't have the same address
+ and step, we don't care the order of those two pairs after sorting. */
+ int comp_res;
+
+ if ((comp_res = data_ref_compare_tree (DR_BASE_ADDRESS (a1.dr),
+ DR_BASE_ADDRESS (b1.dr))) != 0)
+ return comp_res;
+ if ((comp_res = data_ref_compare_tree (DR_BASE_ADDRESS (a2.dr),
+ DR_BASE_ADDRESS (b2.dr))) != 0)
+ return comp_res;
+ if ((comp_res = data_ref_compare_tree (DR_STEP (a1.dr),
+ DR_STEP (b1.dr))) != 0)
+ return comp_res;
+ if ((comp_res = data_ref_compare_tree (DR_STEP (a2.dr),
+ DR_STEP (b2.dr))) != 0)
+ return comp_res;
+ if ((comp_res = data_ref_compare_tree (DR_OFFSET (a1.dr),
+ DR_OFFSET (b1.dr))) != 0)
+ return comp_res;
+ if ((comp_res = data_ref_compare_tree (DR_INIT (a1.dr),
+ DR_INIT (b1.dr))) != 0)
+ return comp_res;
+ if ((comp_res = data_ref_compare_tree (DR_OFFSET (a2.dr),
+ DR_OFFSET (b2.dr))) != 0)
+ return comp_res;
+ if ((comp_res = data_ref_compare_tree (DR_INIT (a2.dr),
+ DR_INIT (b2.dr))) != 0)
+ return comp_res;
+
+ return 0;
+}
+
+/* Dump information about ALIAS_PAIR, indenting each line by INDENT. */
+
+static void
+dump_alias_pair (dr_with_seg_len_pair_t *alias_pair, const char *indent)
+{
+ dump_printf (MSG_NOTE, "%sreference: %T vs. %T\n", indent,
+ DR_REF (alias_pair->first.dr),
+ DR_REF (alias_pair->second.dr));
+
+ dump_printf (MSG_NOTE, "%ssegment length: %T", indent,
+ alias_pair->first.seg_len);
+ if (!operand_equal_p (alias_pair->first.seg_len,
+ alias_pair->second.seg_len, 0))
+ dump_printf (MSG_NOTE, " vs. %T", alias_pair->second.seg_len);
+
+ dump_printf (MSG_NOTE, "\n%saccess size: ", indent);
+ dump_dec (MSG_NOTE, alias_pair->first.access_size);
+ if (maybe_ne (alias_pair->first.access_size, alias_pair->second.access_size))
+ {
+ dump_printf (MSG_NOTE, " vs. ");
+ dump_dec (MSG_NOTE, alias_pair->second.access_size);
+ }
+
+ dump_printf (MSG_NOTE, "\n%salignment: %d", indent,
+ alias_pair->first.align);
+ if (alias_pair->first.align != alias_pair->second.align)
+ dump_printf (MSG_NOTE, " vs. %d", alias_pair->second.align);
+
+ dump_printf (MSG_NOTE, "\n%sflags: ", indent);
+ if (alias_pair->flags & DR_ALIAS_RAW)
+ dump_printf (MSG_NOTE, " RAW");
+ if (alias_pair->flags & DR_ALIAS_WAR)
+ dump_printf (MSG_NOTE, " WAR");
+ if (alias_pair->flags & DR_ALIAS_WAW)
+ dump_printf (MSG_NOTE, " WAW");
+ if (alias_pair->flags & DR_ALIAS_ARBITRARY)
+ dump_printf (MSG_NOTE, " ARBITRARY");
+ if (alias_pair->flags & DR_ALIAS_SWAPPED)
+ dump_printf (MSG_NOTE, " SWAPPED");
+ if (alias_pair->flags & DR_ALIAS_UNSWAPPED)
+ dump_printf (MSG_NOTE, " UNSWAPPED");
+ if (alias_pair->flags & DR_ALIAS_MIXED_STEPS)
+ dump_printf (MSG_NOTE, " MIXED_STEPS");
+ if (alias_pair->flags == 0)
+ dump_printf (MSG_NOTE, " <none>");
+ dump_printf (MSG_NOTE, "\n");
+}
+
+/* Merge alias checks recorded in ALIAS_PAIRS and remove redundant ones.
+ FACTOR is number of iterations that each data reference is accessed.
+
+ Basically, for each pair of dependent data refs store_ptr_0 & load_ptr_0,
+ we create an expression:
+
+ ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
+ || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
+
+ for aliasing checks. However, in some cases we can decrease the number
+ of checks by combining two checks into one. For example, suppose we have
+ another pair of data refs store_ptr_0 & load_ptr_1, and if the following
+ condition is satisfied:
+
+ load_ptr_0 < load_ptr_1 &&
+ load_ptr_1 - load_ptr_0 - load_segment_length_0 < store_segment_length_0
+
+ (this condition means, in each iteration of vectorized loop, the accessed
+ memory of store_ptr_0 cannot be between the memory of load_ptr_0 and
+ load_ptr_1.)
+
+ we then can use only the following expression to finish the alising checks
+ between store_ptr_0 & load_ptr_0 and store_ptr_0 & load_ptr_1:
+
+ ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
+ || (load_ptr_1 + load_segment_length_1 <= store_ptr_0))
+
+ Note that we only consider that load_ptr_0 and load_ptr_1 have the same
+ basic address. */
+
+void
+prune_runtime_alias_test_list (vec<dr_with_seg_len_pair_t> *alias_pairs,
+ poly_uint64)
+{
+ if (alias_pairs->is_empty ())
+ return;
+
+ /* Canonicalize each pair so that the base components are ordered wrt
+ data_ref_compare_tree. This allows the loop below to merge more
+ cases. */
+ unsigned int i;
+ dr_with_seg_len_pair_t *alias_pair;
+ FOR_EACH_VEC_ELT (*alias_pairs, i, alias_pair)
+ {
+ data_reference_p dr_a = alias_pair->first.dr;
+ data_reference_p dr_b = alias_pair->second.dr;
+ int comp_res = data_ref_compare_tree (DR_BASE_ADDRESS (dr_a),
+ DR_BASE_ADDRESS (dr_b));
+ if (comp_res == 0)
+ comp_res = data_ref_compare_tree (DR_OFFSET (dr_a), DR_OFFSET (dr_b));
+ if (comp_res == 0)
+ comp_res = data_ref_compare_tree (DR_INIT (dr_a), DR_INIT (dr_b));
+ if (comp_res > 0)
+ {
+ std::swap (alias_pair->first, alias_pair->second);
+ alias_pair->flags |= DR_ALIAS_SWAPPED;
+ }
+ else
+ alias_pair->flags |= DR_ALIAS_UNSWAPPED;
+ }
+
+ /* Sort the collected data ref pairs so that we can scan them once to
+ combine all possible aliasing checks. */
+ alias_pairs->qsort (comp_dr_with_seg_len_pair);
+
+ /* Scan the sorted dr pairs and check if we can combine alias checks
+ of two neighboring dr pairs. */
+ unsigned int last = 0;
+ for (i = 1; i < alias_pairs->length (); ++i)
+ {
+ /* Deal with two ddrs (dr_a1, dr_b1) and (dr_a2, dr_b2). */
+ dr_with_seg_len_pair_t *alias_pair1 = &(*alias_pairs)[last];
+ dr_with_seg_len_pair_t *alias_pair2 = &(*alias_pairs)[i];
+
+ dr_with_seg_len *dr_a1 = &alias_pair1->first;
+ dr_with_seg_len *dr_b1 = &alias_pair1->second;
+ dr_with_seg_len *dr_a2 = &alias_pair2->first;
+ dr_with_seg_len *dr_b2 = &alias_pair2->second;
+
+ /* Remove duplicate data ref pairs. */
+ if (*dr_a1 == *dr_a2 && *dr_b1 == *dr_b2)
+ {
+ if (dump_enabled_p ())
+ dump_printf (MSG_NOTE, "found equal ranges %T, %T and %T, %T\n",
+ DR_REF (dr_a1->dr), DR_REF (dr_b1->dr),
+ DR_REF (dr_a2->dr), DR_REF (dr_b2->dr));
+ alias_pair1->flags |= alias_pair2->flags;
+ continue;
+ }
+
+ /* Assume that we won't be able to merge the pairs, then correct
+ if we do. */
+ last += 1;
+ if (last != i)
+ (*alias_pairs)[last] = (*alias_pairs)[i];
+
+ if (*dr_a1 == *dr_a2 || *dr_b1 == *dr_b2)
+ {
+ /* We consider the case that DR_B1 and DR_B2 are same memrefs,
+ and DR_A1 and DR_A2 are two consecutive memrefs. */
+ if (*dr_a1 == *dr_a2)
+ {
+ std::swap (dr_a1, dr_b1);
+ std::swap (dr_a2, dr_b2);
+ }
+
+ poly_int64 init_a1, init_a2;
+ /* Only consider cases in which the distance between the initial
+ DR_A1 and the initial DR_A2 is known at compile time. */
+ if (!operand_equal_p (DR_BASE_ADDRESS (dr_a1->dr),
+ DR_BASE_ADDRESS (dr_a2->dr), 0)
+ || !operand_equal_p (DR_OFFSET (dr_a1->dr),
+ DR_OFFSET (dr_a2->dr), 0)
+ || !poly_int_tree_p (DR_INIT (dr_a1->dr), &init_a1)
+ || !poly_int_tree_p (DR_INIT (dr_a2->dr), &init_a2))
+ continue;
+
+ /* Don't combine if we can't tell which one comes first. */
+ if (!ordered_p (init_a1, init_a2))
+ continue;
+
+ /* Work out what the segment length would be if we did combine
+ DR_A1 and DR_A2:
+
+ - If DR_A1 and DR_A2 have equal lengths, that length is
+ also the combined length.
+
+ - If DR_A1 and DR_A2 both have negative "lengths", the combined
+ length is the lower bound on those lengths.
+
+ - If DR_A1 and DR_A2 both have positive lengths, the combined
+ length is the upper bound on those lengths.
+
+ Other cases are unlikely to give a useful combination.
+
+ The lengths both have sizetype, so the sign is taken from
+ the step instead. */
+ poly_uint64 new_seg_len = 0;
+ bool new_seg_len_p = !operand_equal_p (dr_a1->seg_len,
+ dr_a2->seg_len, 0);
+ if (new_seg_len_p)
+ {
+ poly_uint64 seg_len_a1, seg_len_a2;
+ if (!poly_int_tree_p (dr_a1->seg_len, &seg_len_a1)
+ || !poly_int_tree_p (dr_a2->seg_len, &seg_len_a2))
+ continue;
+
+ tree indicator_a = dr_direction_indicator (dr_a1->dr);
+ if (TREE_CODE (indicator_a) != INTEGER_CST)
+ continue;
+
+ tree indicator_b = dr_direction_indicator (dr_a2->dr);
+ if (TREE_CODE (indicator_b) != INTEGER_CST)
+ continue;
+
+ int sign_a = tree_int_cst_sgn (indicator_a);
+ int sign_b = tree_int_cst_sgn (indicator_b);
+
+ if (sign_a <= 0 && sign_b <= 0)
+ new_seg_len = lower_bound (seg_len_a1, seg_len_a2);
+ else if (sign_a >= 0 && sign_b >= 0)
+ new_seg_len = upper_bound (seg_len_a1, seg_len_a2);
+ else
+ continue;
+ }
+ /* At this point we're committed to merging the refs. */
+
+ /* Make sure dr_a1 starts left of dr_a2. */
+ if (maybe_gt (init_a1, init_a2))
+ {
+ std::swap (*dr_a1, *dr_a2);
+ std::swap (init_a1, init_a2);
+ }
+
+ /* The DR_Bs are equal, so only the DR_As can introduce
+ mixed steps. */
+ if (!operand_equal_p (DR_STEP (dr_a1->dr), DR_STEP (dr_a2->dr), 0))
+ alias_pair1->flags |= DR_ALIAS_MIXED_STEPS;
+
+ if (new_seg_len_p)
+ {
+ dr_a1->seg_len = build_int_cst (TREE_TYPE (dr_a1->seg_len),
+ new_seg_len);
+ dr_a1->align = MIN (dr_a1->align, known_alignment (new_seg_len));
+ }
+
+ /* This is always positive due to the swap above. */
+ poly_uint64 diff = init_a2 - init_a1;
+
+ /* The new check will start at DR_A1. Make sure that its access
+ size encompasses the initial DR_A2. */
+ if (maybe_lt (dr_a1->access_size, diff + dr_a2->access_size))
+ {
+ dr_a1->access_size = upper_bound (dr_a1->access_size,
+ diff + dr_a2->access_size);
+ unsigned int new_align = known_alignment (dr_a1->access_size);
+ dr_a1->align = MIN (dr_a1->align, new_align);
+ }
+ if (dump_enabled_p ())
+ dump_printf (MSG_NOTE, "merging ranges for %T, %T and %T, %T\n",
+ DR_REF (dr_a1->dr), DR_REF (dr_b1->dr),
+ DR_REF (dr_a2->dr), DR_REF (dr_b2->dr));
+ alias_pair1->flags |= alias_pair2->flags;
+ last -= 1;
+ }
+ }
+ alias_pairs->truncate (last + 1);
+
+ /* Try to restore the original dr_with_seg_len order within each
+ dr_with_seg_len_pair_t. If we ended up combining swapped and
+ unswapped pairs into the same check, we have to invalidate any
+ RAW, WAR and WAW information for it. */
+ if (dump_enabled_p ())
+ dump_printf (MSG_NOTE, "merged alias checks:\n");
+ FOR_EACH_VEC_ELT (*alias_pairs, i, alias_pair)
+ {
+ unsigned int swap_mask = (DR_ALIAS_SWAPPED | DR_ALIAS_UNSWAPPED);
+ unsigned int swapped = (alias_pair->flags & swap_mask);
+ if (swapped == DR_ALIAS_SWAPPED)
+ std::swap (alias_pair->first, alias_pair->second);
+ else if (swapped != DR_ALIAS_UNSWAPPED)
+ alias_pair->flags |= DR_ALIAS_ARBITRARY;
+ alias_pair->flags &= ~swap_mask;
+ if (dump_enabled_p ())
+ dump_alias_pair (alias_pair, " ");
+ }
+}
+
+/* A subroutine of create_intersect_range_checks, with a subset of the
+ same arguments. Try to use IFN_CHECK_RAW_PTRS and IFN_CHECK_WAR_PTRS
+ to optimize cases in which the references form a simple RAW, WAR or
+ WAR dependence. */
+
+static bool
+create_ifn_alias_checks (tree *cond_expr,
+ const dr_with_seg_len_pair_t &alias_pair)
+{
+ const dr_with_seg_len& dr_a = alias_pair.first;
+ const dr_with_seg_len& dr_b = alias_pair.second;
+
+ /* Check for cases in which:
+
+ (a) we have a known RAW, WAR or WAR dependence
+ (b) the accesses are well-ordered in both the original and new code
+ (see the comment above the DR_ALIAS_* flags for details); and
+ (c) the DR_STEPs describe all access pairs covered by ALIAS_PAIR. */
+ if (alias_pair.flags & ~(DR_ALIAS_RAW | DR_ALIAS_WAR | DR_ALIAS_WAW))
+ return false;
+
+ /* Make sure that both DRs access the same pattern of bytes,
+ with a constant length and step. */
+ poly_uint64 seg_len;
+ if (!operand_equal_p (dr_a.seg_len, dr_b.seg_len, 0)
+ || !poly_int_tree_p (dr_a.seg_len, &seg_len)
+ || maybe_ne (dr_a.access_size, dr_b.access_size)
+ || !operand_equal_p (DR_STEP (dr_a.dr), DR_STEP (dr_b.dr), 0)
+ || !tree_fits_uhwi_p (DR_STEP (dr_a.dr)))
+ return false;
+
+ unsigned HOST_WIDE_INT bytes = tree_to_uhwi (DR_STEP (dr_a.dr));
+ tree addr_a = DR_BASE_ADDRESS (dr_a.dr);
+ tree addr_b = DR_BASE_ADDRESS (dr_b.dr);
+
+ /* See whether the target suports what we want to do. WAW checks are
+ equivalent to WAR checks here. */
+ internal_fn ifn = (alias_pair.flags & DR_ALIAS_RAW
+ ? IFN_CHECK_RAW_PTRS
+ : IFN_CHECK_WAR_PTRS);
+ unsigned int align = MIN (dr_a.align, dr_b.align);
+ poly_uint64 full_length = seg_len + bytes;
+ if (!internal_check_ptrs_fn_supported_p (ifn, TREE_TYPE (addr_a),
+ full_length, align))
+ {
+ full_length = seg_len + dr_a.access_size;
+ if (!internal_check_ptrs_fn_supported_p (ifn, TREE_TYPE (addr_a),
+ full_length, align))
+ return false;
+ }
+
+ /* Commit to using this form of test. */
+ addr_a = fold_build_pointer_plus (addr_a, DR_OFFSET (dr_a.dr));
+ addr_a = fold_build_pointer_plus (addr_a, DR_INIT (dr_a.dr));
+
+ addr_b = fold_build_pointer_plus (addr_b, DR_OFFSET (dr_b.dr));
+ addr_b = fold_build_pointer_plus (addr_b, DR_INIT (dr_b.dr));
+
+ *cond_expr = build_call_expr_internal_loc (UNKNOWN_LOCATION,
+ ifn, boolean_type_node,
+ 4, addr_a, addr_b,
+ size_int (full_length),
+ size_int (align));
+
+ if (dump_enabled_p ())
+ {
+ if (ifn == IFN_CHECK_RAW_PTRS)
+ dump_printf (MSG_NOTE, "using an IFN_CHECK_RAW_PTRS test\n");
+ else
+ dump_printf (MSG_NOTE, "using an IFN_CHECK_WAR_PTRS test\n");
+ }
+ return true;
+}
+
+/* Try to generate a runtime condition that is true if ALIAS_PAIR is
+ free of aliases, using a condition based on index values instead
+ of a condition based on addresses. Return true on success,
+ storing the condition in *COND_EXPR.
+
+ This can only be done if the two data references in ALIAS_PAIR access
+ the same array object and the index is the only difference. For example,
+ if the two data references are DR_A and DR_B:
+
+ DR_A DR_B
+ data-ref arr[i] arr[j]
+ base_object arr arr
+ index {i_0, +, 1}_loop {j_0, +, 1}_loop
+
+ The addresses and their index are like:
+
+ |<- ADDR_A ->| |<- ADDR_B ->|
+ ------------------------------------------------------->
+ | | | | | | | | | |
+ ------------------------------------------------------->
+ i_0 ... i_0+4 j_0 ... j_0+4
+
+ We can create expression based on index rather than address:
+
+ (unsigned) (i_0 - j_0 + 3) <= 6
+
+ i.e. the indices are less than 4 apart.
+
+ Note evolution step of index needs to be considered in comparison. */
+
+static bool
+create_intersect_range_checks_index (class loop *loop, tree *cond_expr,
+ const dr_with_seg_len_pair_t &alias_pair)
+{
+ const dr_with_seg_len &dr_a = alias_pair.first;
+ const dr_with_seg_len &dr_b = alias_pair.second;
+ if ((alias_pair.flags & DR_ALIAS_MIXED_STEPS)
+ || integer_zerop (DR_STEP (dr_a.dr))
+ || integer_zerop (DR_STEP (dr_b.dr))
+ || DR_NUM_DIMENSIONS (dr_a.dr) != DR_NUM_DIMENSIONS (dr_b.dr))
+ return false;
+
+ poly_uint64 seg_len1, seg_len2;
+ if (!poly_int_tree_p (dr_a.seg_len, &seg_len1)
+ || !poly_int_tree_p (dr_b.seg_len, &seg_len2))
+ return false;
+
+ if (!tree_fits_shwi_p (DR_STEP (dr_a.dr)))
+ return false;
+
+ if (!operand_equal_p (DR_BASE_OBJECT (dr_a.dr), DR_BASE_OBJECT (dr_b.dr), 0))
+ return false;
+
+ if (!operand_equal_p (DR_STEP (dr_a.dr), DR_STEP (dr_b.dr), 0))
+ return false;
+
+ gcc_assert (TREE_CODE (DR_STEP (dr_a.dr)) == INTEGER_CST);
+
+ bool neg_step = tree_int_cst_compare (DR_STEP (dr_a.dr), size_zero_node) < 0;
+ unsigned HOST_WIDE_INT abs_step = tree_to_shwi (DR_STEP (dr_a.dr));
+ if (neg_step)
+ {
+ abs_step = -abs_step;
+ seg_len1 = (-wi::to_poly_wide (dr_a.seg_len)).force_uhwi ();
+ seg_len2 = (-wi::to_poly_wide (dr_b.seg_len)).force_uhwi ();
+ }
+
+ /* Infer the number of iterations with which the memory segment is accessed
+ by DR. In other words, alias is checked if memory segment accessed by
+ DR_A in some iterations intersect with memory segment accessed by DR_B
+ in the same amount iterations.
