aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-complex.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/tree-complex.c')
-rw-r--r--gcc/tree-complex.c1956
1 files changed, 0 insertions, 1956 deletions
diff --git a/gcc/tree-complex.c b/gcc/tree-complex.c
deleted file mode 100644
index 9acb1ad..0000000
--- a/gcc/tree-complex.c
+++ /dev/null
@@ -1,1956 +0,0 @@
-/* Lower complex number operations to scalar operations.
- Copyright (C) 2004-2022 Free Software Foundation, Inc.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it
-under the terms of the GNU General Public License as published by the
-Free Software Foundation; either version 3, or (at your option) any
-later version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT
-ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "backend.h"
-#include "rtl.h"
-#include "tree.h"
-#include "gimple.h"
-#include "cfghooks.h"
-#include "tree-pass.h"
-#include "ssa.h"
-#include "fold-const.h"
-#include "stor-layout.h"
-#include "tree-eh.h"
-#include "gimplify.h"
-#include "gimple-iterator.h"
-#include "gimplify-me.h"
-#include "tree-cfg.h"
-#include "tree-dfa.h"
-#include "tree-ssa.h"
-#include "tree-ssa-propagate.h"
-#include "tree-hasher.h"
-#include "cfgloop.h"
-#include "cfganal.h"
-#include "gimple-fold.h"
-
-
-/* For each complex ssa name, a lattice value. We're interested in finding
- out whether a complex number is degenerate in some way, having only real
- or only complex parts. */
-
-enum
-{
- UNINITIALIZED = 0,
- ONLY_REAL = 1,
- ONLY_IMAG = 2,
- VARYING = 3
-};
-
-/* The type complex_lattice_t holds combinations of the above
- constants. */
-typedef int complex_lattice_t;
-
-#define PAIR(a, b) ((a) << 2 | (b))
-
-class complex_propagate : public ssa_propagation_engine
-{
- enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE;
- enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE;
-};
-
-static vec<complex_lattice_t> complex_lattice_values;
-
-/* For each complex variable, a pair of variables for the components exists in
- the hashtable. */
-static int_tree_htab_type *complex_variable_components;
-
-/* For each complex SSA_NAME, a pair of ssa names for the components. */
-static vec<tree> complex_ssa_name_components;
-
-/* Vector of PHI triplets (original complex PHI and corresponding real and
- imag PHIs if real and/or imag PHIs contain temporarily
- non-SSA_NAME/non-invariant args that need to be replaced by SSA_NAMEs. */
-static vec<gphi *> phis_to_revisit;
-
-/* BBs that need EH cleanup. */
-static bitmap need_eh_cleanup;
-
-/* Lookup UID in the complex_variable_components hashtable and return the
- associated tree. */
-static tree
-cvc_lookup (unsigned int uid)
-{
- struct int_tree_map in;
- in.uid = uid;
- return complex_variable_components->find_with_hash (in, uid).to;
-}
-
-/* Insert the pair UID, TO into the complex_variable_components hashtable. */
-
-static void
-cvc_insert (unsigned int uid, tree to)
-{
- int_tree_map h;
- int_tree_map *loc;
-
- h.uid = uid;
- loc = complex_variable_components->find_slot_with_hash (h, uid, INSERT);
- loc->uid = uid;
- loc->to = to;
-}
-
-/* Return true if T is not a zero constant. In the case of real values,
- we're only interested in +0.0. */
-
-static int
-some_nonzerop (tree t)
-{
- int zerop = false;
-
- /* Operations with real or imaginary part of a complex number zero
- cannot be treated the same as operations with a real or imaginary
- operand if we care about the signs of zeros in the result. */
- if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
- zerop = real_identical (&TREE_REAL_CST (t), &dconst0);
- else if (TREE_CODE (t) == FIXED_CST)
- zerop = fixed_zerop (t);
- else if (TREE_CODE (t) == INTEGER_CST)
- zerop = integer_zerop (t);
-
- return !zerop;
-}
-
-
-/* Compute a lattice value from the components of a complex type REAL
- and IMAG. */
-
-static complex_lattice_t
-find_lattice_value_parts (tree real, tree imag)
-{
- int r, i;
- complex_lattice_t ret;
-
- r = some_nonzerop (real);
- i = some_nonzerop (imag);
- ret = r * ONLY_REAL + i * ONLY_IMAG;
-
- /* ??? On occasion we could do better than mapping 0+0i to real, but we
- certainly don't want to leave it UNINITIALIZED, which eventually gets
- mapped to VARYING. */
- if (ret == UNINITIALIZED)
- ret = ONLY_REAL;
-
- return ret;
-}
-
-
-/* Compute a lattice value from gimple_val T. */
-
-static complex_lattice_t
-find_lattice_value (tree t)
-{
- tree real, imag;
-
- switch (TREE_CODE (t))
- {
- case SSA_NAME:
- return complex_lattice_values[SSA_NAME_VERSION (t)];
-
- case COMPLEX_CST:
- real = TREE_REALPART (t);
- imag = TREE_IMAGPART (t);
- break;
-
- default:
- gcc_unreachable ();
- }
-
- return find_lattice_value_parts (real, imag);
-}
-
-/* Determine if LHS is something for which we're interested in seeing
- simulation results. */
-
-static bool
-is_complex_reg (tree lhs)
-{
- return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
-}
-
-/* Mark the incoming parameters to the function as VARYING. */
-
-static void
-init_parameter_lattice_values (void)
-{
- tree parm, ssa_name;
-
- for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
- if (is_complex_reg (parm)
- && (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE)
- complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING;
-}
-
-/* Initialize simulation state for each statement. Return false if we
- found no statements we want to simulate, and thus there's nothing
- for the entire pass to do. */
-
-static bool
-init_dont_simulate_again (void)
-{
- basic_block bb;
- bool saw_a_complex_op = false;
-
- FOR_EACH_BB_FN (bb, cfun)
- {
- for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
- gsi_next (&gsi))
- {
- gphi *phi = gsi.phi ();
- prop_set_simulate_again (phi,
- is_complex_reg (gimple_phi_result (phi)));
- }
-
- for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
- gsi_next (&gsi))
- {
- gimple *stmt;
- tree op0, op1;
- bool sim_again_p;
-
- stmt = gsi_stmt (gsi);
- op0 = op1 = NULL_TREE;
-
- /* Most control-altering statements must be initially
- simulated, else we won't cover the entire cfg. */
- sim_again_p = stmt_ends_bb_p (stmt);
-
- switch (gimple_code (stmt))
- {
- case GIMPLE_CALL:
- if (gimple_call_lhs (stmt))
- sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
- break;
-
- case GIMPLE_ASSIGN:
- sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
- if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
- || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
- op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
- else
- op0 = gimple_assign_rhs1 (stmt);
- if (gimple_num_ops (stmt) > 2)
- op1 = gimple_assign_rhs2 (stmt);
- break;
-
- case GIMPLE_COND:
- op0 = gimple_cond_lhs (stmt);
- op1 = gimple_cond_rhs (stmt);
- break;
-
- default:
- break;
- }
-
- if (op0 || op1)
- switch (gimple_expr_code (stmt))
- {
- case EQ_EXPR:
- case NE_EXPR:
- case PLUS_EXPR:
- case MINUS_EXPR:
- case MULT_EXPR:
- case TRUNC_DIV_EXPR:
- case CEIL_DIV_EXPR:
- case FLOOR_DIV_EXPR:
- case ROUND_DIV_EXPR:
- case RDIV_EXPR:
- if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
- || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
- saw_a_complex_op = true;
- break;
-
- case NEGATE_EXPR:
- case CONJ_EXPR:
- if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
- saw_a_complex_op = true;
- break;
-
- case REALPART_EXPR:
