aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-complex.cc
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/tree-complex.cc')
-rw-r--r--gcc/tree-complex.cc1956
1 files changed, 1956 insertions, 0 deletions
diff --git a/gcc/tree-complex.cc b/gcc/tree-complex.cc
new file mode 100644
index 0000000..9acb1ad
--- /dev/null
+++ b/gcc/tree-complex.cc
@@ -0,0 +1,1956 @@
+/* Lower complex number operations to scalar operations.
+ Copyright (C) 2004-2022 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it
+under the terms of the GNU General Public License as published by the
+Free Software Foundation; either version 3, or (at your option) any
+later version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT
+ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "backend.h"
+#include "rtl.h"
+#include "tree.h"
+#include "gimple.h"
+#include "cfghooks.h"
+#include "tree-pass.h"
+#include "ssa.h"
+#include "fold-const.h"
+#include "stor-layout.h"
+#include "tree-eh.h"
+#include "gimplify.h"
+#include "gimple-iterator.h"
+#include "gimplify-me.h"
+#include "tree-cfg.h"
+#include "tree-dfa.h"
+#include "tree-ssa.h"
+#include "tree-ssa-propagate.h"
+#include "tree-hasher.h"
+#include "cfgloop.h"
+#include "cfganal.h"
+#include "gimple-fold.h"
+
+
+/* For each complex ssa name, a lattice value. We're interested in finding
+ out whether a complex number is degenerate in some way, having only real
+ or only complex parts. */
+
+enum
+{
+ UNINITIALIZED = 0,
+ ONLY_REAL = 1,
+ ONLY_IMAG = 2,
+ VARYING = 3
+};
+
+/* The type complex_lattice_t holds combinations of the above
+ constants. */
+typedef int complex_lattice_t;
+
+#define PAIR(a, b) ((a) << 2 | (b))
+
+class complex_propagate : public ssa_propagation_engine
+{
+ enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE;
+ enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE;
+};
+
+static vec<complex_lattice_t> complex_lattice_values;
+
+/* For each complex variable, a pair of variables for the components exists in
+ the hashtable. */
+static int_tree_htab_type *complex_variable_components;
+
+/* For each complex SSA_NAME, a pair of ssa names for the components. */
+static vec<tree> complex_ssa_name_components;
+
+/* Vector of PHI triplets (original complex PHI and corresponding real and
+ imag PHIs if real and/or imag PHIs contain temporarily
+ non-SSA_NAME/non-invariant args that need to be replaced by SSA_NAMEs. */
+static vec<gphi *> phis_to_revisit;
+
+/* BBs that need EH cleanup. */
+static bitmap need_eh_cleanup;
+
+/* Lookup UID in the complex_variable_components hashtable and return the
+ associated tree. */
+static tree
+cvc_lookup (unsigned int uid)
+{
+ struct int_tree_map in;
+ in.uid = uid;
+ return complex_variable_components->find_with_hash (in, uid).to;
+}
+
+/* Insert the pair UID, TO into the complex_variable_components hashtable. */
+
+static void
+cvc_insert (unsigned int uid, tree to)
+{
+ int_tree_map h;
+ int_tree_map *loc;
+
+ h.uid = uid;
+ loc = complex_variable_components->find_slot_with_hash (h, uid, INSERT);
+ loc->uid = uid;
+ loc->to = to;
+}
+
+/* Return true if T is not a zero constant. In the case of real values,
+ we're only interested in +0.0. */
+
+static int
+some_nonzerop (tree t)
+{
+ int zerop = false;
+
+ /* Operations with real or imaginary part of a complex number zero
+ cannot be treated the same as operations with a real or imaginary
+ operand if we care about the signs of zeros in the result. */
+ if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
+ zerop = real_identical (&TREE_REAL_CST (t), &dconst0);
+ else if (TREE_CODE (t) == FIXED_CST)
+ zerop = fixed_zerop (t);
+ else if (TREE_CODE (t) == INTEGER_CST)
+ zerop = integer_zerop (t);
+
+ return !zerop;
+}
+
+
+/* Compute a lattice value from the components of a complex type REAL
+ and IMAG. */
+
+static complex_lattice_t
+find_lattice_value_parts (tree real, tree imag)
+{
+ int r, i;
+ complex_lattice_t ret;
+
+ r = some_nonzerop (real);
+ i = some_nonzerop (imag);
+ ret = r * ONLY_REAL + i * ONLY_IMAG;
+
+ /* ??? On occasion we could do better than mapping 0+0i to real, but we
+ certainly don't want to leave it UNINITIALIZED, which eventually gets
+ mapped to VARYING. */
+ if (ret == UNINITIALIZED)
+ ret = ONLY_REAL;
+
+ return ret;
+}
+
+
+/* Compute a lattice value from gimple_val T. */
+
+static complex_lattice_t
+find_lattice_value (tree t)
+{
+ tree real, imag;
+
+ switch (TREE_CODE (t))
+ {
+ case SSA_NAME:
+ return complex_lattice_values[SSA_NAME_VERSION (t)];
+
+ case COMPLEX_CST:
+ real = TREE_REALPART (t);
+ imag = TREE_IMAGPART (t);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return find_lattice_value_parts (real, imag);
+}
+
+/* Determine if LHS is something for which we're interested in seeing
+ simulation results. */
+
+static bool
+is_complex_reg (tree lhs)
+{
+ return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
+}
+
+/* Mark the incoming parameters to the function as VARYING. */
+
+static void
+init_parameter_lattice_values (void)
+{
+ tree parm, ssa_name;
+
+ for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
+ if (is_complex_reg (parm)
+ && (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE)
+ complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING;
+}
+
+/* Initialize simulation state for each statement. Return false if we
+ found no statements we want to simulate, and thus there's nothing
+ for the entire pass to do. */
+
+static bool
+init_dont_simulate_again (void)
+{
+ basic_block bb;
+ bool saw_a_complex_op = false;
+
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
+ gsi_next (&gsi))
+ {
+ gphi *phi = gsi.phi ();
+ prop_set_simulate_again (phi,
+ is_complex_reg (gimple_phi_result (phi)));
+ }
+
+ for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
+ gsi_next (&gsi))
+ {
+ gimple *stmt;
+ tree op0, op1;
+ bool sim_again_p;
+
+ stmt = gsi_stmt (gsi);
+ op0 = op1 = NULL_TREE;
+
+ /* Most control-altering statements must be initially
+ simulated, else we won't cover the entire cfg. */
+ sim_again_p = stmt_ends_bb_p (stmt);
+
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_CALL:
+ if (gimple_call_lhs (stmt))
+ sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
+ break;
+
+ case GIMPLE_ASSIGN:
+ sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
+ if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
+ || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
+ op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
+ else
+ op0 = gimple_assign_rhs1 (stmt);
+ if (gimple_num_ops (stmt) > 2)
+ op1 = gimple_assign_rhs2 (stmt);
+ break;
+
+ case GIMPLE_COND:
+ op0 = gimple_cond_lhs (stmt);
+ op1 = gimple_cond_rhs (stmt);
+ break;
+
+ default:
+ break;
+ }
+
+ if (op0 || op1)
+ switch (gimple_expr_code (stmt))
+ {
+ case EQ_EXPR:
+ case NE_EXPR:
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ case MULT_EXPR:
+ case TRUNC_DIV_EXPR:
+ case CEIL_DIV_EXPR:
+ case FLOOR_DIV_EXPR:
+ case ROUND_DIV_EXPR:
+ case RDIV_EXPR:
+ if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
+ || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
+ saw_a_complex_op = true;
+ break;
+
+ case NEGATE_EXPR:
+ case CONJ_EXPR:
+ if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
+ saw_a_complex_op = true;
+ break;
+
+ case REALPART_EXPR:
+ case IMAGPART_EXPR:
+ /* The total store transformation performed during
+ gimplification creates such uninitialized loads
+ and we need to lower the statement to be able
+ to fix things up. */
+ if (TREE_CODE (op0) == SSA_NAME
+ && ssa_undefined_value_p (op0))
+ saw_a_complex_op = true;
+ break;
+
+ default:
+ break;
+ }
+
+ prop_set_simulate_again (stmt, sim_again_p);
+ }
+ }
+
+ return saw_a_complex_op;
+}
+
+
+/* Evaluate statement STMT against the complex lattice defined above. */
+
+enum ssa_prop_result
+complex_propagate::visit_stmt (gimple *stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
+ tree *result_p)
+{
+ complex_lattice_t new_l, old_l, op1_l, op2_l;
+ unsigned int ver;
+ tree lhs;
+
+ lhs = gimple_get_lhs (stmt);
+ /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
+ if (!lhs || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
+ return SSA_PROP_VARYING;
+
+ /* These conditions should be satisfied due to the initial filter
+ set up in init_dont_simulate_again. */
+ gcc_assert (TREE_CODE (lhs) == SSA_NAME);
+ gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
+
+ *result_p = lhs;
+ ver = SSA_NAME_VERSION (lhs);
+ old_l = complex_lattice_values[ver];
+
+ switch (gimple_expr_code (stmt))
+ {
+ case SSA_NAME:
+ case COMPLEX_CST:
+ new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
+ break;
+
+ case COMPLEX_EXPR:
+ new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
+ gimple_assign_rhs2 (stmt));
+ break;
+
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
+ op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
+
+ /* We've set up the lattice values such that IOR neatly
+ models addition. */
+ new_l = op1_l | op2_l;
+ break;
+
+ case MULT_EXPR:
+ case RDIV_EXPR:
+ case TRUNC_DIV_EXPR:
+ case CEIL_DIV_EXPR:
+ case FLOOR_DIV_EXPR:
+ case ROUND_DIV_EXPR:
+ op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
+ op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
+
+ /* Obviously, if either varies, so does the result. */
+ if (op1_l == VARYING || op2_l == VARYING)
+ new_l = VARYING;
+ /* Don't prematurely promote variables if we've not yet seen
+ their inputs. */
+ else if (op1_l == UNINITIALIZED)
+ new_l = op2_l;
+ else if (op2_l == UNINITIALIZED)
+ new_l = op1_l;
+ else
+ {
+ /* At this point both numbers have only one component. If the
+ numbers are of opposite kind, the result is imaginary,
+ otherwise the result is real. The add/subtract translates
+ the real/imag from/to 0/1; the ^ performs the comparison. */
+ new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
+
+ /* Don't allow the lattice value to flip-flop indefinitely. */
+ new_l |= old_l;
+ }
+ break;
+
+ case NEGATE_EXPR:
+ case CONJ_EXPR:
+ new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
+ break;
+
+ default:
+ new_l = VARYING;
+ break;
+ }
+
+ /* If nothing changed this round, let the propagator know. */
+ if (new_l == old_l)
+ return SSA_PROP_NOT_INTERESTING;
+
+ complex_lattice_values[ver] = new_l;
+ return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
+}
+
+/* Evaluate a PHI node against the complex lattice defined above. */
+
+enum ssa_prop_result
+complex_propagate::visit_phi (gphi *phi)
+{
+ complex_lattice_t new_l, old_l;
+ unsigned int ver;
+ tree lhs;
+ int i;
+
+ lhs = gimple_phi_result (phi);
+
+ /* This condition should be satisfied due to the initial filter
+ set up in init_dont_simulate_again. */
+ gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
+
+ if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
+ return SSA_PROP_VARYING;
+
+ /* We've set up the lattice values such that IOR neatly models PHI meet. */
+ new_l = UNINITIALIZED;
+ for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
+ new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
+
+ ver = SSA_NAME_VERSION (lhs);
+ old_l = complex_lattice_values[ver];
+
+ if (new_l == old_l)
+ return SSA_PROP_NOT_INTERESTING;
+
+ complex_lattice_values[ver] = new_l;
+ return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
+}
+
+/* Create one backing variable for a complex component of ORIG. */
+
+static tree
+create_one_component_var (tree type, tree orig, const char *prefix,
+ const char *suffix, enum tree_code code)
+{
+ tree r = create_tmp_var (type, prefix);
+
+ DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
+ DECL_ARTIFICIAL (r) = 1;
+
+ if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
+ {
+ const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
+ name = ACONCAT ((name, suffix, NULL));
+ DECL_NAME (r) = get_identifier (name);
+
+ SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
+ DECL_HAS_DEBUG_EXPR_P (r) = 1;
+ DECL_IGNORED_P (r) = 0;
+ copy_warning (r, orig);
+ }
+ else
+ {
+ DECL_IGNORED_P (r) = 1;
+ suppress_warning (r);
+ }
+
+ return r;
+}
+
+/* Retrieve a value for a complex component of VAR. */
+
+static tree
+get_component_var (tree var, bool imag_p)
+{
+ size_t decl_index = DECL_UID (var) * 2 + imag_p;
+ tree ret = cvc_lookup (decl_index);
+
+ if (ret == NULL)
+ {
+ ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
+ imag_p ? "CI" : "CR",
+ imag_p ? "$imag" : "$real",
+ imag_p ? IMAGPART_EXPR : REALPART_EXPR);
+ cvc_insert (decl_index, ret);
+ }
+
+ return ret;
+}
+
+/* Retrieve a value for a complex component of SSA_NAME. */
+
+static tree
+get_component_ssa_name (tree ssa_name, bool imag_p)
+{
+ complex_lattice_t lattice = find_lattice_value (ssa_name);
+ size_t ssa_name_index;
+ tree ret;
+
+ if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
+ {
+ tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
+ if (SCALAR_FLOAT_TYPE_P (inner_type))
+ return build_real (inner_type, dconst0);
+ else
+ return build_int_cst (inner_type, 0);
+ }
+
+ ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
+ ret = complex_ssa_name_components[ssa_name_index];
+ if (ret == NULL)
+ {
+ if (SSA_NAME_VAR (ssa_name))
+ ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
+ else
+ ret = TREE_TYPE (TREE_TYPE (ssa_name));
+ ret = make_ssa_name (ret);
+
+ /* Copy some properties from the original. In particular, whether it
+ is used in an abnormal phi, and whether it's uninitialized. */
+ SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
+ = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
+ if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
+ && TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL)
+ {
+ SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
+ set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret);
+ }
+
+ complex_ssa_name_components[ssa_name_index] = ret;
+ }
+
+ return ret;
+}
+
+/* Set a value for a complex component of SSA_NAME, return a
+ gimple_seq of stuff that needs doing. */
+
+static gimple_seq
+set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
+{
+ complex_lattice_t lattice = find_lattice_value (ssa_name);
+ size_t ssa_name_index;
+ tree comp;
+ gimple *last;
+ gimple_seq list;
+
+ /* We know the value must be zero, else there's a bug in our lattice
+ analysis. But the value may well be a variable known to contain
+ zero. We should be safe ignoring it. */
+ if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
+ return NULL;
+
+ /* If we've already assigned an SSA_NAME to this component, then this
+ means that our walk of the basic blocks found a use before the set.