+ Note segnment length is a linear function of number of iterations with
+ DR_STEP as the coefficient. */
+ poly_uint64 niter_len1, niter_len2;
+ if (!can_div_trunc_p (seg_len1 + abs_step - 1, abs_step, &niter_len1)
+ || !can_div_trunc_p (seg_len2 + abs_step - 1, abs_step, &niter_len2))
+ return false;
+
+ /* Divide each access size by the byte step, rounding up. */
+ poly_uint64 niter_access1, niter_access2;
+ if (!can_div_trunc_p (dr_a.access_size + abs_step - 1,
+ abs_step, &niter_access1)
+ || !can_div_trunc_p (dr_b.access_size + abs_step - 1,
+ abs_step, &niter_access2))
+ return false;
+
+ bool waw_or_war_p = (alias_pair.flags & ~(DR_ALIAS_WAR | DR_ALIAS_WAW)) == 0;
+
+ int found = -1;
+ for (unsigned int i = 0; i < DR_NUM_DIMENSIONS (dr_a.dr); i++)
+ {
+ tree access1 = DR_ACCESS_FN (dr_a.dr, i);
+ tree access2 = DR_ACCESS_FN (dr_b.dr, i);
+ /* Two indices must be the same if they are not scev, or not scev wrto
+ current loop being vecorized. */
+ if (TREE_CODE (access1) != POLYNOMIAL_CHREC
+ || TREE_CODE (access2) != POLYNOMIAL_CHREC
+ || CHREC_VARIABLE (access1) != (unsigned)loop->num
+ || CHREC_VARIABLE (access2) != (unsigned)loop->num)
+ {
+ if (operand_equal_p (access1, access2, 0))
+ continue;
+
+ return false;
+ }
+ if (found >= 0)
+ return false;
+ found = i;
+ }
+
+ /* Ought not to happen in practice, since if all accesses are equal then the
+ alias should be decidable at compile time. */
+ if (found < 0)
+ return false;
+
+ /* The two indices must have the same step. */
+ tree access1 = DR_ACCESS_FN (dr_a.dr, found);
+ tree access2 = DR_ACCESS_FN (dr_b.dr, found);
+ if (!operand_equal_p (CHREC_RIGHT (access1), CHREC_RIGHT (access2), 0))
+ return false;
+
+ tree idx_step = CHREC_RIGHT (access1);
+ /* Index must have const step, otherwise DR_STEP won't be constant. */
+ gcc_assert (TREE_CODE (idx_step) == INTEGER_CST);
+ /* Index must evaluate in the same direction as DR. */
+ gcc_assert (!neg_step || tree_int_cst_sign_bit (idx_step) == 1);
+
+ tree min1 = CHREC_LEFT (access1);
+ tree min2 = CHREC_LEFT (access2);
+ if (!types_compatible_p (TREE_TYPE (min1), TREE_TYPE (min2)))
+ return false;
+
+ /* Ideally, alias can be checked against loop's control IV, but we
+ need to prove linear mapping between control IV and reference
+ index. Although that should be true, we check against (array)
+ index of data reference. Like segment length, index length is
+ linear function of the number of iterations with index_step as
+ the coefficient, i.e, niter_len * idx_step. */
+ offset_int abs_idx_step = offset_int::from (wi::to_wide (idx_step),
+ SIGNED);
+ if (neg_step)
+ abs_idx_step = -abs_idx_step;
+ poly_offset_int idx_len1 = abs_idx_step * niter_len1;
+ poly_offset_int idx_len2 = abs_idx_step * niter_len2;
+ poly_offset_int idx_access1 = abs_idx_step * niter_access1;
+ poly_offset_int idx_access2 = abs_idx_step * niter_access2;
+
+ gcc_assert (known_ge (idx_len1, 0)
+ && known_ge (idx_len2, 0)
+ && known_ge (idx_access1, 0)
+ && known_ge (idx_access2, 0));
+
+ /* Each access has the following pattern, with lengths measured
+ in units of INDEX:
+
+ <-- idx_len -->
+ <--- A: -ve step --->
+ +-----+-------+-----+-------+-----+
+ | n-1 | ..... | 0 | ..... | n-1 |
+ +-----+-------+-----+-------+-----+
+ <--- B: +ve step --->
+ <-- idx_len -->
+ |
+ min
+
+ where "n" is the number of scalar iterations covered by the segment
+ and where each access spans idx_access units.
+
+ A is the range of bytes accessed when the step is negative,
+ B is the range when the step is positive.
+
+ When checking for general overlap, we need to test whether
+ the range:
+
+ [min1 + low_offset1, min1 + high_offset1 + idx_access1 - 1]
+
+ overlaps:
+
+ [min2 + low_offset2, min2 + high_offset2 + idx_access2 - 1]
+
+ where:
+
+ low_offsetN = +ve step ? 0 : -idx_lenN;
+ high_offsetN = +ve step ? idx_lenN : 0;
+
+ This is equivalent to testing whether:
+
+ min1 + low_offset1 <= min2 + high_offset2 + idx_access2 - 1
+ && min2 + low_offset2 <= min1 + high_offset1 + idx_access1 - 1
+
+ Converting this into a single test, there is an overlap if:
+
+ 0 <= min2 - min1 + bias <= limit
+
+ where bias = high_offset2 + idx_access2 - 1 - low_offset1
+ limit = (high_offset1 - low_offset1 + idx_access1 - 1)
+ + (high_offset2 - low_offset2 + idx_access2 - 1)
+ i.e. limit = idx_len1 + idx_access1 - 1 + idx_len2 + idx_access2 - 1
+
+ Combining the tests requires limit to be computable in an unsigned
+ form of the index type; if it isn't, we fall back to the usual
+ pointer-based checks.
+
+ We can do better if DR_B is a write and if DR_A and DR_B are
+ well-ordered in both the original and the new code (see the
+ comment above the DR_ALIAS_* flags for details). In this case
+ we know that for each i in [0, n-1], the write performed by
+ access i of DR_B occurs after access numbers j<=i of DR_A in
+ both the original and the new code. Any write or anti
+ dependencies wrt those DR_A accesses are therefore maintained.
+
+ We just need to make sure that each individual write in DR_B does not
+ overlap any higher-indexed access in DR_A; such DR_A accesses happen
+ after the DR_B access in the original code but happen before it in
+ the new code.
+
+ We know the steps for both accesses are equal, so by induction, we
+ just need to test whether the first write of DR_B overlaps a later
+ access of DR_A. In other words, we need to move min1 along by
+ one iteration:
+
+ min1' = min1 + idx_step
+
+ and use the ranges:
+
+ [min1' + low_offset1', min1' + high_offset1' + idx_access1 - 1]
+
+ and:
+
+ [min2, min2 + idx_access2 - 1]
+
+ where:
+
+ low_offset1' = +ve step ? 0 : -(idx_len1 - |idx_step|)
+ high_offset1' = +ve_step ? idx_len1 - |idx_step| : 0. */
+ if (waw_or_war_p)
+ idx_len1 -= abs_idx_step;
+
+ poly_offset_int limit = idx_len1 + idx_access1 - 1 + idx_access2 - 1;
+ if (!waw_or_war_p)
+ limit += idx_len2;
+
+ tree utype = unsigned_type_for (TREE_TYPE (min1));
+ if (!wi::fits_to_tree_p (limit, utype))
+ return false;
+
+ poly_offset_int low_offset1 = neg_step ? -idx_len1 : 0;
+ poly_offset_int high_offset2 = neg_step || waw_or_war_p ? 0 : idx_len2;
+ poly_offset_int bias = high_offset2 + idx_access2 - 1 - low_offset1;
+ /* Equivalent to adding IDX_STEP to MIN1. */
+ if (waw_or_war_p)
+ bias -= wi::to_offset (idx_step);
+
+ tree subject = fold_build2 (MINUS_EXPR, utype,
+ fold_convert (utype, min2),
+ fold_convert (utype, min1));
+ subject = fold_build2 (PLUS_EXPR, utype, subject,
+ wide_int_to_tree (utype, bias));
+ tree part_cond_expr = fold_build2 (GT_EXPR, boolean_type_node, subject,
+ wide_int_to_tree (utype, limit));
+ if (*cond_expr)
+ *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
+ *cond_expr, part_cond_expr);
+ else
+ *cond_expr = part_cond_expr;
+ if (dump_enabled_p ())
+ {
+ if (waw_or_war_p)
+ dump_printf (MSG_NOTE, "using an index-based WAR/WAW test\n");
+ else
+ dump_printf (MSG_NOTE, "using an index-based overlap test\n");
+ }
+ return true;
+}
+
+/* A subroutine of create_intersect_range_checks, with a subset of the
+ same arguments. Try to optimize cases in which the second access
+ is a write and in which some overlap is valid. */
+
+static bool
+create_waw_or_war_checks (tree *cond_expr,
+ const dr_with_seg_len_pair_t &alias_pair)
+{
+ const dr_with_seg_len& dr_a = alias_pair.first;
+ const dr_with_seg_len& dr_b = alias_pair.second;
+
+ /* Check for cases in which:
+
+ (a) DR_B is always a write;
+ (b) the accesses are well-ordered in both the original and new code
+ (see the comment above the DR_ALIAS_* flags for details); and
+ (c) the DR_STEPs describe all access pairs covered by ALIAS_PAIR. */
+ if (alias_pair.flags & ~(DR_ALIAS_WAR | DR_ALIAS_WAW))
+ return false;
+
+ /* Check for equal (but possibly variable) steps. */
+ tree step = DR_STEP (dr_a.dr);
+ if (!operand_equal_p (step, DR_STEP (dr_b.dr)))
+ return false;
+
+ /* Make sure that we can operate on sizetype without loss of precision. */
+ tree addr_type = TREE_TYPE (DR_BASE_ADDRESS (dr_a.dr));
+ if (TYPE_PRECISION (addr_type) != TYPE_PRECISION (sizetype))
+ return false;
+
+ /* All addresses involved are known to have a common alignment ALIGN.
+ We can therefore subtract ALIGN from an exclusive endpoint to get
+ an inclusive endpoint. In the best (and common) case, ALIGN is the
+ same as the access sizes of both DRs, and so subtracting ALIGN
+ cancels out the addition of an access size. */
+ unsigned int align = MIN (dr_a.align, dr_b.align);
+ poly_uint64 last_chunk_a = dr_a.access_size - align;
+ poly_uint64 last_chunk_b = dr_b.access_size - align;
+
+ /* Get a boolean expression that is true when the step is negative. */
+ tree indicator = dr_direction_indicator (dr_a.dr);
+ tree neg_step = fold_build2 (LT_EXPR, boolean_type_node,
+ fold_convert (ssizetype, indicator),
+ ssize_int (0));
+
+ /* Get lengths in sizetype. */
+ tree seg_len_a
+ = fold_convert (sizetype, rewrite_to_non_trapping_overflow (dr_a.seg_len));
+ step = fold_convert (sizetype, rewrite_to_non_trapping_overflow (step));
+
+ /* Each access has the following pattern:
+
+ <- |seg_len| ->
+ <--- A: -ve step --->
+ +-----+-------+-----+-------+-----+
+ | n-1 | ..... | 0 | ..... | n-1 |
+ +-----+-------+-----+-------+-----+
+ <--- B: +ve step --->
+ <- |seg_len| ->
+ |
+ base address
+
+ where "n" is the number of scalar iterations covered by the segment.
+
+ A is the range of bytes accessed when the step is negative,
+ B is the range when the step is positive.
+
+ We know that DR_B is a write. We also know (from checking that
+ DR_A and DR_B are well-ordered) that for each i in [0, n-1],
+ the write performed by access i of DR_B occurs after access numbers
+ j<=i of DR_A in both the original and the new code. Any write or
+ anti dependencies wrt those DR_A accesses are therefore maintained.
+
+ We just need to make sure that each individual write in DR_B does not
+ overlap any higher-indexed access in DR_A; such DR_A accesses happen
+ after the DR_B access in the original code but happen before it in
+ the new code.
+
+ We know the steps for both accesses are equal, so by induction, we
+ just need to test whether the first write of DR_B overlaps a later
+ access of DR_A. In other words, we need to move addr_a along by
+ one iteration:
+
+ addr_a' = addr_a + step
+
+ and check whether:
+
+ [addr_b, addr_b + last_chunk_b]
+
+ overlaps:
+
+ [addr_a' + low_offset_a, addr_a' + high_offset_a + last_chunk_a]
+
+ where [low_offset_a, high_offset_a] spans accesses [1, n-1]. I.e.:
+
+ low_offset_a = +ve step ? 0 : seg_len_a - step
+ high_offset_a = +ve step ? seg_len_a - step : 0
+
+ This is equivalent to testing whether:
+
+ addr_a' + low_offset_a <= addr_b + last_chunk_b
+ && addr_b <= addr_a' + high_offset_a + last_chunk_a
+
+ Converting this into a single test, there is an overlap if:
+
+ 0 <= addr_b + last_chunk_b - addr_a' - low_offset_a <= limit
+
+ where limit = high_offset_a - low_offset_a + last_chunk_a + last_chunk_b
+
+ If DR_A is performed, limit + |step| - last_chunk_b is known to be
+ less than the size of the object underlying DR_A. We also know
+ that last_chunk_b <= |step|; this is checked elsewhere if it isn't
+ guaranteed at compile time. There can therefore be no overflow if
+ "limit" is calculated in an unsigned type with pointer precision. */
+ tree addr_a = fold_build_pointer_plus (DR_BASE_ADDRESS (dr_a.dr),
+ DR_OFFSET (dr_a.dr));
+ addr_a = fold_build_pointer_plus (addr_a, DR_INIT (dr_a.dr));
+
+ tree addr_b = fold_build_pointer_plus (DR_BASE_ADDRESS (dr_b.dr),
+ DR_OFFSET (dr_b.dr));
+ addr_b = fold_build_pointer_plus (addr_b, DR_INIT (dr_b.dr));
+
+ /* Advance ADDR_A by one iteration and adjust the length to compensate. */
+ addr_a = fold_build_pointer_plus (addr_a, step);
+ tree seg_len_a_minus_step = fold_build2 (MINUS_EXPR, sizetype,
+ seg_len_a, step);
+ if (!CONSTANT_CLASS_P (seg_len_a_minus_step))
+ seg_len_a_minus_step = build1 (SAVE_EXPR, sizetype, seg_len_a_minus_step);
+
+ tree low_offset_a = fold_build3 (COND_EXPR, sizetype, neg_step,
+ seg_len_a_minus_step, size_zero_node);
+ if (!CONSTANT_CLASS_P (low_offset_a))
+ low_offset_a = build1 (SAVE_EXPR, sizetype, low_offset_a);
+
+ /* We could use COND_EXPR <neg_step, size_zero_node, seg_len_a_minus_step>,
+ but it's usually more efficient to reuse the LOW_OFFSET_A result. */
+ tree high_offset_a = fold_build2 (MINUS_EXPR, sizetype, seg_len_a_minus_step,
+ low_offset_a);
+
+ /* The amount added to addr_b - addr_a'. */
+ tree bias = fold_build2 (MINUS_EXPR, sizetype,
+ size_int (last_chunk_b), low_offset_a);
+
+ tree limit = fold_build2 (MINUS_EXPR, sizetype, high_offset_a, low_offset_a);
+ limit = fold_build2 (PLUS_EXPR, sizetype, limit,
+ size_int (last_chunk_a + last_chunk_b));
+
+ tree subject = fold_build2 (POINTER_DIFF_EXPR, ssizetype, addr_b, addr_a);
+ subject = fold_build2 (PLUS_EXPR, sizetype,
+ fold_convert (sizetype, subject), bias);
+
+ *cond_expr = fold_build2 (GT_EXPR, boolean_type_node, subject, limit);
+ if (dump_enabled_p ())
+ dump_printf (MSG_NOTE, "using an address-based WAR/WAW test\n");
+ return true;
+}
+
+/* If ALIGN is nonzero, set up *SEQ_MIN_OUT and *SEQ_MAX_OUT so that for
+ every address ADDR accessed by D:
+
+ *SEQ_MIN_OUT <= ADDR (== ADDR & -ALIGN) <= *SEQ_MAX_OUT
+
+ In this case, every element accessed by D is aligned to at least
+ ALIGN bytes.
+
+ If ALIGN is zero then instead set *SEG_MAX_OUT so that:
+
+ *SEQ_MIN_OUT <= ADDR < *SEQ_MAX_OUT. */
+
+static void
+get_segment_min_max (const dr_with_seg_len &d, tree *seg_min_out,
+ tree *seg_max_out, HOST_WIDE_INT align)
+{
+ /* Each access has the following pattern:
+
+ <- |seg_len| ->
+ <--- A: -ve step --->
+ +-----+-------+-----+-------+-----+
+ | n-1 | ,.... | 0 | ..... | n-1 |
+ +-----+-------+-----+-------+-----+
+ <--- B: +ve step --->
+ <- |seg_len| ->
+ |
+ base address
+
+ where "n" is the number of scalar iterations covered by the segment.
+ (This should be VF for a particular pair if we know that both steps
+ are the same, otherwise it will be the full number of scalar loop
+ iterations.)
+
+ A is the range of bytes accessed when the step is negative,
+ B is the range when the step is positive.
+
+ If the access size is "access_size" bytes, the lowest addressed byte is:
+
+ base + (step < 0 ? seg_len : 0) [LB]
+
+ and the highest addressed byte is always below:
+
+ base + (step < 0 ? 0 : seg_len) + access_size [UB]
+
+ Thus:
+
+ LB <= ADDR < UB
+
+ If ALIGN is nonzero, all three values are aligned to at least ALIGN
+ bytes, so:
+
+ LB <= ADDR <= UB - ALIGN
+
+ where "- ALIGN" folds naturally with the "+ access_size" and often
+ cancels it out.
+
+ We don't try to simplify LB and UB beyond this (e.g. by using
+ MIN and MAX based on whether seg_len rather than the stride is
+ negative) because it is possible for the absolute size of the
+ segment to overflow the range of a ssize_t.
+
+ Keeping the pointer_plus outside of the cond_expr should allow
+ the cond_exprs to be shared with other alias checks. */
+ tree indicator = dr_direction_indicator (d.dr);
+ tree neg_step = fold_build2 (LT_EXPR, boolean_type_node,
+ fold_convert (ssizetype, indicator),
+ ssize_int (0));
+ tree addr_base = fold_build_pointer_plus (DR_BASE_ADDRESS (d.dr),
+ DR_OFFSET (d.dr));
+ addr_base = fold_build_pointer_plus (addr_base, DR_INIT (d.dr));
+ tree seg_len
+ = fold_convert (sizetype, rewrite_to_non_trapping_overflow (d.seg_len));
+
+ tree min_reach = fold_build3 (COND_EXPR, sizetype, neg_step,
+ seg_len, size_zero_node);
+ tree max_reach = fold_build3 (COND_EXPR, sizetype, neg_step,
+ size_zero_node, seg_len);
+ max_reach = fold_build2 (PLUS_EXPR, sizetype, max_reach,
+ size_int (d.access_size - align));
+
+ *seg_min_out = fold_build_pointer_plus (addr_base, min_reach);
+ *seg_max_out = fold_build_pointer_plus (addr_base, max_reach);
+}
+
+/* Generate a runtime condition that is true if ALIAS_PAIR is free of aliases,
+ storing the condition in *COND_EXPR. The fallback is to generate a
+ a test that the two accesses do not overlap:
+
+ end_a <= start_b || end_b <= start_a. */
+
+static void
+create_intersect_range_checks (class loop *loop, tree *cond_expr,
+ const dr_with_seg_len_pair_t &alias_pair)
+{
+ const dr_with_seg_len& dr_a = alias_pair.first;
+ const dr_with_seg_len& dr_b = alias_pair.second;
+ *cond_expr = NULL_TREE;
+ if (create_intersect_range_checks_index (loop, cond_expr, alias_pair))
+ return;
+
+ if (create_ifn_alias_checks (cond_expr, alias_pair))
+ return;
+
+ if (create_waw_or_war_checks (cond_expr, alias_pair))
+ return;
+
+ unsigned HOST_WIDE_INT min_align;
+ tree_code cmp_code;
+ /* We don't have to check DR_ALIAS_MIXED_STEPS here, since both versions
+ are equivalent. This is just an optimization heuristic. */
+ if (TREE_CODE (DR_STEP (dr_a.dr)) == INTEGER_CST
+ && TREE_CODE (DR_STEP (dr_b.dr)) == INTEGER_CST)
+ {
+ /* In this case adding access_size to seg_len is likely to give
+ a simple X * step, where X is either the number of scalar
+ iterations or the vectorization factor. We're better off
+ keeping that, rather than subtracting an alignment from it.
+
+ In this case the maximum values are exclusive and so there is
+ no alias if the maximum of one segment equals the minimum
+ of another. */
+ min_align = 0;
+ cmp_code = LE_EXPR;
+ }
+ else
+ {
+ /* Calculate the minimum alignment shared by all four pointers,
+ then arrange for this alignment to be subtracted from the
+ exclusive maximum values to get inclusive maximum values.
+ This "- min_align" is cumulative with a "+ access_size"
+ in the calculation of the maximum values. In the best
+ (and common) case, the two cancel each other out, leaving
+ us with an inclusive bound based only on seg_len. In the
+ worst case we're simply adding a smaller number than before.