- case IMAGPART_EXPR:
- /* The total store transformation performed during
- gimplification creates such uninitialized loads
- and we need to lower the statement to be able
- to fix things up. */
- if (TREE_CODE (op0) == SSA_NAME
- && ssa_undefined_value_p (op0))
- saw_a_complex_op = true;
- break;
-
- default:
- break;
- }
-
- prop_set_simulate_again (stmt, sim_again_p);
- }
- }
-
- return saw_a_complex_op;
-}
-
-
-/* Evaluate statement STMT against the complex lattice defined above. */
-
-enum ssa_prop_result
-complex_propagate::visit_stmt (gimple *stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
- tree *result_p)
-{
- complex_lattice_t new_l, old_l, op1_l, op2_l;
- unsigned int ver;
- tree lhs;
-
- lhs = gimple_get_lhs (stmt);
- /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
- if (!lhs || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
- return SSA_PROP_VARYING;
-
- /* These conditions should be satisfied due to the initial filter
- set up in init_dont_simulate_again. */
- gcc_assert (TREE_CODE (lhs) == SSA_NAME);
- gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
-
- *result_p = lhs;
- ver = SSA_NAME_VERSION (lhs);
- old_l = complex_lattice_values[ver];
-
- switch (gimple_expr_code (stmt))
- {
- case SSA_NAME:
- case COMPLEX_CST:
- new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
- break;
-
- case COMPLEX_EXPR:
- new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
- gimple_assign_rhs2 (stmt));
- break;
-
- case PLUS_EXPR:
- case MINUS_EXPR:
- op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
- op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
-
- /* We've set up the lattice values such that IOR neatly
- models addition. */
- new_l = op1_l | op2_l;
- break;
-
- case MULT_EXPR:
- case RDIV_EXPR:
- case TRUNC_DIV_EXPR:
- case CEIL_DIV_EXPR:
- case FLOOR_DIV_EXPR:
- case ROUND_DIV_EXPR:
- op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
- op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
-
- /* Obviously, if either varies, so does the result. */
- if (op1_l == VARYING || op2_l == VARYING)
- new_l = VARYING;
- /* Don't prematurely promote variables if we've not yet seen
- their inputs. */
- else if (op1_l == UNINITIALIZED)
- new_l = op2_l;
- else if (op2_l == UNINITIALIZED)
- new_l = op1_l;
- else
- {
- /* At this point both numbers have only one component. If the
- numbers are of opposite kind, the result is imaginary,
- otherwise the result is real. The add/subtract translates
- the real/imag from/to 0/1; the ^ performs the comparison. */
- new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
-
- /* Don't allow the lattice value to flip-flop indefinitely. */
- new_l |= old_l;
- }
- break;
-
- case NEGATE_EXPR:
- case CONJ_EXPR:
- new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
- break;
-
- default:
- new_l = VARYING;
- break;
- }
-
- /* If nothing changed this round, let the propagator know. */
- if (new_l == old_l)
- return SSA_PROP_NOT_INTERESTING;
-
- complex_lattice_values[ver] = new_l;
- return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
-}
-
-/* Evaluate a PHI node against the complex lattice defined above. */
-
-enum ssa_prop_result
-complex_propagate::visit_phi (gphi *phi)
-{
- complex_lattice_t new_l, old_l;
- unsigned int ver;
- tree lhs;
- int i;
-
- lhs = gimple_phi_result (phi);
-
- /* This condition should be satisfied due to the initial filter
- set up in init_dont_simulate_again. */
- gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
-
- if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
- return SSA_PROP_VARYING;
-
- /* We've set up the lattice values such that IOR neatly models PHI meet. */
- new_l = UNINITIALIZED;
- for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
- new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
-
- ver = SSA_NAME_VERSION (lhs);
- old_l = complex_lattice_values[ver];
-
- if (new_l == old_l)
- return SSA_PROP_NOT_INTERESTING;
-
- complex_lattice_values[ver] = new_l;
- return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
-}
-
-/* Create one backing variable for a complex component of ORIG. */
-
-static tree
-create_one_component_var (tree type, tree orig, const char *prefix,
- const char *suffix, enum tree_code code)
-{
- tree r = create_tmp_var (type, prefix);
-
- DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
- DECL_ARTIFICIAL (r) = 1;
-
- if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
- {
- const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
- name = ACONCAT ((name, suffix, NULL));
- DECL_NAME (r) = get_identifier (name);
-
- SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
- DECL_HAS_DEBUG_EXPR_P (r) = 1;
- DECL_IGNORED_P (r) = 0;
- copy_warning (r, orig);
- }
- else
- {
- DECL_IGNORED_P (r) = 1;
- suppress_warning (r);
- }
-
- return r;
-}
-
-/* Retrieve a value for a complex component of VAR. */
-
-static tree
-get_component_var (tree var, bool imag_p)
-{
- size_t decl_index = DECL_UID (var) * 2 + imag_p;
- tree ret = cvc_lookup (decl_index);
-
- if (ret == NULL)
- {
- ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
- imag_p ? "CI" : "CR",
- imag_p ? "$imag" : "$real",
- imag_p ? IMAGPART_EXPR : REALPART_EXPR);
- cvc_insert (decl_index, ret);
- }
-
- return ret;
-}
-
-/* Retrieve a value for a complex component of SSA_NAME. */
-
-static tree
-get_component_ssa_name (tree ssa_name, bool imag_p)
-{
- complex_lattice_t lattice = find_lattice_value (ssa_name);
- size_t ssa_name_index;
- tree ret;
-
- if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
- {
- tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
- if (SCALAR_FLOAT_TYPE_P (inner_type))
- return build_real (inner_type, dconst0);
- else
- return build_int_cst (inner_type, 0);
- }
-
- ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
- ret = complex_ssa_name_components[ssa_name_index];
- if (ret == NULL)
- {
- if (SSA_NAME_VAR (ssa_name))
- ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
- else
- ret = TREE_TYPE (TREE_TYPE (ssa_name));
- ret = make_ssa_name (ret);
-
- /* Copy some properties from the original. In particular, whether it
- is used in an abnormal phi, and whether it's uninitialized. */
- SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
- = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
- if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
- && TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL)
- {
- SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
- set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret);
- }
-
- complex_ssa_name_components[ssa_name_index] = ret;
- }
-
- return ret;
-}
-
-/* Set a value for a complex component of SSA_NAME, return a
- gimple_seq of stuff that needs doing. */
-
-static gimple_seq
-set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
-{
- complex_lattice_t lattice = find_lattice_value (ssa_name);
- size_t ssa_name_index;
- tree comp;
- gimple *last;
- gimple_seq list;
-
- /* We know the value must be zero, else there's a bug in our lattice
- analysis. But the value may well be a variable known to contain
- zero. We should be safe ignoring it. */
- if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
- return NULL;
-
- /* If we've already assigned an SSA_NAME to this component, then this
- means that our walk of the basic blocks found a use before the set.
