diff options
Diffstat (limited to 'gcc/tree-complex.c')
-rw-r--r-- | gcc/tree-complex.c | 1956 |
1 files changed, 0 insertions, 1956 deletions
diff --git a/gcc/tree-complex.c b/gcc/tree-complex.c deleted file mode 100644 index 9acb1ad..0000000 --- a/gcc/tree-complex.c +++ /dev/null @@ -1,1956 +0,0 @@ -/* Lower complex number operations to scalar operations. - Copyright (C) 2004-2022 Free Software Foundation, Inc. - -This file is part of GCC. - -GCC is free software; you can redistribute it and/or modify it -under the terms of the GNU General Public License as published by the -Free Software Foundation; either version 3, or (at your option) any -later version. - -GCC is distributed in the hope that it will be useful, but WITHOUT -ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or -FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -for more details. - -You should have received a copy of the GNU General Public License -along with GCC; see the file COPYING3. If not see -<http://www.gnu.org/licenses/>. */ - -#include "config.h" -#include "system.h" -#include "coretypes.h" -#include "backend.h" -#include "rtl.h" -#include "tree.h" -#include "gimple.h" -#include "cfghooks.h" -#include "tree-pass.h" -#include "ssa.h" -#include "fold-const.h" -#include "stor-layout.h" -#include "tree-eh.h" -#include "gimplify.h" -#include "gimple-iterator.h" -#include "gimplify-me.h" -#include "tree-cfg.h" -#include "tree-dfa.h" -#include "tree-ssa.h" -#include "tree-ssa-propagate.h" -#include "tree-hasher.h" -#include "cfgloop.h" -#include "cfganal.h" -#include "gimple-fold.h" - - -/* For each complex ssa name, a lattice value. We're interested in finding - out whether a complex number is degenerate in some way, having only real - or only complex parts. */ - -enum -{ - UNINITIALIZED = 0, - ONLY_REAL = 1, - ONLY_IMAG = 2, - VARYING = 3 -}; - -/* The type complex_lattice_t holds combinations of the above - constants. */ -typedef int complex_lattice_t; - -#define PAIR(a, b) ((a) << 2 | (b)) - -class complex_propagate : public ssa_propagation_engine -{ - enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE; - enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE; -}; - -static vec<complex_lattice_t> complex_lattice_values; - -/* For each complex variable, a pair of variables for the components exists in - the hashtable. */ -static int_tree_htab_type *complex_variable_components; - -/* For each complex SSA_NAME, a pair of ssa names for the components. */ -static vec<tree> complex_ssa_name_components; - -/* Vector of PHI triplets (original complex PHI and corresponding real and - imag PHIs if real and/or imag PHIs contain temporarily - non-SSA_NAME/non-invariant args that need to be replaced by SSA_NAMEs. */ -static vec<gphi *> phis_to_revisit; - -/* BBs that need EH cleanup. */ -static bitmap need_eh_cleanup; - -/* Lookup UID in the complex_variable_components hashtable and return the - associated tree. */ -static tree -cvc_lookup (unsigned int uid) -{ - struct int_tree_map in; - in.uid = uid; - return complex_variable_components->find_with_hash (in, uid).to; -} - -/* Insert the pair UID, TO into the complex_variable_components hashtable. */ - -static void -cvc_insert (unsigned int uid, tree to) -{ - int_tree_map h; - int_tree_map *loc; - - h.uid = uid; - loc = complex_variable_components->find_slot_with_hash (h, uid, INSERT); - loc->uid = uid; - loc->to = to; -} - -/* Return true if T is not a zero constant. In the case of real values, - we're only interested in +0.0. */ - -static int -some_nonzerop (tree t) -{ - int zerop = false; - - /* Operations with real or imaginary part of a complex number zero - cannot be treated the same as operations with a real or imaginary - operand if we care about the signs of zeros in the result. */ - if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros) - zerop = real_identical (&TREE_REAL_CST (t), &dconst0); - else if (TREE_CODE (t) == FIXED_CST) - zerop = fixed_zerop (t); - else if (TREE_CODE (t) == INTEGER_CST) - zerop = integer_zerop (t); - - return !zerop; -} - - -/* Compute a lattice value from the components of a complex type