diff options
Diffstat (limited to 'gcc/tree-complex.cc')
-rw-r--r-- | gcc/tree-complex.cc | 1956 |
1 files changed, 1956 insertions, 0 deletions
diff --git a/gcc/tree-complex.cc b/gcc/tree-complex.cc new file mode 100644 index 0000000..9acb1ad --- /dev/null +++ b/gcc/tree-complex.cc @@ -0,0 +1,1956 @@ +/* Lower complex number operations to scalar operations. + Copyright (C) 2004-2022 Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it +under the terms of the GNU General Public License as published by the +Free Software Foundation; either version 3, or (at your option) any +later version. + +GCC is distributed in the hope that it will be useful, but WITHOUT +ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "backend.h" +#include "rtl.h" +#include "tree.h" +#include "gimple.h" +#include "cfghooks.h" +#include "tree-pass.h" +#include "ssa.h" +#include "fold-const.h" +#include "stor-layout.h" +#include "tree-eh.h" +#include "gimplify.h" +#include "gimple-iterator.h" +#include "gimplify-me.h" +#include "tree-cfg.h" +#include "tree-dfa.h" +#include "tree-ssa.h" +#include "tree-ssa-propagate.h" +#include "tree-hasher.h" +#include "cfgloop.h" +#include "cfganal.h" +#include "gimple-fold.h" + + +/* For each complex ssa name, a lattice value. We're interested in finding + out whether a complex number is degenerate in some way, having only real + or only complex parts. */ + +enum +{ + UNINITIALIZED = 0, + ONLY_REAL = 1, + ONLY_IMAG = 2, + VARYING = 3 +}; + +/* The type complex_lattice_t holds combinations of the above + constants. */ +typedef int complex_lattice_t; + +#define PAIR(a, b) ((a) << 2 | (b)) + +class complex_propagate : public ssa_propagation_engine +{ + enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE; + enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE; +}; + +static vec<complex_lattice_t> complex_lattice_values; + +/* For each complex variable, a pair of variables for the components exists in + the hashtable. */ +static int_tree_htab_type *complex_variable_components; + +/* For each complex SSA_NAME, a pair of ssa names for the components. */ +static vec<tree> complex_ssa_name_components; + +/* Vector of PHI triplets (original complex PHI and corresponding real and + imag PHIs if real and/or imag PHIs contain temporarily + non-SSA_NAME/non-invariant args that need to be replaced by SSA_NAMEs. */ +static vec<gphi *> phis_to_revisit; + +/* BBs that need EH cleanup. */ +static bitmap need_eh_cleanup; + +/* Lookup UID in the complex_variable_components hashtable and return the + associated tree. */ +static tree +cvc_lookup (unsigned int uid) +{ + struct int_tree_map in; + in.uid = uid; + return complex_variable_components->find_with_hash (in, uid).to; +} + +/* Insert the pair UID, TO into the complex_variable_components hashtable. */ + +static void +cvc_insert (unsigned int uid, tree to) +{ + int_tree_map h; + int_tree_map *loc; + + h.uid = uid; + loc = complex_variable_components->find_slot_with_hash (h, uid, INSERT); + loc->uid = uid; + loc->to = to; +} + +/* Return true if T is not a zero constant. In the case of real values, + we're only interested in +0.0. */ + +static int +some_nonzerop (tree t) +{ + int zerop = false; + + /* Operations with real or imaginary part of a complex number zero + cannot be treated the same as operations with a real or imaginary + operand if we care about the signs of zeros in the result. */ + if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros) + zerop = real_identical (&TREE_REAL_CST (t), &dconst0); + else if (TREE_CODE (t) == FIXED_CST) + zerop = fixed_zerop (t); + else if (TREE_CODE (t) == INTEGER_CST) + zerop = integer_zerop (t); + + return !zerop; +} + + +/* Compute a lattice value from the components of a complex type REAL + and IMAG. */ + +static complex_lattice_t +find_lattice_value_parts (tree real, tree imag) +{ + int r, i; + complex_lattice_t ret; + + r = some_nonzerop (real); + i = some_nonzerop (imag); + ret = r * ONLY_REAL + i * ONLY_IMAG; + + /* ??? On occasion we could do better than mapping 0+0i to real, but we + certainly don't want to leave it UNINITIALIZED, which eventually gets + mapped to VARYING. */ + if (ret == UNINITIALIZED) + ret = ONLY_REAL; + + return ret; +} + + +/* Compute a lattice value from gimple_val T. */ + +static complex_lattice_t +find_lattice_value (tree t) +{ + tree real, imag; + + switch (TREE_CODE (t)) + { + case SSA_NAME: + return complex_lattice_values[SSA_NAME_VERSION (t)]; + + case COMPLEX_CST: + real = TREE_REALPART (t); + imag = TREE_IMAGPART (t); + break; + + default: + gcc_unreachable (); + } + + return find_lattice_value_parts (real, imag); +} + +/* Determine if LHS is something for which we're interested in seeing + simulation results. */ + +static bool +is_complex_reg (tree lhs) +{ + return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs); +} + +/* Mark the incoming parameters to the function as VARYING. */ + +static void +init_parameter_lattice_values (void) +{ + tree parm, ssa_name; + + for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm)) + if (is_complex_reg (parm) + && (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE) + complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING; +} + +/* Initialize simulation state for each statement. Return false if we + found no statements we want to simulate, and thus there's nothing + for the entire pass to do. */ + +static bool +init_dont_simulate_again (void) +{ + basic_block bb; + bool saw_a_complex_op = false; + + FOR_EACH_BB_FN (bb, cfun) + { + for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi); + gsi_next (&gsi)) + { + gphi *phi = gsi.phi (); + prop_set_simulate_again (phi, + is_complex_reg (gimple_phi_result (phi))); + } + + for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi); + gsi_next (&gsi)) + { + gimple *stmt; + tree op0, op1; + bool sim_again_p; + + stmt = gsi_stmt (gsi); + op0 = op1 = NULL_TREE; + + /* Most control-altering statements must be initially + simulated, else we won't cover the entire cfg. */ + sim_again_p = stmt_ends_bb_p (stmt); + + switch (gimple_code (stmt)) + { + case GIMPLE_CALL: + if (gimple_call_lhs (stmt)) + sim_again_p = is_complex_reg (gimple_call_lhs (stmt)); + break; + + case GIMPLE_ASSIGN: + sim_again_p = is_complex_reg (gimple_assign_lhs (stmt)); + if (gimple_assign_rhs_code (stmt) == REALPART_EXPR + || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR) + op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0); + else + op0 = gimple_assign_rhs1 (stmt); + if (gimple_num_ops (stmt) > 2) + op1 = gimple_assign_rhs2 (stmt); + break; + + case