- This is fine. Now we should create an initialization for the value
- we created earlier. */
- ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
- comp = complex_ssa_name_components[ssa_name_index];
- if (comp)
- ;
-
- /* If we've nothing assigned, and the value we're given is already stable,
- then install that as the value for this SSA_NAME. This preemptively
- copy-propagates the value, which avoids unnecessary memory allocation. */
- else if (is_gimple_min_invariant (value)
- && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
- {
- complex_ssa_name_components[ssa_name_index] = value;
- return NULL;
- }
- else if (TREE_CODE (value) == SSA_NAME
- && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
- {
- /* Replace an anonymous base value with the variable from cvc_lookup.
- This should result in better debug info. */
- if (!SSA_NAME_IS_DEFAULT_DEF (value)
- && SSA_NAME_VAR (ssa_name)
- && (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value)))
- && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
- {
- comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
- replace_ssa_name_symbol (value, comp);
- }
-
- complex_ssa_name_components[ssa_name_index] = value;
- return NULL;
- }
-
- /* Finally, we need to stabilize the result by installing the value into
- a new ssa name. */
- else
- comp = get_component_ssa_name (ssa_name, imag_p);
-
- /* Do all the work to assign VALUE to COMP. */
- list = NULL;
- value = force_gimple_operand (value, &list, false, NULL);
- last = gimple_build_assign (comp, value);
- gimple_seq_add_stmt (&list, last);
- gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
-
- return list;
-}
-
-/* Extract the real or imaginary part of a complex variable or constant.
- Make sure that it's a proper gimple_val and gimplify it if not.
- Emit any new code before gsi. */
-
-static tree
-extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
- bool gimple_p, bool phiarg_p = false)
-{
- switch (TREE_CODE (t))
- {
- case COMPLEX_CST:
- return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
-
- case COMPLEX_EXPR:
- gcc_unreachable ();
-
- case BIT_FIELD_REF:
- {
- tree inner_type = TREE_TYPE (TREE_TYPE (t));
- t = unshare_expr (t);
- TREE_TYPE (t) = inner_type;
- TREE_OPERAND (t, 1) = TYPE_SIZE (inner_type);
- if (imagpart_p)
- TREE_OPERAND (t, 2) = size_binop (PLUS_EXPR, TREE_OPERAND (t, 2),
- TYPE_SIZE (inner_type));
- if (gimple_p)
- t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
- GSI_SAME_STMT);
- return t;
- }
-
- case VAR_DECL:
- case RESULT_DECL:
- case PARM_DECL:
- case COMPONENT_REF:
- case ARRAY_REF:
- case VIEW_CONVERT_EXPR:
- case MEM_REF:
- {
- tree inner_type = TREE_TYPE (TREE_TYPE (t));
-
- t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
- inner_type, unshare_expr (t));
-
- if (gimple_p)
- t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
- GSI_SAME_STMT);
-
- return t;
- }
-
- case SSA_NAME:
- t = get_component_ssa_name (t, imagpart_p);
- if (TREE_CODE (t) == SSA_NAME && SSA_NAME_DEF_STMT (t) == NULL)
- gcc_assert (phiarg_p);
- return t;
-
- default:
- gcc_unreachable ();
- }
-}
-
-/* Update the complex components of the ssa name on the lhs of STMT. */
-
-static void
-update_complex_components (gimple_stmt_iterator *gsi, gimple *stmt, tree r,
- tree i)
-{
- tree lhs;
- gimple_seq list;
-
- lhs = gimple_get_lhs (stmt);
-
- list = set_component_ssa_name (lhs, false, r);
- if (list)
- gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
-
- list = set_component_ssa_name (lhs, true, i);
- if (list)
- gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
-}
-
-static void
-update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
-{
- gimple_seq list;
-
- list = set_component_ssa_name (lhs, false, r);
- if (list)
- gsi_insert_seq_on_edge (e, list);
-
- list = set_component_ssa_name (lhs, true, i);
- if (list)
- gsi_insert_seq_on_edge (e, list);
-}
-
-
-/* Update an assignment to a complex variable in place. */
-
-static void
-update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
-{
- gimple *old_stmt = gsi_stmt (*gsi);
- gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i);
- gimple *stmt = gsi_stmt (*gsi);
- update_stmt (stmt);
- if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
- bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index);
-
- update_complex_components (gsi, gsi_stmt (*gsi), r, i);
-}
-
-
-/* Generate code at the entry point of the function to initialize the
- component variables for a complex parameter. */
-
-static void
-update_parameter_components (void)
-{
- edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
- tree parm;
-
- for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
- {
- tree type = TREE_TYPE (parm);
- tree ssa_name, r, i;
-
- if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
- continue;
-
- type = TREE_TYPE (type);
- ssa_name = ssa_default_def (cfun, parm);
- if (!ssa_name)
- continue;
-
- r = build1 (REALPART_EXPR, type, ssa_name);
- i = build1 (IMAGPART_EXPR, type, ssa_name);
- update_complex_components_on_edge (entry_edge, ssa_name, r, i);
- }
-}
-
-/* Generate code to set the component variables of a complex variable
- to match the PHI statements in block BB. */
-
-static void
-update_phi_components (basic_block bb)
-{
- gphi_iterator gsi;
-
- for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- gphi *phi = gsi.phi ();
-
- if (is_complex_reg (gimple_phi_result (phi)))
- {
- gphi *p[2] = { NULL, NULL };
- unsigned int i, j, n;
- bool revisit_phi = false;
-
- for (j = 0; j < 2; j++)
- {
- tree l = get_component_ssa_name (gimple_phi_result (phi), j > 0);
- if (TREE_CODE (l) == SSA_NAME)
- p[j] = create_phi_node (l, bb);
- }
-
- for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
- {
- tree comp, arg = gimple_phi_arg_def (phi, i);
- for (j = 0; j < 2; j++)
- if (p[j])
- {
- comp = extract_component (NULL, arg, j > 0, false, true);
- if (TREE_CODE (comp) == SSA_NAME
- && SSA_NAME_DEF_STMT (comp) == NULL)
- {
- /* For the benefit of any gimple simplification during
- this pass that might walk SSA_NAME def stmts,
- don't add SSA_NAMEs without definitions into the
- PHI arguments, but put a decl in there instead
- temporarily, and revisit this PHI later on. */
- if (SSA_NAME_VAR (comp))
- comp = SSA_NAME_VAR (comp);
- else
- comp = create_tmp_reg (TREE_TYPE (comp),
- get_name (comp));
- revisit_phi = true;
- }
- SET_PHI_ARG_DEF (p[j], i, comp);
- }
- }
-
- if (revisit_phi)
- {
- phis_to_revisit.safe_push (phi);
- phis_to_revisit.safe_push (p[0]);
- phis_to_revisit.safe_push (p[1]);
- }
- }
- }
-}
-