+
+ Because the maximum values are inclusive, there is an alias
+ if the maximum value of one segment is equal to the minimum
+ value of the other. */
+ min_align = MIN (dr_a.align, dr_b.align);
+ cmp_code = LT_EXPR;
+ }
+
+ tree seg_a_min, seg_a_max, seg_b_min, seg_b_max;
+ get_segment_min_max (dr_a, &seg_a_min, &seg_a_max, min_align);
+ get_segment_min_max (dr_b, &seg_b_min, &seg_b_max, min_align);
+
+ *cond_expr
+ = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
+ fold_build2 (cmp_code, boolean_type_node, seg_a_max, seg_b_min),
+ fold_build2 (cmp_code, boolean_type_node, seg_b_max, seg_a_min));
+ if (dump_enabled_p ())
+ dump_printf (MSG_NOTE, "using an address-based overlap test\n");
+}
+
+/* Create a conditional expression that represents the run-time checks for
+ overlapping of address ranges represented by a list of data references
+ pairs passed in ALIAS_PAIRS. Data references are in LOOP. The returned
+ COND_EXPR is the conditional expression to be used in the if statement
+ that controls which version of the loop gets executed at runtime. */
+
+void
+create_runtime_alias_checks (class loop *loop,
+ const vec<dr_with_seg_len_pair_t> *alias_pairs,
+ tree * cond_expr)
+{
+ tree part_cond_expr;
+
+ fold_defer_overflow_warnings ();
+ for (const dr_with_seg_len_pair_t &alias_pair : alias_pairs)
+ {
+ gcc_assert (alias_pair.flags);
+ if (dump_enabled_p ())
+ dump_printf (MSG_NOTE,
+ "create runtime check for data references %T and %T\n",
+ DR_REF (alias_pair.first.dr),
+ DR_REF (alias_pair.second.dr));
+
+ /* Create condition expression for each pair data references. */
+ create_intersect_range_checks (loop, &part_cond_expr, alias_pair);
+ if (*cond_expr)
+ *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
+ *cond_expr, part_cond_expr);
+ else
+ *cond_expr = part_cond_expr;
+ }
+ fold_undefer_and_ignore_overflow_warnings ();
+}
+
+/* Check if OFFSET1 and OFFSET2 (DR_OFFSETs of some data-refs) are identical
+ expressions. */
+static bool
+dr_equal_offsets_p1 (tree offset1, tree offset2)
+{
+ bool res;
+
+ STRIP_NOPS (offset1);
+ STRIP_NOPS (offset2);
+
+ if (offset1 == offset2)
+ return true;
+
+ if (TREE_CODE (offset1) != TREE_CODE (offset2)
+ || (!BINARY_CLASS_P (offset1) && !UNARY_CLASS_P (offset1)))
+ return false;
+
+ res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 0),
+ TREE_OPERAND (offset2, 0));
+
+ if (!res || !BINARY_CLASS_P (offset1))
+ return res;
+
+ res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 1),
+ TREE_OPERAND (offset2, 1));
+
+ return res;
+}
+
+/* Check if DRA and DRB have equal offsets. */
+bool
+dr_equal_offsets_p (struct data_reference *dra,
+ struct data_reference *drb)
+{
+ tree offset1, offset2;
+
+ offset1 = DR_OFFSET (dra);
+ offset2 = DR_OFFSET (drb);
+
+ return dr_equal_offsets_p1 (offset1, offset2);
+}
+
+/* Returns true if FNA == FNB. */
+
+static bool
+affine_function_equal_p (affine_fn fna, affine_fn fnb)
+{
+ unsigned i, n = fna.length ();
+
+ if (n != fnb.length ())
+ return false;
+
+ for (i = 0; i < n; i++)
+ if (!operand_equal_p (fna[i], fnb[i], 0))
+ return false;
+
+ return true;
+}
+
+/* If all the functions in CF are the same, returns one of them,
+ otherwise returns NULL. */
+
+static affine_fn
+common_affine_function (conflict_function *cf)
+{
+ unsigned i;
+ affine_fn comm;
+
+ if (!CF_NONTRIVIAL_P (cf))
+ return affine_fn ();
+
+ comm = cf->fns[0];
+
+ for (i = 1; i < cf->n; i++)
+ if (!affine_function_equal_p (comm, cf->fns[i]))
+ return affine_fn ();
+
+ return comm;
+}
+
+/* Returns the base of the affine function FN. */
+
+static tree
+affine_function_base (affine_fn fn)
+{
+ return fn[0];
+}
+
+/* Returns true if FN is a constant. */
+
+static bool
+affine_function_constant_p (affine_fn fn)
+{
+ unsigned i;
+ tree coef;
+
+ for (i = 1; fn.iterate (i, &coef); i++)
+ if (!integer_zerop (coef))
+ return false;
+
+ return true;
+}
+
+/* Returns true if FN is the zero constant function. */
+
+static bool
+affine_function_zero_p (affine_fn fn)
+{
+ return (integer_zerop (affine_function_base (fn))
+ && affine_function_constant_p (fn));
+}
+
+/* Returns a signed integer type with the largest precision from TA
+ and TB. */
+
+static tree
+signed_type_for_types (tree ta, tree tb)
+{
+ if (TYPE_PRECISION (ta) > TYPE_PRECISION (tb))
+ return signed_type_for (ta);
+ else
+ return signed_type_for (tb);
+}
+
+/* Applies operation OP on affine functions FNA and FNB, and returns the
+ result. */
+
+static affine_fn
+affine_fn_op (enum tree_code op, affine_fn fna, affine_fn fnb)
+{
+ unsigned i, n, m;
+ affine_fn ret;
+ tree coef;
+
+ if (fnb.length () > fna.length ())
+ {
+ n = fna.length ();
+ m = fnb.length ();
+ }
+ else
+ {
+ n = fnb.length ();
+ m = fna.length ();
+ }
+
+ ret.create (m);
+ for (i = 0; i < n; i++)
+ {
+ tree type = signed_type_for_types (TREE_TYPE (fna[i]),
+ TREE_TYPE (fnb[i]));
+ ret.quick_push (fold_build2 (op, type, fna[i], fnb[i]));
+ }
+
+ for (; fna.iterate (i, &coef); i++)
+ ret.quick_push (fold_build2 (op, signed_type_for (TREE_TYPE (coef)),
+ coef, integer_zero_node));
+ for (; fnb.iterate (i, &coef); i++)
+ ret.quick_push (fold_build2 (op, signed_type_for (TREE_TYPE (coef)),
+ integer_zero_node, coef));
+
+ return ret;
+}
+
+/* Returns the sum of affine functions FNA and FNB. */
+
+static affine_fn
+affine_fn_plus (affine_fn fna, affine_fn fnb)
+{
+ return affine_fn_op (PLUS_EXPR, fna, fnb);
+}
+
+/* Returns the difference of affine functions FNA and FNB. */
+
+static affine_fn
+affine_fn_minus (affine_fn fna, affine_fn fnb)
+{
+ return affine_fn_op (MINUS_EXPR, fna, fnb);
+}
+
+/* Frees affine function FN. */
+
+static void
+affine_fn_free (affine_fn fn)
+{
+ fn.release ();
+}
+
+/* Determine for each subscript in the data dependence relation DDR
+ the distance. */
+
+static void
+compute_subscript_distance (struct data_dependence_relation *ddr)
+{
+ conflict_function *cf_a, *cf_b;
+ affine_fn fn_a, fn_b, diff;
+
+ if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
+ {
+ unsigned int i;
+
+ for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
+ {
+ struct subscript *subscript;
+
+ subscript = DDR_SUBSCRIPT (ddr, i);
+ cf_a = SUB_CONFLICTS_IN_A (subscript);
+ cf_b = SUB_CONFLICTS_IN_B (subscript);
+
+ fn_a = common_affine_function (cf_a);
+ fn_b = common_affine_function (cf_b);
+ if (!fn_a.exists () || !fn_b.exists ())
+ {
+ SUB_DISTANCE (subscript) = chrec_dont_know;
+ return;
+ }
+ diff = affine_fn_minus (fn_a, fn_b);
+
+ if (affine_function_constant_p (diff))
+ SUB_DISTANCE (subscript) = affine_function_base (diff);
+ else
+ SUB_DISTANCE (subscript) = chrec_dont_know;
+
+ affine_fn_free (diff);
+ }
+ }
+}
+
+/* Returns the conflict function for "unknown". */
+
+static conflict_function *
+conflict_fn_not_known (void)
+{
+ conflict_function *fn = XCNEW (conflict_function);
+ fn->n = NOT_KNOWN;
+
+ return fn;
+}
+
+/* Returns the conflict function for "independent". */
+
+static conflict_function *
+conflict_fn_no_dependence (void)
+{
+ conflict_function *fn = XCNEW (conflict_function);
+ fn->n = NO_DEPENDENCE;
+
+ return fn;
+}
+
+/* Returns true if the address of OBJ is invariant in LOOP. */
+
+static bool
+object_address_invariant_in_loop_p (const class loop *loop, const_tree obj)
+{
+ while (handled_component_p (obj))
+ {
+ if (TREE_CODE (obj) == ARRAY_REF)
+ {
+ for (int i = 1; i < 4; ++i)
+ if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, i),
+ loop->num))
+ return false;
+ }
+ else if (TREE_CODE (obj) == COMPONENT_REF)
+ {
+ if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 2),
+ loop->num))
+ return false;
+ }
+ obj = TREE_OPERAND (obj, 0);
+ }
+
+ if (!INDIRECT_REF_P (obj)
+ && TREE_CODE (obj) != MEM_REF)
+ return true;
+
+ return !chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 0),
+ loop->num);
+}
+
+/* Returns false if we can prove that data references A and B do not alias,
+ true otherwise. If LOOP_NEST is false no cross-iteration aliases are
+ considered. */
+
+bool
+dr_may_alias_p (const struct data_reference *a, const struct data_reference *b,
+ class loop *loop_nest)
+{
+ tree addr_a = DR_BASE_OBJECT (a);
+ tree addr_b = DR_BASE_OBJECT (b);
+
+ /* If we are not processing a loop nest but scalar code we
+ do not need to care about possible cross-iteration dependences
+ and thus can process the full original reference. Do so,
+ similar to how loop invariant motion applies extra offset-based
+ disambiguation. */
+ if (!loop_nest)
+ {
+ aff_tree off1, off2;
+ poly_widest_int size1, size2;
+ get_inner_reference_aff (DR_REF (a), &off1, &size1);
+ get_inner_reference_aff (DR_REF (b), &off2, &size2);
+ aff_combination_scale (&off1, -1);
+ aff_combination_add (&off2, &off1);
+ if (aff_comb_cannot_overlap_p (&off2, size1, size2))
+ return false;
+ }
+
+ if ((TREE_CODE (addr_a) == MEM_REF || TREE_CODE (addr_a) == TARGET_MEM_REF)
+ && (TREE_CODE (addr_b) == MEM_REF || TREE_CODE (addr_b) == TARGET_MEM_REF)
+ /* For cross-iteration dependences the cliques must be valid for the
+ whole loop, not just individual iterations. */
+ && (!loop_nest
+ || MR_DEPENDENCE_CLIQUE (addr_a) == 1
+ || MR_DEPENDENCE_CLIQUE (addr_a) == loop_nest->owned_clique)
+ && MR_DEPENDENCE_CLIQUE (addr_a) == MR_DEPENDENCE_CLIQUE (addr_b)
+ && MR_DEPENDENCE_BASE (addr_a) != MR_DEPENDENCE_BASE (addr_b))
+ return false;
+
+ /* If we had an evolution in a pointer-based MEM_REF BASE_OBJECT we
+ do not know the size of the base-object. So we cannot do any
+ offset/overlap based analysis but have to rely on points-to
+ information only. */
+ if (TREE_CODE (addr_a) == MEM_REF
+ && (DR_UNCONSTRAINED_BASE (a)
+ || TREE_CODE (TREE_OPERAND (addr_a, 0)) == SSA_NAME))
+ {
+ /* For true dependences we can apply TBAA. */
+ if (flag_strict_aliasing
+ && DR_IS_WRITE (a) && DR_IS_READ (b)
+ && !alias_sets_conflict_p (get_alias_set (DR_REF (a)),
+ get_alias_set (DR_REF (b))))
+ return false;
+ if (TREE_CODE (addr_b) == MEM_REF)
+ return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
+ TREE_OPERAND (addr_b, 0));
+ else
+ return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
+ build_fold_addr_expr (addr_b));
+ }
+ else if (TREE_CODE (addr_b) == MEM_REF
+ && (DR_UNCONSTRAINED_BASE (b)
+ || TREE_CODE (TREE_OPERAND (addr_b, 0)) == SSA_NAME))
+ {
+ /* For true dependences we can apply TBAA. */
+ if (flag_strict_aliasing
+ && DR_IS_WRITE (a) && DR_IS_READ (b)
+ && !alias_sets_conflict_p (get_alias_set (DR_REF (a)),
+ get_alias_set (DR_REF (b))))
+ return false;
+ if (TREE_CODE (addr_a) == MEM_REF)
+ return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
+ TREE_OPERAND (addr_b, 0));
+ else
+ return ptr_derefs_may_alias_p (build_fold_addr_expr (addr_a),
+ TREE_OPERAND (addr_b, 0));
+ }
+
+ /* Otherwise DR_BASE_OBJECT is an access that covers the whole object
+ that is being subsetted in the loop nest. */
+ if (DR_IS_WRITE (a) && DR_IS_WRITE (b))
+ return refs_output_dependent_p (addr_a, addr_b);
+ else if (DR_IS_READ (a) && DR_IS_WRITE (b))
+ return refs_anti_dependent_p (addr_a, addr_b);
+ return refs_may_alias_p (addr_a, addr_b);
+}
+
+/* REF_A and REF_B both satisfy access_fn_component_p. Return true
+ if it is meaningful to compare their associated access functions
+ when checking for dependencies. */
+
+static bool
+access_fn_components_comparable_p (tree ref_a, tree ref_b)
+{
+ /* Allow pairs of component refs from the following sets:
+
+ { REALPART_EXPR, IMAGPART_EXPR }
+ { COMPONENT_REF }
+ { ARRAY_REF }. */
+ tree_code code_a = TREE_CODE (ref_a);
+ tree_code code_b = TREE_CODE (ref_b);
+ if (code_a == IMAGPART_EXPR)
+ code_a = REALPART_EXPR;
+ if (code_b == IMAGPART_EXPR)
+ code_b = REALPART_EXPR;
+ if (code_a != code_b)
+ return false;
+
+ if (TREE_CODE (ref_a) == COMPONENT_REF)
+ /* ??? We cannot simply use the type of operand #0 of the refs here as
+ the Fortran compiler smuggles type punning into COMPONENT_REFs.
+ Use the DECL_CONTEXT of the FIELD_DECLs instead. */
+ return (DECL_CONTEXT (TREE_OPERAND (ref_a, 1))
+ == DECL_CONTEXT (TREE_OPERAND (ref_b, 1)));
+
+ return types_compatible_p (TREE_TYPE (TREE_OPERAND (ref_a, 0)),
+ TREE_TYPE (TREE_OPERAND (ref_b, 0)));
+}
+
+/* Initialize a data dependence relation RES in LOOP_NEST. USE_ALT_INDICES
+ is true when the main indices of A and B were not comparable so we try again
+ with alternate indices computed on an indirect reference. */
+
+struct data_dependence_relation *
+initialize_data_dependence_relation (struct data_dependence_relation *res,
+ vec<loop_p> loop_nest,
+ bool use_alt_indices)
+{
+ struct data_reference *a = DDR_A (res);
+ struct data_reference *b = DDR_B (res);
+ unsigned int i;
+
+ struct indices *indices_a = &a->indices;
+ struct indices *indices_b = &b->indices;
+ if (use_alt_indices)
+ {
+ if (TREE_CODE (DR_REF (a)) != MEM_REF)
+ indices_a = &a->alt_indices;
+ if (TREE_CODE (DR_REF (b)) != MEM_REF)
+ indices_b = &b->alt_indices;
+ }
+ unsigned int num_dimensions_a = indices_a->access_fns.length ();
+ unsigned int num_dimensions_b = indices_b->access_fns.length ();
+ if (num_dimensions_a == 0 || num_dimensions_b == 0)
+ {
+ DDR_ARE_DEPENDENT (res) = chrec_dont_know;
+ return res;
+ }
+
+ /* For unconstrained bases, the root (highest-indexed) subscript
+ describes a variation in the base of the original DR_REF rather
+ than a component access. We have no type that accurately describes
+ the new DR_BASE_OBJECT (whose TREE_TYPE describes the type *after*
+ applying this subscript) so limit the search to the last real
+ component access.
+
+ E.g. for:
+
+ void
+ f (int a[][8], int b[][8])
+ {
+ for (int i = 0; i < 8; ++i)
+ a[i * 2][0] = b[i][0];
+ }
+
+ the a and b accesses have a single ARRAY_REF component reference [0]
+ but have two subscripts. */
+ if (indices_a->unconstrained_base)
+ num_dimensions_a -= 1;
+ if (indices_b->unconstrained_base)
+ num_dimensions_b -= 1;
+
+ /* These structures describe sequences of component references in
+ DR_REF (A) and DR_REF (B). Each component reference is tied to a
+ specific access function. */
+ struct {
+ /* The sequence starts at DR_ACCESS_FN (A, START_A) of A and
+ DR_ACCESS_FN (B, START_B) of B (inclusive) and extends to higher
+ indices. In C notation, these are the indices of the rightmost
+ component references; e.g. for a sequence .b.c.d, the start
+ index is for .d. */
+ unsigned int start_a;
+ unsigned int start_b;
+
+ /* The sequence contains LENGTH consecutive access functions from
+ each DR. */
+ unsigned int length;
+
+ /* The enclosing objects for the A and B sequences respectively,
+ i.e. the objects to which DR_ACCESS_FN (A, START_A + LENGTH - 1)
+ and DR_ACCESS_FN (B, START_B + LENGTH - 1) are applied. */
+ tree object_a;
+ tree object_b;
+ } full_seq = {}, struct_seq = {};
+
+ /* Before each iteration of the loop:
+
+ - REF_A is what you get after applying DR_ACCESS_FN (A, INDEX_A) and
+ - REF_B is what you get after applying DR_ACCESS_FN (B, INDEX_B). */
+ unsigned int index_a = 0;
+ unsigned int index_b = 0;
+ tree ref_a = DR_REF (a);
+ tree ref_b = DR_REF (b);
+
+ /* Now walk the component references from the final DR_REFs back up to
+ the enclosing base objects. Each component reference corresponds
+ to one access function in the DR, with access function 0 being for
+ the final DR_REF and the highest-indexed access function being the
+ one that is applied to the base of the DR.
+
+ Look for a sequence of component references whose access functions
+ are comparable (see access_fn_components_comparable_p). If more
+ than one such sequence exists, pick the one nearest the base
+ (which is the leftmost sequence in C notation). Store this sequence
+ in FULL_SEQ.
+
+ For example, if we have:
+
+ struct foo { struct bar s; ... } (*a)[10], (*b)[10];
+
+ A: a[0][i].s.c.d
+ B: __real b[0][i].s.e[i].f
+
+ (where d is the same type as the real component of f) then the access
+ functions would be:
+
+ 0 1 2 3
+ A: .d .c .s [i]
+
+ 0 1 2 3 4 5
+ B: __real .f [i] .e .s [i]
+
+ The A0/B2 column isn't comparable, since .d is a COMPONENT_REF
+ and [i] is an ARRAY_REF. However, the A1/B3 column contains two
+ COMPONENT_REF accesses for struct bar, so is comparable. Likewise
+ the A2/B4 column contains two COMPONENT_REF accesses for struct foo,
+ so is comparable. The A3/B5 column contains two ARRAY_REFs that
+ index foo[10] arrays, so is again comparable. The sequence is
+ therefore:
+
+ A: [1, 3] (i.e. [i].s.c)
+ B: [3, 5] (i.e. [i].s.e)
+
+ Also look for sequences of component references whose access
+ functions are comparable and whose enclosing objects have the same
+ RECORD_TYPE. Store this sequence in STRUCT_SEQ. In the above
+ example, STRUCT_SEQ would be:
+
+ A: [1, 2] (i.e. s.c)
+ B: [3, 4] (i.e. s.e) */
+ while (index_a < num_dimensions_a && index_b < num_dimensions_b)
+ {
+ /* The alternate indices form always has a single dimension
+ with unconstrained base. */
+ gcc_assert (!use_alt_indices);
+
+ /* REF_A and REF_B must be one of the component access types
+ allowed by dr_analyze_indices. */
+ gcc_checking_assert (access_fn_component_p (ref_a));
+ gcc_checking_assert (access_fn_component_p (ref_b));
+
+ /* Get the immediately-enclosing objects for REF_A and REF_B,
+ i.e. the references *before* applying DR_ACCESS_FN (A, INDEX_A)
+ and DR_ACCESS_FN (B, INDEX_B). */
+ tree object_a = TREE_OPERAND (ref_a, 0);
+ tree object_b = TREE_OPERAND (ref_b, 0);
+
+ tree type_a = TREE_TYPE (object_a);
+ tree type_b = TREE_TYPE (object_b);
+ if (access_fn_components_comparable_p (ref_a, ref_b))
+ {
+ /* This pair of component accesses is comparable for dependence
+ analysis, so we can include DR_ACCESS_FN (A, INDEX_A) and
+ DR_ACCESS_FN (B, INDEX_B) in the sequence. */
+ if (full_seq.start_a + full_seq.length != index_a
+ || full_seq.start_b + full_seq.length != index_b)
+ {
+ /* The accesses don't extend the current sequence,
+ so start a new one here. */
+ full_seq.start_a = index_a;
+ full_seq.start_b = index_b;
+ full_seq.length = 0;
+ }
+
+ /* Add this pair of references to the sequence. */
+ full_seq.length += 1;
+ full_seq.object_a = object_a;
+ full_seq.object_b = object_b;
+
+ /* If the enclosing objects are structures (and thus have the
+ same RECORD_TYPE), record the new sequence in STRUCT_SEQ. */
+ if (TREE_CODE (type_a) == RECORD_TYPE)
+ struct_seq = full_seq;
+
+ /* Move to the next containing reference for both A and B. */
+ ref_a = object_a;
+ ref_b = object_b;
+ index_a += 1;
+ index_b += 1;
+ continue;
+ }
+
+ /* Try to approach equal type sizes. */
+ if (!COMPLETE_TYPE_P (type_a)
+ || !COMPLETE_TYPE_P (type_b)
+ || !tree_fits_uhwi_p (TYPE_SIZE_UNIT (type_a))
+ || !tree_fits_uhwi_p (TYPE_SIZE_UNIT (type_b)))
+ break;
+
+ unsigned HOST_WIDE_INT size_a = tree_to_uhwi (TYPE_SIZE_UNIT (type_a));
+ unsigned HOST_WIDE_INT size_b = tree_to_uhwi (TYPE_SIZE_UNIT (type_b));
+ if (size_a <= size_b)
+ {
+ index_a += 1;
+ ref_a = object_a;
+ }
+ if (size_b <= size_a)
+ {
+ index_b += 1;
+ ref_b = object_b;
+ }
+ }
+
+ /* See whether FULL_SEQ ends at the base and whether the two bases
+ are equal. We do not care about TBAA or alignment info so we can
+ use OEP_ADDRESS_OF to avoid false negatives. */
+ tree base_a = indices_a->base_object;
+ tree base_b = indices_b->base_object;
+ bool same_base_p = (full_seq.start_a + full_seq.length == num_dimensions_a
+ && full_seq.start_b + full_seq.length == num_dimensions_b
+ && (indices_a->unconstrained_base
+ == indices_b->unconstrained_base)
+ && operand_equal_p (base_a, base_b, OEP_ADDRESS_OF)
+ && (types_compatible_p (TREE_TYPE (base_a),
+ TREE_TYPE (base_b))
+ || (!base_supports_access_fn_components_p (base_a)
+ && !base_supports_access_fn_components_p (base_b)
+ && operand_equal_p
+ (TYPE_SIZE (TREE_TYPE (base_a)),
+ TYPE_SIZE (TREE_TYPE (base_b)), 0)))
+ && (!loop_nest.exists ()
+ || (object_address_invariant_in_loop_p
+ (loop_nest[0], base_a))));
+
+ /* If the bases are the same, we can include the base variation too.