GIMPLE_COND: + op0 = gimple_cond_lhs (stmt); + op1 = gimple_cond_rhs (stmt); + break; + + default: + break; + } + + if (op0 || op1) + switch (gimple_expr_code (stmt)) + { + case EQ_EXPR: + case NE_EXPR: + case PLUS_EXPR: + case MINUS_EXPR: + case MULT_EXPR: + case TRUNC_DIV_EXPR: + case CEIL_DIV_EXPR: + case FLOOR_DIV_EXPR: + case ROUND_DIV_EXPR: + case RDIV_EXPR: + if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE + || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE) + saw_a_complex_op = true; + break; + + case NEGATE_EXPR: + case CONJ_EXPR: + if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE) + saw_a_complex_op = true; + break; + + case REALPART_EXPR: + case IMAGPART_EXPR: + /* The total store transformation performed during + gimplification creates such uninitialized loads + and we need to lower the statement to be able + to fix things up. */ + if (TREE_CODE (op0) == SSA_NAME + && ssa_undefined_value_p (op0)) + saw_a_complex_op = true; + break; + + default: + break; + } + + prop_set_simulate_again (stmt, sim_again_p); + } + } + + return saw_a_complex_op; +} + + +/* Evaluate statement STMT against the complex lattice defined above. */ + +enum ssa_prop_result +complex_propagate::visit_stmt (gimple *stmt, edge *taken_edge_p ATTRIBUTE_UNUSED, + tree *result_p) +{ + complex_lattice_t new_l, old_l, op1_l, op2_l; + unsigned int ver; + tree lhs; + + lhs = gimple_get_lhs (stmt); + /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */ + if (!lhs || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)) + return SSA_PROP_VARYING; + + /* These conditions should be satisfied due to the initial filter + set up in init_dont_simulate_again. */ + gcc_assert (TREE_CODE (lhs) == SSA_NAME); + gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE); + + *result_p = lhs; + ver = SSA_NAME_VERSION (lhs); + old_l = complex_lattice_values[ver]; + + switch (gimple_expr_code (stmt)) + { + case SSA_NAME: + case COMPLEX_CST: + new_l = find_lattice_value (gimple_assign_rhs1 (stmt)); + break; + + case COMPLEX_EXPR: + new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt), + gimple_assign_rhs2 (stmt)); + break; + + case PLUS_EXPR: + case MINUS_EXPR: + op1_l = find_lattice_value (gimple_assign_rhs1 (stmt)); + op2_l = find_lattice_value (gimple_assign_rhs2 (stmt)); + + /* We've set up the lattice values such that IOR neatly + models addition. */ + new_l = op1_l | op2_l; + break; + + case MULT_EXPR: + case RDIV_EXPR: + case TRUNC_DIV_EXPR: + case CEIL_DIV_EXPR: + case FLOOR_DIV_EXPR: + case ROUND_DIV_EXPR: + op1_l = find_lattice_value (gimple_assign_rhs1 (stmt)); + op2_l = find_lattice_value (gimple_assign_rhs2 (stmt)); + + /* Obviously, if either varies, so does the result. */ + if (op1_l == VARYING || op2_l == VARYING) + new_l = VARYING; + /* Don't prematurely promote variables if we've not yet seen + their inputs. */ + else if (op1_l == UNINITIALIZED) + new_l = op2_l; + else if (op2_l == UNINITIALIZED) + new_l = op1_l; + else + { + /* At this point both numbers have only one component. If the + numbers are of opposite kind, the result is imaginary, + otherwise the result is real. The add/subtract translates + the real/imag from/to 0/1; the ^ performs the comparison. */ + new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL; + + /* Don't allow the lattice value to flip-flop indefinitely. */ + new_l |= old_l; + } + break; + + case NEGATE_EXPR: + case CONJ_EXPR: + new_l = find_lattice_value (gimple_assign_rhs1 (stmt)); + break; + + default: + new_l = VARYING; + break; + } + + /* If nothing changed this round, let the propagator know. */ + if (new_l == old_l) + return SSA_PROP_NOT_INTERESTING; + + complex_lattice_values[ver] = new_l; + return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING; +} + +/* Evaluate a PHI node against the complex lattice defined above. */ + +enum ssa_prop_result +complex_propagate::visit_phi (gphi *phi) +{ + complex_lattice_t new_l, old_l; + unsigned int ver; + tree lhs; + int i; + + lhs = gimple_phi_result (phi); + + /* This condition should be satisfied due to the initial filter + set up in init_dont_simulate_again. */ + gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE); + + if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)) + return SSA_PROP_VARYING; + + /* We've set up the lattice values such that IOR neatly models PHI meet. */ + new_l = UNINITIALIZED; + for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i) + new_l |= find_lattice_value (gimple_phi_arg_def (phi, i)); + + ver = SSA_NAME_VERSION (lhs); + old_l = complex_lattice_values[ver]; + + if (new_l == old_l) + return SSA_PROP_NOT_INTERESTING; + + complex_lattice_values[ver] = new_l; + return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING; +} + +/* Create one backing variable for a complex component of ORIG. */ + +static tree +create_one_component_var (tree type, tree orig, const char *prefix, + const char *suffix, enum tree_code code) +{ + tree r = create_tmp_var (type, prefix); + + DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig); + DECL_ARTIFICIAL (r) = 1; + + if (DECL_NAME (orig) && !DECL_IGNORED_P (orig)) + { + const char *name = IDENTIFIER_POINTER (DECL_NAME (orig)); + name = ACONCAT ((name, suffix, NULL)); + DECL_NAME (r) = get_identifier (name); + + SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig)); + DECL_HAS_DEBUG_EXPR_P (r) = 1; + DECL_IGNORED_P (r) = 0; + copy_warning (r, orig); + } + else + { + DECL_IGNORED_P (r) = 1; + suppress_warning (r); + } + + return r; +} + +/* Retrieve a value for a complex component of VAR. */ + +static tree +get_component_var (tree var, bool imag_p) +{ + size_t decl_index = DECL_UID (var) * 2 + imag_p; + tree ret = cvc_lookup (decl_index); + + if (ret == NULL) + { + ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var, + imag_p ? "CI" : "CR", + imag_p ? "$imag" : "$real", + imag_p ? IMAGPART_EXPR : REALPART_EXPR); + cvc_insert (decl_index, ret); + } + + return ret; +} + +/* Retrieve a value for a complex component of SSA_NAME. */ + +static tree +get_component_ssa_name (tree ssa_name, bool imag_p) +{ + complex_lattice_t lattice = find_lattice_value (ssa_name); + size_t ssa_name_index; + tree ret; + + if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG)) + { + tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name)); + if (SCALAR_FLOAT_TYPE_P (inner_type)) + return build_real (inner_type, dconst0); + else + return build_int_cst (inner_type, 0); + } + + ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p; + ret = complex_ssa_name_components[ssa_name_index]; + if (ret == NULL) + { + if (SSA_NAME_VAR (ssa_name)) + ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p); + else + ret = TREE_TYPE (TREE_TYPE (ssa_name)); + ret = make_ssa_name (ret); + + /* Copy some properties from the original. In particular, whether it + is used in an abnormal phi, and whether it's uninitialized. */ + SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret) + = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name); + if (SSA_NAME_IS_DEFAULT_DEF (ssa_name) + && TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL) + { + SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name); + set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret); + } + + complex_ssa_name_components[ssa_name_index] = ret; + } + + return ret; +} + +/* Set a value for a complex component of SSA_NAME, return a + gimple_seq of stuff that needs doing. */ + +static gimple_seq +set_component_ssa_name (tree ssa_name, bool imag_p, tree value) +{ + complex_lattice_t lattice = find_lattice_value (ssa_name); + size_t ssa_name_index; + tree comp; + gimple *last; + gimple_seq list; + + /* We know the value must be zero, else there's a bug in our lattice + analysis. But the value may well be a variable known to contain + zero. We should be safe ignoring it. */ + if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG)) + return NULL; + + /* If we've already assigned an SSA_NAME to this component, then this + means that our walk of the basic blocks found a use before the set. + This is fine. Now we should create an initialization for the value + we created earlier. */ + ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p; + comp = complex_ssa_name_components[ssa_name_index]; + if (comp) + ; + + /* If we've nothing assigned, and the value we're given is already stable, + then install that as the value for this SSA_NAME. This preemptively + copy-propagates the value, which avoids unnecessary memory allocation. */ + else if (is_gimple_min_invariant (value) + && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name)) + { + complex_ssa_name_components[ssa_name_index] = value; + return NULL; + } + else if (TREE_CODE (value) == SSA_NAME + && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name)) + { + /* Replace an anonymous base value with the variable from cvc_lookup. + This should result in better debug info. */ + if (!SSA_NAME_IS_DEFAULT_DEF (value) + && SSA_NAME_VAR (ssa_name) + && (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value))) + && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name))) + { + comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p); + replace_ssa_name_symbol (value, comp); + } + + complex_ssa_name_components[ssa_name_index] = value; + return NULL; + } + + /* Finally, we need to stabilize the result by installing the value into + a new ssa name. */ + else + comp = get_component_ssa_name (ssa_name, imag_p); + + /* Do all the work to assign VALUE to COMP. */ + list = NULL; + value = force_gimple_operand (value, &list, false, NULL); + last = gimple_build_assign (comp, value); + gimple_seq_add_stmt (&list, last); + gcc_assert (SSA_NAME_DEF_STMT (comp) == last); + + return list; +} + +/* Extract the real or imaginary part of a complex variable or constant. + Make sure that it's a proper gimple_val and gimplify it if not. + Emit any new code before gsi. */ + +static tree +extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p, + bool gimple_p, bool phiarg_p = false) +{ + switch (TREE_CODE (t)) + { + case COMPLEX_CST: + return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t); + + case COMPLEX_EXPR: + gcc_unreachable (); + + case BIT_FIELD_REF: + { + tree inner_type = TREE_TYPE (TREE_TYPE (t)); + t = unshare_expr (t); + TREE_TYPE (t) = inner_type; + TREE_OPERAND (t, 1) = TYPE_SIZE (inner_type); + if (imagpart_p) + TREE_OPERAND (t, 2) = size_binop (PLUS_EXPR, TREE_OPERAND (t, 2), + TYPE_SIZE (inner_type)); + if (gimple_p) + t = force_gimple_operand_gsi (gsi, t, true, NULL, true, + GSI_SAME_STMT); + return t; + } + + case VAR_DECL: + case RESULT_DECL: + case PARM_DECL: + case COMPONENT_REF: + case ARRAY_REF: + case VIEW_CONVERT_EXPR: + case MEM_REF: + { + tree inner_type = TREE_TYPE (TREE_TYPE (t)); + + t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR), + inner_type, unshare_expr (t)); + + if (gimple_p) + t = force_gimple_operand_gsi (gsi, t, true, NULL, true, + GSI_SAME_STMT); + + return t; + } + + case SSA_NAME: + t = get_component_ssa_name (t, imagpart_p); + if (TREE_CODE (t) == SSA_NAME && SSA_NAME_DEF_STMT (t) == NULL) + gcc_assert (phiarg_p); + return t; + + default: + gcc_unreachable (); + } +} + +/* Update the complex components of the ssa name on the lhs of STMT. */ + +static void +update_complex_components (gimple_stmt_iterator *gsi, gimple *stmt, tree r, + tree i) +{ + tree lhs; + gimple_seq list; + + lhs = gimple_get_lhs (stmt); + + list = set_component_ssa_name (lhs, false, r); + if (list) + gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING); + + list = set_component_ssa_name (lhs, true, i); + if (list) + gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING); +} + +static void +update_complex_components_on_edge (edge e, tree lhs, tree r, tree i) +{ + gimple_seq list; + + list = set_component_ssa_name (lhs, false, r); + if (list) + gsi_insert_seq_on_edge (e, list); + + list = set_component_ssa_name (lhs, true, i); + if (list) + gsi_insert_seq_on_edge (e, list); +} + + +/* Update an assignment to a complex variable in place. */ + +static void +update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i) +{ + gimple *old_stmt = gsi_stmt (*gsi); + gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i); + gimple *stmt = gsi_stmt (*gsi); + update_stmt (stmt); + if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)) + bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index); + + update_complex_components (gsi, gsi_stmt (*gsi), r, i); +} + + +/* Generate code at the entry point of the function to initialize the + component variables for a complex parameter. */ + +static void +update_parameter_components (void) +{ + edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)); + tree parm; + + for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm)) + { + tree type = TREE_TYPE (parm); + tree ssa_name, r, i; + + if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm)) + continue; + + type = TREE_TYPE (type); + ssa_name = ssa_default_def (cfun, parm); + if (!ssa_name) + continue; + + r = build1 (REALPART_EXPR, type, ssa_name); + i = build1 (IMAGPART_EXPR, type, ssa_name); + update_complex_components_on_edge (entry_edge, ssa_name, r, i); + } +} + +/* Generate code to set the component variables of a complex variable + to match the PHI statements in block BB. */ + +static void +update_phi_components (basic_block bb) +{ + gphi_iterator gsi; + + for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) + { + gphi *phi = gsi.phi (); + + if (is_complex_reg (gimple_phi_result (phi))) + { + gphi *p[2] = { NULL, NULL }; + unsigned int i, j, n; + bool revisit_phi = false; + + for (j = 0; j < 2; j++) + { + tree l = get_component_ssa_name (gimple_phi_result (phi), j > 0); + if (TREE_CODE (l) == SSA_NAME) + p[j] = create_phi_node (l, bb); + } + + for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i) + { + tree comp, arg = gimple_phi_arg_def (phi, i); + for (j = 0; j < 2; j++) + if (p[j]) + { + comp = extract_component (NULL, arg, j > 0, false, true); + if (TREE_CODE (comp) == SSA_NAME + && SSA_NAME_DEF_STMT (comp) == NULL) + { + /* For the benefit of any gimple simplification during + this pass that might walk SSA_NAME def stmts, + don't add SSA_NAMEs without definitions into the + PHI arguments, but put a decl in there instead + temporarily, and revisit this PHI later on. */ + if (SSA_NAME_VAR (comp)) + comp = SSA_NAME_VAR (comp); + else + comp = create_tmp_reg (TREE_TYPE (comp), + get_name (comp)); + revisit_phi = true; + } + SET_PHI_ARG_DEF (p[j], i, comp); + } + } + + if (revisit_phi) + { + phis_to_revisit.safe_push (phi); + phis_to_revisit.safe_push (p[0]); + phis_to_revisit.safe_push (p[1]); + } + } + } +} + +/* Expand a complex move to scalars. */ + +static void +expand_complex_move (gimple_stmt_iterator *gsi, tree type) +{ + tree inner_type = TREE_TYPE (type); + tree r, i, lhs, rhs; + gimple *stmt = gsi_stmt (*gsi); + + if (is_gimple_assign (stmt)) + { + lhs = gimple_assign_lhs (stmt); + if (gimple_num_ops (stmt) == 2) + rhs = gimple_assign_rhs1 (stmt); + else + rhs = NULL_TREE; + } + else if (is_gimple_call (stmt)) + { + lhs = gimple_call_lhs (stmt); + rhs = NULL_TREE; + } + else + gcc_unreachable (); + + if (TREE_CODE (lhs) == SSA_NAME) + { + if (is_ctrl_altering_stmt (stmt)) + { + edge e; + + /* The value is not assigned on the exception edges, so we need not + concern ourselves there. We do need to update on the fallthru + edge. Find it. */ + e = find_fallthru_edge (gsi_bb (*gsi)->succs); + if (!e) + gcc_unreachable (); + + r = build1 (REALPART_EXPR, inner_type, lhs); + i = build1 (IMAGPART_EXPR, inner_type, lhs); + update_complex_components_on_edge (e, lhs, r, i); + } + else if (is_gimple_call (stmt) + || gimple_has_side_effects (stmt) + || gimple_assign_rhs_code (stmt) == PAREN_EXPR) + { + r = build1 (REALPART_EXPR, inner_type, lhs); + i = build1 (IMAGPART_EXPR, inner_type, lhs); + update_complex_components (gsi, stmt, r, i); + } + else + { + if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR) + { + r = extract_component (gsi, rhs, 0, true); + i = extract_component (gsi, rhs, 1, true); + } + else + { + r = gimple_assign_rhs1 (stmt); + i = gimple_assign_rhs2 (stmt); + } + update_complex_assignment (gsi, r, i); + } + } + else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs)) + { + tree x; + gimple *t; + location_t loc; + + loc = gimple_location (stmt); + r = extract_component (gsi, rhs, 0, false); + i = extract_component (gsi, rhs, 1, false); + + x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs)); + t = gimple_build_assign (x, r); + gimple_set_location (t, loc); + gsi_insert_before (gsi, t, GSI_SAME_STMT); + + if (stmt == gsi_stmt (*gsi)) + { + x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs)); + gimple_assign_set_lhs (stmt, x); + gimple_assign_set_rhs1 (stmt, i); + } + else + { + x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs)); + t = gimple_build_assign (x, i); + gimple_set_location (t, loc); + gsi_insert_before (gsi, t, GSI_SAME_STMT); + + stmt = gsi_stmt (*gsi); + gcc_assert (gimple_code (stmt) == GIMPLE_RETURN); + gimple_return_set_retval (as_a <greturn *> (stmt), lhs); + } + + update_stmt (stmt); + } +} + +/* Expand complex addition to scalars: + a + b = (ar + br) + i(ai + bi) + a - b = (ar - br) + i(ai + bi) +*/ + +static void +expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type, + tree ar, tree ai, tree br, tree bi, + enum tree_code code, + complex_lattice_t al, complex_lattice_t bl) +{ + tree rr, ri; + gimple_seq stmts = NULL; + location_t loc = gimple_location (gsi_stmt (*gsi)); + + switch (PAIR (al, bl)) + { + case PAIR (ONLY_REAL, ONLY_REAL): + rr = gimple_build (&stmts, loc, code, inner_type, ar, br); + ri = ai; + break; + + case PAIR (ONLY_REAL, ONLY_IMAG): + rr = ar; + if (code == MINUS_EXPR) + ri = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, ai, bi); + else + ri = bi; + break; + + case PAIR (ONLY_IMAG, ONLY_REAL): + if (code == MINUS_EXPR) + rr = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, ar, br); + else + rr = br; + ri = ai; + break; + + case PAIR (ONLY_IMAG, ONLY_IMAG): + rr = ar; + ri = gimple_build (&stmts, loc, code, inner_type, ai, bi); + break; + + case PAIR (VARYING, ONLY_REAL): + rr = gimple_build (&stmts, loc, code, inner_type, ar, br); + ri = ai; + break; + + case PAIR (VARYING, ONLY_IMAG): + rr = ar; + ri = gimple_build (&stmts, loc, code, inner_type, ai, bi); + break; + + case PAIR (ONLY_REAL, VARYING): + if (code == MINUS_EXPR) + goto general; + rr = gimple_build (&stmts, loc, code, inner_type, ar, br); + ri = bi; + break; + + case PAIR (ONLY_IMAG, VARYING): + if (code == MINUS_EXPR) + goto general; + rr = br; + ri = gimple_build (&stmts, loc, code, inner_type, ai, bi); + break; + + case PAIR (VARYING, VARYING): + general: + rr = gimple_build (&stmts, loc, code, inner_type, ar, br); + ri = gimple_build (&stmts, loc, code, inner_type, ai, bi); + break; + + default: + gcc_unreachable (); + } + + gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); + update_complex_assignment (gsi, rr, ri); +} + +/* Expand a complex multiplication or division to a libcall to the c99 + compliant routines. TYPE is the complex type of the operation. + If INPLACE_P replace the statement at GSI with + the libcall and return NULL_TREE. Else insert the call, assign its + result to an output variable and return that variable. If INPLACE_P + is true then the statement being replaced should be an assignment + statement. */ + +static tree +expand_complex_libcall (gimple_stmt_iterator *gsi, tree type, tree ar, tree ai, + tree br, tree bi, enum tree_code code, bool inplace_p) +{ + machine_mode mode; + enum built_in_function bcode; + tree fn, lhs; + gcall *stmt; + + mode = TYPE_MODE (type); + gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT); + + if (code == MULT_EXPR) + bcode = ((enum built_in_function) + (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT)); + else if (code == RDIV_EXPR) + bcode = ((enum built_in_function) + (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT)); + else + gcc_unreachable (); + fn = builtin_decl_explicit (bcode); + stmt = gimple_build_call (fn, 4, ar, ai, br, bi); + + if (inplace_p) + { + gimple *old_stmt = gsi_stmt (*gsi); + gimple_call_set_nothrow (stmt, !stmt_could_throw_p (cfun, old_stmt)); + lhs = gimple_assign_lhs (old_stmt); + gimple_call_set_lhs (stmt, lhs); + gsi_replace (gsi, stmt, true); + + type = TREE_TYPE (type); + if (stmt_can_throw_internal (cfun, stmt)) + { + edge_iterator ei; + edge e; + FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs) + if (!