-/* Expand a complex move to scalars. */
-
-static void
-expand_complex_move (gimple_stmt_iterator *gsi, tree type)
-{
- tree inner_type = TREE_TYPE (type);
- tree r, i, lhs, rhs;
- gimple *stmt = gsi_stmt (*gsi);
-
- if (is_gimple_assign (stmt))
- {
- lhs = gimple_assign_lhs (stmt);
- if (gimple_num_ops (stmt) == 2)
- rhs = gimple_assign_rhs1 (stmt);
- else
- rhs = NULL_TREE;
- }
- else if (is_gimple_call (stmt))
- {
- lhs = gimple_call_lhs (stmt);
- rhs = NULL_TREE;
- }
- else
- gcc_unreachable ();
-
- if (TREE_CODE (lhs) == SSA_NAME)
- {
- if (is_ctrl_altering_stmt (stmt))
- {
- edge e;
-
- /* The value is not assigned on the exception edges, so we need not
- concern ourselves there. We do need to update on the fallthru
- edge. Find it. */
- e = find_fallthru_edge (gsi_bb (*gsi)->succs);
- if (!e)
- gcc_unreachable ();
-
- r = build1 (REALPART_EXPR, inner_type, lhs);
- i = build1 (IMAGPART_EXPR, inner_type, lhs);
- update_complex_components_on_edge (e, lhs, r, i);
- }
- else if (is_gimple_call (stmt)
- || gimple_has_side_effects (stmt)
- || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
- {
- r = build1 (REALPART_EXPR, inner_type, lhs);
- i = build1 (IMAGPART_EXPR, inner_type, lhs);
- update_complex_components (gsi, stmt, r, i);
- }
- else
- {
- if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
- {
- r = extract_component (gsi, rhs, 0, true);
- i = extract_component (gsi, rhs, 1, true);
- }
- else
- {
- r = gimple_assign_rhs1 (stmt);
- i = gimple_assign_rhs2 (stmt);
- }
- update_complex_assignment (gsi, r, i);
- }
- }
- else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
- {
- tree x;
- gimple *t;
- location_t loc;
-
- loc = gimple_location (stmt);
- r = extract_component (gsi, rhs, 0, false);
- i = extract_component (gsi, rhs, 1, false);
-
- x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
- t = gimple_build_assign (x, r);
- gimple_set_location (t, loc);
- gsi_insert_before (gsi, t, GSI_SAME_STMT);
-
- if (stmt == gsi_stmt (*gsi))
- {
- x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
- gimple_assign_set_lhs (stmt, x);
- gimple_assign_set_rhs1 (stmt, i);
- }
- else
- {
- x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
- t = gimple_build_assign (x, i);
- gimple_set_location (t, loc);
- gsi_insert_before (gsi, t, GSI_SAME_STMT);
-
- stmt = gsi_stmt (*gsi);
- gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
- gimple_return_set_retval (as_a <greturn *> (stmt), lhs);
- }
-
- update_stmt (stmt);
- }
-}
-
-/* Expand complex addition to scalars:
- a + b = (ar + br) + i(ai + bi)
- a - b = (ar - br) + i(ai + bi)
-*/
-
-static void
-expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
- tree ar, tree ai, tree br, tree bi,
- enum tree_code code,
- complex_lattice_t al, complex_lattice_t bl)
-{
- tree rr, ri;
- gimple_seq stmts = NULL;
- location_t loc = gimple_location (gsi_stmt (*gsi));
-
- switch (PAIR (al, bl))
- {
- case PAIR (ONLY_REAL, ONLY_REAL):
- rr = gimple_build (&stmts, loc, code, inner_type, ar, br);
- ri = ai;
- break;
-
- case PAIR (ONLY_REAL, ONLY_IMAG):
- rr = ar;
- if (code == MINUS_EXPR)
- ri = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, ai, bi);
- else
- ri = bi;
- break;
-
- case PAIR (ONLY_IMAG, ONLY_REAL):
- if (code == MINUS_EXPR)
- rr = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, ar, br);
- else
- rr = br;
- ri = ai;
- break;
-
- case PAIR (ONLY_IMAG, ONLY_IMAG):
- rr = ar;
- ri = gimple_build (&stmts, loc, code, inner_type, ai, bi);
- break;
-
- case PAIR (VARYING, ONLY_REAL):
- rr = gimple_build (&stmts, loc, code, inner_type, ar, br);
- ri = ai;
- break;
-
- case PAIR (VARYING, ONLY_IMAG):
- rr = ar;
- ri = gimple_build (&stmts, loc, code, inner_type, ai, bi);
- break;
-
- case PAIR (ONLY_REAL, VARYING):
- if (code == MINUS_EXPR)
- goto general;
- rr = gimple_build (&stmts, loc, code, inner_type, ar, br);
- ri = bi;
- break;
-
- case PAIR (ONLY_IMAG, VARYING):
- if (code == MINUS_EXPR)
- goto general;
- rr = br;
- ri = gimple_build (&stmts, loc, code, inner_type, ai, bi);
- break;
-
- case PAIR (VARYING, VARYING):
- general:
- rr = gimple_build (&stmts, loc, code, inner_type, ar, br);
- ri = gimple_build (&stmts, loc, code, inner_type, ai, bi);
- break;
-
- default:
- gcc_unreachable ();
- }
-
- gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
- update_complex_assignment (gsi, rr, ri);
-}
-
-/* Expand a complex multiplication or division to a libcall to the c99
- compliant routines. TYPE is the complex type of the operation.
- If INPLACE_P replace the statement at GSI with
- the libcall and return NULL_TREE. Else insert the call, assign its
- result to an output variable and return that variable. If INPLACE_P
- is true then the statement being replaced should be an assignment
- statement. */
-
-static tree
-expand_complex_libcall (gimple_stmt_iterator *gsi, tree type, tree ar, tree ai,
- tree br, tree bi, enum tree_code code, bool inplace_p)
-{
- machine_mode mode;
- enum built_in_function bcode;
- tree fn, lhs;
- gcall *stmt;
-
- mode = TYPE_MODE (type);
- gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
-
- if (code == MULT_EXPR)
- bcode = ((enum built_in_function)
- (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
- else if (code == RDIV_EXPR)
- bcode = ((enum built_in_function)
- (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
- else
- gcc_unreachable ();
- fn = builtin_decl_explicit (bcode);
- stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
-
- if (inplace_p)
- {
- gimple *old_stmt = gsi_stmt (*gsi);
- gimple_call_set_nothrow (stmt, !stmt_could_throw_p (cfun, old_stmt));
- lhs = gimple_assign_lhs (old_stmt);
- gimple_call_set_lhs (stmt, lhs);
- gsi_replace (gsi, stmt, true);
-
- type = TREE_TYPE (type);
- if (stmt_can_throw_internal (cfun, stmt))
- {
- edge_iterator ei;
- edge e;
- FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
- if (!(e->flags & EDGE_EH))
- break;
- basic_block bb = split_edge (e);
- gimple_stmt_iterator gsi2 = gsi_start_bb (bb);
- update_complex_components (&gsi2, stmt,
- build1 (REALPART_EXPR, type, lhs),
- build1 (IMAGPART_EXPR, type, lhs));
- return NULL_TREE;
- }
- else
- update_complex_components (gsi, stmt,
- build1 (REALPART_EXPR, type, lhs),
- build1 (IMAGPART_EXPR, type, lhs));
- SSA_NAME_DEF_STMT (lhs) = stmt;
- return NULL_TREE;
- }
-
- gimple_call_set_nothrow (stmt, true);
- lhs = make_ssa_name (type);
- gimple_call_set_lhs (stmt, lhs);
- gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
-
- return lhs;
-}
-
-/* Perform a complex multiplication on two complex constants A, B represented
- by AR, AI, BR, BI of type TYPE.