+ E.g. the b accesses in:
+
+ for (int i = 0; i < n; ++i)
+ b[i + 4][0] = b[i][0];
+
+ have a definite dependence distance of 4, while for:
+
+ for (int i = 0; i < n; ++i)
+ a[i + 4][0] = b[i][0];
+
+ the dependence distance depends on the gap between a and b.
+
+ If the bases are different then we can only rely on the sequence
+ rooted at a structure access, since arrays are allowed to overlap
+ arbitrarily and change shape arbitrarily. E.g. we treat this as
+ valid code:
+
+ int a[256];
+ ...
+ ((int (*)[4][3]) &a[1])[i][0] += ((int (*)[4][3]) &a[2])[i][0];
+
+ where two lvalues with the same int[4][3] type overlap, and where
+ both lvalues are distinct from the object's declared type. */
+ if (same_base_p)
+ {
+ if (indices_a->unconstrained_base)
+ full_seq.length += 1;
+ }
+ else
+ full_seq = struct_seq;
+
+ /* Punt if we didn't find a suitable sequence. */
+ if (full_seq.length == 0)
+ {
+ if (use_alt_indices
+ || (TREE_CODE (DR_REF (a)) == MEM_REF
+ && TREE_CODE (DR_REF (b)) == MEM_REF)
+ || may_be_nonaddressable_p (DR_REF (a))
+ || may_be_nonaddressable_p (DR_REF (b)))
+ {
+ /* Fully exhausted possibilities. */
+ DDR_ARE_DEPENDENT (res) = chrec_dont_know;
+ return res;
+ }
+
+ /* Try evaluating both DRs as dereferences of pointers. */
+ if (!a->alt_indices.base_object
+ && TREE_CODE (DR_REF (a)) != MEM_REF)
+ {
+ tree alt_ref = build2 (MEM_REF, TREE_TYPE (DR_REF (a)),
+ build1 (ADDR_EXPR, ptr_type_node, DR_REF (a)),
+ build_int_cst
+ (reference_alias_ptr_type (DR_REF (a)), 0));
+ dr_analyze_indices (&a->alt_indices, alt_ref,
+ loop_preheader_edge (loop_nest[0]),
+ loop_containing_stmt (DR_STMT (a)));
+ }
+ if (!b->alt_indices.base_object
+ && TREE_CODE (DR_REF (b)) != MEM_REF)
+ {
+ tree alt_ref = build2 (MEM_REF, TREE_TYPE (DR_REF (b)),
+ build1 (ADDR_EXPR, ptr_type_node, DR_REF (b)),
+ build_int_cst
+ (reference_alias_ptr_type (DR_REF (b)), 0));
+ dr_analyze_indices (&b->alt_indices, alt_ref,
+ loop_preheader_edge (loop_nest[0]),
+ loop_containing_stmt (DR_STMT (b)));
+ }
+ return initialize_data_dependence_relation (res, loop_nest, true);
+ }
+
+ if (!same_base_p)
+ {
+ /* Partial overlap is possible for different bases when strict aliasing
+ is not in effect. It's also possible if either base involves a union
+ access; e.g. for:
+
+ struct s1 { int a[2]; };
+ struct s2 { struct s1 b; int c; };
+ struct s3 { int d; struct s1 e; };
+ union u { struct s2 f; struct s3 g; } *p, *q;
+
+ the s1 at "p->f.b" (base "p->f") partially overlaps the s1 at
+ "p->g.e" (base "p->g") and might partially overlap the s1 at
+ "q->g.e" (base "q->g"). */
+ if (!flag_strict_aliasing
+ || ref_contains_union_access_p (full_seq.object_a)
+ || ref_contains_union_access_p (full_seq.object_b))
+ {
+ DDR_ARE_DEPENDENT (res) = chrec_dont_know;
+ return res;
+ }
+
+ DDR_COULD_BE_INDEPENDENT_P (res) = true;
+ if (!loop_nest.exists ()
+ || (object_address_invariant_in_loop_p (loop_nest[0],
+ full_seq.object_a)
+ && object_address_invariant_in_loop_p (loop_nest[0],
+ full_seq.object_b)))
+ {
+ DDR_OBJECT_A (res) = full_seq.object_a;
+ DDR_OBJECT_B (res) = full_seq.object_b;
+ }
+ }
+
+ DDR_AFFINE_P (res) = true;
+ DDR_ARE_DEPENDENT (res) = NULL_TREE;
+ DDR_SUBSCRIPTS (res).create (full_seq.length);
+ DDR_LOOP_NEST (res) = loop_nest;
+ DDR_SELF_REFERENCE (res) = false;
+
+ for (i = 0; i < full_seq.length; ++i)
+ {
+ struct subscript *subscript;
+
+ subscript = XNEW (struct subscript);
+ SUB_ACCESS_FN (subscript, 0) = indices_a->access_fns[full_seq.start_a + i];
+ SUB_ACCESS_FN (subscript, 1) = indices_b->access_fns[full_seq.start_b + i];
+ SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
+ SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
+ SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
+ SUB_DISTANCE (subscript) = chrec_dont_know;
+ DDR_SUBSCRIPTS (res).safe_push (subscript);
+ }
+
+ return res;
+}
+
+/* Initialize a data dependence relation between data accesses A and
+ B. NB_LOOPS is the number of loops surrounding the references: the
+ size of the classic distance/direction vectors. */
+
+struct data_dependence_relation *
+initialize_data_dependence_relation (struct data_reference *a,
+ struct data_reference *b,
+ vec<loop_p> loop_nest)
+{
+ data_dependence_relation *res = XCNEW (struct data_dependence_relation);
+ DDR_A (res) = a;
+ DDR_B (res) = b;
+ DDR_LOOP_NEST (res).create (0);
+ DDR_SUBSCRIPTS (res).create (0);
+ DDR_DIR_VECTS (res).create (0);
+ DDR_DIST_VECTS (res).create (0);
+
+ if (a == NULL || b == NULL)
+ {
+ DDR_ARE_DEPENDENT (res) = chrec_dont_know;
+ return res;
+ }
+
+ /* If the data references do not alias, then they are independent. */
+ if (!dr_may_alias_p (a, b, loop_nest.exists () ? loop_nest[0] : NULL))
+ {
+ DDR_ARE_DEPENDENT (res) = chrec_known;
+ return res;
+ }
+
+ return initialize_data_dependence_relation (res, loop_nest, false);
+}
+
+
+/* Frees memory used by the conflict function F. */
+
+static void
+free_conflict_function (conflict_function *f)
+{
+ unsigned i;
+
+ if (CF_NONTRIVIAL_P (f))
+ {
+ for (i = 0; i < f->n; i++)
+ affine_fn_free (f->fns[i]);
+ }
+ free (f);
+}
+
+/* Frees memory used by SUBSCRIPTS. */
+
+static void
+free_subscripts (vec<subscript_p> subscripts)
+{
+ for (subscript_p s : subscripts)
+ {
+ free_conflict_function (s->conflicting_iterations_in_a);
+ free_conflict_function (s->conflicting_iterations_in_b);
+ free (s);
+ }
+ subscripts.release ();
+}
+
+/* Set DDR_ARE_DEPENDENT to CHREC and finalize the subscript overlap
+ description. */
+
+static inline void
+finalize_ddr_dependent (struct data_dependence_relation *ddr,
+ tree chrec)
+{
+ DDR_ARE_DEPENDENT (ddr) = chrec;
+ free_subscripts (DDR_SUBSCRIPTS (ddr));
+ DDR_SUBSCRIPTS (ddr).create (0);
+}
+
+/* The dependence relation DDR cannot be represented by a distance
+ vector. */
+
+static inline void
+non_affine_dependence_relation (struct data_dependence_relation *ddr)
+{
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "(Dependence relation cannot be represented by distance vector.) \n");
+
+ DDR_AFFINE_P (ddr) = false;
+}
+
+
+
+/* This section contains the classic Banerjee tests. */
+
+/* Returns true iff CHREC_A and CHREC_B are not dependent on any index
+ variables, i.e., if the ZIV (Zero Index Variable) test is true. */
+
+static inline bool
+ziv_subscript_p (const_tree chrec_a, const_tree chrec_b)
+{
+ return (evolution_function_is_constant_p (chrec_a)
+ && evolution_function_is_constant_p (chrec_b));
+}
+
+/* Returns true iff CHREC_A and CHREC_B are dependent on an index
+ variable, i.e., if the SIV (Single Index Variable) test is true. */
+
+static bool
+siv_subscript_p (const_tree chrec_a, const_tree chrec_b)
+{
+ if ((evolution_function_is_constant_p (chrec_a)
+ && evolution_function_is_univariate_p (chrec_b))
+ || (evolution_function_is_constant_p (chrec_b)
+ && evolution_function_is_univariate_p (chrec_a)))
+ return true;
+
+ if (evolution_function_is_univariate_p (chrec_a)
+ && evolution_function_is_univariate_p (chrec_b))
+ {
+ switch (TREE_CODE (chrec_a))
+ {
+ case POLYNOMIAL_CHREC:
+ switch (TREE_CODE (chrec_b))
+ {
+ case POLYNOMIAL_CHREC:
+ if (CHREC_VARIABLE (chrec_a) != CHREC_VARIABLE (chrec_b))
+ return false;
+ /* FALLTHRU */
+
+ default:
+ return true;
+ }
+
+ default:
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/* Creates a conflict function with N dimensions. The affine functions
+ in each dimension follow. */
+
+static conflict_function *
+conflict_fn (unsigned n, ...)
+{
+ unsigned i;
+ conflict_function *ret = XCNEW (conflict_function);
+ va_list ap;
+
+ gcc_assert (n > 0 && n <= MAX_DIM);
+ va_start (ap, n);
+
+ ret->n = n;
+ for (i = 0; i < n; i++)
+ ret->fns[i] = va_arg (ap, affine_fn);
+ va_end (ap);
+
+ return ret;
+}
+
+/* Returns constant affine function with value CST. */
+
+static affine_fn
+affine_fn_cst (tree cst)
+{
+ affine_fn fn;
+ fn.create (1);
+ fn.quick_push (cst);
+ return fn;
+}
+
+/* Returns affine function with single variable, CST + COEF * x_DIM. */
+
+static affine_fn
+affine_fn_univar (tree cst, unsigned dim, tree coef)
+{
+ affine_fn fn;
+ fn.create (dim + 1);
+ unsigned i;
+
+ gcc_assert (dim > 0);
+ fn.quick_push (cst);
+ for (i = 1; i < dim; i++)
+ fn.quick_push (integer_zero_node);
+ fn.quick_push (coef);
+ return fn;
+}
+
+/* Analyze a ZIV (Zero Index Variable) subscript. *OVERLAPS_A and
+ *OVERLAPS_B are initialized to the functions that describe the
+ relation between the elements accessed twice by CHREC_A and
+ CHREC_B. For k >= 0, the following property is verified:
+
+ CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
+
+static void
+analyze_ziv_subscript (tree chrec_a,
+ tree chrec_b,
+ conflict_function **overlaps_a,
+ conflict_function **overlaps_b,
+ tree *last_conflicts)
+{
+ tree type, difference;
+ dependence_stats.num_ziv++;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "(analyze_ziv_subscript \n");
+
+ type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
+ chrec_a = chrec_convert (type, chrec_a, NULL);
+ chrec_b = chrec_convert (type, chrec_b, NULL);
+ difference = chrec_fold_minus (type, chrec_a, chrec_b);
+
+ switch (TREE_CODE (difference))
+ {
+ case INTEGER_CST:
+ if (integer_zerop (difference))
+ {
+ /* The difference is equal to zero: the accessed index
+ overlaps for each iteration in the loop. */
+ *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
+ *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
+ *last_conflicts = chrec_dont_know;
+ dependence_stats.num_ziv_dependent++;
+ }
+ else
+ {
+ /* The accesses do not overlap. */
+ *overlaps_a = conflict_fn_no_dependence ();
+ *overlaps_b = conflict_fn_no_dependence ();
+ *last_conflicts = integer_zero_node;
+ dependence_stats.num_ziv_independent++;
+ }
+ break;
+
+ default:
+ /* We're not sure whether the indexes overlap. For the moment,
+ conservatively answer "don't know". */
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "ziv test failed: difference is non-integer.\n");
+
+ *overlaps_a = conflict_fn_not_known ();
+ *overlaps_b = conflict_fn_not_known ();
+ *last_conflicts = chrec_dont_know;
+ dependence_stats.num_ziv_unimplemented++;
+ break;
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, ")\n");
+}
+
+/* Similar to max_stmt_executions_int, but returns the bound as a tree,
+ and only if it fits to the int type. If this is not the case, or the
+ bound on the number of iterations of LOOP could not be derived, returns
+ chrec_dont_know. */
+
+static tree
+max_stmt_executions_tree (class loop *loop)
+{
+ widest_int nit;
+
+ if (!max_stmt_executions (loop, &nit))
+ return chrec_dont_know;
+
+ if (!wi::fits_to_tree_p (nit, unsigned_type_node))
+ return chrec_dont_know;
+
+ return wide_int_to_tree (unsigned_type_node, nit);
+}
+
+/* Determine whether the CHREC is always positive/negative. If the expression
+ cannot be statically analyzed, return false, otherwise set the answer into
+ VALUE. */
+
+static bool
+chrec_is_positive (tree chrec, bool *value)
+{
+ bool value0, value1, value2;
+ tree end_value, nb_iter;
+
+ switch (TREE_CODE (chrec))
+ {
+ case POLYNOMIAL_CHREC:
+ if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
+ || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
+ return false;
+
+ /* FIXME -- overflows. */
+ if (value0 == value1)
+ {
+ *value = value0;
+ return true;
+ }
+
+ /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
+ and the proof consists in showing that the sign never
+ changes during the execution of the loop, from 0 to
+ loop->nb_iterations. */
+ if (!evolution_function_is_affine_p (chrec))
+ return false;
+
+ nb_iter = number_of_latch_executions (get_chrec_loop (chrec));
+ if (chrec_contains_undetermined (nb_iter))
+ return false;
+
+#if 0
+ /* TODO -- If the test is after the exit, we may decrease the number of
+ iterations by one. */
+ if (after_exit)
+ nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
+#endif
+
+ end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
+
+ if (!chrec_is_positive (end_value, &value2))
+ return false;
+
+ *value = value0;
+ return value0 == value1;
+
+ case INTEGER_CST:
+ switch (tree_int_cst_sgn (chrec))
+ {
+ case -1:
+ *value = false;
+ break;
+ case 1:
+ *value = true;
+ break;
+ default:
+ return false;
+ }
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+
+/* Analyze a SIV (Single Index Variable) subscript where CHREC_A is a
+ constant, and CHREC_B is an affine function. *OVERLAPS_A and
+ *OVERLAPS_B are initialized to the functions that describe the
+ relation between the elements accessed twice by CHREC_A and
+ CHREC_B. For k >= 0, the following property is verified:
+
+ CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
+
+static void
+analyze_siv_subscript_cst_affine (tree chrec_a,
+ tree chrec_b,
+ conflict_function **overlaps_a,
+ conflict_function **overlaps_b,
+ tree *last_conflicts)
+{
+ bool value0, value1, value2;
+ tree type, difference, tmp;
+
+ type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
+ chrec_a = chrec_convert (type, chrec_a, NULL);
+ chrec_b = chrec_convert (type, chrec_b, NULL);
+ difference = chrec_fold_minus (type, initial_condition (chrec_b), chrec_a);
+
+ /* Special case overlap in the first iteration. */
+ if (integer_zerop (difference))
+ {
+ *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
+ *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
+ *last_conflicts = integer_one_node;
+ return;
+ }
+
+ if (!chrec_is_positive (initial_condition (difference), &value0))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "siv test failed: chrec is not positive.\n");
+
+ dependence_stats.num_siv_unimplemented++;
+ *overlaps_a = conflict_fn_not_known ();
+ *overlaps_b = conflict_fn_not_known ();
+ *last_conflicts = chrec_dont_know;
+ return;
+ }
+ else
+ {
+ if (value0 == false)
+ {
+ if (TREE_CODE (chrec_b) != POLYNOMIAL_CHREC
+ || !chrec_is_positive (CHREC_RIGHT (chrec_b), &value1))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "siv test failed: chrec not positive.\n");
+
+ *overlaps_a = conflict_fn_not_known ();
+ *overlaps_b = conflict_fn_not_known ();
+ *last_conflicts = chrec_dont_know;
+ dependence_stats.num_siv_unimplemented++;
+ return;
+ }
+ else
+ {
+ if (value1 == true)
+ {
+ /* Example:
+ chrec_a = 12
+ chrec_b = {10, +, 1}
+ */
+
+ if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
+ {
+ HOST_WIDE_INT numiter;
+ class loop *loop = get_chrec_loop (chrec_b);
+
+ *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
+ tmp = fold_build2 (EXACT_DIV_EXPR, type,
+ fold_build1 (ABS_EXPR, type, difference),
+ CHREC_RIGHT (chrec_b));
+ *overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
+ *last_conflicts = integer_one_node;
+
+
+ /* Perform weak-zero siv test to see if overlap is
+ outside the loop bounds. */
+ numiter = max_stmt_executions_int (loop);
+
+ if (numiter >= 0
+ && compare_tree_int (tmp, numiter) > 0)
+ {
+ free_conflict_function (*overlaps_a);
+ free_conflict_function (*overlaps_b);
+ *overlaps_a = conflict_fn_no_dependence ();
+ *overlaps_b = conflict_fn_no_dependence ();
+ *last_conflicts = integer_zero_node;
+ dependence_stats.num_siv_independent++;
+ return;
+ }
+ dependence_stats.num_siv_dependent++;
+ return;
+ }
+
+ /* When the step does not divide the difference, there are
+ no overlaps. */
+ else
+ {
+ *overlaps_a = conflict_fn_no_dependence ();
+ *overlaps_b = conflict_fn_no_dependence ();
+ *last_conflicts = integer_zero_node;
+ dependence_stats.num_siv_independent++;
+ return;
+ }
+ }
+
+ else
+ {
+ /* Example:
+ chrec_a = 12
+ chrec_b = {10, +, -1}
+
+ In this case, chrec_a will not overlap with chrec_b. */
+ *overlaps_a = conflict_fn_no_dependence ();
+ *overlaps_b = conflict_fn_no_dependence ();
+ *last_conflicts = integer_zero_node;
+ dependence_stats.num_siv_independent++;
+ return;
+ }
+ }
+ }
+ else
+ {
+ if (TREE_CODE (chrec_b) != POLYNOMIAL_CHREC
+ || !chrec_is_positive (CHREC_RIGHT (chrec_b), &value2))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "siv test failed: chrec not positive.\n");
+
+ *overlaps_a = conflict_fn_not_known ();
+ *overlaps_b = conflict_fn_not_known ();
+ *last_conflicts = chrec_dont_know;
+ dependence_stats.num_siv_unimplemented++;
+ return;
+ }
+ else
+ {
+ if (value2 == false)
+ {
+ /* Example:
+ chrec_a = 3
+ chrec_b = {10, +, -1}
+ */
+ if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
+ {
+ HOST_WIDE_INT numiter;
+ class loop *loop = get_chrec_loop (chrec_b);
+
+ *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
+ tmp = fold_build2 (EXACT_DIV_EXPR, type, difference,
+ CHREC_RIGHT (chrec_b));
+ *overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
+ *last_conflicts = integer_one_node;
+
+ /* Perform weak-zero siv test to see if overlap is
+ outside the loop bounds. */
+ numiter = max_stmt_executions_int (loop);
+
+ if (numiter >= 0
+ && compare_tree_int (tmp, numiter) > 0)