+ This is fine. Now we should create an initialization for the value
+ we created earlier. */
+ ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
+ comp = complex_ssa_name_components[ssa_name_index];
+ if (comp)
+ ;
+
+ /* If we've nothing assigned, and the value we're given is already stable,
+ then install that as the value for this SSA_NAME. This preemptively
+ copy-propagates the value, which avoids unnecessary memory allocation. */
+ else if (is_gimple_min_invariant (value)
+ && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
+ {
+ complex_ssa_name_components[ssa_name_index] = value;
+ return NULL;
+ }
+ else if (TREE_CODE (value) == SSA_NAME
+ && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
+ {
+ /* Replace an anonymous base value with the variable from cvc_lookup.
+ This should result in better debug info. */
+ if (!SSA_NAME_IS_DEFAULT_DEF (value)
+ && SSA_NAME_VAR (ssa_name)
+ && (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value)))
+ && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
+ {
+ comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
+ replace_ssa_name_symbol (value, comp);
+ }
+
+ complex_ssa_name_components[ssa_name_index] = value;
+ return NULL;
+ }
+
+ /* Finally, we need to stabilize the result by installing the value into
+ a new ssa name. */
+ else
+ comp = get_component_ssa_name (ssa_name, imag_p);
+
+ /* Do all the work to assign VALUE to COMP. */
+ list = NULL;
+ value = force_gimple_operand (value, &list, false, NULL);
+ last = gimple_build_assign (comp, value);
+ gimple_seq_add_stmt (&list, last);
+ gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
+
+ return list;
+}
+
+/* Extract the real or imaginary part of a complex variable or constant.
+ Make sure that it's a proper gimple_val and gimplify it if not.
+ Emit any new code before gsi. */
+
+static tree
+extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
+ bool gimple_p, bool phiarg_p = false)
+{
+ switch (TREE_CODE (t))
+ {
+ case COMPLEX_CST:
+ return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
+
+ case COMPLEX_EXPR:
+ gcc_unreachable ();
+
+ case BIT_FIELD_REF:
+ {
+ tree inner_type = TREE_TYPE (TREE_TYPE (t));
+ t = unshare_expr (t);
+ TREE_TYPE (t) = inner_type;
+ TREE_OPERAND (t, 1) = TYPE_SIZE (inner_type);
+ if (imagpart_p)
+ TREE_OPERAND (t, 2) = size_binop (PLUS_EXPR, TREE_OPERAND (t, 2),
+ TYPE_SIZE (inner_type));
+ if (gimple_p)
+ t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
+ GSI_SAME_STMT);
+ return t;
+ }
+
+ case VAR_DECL:
+ case RESULT_DECL:
+ case PARM_DECL:
+ case COMPONENT_REF:
+ case ARRAY_REF:
+ case VIEW_CONVERT_EXPR:
+ case MEM_REF:
+ {
+ tree inner_type = TREE_TYPE (TREE_TYPE (t));
+
+ t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
+ inner_type, unshare_expr (t));
+
+ if (gimple_p)
+ t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
+ GSI_SAME_STMT);
+
+ return t;
+ }
+
+ case SSA_NAME:
+ t = get_component_ssa_name (t, imagpart_p);
+ if (TREE_CODE (t) == SSA_NAME && SSA_NAME_DEF_STMT (t) == NULL)
+ gcc_assert (phiarg_p);
+ return t;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Update the complex components of the ssa name on the lhs of STMT. */
+
+static void
+update_complex_components (gimple_stmt_iterator *gsi, gimple *stmt, tree r,
+ tree i)
+{
+ tree lhs;
+ gimple_seq list;
+
+ lhs = gimple_get_lhs (stmt);
+
+ list = set_component_ssa_name (lhs, false, r);
+ if (list)
+ gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
+
+ list = set_component_ssa_name (lhs, true, i);
+ if (list)
+ gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
+}
+
+static void
+update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
+{
+ gimple_seq list;
+
+ list = set_component_ssa_name (lhs, false, r);
+ if (list)
+ gsi_insert_seq_on_edge (e, list);
+
+ list = set_component_ssa_name (lhs, true, i);
+ if (list)
+ gsi_insert_seq_on_edge (e, list);
+}
+
+
+/* Update an assignment to a complex variable in place. */
+
+static void
+update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
+{
+ gimple *old_stmt = gsi_stmt (*gsi);
+ gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i);
+ gimple *stmt = gsi_stmt (*gsi);
+ update_stmt (stmt);
+ if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
+ bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index);
+
+ update_complex_components (gsi, gsi_stmt (*gsi), r, i);
+}
+
+
+/* Generate code at the entry point of the function to initialize the
+ component variables for a complex parameter. */
+
+static void
+update_parameter_components (void)
+{
+ edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
+ tree parm;
+
+ for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
+ {
+ tree type = TREE_TYPE (parm);
+ tree ssa_name, r, i;
+
+ if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
+ continue;
+
+ type = TREE_TYPE (type);
+ ssa_name = ssa_default_def (cfun, parm);
+ if (!ssa_name)
+ continue;
+
+ r = build1 (REALPART_EXPR, type, ssa_name);
+ i = build1 (IMAGPART_EXPR, type, ssa_name);
+ update_complex_components_on_edge (entry_edge, ssa_name, r, i);
+ }
+}
+
+/* Generate code to set the component variables of a complex variable
+ to match the PHI statements in block BB. */
+
+static void
+update_phi_components (basic_block bb)
+{
+ gphi_iterator gsi;
+
+ for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gphi *phi = gsi.phi ();
+
+ if (is_complex_reg (gimple_phi_result (phi)))
+ {
+ gphi *p[2] = { NULL, NULL };
+ unsigned int i, j, n;
+ bool revisit_phi = false;
+
+ for (j = 0; j < 2; j++)
+ {
+ tree l = get_component_ssa_name (gimple_phi_result (phi), j > 0);
+ if (TREE_CODE (l) == SSA_NAME)
+ p[j] = create_phi_node (l, bb);
+ }
+
+ for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
+ {
+ tree comp, arg = gimple_phi_arg_def (phi, i);
+ for (j = 0; j < 2; j++)
+ if (p[j])
+ {
+ comp = extract_component (NULL, arg, j > 0, false, true);
+ if (TREE_CODE (comp) == SSA_NAME
+ && SSA_NAME_DEF_STMT (comp) == NULL)
+ {
+ /* For the benefit of any gimple simplification during
+ this pass that might walk SSA_NAME def stmts,
+ don't add SSA_NAMEs without definitions into the
+ PHI arguments, but put a decl in there instead
+ temporarily, and revisit this PHI later on. */
+ if (SSA_NAME_VAR (comp))
+ comp = SSA_NAME_VAR (comp);
+ else
+ comp = create_tmp_reg (TREE_TYPE (comp),
+ get_name (comp));
+ revisit_phi = true;
+ }
+ SET_PHI_ARG_DEF (p[j], i, comp);
+ }
+ }
+
+ if (revisit_phi)
+ {
+ phis_to_revisit.safe_push (phi);
+ phis_to_revisit.safe_push (p[0]);
+ phis_to_revisit.safe_push (p[1]);
+ }
+ }