- The operation we want is: a * b = (ar*br - ai*bi) + i(ar*bi + br*ai).
- Insert the GIMPLE statements into GSI. Store the real and imaginary
- components of the result into RR and RI. */
-
-static void
-expand_complex_multiplication_components (gimple_seq *stmts, location_t loc,
- tree type, tree ar, tree ai,
- tree br, tree bi,
- tree *rr, tree *ri)
-{
- tree t1, t2, t3, t4;
-
- t1 = gimple_build (stmts, loc, MULT_EXPR, type, ar, br);
- t2 = gimple_build (stmts, loc, MULT_EXPR, type, ai, bi);
- t3 = gimple_build (stmts, loc, MULT_EXPR, type, ar, bi);
-
- /* Avoid expanding redundant multiplication for the common
- case of squaring a complex number. */
- if (ar == br && ai == bi)
- t4 = t3;
- else
- t4 = gimple_build (stmts, loc, MULT_EXPR, type, ai, br);
-
- *rr = gimple_build (stmts, loc, MINUS_EXPR, type, t1, t2);
- *ri = gimple_build (stmts, loc, PLUS_EXPR, type, t3, t4);
-}
-
-/* Expand complex multiplication to scalars:
- a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
-*/
-
-static void
-expand_complex_multiplication (gimple_stmt_iterator *gsi, tree type,
- tree ar, tree ai, tree br, tree bi,
- complex_lattice_t al, complex_lattice_t bl)
-{
- tree rr, ri;
- tree inner_type = TREE_TYPE (type);
- location_t loc = gimple_location (gsi_stmt (*gsi));
- gimple_seq stmts = NULL;
-
- if (al < bl)
- {
- complex_lattice_t tl;
- rr = ar, ar = br, br = rr;
- ri = ai, ai = bi, bi = ri;
- tl = al, al = bl, bl = tl;
- }
-
- switch (PAIR (al, bl))
- {
- case PAIR (ONLY_REAL, ONLY_REAL):
- rr = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, br);
- ri = ai;
- break;
-
- case PAIR (ONLY_IMAG, ONLY_REAL):
- rr = ar;
- if (TREE_CODE (ai) == REAL_CST
- && real_identical (&TREE_REAL_CST (ai), &dconst1))
- ri = br;
- else
- ri = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, br);
- break;
-
- case PAIR (ONLY_IMAG, ONLY_IMAG):
- rr = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, bi);
- rr = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, rr);
- ri = ar;
- break;
-
- case PAIR (VARYING, ONLY_REAL):
- rr = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, br);
- ri = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, br);
- break;
-
- case PAIR (VARYING, ONLY_IMAG):
- rr = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, bi);
- rr = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, rr);
- ri = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, bi);
- break;
-
- case PAIR (VARYING, VARYING):
- if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
- {
- /* If optimizing for size or not at all just do a libcall.
- Same if there are exception-handling edges or signaling NaNs. */
- if (optimize == 0 || optimize_bb_for_size_p (gsi_bb (*gsi))
- || stmt_can_throw_internal (cfun, gsi_stmt (*gsi))
- || flag_signaling_nans)
- {
- expand_complex_libcall (gsi, type, ar, ai, br, bi,
- MULT_EXPR, true);
- return;
- }
-
- if (!HONOR_NANS (inner_type))
- {
- /* If we are not worrying about NaNs expand to
- (ar*br - ai*bi) + i(ar*bi + br*ai) directly. */
- expand_complex_multiplication_components (&stmts, loc, inner_type,
- ar, ai, br, bi,
- &rr, &ri);
- break;
- }
-
- /* Else, expand x = a * b into
- x = (ar*br - ai*bi) + i(ar*bi + br*ai);
- if (isunordered (__real__ x, __imag__ x))
- x = __muldc3 (a, b); */
-
- tree tmpr, tmpi;
- expand_complex_multiplication_components (&stmts, loc,
- inner_type, ar, ai,
- br, bi, &tmpr, &tmpi);
- gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
- stmts = NULL;
-
- gimple *check
- = gimple_build_cond (UNORDERED_EXPR, tmpr, tmpi,
- NULL_TREE, NULL_TREE);
-
- basic_block orig_bb = gsi_bb (*gsi);
- /* We want to keep track of the original complex multiplication
- statement as we're going to modify it later in
- update_complex_assignment. Make sure that insert_cond_bb leaves
- that statement in the join block. */
- gsi_prev (gsi);
- basic_block cond_bb
- = insert_cond_bb (gsi_bb (*gsi), gsi_stmt (*gsi), check,
- profile_probability::very_unlikely ());
-
- gimple_stmt_iterator cond_bb_gsi = gsi_last_bb (cond_bb);
- gsi_insert_after (&cond_bb_gsi, gimple_build_nop (), GSI_NEW_STMT);
-
- tree libcall_res
- = expand_complex_libcall (&cond_bb_gsi, type, ar, ai, br,
- bi, MULT_EXPR, false);
- gimple_seq stmts2 = NULL;
- tree cond_real = gimple_build (&stmts2, loc, REALPART_EXPR,
- inner_type, libcall_res);
- tree cond_imag = gimple_build (&stmts2, loc, IMAGPART_EXPR,
- inner_type, libcall_res);
- gsi_insert_seq_before (&cond_bb_gsi, stmts2, GSI_SAME_STMT);
-
- basic_block join_bb = single_succ_edge (cond_bb)->dest;
- *gsi = gsi_start_nondebug_after_labels_bb (join_bb);
-
- /* We have a conditional block with some assignments in cond_bb.
- Wire up the PHIs to wrap up. */
- rr = make_ssa_name (inner_type);
- ri = make_ssa_name (inner_type);
- edge cond_to_join = single_succ_edge (cond_bb);
- edge orig_to_join = find_edge (orig_bb, join_bb);
-
- gphi *real_phi = create_phi_node (rr, gsi_bb (*gsi));
- add_phi_arg (real_phi, cond_real, cond_to_join, UNKNOWN_LOCATION);
- add_phi_arg (real_phi, tmpr, orig_to_join, UNKNOWN_LOCATION);
-
- gphi *imag_phi = create_phi_node (ri, gsi_bb (*gsi));
- add_phi_arg (imag_phi, cond_imag, cond_to_join, UNKNOWN_LOCATION);
- add_phi_arg (imag_phi, tmpi, orig_to_join, UNKNOWN_LOCATION);
- }
- else
- /* If we are not worrying about NaNs expand to
- (ar*br - ai*bi) + i(ar*bi + br*ai) directly. */
- expand_complex_multiplication_components (&stmts, loc,
- inner_type, ar, ai,
- br, bi, &rr, &ri);
- break;
-
- default:
- gcc_unreachable ();
- }
-
- gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
- update_complex_assignment (gsi, rr, ri);
-}
-
-/* Keep this algorithm in sync with fold-const.c:const_binop().