+ {
+ free_conflict_function (*overlaps_a);
+ free_conflict_function (*overlaps_b);
+ *overlaps_a = conflict_fn_no_dependence ();
+ *overlaps_b = conflict_fn_no_dependence ();
+ *last_conflicts = integer_zero_node;
+ dependence_stats.num_siv_independent++;
+ return;
+ }
+ dependence_stats.num_siv_dependent++;
+ return;
+ }
+
+ /* When the step does not divide the difference, there
+ are no overlaps. */
+ else
+ {
+ *overlaps_a = conflict_fn_no_dependence ();
+ *overlaps_b = conflict_fn_no_dependence ();
+ *last_conflicts = integer_zero_node;
+ dependence_stats.num_siv_independent++;
+ return;
+ }
+ }
+ else
+ {
+ /* Example:
+ chrec_a = 3
+ chrec_b = {4, +, 1}
+
+ In this case, chrec_a will not overlap with chrec_b. */
+ *overlaps_a = conflict_fn_no_dependence ();
+ *overlaps_b = conflict_fn_no_dependence ();
+ *last_conflicts = integer_zero_node;
+ dependence_stats.num_siv_independent++;
+ return;
+ }
+ }
+ }
+ }
+}
+
+/* Helper recursive function for initializing the matrix A. Returns
+ the initial value of CHREC. */
+
+static tree
+initialize_matrix_A (lambda_matrix A, tree chrec, unsigned index, int mult)
+{
+ gcc_assert (chrec);
+
+ switch (TREE_CODE (chrec))
+ {
+ case POLYNOMIAL_CHREC:
+ HOST_WIDE_INT chrec_right;
+ if (!cst_and_fits_in_hwi (CHREC_RIGHT (chrec)))
+ return chrec_dont_know;
+ chrec_right = int_cst_value (CHREC_RIGHT (chrec));
+ /* We want to be able to negate without overflow. */
+ if (chrec_right == HOST_WIDE_INT_MIN)
+ return chrec_dont_know;
+ A[index][0] = mult * chrec_right;
+ return initialize_matrix_A (A, CHREC_LEFT (chrec), index + 1, mult);
+
+ case PLUS_EXPR:
+ case MULT_EXPR:
+ case MINUS_EXPR:
+ {
+ tree op0 = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
+ tree op1 = initialize_matrix_A (A, TREE_OPERAND (chrec, 1), index, mult);
+
+ return chrec_fold_op (TREE_CODE (chrec), chrec_type (chrec), op0, op1);
+ }
+
+ CASE_CONVERT:
+ {
+ tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
+ return chrec_convert (chrec_type (chrec), op, NULL);
+ }
+
+ case BIT_NOT_EXPR:
+ {
+ /* Handle ~X as -1 - X. */
+ tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
+ return chrec_fold_op (MINUS_EXPR, chrec_type (chrec),
+ build_int_cst (TREE_TYPE (chrec), -1), op);
+ }
+
+ case INTEGER_CST:
+ return chrec;
+
+ default:
+ gcc_unreachable ();
+ return NULL_TREE;
+ }
+}
+
+#define FLOOR_DIV(x,y) ((x) / (y))
+
+/* Solves the special case of the Diophantine equation:
+ | {0, +, STEP_A}_x (OVERLAPS_A) = {0, +, STEP_B}_y (OVERLAPS_B)
+
+ Computes the descriptions OVERLAPS_A and OVERLAPS_B. NITER is the
+ number of iterations that loops X and Y run. The overlaps will be
+ constructed as evolutions in dimension DIM. */
+
+static void
+compute_overlap_steps_for_affine_univar (HOST_WIDE_INT niter,
+ HOST_WIDE_INT step_a,
+ HOST_WIDE_INT step_b,
+ affine_fn *overlaps_a,
+ affine_fn *overlaps_b,
+ tree *last_conflicts, int dim)
+{
+ if (((step_a > 0 && step_b > 0)
+ || (step_a < 0 && step_b < 0)))
+ {
+ HOST_WIDE_INT step_overlaps_a, step_overlaps_b;
+ HOST_WIDE_INT gcd_steps_a_b, last_conflict, tau2;
+
+ gcd_steps_a_b = gcd (step_a, step_b);
+ step_overlaps_a = step_b / gcd_steps_a_b;
+ step_overlaps_b = step_a / gcd_steps_a_b;
+
+ if (niter > 0)
+ {
+ tau2 = FLOOR_DIV (niter, step_overlaps_a);
+ tau2 = MIN (tau2, FLOOR_DIV (niter, step_overlaps_b));
+ last_conflict = tau2;
+ *last_conflicts = build_int_cst (NULL_TREE, last_conflict);
+ }
+ else
+ *last_conflicts = chrec_dont_know;
+
+ *overlaps_a = affine_fn_univar (integer_zero_node, dim,
+ build_int_cst (NULL_TREE,
+ step_overlaps_a));
+ *overlaps_b = affine_fn_univar (integer_zero_node, dim,
+ build_int_cst (NULL_TREE,
+ step_overlaps_b));
+ }
+
+ else
+ {
+ *overlaps_a = affine_fn_cst (integer_zero_node);
+ *overlaps_b = affine_fn_cst (integer_zero_node);
+ *last_conflicts = integer_zero_node;
+ }
+}
+
+/* Solves the special case of a Diophantine equation where CHREC_A is
+ an affine bivariate function, and CHREC_B is an affine univariate
+ function. For example,
+
+ | {{0, +, 1}_x, +, 1335}_y = {0, +, 1336}_z
+
+ has the following overlapping functions:
+
+ | x (t, u, v) = {{0, +, 1336}_t, +, 1}_v
+ | y (t, u, v) = {{0, +, 1336}_u, +, 1}_v
+ | z (t, u, v) = {{{0, +, 1}_t, +, 1335}_u, +, 1}_v
+
+ FORNOW: This is a specialized implementation for a case occurring in
+ a common benchmark. Implement the general algorithm. */
+
+static void
+compute_overlap_steps_for_affine_1_2 (tree chrec_a, tree chrec_b,
+ conflict_function **overlaps_a,
+ conflict_function **overlaps_b,
+ tree *last_conflicts)
+{
+ bool xz_p, yz_p, xyz_p;
+ HOST_WIDE_INT step_x, step_y, step_z;
+ HOST_WIDE_INT niter_x, niter_y, niter_z, niter;
+ affine_fn overlaps_a_xz, overlaps_b_xz;
+ affine_fn overlaps_a_yz, overlaps_b_yz;
+ affine_fn overlaps_a_xyz, overlaps_b_xyz;
+ affine_fn ova1, ova2, ovb;
+ tree last_conflicts_xz, last_conflicts_yz, last_conflicts_xyz;
+
+ step_x = int_cst_value (CHREC_RIGHT (CHREC_LEFT (chrec_a)));
+ step_y = int_cst_value (CHREC_RIGHT (chrec_a));
+ step_z = int_cst_value (CHREC_RIGHT (chrec_b));
+
+ niter_x = max_stmt_executions_int (get_chrec_loop (CHREC_LEFT (chrec_a)));
+ niter_y = max_stmt_executions_int (get_chrec_loop (chrec_a));
+ niter_z = max_stmt_executions_int (get_chrec_loop (chrec_b));
+
+ if (niter_x < 0 || niter_y < 0 || niter_z < 0)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "overlap steps test failed: no iteration counts.\n");
+
+ *overlaps_a = conflict_fn_not_known ();
+ *overlaps_b = conflict_fn_not_known ();
+ *last_conflicts = chrec_dont_know;
+ return;
+ }
+
+ niter = MIN (niter_x, niter_z);
+ compute_overlap_steps_for_affine_univar (niter, step_x, step_z,
+ &overlaps_a_xz,
+ &overlaps_b_xz,
+ &last_conflicts_xz, 1);
+ niter = MIN (niter_y, niter_z);
+ compute_overlap_steps_for_affine_univar (niter, step_y, step_z,
+ &overlaps_a_yz,
+ &overlaps_b_yz,
+ &last_conflicts_yz, 2);
+ niter = MIN (niter_x, niter_z);
+ niter = MIN (niter_y, niter);
+ compute_overlap_steps_for_affine_univar (niter, step_x + step_y, step_z,
+ &overlaps_a_xyz,
+ &overlaps_b_xyz,
+ &last_conflicts_xyz, 3);
+
+ xz_p = !integer_zerop (last_conflicts_xz);
+ yz_p = !integer_zerop (last_conflicts_yz);
+ xyz_p = !integer_zerop (last_conflicts_xyz);
+
+ if (xz_p || yz_p || xyz_p)
+ {
+ ova1 = affine_fn_cst (integer_zero_node);
+ ova2 = affine_fn_cst (integer_zero_node);
+ ovb = affine_fn_cst (integer_zero_node);
+ if (xz_p)
+ {
+ affine_fn t0 = ova1;
+ affine_fn t2 = ovb;
+
+ ova1 = affine_fn_plus (ova1, overlaps_a_xz);
+ ovb = affine_fn_plus (ovb, overlaps_b_xz);
+ affine_fn_free (t0);
+ affine_fn_free (t2);
+ *last_conflicts = last_conflicts_xz;
+ }
+ if (yz_p)
+ {
+ affine_fn t0 = ova2;
+ affine_fn t2 = ovb;
+
+ ova2 = affine_fn_plus (ova2, overlaps_a_yz);
+ ovb = affine_fn_plus (ovb, overlaps_b_yz);
+ affine_fn_free (t0);
+ affine_fn_free (t2);
+ *last_conflicts = last_conflicts_yz;
+ }
+ if (xyz_p)
+ {
+ affine_fn t0 = ova1;
+ affine_fn t2 = ova2;
+ affine_fn t4 = ovb;
+
+ ova1 = affine_fn_plus (ova1, overlaps_a_xyz);
+ ova2 = affine_fn_plus (ova2, overlaps_a_xyz);
+ ovb = affine_fn_plus (ovb, overlaps_b_xyz);
+ affine_fn_free (t0);
+ affine_fn_free (t2);
+ affine_fn_free (t4);
+ *last_conflicts = last_conflicts_xyz;
+ }
+ *overlaps_a = conflict_fn (2, ova1, ova2);
+ *overlaps_b = conflict_fn (1, ovb);
+ }
+ else
+ {
+ *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
+ *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
+ *last_conflicts = integer_zero_node;
+ }
+
+ affine_fn_free (overlaps_a_xz);
+ affine_fn_free (overlaps_b_xz);
+ affine_fn_free (overlaps_a_yz);
+ affine_fn_free (overlaps_b_yz);
+ affine_fn_free (overlaps_a_xyz);
+ affine_fn_free (overlaps_b_xyz);
+}
+
+/* Copy the elements of vector VEC1 with length SIZE to VEC2. */
+
+static void
+lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
+ int size)
+{
+ memcpy (vec2, vec1, size * sizeof (*vec1));
+}
+
+/* Copy the elements of M x N matrix MAT1 to MAT2. */
+
+static void
+lambda_matrix_copy (lambda_matrix mat1, lambda_matrix mat2,
+ int m, int n)
+{
+ int i;
+
+ for (i = 0; i < m; i++)
+ lambda_vector_copy (mat1[i], mat2[i], n);
+}
+
+/* Store the N x N identity matrix in MAT. */
+
+static void
+lambda_matrix_id (lambda_matrix mat, int size)
+{
+ int i, j;
+
+ for (i = 0; i < size; i++)
+ for (j = 0; j < size; j++)
+ mat[i][j] = (i == j) ? 1 : 0;
+}
+
+/* Return the index of the first nonzero element of vector VEC1 between
+ START and N. We must have START <= N.
+ Returns N if VEC1 is the zero vector. */
+
+static int
+lambda_vector_first_nz (lambda_vector vec1, int n, int start)
+{
+ int j = start;
+ while (j < n && vec1[j] == 0)
+ j++;
+ return j;
+}
+
+/* Add a multiple of row R1 of matrix MAT with N columns to row R2:
+ R2 = R2 + CONST1 * R1. */
+
+static bool
+lambda_matrix_row_add (lambda_matrix mat, int n, int r1, int r2,
+ lambda_int const1)
+{
+ int i;
+
+ if (const1 == 0)
+ return true;
+
+ for (i = 0; i < n; i++)
+ {
+ bool ovf;
+ lambda_int tem = mul_hwi (mat[r1][i], const1, &ovf);
+ if (ovf)
+ return false;
+ lambda_int tem2 = add_hwi (mat[r2][i], tem, &ovf);
+ if (ovf || tem2 == HOST_WIDE_INT_MIN)
+ return false;
+ mat[r2][i] = tem2;
+ }
+
+ return true;
+}
+
+/* Multiply vector VEC1 of length SIZE by a constant CONST1,
+ and store the result in VEC2. */
+
+static void
+lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
+ int size, lambda_int const1)
+{
+ int i;
+
+ if (const1 == 0)
+ lambda_vector_clear (vec2, size);
+ else
+ for (i = 0; i < size; i++)
+ vec2[i] = const1 * vec1[i];
+}
+
+/* Negate vector VEC1 with length SIZE and store it in VEC2. */
+
+static void
+lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
+ int size)
+{
+ lambda_vector_mult_const (vec1, vec2, size, -1);
+}
+
+/* Negate row R1 of matrix MAT which has N columns. */
+
+static void
+lambda_matrix_row_negate (lambda_matrix mat, int n, int r1)
+{
+ lambda_vector_negate (mat[r1], mat[r1], n);
+}
+
+/* Return true if two vectors are equal. */
+
+static bool
+lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
+{
+ int i;
+ for (i = 0; i < size; i++)
+ if (vec1[i] != vec2[i])
+ return false;
+ return true;
+}
+
+/* Given an M x N integer matrix A, this function determines an M x
+ M unimodular matrix U, and an M x N echelon matrix S such that
+ "U.A = S". This decomposition is also known as "right Hermite".
+
+ Ref: Algorithm 2.1 page 33 in "Loop Transformations for
+ Restructuring Compilers" Utpal Banerjee. */
+
+static bool
+lambda_matrix_right_hermite (lambda_matrix A, int m, int n,
+ lambda_matrix S, lambda_matrix U)
+{
+ int i, j, i0 = 0;
+
+ lambda_matrix_copy (A, S, m, n);
+ lambda_matrix_id (U, m);
+
+ for (j = 0; j < n; j++)
+ {
+ if (lambda_vector_first_nz (S[j], m, i0) < m)
+ {
+ ++i0;
+ for (i = m - 1; i >= i0; i--)
+ {
+ while (S[i][j] != 0)
+ {
+ lambda_int factor, a, b;
+
+ a = S[i-1][j];
+ b = S[i][j];
+ gcc_assert (a != HOST_WIDE_INT_MIN);
+ factor = a / b;
+
+ if (!lambda_matrix_row_add (S, n, i, i-1, -factor))
+ return false;
+ std::swap (S[i], S[i-1]);
+
+ if (!lambda_matrix_row_add (U, m, i, i-1, -factor))
+ return false;
+ std::swap (U[i], U[i-1]);
+ }
+ }
+ }
+ }
+
+ return true;
+}
+
+/* Determines the overlapping elements due to accesses CHREC_A and
+ CHREC_B, that are affine functions. This function cannot handle
+ symbolic evolution functions, ie. when initial conditions are
+ parameters, because it uses lambda matrices of integers. */
+
+static void
+analyze_subscript_affine_affine (tree chrec_a,
+ tree chrec_b,
+ conflict_function **overlaps_a,
+ conflict_function **overlaps_b,
+ tree *last_conflicts)
+{
+ unsigned nb_vars_a, nb_vars_b, dim;
+ lambda_int gamma, gcd_alpha_beta;
+ lambda_matrix A, U, S;
+ struct obstack scratch_obstack;
+
+ if (eq_evolutions_p (chrec_a, chrec_b))
+ {
+ /* The accessed index overlaps for each iteration in the
+ loop. */
+ *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
+ *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
+ *last_conflicts = chrec_dont_know;
+ return;
+ }
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "(analyze_subscript_affine_affine \n");
+
+ /* For determining the initial intersection, we have to solve a
+ Diophantine equation. This is the most time consuming part.
+
+ For answering to the question: "Is there a dependence?" we have
+ to prove that there exists a solution to the Diophantine
+ equation, and that the solution is in the iteration domain,
+ i.e. the solution is positive or zero, and that the solution
+ happens before the upper bound loop.nb_iterations. Otherwise
+ there is no dependence. This function outputs a description of
+ the iterations that hold the intersections. */
+
+ nb_vars_a = nb_vars_in_chrec (chrec_a);
+ nb_vars_b = nb_vars_in_chrec (chrec_b);
+
+ gcc_obstack_init (&scratch_obstack);
+
+ dim = nb_vars_a + nb_vars_b;
+ U = lambda_matrix_new (dim, dim, &scratch_obstack);
+ A = lambda_matrix_new (dim, 1, &scratch_obstack);
+ S = lambda_matrix_new (dim, 1, &scratch_obstack);
+
+ tree init_a = initialize_matrix_A (A, chrec_a, 0, 1);
+ tree init_b = initialize_matrix_A (A, chrec_b, nb_vars_a, -1);
+ if (init_a == chrec_dont_know
+ || init_b == chrec_dont_know)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "affine-affine test failed: "
+ "representation issue.\n");
+ *overlaps_a = conflict_fn_not_known ();
+ *overlaps_b = conflict_fn_not_known ();
+ *last_conflicts = chrec_dont_know;
+ goto end_analyze_subs_aa;
+ }
+ gamma = int_cst_value (init_b) - int_cst_value (init_a);
+
+ /* Don't do all the hard work of solving the Diophantine equation
+ when we already know the solution: for example,
+ | {3, +, 1}_1
+ | {3, +, 4}_2
+ | gamma = 3 - 3 = 0.
+ Then the first overlap occurs during the first iterations:
+ | {3, +, 1}_1 ({0, +, 4}_x) = {3, +, 4}_2 ({0, +, 1}_x)
+ */
+ if (gamma == 0)
+ {
+ if (nb_vars_a == 1 && nb_vars_b == 1)
+ {
+ HOST_WIDE_INT step_a, step_b;
+ HOST_WIDE_INT niter, niter_a, niter_b;
+ affine_fn ova, ovb;
+
+ niter_a = max_stmt_executions_int (get_chrec_loop (chrec_a));
+ niter_b = max_stmt_executions_int (get_chrec_loop (chrec_b));
+ niter = MIN (niter_a, niter_b);
+ step_a = int_cst_value (CHREC_RIGHT (chrec_a));
+ step_b = int_cst_value (CHREC_RIGHT (chrec_b));
+
+ compute_overlap_steps_for_affine_univar (niter, step_a, step_b,
+ &ova, &ovb,
+ last_conflicts, 1);
+ *overlaps_a = conflict_fn (1, ova);
+ *overlaps_b = conflict_fn (1, ovb);
+ }
+
+ else if (nb_vars_a == 2 && nb_vars_b == 1)
+ compute_overlap_steps_for_affine_1_2
+ (chrec_a, chrec_b, overlaps_a, overlaps_b, last_conflicts);
+
+ else if (nb_vars_a == 1 && nb_vars_b == 2)
+ compute_overlap_steps_for_affine_1_2
+ (chrec_b, chrec_a, overlaps_b, overlaps_a, last_conflicts);
+
+ else
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "affine-affine test failed: too many variables.\n");
+ *overlaps_a = conflict_fn_not_known ();
+ *overlaps_b = conflict_fn_not_known ();
+ *last_conflicts = chrec_dont_know;
+ }
+ goto end_analyze_subs_aa;
+ }
+
+ /* U.A = S */
+ if (!lambda_matrix_right_hermite (A, dim, 1, S, U))
+ {
+ *overlaps_a = conflict_fn_not_known ();
+ *overlaps_b = conflict_fn_not_known ();
+ *last_conflicts = chrec_dont_know;
+ goto end_analyze_subs_aa;
+ }
+
+ if (S[0][0] < 0)
+ {
+ S[0][0] *= -1;
+ lambda_matrix_row_negate (U, dim, 0);
+ }
+ gcd_alpha_beta = S[0][0];
+
+ /* Something went wrong: for example in {1, +, 0}_5 vs. {0, +, 0}_5,
+ but that is a quite strange case. Instead of ICEing, answer
+ don't know. */
+ if (gcd_alpha_beta == 0)
+ {
+ *overlaps_a = conflict_fn_not_known ();
+ *overlaps_b = conflict_fn_not_known ();
+ *last_conflicts = chrec_dont_know;
+ goto end_analyze_subs_aa;
+ }
+
+ /* The classic "gcd-test". */
+ if (!int_divides_p (gcd_alpha_beta, gamma))
+ {
+ /* The "gcd-test" has determined that there is no integer
+ solution, i.e. there is no dependence. */
+ *overlaps_a = conflict_fn_no_dependence ();
+ *overlaps_b = conflict_fn_no_dependence ();
+ *last_conflicts = integer_zero_node;
+ }
+
+ /* Both access functions are univariate. This includes SIV and MIV cases. */
+ else if (nb_vars_a == 1 && nb_vars_b == 1)
+ {
+ /* Both functions should have the same evolution sign. */
+ if (((A[0][0] > 0 && -A[1][0] > 0)
+ || (A[0][0] < 0 && -A[1][0] < 0)))
+ {
+ /* The solutions are given by:
+ |
+ | [GAMMA/GCD_ALPHA_BETA t].[u11 u12] = [x0]
+ | [u21 u22] [y0]
+
+ For a given integer t. Using the following variables,
+
+ | i0 = u11 * gamma / gcd_alpha_beta
+ | j0 = u12 * gamma / gcd_alpha_beta
+ | i1 = u21
+ | j1 = u22
+
+ the solutions are:
+
+ | x0 = i0 + i1 * t,
+ | y0 = j0 + j1 * t. */
+ HOST_WIDE_INT i0, j0, i1, j1;
+
+ i0 = U[0][0] * gamma / gcd_alpha_beta;
+ j0 = U[0][1] * gamma / gcd_alpha_beta;
+ i1 = U[1][0];
+ j1 = U[1][1];
+
+ if ((i1 == 0 && i0 < 0)
+ || (j1 == 0 && j0 < 0))
+ {
+ /* There is no solution.