+ }
+}
+
+/* Expand a complex move to scalars. */
+
+static void
+expand_complex_move (gimple_stmt_iterator *gsi, tree type)
+{
+ tree inner_type = TREE_TYPE (type);
+ tree r, i, lhs, rhs;
+ gimple *stmt = gsi_stmt (*gsi);
+
+ if (is_gimple_assign (stmt))
+ {
+ lhs = gimple_assign_lhs (stmt);
+ if (gimple_num_ops (stmt) == 2)
+ rhs = gimple_assign_rhs1 (stmt);
+ else
+ rhs = NULL_TREE;
+ }
+ else if (is_gimple_call (stmt))
+ {
+ lhs = gimple_call_lhs (stmt);
+ rhs = NULL_TREE;
+ }
+ else
+ gcc_unreachable ();
+
+ if (TREE_CODE (lhs) == SSA_NAME)
+ {
+ if (is_ctrl_altering_stmt (stmt))
+ {
+ edge e;
+
+ /* The value is not assigned on the exception edges, so we need not
+ concern ourselves there. We do need to update on the fallthru
+ edge. Find it. */
+ e = find_fallthru_edge (gsi_bb (*gsi)->succs);
+ if (!e)
+ gcc_unreachable ();
+
+ r = build1 (REALPART_EXPR, inner_type, lhs);
+ i = build1 (IMAGPART_EXPR, inner_type, lhs);
+ update_complex_components_on_edge (e, lhs, r, i);
+ }
+ else if (is_gimple_call (stmt)
+ || gimple_has_side_effects (stmt)
+ || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
+ {
+ r = build1 (REALPART_EXPR, inner_type, lhs);
+ i = build1 (IMAGPART_EXPR, inner_type, lhs);
+ update_complex_components (gsi, stmt, r, i);
+ }
+ else
+ {
+ if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
+ {
+ r = extract_component (gsi, rhs, 0, true);
+ i = extract_component (gsi, rhs, 1, true);
+ }
+ else
+ {
+ r = gimple_assign_rhs1 (stmt);
+ i = gimple_assign_rhs2 (stmt);
+ }
+ update_complex_assignment (gsi, r, i);
+ }
+ }
+ else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
+ {
+ tree x;
+ gimple *t;
+ location_t loc;
+
+ loc = gimple_location (stmt);
+ r = extract_component (gsi, rhs, 0, false);
+ i = extract_component (gsi, rhs, 1, false);
+
+ x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
+ t = gimple_build_assign (x, r);
+ gimple_set_location (t, loc);
+ gsi_insert_before (gsi, t, GSI_SAME_STMT);
+
+ if (stmt == gsi_stmt (*gsi))
+ {
+ x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
+ gimple_assign_set_lhs (stmt, x);
+ gimple_assign_set_rhs1 (stmt, i);
+ }
+ else
+ {
+ x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
+ t = gimple_build_assign (x, i);
+ gimple_set_location (t, loc);
+ gsi_insert_before (gsi, t, GSI_SAME_STMT);
+
+ stmt = gsi_stmt (*gsi);
+ gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
+ gimple_return_set_retval (as_a <greturn *> (stmt), lhs);
+ }
+
+ update_stmt (stmt);
+ }
+}
+
+/* Expand complex addition to scalars:
+ a + b = (ar + br) + i(ai + bi)
+ a - b = (ar - br) + i(ai + bi)
+*/
+
+static void
+expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
+ tree ar, tree ai, tree br, tree bi,
+ enum tree_code code,
+ complex_lattice_t al, complex_lattice_t bl)
+{
+ tree rr, ri;
+ gimple_seq stmts = NULL;
+ location_t loc = gimple_location (gsi_stmt (*gsi));
+
+ switch (PAIR (al, bl))
+ {
+ case PAIR (ONLY_REAL, ONLY_REAL):
+ rr = gimple_build (&stmts, loc, code, inner_type, ar, br);
+ ri = ai;
+ break;
+
+ case PAIR (ONLY_REAL, ONLY_IMAG):
+ rr = ar;
+ if (code == MINUS_EXPR)
+ ri = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, ai, bi);
+ else
+ ri = bi;
+ break;
+
+ case PAIR (ONLY_IMAG, ONLY_REAL):
+ if (code == MINUS_EXPR)
+ rr = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, ar, br);
+ else
+ rr = br;
+ ri = ai;
+ break;
+
+ case PAIR (ONLY_IMAG, ONLY_IMAG):
+ rr = ar;
+ ri = gimple_build (&stmts, loc, code, inner_type, ai, bi);
+ break;
+
+ case PAIR (VARYING, ONLY_REAL):
+ rr = gimple_build (&stmts, loc, code, inner_type, ar, br);
+ ri = ai;
+ break;
+
+ case PAIR (VARYING, ONLY_IMAG):
+ rr = ar;
+ ri = gimple_build (&stmts, loc, code, inner_type, ai, bi);
+ break;
+
+ case PAIR (ONLY_REAL, VARYING):
+ if (code == MINUS_EXPR)
+ goto general;
+ rr = gimple_build (&stmts, loc, code, inner_type, ar, br);
+ ri = bi;
+ break;
+
+ case PAIR (ONLY_IMAG, VARYING):
+ if (code == MINUS_EXPR)
+ goto general;
+ rr = br;
+ ri = gimple_build (&stmts, loc, code, inner_type, ai, bi);
+ break;
+
+ case PAIR (VARYING, VARYING):
+ general:
+ rr = gimple_build (&stmts, loc, code, inner_type, ar, br);
+ ri = gimple_build (&stmts, loc, code, inner_type, ai, bi);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
+ update_complex_assignment (gsi, rr, ri);
+}
+
+/* Expand a complex multiplication or division to a libcall to the c99
+ compliant routines. TYPE is the complex type of the operation.
+ If INPLACE_P replace the statement at GSI with
+ the libcall and return NULL_TREE. Else insert the call, assign its
+ result to an output variable and return that variable. If INPLACE_P
+ is true then the statement being replaced should be an assignment
+ statement. */
+
+static tree
+expand_complex_libcall (gimple_stmt_iterator *gsi, tree type, tree ar, tree ai,
+ tree br, tree bi, enum tree_code code, bool inplace_p)
+{
+ machine_mode mode;
+ enum built_in_function bcode;
+ tree fn, lhs;
+ gcall *stmt;
+
+ mode = TYPE_MODE (type);
+ gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
+
+ if (code == MULT_EXPR)
+ bcode = ((enum built_in_function)
+ (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
+ else if (code == RDIV_EXPR)
+ bcode = ((enum built_in_function)
+ (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
+ else
+ gcc_unreachable ();
+ fn = builtin_decl_explicit (bcode);
+ stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
+
+ if (inplace_p)
+ {
+ gimple *old_stmt = gsi_stmt (*gsi);
+ gimple_call_set_nothrow (stmt, !stmt_could_throw_p (cfun, old_stmt));
+ lhs = gimple_assign_lhs (old_stmt);
+ gimple_call_set_lhs (stmt, lhs);
+ gsi_replace (gsi, stmt, true);
+
+ type = TREE_TYPE (type);
+ if (stmt_can_throw_internal (cfun, stmt))
+ {
+ edge_iterator ei;
+ edge e;
+ FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
+ if (!(e->flags & EDGE_EH))
+ break;
+ basic_block bb = split_edge (e);
+ gimple_stmt_iterator gsi2 = gsi_start_bb (bb);
+ update_complex_components (&gsi2, stmt,
+ build1 (REALPART_EXPR, type, lhs),
+ build1 (IMAGPART_EXPR, type, lhs));
+ return NULL_TREE;
+ }
+ else
+ update_complex_components (gsi, stmt,
+ build1 (REALPART_EXPR, type, lhs),
+ build1 (IMAGPART_EXPR, type, lhs));
+ SSA_NAME_DEF_STMT (lhs) = stmt;
+ return NULL_TREE;
+ }
+
+ gimple_call_set_nothrow (stmt, true);
+ lhs = make_ssa_name (type);
+ gimple_call_set_lhs (stmt, lhs);
+ gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
+
+ return lhs;
+}
+
+/* Perform a complex multiplication on two complex constants A, B represented
+ by AR, AI, BR, BI of type TYPE.