-
- Expand complex division to scalars, straightforward algorithm.
- a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
- t = br*br + bi*bi
-*/
-
-static void
-expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
- tree ar, tree ai, tree br, tree bi,
- enum tree_code code)
-{
- gimple_seq stmts = NULL;
- location_t loc = gimple_location (gsi_stmt (*gsi));
- tree rr, ri, div, t1, t2, t3;
-
- t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, br, br);
- t2 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, bi, bi);
- div = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, t2);
-
- t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, br);
- t2 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, bi);
- t3 = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, t2);
- rr = gimple_build (&stmts, loc, code, inner_type, t3, div);
-
- t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, br);
- t2 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, bi);
- t3 = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, t1, t2);
- ri = gimple_build (&stmts, loc, code, inner_type, t3, div);
-
- gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
- update_complex_assignment (gsi, rr, ri);
-}
-
-/* Keep this algorithm in sync with fold-const.c:const_binop().
-
- Expand complex division to scalars, modified algorithm to minimize
- overflow with wide input ranges. */
-
-static void
-expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
- tree ar, tree ai, tree br, tree bi,
- enum tree_code code)
-{
- tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
- basic_block bb_cond, bb_true, bb_false, bb_join;
- gimple *stmt;
- gimple_seq stmts = NULL;
- location_t loc = gimple_location (gsi_stmt (*gsi));
-
- /* Examine |br| < |bi|, and branch. */
- t1 = gimple_build (&stmts, loc, ABS_EXPR, inner_type, br);
- t2 = gimple_build (&stmts, loc, ABS_EXPR, inner_type, bi);
- compare = gimple_build (&stmts, loc,
- LT_EXPR, boolean_type_node, t1, t2);
-
- bb_cond = bb_true = bb_false = bb_join = NULL;
- rr = ri = tr = ti = NULL;
- if (TREE_CODE (compare) != INTEGER_CST)
- {
- edge e;
- gimple *stmt;
-
- gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
- stmts = NULL;
- stmt = gimple_build_cond (NE_EXPR, compare, boolean_false_node,
- NULL_TREE, NULL_TREE);
- gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
-
- /* Split the original block, and create the TRUE and FALSE blocks. */
- e = split_block (gsi_bb (*gsi), stmt);
- bb_cond = e->src;
- bb_join = e->dest;
- bb_true = create_empty_bb (bb_cond);
- bb_false = create_empty_bb (bb_true);
- bb_true->count = bb_false->count
- = bb_cond->count.apply_probability (profile_probability::even ());
-
- /* Wire the blocks together. */
- e->flags = EDGE_TRUE_VALUE;
- /* TODO: With value profile we could add an historgram to determine real
- branch outcome. */
- e->probability = profile_probability::even ();
- redirect_edge_succ (e, bb_true);
- edge e2 = make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
- e2->probability = profile_probability::even ();
- make_single_succ_edge (bb_true, bb_join, EDGE_FALLTHRU);
- make_single_succ_edge (bb_false, bb_join, EDGE_FALLTHRU);
- add_bb_to_loop (bb_true, bb_cond->loop_father);
- add_bb_to_loop (bb_false, bb_cond->loop_father);
-
- /* Update dominance info. Note that bb_join's data was
- updated by split_block. */
- if (dom_info_available_p (CDI_DOMINATORS))
- {
- set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
- set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
- }
-
- rr = create_tmp_reg (inner_type);
- ri = create_tmp_reg (inner_type);
- }
- else
- {
- gimple_seq_discard (stmts);
- stmts = NULL;
- }
-
- /* In the TRUE branch, we compute
- ratio = br/bi;
- div = (br * ratio) + bi;
- tr = (ar * ratio) + ai;
- ti = (ai * ratio) - ar;
- tr = tr / div;
- ti = ti / div; */
- if (bb_true || integer_nonzerop (compare))
- {
- if (bb_true)
- {
- *gsi = gsi_last_bb (bb_true);
- gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
- }
-
- ratio = gimple_build (&stmts, loc, code, inner_type, br, bi);
-
- t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, br, ratio);
- div = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, bi);
-
- t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, ratio);
- tr = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, ai);
-
- t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, ratio);
- ti = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, t1, ar);
-
- tr = gimple_build (&stmts, loc, code, inner_type, tr, div);
- ti = gimple_build (&stmts, loc, code, inner_type, ti, div);
- gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
- stmts = NULL;
-
- if (bb_true)
- {
- stmt = gimple_build_assign (rr, tr);
- gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
- stmt = gimple_build_assign (ri, ti);
- gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
- gsi_remove (gsi, true);
- }
- }
-
- /* In the FALSE branch, we compute
- ratio = d/c;
- divisor = (d * ratio) + c;
- tr = (b * ratio) + a;
- ti = b - (a * ratio);
- tr = tr / div;
- ti = ti / div; */
- if (bb_false || integer_zerop (compare))
- {
- if (bb_false)
- {
- *gsi = gsi_last_bb (bb_false);
- gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
- }
-
- ratio = gimple_build (&stmts, loc, code, inner_type, bi, br);
-
- t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, bi, ratio);
- div = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, br);
-
- t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, ratio);
- tr = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, ar);
-
- t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, ratio);
- ti = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, ai, t1);
-
- tr = gimple_build (&stmts, loc, code, inner_type, tr, div);
- ti = gimple_build (&stmts, loc, code, inner_type, ti, div);
- gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
- stmts = NULL;
-
- if (bb_false)
- {
- stmt = gimple_build_assign (rr, tr);
- gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
- stmt = gimple_build_assign (ri, ti);
- gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
- gsi_remove (gsi, true);
- }
- }
-
- if (bb_join)
- *gsi = gsi_start_bb (bb_join);
- else
- rr = tr, ri = ti;
-
- update_complex_assignment (gsi, rr, ri);
-}
-
-/* Expand complex division to scalars. */
-
-static void