+ FIXME: The case "i0 > nb_iterations, j0 > nb_iterations"
+ falls in here, but for the moment we don't look at the
+ upper bound of the iteration domain. */
+ *overlaps_a = conflict_fn_no_dependence ();
+ *overlaps_b = conflict_fn_no_dependence ();
+ *last_conflicts = integer_zero_node;
+ goto end_analyze_subs_aa;
+ }
+
+ if (i1 > 0 && j1 > 0)
+ {
+ HOST_WIDE_INT niter_a
+ = max_stmt_executions_int (get_chrec_loop (chrec_a));
+ HOST_WIDE_INT niter_b
+ = max_stmt_executions_int (get_chrec_loop (chrec_b));
+ HOST_WIDE_INT niter = MIN (niter_a, niter_b);
+
+ /* (X0, Y0) is a solution of the Diophantine equation:
+ "chrec_a (X0) = chrec_b (Y0)". */
+ HOST_WIDE_INT tau1 = MAX (CEIL (-i0, i1),
+ CEIL (-j0, j1));
+ HOST_WIDE_INT x0 = i1 * tau1 + i0;
+ HOST_WIDE_INT y0 = j1 * tau1 + j0;
+
+ /* (X1, Y1) is the smallest positive solution of the eq
+ "chrec_a (X1) = chrec_b (Y1)", i.e. this is where the
+ first conflict occurs. */
+ HOST_WIDE_INT min_multiple = MIN (x0 / i1, y0 / j1);
+ HOST_WIDE_INT x1 = x0 - i1 * min_multiple;
+ HOST_WIDE_INT y1 = y0 - j1 * min_multiple;
+
+ if (niter > 0)
+ {
+ /* If the overlap occurs outside of the bounds of the
+ loop, there is no dependence. */
+ if (x1 >= niter_a || y1 >= niter_b)
+ {
+ *overlaps_a = conflict_fn_no_dependence ();
+ *overlaps_b = conflict_fn_no_dependence ();
+ *last_conflicts = integer_zero_node;
+ goto end_analyze_subs_aa;
+ }
+
+ /* max stmt executions can get quite large, avoid
+ overflows by using wide ints here. */
+ widest_int tau2
+ = wi::smin (wi::sdiv_floor (wi::sub (niter_a, i0), i1),
+ wi::sdiv_floor (wi::sub (niter_b, j0), j1));
+ widest_int last_conflict = wi::sub (tau2, (x1 - i0)/i1);
+ if (wi::min_precision (last_conflict, SIGNED)
+ <= TYPE_PRECISION (integer_type_node))
+ *last_conflicts
+ = build_int_cst (integer_type_node,
+ last_conflict.to_shwi ());
+ else
+ *last_conflicts = chrec_dont_know;
+ }
+ else
+ *last_conflicts = chrec_dont_know;
+
+ *overlaps_a
+ = conflict_fn (1,
+ affine_fn_univar (build_int_cst (NULL_TREE, x1),
+ 1,
+ build_int_cst (NULL_TREE, i1)));
+ *overlaps_b
+ = conflict_fn (1,
+ affine_fn_univar (build_int_cst (NULL_TREE, y1),
+ 1,
+ build_int_cst (NULL_TREE, j1)));
+ }
+ else
+ {
+ /* FIXME: For the moment, the upper bound of the
+ iteration domain for i and j is not checked. */
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
+ *overlaps_a = conflict_fn_not_known ();
+ *overlaps_b = conflict_fn_not_known ();
+ *last_conflicts = chrec_dont_know;
+ }
+ }
+ else
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
+ *overlaps_a = conflict_fn_not_known ();
+ *overlaps_b = conflict_fn_not_known ();
+ *last_conflicts = chrec_dont_know;
+ }
+ }
+ else
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
+ *overlaps_a = conflict_fn_not_known ();
+ *overlaps_b = conflict_fn_not_known ();
+ *last_conflicts = chrec_dont_know;
+ }
+
+end_analyze_subs_aa:
+ obstack_free (&scratch_obstack, NULL);
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, " (overlaps_a = ");
+ dump_conflict_function (dump_file, *overlaps_a);
+ fprintf (dump_file, ")\n (overlaps_b = ");
+ dump_conflict_function (dump_file, *overlaps_b);
+ fprintf (dump_file, "))\n");
+ }
+}
+
+/* Returns true when analyze_subscript_affine_affine can be used for
+ determining the dependence relation between chrec_a and chrec_b,
+ that contain symbols. This function modifies chrec_a and chrec_b
+ such that the analysis result is the same, and such that they don't
+ contain symbols, and then can safely be passed to the analyzer.
+
+ Example: The analysis of the following tuples of evolutions produce
+ the same results: {x+1, +, 1}_1 vs. {x+3, +, 1}_1, and {-2, +, 1}_1
+ vs. {0, +, 1}_1
+
+ {x+1, +, 1}_1 ({2, +, 1}_1) = {x+3, +, 1}_1 ({0, +, 1}_1)
+ {-2, +, 1}_1 ({2, +, 1}_1) = {0, +, 1}_1 ({0, +, 1}_1)
+*/
+
+static bool
+can_use_analyze_subscript_affine_affine (tree *chrec_a, tree *chrec_b)
+{
+ tree diff, type, left_a, left_b, right_b;
+
+ if (chrec_contains_symbols (CHREC_RIGHT (*chrec_a))
+ || chrec_contains_symbols (CHREC_RIGHT (*chrec_b)))
+ /* FIXME: For the moment not handled. Might be refined later. */
+ return false;
+
+ type = chrec_type (*chrec_a);
+ left_a = CHREC_LEFT (*chrec_a);
+ left_b = chrec_convert (type, CHREC_LEFT (*chrec_b), NULL);
+ diff = chrec_fold_minus (type, left_a, left_b);
+
+ if (!evolution_function_is_constant_p (diff))
+ return false;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "can_use_subscript_aff_aff_for_symbolic \n");
+
+ *chrec_a = build_polynomial_chrec (CHREC_VARIABLE (*chrec_a),
+ diff, CHREC_RIGHT (*chrec_a));
+ right_b = chrec_convert (type, CHREC_RIGHT (*chrec_b), NULL);
+ *chrec_b = build_polynomial_chrec (CHREC_VARIABLE (*chrec_b),
+ build_int_cst (type, 0),
+ right_b);
+ return true;
+}
+
+/* Analyze a SIV (Single Index Variable) subscript. *OVERLAPS_A and
+ *OVERLAPS_B are initialized to the functions that describe the
+ relation between the elements accessed twice by CHREC_A and
+ CHREC_B. For k >= 0, the following property is verified:
+
+ CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
+
+static void
+analyze_siv_subscript (tree chrec_a,
+ tree chrec_b,
+ conflict_function **overlaps_a,
+ conflict_function **overlaps_b,
+ tree *last_conflicts,
+ int loop_nest_num)
+{
+ dependence_stats.num_siv++;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "(analyze_siv_subscript \n");
+
+ if (evolution_function_is_constant_p (chrec_a)
+ && evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
+ analyze_siv_subscript_cst_affine (chrec_a, chrec_b,
+ overlaps_a, overlaps_b, last_conflicts);
+
+ else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
+ && evolution_function_is_constant_p (chrec_b))
+ analyze_siv_subscript_cst_affine (chrec_b, chrec_a,
+ overlaps_b, overlaps_a, last_conflicts);
+
+ else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
+ && evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
+ {
+ if (!chrec_contains_symbols (chrec_a)
+ && !chrec_contains_symbols (chrec_b))
+ {
+ analyze_subscript_affine_affine (chrec_a, chrec_b,
+ overlaps_a, overlaps_b,
+ last_conflicts);
+
+ if (CF_NOT_KNOWN_P (*overlaps_a)
+ || CF_NOT_KNOWN_P (*overlaps_b))
+ dependence_stats.num_siv_unimplemented++;
+ else if (CF_NO_DEPENDENCE_P (*overlaps_a)
+ || CF_NO_DEPENDENCE_P (*overlaps_b))
+ dependence_stats.num_siv_independent++;
+ else
+ dependence_stats.num_siv_dependent++;
+ }
+ else if (can_use_analyze_subscript_affine_affine (&chrec_a,
+ &chrec_b))
+ {
+ analyze_subscript_affine_affine (chrec_a, chrec_b,
+ overlaps_a, overlaps_b,
+ last_conflicts);
+
+ if (CF_NOT_KNOWN_P (*overlaps_a)
+ || CF_NOT_KNOWN_P (*overlaps_b))
+ dependence_stats.num_siv_unimplemented++;
+ else if (CF_NO_DEPENDENCE_P (*overlaps_a)
+ || CF_NO_DEPENDENCE_P (*overlaps_b))
+ dependence_stats.num_siv_independent++;
+ else
+ dependence_stats.num_siv_dependent++;
+ }
+ else
+ goto siv_subscript_dontknow;
+ }
+
+ else
+ {
+ siv_subscript_dontknow:;
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, " siv test failed: unimplemented");
+ *overlaps_a = conflict_fn_not_known ();
+ *overlaps_b = conflict_fn_not_known ();
+ *last_conflicts = chrec_dont_know;
+ dependence_stats.num_siv_unimplemented++;
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, ")\n");
+}
+
+/* Returns false if we can prove that the greatest common divisor of the steps
+ of CHREC does not divide CST, false otherwise. */
+
+static bool
+gcd_of_steps_may_divide_p (const_tree chrec, const_tree cst)
+{
+ HOST_WIDE_INT cd = 0, val;
+ tree step;
+
+ if (!tree_fits_shwi_p (cst))
+ return true;
+ val = tree_to_shwi (cst);
+
+ while (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
+ {
+ step = CHREC_RIGHT (chrec);
+ if (!tree_fits_shwi_p (step))
+ return true;
+ cd = gcd (cd, tree_to_shwi (step));
+ chrec = CHREC_LEFT (chrec);
+ }
+
+ return val % cd == 0;
+}
+
+/* Analyze a MIV (Multiple Index Variable) subscript with respect to
+ LOOP_NEST. *OVERLAPS_A and *OVERLAPS_B are initialized to the
+ functions that describe the relation between the elements accessed
+ twice by CHREC_A and CHREC_B. For k >= 0, the following property
+ is verified:
+
+ CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
+
+static void
+analyze_miv_subscript (tree chrec_a,
+ tree chrec_b,
+ conflict_function **overlaps_a,
+ conflict_function **overlaps_b,
+ tree *last_conflicts,
+ class loop *loop_nest)
+{
+ tree type, difference;
+
+ dependence_stats.num_miv++;
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "(analyze_miv_subscript \n");
+
+ type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
+ chrec_a = chrec_convert (type, chrec_a, NULL);
+ chrec_b = chrec_convert (type, chrec_b, NULL);
+ difference = chrec_fold_minus (type, chrec_a, chrec_b);
+
+ if (eq_evolutions_p (chrec_a, chrec_b))
+ {
+ /* Access functions are the same: all the elements are accessed
+ in the same order. */
+ *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
+ *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
+ *last_conflicts = max_stmt_executions_tree (get_chrec_loop (chrec_a));
+ dependence_stats.num_miv_dependent++;
+ }
+
+ else if (evolution_function_is_constant_p (difference)
+ && evolution_function_is_affine_multivariate_p (chrec_a,
+ loop_nest->num)
+ && !gcd_of_steps_may_divide_p (chrec_a, difference))
+ {
+ /* testsuite/.../ssa-chrec-33.c
+ {{21, +, 2}_1, +, -2}_2 vs. {{20, +, 2}_1, +, -2}_2
+
+ The difference is 1, and all the evolution steps are multiples
+ of 2, consequently there are no overlapping elements. */
+ *overlaps_a = conflict_fn_no_dependence ();
+ *overlaps_b = conflict_fn_no_dependence ();
+ *last_conflicts = integer_zero_node;
+ dependence_stats.num_miv_independent++;
+ }
+
+ else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest->num)
+ && !chrec_contains_symbols (chrec_a, loop_nest)
+ && evolution_function_is_affine_in_loop (chrec_b, loop_nest->num)
+ && !chrec_contains_symbols (chrec_b, loop_nest))
+ {
+ /* testsuite/.../ssa-chrec-35.c
+ {0, +, 1}_2 vs. {0, +, 1}_3
+ the overlapping elements are respectively located at iterations:
+ {0, +, 1}_x and {0, +, 1}_x,
+ in other words, we have the equality:
+ {0, +, 1}_2 ({0, +, 1}_x) = {0, +, 1}_3 ({0, +, 1}_x)
+
+ Other examples:
+ {{0, +, 1}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y) =
+ {0, +, 1}_1 ({{0, +, 1}_x, +, 2}_y)
+
+ {{0, +, 2}_1, +, 3}_2 ({0, +, 1}_y, {0, +, 1}_x) =
+ {{0, +, 3}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y)
+ */
+ analyze_subscript_affine_affine (chrec_a, chrec_b,
+ overlaps_a, overlaps_b, last_conflicts);
+
+ if (CF_NOT_KNOWN_P (*overlaps_a)
+ || CF_NOT_KNOWN_P (*overlaps_b))
+ dependence_stats.num_miv_unimplemented++;
+ else if (CF_NO_DEPENDENCE_P (*overlaps_a)
+ || CF_NO_DEPENDENCE_P (*overlaps_b))
+ dependence_stats.num_miv_independent++;
+ else
+ dependence_stats.num_miv_dependent++;
+ }
+
+ else
+ {
+ /* When the analysis is too difficult, answer "don't know". */
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "analyze_miv_subscript test failed: unimplemented.\n");
+
+ *overlaps_a = conflict_fn_not_known ();
+ *overlaps_b = conflict_fn_not_known ();
+ *last_conflicts = chrec_dont_know;
+ dependence_stats.num_miv_unimplemented++;
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, ")\n");
+}
+
+/* Determines the iterations for which CHREC_A is equal to CHREC_B in
+ with respect to LOOP_NEST. OVERLAP_ITERATIONS_A and
+ OVERLAP_ITERATIONS_B are initialized with two functions that
+ describe the iterations that contain conflicting elements.
+
+ Remark: For an integer k >= 0, the following equality is true:
+
+ CHREC_A (OVERLAP_ITERATIONS_A (k)) == CHREC_B (OVERLAP_ITERATIONS_B (k)).
+*/
+
+static void
+analyze_overlapping_iterations (tree chrec_a,
+ tree chrec_b,
+ conflict_function **overlap_iterations_a,
+ conflict_function **overlap_iterations_b,
+ tree *last_conflicts, class loop *loop_nest)
+{
+ unsigned int lnn = loop_nest->num;
+
+ dependence_stats.num_subscript_tests++;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "(analyze_overlapping_iterations \n");
+ fprintf (dump_file, " (chrec_a = ");
+ print_generic_expr (dump_file, chrec_a);
+ fprintf (dump_file, ")\n (chrec_b = ");
+ print_generic_expr (dump_file, chrec_b);
+ fprintf (dump_file, ")\n");
+ }
+
+ if (chrec_a == NULL_TREE
+ || chrec_b == NULL_TREE
+ || chrec_contains_undetermined (chrec_a)
+ || chrec_contains_undetermined (chrec_b))
+ {
+ dependence_stats.num_subscript_undetermined++;
+
+ *overlap_iterations_a = conflict_fn_not_known ();
+ *overlap_iterations_b = conflict_fn_not_known ();
+ }
+
+ /* If they are the same chrec, and are affine, they overlap
+ on every iteration. */
+ else if (eq_evolutions_p (chrec_a, chrec_b)
+ && (evolution_function_is_affine_multivariate_p (chrec_a, lnn)
+ || operand_equal_p (chrec_a, chrec_b, 0)))
+ {
+ dependence_stats.num_same_subscript_function++;
+ *overlap_iterations_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
+ *overlap_iterations_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
+ *last_conflicts = chrec_dont_know;
+ }
+
+ /* If they aren't the same, and aren't affine, we can't do anything
+ yet. */
+ else if ((chrec_contains_symbols (chrec_a)
+ || chrec_contains_symbols (chrec_b))
+ && (!evolution_function_is_affine_multivariate_p (chrec_a, lnn)
+ || !evolution_function_is_affine_multivariate_p (chrec_b, lnn)))
+ {
+ dependence_stats.num_subscript_undetermined++;
+ *overlap_iterations_a = conflict_fn_not_known ();
+ *overlap_iterations_b = conflict_fn_not_known ();
+ }
+
+ else if (ziv_subscript_p (chrec_a, chrec_b))
+ analyze_ziv_subscript (chrec_a, chrec_b,
+ overlap_iterations_a, overlap_iterations_b,
+ last_conflicts);
+
+ else if (siv_subscript_p (chrec_a, chrec_b))
+ analyze_siv_subscript (chrec_a, chrec_b,
+ overlap_iterations_a, overlap_iterations_b,
+ last_conflicts, lnn);
+
+ else
+ analyze_miv_subscript (chrec_a, chrec_b,
+ overlap_iterations_a, overlap_iterations_b,
+ last_conflicts, loop_nest);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, " (overlap_iterations_a = ");
+ dump_conflict_function (dump_file, *overlap_iterations_a);
+ fprintf (dump_file, ")\n (overlap_iterations_b = ");
+ dump_conflict_function (dump_file, *overlap_iterations_b);
+ fprintf (dump_file, "))\n");
+ }
+}
+
+/* Helper function for uniquely inserting distance vectors. */
+
+static void
+save_dist_v (struct data_dependence_relation *ddr, lambda_vector dist_v)
+{
+ for (lambda_vector v : DDR_DIST_VECTS (ddr))
+ if (lambda_vector_equal (v, dist_v, DDR_NB_LOOPS (ddr)))
+ return;
+
+ DDR_DIST_VECTS (ddr).safe_push (dist_v);
+}
+
+/* Helper function for uniquely inserting direction vectors. */
+
+static void
+save_dir_v (struct data_dependence_relation *ddr, lambda_vector dir_v)
+{
+ for (lambda_vector v : DDR_DIR_VECTS (ddr))
+ if (lambda_vector_equal (v, dir_v, DDR_NB_LOOPS (ddr)))
+ return;
+
+ DDR_DIR_VECTS (ddr).safe_push (dir_v);
+}
+
+/* Add a distance of 1 on all the loops outer than INDEX. If we
+ haven't yet determined a distance for this outer loop, push a new
+ distance vector composed of the previous distance, and a distance
+ of 1 for this outer loop. Example:
+
+ | loop_1
+ | loop_2
+ | A[10]
+ | endloop_2
+ | endloop_1
+
+ Saved vectors are of the form (dist_in_1, dist_in_2). First, we
+ save (0, 1), then we have to save (1, 0). */
+
+static void
+add_outer_distances (struct data_dependence_relation *ddr,
+ lambda_vector dist_v, int index)
+{
+ /* For each outer loop where init_v is not set, the accesses are
+ in dependence of distance 1 in the loop. */
+ while (--index >= 0)
+ {
+ lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
+ lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
+ save_v[index] = 1;
+ save_dist_v (ddr, save_v);
+ }
+}
+
+/* Return false when fail to represent the data dependence as a
+ distance vector. A_INDEX is the index of the first reference
+ (0 for DDR_A, 1 for DDR_B) and B_INDEX is the index of the
+ second reference. INIT_B is set to true when a component has been
+ added to the distance vector DIST_V. INDEX_CARRY is then set to
+ the index in DIST_V that carries the dependence. */
+
+static bool
+build_classic_dist_vector_1 (struct data_dependence_relation *ddr,
+ unsigned int a_index, unsigned int b_index,
+ lambda_vector dist_v, bool *init_b,
+ int *index_carry)
+{
+ unsigned i;
+ lambda_vector init_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
+ class loop *loop = DDR_LOOP_NEST (ddr)[0];
+
+ for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
+ {
+ tree access_fn_a, access_fn_b;
+ struct subscript *subscript = DDR_SUBSCRIPT (ddr, i);
+
+ if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
+ {
+ non_affine_dependence_relation (ddr);
+ return false;
+ }
+
+ access_fn_a = SUB_ACCESS_FN (subscript, a_index);
+ access_fn_b = SUB_ACCESS_FN (subscript, b_index);
+
+ if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC
+ && TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC)
+ {
+ HOST_WIDE_INT dist;
+ int index;
+ int var_a = CHREC_VARIABLE (access_fn_a);
+ int var_b = CHREC_VARIABLE (access_fn_b);
+
+ if (var_a != var_b
+ || chrec_contains_undetermined (SUB_DISTANCE (subscript)))
+ {
+ non_affine_dependence_relation (ddr);
+ return false;
+ }
+
+ /* When data references are collected in a loop while data
+ dependences are analyzed in loop nest nested in the loop, we
+ would have more number of access functions than number of
+ loops. Skip access functions of loops not in the loop nest.