(e->flags & EDGE_EH)) + break; + basic_block bb = split_edge (e); + gimple_stmt_iterator gsi2 = gsi_start_bb (bb); + update_complex_components (&gsi2, stmt, + build1 (REALPART_EXPR, type, lhs), + build1 (IMAGPART_EXPR, type, lhs)); + return NULL_TREE; + } + else + update_complex_components (gsi, stmt, + build1 (REALPART_EXPR, type, lhs), + build1 (IMAGPART_EXPR, type, lhs)); + SSA_NAME_DEF_STMT (lhs) = stmt; + return NULL_TREE; + } + + gimple_call_set_nothrow (stmt, true); + lhs = make_ssa_name (type); + gimple_call_set_lhs (stmt, lhs); + gsi_insert_before (gsi, stmt, GSI_SAME_STMT); + + return lhs; +} + +/* Perform a complex multiplication on two complex constants A, B represented + by AR, AI, BR, BI of type TYPE. + The operation we want is: a * b = (ar*br - ai*bi) + i(ar*bi + br*ai). + Insert the GIMPLE statements into GSI. Store the real and imaginary + components of the result into RR and RI. */ + +static void +expand_complex_multiplication_components (gimple_seq *stmts, location_t loc, + tree type, tree ar, tree ai, + tree br, tree bi, + tree *rr, tree *ri) +{ + tree t1, t2, t3, t4; + + t1 = gimple_build (stmts, loc, MULT_EXPR, type, ar, br); + t2 = gimple_build (stmts, loc, MULT_EXPR, type, ai, bi); + t3 = gimple_build (stmts, loc, MULT_EXPR, type, ar, bi); + + /* Avoid expanding redundant multiplication for the common + case of squaring a complex number. */ + if (ar == br && ai == bi) + t4 = t3; + else + t4 = gimple_build (stmts, loc, MULT_EXPR, type, ai, br); + + *rr = gimple_build (stmts, loc, MINUS_EXPR, type, t1, t2); + *ri = gimple_build (stmts, loc, PLUS_EXPR, type, t3, t4); +} + +/* Expand complex multiplication to scalars: + a * b = (ar*br - ai*bi) + i(ar*bi + br*ai) +*/ + +static void +expand_complex_multiplication (gimple_stmt_iterator *gsi, tree type, + tree ar, tree ai, tree br, tree bi, + complex_lattice_t al, complex_lattice_t bl) +{ + tree rr, ri; + tree inner_type = TREE_TYPE (type); + location_t loc = gimple_location (gsi_stmt (*gsi)); + gimple_seq stmts = NULL; + + if (al < bl) + { + complex_lattice_t tl; + rr = ar, ar = br, br = rr; + ri = ai, ai = bi, bi = ri; + tl = al, al = bl, bl = tl; + } + + switch (PAIR (al, bl)) + { + case PAIR (ONLY_REAL, ONLY_REAL): + rr = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, br); + ri = ai; + break; + + case PAIR (ONLY_IMAG, ONLY_REAL): + rr = ar; + if (TREE_CODE (ai) == REAL_CST + && real_identical (&TREE_REAL_CST (ai), &dconst1)) + ri = br; + else + ri = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, br); + break; + + case PAIR (ONLY_IMAG, ONLY_IMAG): + rr = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, bi); + rr = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, rr); + ri = ar; + break; + + case PAIR (VARYING, ONLY_REAL): + rr = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, br); + ri = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, br); + break; + + case PAIR (VARYING, ONLY_IMAG): + rr = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, bi); + rr = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, rr); + ri = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, bi); + break; + + case PAIR (VARYING, VARYING): + if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type)) + { + /* If optimizing for size or not at all just do a libcall. + Same if there are exception-handling edges or signaling NaNs. */ + if (optimize == 0 || optimize_bb_for_size_p (gsi_bb (*gsi)) + || stmt_can_throw_internal (cfun, gsi_stmt (*gsi)) + || flag_signaling_nans) + { + expand_complex_libcall (gsi, type, ar, ai, br, bi, + MULT_EXPR, true); + return; + } + + if (!HONOR_NANS (inner_type)) + { + /* If we are not worrying about NaNs expand to + (ar*br - ai*bi) + i(ar*bi + br*ai) directly. */ + expand_complex_multiplication_components (&stmts, loc, inner_type, + ar, ai, br, bi, + &rr, &ri); + break; + } + + /* Else, expand x = a * b into + x = (ar*br - ai*bi) + i(ar*bi + br*ai); + if (isunordered (__real__ x, __imag__ x)) + x = __muldc3 (a, b); */ + + tree tmpr, tmpi; + expand_complex_multiplication_components (&stmts, loc, + inner_type, ar, ai, + br, bi, &tmpr, &tmpi); + gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); + stmts = NULL; + + gimple *check + = gimple_build_cond (UNORDERED_EXPR, tmpr, tmpi, + NULL_TREE, NULL_TREE); + + basic_block orig_bb = gsi_bb (*gsi); + /* We want to keep track of the original complex multiplication + statement as we're going to modify it later in + update_complex_assignment. Make sure that insert_cond_bb leaves + that statement in the join block. */ + gsi_prev (gsi); + basic_block cond_bb + = insert_cond_bb (gsi_bb (*gsi), gsi_stmt (*gsi), check, + profile_probability::very_unlikely ()); + + gimple_stmt_iterator cond_bb_gsi = gsi_last_bb (cond_bb); + gsi_insert_after (&cond_bb_gsi, gimple_build_nop (), GSI_NEW_STMT); + + tree libcall_res + = expand_complex_libcall (&cond_bb_gsi, type, ar, ai, br, + bi, MULT_EXPR, false); + gimple_seq stmts2 = NULL; + tree cond_real = gimple_build (&stmts2, loc, REALPART_EXPR, + inner_type, libcall_res); + tree cond_imag = gimple_build (&stmts2, loc, IMAGPART_EXPR, + inner_type, libcall_res); + gsi_insert_seq_before (&cond_bb_gsi, stmts2, GSI_SAME_STMT); + + basic_block join_bb = single_succ_edge (cond_bb)->dest; + *gsi = gsi_start_nondebug_after_labels_bb (join_bb); + + /* We have a conditional block with some assignments in cond_bb. + Wire up the PHIs to wrap up. */ + rr = make_ssa_name (inner_type); + ri = make_ssa_name (inner_type); + edge cond_to_join = single_succ_edge (cond_bb); + edge orig_to_join = find_edge (orig_bb, join_bb); + + gphi *real_phi = create_phi_node (rr, gsi_bb (*gsi)); + add_phi_arg (real_phi, cond_real, cond_to_join, UNKNOWN_LOCATION); + add_phi_arg (real_phi, tmpr, orig_to_join, UNKNOWN_LOCATION); + + gphi *imag_phi = create_phi_node (ri, gsi_bb (*gsi)); + add_phi_arg (imag_phi, cond_imag, cond_to_join, UNKNOWN_LOCATION); + add_phi_arg (imag_phi, tmpi, orig_to_join, UNKNOWN_LOCATION); + } + else + /* If we are not worrying about NaNs expand to + (ar*br - ai*bi) + i(ar*bi + br*ai) directly. */ + expand_complex_multiplication_components (&stmts, loc, + inner_type, ar, ai, + br, bi, &rr, &ri); + break; + + default: + gcc_unreachable (); + } + + gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); + update_complex_assignment (gsi, rr, ri); +} + +/* Keep this algorithm in sync with fold-const.c:const_binop(). + + Expand complex division to scalars, straightforward algorithm. + a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t) + t = br*br + bi*bi +*/ + +static void +expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type, + tree ar, tree ai, tree br, tree bi, + enum tree_code code) +{ + gimple_seq stmts = NULL; + location_t loc = gimple_location (gsi_stmt (*gsi)); + tree rr, ri, div, t1, t2, t3; + + t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, br, br); + t2 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, bi, bi); + div = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, t2); + + t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, br); + t2 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, bi); + t3 = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, t2); + rr = gimple_build (&stmts, loc, code, inner_type, t3, div); + + t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, br); + t2 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, bi); + t3 = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, t1, t2); + ri = gimple_build (&stmts, loc, code, inner_type, t3, div); + + gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); + update_complex_assignment (gsi, rr, ri); +} + +/* Keep this algorithm in sync with fold-const.c:const_binop(). + + Expand complex division to scalars, modified algorithm to minimize + overflow with wide input ranges. */ + +static void +expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type, + tree ar, tree ai, tree br, tree bi, + enum tree_code code) +{ + tree rr, ri, ratio, div, t1, t2, tr, ti, compare; + basic_block bb_cond, bb_true, bb_false, bb_join; + gimple *stmt; + gimple_seq stmts = NULL; + location_t loc = gimple_location (gsi_stmt (*gsi)); + + /* Examine |br| < |bi|, and branch. */ + t1 = gimple_build (&stmts, loc, ABS_EXPR, inner_type, br); + t2 = gimple_build (&stmts, loc, ABS_EXPR, inner_type, bi); + compare = gimple_build (&stmts, loc, + LT_EXPR, boolean_type_node, t1, t2); + + bb_cond = bb_true = bb_false = bb_join = NULL; + rr = ri = tr = ti = NULL; + if (TREE_CODE (compare) != INTEGER_CST) + { + edge e; + gimple *stmt; + + gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); + stmts = NULL; + stmt = gimple_build_cond (NE_EXPR, compare, boolean_false_node, + NULL_TREE, NULL_TREE); + gsi_insert_before (gsi, stmt, GSI_SAME_STMT); + + /* Split the original block, and create the TRUE and FALSE blocks. */ + e = split_block (gsi_bb (*gsi), stmt); + bb_cond = e->src; + bb_join = e->dest; + bb_true = create_empty_bb (bb_cond); + bb_false = create_empty_bb (bb_true); + bb_true->count = bb_false->count + = bb_cond->count.apply_probability (profile_probability::even ()); + + /* Wire the blocks together. */ + e->flags = EDGE_TRUE_VALUE; + /* TODO: With value profile we could add an historgram to determine real + branch outcome. */ + e->probability = profile_probability::even (); + redirect_edge_succ (e, bb_true); + edge e2 = make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE); + e2->probability = profile_probability::even (); + make_single_succ_edge (bb_true, bb_join, EDGE_FALLTHRU); + make_single_succ_edge (bb_false, bb_join, EDGE_FALLTHRU); + add_bb_to_loop (bb_true, bb_cond->loop_father); + add_bb_to_loop (bb_false, bb_cond->loop_father); + + /* Update dominance info. Note that bb_join's data was + updated by split_block. */ + if (dom_info_available_p (CDI_DOMINATORS)) + { + set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond); + set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond); + } + + rr = create_tmp_reg (inner_type); + ri = create_tmp_reg (inner_type); + } + else + { + gimple_seq_discard (stmts); + stmts = NULL; + } + + /* In the TRUE branch, we compute + ratio = br/bi; + div = (br * ratio) + bi; + tr = (ar * ratio) + ai; + ti = (ai * ratio) - ar; + tr = tr / div; + ti = ti / div; */ + if (bb_true || integer_nonzerop (compare)) + { + if (bb_true) + { + *gsi = gsi_last_bb (bb_true); + gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT); + } + + ratio = gimple_build (&stmts, loc, code, inner_type, br, bi); + + t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, br, ratio); + div = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, bi); + + t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, ratio); + tr = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, ai); + + t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, ratio); + ti = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, t1, ar); + + tr = gimple_build (&stmts, loc, code, inner_type, tr, div); + ti = gimple_build (&stmts, loc, code, inner_type, ti, div); + gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); + stmts = NULL; + + if (bb_true) + { + stmt = gimple_build_assign (rr, tr); + gsi_insert_before (gsi, stmt, GSI_SAME_STMT); + stmt = gimple_build_assign (ri, ti); + gsi_insert_before (gsi, stmt, GSI_SAME_STMT); + gsi_remove (gsi, true); + } + } + + /* In the FALSE branch, we compute + ratio = d/c; + divisor = (d * ratio) + c; + tr = (b * ratio) + a; + ti = b - (a * ratio); + tr = tr / div; + ti = ti / div; */ + if (bb_false || integer_zerop (compare)) + { + if (bb_false) + { + *gsi = gsi_last_bb (bb_false); + gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT); + } + + ratio = gimple_build (&stmts, loc, code, inner_type, bi, br); + + t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, bi, ratio); + div = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, br); + + t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, ratio); + tr = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, ar); + + t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, ratio); + ti = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, ai, t1); + + tr = gimple_build (&stmts, loc, code, inner_type, tr, div); + ti = gimple_build (&stmts, loc, code, inner_type, ti, div); + gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); + stmts = NULL; + + if (bb_false) + { + stmt = gimple_build_assign (rr, tr); + gsi_insert_before (gsi, stmt, GSI_SAME_STMT); + stmt = gimple_build_assign (ri, ti); + gsi_insert_before (gsi, stmt, GSI_SAME_STMT); + gsi_remove (gsi, true); + } + } + + if (bb_join) + *gsi = gsi_start_bb (bb_join); + else + rr = tr, ri = ti; + + update_complex_assignment (gsi, rr, ri); +} + +/* Expand complex division to scalars. */ + +static void +expand_complex_division (gimple_stmt_iterator *gsi, tree type, + tree ar, tree ai, tree br, tree bi, + enum tree_code code, + complex_lattice_t al, complex_lattice_t bl) +{ + tree rr, ri; + gimple_seq stmts = NULL; + location_t loc = gimple_location (gsi_stmt (*gsi)); + + tree inner_type = TREE_TYPE (type); + switch (PAIR (al, bl)) + { + case PAIR (ONLY_REAL, ONLY_REAL): + rr = gimple_build (&stmts, loc, code, inner_type, ar, br); + ri = ai; + break; + + case PAIR (ONLY_REAL, ONLY_IMAG): + rr = ai; + ri = gimple_build (&stmts, loc, code, inner_type, ar, bi); + ri = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ri); + break; + + case PAIR (ONLY_IMAG, ONLY_REAL): + rr = ar; + ri = gimple_build (&stmts, loc, code, inner_type, ai, br); + break; + + case PAIR (ONLY_IMAG, ONLY_IMAG): + rr = gimple_build (&stmts, loc, code, inner_type, ai, bi); + ri = ar; + break; + + case PAIR (VARYING, ONLY_REAL): + rr = gimple_build (&stmts, loc, code, inner_type, ar, br); + ri = gimple_build (&stmts, loc, code, inner_type, ai, br); + break; + + case PAIR (VARYING, ONLY_IMAG): + rr = gimple_build (&stmts, loc, code, inner_type, ai, bi); + ri = gimple_build (&stmts, loc, code, inner_type, ar, bi); + ri = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ri); + break; + + case PAIR (ONLY_REAL, VARYING): + case PAIR (ONLY_IMAG, VARYING): + case PAIR (VARYING, VARYING): + switch (flag_complex_method) + { + case 0: + /* straightforward implementation of complex divide acceptable. */ + expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code); + break; + + case 2: + if (SCALAR_FLOAT_TYPE_P (inner_type)) + { + expand_complex_libcall (gsi, type, ar, ai, br, bi, code, true); + break; + } + /* FALLTHRU */ + + case 1: + /* wide ranges of inputs must work for complex divide. */ + expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code); + break; + + default: + gcc_unreachable (); + } + return; + + default: + gcc_unreachable (); + } + + gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); + update_complex_assignment (gsi, rr, ri); +} + +/* Expand complex negation to scalars: + -a = (-ar) + i(-ai) +*/ + +static void +expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type, + tree ar, tree ai) +{ + tree rr, ri; + gimple_seq stmts = NULL; + location_t loc = gimple_location (gsi_stmt (*gsi)); + + rr = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ar); + ri = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ai); + + gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); + update_complex_assignment (gsi, rr, ri); +} + +/* Expand complex conjugate to scalars: + ~a = (ar) + i(-ai) +*/ + +static void +expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type, + tree ar, tree ai) +{ + tree ri; + gimple_seq stmts = NULL; + location_t loc = gimple_location (gsi_stmt (*gsi)); + + ri = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ai); + + gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); + update_complex_assignment (gsi, ar, ri); +} + +/* Expand complex comparison (EQ or NE only). */ + +static void +expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai, + tree br, tree bi, enum tree_code code) +{ + tree cr, ci, cc, type; + gimple *stmt = gsi_stmt (*gsi); + gimple_seq stmts = NULL; + location_t loc = gimple_location (stmt); + + cr = gimple_build (&stmts, loc, code, boolean_type_node, ar, br); + ci = gimple_build (&stmts, loc, code, boolean_type_node, ai, bi); + cc = gimple_build (&stmts, loc, + (code == EQ_EXPR ? BIT_AND_EXPR : BIT_IOR_EXPR), + boolean_type_node, cr, ci); + gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); + + switch (gimple_code (stmt)) + { + case GIMPLE_RETURN: + { + greturn *return_stmt = as_a <greturn *> (stmt); + type = TREE_TYPE (gimple_return_retval (return_stmt)); + gimple_return_set_retval (return_stmt, fold_convert (type, cc)); + } + break; + + case GIMPLE_ASSIGN: + type = TREE_TYPE (gimple_assign_lhs (stmt)); + gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc)); + stmt = gsi_stmt (*gsi); + break; + + case GIMPLE_COND: + { + gcond *cond_stmt = as_a <gcond *> (stmt); + gimple_cond_set_code (cond_stmt, EQ_EXPR); + gimple_cond_set_lhs (cond_stmt, cc); + gimple_cond_set_rhs (cond_stmt, boolean_true_node); + } + break; + + default: + gcc_unreachable (); + } + + update_stmt (stmt); + if (maybe_clean_eh_stmt (stmt)) + bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index); +} + +/* Expand inline asm that sets some complex SSA_NAMEs. */ + +static void +expand_complex_asm (gimple_stmt_iterator *gsi) +{ + gasm *stmt = as_a <gasm *> (gsi_stmt (*gsi)); + unsigned int i; + + for (i = 0; i < gimple_asm_noutputs (stmt); ++i) + { + tree link = gimple_asm_output_op (stmt, i); + tree op = TREE_VALUE (link); + if (TREE_CODE (op) == SSA_NAME + && TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE) + { + tree type = TREE_TYPE (op); + tree inner_type = TREE_TYPE (type); + tree r = build1 (REALPART_EXPR, inner_type, op); + tree i = build1 (IMAGPART_EXPR, inner_type, op); + gimple_seq list = set_component_ssa_name (op, false, r); + + if (list) + gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING); + + list = set_component_ssa_name (op, true, i); + if (list) + gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING); + } + } +} + +/* Process one statement. If we identify a complex operation, expand it. */ + +static void +expand_complex_operations_1 (gimple_stmt_iterator *gsi) +{ + gimple *stmt = gsi_stmt (*gsi); + tree type, inner_type, lhs; + tree ac, ar, ai, bc, br, bi; + complex_lattice_t al, bl; + enum tree_code code; + + if (gimple_code (stmt) == GIMPLE_ASM) + { + expand_complex_asm (gsi); + return; + } + + lhs = gimple_get_lhs (stmt); + if (!lhs && gimple_code (stmt) != GIMPLE_COND) + return; + + type = TREE_TYPE (gimple_op (stmt, 0)); + code = gimple_expr_code (stmt); + + /* Initial filter for operations we handle. */ + switch (code) + { + case PLUS_EXPR: + case MINUS_EXPR: + case MULT_EXPR: + case TRUNC_DIV_EXPR: + case CEIL_DIV_EXPR: + case FLOOR_DIV_EXPR: + case ROUND_DIV_EXPR: + case RDIV_EXPR: + case NEGATE_EXPR: + case CONJ_EXPR: + if (TREE_CODE (type) != COMPLEX_TYPE) + return; + inner_type = TREE_TYPE (type); + break; + + case