+ The operation we want is: a * b = (ar*br - ai*bi) + i(ar*bi + br*ai).
+ Insert the GIMPLE statements into GSI. Store the real and imaginary
+ components of the result into RR and RI. */
+
+static void
+expand_complex_multiplication_components (gimple_seq *stmts, location_t loc,
+ tree type, tree ar, tree ai,
+ tree br, tree bi,
+ tree *rr, tree *ri)
+{
+ tree t1, t2, t3, t4;
+
+ t1 = gimple_build (stmts, loc, MULT_EXPR, type, ar, br);
+ t2 = gimple_build (stmts, loc, MULT_EXPR, type, ai, bi);
+ t3 = gimple_build (stmts, loc, MULT_EXPR, type, ar, bi);
+
+ /* Avoid expanding redundant multiplication for the common
+ case of squaring a complex number. */
+ if (ar == br && ai == bi)
+ t4 = t3;
+ else
+ t4 = gimple_build (stmts, loc, MULT_EXPR, type, ai, br);
+
+ *rr = gimple_build (stmts, loc, MINUS_EXPR, type, t1, t2);
+ *ri = gimple_build (stmts, loc, PLUS_EXPR, type, t3, t4);
+}
+
+/* Expand complex multiplication to scalars:
+ a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
+*/
+
+static void
+expand_complex_multiplication (gimple_stmt_iterator *gsi, tree type,
+ tree ar, tree ai, tree br, tree bi,
+ complex_lattice_t al, complex_lattice_t bl)
+{
+ tree rr, ri;
+ tree inner_type = TREE_TYPE (type);
+ location_t loc = gimple_location (gsi_stmt (*gsi));
+ gimple_seq stmts = NULL;
+
+ if (al < bl)
+ {
+ complex_lattice_t tl;
+ rr = ar, ar = br, br = rr;
+ ri = ai, ai = bi, bi = ri;
+ tl = al, al = bl, bl = tl;
+ }
+
+ switch (PAIR (al, bl))
+ {
+ case PAIR (ONLY_REAL, ONLY_REAL):
+ rr = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, br);
+ ri = ai;
+ break;
+
+ case PAIR (ONLY_IMAG, ONLY_REAL):
+ rr = ar;
+ if (TREE_CODE (ai) == REAL_CST
+ && real_identical (&TREE_REAL_CST (ai), &dconst1))
+ ri = br;
+ else
+ ri = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, br);
+ break;
+
+ case PAIR (ONLY_IMAG, ONLY_IMAG):
+ rr = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, bi);
+ rr = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, rr);
+ ri = ar;
+ break;
+
+ case PAIR (VARYING, ONLY_REAL):
+ rr = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, br);
+ ri = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, br);
+ break;
+
+ case PAIR (VARYING, ONLY_IMAG):
+ rr = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, bi);
+ rr = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, rr);
+ ri = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, bi);
+ break;
+
+ case PAIR (VARYING, VARYING):
+ if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
+ {
+ /* If optimizing for size or not at all just do a libcall.
+ Same if there are exception-handling edges or signaling NaNs. */
+ if (optimize == 0 || optimize_bb_for_size_p (gsi_bb (*gsi))
+ || stmt_can_throw_internal (cfun, gsi_stmt (*gsi))
+ || flag_signaling_nans)
+ {
+ expand_complex_libcall (gsi, type, ar, ai, br, bi,
+ MULT_EXPR, true);
+ return;
+ }
+
+ if (!HONOR_NANS (inner_type))
+ {
+ /* If we are not worrying about NaNs expand to
+ (ar*br - ai*bi) + i(ar*bi + br*ai) directly. */
+ expand_complex_multiplication_components (&stmts, loc, inner_type,
+ ar, ai, br, bi,
+ &rr, &ri);
+ break;
+ }
+
+ /* Else, expand x = a * b into
+ x = (ar*br - ai*bi) + i(ar*bi + br*ai);
+ if (isunordered (__real__ x, __imag__ x))
+ x = __muldc3 (a, b); */
+
+ tree tmpr, tmpi;
+ expand_complex_multiplication_components (&stmts, loc,
+ inner_type, ar, ai,
+ br, bi, &tmpr, &tmpi);
+ gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
+ stmts = NULL;
+
+ gimple *check
+ = gimple_build_cond (UNORDERED_EXPR, tmpr, tmpi,
+ NULL_TREE, NULL_TREE);
+
+ basic_block orig_bb = gsi_bb (*gsi);
+ /* We want to keep track of the original complex multiplication
+ statement as we're going to modify it later in
+ update_complex_assignment. Make sure that insert_cond_bb leaves
+ that statement in the join block. */
+ gsi_prev (gsi);
+ basic_block cond_bb
+ = insert_cond_bb (gsi_bb (*gsi), gsi_stmt (*gsi), check,
+ profile_probability::very_unlikely ());
+
+ gimple_stmt_iterator cond_bb_gsi = gsi_last_bb (cond_bb);
+ gsi_insert_after (&cond_bb_gsi, gimple_build_nop (), GSI_NEW_STMT);
+
+ tree libcall_res
+ = expand_complex_libcall (&cond_bb_gsi, type, ar, ai, br,
+ bi, MULT_EXPR, false);
+ gimple_seq stmts2 = NULL;
+ tree cond_real = gimple_build (&stmts2, loc, REALPART_EXPR,
+ inner_type, libcall_res);
+ tree cond_imag = gimple_build (&stmts2, loc, IMAGPART_EXPR,
+ inner_type, libcall_res);
+ gsi_insert_seq_before (&cond_bb_gsi, stmts2, GSI_SAME_STMT);
+
+ basic_block join_bb = single_succ_edge (cond_bb)->dest;
+ *gsi = gsi_start_nondebug_after_labels_bb (join_bb);
+
+ /* We have a conditional block with some assignments in cond_bb.