-expand_complex_division (gimple_stmt_iterator *gsi, tree type,
- tree ar, tree ai, tree br, tree bi,
- enum tree_code code,
- complex_lattice_t al, complex_lattice_t bl)
-{
- tree rr, ri;
- gimple_seq stmts = NULL;
- location_t loc = gimple_location (gsi_stmt (*gsi));
-
- tree inner_type = TREE_TYPE (type);
- switch (PAIR (al, bl))
- {
- case PAIR (ONLY_REAL, ONLY_REAL):
- rr = gimple_build (&stmts, loc, code, inner_type, ar, br);
- ri = ai;
- break;
-
- case PAIR (ONLY_REAL, ONLY_IMAG):
- rr = ai;
- ri = gimple_build (&stmts, loc, code, inner_type, ar, bi);
- ri = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ri);
- break;
-
- case PAIR (ONLY_IMAG, ONLY_REAL):
- rr = ar;
- ri = gimple_build (&stmts, loc, code, inner_type, ai, br);
- break;
-
- case PAIR (ONLY_IMAG, ONLY_IMAG):
- rr = gimple_build (&stmts, loc, code, inner_type, ai, bi);
- ri = ar;
- break;
-
- case PAIR (VARYING, ONLY_REAL):
- rr = gimple_build (&stmts, loc, code, inner_type, ar, br);
- ri = gimple_build (&stmts, loc, code, inner_type, ai, br);
- break;
-
- case PAIR (VARYING, ONLY_IMAG):
- rr = gimple_build (&stmts, loc, code, inner_type, ai, bi);
- ri = gimple_build (&stmts, loc, code, inner_type, ar, bi);
- ri = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ri);
- break;
-
- case PAIR (ONLY_REAL, VARYING):
- case PAIR (ONLY_IMAG, VARYING):
- case PAIR (VARYING, VARYING):
- switch (flag_complex_method)
- {
- case 0:
- /* straightforward implementation of complex divide acceptable. */
- expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
- break;
-
- case 2:
- if (SCALAR_FLOAT_TYPE_P (inner_type))
- {
- expand_complex_libcall (gsi, type, ar, ai, br, bi, code, true);
- break;
- }
- /* FALLTHRU */
-
- case 1:
- /* wide ranges of inputs must work for complex divide. */
- expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
- break;
-
- default:
- gcc_unreachable ();
- }
- return;
-
- default:
- gcc_unreachable ();
- }
-
- gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
- update_complex_assignment (gsi, rr, ri);
-}
-
-/* Expand complex negation to scalars:
- -a = (-ar) + i(-ai)
-*/
-
-static void
-expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
- tree ar, tree ai)
-{
- tree rr, ri;
- gimple_seq stmts = NULL;
- location_t loc = gimple_location (gsi_stmt (*gsi));
-
- rr = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ar);
- ri = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ai);
-
- gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
- update_complex_assignment (gsi, rr, ri);
-}
-
-/* Expand complex conjugate to scalars:
- ~a = (ar) + i(-ai)
-*/
-
-static void
-expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
- tree ar, tree ai)
-{
- tree ri;
- gimple_seq stmts = NULL;
- location_t loc = gimple_location (gsi_stmt (*gsi));
-
- ri = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ai);
-
- gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
- update_complex_assignment (gsi, ar, ri);
-}
-
-/* Expand complex comparison (EQ or NE only). */
-
-static void
-expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
- tree br, tree bi, enum tree_code code)
-{
- tree cr, ci, cc, type;
- gimple *stmt = gsi_stmt (*gsi);
- gimple_seq stmts = NULL;
- location_t loc = gimple_location (stmt);
-
- cr = gimple_build (&stmts, loc, code, boolean_type_node, ar, br);
- ci = gimple_build (&stmts, loc, code, boolean_type_node, ai, bi);
- cc = gimple_build (&stmts, loc,
- (code == EQ_EXPR ? BIT_AND_EXPR : BIT_IOR_EXPR),
- boolean_type_node, cr, ci);
- gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
-
- switch (gimple_code (stmt))
- {
- case GIMPLE_RETURN:
- {
- greturn *return_stmt = as_a <greturn *> (stmt);
- type = TREE_TYPE (gimple_return_retval (return_stmt));
- gimple_return_set_retval (return_stmt, fold_convert (type, cc));
- }
- break;
-
- case GIMPLE_ASSIGN:
- type = TREE_TYPE (gimple_assign_lhs (stmt));
- gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
- stmt = gsi_stmt (*gsi);
- break;
-
- case GIMPLE_COND:
- {
- gcond *cond_stmt = as_a <gcond *> (stmt);
- gimple_cond_set_code (cond_stmt, EQ_EXPR);
- gimple_cond_set_lhs (cond_stmt, cc);
- gimple_cond_set_rhs (cond_stmt, boolean_true_node);
- }
- break;
-
- default:
- gcc_unreachable ();
- }
-
- update_stmt (stmt);
- if (maybe_clean_eh_stmt (stmt))
- bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index);
-}
-
-/* Expand inline asm that sets some complex SSA_NAMEs. */
-
-static void
-expand_complex_asm (gimple_stmt_iterator *gsi)
-{
- gasm *stmt = as_a <gasm *> (gsi_stmt (*gsi));
- unsigned int i;
-
- for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
- {
- tree link = gimple_asm_output_op (stmt, i);
- tree op = TREE_VALUE (link);
- if (TREE_CODE (op) == SSA_NAME
- && TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE)
- {
- tree type = TREE_TYPE (op);
- tree inner_type = TREE_TYPE (type);
- tree r = build1 (REALPART_EXPR, inner_type, op);
- tree i = build1 (IMAGPART_EXPR, inner_type, op);
- gimple_seq list = set_component_ssa_name (op, false, r);
-
- if (list)
- gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
-
- list = set_component_ssa_name (op, true, i);
- if (list)
- gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
- }
- }
-}
-
-/* Process one statement. If we identify a complex operation, expand it. */
-
-static void
-expand_complex_operations_1 (gimple_stmt_iterator *gsi)
-{
- gimple *stmt = gsi_stmt (*gsi);
- tree type, inner_type, lhs;
- tree ac, ar, ai, bc, br, bi;
- complex_lattice_t al, bl;
- enum tree_code code;
-
- if (gimple_code (stmt) == GIMPLE_ASM)
- {
- expand_complex_asm (gsi);
- return;
- }
-
- lhs = gimple_get_lhs (stmt);
- if (!lhs && gimple_code (stmt) != GIMPLE_COND)
- return;
-
- type = TREE_TYPE (gimple_op (stmt, 0));
- code = gimple_expr_code (stmt);
-
- /* Initial filter for operations we handle. */
- switch (code)
- {
- case PLUS_EXPR:
- case MINUS_EXPR:
- case MULT_EXPR:
- case TRUNC_DIV_EXPR:
- case CEIL_DIV_EXPR:
- case FLOOR_DIV_EXPR:
- case ROUND_DIV_EXPR:
- case RDIV_EXPR:
- case NEGATE_EXPR:
- case CONJ_EXPR:
- if (TREE_CODE (type) != COMPLEX_TYPE)
- return;
- inner_type = TREE_TYPE (type);
- break;
-
- case EQ_EXPR:
- case NE_EXPR:
- /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
- subcode, so we need to access the operands using gimple_op. */
- inner_type = TREE_TYPE (gimple_op (stmt, 1));
- if (TREE_CODE (inner_type) != COMPLEX_TYPE)
- return;