EQ_EXPR: + case NE_EXPR: + /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR + subcode, so we need to access the operands using gimple_op. */ + inner_type = TREE_TYPE (gimple_op (stmt, 1)); + if (TREE_CODE (inner_type) != COMPLEX_TYPE) + return; + break; + + default: + { + tree rhs; + + /* GIMPLE_COND may also fallthru here, but we do not need to + do anything with it. */ + if (gimple_code (stmt) == GIMPLE_COND) + return; + + if (TREE_CODE (type) == COMPLEX_TYPE) + expand_complex_move (gsi, type); + else if (is_gimple_assign (stmt) + && (gimple_assign_rhs_code (stmt) == REALPART_EXPR + || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR) + && TREE_CODE (lhs) == SSA_NAME) + { + rhs = gimple_assign_rhs1 (stmt); + rhs = extract_component (gsi, TREE_OPERAND (rhs, 0), + gimple_assign_rhs_code (stmt) + == IMAGPART_EXPR, + false); + gimple_assign_set_rhs_from_tree (gsi, rhs); + stmt = gsi_stmt (*gsi); + update_stmt (stmt); + } + } + return; + } + + /* Extract the components of the two complex values. Make sure and + handle the common case of the same value used twice specially. */ + if (is_gimple_assign (stmt)) + { + ac = gimple_assign_rhs1 (stmt); + bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL; + } + /* GIMPLE_CALL cannot get here. */ + else + { + ac = gimple_cond_lhs (stmt); + bc = gimple_cond_rhs (stmt); + } + + ar = extract_component (gsi, ac, false, true); + ai = extract_component (gsi, ac, true, true); + + if (ac == bc) + br = ar, bi = ai; + else if (bc) + { + br = extract_component (gsi, bc, 0, true); + bi = extract_component (gsi, bc, 1, true); + } + else + br = bi = NULL_TREE; + + al = find_lattice_value (ac); + if (al == UNINITIALIZED) + al = VARYING; + + if (TREE_CODE_CLASS (code) == tcc_unary) + bl = UNINITIALIZED; + else if (ac == bc) + bl = al; + else + { + bl = find_lattice_value (bc); + if (bl == UNINITIALIZED) + bl = VARYING; + } + + switch (code) + { + case PLUS_EXPR: + case MINUS_EXPR: + expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl); + break; + + case MULT_EXPR: + expand_complex_multiplication (gsi, type, ar, ai, br, bi, al, bl); + break; + + case TRUNC_DIV_EXPR: + case CEIL_DIV_EXPR: + case FLOOR_DIV_EXPR: + case ROUND_DIV_EXPR: + case RDIV_EXPR: + expand_complex_division (gsi, type, ar, ai, br, bi, code, al, bl); + break; + + case NEGATE_EXPR: + expand_complex_negation (gsi, inner_type, ar, ai); + break; + + case CONJ_EXPR: + expand_complex_conjugate (gsi, inner_type, ar, ai); + break; + + case EQ_EXPR: + case NE_EXPR: + expand_complex_comparison (gsi, ar, ai, br, bi, code); + break; + + default: + gcc_unreachable (); + } +} + + +/* Entry point for complex operation lowering during optimization. */ + +static unsigned int +tree_lower_complex (void) +{ + gimple_stmt_iterator gsi; + basic_block bb; + int n_bbs, i; + int *rpo; + + if (!init_dont_simulate_again ()) + return 0; + + complex_lattice_values.create (num_ssa_names); + complex_lattice_values.safe_grow_cleared (num_ssa_names, true); + + init_parameter_lattice_values (); + class complex_propagate complex_propagate; + complex_propagate.ssa_propagate (); + + need_eh_cleanup = BITMAP_ALLOC (NULL); + + complex_variable_components = new int_tree_htab_type (10); + + complex_ssa_name_components.create (2 * num_ssa_names); + complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names, true); + + update_parameter_components (); + + rpo = XNEWVEC (int, last_basic_block_for_fn (cfun)); + n_bbs = pre_and_rev_post_order_compute (NULL, rpo, false); + for (i = 0; i < n_bbs; i++) + { + bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]); + if (!bb) + continue; + update_phi_components (bb); + for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) + expand_complex_operations_1 (&gsi); + } + + free (rpo); + + if (!phis_to_revisit.is_empty ()) + { + unsigned int n = phis_to_revisit.length (); + for (unsigned int j = 0; j < n; j += 3) + for (unsigned int k = 0; k < 2; k++) + if (gphi *phi = phis_to_revisit[j + k + 1]) + { + unsigned int m = gimple_phi_num_args (phi); + for (unsigned int l = 0; l < m; ++l) + { + tree op = gimple_phi_arg_def (phi, l); + if (TREE_CODE (op) == SSA_NAME + || is_gimple_min_invariant (op)) + continue; + tree arg = gimple_phi_arg_def (phis_to_revisit[j], l); + op = extract_component (NULL, arg, k > 0, false, false); + SET_PHI_ARG_DEF (phi, l, op); + } + } + phis_to_revisit.release (); + } + + gsi_commit_edge_inserts (); + + unsigned todo + = gimple_purge_all_dead_eh_edges (need_eh_cleanup) ? TODO_cleanup_cfg : 0; + BITMAP_FREE (need_eh_cleanup); + + delete complex_variable_components; + complex_variable_components = NULL; + complex_ssa_name_components.release (); + complex_lattice_values.release (); + return todo; +} + +namespace { + +const pass_data pass_data_lower_complex = +{ + GIMPLE_PASS, /* type */ + "cplxlower", /* name */ + OPTGROUP_NONE, /* optinfo_flags */ + TV_NONE, /* tv_id */ + PROP_ssa, /* properties_required */ + PROP_gimple_lcx, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + TODO_update_ssa, /* todo_flags_finish */ +}; + +class pass_lower_complex : public gimple_opt_pass +{ +public: + pass_lower_complex (gcc::context *ctxt) + : gimple_opt_pass (pass_data_lower_complex, ctxt) + {} + + /* opt_pass methods: */ + opt_pass * clone () { return new pass_lower_complex (m_ctxt); } + virtual unsigned int execute (function *) { return tree_lower_complex (); } + +}; // class pass_lower_complex + +} // anon namespace + +gimple_opt_pass * +make_pass_lower_complex (gcc::context *ctxt) +{ + return new pass_lower_complex (ctxt); +} + + +namespace { + +const pass_data pass_data_lower_complex_O0 = +{ + GIMPLE_PASS, /* type */ + "cplxlower0", /* name */ + OPTGROUP_NONE, /* optinfo_flags */ + TV_NONE, /* tv_id */ + PROP_cfg, /* properties_required */ + PROP_gimple_lcx, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + TODO_update_ssa, /* todo_flags_finish */ +}; + +class pass_lower_complex_O0 : public gimple_opt_pass +{ +public: + pass_lower_complex_O0 (gcc::context *ctxt) + : gimple_opt_pass (pass_data_lower_complex_O0, ctxt) + {} + + /* opt_pass methods: */ + virtual bool gate (function *fun) + { + /* With errors, normal optimization passes are not run. If we don't + lower complex operations at all, rtl expansion will abort. */ + return !(fun->curr_properties & PROP_gimple_lcx); + } + + virtual unsigned int execute (function *) { return tree_lower_complex (); } + +}; // class pass_lower_complex_O0 + +} // anon namespace + +gimple_opt_pass * +make_pass_lower_complex_O0 (gcc::context *ctxt) +{ + return new pass_lower_complex_O0 (ctxt); +} |