+ Wire up the PHIs to wrap up. */
+ rr = make_ssa_name (inner_type);
+ ri = make_ssa_name (inner_type);
+ edge cond_to_join = single_succ_edge (cond_bb);
+ edge orig_to_join = find_edge (orig_bb, join_bb);
+
+ gphi *real_phi = create_phi_node (rr, gsi_bb (*gsi));
+ add_phi_arg (real_phi, cond_real, cond_to_join, UNKNOWN_LOCATION);
+ add_phi_arg (real_phi, tmpr, orig_to_join, UNKNOWN_LOCATION);
+
+ gphi *imag_phi = create_phi_node (ri, gsi_bb (*gsi));
+ add_phi_arg (imag_phi, cond_imag, cond_to_join, UNKNOWN_LOCATION);
+ add_phi_arg (imag_phi, tmpi, orig_to_join, UNKNOWN_LOCATION);
+ }
+ else
+ /* If we are not worrying about NaNs expand to
+ (ar*br - ai*bi) + i(ar*bi + br*ai) directly. */
+ expand_complex_multiplication_components (&stmts, loc,
+ inner_type, ar, ai,
+ br, bi, &rr, &ri);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
+ update_complex_assignment (gsi, rr, ri);
+}
+
+/* Keep this algorithm in sync with fold-const.c:const_binop().
+
+ Expand complex division to scalars, straightforward algorithm.
+ a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
+ t = br*br + bi*bi
+*/
+
+static void
+expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
+ tree ar, tree ai, tree br, tree bi,
+ enum tree_code code)
+{
+ gimple_seq stmts = NULL;
+ location_t loc = gimple_location (gsi_stmt (*gsi));
+ tree rr, ri, div, t1, t2, t3;
+
+ t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, br, br);
+ t2 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, bi, bi);
+ div = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, t2);
+
+ t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, br);
+ t2 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, bi);
+ t3 = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, t2);
+ rr = gimple_build (&stmts, loc, code, inner_type, t3, div);
+
+ t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, br);
+ t2 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, bi);
+ t3 = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, t1, t2);
+ ri = gimple_build (&stmts, loc, code, inner_type, t3, div);
+
+ gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
+ update_complex_assignment (gsi, rr, ri);
+}
+
+/* Keep this algorithm in sync with fold-const.c:const_binop().
+
+ Expand complex division to scalars, modified algorithm to minimize
+ overflow with wide input ranges. */
+
+static void
+expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
+ tree ar, tree ai, tree br, tree bi,
+ enum tree_code code)
+{
+ tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
+ basic_block bb_cond, bb_true, bb_false, bb_join;
+ gimple *stmt;
+ gimple_seq stmts = NULL;
+ location_t loc = gimple_location (gsi_stmt (*gsi));
+
+ /* Examine |br| < |bi|, and branch. */
+ t1 = gimple_build (&stmts, loc, ABS_EXPR, inner_type, br);
+ t2 = gimple_build (&stmts, loc, ABS_EXPR, inner_type, bi);
+ compare = gimple_build (&stmts, loc,
+ LT_EXPR, boolean_type_node, t1, t2);
+
+ bb_cond = bb_true = bb_false = bb_join = NULL;
+ rr = ri = tr = ti = NULL;
+ if (TREE_CODE (compare) != INTEGER_CST)
+ {
+ edge e;
+ gimple *stmt;
+
+ gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
+ stmts = NULL;
+ stmt = gimple_build_cond (NE_EXPR, compare, boolean_false_node,
+ NULL_TREE, NULL_TREE);
+ gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
+
+ /* Split the original block, and create the TRUE and FALSE blocks. */
+ e = split_block (gsi_bb (*gsi), stmt);
+ bb_cond = e->src;
+ bb_join = e->dest;
+ bb_true = create_empty_bb (bb_cond);
+ bb_false = create_empty_bb (bb_true);
+ bb_true->count = bb_false->count
+ = bb_cond->count.apply_probability (profile_probability::even ());
+
+ /* Wire the blocks together. */
+ e->flags = EDGE_TRUE_VALUE;
+ /* TODO: With value profile we could add an historgram to determine real
+ branch outcome. */
+ e->probability = profile_probability::even ();
+ redirect_edge_succ (e, bb_true);
+ edge e2 = make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
+ e2->probability = profile_probability::even ();
+ make_single_succ_edge (bb_true, bb_join, EDGE_FALLTHRU);
+ make_single_succ_edge (bb_false, bb_join, EDGE_FALLTHRU);
+ add_bb_to_loop (bb_true, bb_cond->loop_father);
+ add_bb_to_loop (bb_false, bb_cond->loop_father);
+
+ /* Update dominance info. Note that bb_join's data was
+ updated by split_block. */
+ if (dom_info_available_p (CDI_DOMINATORS))
+ {
+ set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
+ set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
+ }
+
+ rr = create_tmp_reg (inner_type);
+ ri = create_tmp_reg (inner_type);
+ }
+ else
+ {
+ gimple_seq_discard (stmts);
+ stmts = NULL;
+ }
+
+ /* In the TRUE branch, we compute
+ ratio = br/bi;
+ div = (br * ratio) + bi;
+ tr = (ar * ratio) + ai;
+ ti = (ai * ratio) - ar;
+ tr = tr / div;
+ ti = ti / div; */
+ if (bb_true || integer_nonzerop (compare))
+ {
+ if (bb_true)
+ {
+ *gsi = gsi_last_bb (bb_true);
+ gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
+ }
+
+ ratio = gimple_build (&stmts, loc, code, inner_type, br, bi);
+
+ t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, br, ratio);
+ div = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, bi);
+
+ t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, ratio);
+ tr = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, ai);
+
+ t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, ratio);
+ ti = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, t1, ar);
+
+ tr = gimple_build (&stmts, loc, code, inner_type, tr, div);
+ ti = gimple_build (&stmts, loc, code, inner_type, ti, div);
+ gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
+ stmts = NULL;
+
+ if (bb_true)
+ {
+ stmt = gimple_build_assign (rr, tr);
+ gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
+ stmt = gimple_build_assign (ri, ti);
+ gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
+ gsi_remove (gsi, true);
+ }
+ }
+
+ /* In the FALSE branch, we compute
+ ratio = d/c;
+ divisor = (d * ratio) + c;
+ tr = (b * ratio) + a;
+ ti = b - (a * ratio);
+ tr = tr / div;
+ ti = ti / div; */
+ if (bb_false || integer_zerop (compare))
+ {
+ if (bb_false)
+ {
+ *gsi = gsi_last_bb (bb_false);
+ gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
+ }
+
+ ratio = gimple_build (&stmts, loc, code, inner_type, bi, br);
+
+ t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, bi, ratio);
+ div = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, br);
+
+ t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, ratio);
+ tr = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, ar);
+
+ t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, ratio);