+
+ See PR89725 for more information. */
+ if (flow_loop_nested_p (get_loop (cfun, var_a), loop))
+ continue;
+
+ dist = int_cst_value (SUB_DISTANCE (subscript));
+ index = index_in_loop_nest (var_a, DDR_LOOP_NEST (ddr));
+ *index_carry = MIN (index, *index_carry);
+
+ /* This is the subscript coupling test. If we have already
+ recorded a distance for this loop (a distance coming from
+ another subscript), it should be the same. For example,
+ in the following code, there is no dependence:
+
+ | loop i = 0, N, 1
+ | T[i+1][i] = ...
+ | ... = T[i][i]
+ | endloop
+ */
+ if (init_v[index] != 0 && dist_v[index] != dist)
+ {
+ finalize_ddr_dependent (ddr, chrec_known);
+ return false;
+ }
+
+ dist_v[index] = dist;
+ init_v[index] = 1;
+ *init_b = true;
+ }
+ else if (!operand_equal_p (access_fn_a, access_fn_b, 0))
+ {
+ /* This can be for example an affine vs. constant dependence
+ (T[i] vs. T[3]) that is not an affine dependence and is
+ not representable as a distance vector. */
+ non_affine_dependence_relation (ddr);
+ return false;
+ }
+ else
+ *init_b = true;
+ }
+
+ return true;
+}
+
+/* Return true when the DDR contains only invariant access functions wrto. loop
+ number LNUM. */
+
+static bool
+invariant_access_functions (const struct data_dependence_relation *ddr,
+ int lnum)
+{
+ for (subscript *sub : DDR_SUBSCRIPTS (ddr))
+ if (!evolution_function_is_invariant_p (SUB_ACCESS_FN (sub, 0), lnum)
+ || !evolution_function_is_invariant_p (SUB_ACCESS_FN (sub, 1), lnum))
+ return false;
+
+ return true;
+}
+
+/* Helper function for the case where DDR_A and DDR_B are the same
+ multivariate access function with a constant step. For an example
+ see pr34635-1.c. */
+
+static void
+add_multivariate_self_dist (struct data_dependence_relation *ddr, tree c_2)
+{
+ int x_1, x_2;
+ tree c_1 = CHREC_LEFT (c_2);
+ tree c_0 = CHREC_LEFT (c_1);
+ lambda_vector dist_v;
+ HOST_WIDE_INT v1, v2, cd;
+
+ /* Polynomials with more than 2 variables are not handled yet. When
+ the evolution steps are parameters, it is not possible to
+ represent the dependence using classical distance vectors. */
+ if (TREE_CODE (c_0) != INTEGER_CST
+ || TREE_CODE (CHREC_RIGHT (c_1)) != INTEGER_CST
+ || TREE_CODE (CHREC_RIGHT (c_2)) != INTEGER_CST)
+ {
+ DDR_AFFINE_P (ddr) = false;
+ return;
+ }
+
+ x_2 = index_in_loop_nest (CHREC_VARIABLE (c_2), DDR_LOOP_NEST (ddr));
+ x_1 = index_in_loop_nest (CHREC_VARIABLE (c_1), DDR_LOOP_NEST (ddr));
+
+ /* For "{{0, +, 2}_1, +, 3}_2" the distance vector is (3, -2). */
+ dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
+ v1 = int_cst_value (CHREC_RIGHT (c_1));
+ v2 = int_cst_value (CHREC_RIGHT (c_2));
+ cd = gcd (v1, v2);
+ v1 /= cd;
+ v2 /= cd;
+
+ if (v2 < 0)
+ {
+ v2 = -v2;
+ v1 = -v1;
+ }
+
+ dist_v[x_1] = v2;
+ dist_v[x_2] = -v1;
+ save_dist_v (ddr, dist_v);
+
+ add_outer_distances (ddr, dist_v, x_1);
+}
+
+/* Helper function for the case where DDR_A and DDR_B are the same
+ access functions. */
+
+static void
+add_other_self_distances (struct data_dependence_relation *ddr)
+{
+ lambda_vector dist_v;
+ unsigned i;
+ int index_carry = DDR_NB_LOOPS (ddr);
+ subscript *sub;
+ class loop *loop = DDR_LOOP_NEST (ddr)[0];
+
+ FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
+ {
+ tree access_fun = SUB_ACCESS_FN (sub, 0);
+
+ if (TREE_CODE (access_fun) == POLYNOMIAL_CHREC)
+ {
+ if (!evolution_function_is_univariate_p (access_fun, loop->num))
+ {
+ if (DDR_NUM_SUBSCRIPTS (ddr) != 1)
+ {
+ DDR_ARE_DEPENDENT (ddr) = chrec_dont_know;
+ return;
+ }
+
+ access_fun = SUB_ACCESS_FN (DDR_SUBSCRIPT (ddr, 0), 0);
+
+ if (TREE_CODE (CHREC_LEFT (access_fun)) == POLYNOMIAL_CHREC)
+ add_multivariate_self_dist (ddr, access_fun);
+ else
+ /* The evolution step is not constant: it varies in
+ the outer loop, so this cannot be represented by a
+ distance vector. For example in pr34635.c the
+ evolution is {0, +, {0, +, 4}_1}_2. */
+ DDR_AFFINE_P (ddr) = false;
+
+ return;
+ }
+
+ /* When data references are collected in a loop while data
+ dependences are analyzed in loop nest nested in the loop, we
+ would have more number of access functions than number of
+ loops. Skip access functions of loops not in the loop nest.
+
+ See PR89725 for more information. */
+ if (flow_loop_nested_p (get_loop (cfun, CHREC_VARIABLE (access_fun)),
+ loop))
+ continue;
+
+ index_carry = MIN (index_carry,
+ index_in_loop_nest (CHREC_VARIABLE (access_fun),
+ DDR_LOOP_NEST (ddr)));
+ }
+ }
+
+ dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
+ add_outer_distances (ddr, dist_v, index_carry);
+}
+
+static void
+insert_innermost_unit_dist_vector (struct data_dependence_relation *ddr)
+{
+ lambda_vector dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
+
+ dist_v[0] = 1;
+ save_dist_v (ddr, dist_v);
+}
+
+/* Adds a unit distance vector to DDR when there is a 0 overlap. This
+ is the case for example when access functions are the same and
+ equal to a constant, as in:
+
+ | loop_1
+ | A[3] = ...
+ | ... = A[3]
+ | endloop_1
+
+ in which case the distance vectors are (0) and (1). */
+
+static void
+add_distance_for_zero_overlaps (struct data_dependence_relation *ddr)
+{
+ unsigned i, j;
+
+ for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
+ {
+ subscript_p sub = DDR_SUBSCRIPT (ddr, i);
+ conflict_function *ca = SUB_CONFLICTS_IN_A (sub);
+ conflict_function *cb = SUB_CONFLICTS_IN_B (sub);
+
+ for (j = 0; j < ca->n; j++)
+ if (affine_function_zero_p (ca->fns[j]))
+ {
+ insert_innermost_unit_dist_vector (ddr);
+ return;
+ }
+
+ for (j = 0; j < cb->n; j++)
+ if (affine_function_zero_p (cb->fns[j]))
+ {
+ insert_innermost_unit_dist_vector (ddr);
+ return;
+ }
+ }
+}
+
+/* Return true when the DDR contains two data references that have the
+ same access functions. */
+
+static inline bool
+same_access_functions (const struct data_dependence_relation *ddr)
+{
+ for (subscript *sub : DDR_SUBSCRIPTS (ddr))
+ if (!eq_evolutions_p (SUB_ACCESS_FN (sub, 0),
+ SUB_ACCESS_FN (sub, 1)))
+ return false;
+
+ return true;
+}
+
+/* Compute the classic per loop distance vector. DDR is the data
+ dependence relation to build a vector from. Return false when fail
+ to represent the data dependence as a distance vector. */
+
+static bool
+build_classic_dist_vector (struct data_dependence_relation *ddr,
+ class loop *loop_nest)
+{
+ bool init_b = false;
+ int index_carry = DDR_NB_LOOPS (ddr);
+ lambda_vector dist_v;
+
+ if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE)
+ return false;
+
+ if (same_access_functions (ddr))
+ {
+ /* Save the 0 vector. */
+ dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
+ save_dist_v (ddr, dist_v);
+
+ if (invariant_access_functions (ddr, loop_nest->num))
+ add_distance_for_zero_overlaps (ddr);
+
+ if (DDR_NB_LOOPS (ddr) > 1)
+ add_other_self_distances (ddr);
+
+ return true;
+ }
+
+ dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
+ if (!build_classic_dist_vector_1 (ddr, 0, 1, dist_v, &init_b, &index_carry))
+ return false;
+
+ /* Save the distance vector if we initialized one. */
+ if (init_b)
+ {
+ /* Verify a basic constraint: classic distance vectors should
+ always be lexicographically positive.
+
+ Data references are collected in the order of execution of
+ the program, thus for the following loop
+
+ | for (i = 1; i < 100; i++)
+ | for (j = 1; j < 100; j++)
+ | {
+ | t = T[j+1][i-1]; // A
+ | T[j][i] = t + 2; // B
+ | }
+
+ references are collected following the direction of the wind:
+ A then B. The data dependence tests are performed also
+ following this order, such that we're looking at the distance
+ separating the elements accessed by A from the elements later
+ accessed by B. But in this example, the distance returned by
+ test_dep (A, B) is lexicographically negative (-1, 1), that
+ means that the access A occurs later than B with respect to
+ the outer loop, ie. we're actually looking upwind. In this
+ case we solve test_dep (B, A) looking downwind to the
+ lexicographically positive solution, that returns the
+ distance vector (1, -1). */
+ if (!lambda_vector_lexico_pos (dist_v, DDR_NB_LOOPS (ddr)))
+ {
+ lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
+ if (!subscript_dependence_tester_1 (ddr, 1, 0, loop_nest))
+ return false;
+ compute_subscript_distance (ddr);
+ if (!build_classic_dist_vector_1 (ddr, 1, 0, save_v, &init_b,
+ &index_carry))
+ return false;
+ save_dist_v (ddr, save_v);
+ DDR_REVERSED_P (ddr) = true;
+
+ /* In this case there is a dependence forward for all the
+ outer loops:
+
+ | for (k = 1; k < 100; k++)
+ | for (i = 1; i < 100; i++)
+ | for (j = 1; j < 100; j++)
+ | {
+ | t = T[j+1][i-1]; // A
+ | T[j][i] = t + 2; // B
+ | }
+
+ the vectors are:
+ (0, 1, -1)
+ (1, 1, -1)
+ (1, -1, 1)
+ */
+ if (DDR_NB_LOOPS (ddr) > 1)
+ {
+ add_outer_distances (ddr, save_v, index_carry);
+ add_outer_distances (ddr, dist_v, index_carry);
+ }
+ }
+ else
+ {
+ lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
+ lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
+
+ if (DDR_NB_LOOPS (ddr) > 1)
+ {
+ lambda_vector opposite_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
+
+ if (!subscript_dependence_tester_1 (ddr, 1, 0, loop_nest))
+ return false;
+ compute_subscript_distance (ddr);
+ if (!build_classic_dist_vector_1 (ddr, 1, 0, opposite_v, &init_b,
+ &index_carry))
+ return false;
+
+ save_dist_v (ddr, save_v);
+ add_outer_distances (ddr, dist_v, index_carry);
+ add_outer_distances (ddr, opposite_v, index_carry);
+ }
+ else
+ save_dist_v (ddr, save_v);
+ }
+ }
+ else
+ {
+ /* There is a distance of 1 on all the outer loops: Example:
+ there is a dependence of distance 1 on loop_1 for the array A.
+
+ | loop_1
+ | A[5] = ...
+ | endloop
+ */
+ add_outer_distances (ddr, dist_v,
+ lambda_vector_first_nz (dist_v,
+ DDR_NB_LOOPS (ddr), 0));
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ unsigned i;
+
+ fprintf (dump_file, "(build_classic_dist_vector\n");
+ for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
+ {
+ fprintf (dump_file, " dist_vector = (");
+ print_lambda_vector (dump_file, DDR_DIST_VECT (ddr, i),
+ DDR_NB_LOOPS (ddr));
+ fprintf (dump_file, " )\n");
+ }
+ fprintf (dump_file, ")\n");
+ }
+
+ return true;
+}
+
+/* Return the direction for a given distance.
+ FIXME: Computing dir this way is suboptimal, since dir can catch
+ cases that dist is unable to represent. */
+
+static inline enum data_dependence_direction
+dir_from_dist (int dist)
+{
+ if (dist > 0)
+ return dir_positive;
+ else if (dist < 0)
+ return dir_negative;
+ else
+ return dir_equal;
+}
+
+/* Compute the classic per loop direction vector. DDR is the data
+ dependence relation to build a vector from. */
+
+static void
+build_classic_dir_vector (struct data_dependence_relation *ddr)
+{
+ unsigned i, j;
+ lambda_vector dist_v;
+
+ FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
+ {
+ lambda_vector dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
+
+ for (j = 0; j < DDR_NB_LOOPS (ddr); j++)
+ dir_v[j] = dir_from_dist (dist_v[j]);
+
+ save_dir_v (ddr, dir_v);
+ }
+}
+
+/* Helper function. Returns true when there is a dependence between the
+ data references. A_INDEX is the index of the first reference (0 for
+ DDR_A, 1 for DDR_B) and B_INDEX is the index of the second reference. */
+
+static bool
+subscript_dependence_tester_1 (struct data_dependence_relation *ddr,
+ unsigned int a_index, unsigned int b_index,
+ class loop *loop_nest)
+{
+ unsigned int i;
+ tree last_conflicts;
+ struct subscript *subscript;
+ tree res = NULL_TREE;
+
+ for (i = 0; DDR_SUBSCRIPTS (ddr).iterate (i, &subscript); i++)
+ {
+ conflict_function *overlaps_a, *overlaps_b;
+
+ analyze_overlapping_iterations (SUB_ACCESS_FN (subscript, a_index),
+ SUB_ACCESS_FN (subscript, b_index),
+ &overlaps_a, &overlaps_b,
+ &last_conflicts, loop_nest);
+
+ if (SUB_CONFLICTS_IN_A (subscript))
+ free_conflict_function (SUB_CONFLICTS_IN_A (subscript));
+ if (SUB_CONFLICTS_IN_B (subscript))
+ free_conflict_function (SUB_CONFLICTS_IN_B (subscript));
+
+ SUB_CONFLICTS_IN_A (subscript) = overlaps_a;
+ SUB_CONFLICTS_IN_B (subscript) = overlaps_b;
+ SUB_LAST_CONFLICT (subscript) = last_conflicts;
+
+ /* If there is any undetermined conflict function we have to
+ give a conservative answer in case we cannot prove that
+ no dependence exists when analyzing another subscript. */
+ if (CF_NOT_KNOWN_P (overlaps_a)
+ || CF_NOT_KNOWN_P (overlaps_b))
+ {
+ res = chrec_dont_know;
+ continue;
+ }
+
+ /* When there is a subscript with no dependence we can stop. */
+ else if (CF_NO_DEPENDENCE_P (overlaps_a)
+ || CF_NO_DEPENDENCE_P (overlaps_b))
+ {
+ res = chrec_known;
+ break;
+ }
+ }
+
+ if (res == NULL_TREE)
+ return true;
+
+ if (res == chrec_known)
+ dependence_stats.num_dependence_independent++;
+ else
+ dependence_stats.num_dependence_undetermined++;
+ finalize_ddr_dependent (ddr, res);
+ return false;
+}
+
+/* Computes the conflicting iterations in LOOP_NEST, and initialize DDR. */
+
+static void
+subscript_dependence_tester (struct data_dependence_relation *ddr,
+ class loop *loop_nest)
+{
+ if (subscript_dependence_tester_1 (ddr, 0, 1, loop_nest))
+ dependence_stats.num_dependence_dependent++;
+
+ compute_subscript_distance (ddr);
+ if (build_classic_dist_vector (ddr, loop_nest))
+ build_classic_dir_vector (ddr);
+}
+
+/* Returns true when all the access functions of A are affine or
+ constant with respect to LOOP_NEST. */
+
+static bool
+access_functions_are_affine_or_constant_p (const struct data_reference *a,
+ const class loop *loop_nest)
+{
+ vec<tree> fns = DR_ACCESS_FNS (a);
+ for (tree t : fns)
+ if (!evolution_function_is_invariant_p (t, loop_nest->num)
+ && !evolution_function_is_affine_multivariate_p (t, loop_nest->num))
+ return false;
+
+ return true;
+}
+
+/* This computes the affine dependence relation between A and B with
+ respect to LOOP_NEST. CHREC_KNOWN is used for representing the
+ independence between two accesses, while CHREC_DONT_KNOW is used
+ for representing the unknown relation.
+
+ Note that it is possible to stop the computation of the dependence
+ relation the first time we detect a CHREC_KNOWN element for a given
+ subscript. */
+
+void
+compute_affine_dependence (struct data_dependence_relation *ddr,
+ class loop *loop_nest)
+{
+ struct data_reference *dra = DDR_A (ddr);
+ struct data_reference *drb = DDR_B (ddr);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "(compute_affine_dependence\n");
+ fprintf (dump_file, " ref_a: ");
+ print_generic_expr (dump_file, DR_REF (dra));
+ fprintf (dump_file, ", stmt_a: ");
+ print_gimple_stmt (dump_file, DR_STMT (dra), 0, TDF_SLIM);
+ fprintf (dump_file, " ref_b: ");
+ print_generic_expr (dump_file, DR_REF (drb));
+ fprintf (dump_file, ", stmt_b: ");
+ print_gimple_stmt (dump_file, DR_STMT (drb), 0, TDF_SLIM);
+ }
+
+ /* Analyze only when the dependence relation is not yet known. */
+ if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
+ {
+ dependence_stats.num_dependence_tests++;
+
+ if (access_functions_are_affine_or_constant_p (dra, loop_nest)
+ && access_functions_are_affine_or_constant_p (drb, loop_nest))
+ subscript_dependence_tester (ddr, loop_nest);
+
+ /* As a last case, if the dependence cannot be determined, or if
+ the dependence is considered too difficult to determine, answer
+ "don't know". */
+ else
+ {
+ dependence_stats.num_dependence_undetermined++;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Data ref a:\n");
+ dump_data_reference (dump_file, dra);
+ fprintf (dump_file, "Data ref b:\n");
+ dump_data_reference (dump_file, drb);
+ fprintf (dump_file, "affine dependence test not usable: access function not affine or constant.\n");
+ }
+ finalize_ddr_dependent (ddr, chrec_dont_know);
+ }
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
+ fprintf (dump_file, ") -> no dependence\n");
+ else if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
+ fprintf (dump_file, ") -> dependence analysis failed\n");
+ else
+ fprintf (dump_file, ")\n");
+ }
+}
+
+/* Compute in DEPENDENCE_RELATIONS the data dependence graph for all
+ the data references in DATAREFS, in the LOOP_NEST. When
+ COMPUTE_SELF_AND_RR is FALSE, don't compute read-read and self
+ relations. Return true when successful, i.e. data references number
+ is small enough to be handled. */
+
+bool
+compute_all_dependences (const vec<data_reference_p> &datarefs,
+ vec<ddr_p> *dependence_relations,
+ const vec<loop_p> &loop_nest,
+ bool compute_self_and_rr)
+{
+ struct data_dependence_relation *ddr;
+ struct data_reference *a, *b;
+ unsigned int i, j;
+
+ if ((int) datarefs.length ()
+ > param_loop_max_datarefs_for_datadeps)
+ {
+ struct data_dependence_relation *ddr;
+
+ /* Insert a single relation into dependence_relations:
+ chrec_dont_know. */
+ ddr = initialize_data_dependence_relation (NULL, NULL, loop_nest);
+ dependence_relations->safe_push (ddr);
+ return false;
+ }
+
+ FOR_EACH_VEC_ELT (datarefs, i, a)
+ for (j = i + 1; datarefs.iterate (j, &b); j++)
+ if (DR_IS_WRITE (a) || DR_IS_WRITE (b) || compute_self_and_rr)
+ {
+ ddr = initialize_data_dependence_relation (a, b, loop_nest);
+ dependence_relations->safe_push (ddr);
+ if (loop_nest.exists ())
+ compute_affine_dependence (ddr, loop_nest[0]);
+ }
+
+ if (compute_self_and_rr)
+ FOR_EACH_VEC_ELT (datarefs, i, a)
+ {
+ ddr = initialize_data_dependence_relation (a, a, loop_nest);
+ dependence_relations->safe_push (ddr);
+ if (loop_nest.exists ())
+ compute_affine_dependence (ddr, loop_nest[0]);
+ }
+
+ return true;
+}
+
+/* Describes a location of a memory reference. */
+
+struct data_ref_loc
+{
+ /* The memory reference. */
+ tree ref;
+
+ /* True if the memory reference is read. */
+ bool is_read;
+
+ /* True if the data reference is conditional within the containing
+ statement, i.e. if it might not occur even when the statement
+ is executed and runs to completion. */
+ bool is_conditional_in_stmt;
+};
+
+
+/* Stores the locations of memory references in STMT to REFERENCES. Returns
+ true if STMT clobbers memory, false otherwise. */
+
+static bool
+get_references_in_stmt (gimple *stmt, vec<data_ref_loc, va_heap> *references)
+{
+ bool clobbers_memory = false;
+ data_ref_loc ref;
+ tree op0, op1;
+ enum gimple_code stmt_code = gimple_code (stmt);
+
+ /* ASM_EXPR and CALL_EXPR may embed arbitrary side effects.