- break;
-
- default:
- {
- tree rhs;
-
- /* GIMPLE_COND may also fallthru here, but we do not need to
- do anything with it. */
- if (gimple_code (stmt) == GIMPLE_COND)
- return;
-
- if (TREE_CODE (type) == COMPLEX_TYPE)
- expand_complex_move (gsi, type);
- else if (is_gimple_assign (stmt)
- && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
- || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
- && TREE_CODE (lhs) == SSA_NAME)
- {
- rhs = gimple_assign_rhs1 (stmt);
- rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
- gimple_assign_rhs_code (stmt)
- == IMAGPART_EXPR,
- false);
- gimple_assign_set_rhs_from_tree (gsi, rhs);
- stmt = gsi_stmt (*gsi);
- update_stmt (stmt);
- }
- }
- return;
- }
-
- /* Extract the components of the two complex values. Make sure and
- handle the common case of the same value used twice specially. */
- if (is_gimple_assign (stmt))
- {
- ac = gimple_assign_rhs1 (stmt);
- bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
- }
- /* GIMPLE_CALL cannot get here. */
- else
- {
- ac = gimple_cond_lhs (stmt);
- bc = gimple_cond_rhs (stmt);
- }
-
- ar = extract_component (gsi, ac, false, true);
- ai = extract_component (gsi, ac, true, true);
-
- if (ac == bc)
- br = ar, bi = ai;
- else if (bc)
- {
- br = extract_component (gsi, bc, 0, true);
- bi = extract_component (gsi, bc, 1, true);
- }
- else
- br = bi = NULL_TREE;
-
- al = find_lattice_value (ac);
- if (al == UNINITIALIZED)
- al = VARYING;
-
- if (TREE_CODE_CLASS (code) == tcc_unary)
- bl = UNINITIALIZED;
- else if (ac == bc)
- bl = al;
- else
- {
- bl = find_lattice_value (bc);
- if (bl == UNINITIALIZED)
- bl = VARYING;
- }
-
- switch (code)
- {
- case PLUS_EXPR:
- case MINUS_EXPR:
- expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
- break;
-
- case MULT_EXPR:
- expand_complex_multiplication (gsi, type, ar, ai, br, bi, al, bl);
- break;
-
- case TRUNC_DIV_EXPR:
- case CEIL_DIV_EXPR:
- case FLOOR_DIV_EXPR:
- case ROUND_DIV_EXPR:
- case RDIV_EXPR:
- expand_complex_division (gsi, type, ar, ai, br, bi, code, al, bl);
- break;
-
- case NEGATE_EXPR:
- expand_complex_negation (gsi, inner_type, ar, ai);
- break;
-
- case CONJ_EXPR:
- expand_complex_conjugate (gsi, inner_type, ar, ai);
- break;
-
- case EQ_EXPR:
- case NE_EXPR:
- expand_complex_comparison (gsi, ar, ai, br, bi, code);
- break;
-
- default:
- gcc_unreachable ();
- }
-}
-
-
-/* Entry point for complex operation lowering during optimization. */
-
-static unsigned int
-tree_lower_complex (void)
-{
- gimple_stmt_iterator gsi;
- basic_block bb;
- int n_bbs, i;
- int *rpo;
-
- if (!init_dont_simulate_again ())
- return 0;
-
- complex_lattice_values.create (num_ssa_names);
- complex_lattice_values.safe_grow_cleared (num_ssa_names, true);
-
- init_parameter_lattice_values ();
- class complex_propagate complex_propagate;
- complex_propagate.ssa_propagate ();
-
- need_eh_cleanup = BITMAP_ALLOC (NULL);
-
- complex_variable_components = new int_tree_htab_type (10);
-
- complex_ssa_name_components.create (2 * num_ssa_names);
- complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names, true);
-
- update_parameter_components ();
-
- rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
- n_bbs = pre_and_rev_post_order_compute (NULL, rpo, false);
- for (i = 0; i < n_bbs; i++)
- {
- bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
- if (!bb)
- continue;
- update_phi_components (bb);
- for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
- expand_complex_operations_1 (&gsi);
- }
-
- free (rpo);
-
- if (!phis_to_revisit.is_empty ())
- {
- unsigned int n = phis_to_revisit.length ();
- for (unsigned int j = 0; j < n; j += 3)
- for (unsigned int k = 0; k < 2; k++)
- if (gphi *phi = phis_to_revisit[j + k + 1])
- {
- unsigned int m = gimple_phi_num_args (phi);
- for (unsigned int l = 0; l < m; ++l)
- {
- tree op = gimple_phi_arg_def (phi, l);
- if (TREE_CODE (op) == SSA_NAME
- || is_gimple_min_invariant (op))
- continue;
- tree arg = gimple_phi_arg_def (phis_to_revisit[j], l);
- op = extract_component (NULL, arg, k > 0, false, false);
- SET_PHI_ARG_DEF (phi, l, op);
- }
- }
- phis_to_revisit.release ();
- }
-
- gsi_commit_edge_inserts ();
-
- unsigned todo
- = gimple_purge_all_dead_eh_edges (need_eh_cleanup) ? TODO_cleanup_cfg : 0;
- BITMAP_FREE (need_eh_cleanup);
-
- delete complex_variable_components;
- complex_variable_components = NULL;
- complex_ssa_name_components.release ();
- complex_lattice_values.release ();
- return todo;
-}
-
-namespace {
-
-const pass_data pass_data_lower_complex =
-{
- GIMPLE_PASS, /* type */
- "cplxlower", /* name */
- OPTGROUP_NONE, /* optinfo_flags */
- TV_NONE, /* tv_id */
- PROP_ssa, /* properties_required */
- PROP_gimple_lcx, /* properties_provided */
- 0, /* properties_destroyed */
- 0, /* todo_flags_start */
- TODO_update_ssa, /* todo_flags_finish */
-};
-
-class pass_lower_complex : public gimple_opt_pass
-{
-public:
- pass_lower_complex (gcc::context *ctxt)
- : gimple_opt_pass (pass_data_lower_complex, ctxt)
- {}
-
- /* opt_pass methods: */
- opt_pass * clone () { return new pass_lower_complex (m_ctxt); }
- virtual unsigned int execute (function *) { return tree_lower_complex (); }
-
-}; // class pass_lower_complex
-
-} // anon namespace
-
-gimple_opt_pass *
-make_pass_lower_complex (gcc::context *ctxt)
-{
- return new pass_lower_complex (ctxt);
-}
-
-
-namespace {
-
-const pass_data pass_data_lower_complex_O0 =
-{
- GIMPLE_PASS, /* type */
- "cplxlower0", /* name */
- OPTGROUP_NONE, /* optinfo_flags */
- TV_NONE, /* tv_id */
- PROP_cfg, /* properties_required */
- PROP_gimple_lcx, /* properties_provided */
- 0, /* properties_destroyed */
- 0, /* todo_flags_start */
- TODO_update_ssa, /* todo_flags_finish */
-};
-
-class pass_lower_complex_O0 : public gimple_opt_pass
-{
-public:
- pass_lower_complex_O0 (gcc::context *ctxt)
- : gimple_opt_pass (pass_data_lower_complex_O0, ctxt)
- {}
-
- /* opt_pass methods: */
- virtual bool gate (function *fun)
- {
- /* With errors, normal optimization passes are not run. If we don't
- lower complex operations at all, rtl expansion will abort. */
- return !(fun->curr_properties & PROP_gimple_lcx);
- }
-
- virtual unsigned int execute (function *) { return tree_lower_complex (); }
-
-}; // class pass_lower_complex_O0
-
-} // anon namespace
-
-gimple_opt_pass *
-make_pass_lower_complex_O0 (gcc::context *ctxt)
-{
- return new pass_lower_complex_O0 (ctxt);
-}