+ ti = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, ai, t1);
+
+ tr = gimple_build (&stmts, loc, code, inner_type, tr, div);
+ ti = gimple_build (&stmts, loc, code, inner_type, ti, div);
+ gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
+ stmts = NULL;
+
+ if (bb_false)
+ {
+ stmt = gimple_build_assign (rr, tr);
+ gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
+ stmt = gimple_build_assign (ri, ti);
+ gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
+ gsi_remove (gsi, true);
+ }
+ }
+
+ if (bb_join)
+ *gsi = gsi_start_bb (bb_join);
+ else
+ rr = tr, ri = ti;
+
+ update_complex_assignment (gsi, rr, ri);
+}
+
+/* Expand complex division to scalars. */
+
+static void
+expand_complex_division (gimple_stmt_iterator *gsi, tree type,
+ tree ar, tree ai, tree br, tree bi,
+ enum tree_code code,
+ complex_lattice_t al, complex_lattice_t bl)
+{
+ tree rr, ri;
+ gimple_seq stmts = NULL;
+ location_t loc = gimple_location (gsi_stmt (*gsi));
+
+ tree inner_type = TREE_TYPE (type);
+ switch (PAIR (al, bl))
+ {
+ case PAIR (ONLY_REAL, ONLY_REAL):
+ rr = gimple_build (&stmts, loc, code, inner_type, ar, br);
+ ri = ai;
+ break;
+
+ case PAIR (ONLY_REAL, ONLY_IMAG):
+ rr = ai;
+ ri = gimple_build (&stmts, loc, code, inner_type, ar, bi);
+ ri = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ri);
+ break;
+
+ case PAIR (ONLY_IMAG, ONLY_REAL):
+ rr = ar;
+ ri = gimple_build (&stmts, loc, code, inner_type, ai, br);
+ break;
+
+ case PAIR (ONLY_IMAG, ONLY_IMAG):
+ rr = gimple_build (&stmts, loc, code, inner_type, ai, bi);
+ ri = ar;
+ break;
+
+ case PAIR (VARYING, ONLY_REAL):
+ rr = gimple_build (&stmts, loc, code, inner_type, ar, br);
+ ri = gimple_build (&stmts, loc, code, inner_type, ai, br);
+ break;
+
+ case PAIR (VARYING, ONLY_IMAG):
+ rr = gimple_build (&stmts, loc, code, inner_type, ai, bi);
+ ri = gimple_build (&stmts, loc, code, inner_type, ar, bi);
+ ri = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ri);
+ break;
+
+ case PAIR (ONLY_REAL, VARYING):
+ case PAIR (ONLY_IMAG, VARYING):
+ case PAIR (VARYING, VARYING):
+ switch (flag_complex_method)
+ {
+ case 0:
+ /* straightforward implementation of complex divide acceptable. */
+ expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
+ break;
+
+ case 2:
+ if (SCALAR_FLOAT_TYPE_P (inner_type))
+ {
+ expand_complex_libcall (gsi, type, ar, ai, br, bi, code, true);
+ break;
+ }
+ /* FALLTHRU */
+
+ case 1:
+ /* wide ranges of inputs must work for complex divide. */
+ expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ return;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
+ update_complex_assignment (gsi, rr, ri);
+}
+
+/* Expand complex negation to scalars:
+ -a = (-ar) + i(-ai)
+*/
+
+static void
+expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
+ tree ar, tree ai)
+{
+ tree rr, ri;
+ gimple_seq stmts = NULL;
+ location_t loc = gimple_location (gsi_stmt (*gsi));
+
+ rr = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ar);
+ ri = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ai);
+
+ gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
+ update_complex_assignment (gsi, rr, ri);
+}
+
+/* Expand complex conjugate to scalars:
+ ~a = (ar) + i(-ai)
+*/
+
+static void
+expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
+ tree ar, tree ai)
+{
+ tree ri;
+ gimple_seq stmts = NULL;
+ location_t loc = gimple_location (gsi_stmt (*gsi));
+
+ ri = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ai);
+
+ gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
+ update_complex_assignment (gsi, ar, ri);
+}
+
+/* Expand complex comparison (EQ or NE only). */
+
+static void
+expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
+ tree br, tree bi, enum tree_code code)
+{
+ tree cr, ci, cc, type;
+ gimple *stmt = gsi_stmt (*gsi);
+ gimple_seq stmts = NULL;
+ location_t loc = gimple_location (stmt);
+
+ cr = gimple_build (&stmts, loc, code, boolean_type_node, ar, br);
+ ci = gimple_build (&stmts, loc, code, boolean_type_node, ai, bi);
+ cc = gimple_build (&stmts, loc,
+ (code == EQ_EXPR ? BIT_AND_EXPR : BIT_IOR_EXPR),
+ boolean_type_node, cr, ci);
+ gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
+
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_RETURN:
+ {
+ greturn *return_stmt = as_a <greturn *> (stmt);
+ type = TREE_TYPE (gimple_return_retval (return_stmt));
+ gimple_return_set_retval (return_stmt, fold_convert (type, cc));
+ }
+ break;
+
+ case GIMPLE_ASSIGN:
+ type = TREE_TYPE (gimple_assign_lhs (stmt));
+ gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
+ stmt = gsi_stmt (*gsi);
+ break;
+
+ case GIMPLE_COND:
+ {
+ gcond *cond_stmt = as_a <gcond *> (stmt);
+ gimple_cond_set_code (cond_stmt, EQ_EXPR);
+ gimple_cond_set_lhs (cond_stmt, cc);
+ gimple_cond_set_rhs (cond_stmt, boolean_true_node);
+ }
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ update_stmt (stmt);
+ if (maybe_clean_eh_stmt (stmt))
+ bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index);
+}
+
+/* Expand inline asm that sets some complex SSA_NAMEs. */
+
+static void
+expand_complex_asm (gimple_stmt_iterator *gsi)
+{
+ gasm *stmt = as_a <gasm *> (gsi_stmt (*gsi));
+ unsigned int i;
+
+ for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
+ {
+ tree link = gimple_asm_output_op (stmt, i);
+ tree op = TREE_VALUE (link);
+ if (TREE_CODE (op) == SSA_NAME
+ && TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE)
+ {
+ tree type = TREE_TYPE (op);
+ tree inner_type = TREE_TYPE (type);
+ tree r = build1 (REALPART_EXPR, inner_type, op);
+ tree i = build1 (IMAGPART_EXPR, inner_type, op);
+ gimple_seq list = set_component_ssa_name (op, false, r);
+
+ if (list)
+ gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
+
+ list = set_component_ssa_name (op, true, i);
+ if (list)
+ gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
+ }
+ }
+}
+
+/* Process one statement. If we identify a complex operation, expand it. */
+
+static void
+expand_complex_operations_1 (gimple_stmt_iterator *gsi)
+{
+ gimple *stmt = gsi_stmt (*gsi);
+ tree type, inner_type, lhs;
+ tree ac, ar, ai, bc, br, bi;
+ complex_lattice_t al, bl;
+ enum tree_code code;
+
+ if (gimple_code (stmt) == GIMPLE_ASM)
+ {
+ expand_complex_asm (gsi);
+ return;
+ }
+
+ lhs = gimple_get_lhs (stmt);
+ if (!lhs && gimple_code (stmt) != GIMPLE_COND)
+ return;
+
+ type = TREE_TYPE (gimple_op (stmt, 0));
+ code = gimple_expr_code (stmt);
+
+ /* Initial filter for operations we handle. */
+ switch (code)
+ {
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ case MULT_EXPR:
+ case TRUNC_DIV_EXPR:
+ case CEIL_DIV_EXPR:
+ case FLOOR_DIV_EXPR:
+ case ROUND_DIV_EXPR:
+ case RDIV_EXPR:
+ case NEGATE_EXPR:
+ case CONJ_EXPR:
+ if (TREE_CODE (type) != COMPLEX_TYPE)
+ return;
+ inner_type = TREE_TYPE (type);
+ break;
+
+ case EQ_EXPR:
+ case NE_EXPR:
+ /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
+ subcode, so we need to access the operands using gimple_op. */
+ inner_type = TREE_TYPE (gimple_op (stmt, 1));
+ if (TREE_CODE (inner_type) != COMPLEX_TYPE)
+ return;
+ break;
+
+ default:
+ {
+ tree rhs;
+
+ /* GIMPLE_COND may also fallthru here, but we do not need to
+ do anything with it. */
+ if (gimple_code (stmt) == GIMPLE_COND)
+ return;
+
+ if (TREE_CODE (type) == COMPLEX_TYPE)
+ expand_complex_move (gsi, type);
+ else if (is_gimple_assign (stmt)
+ && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
+ || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
+ && TREE_CODE (lhs) == SSA_NAME)
+ {
+ rhs = gimple_assign_rhs1 (stmt);
+ rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
+ gimple_assign_rhs_code (stmt)
+ == IMAGPART_EXPR,
+ false);
+ gimple_assign_set_rhs_from_tree (gsi, rhs);
+ stmt = gsi_stmt (*gsi);
+ update_stmt (stmt);
+ }
+ }
+ return;
+ }
+
+ /* Extract the components of the two complex values. Make sure and
+ handle the common case of the same value used twice specially. */
+ if (is_gimple_assign (stmt))
+ {
+ ac = gimple_assign_rhs1 (stmt);
+ bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
+ }
+ /* GIMPLE_CALL cannot get here. */
+ else
+ {
+ ac = gimple_cond_lhs (stmt);
+ bc = gimple_cond_rhs (stmt);
+ }
+
+ ar = extract_component (gsi, ac, false, true);
+ ai = extract_component (gsi, ac, true, true);
+
+ if (ac == bc)
+ br = ar, bi = ai;
+ else if (bc)
+ {
+ br = extract_component (gsi, bc, 0, true);
+ bi = extract_component (gsi, bc, 1, true);
+ }
+ else
+ br = bi = NULL_TREE;
+
+ al = find_lattice_value (ac);
+ if (al == UNINITIALIZED)
+ al = VARYING;
+
+ if (TREE_CODE_CLASS (code) == tcc_unary)
+ bl = UNINITIALIZED;
+ else if (ac == bc)
+ bl = al;
+ else
+ {
+ bl = find_lattice_value (bc);
+ if (bl == UNINITIALIZED)
+ bl = VARYING;
+ }
+
+ switch (code)
+ {
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
+ break;
+
+ case MULT_EXPR:
+ expand_complex_multiplication (gsi, type, ar, ai, br, bi, al, bl);
+ break;
+
+ case TRUNC_DIV_EXPR:
+ case CEIL_DIV_EXPR:
+ case FLOOR_DIV_EXPR:
+ case ROUND_DIV_EXPR:
+ case RDIV_EXPR:
+ expand_complex_division (gsi, type, ar, ai, br, bi, code, al, bl);
+ break;
+
+ case NEGATE_EXPR:
+ expand_complex_negation (gsi, inner_type, ar, ai);
+ break;
+
+ case CONJ_EXPR:
+ expand_complex_conjugate (gsi, inner_type, ar, ai);
+ break;
+
+ case EQ_EXPR:
+ case NE_EXPR:
+ expand_complex_comparison (gsi, ar, ai, br, bi, code);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+
+/* Entry point for complex operation lowering during optimization. */
+
+static unsigned int
+tree_lower_complex (void)
+{
+ gimple_stmt_iterator gsi;
+ basic_block bb;
+ int n_bbs, i;
+ int *rpo;
+
+ if (!init_dont_simulate_again ())
+ return 0;
+
+ complex_lattice_values.create (num_ssa_names);
+ complex_lattice_values.safe_grow_cleared (num_ssa_names, true);
+
+ init_parameter_lattice_values ();
+ class complex_propagate complex_propagate;
+ complex_propagate.ssa_propagate ();
+
+ need_eh_cleanup = BITMAP_ALLOC (NULL);
+
+ complex_variable_components = new int_tree_htab_type (10);
+
+ complex_ssa_name_components.create (2 * num_ssa_names);
+ complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names, true);
+
+ update_parameter_components ();
+
+ rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
+ n_bbs = pre_and_rev_post_order_compute (NULL, rpo, false);
+ for (i = 0; i < n_bbs; i++)
+ {
+ bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
+ if (!bb)
+ continue;
+ update_phi_components (bb);
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ expand_complex_operations_1 (&gsi);
+ }
+
+ free (rpo);
+
+ if (!phis_to_revisit.is_empty ())
+ {
+ unsigned int n = phis_to_revisit.length ();
+ for (unsigned int j = 0; j < n; j += 3)
+ for (unsigned int k = 0; k < 2; k++)
+ if (gphi *phi = phis_to_revisit[j + k + 1])
+ {
+ unsigned int m = gimple_phi_num_args (phi);
+ for (unsigned int l = 0; l < m; ++l)
+ {
+ tree op = gimple_phi_arg_def (phi, l);
+ if (TREE_CODE (op) == SSA_NAME
+ || is_gimple_min_invariant (op))
+ continue;
+ tree arg = gimple_phi_arg_def (phis_to_revisit[j], l);
+ op = extract_component (NULL, arg, k > 0, false, false);
+ SET_PHI_ARG_DEF (phi, l, op);
+ }
+ }
+ phis_to_revisit.release ();
+ }
+
+ gsi_commit_edge_inserts ();
+
+ unsigned todo
+ = gimple_purge_all_dead_eh_edges (need_eh_cleanup) ? TODO_cleanup_cfg : 0;
+ BITMAP_FREE (need_eh_cleanup);
+
+ delete complex_variable_components;
+ complex_variable_components = NULL;
+ complex_ssa_name_components.release ();
+ complex_lattice_values.release ();
+ return todo;
+}
+
+namespace {
+
+const pass_data pass_data_lower_complex =
+{
+ GIMPLE_PASS, /* type */
+ "cplxlower", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ TV_NONE, /* tv_id */
+ PROP_ssa, /* properties_required */
+ PROP_gimple_lcx, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ TODO_update_ssa, /* todo_flags_finish */
+};
+
+class pass_lower_complex : public gimple_opt_pass
+{
+public:
+ pass_lower_complex (gcc::context *ctxt)
+ : gimple_opt_pass (pass_data_lower_complex, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ opt_pass * clone () { return new pass_lower_complex (m_ctxt); }
+ virtual unsigned int execute (function *) { return tree_lower_complex (); }
+
+}; // class pass_lower_complex
+
+} // anon namespace
+
+gimple_opt_pass *
+make_pass_lower_complex (gcc::context *ctxt)
+{
+ return new pass_lower_complex (ctxt);
+}
+
+
+namespace {
+
+const pass_data pass_data_lower_complex_O0 =
+{
+ GIMPLE_PASS, /* type */
+ "cplxlower0", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ TV_NONE, /* tv_id */
+ PROP_cfg, /* properties_required */
+ PROP_gimple_lcx, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ TODO_update_ssa, /* todo_flags_finish */
+};
+
+class pass_lower_complex_O0 : public gimple_opt_pass
+{
+public:
+ pass_lower_complex_O0 (gcc::context *ctxt)
+ : gimple_opt_pass (pass_data_lower_complex_O0, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ virtual bool gate (function *fun)
+ {
+ /* With errors, normal optimization passes are not run. If we don't
+ lower complex operations at all, rtl expansion will abort. */
+ return !(fun->curr_properties & PROP_gimple_lcx);
+ }
+
+ virtual unsigned int execute (function *) { return tree_lower_complex (); }
+
+}; // class pass_lower_complex_O0
+
+} // anon namespace
+
+gimple_opt_pass *
+make_pass_lower_complex_O0 (gcc::context *ctxt)
+{
+ return new pass_lower_complex_O0 (ctxt);
+}