+ As we cannot model data-references to not spelled out
+ accesses give up if they may occur. */
+ if (stmt_code == GIMPLE_CALL
+ && !(gimple_call_flags (stmt) & ECF_CONST))
+ {
+ /* Allow IFN_GOMP_SIMD_LANE in their own loops. */
+ if (gimple_call_internal_p (stmt))
+ switch (gimple_call_internal_fn (stmt))
+ {
+ case IFN_GOMP_SIMD_LANE:
+ {
+ class loop *loop = gimple_bb (stmt)->loop_father;
+ tree uid = gimple_call_arg (stmt, 0);
+ gcc_assert (TREE_CODE (uid) == SSA_NAME);
+ if (loop == NULL
+ || loop->simduid != SSA_NAME_VAR (uid))
+ clobbers_memory = true;
+ break;
+ }
+ case IFN_MASK_LOAD:
+ case IFN_MASK_STORE:
+ break;
+ default:
+ clobbers_memory = true;
+ break;
+ }
+ else
+ clobbers_memory = true;
+ }
+ else if (stmt_code == GIMPLE_ASM
+ && (gimple_asm_volatile_p (as_a <gasm *> (stmt))
+ || gimple_vuse (stmt)))
+ clobbers_memory = true;
+
+ if (!gimple_vuse (stmt))
+ return clobbers_memory;
+
+ if (stmt_code == GIMPLE_ASSIGN)
+ {
+ tree base;
+ op0 = gimple_assign_lhs (stmt);
+ op1 = gimple_assign_rhs1 (stmt);
+
+ if (DECL_P (op1)
+ || (REFERENCE_CLASS_P (op1)
+ && (base = get_base_address (op1))
+ && TREE_CODE (base) != SSA_NAME
+ && !is_gimple_min_invariant (base)))
+ {
+ ref.ref = op1;
+ ref.is_read = true;
+ ref.is_conditional_in_stmt = false;
+ references->safe_push (ref);
+ }
+ }
+ else if (stmt_code == GIMPLE_CALL)
+ {
+ unsigned i, n;
+ tree ptr, type;
+ unsigned int align;
+
+ ref.is_read = false;
+ if (gimple_call_internal_p (stmt))
+ switch (gimple_call_internal_fn (stmt))
+ {
+ case IFN_MASK_LOAD:
+ if (gimple_call_lhs (stmt) == NULL_TREE)
+ break;
+ ref.is_read = true;
+ /* FALLTHRU */
+ case IFN_MASK_STORE:
+ ptr = build_int_cst (TREE_TYPE (gimple_call_arg (stmt, 1)), 0);
+ align = tree_to_shwi (gimple_call_arg (stmt, 1));
+ if (ref.is_read)
+ type = TREE_TYPE (gimple_call_lhs (stmt));
+ else
+ type = TREE_TYPE (gimple_call_arg (stmt, 3));
+ if (TYPE_ALIGN (type) != align)
+ type = build_aligned_type (type, align);
+ ref.is_conditional_in_stmt = true;
+ ref.ref = fold_build2 (MEM_REF, type, gimple_call_arg (stmt, 0),
+ ptr);
+ references->safe_push (ref);
+ return false;
+ default:
+ break;
+ }
+
+ op0 = gimple_call_lhs (stmt);
+ n = gimple_call_num_args (stmt);
+ for (i = 0; i < n; i++)
+ {
+ op1 = gimple_call_arg (stmt, i);
+
+ if (DECL_P (op1)
+ || (REFERENCE_CLASS_P (op1) && get_base_address (op1)))
+ {
+ ref.ref = op1;
+ ref.is_read = true;
+ ref.is_conditional_in_stmt = false;
+ references->safe_push (ref);
+ }
+ }
+ }
+ else
+ return clobbers_memory;
+
+ if (op0
+ && (DECL_P (op0)
+ || (REFERENCE_CLASS_P (op0) && get_base_address (op0))))
+ {
+ ref.ref = op0;
+ ref.is_read = false;
+ ref.is_conditional_in_stmt = false;
+ references->safe_push (ref);
+ }
+ return clobbers_memory;
+}
+
+
+/* Returns true if the loop-nest has any data reference. */
+
+bool
+loop_nest_has_data_refs (loop_p loop)
+{
+ basic_block *bbs = get_loop_body (loop);
+ auto_vec<data_ref_loc, 3> references;
+
+ for (unsigned i = 0; i < loop->num_nodes; i++)
+ {
+ basic_block bb = bbs[i];
+ gimple_stmt_iterator bsi;
+
+ for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+ {
+ gimple *stmt = gsi_stmt (bsi);
+ get_references_in_stmt (stmt, &references);
+ if (references.length ())
+ {
+ free (bbs);
+ return true;
+ }
+ }
+ }
+ free (bbs);
+ return false;
+}
+
+/* Stores the data references in STMT to DATAREFS. If there is an unanalyzable
+ reference, returns false, otherwise returns true. NEST is the outermost
+ loop of the loop nest in which the references should be analyzed. */
+
+opt_result
+find_data_references_in_stmt (class loop *nest, gimple *stmt,
+ vec<data_reference_p> *datarefs)
+{
+ auto_vec<data_ref_loc, 2> references;
+ data_reference_p dr;
+
+ if (get_references_in_stmt (stmt, &references))
+ return opt_result::failure_at (stmt, "statement clobbers memory: %G",
+ stmt);
+
+ for (const data_ref_loc &ref : references)
+ {
+ dr = create_data_ref (nest ? loop_preheader_edge (nest) : NULL,
+ loop_containing_stmt (stmt), ref.ref,
+ stmt, ref.is_read, ref.is_conditional_in_stmt);
+ gcc_assert (dr != NULL);
+ datarefs->safe_push (dr);
+ }
+
+ return opt_result::success ();
+}
+
+/* Stores the data references in STMT to DATAREFS. If there is an
+ unanalyzable reference, returns false, otherwise returns true.
+ NEST is the outermost loop of the loop nest in which the references
+ should be instantiated, LOOP is the loop in which the references
+ should be analyzed. */
+
+bool
+graphite_find_data_references_in_stmt (edge nest, loop_p loop, gimple *stmt,
+ vec<data_reference_p> *datarefs)
+{
+ auto_vec<data_ref_loc, 2> references;
+ bool ret = true;
+ data_reference_p dr;
+
+ if (get_references_in_stmt (stmt, &references))
+ return false;
+
+ for (const data_ref_loc &ref : references)
+ {
+ dr = create_data_ref (nest, loop, ref.ref, stmt, ref.is_read,
+ ref.is_conditional_in_stmt);
+ gcc_assert (dr != NULL);
+ datarefs->safe_push (dr);
+ }
+
+ return ret;
+}
+
+/* Search the data references in LOOP, and record the information into
+ DATAREFS. Returns chrec_dont_know when failing to analyze a
+ difficult case, returns NULL_TREE otherwise. */
+
+tree
+find_data_references_in_bb (class loop *loop, basic_block bb,
+ vec<data_reference_p> *datarefs)
+{
+ gimple_stmt_iterator bsi;
+
+ for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+ {
+ gimple *stmt = gsi_stmt (bsi);
+
+ if (!find_data_references_in_stmt (loop, stmt, datarefs))
+ {
+ struct data_reference *res;
+ res = XCNEW (struct data_reference);
+ datarefs->safe_push (res);
+
+ return chrec_dont_know;
+ }
+ }
+
+ return NULL_TREE;
+}
+
+/* Search the data references in LOOP, and record the information into
+ DATAREFS. Returns chrec_dont_know when failing to analyze a
+ difficult case, returns NULL_TREE otherwise.
+
+ TODO: This function should be made smarter so that it can handle address
+ arithmetic as if they were array accesses, etc. */
+
+tree
+find_data_references_in_loop (class loop *loop,
+ vec<data_reference_p> *datarefs)
+{
+ basic_block bb, *bbs;
+ unsigned int i;
+
+ bbs = get_loop_body_in_dom_order (loop);
+
+ for (i = 0; i < loop->num_nodes; i++)
+ {
+ bb = bbs[i];
+
+ if (find_data_references_in_bb (loop, bb, datarefs) == chrec_dont_know)
+ {
+ free (bbs);
+ return chrec_dont_know;
+ }
+ }
+ free (bbs);
+
+ return NULL_TREE;
+}
+
+/* Return the alignment in bytes that DRB is guaranteed to have at all
+ times. */
+
+unsigned int
+dr_alignment (innermost_loop_behavior *drb)
+{
+ /* Get the alignment of BASE_ADDRESS + INIT. */
+ unsigned int alignment = drb->base_alignment;
+ unsigned int misalignment = (drb->base_misalignment
+ + TREE_INT_CST_LOW (drb->init));
+ if (misalignment != 0)
+ alignment = MIN (alignment, misalignment & -misalignment);
+
+ /* Cap it to the alignment of OFFSET. */
+ if (!integer_zerop (drb->offset))
+ alignment = MIN (alignment, drb->offset_alignment);
+
+ /* Cap it to the alignment of STEP. */
+ if (!integer_zerop (drb->step))
+ alignment = MIN (alignment, drb->step_alignment);
+
+ return alignment;
+}
+
+/* If BASE is a pointer-typed SSA name, try to find the object that it
+ is based on. Return this object X on success and store the alignment
+ in bytes of BASE - &X in *ALIGNMENT_OUT. */
+
+static tree
+get_base_for_alignment_1 (tree base, unsigned int *alignment_out)
+{
+ if (TREE_CODE (base) != SSA_NAME || !POINTER_TYPE_P (TREE_TYPE (base)))
+ return NULL_TREE;
+
+ gimple *def = SSA_NAME_DEF_STMT (base);
+ base = analyze_scalar_evolution (loop_containing_stmt (def), base);
+
+ /* Peel chrecs and record the minimum alignment preserved by
+ all steps. */
+ unsigned int alignment = MAX_OFILE_ALIGNMENT / BITS_PER_UNIT;
+ while (TREE_CODE (base) == POLYNOMIAL_CHREC)
+ {
+ unsigned int step_alignment = highest_pow2_factor (CHREC_RIGHT (base));
+ alignment = MIN (alignment, step_alignment);
+ base = CHREC_LEFT (base);
+ }
+
+ /* Punt if the expression is too complicated to handle. */
+ if (tree_contains_chrecs (base, NULL) || !POINTER_TYPE_P (TREE_TYPE (base)))
+ return NULL_TREE;
+
+ /* The only useful cases are those for which a dereference folds to something
+ other than an INDIRECT_REF. */
+ tree ref_type = TREE_TYPE (TREE_TYPE (base));
+ tree ref = fold_indirect_ref_1 (UNKNOWN_LOCATION, ref_type, base);
+ if (!ref)
+ return NULL_TREE;
+
+ /* Analyze the base to which the steps we peeled were applied. */
+ poly_int64 bitsize, bitpos, bytepos;
+ machine_mode mode;
+ int unsignedp, reversep, volatilep;
+ tree offset;
+ base = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
+ &unsignedp, &reversep, &volatilep);
+ if (!base || !multiple_p (bitpos, BITS_PER_UNIT, &bytepos))
+ return NULL_TREE;
+
+ /* Restrict the alignment to that guaranteed by the offsets. */
+ unsigned int bytepos_alignment = known_alignment (bytepos);
+ if (bytepos_alignment != 0)
+ alignment = MIN (alignment, bytepos_alignment);
+ if (offset)
+ {
+ unsigned int offset_alignment = highest_pow2_factor (offset);
+ alignment = MIN (alignment, offset_alignment);
+ }
+
+ *alignment_out = alignment;
+ return base;
+}
+
+/* Return the object whose alignment would need to be changed in order
+ to increase the alignment of ADDR. Store the maximum achievable
+ alignment in *MAX_ALIGNMENT. */
+
+tree
+get_base_for_alignment (tree addr, unsigned int *max_alignment)
+{
+ tree base = get_base_for_alignment_1 (addr, max_alignment);
+ if (base)
+ return base;
+
+ if (TREE_CODE (addr) == ADDR_EXPR)
+ addr = TREE_OPERAND (addr, 0);
+ *max_alignment = MAX_OFILE_ALIGNMENT / BITS_PER_UNIT;
+ return addr;
+}
+
+/* Recursive helper function. */
+
+static bool
+find_loop_nest_1 (class loop *loop, vec<loop_p> *loop_nest)
+{
+ /* Inner loops of the nest should not contain siblings. Example:
+ when there are two consecutive loops,
+
+ | loop_0
+ | loop_1
+ | A[{0, +, 1}_1]
+ | endloop_1
+ | loop_2
+ | A[{0, +, 1}_2]
+ | endloop_2
+ | endloop_0
+
+ the dependence relation cannot be captured by the distance
+ abstraction. */
+ if (loop->next)
+ return false;
+
+ loop_nest->safe_push (loop);
+ if (loop->inner)
+ return find_loop_nest_1 (loop->inner, loop_nest);
+ return true;
+}
+
+/* Return false when the LOOP is not well nested. Otherwise return
+ true and insert in LOOP_NEST the loops of the nest. LOOP_NEST will
+ contain the loops from the outermost to the innermost, as they will
+ appear in the classic distance vector. */
+
+bool
+find_loop_nest (class loop *loop, vec<loop_p> *loop_nest)
+{
+ loop_nest->safe_push (loop);
+ if (loop->inner)
+ return find_loop_nest_1 (loop->inner, loop_nest);
+ return true;
+}
+
+/* Returns true when the data dependences have been computed, false otherwise.
+ Given a loop nest LOOP, the following vectors are returned:
+ DATAREFS is initialized to all the array elements contained in this loop,
+ DEPENDENCE_RELATIONS contains the relations between the data references.
+ Compute read-read and self relations if
+ COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE. */
+
+bool
+compute_data_dependences_for_loop (class loop *loop,
+ bool compute_self_and_read_read_dependences,
+ vec<loop_p> *loop_nest,
+ vec<data_reference_p> *datarefs,
+ vec<ddr_p> *dependence_relations)
+{
+ bool res = true;
+
+ memset (&dependence_stats, 0, sizeof (dependence_stats));
+
+ /* If the loop nest is not well formed, or one of the data references
+ is not computable, give up without spending time to compute other
+ dependences. */
+ if (!loop
+ || !find_loop_nest (loop, loop_nest)
+ || find_data_references_in_loop (loop, datarefs) == chrec_dont_know
+ || !compute_all_dependences (*datarefs, dependence_relations, *loop_nest,
+ compute_self_and_read_read_dependences))
+ res = false;
+
+ if (dump_file && (dump_flags & TDF_STATS))
+ {
+ fprintf (dump_file, "Dependence tester statistics:\n");
+
+ fprintf (dump_file, "Number of dependence tests: %d\n",
+ dependence_stats.num_dependence_tests);
+ fprintf (dump_file, "Number of dependence tests classified dependent: %d\n",
+ dependence_stats.num_dependence_dependent);
+ fprintf (dump_file, "Number of dependence tests classified independent: %d\n",
+ dependence_stats.num_dependence_independent);
+ fprintf (dump_file, "Number of undetermined dependence tests: %d\n",
+ dependence_stats.num_dependence_undetermined);
+
+ fprintf (dump_file, "Number of subscript tests: %d\n",
+ dependence_stats.num_subscript_tests);
+ fprintf (dump_file, "Number of undetermined subscript tests: %d\n",
+ dependence_stats.num_subscript_undetermined);
+ fprintf (dump_file, "Number of same subscript function: %d\n",
+ dependence_stats.num_same_subscript_function);
+
+ fprintf (dump_file, "Number of ziv tests: %d\n",
+ dependence_stats.num_ziv);
+ fprintf (dump_file, "Number of ziv tests returning dependent: %d\n",
+ dependence_stats.num_ziv_dependent);
+ fprintf (dump_file, "Number of ziv tests returning independent: %d\n",
+ dependence_stats.num_ziv_independent);
+ fprintf (dump_file, "Number of ziv tests unimplemented: %d\n",
+ dependence_stats.num_ziv_unimplemented);
+
+ fprintf (dump_file, "Number of siv tests: %d\n",
+ dependence_stats.num_siv);
+ fprintf (dump_file, "Number of siv tests returning dependent: %d\n",
+ dependence_stats.num_siv_dependent);
+ fprintf (dump_file, "Number of siv tests returning independent: %d\n",
+ dependence_stats.num_siv_independent);
+ fprintf (dump_file, "Number of siv tests unimplemented: %d\n",
+ dependence_stats.num_siv_unimplemented);
+
+ fprintf (dump_file, "Number of miv tests: %d\n",
+ dependence_stats.num_miv);
+ fprintf (dump_file, "Number of miv tests returning dependent: %d\n",
+ dependence_stats.num_miv_dependent);
+ fprintf (dump_file, "Number of miv tests returning independent: %d\n",
+ dependence_stats.num_miv_independent);
+ fprintf (dump_file, "Number of miv tests unimplemented: %d\n",
+ dependence_stats.num_miv_unimplemented);
+ }
+
+ return res;
+}
+
+/* Free the memory used by a data dependence relation DDR. */
+
+void
+free_dependence_relation (struct data_dependence_relation *ddr)
+{
+ if (ddr == NULL)
+ return;
+
+ if (DDR_SUBSCRIPTS (ddr).exists ())
+ free_subscripts (DDR_SUBSCRIPTS (ddr));
+ DDR_DIST_VECTS (ddr).release ();
+ DDR_DIR_VECTS (ddr).release ();
+
+ free (ddr);
+}
+
+/* Free the memory used by the data dependence relations from
+ DEPENDENCE_RELATIONS. */
+
+void
+free_dependence_relations (vec<ddr_p>& dependence_relations)
+{
+ for (data_dependence_relation *ddr : dependence_relations)
+ if (ddr)
+ free_dependence_relation (ddr);
+
+ dependence_relations.release ();
+}
+
+/* Free the memory used by the data references from DATAREFS. */
+
+void
+free_data_refs (vec<data_reference_p>& datarefs)
+{
+ for (data_reference *dr : datarefs)
+ free_data_ref (dr);
+ datarefs.release ();
+}
+
+/* Common routine implementing both dr_direction_indicator and
+ dr_zero_step_indicator. Return USEFUL_MIN if the indicator is known
+ to be >= USEFUL_MIN and -1 if the indicator is known to be negative.
+ Return the step as the indicator otherwise. */
+
+static tree
+dr_step_indicator (struct data_reference *dr, int useful_min)
+{
+ tree step = DR_STEP (dr);
+ if (!step)
+ return NULL_TREE;
+ STRIP_NOPS (step);
+ /* Look for cases where the step is scaled by a positive constant
+ integer, which will often be the access size. If the multiplication
+ doesn't change the sign (due to overflow effects) then we can
+ test the unscaled value instead. */
+ if (TREE_CODE (step) == MULT_EXPR
+ && TREE_CODE (TREE_OPERAND (step, 1)) == INTEGER_CST
+ && tree_int_cst_sgn (TREE_OPERAND (step, 1)) > 0)
+ {
+ tree factor = TREE_OPERAND (step, 1);
+ step = TREE_OPERAND (step, 0);
+
+ /* Strip widening and truncating conversions as well as nops. */
+ if (CONVERT_EXPR_P (step)
+ && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (step, 0))))
+ step = TREE_OPERAND (step, 0);
+ tree type = TREE_TYPE (step);
+
+ /* Get the range of step values that would not cause overflow. */
+ widest_int minv = (wi::to_widest (TYPE_MIN_VALUE (ssizetype))
+ / wi::to_widest (factor));
+ widest_int maxv = (wi::to_widest (TYPE_MAX_VALUE (ssizetype))
+ / wi::to_widest (factor));
+
+ /* Get the range of values that the unconverted step actually has. */
+ wide_int step_min, step_max;
+ value_range vr;
+ if (TREE_CODE (step) != SSA_NAME
+ || !get_range_query (cfun)->range_of_expr (vr, step)
+ || vr.kind () != VR_RANGE)
+ {
+ step_min = wi::to_wide (TYPE_MIN_VALUE (type));
+ step_max = wi::to_wide (TYPE_MAX_VALUE (type));
+ }
+ else
+ {
+ step_min = vr.lower_bound ();
+ step_max = vr.upper_bound ();
+ }
+
+ /* Check whether the unconverted step has an acceptable range. */
+ signop sgn = TYPE_SIGN (type);
+ if (wi::les_p (minv, widest_int::from (step_min, sgn))
+ && wi::ges_p (maxv, widest_int::from (step_max, sgn)))
+ {
+ if (wi::ge_p (step_min, useful_min, sgn))
+ return ssize_int (useful_min);
+ else if (wi::lt_p (step_max, 0, sgn))
+ return ssize_int (-1);
+ else
+ return fold_convert (ssizetype, step);
+ }
+ }
+ return DR_STEP (dr);
+}
+
+/* Return a value that is negative iff DR has a negative step. */
+
+tree
+dr_direction_indicator (struct data_reference *dr)
+{
+ return dr_step_indicator (dr, 0);
+}
+
+/* Return a value that is zero iff DR has a zero step. */
+
+tree
+dr_zero_step_indicator (struct data_reference *dr)
+{
+ return dr_step_indicator (dr, 1);
+}
+
+/* Return true if DR is known to have a nonnegative (but possibly zero)
+ step. */
+
+bool
+dr_known_forward_stride_p (struct data_reference *dr)
+{
+ tree indicator = dr_direction_indicator (dr);
+ tree neg_step_val = fold_binary (LT_EXPR, boolean_type_node,
+ fold_convert (ssizetype, indicator),
+ ssize_int (0));
+ return neg_step_val && integer_zerop (neg_step_val);
+}