REAL - and IMAG. */ - -static complex_lattice_t -find_lattice_value_parts (tree real, tree imag) -{ - int r, i; - complex_lattice_t ret; - - r = some_nonzerop (real); - i = some_nonzerop (imag); - ret = r * ONLY_REAL + i * ONLY_IMAG; - - /* ??? On occasion we could do better than mapping 0+0i to real, but we - certainly don't want to leave it UNINITIALIZED, which eventually gets - mapped to VARYING. */ - if (ret == UNINITIALIZED) - ret = ONLY_REAL; - - return ret; -} - - -/* Compute a lattice value from gimple_val T. */ - -static complex_lattice_t -find_lattice_value (tree t) -{ - tree real, imag; - - switch (TREE_CODE (t)) - { - case SSA_NAME: - return complex_lattice_values[SSA_NAME_VERSION (t)]; - - case COMPLEX_CST: - real = TREE_REALPART (t); - imag = TREE_IMAGPART (t); - break; - - default: - gcc_unreachable (); - } - - return find_lattice_value_parts (real, imag); -} - -/* Determine if LHS is something for which we're interested in seeing - simulation results. */ - -static bool -is_complex_reg (tree lhs) -{ - return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs); -} - -/* Mark the incoming parameters to the function as VARYING. */ - -static void -init_parameter_lattice_values (void) -{ - tree parm, ssa_name; - - for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm)) - if (is_complex_reg (parm) - && (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE) - complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING; -} - -/* Initialize simulation state for each statement. Return false if we - found no statements we want to simulate, and thus there's nothing - for the entire pass to do. */ - -static bool -init_dont_simulate_again (void) -{ - basic_block bb; - bool saw_a_complex_op = false; - - FOR_EACH_BB_FN (bb, cfun) - { - for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi); - gsi_next (&gsi)) - { - gphi *phi = gsi.phi (); - prop_set_simulate_again (phi, - is_complex_reg (gimple_phi_result (phi))); - } - - for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi); - gsi_next (&gsi)) - { - gimple *stmt; - tree op0, op1; - bool sim_again_p; - - stmt = gsi_stmt (gsi); - op0 = op1 = NULL_TREE; - - /* Most control-altering statements must be initially - simulated, else we won't cover the entire cfg. */ - sim_again_p = stmt_ends_bb_p (stmt); - - switch (gimple_code (stmt)) - { - case GIMPLE_CALL: - if (gimple_call_lhs (stmt)) - sim_again_p = is_complex_reg (gimple_call_lhs (stmt)); - break; - - case GIMPLE_ASSIGN: - sim_again_p = is_complex_reg (gimple_assign_lhs (stmt)); - if (gimple_assign_rhs_code (stmt) == REALPART_EXPR - || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR) - op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0); - else - op0 = gimple_assign_rhs1 (stmt); - if (gimple_num_ops (stmt) > 2) - op1 = gimple_assign_rhs2 (stmt); - break; - - case GIMPLE_COND: - op0 = gimple_cond_lhs (stmt); - op1 = gimple_cond_rhs (stmt); - break; - - default: - break; - } - - if (op0 || op1) - switch (gimple_expr_code (stmt)) - { - case EQ_EXPR: - case NE_EXPR: - case PLUS_EXPR: - case MINUS_EXPR: - case MULT_EXPR: - case TRUNC_DIV_EXPR: - case CEIL_DIV_EXPR: - case FLOOR_DIV_EXPR: - case ROUND_DIV_EXPR: - case RDIV_EXPR: - if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE - || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE) - saw_a_complex_op = true; - break; - - case NEGATE_EXPR: - case CONJ_EXPR: - if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE) - saw_a_complex_op = true; - break; - - case REALPART_EXPR: - case IMAGPART_EXPR: - /* The total store transformation performed during - gimplification creates such uninitialized loads - and we need to lower the statement to be able - to fix things up. */ - if (TREE_CODE (op0) == SSA_NAME - && ssa_undefined_value_p (op0)) - saw_a_complex_op = true; - break; - - default: - break; - } - - prop_set_simulate_again (stmt, sim_again_p); - } - } - - return saw_a_complex_op; -} - - -/* Evaluate statement STMT against the complex lattice defined above. */ - -enum ssa_prop_result -complex_propagate::visit_stmt (gimple *stmt, edge *taken_edge_p ATTRIBUTE_UNUSED, - tree *result_p) -{ - complex_lattice_t new_l, old_l, op1_l, op2_l; - unsigned int ver; - tree lhs; - - lhs = gimple_get_lhs (stmt); - /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */ - if (!lhs || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)) - return SSA_PROP_VARYING; - - /* These conditions should be satisfied due to the initial filter - set up in init_dont_simulate_again. */ - gcc_assert (TREE_CODE (lhs) == SSA_NAME); - gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE); - - *result_p = lhs; - ver = SSA_NAME_VERSION (lhs); - old_l = complex_lattice_values[ver]; - - switch (gimple_expr_code (stmt)) - { - case SSA_NAME: - case COMPLEX_CST: - new_l = find_lattice_value (gimple_assign_rhs1 (stmt)); - break; - - case COMPLEX_EXPR: - new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt), - gimple_assign_rhs2 (stmt)); - break; - - case PLUS_EXPR: - case MINUS_EXPR: - op1_l = find_lattice_value (gimple_assign_rhs1 (stmt)); - op2_l = find_lattice_value (gimple_assign_rhs2 (stmt)); - - /* We've set up the lattice values such that IOR neatly - models addition. */ - new_l = op1_l | op2_l; - break; - - case MULT_EXPR: - case RDIV_EXPR: - case TRUNC_DIV_EXPR: - case CEIL_DIV_EXPR: - case FLOOR_DIV_EXPR: - case ROUND_DIV_EXPR: - op1_l = find_lattice_value (gimple_assign_rhs1 (stmt)); - op2_l = find_lattice_value (gimple_assign_rhs2 (stmt)); - - /* Obviously, if either varies, so does the result. */ - if (op1_l == VARYING || op2_l == VARYING) - new_l = VARYING; - /* Don't prematurely promote variables if we've not yet seen - their inputs. */ - else if (op1_l == UNINITIALIZED) - new_l = op2_l; - else if (op2_l == UNINITIALIZED) - new_l = op1_l; - else - { - /* At this point both numbers have only one component. If the - numbers are of opposite kind, the result is imaginary, - otherwise the result is real. The add/subtract translates - the real/imag from/to 0/1; the ^ performs the comparison. */ - new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL; - - /* Don't allow the lattice value to flip-flop indefinitely. */ - new_l |= old_l; - } - break; - - case NEGATE_EXPR: - case CONJ_EXPR: - new_l = find_lattice_value (gimple_assign_rhs1 (stmt)); - break; - - default: - new_l = VARYING; - break; - } - - /* If nothing changed this round, let the propagator know. */ - if (new_l == old_l) - return SSA_PROP_NOT_INTERESTING; - - complex_lattice_values[ver] = new_l; - return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING; -} - -/* Evaluate a PHI node against the complex lattice defined above. */ - -enum ssa_prop_result -complex_propagate::visit_phi (gphi *phi) -{ - complex_lattice_t new_l, old_l; - unsigned int ver; - tree lhs; - int i; - - lhs = gimple_phi_result (phi); - - /* This condition should be satisfied due to the initial filter - set up in init_dont_simulate_again. */ - gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE); - - if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)) - return SSA_PROP_VARYING; - - /* We've set up the lattice values such that IOR neatly models PHI meet. */ - new_l = UNINITIALIZED; - for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i) - new_l |= find_lattice_value (gimple_phi_arg_def (phi, i)); - - ver = SSA_NAME_VERSION (lhs); - old_l = complex_lattice_values[ver]; - - if (new_l == old_l) - return SSA_PROP_NOT_INTERESTING; - - complex_lattice_values[ver] = new_l; - return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING; -} - -/* Create one backing variable for a complex component of ORIG. */ - -static tree -create_one_component_var (tree type, tree orig, const char *prefix, - const char *suffix, enum tree_code code) -{ - tree r = create_tmp_var (type, prefix); - - DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig); - DECL_ARTIFICIAL (r) = 1; - - if (DECL_NAME (orig) && !DECL_IGNORED_P (orig)) - { - const char *name = IDENTIFIER_POINTER (DECL_NAME (orig)); - name = ACONCAT ((name, suffix, NULL)); - DECL_NAME (r) = get_identifier (name); - - SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig)); - DECL_HAS_DEBUG_EXPR_P (r) = 1; - DECL_IGNORED_P (r) = 0; - copy_warning (r, orig); - } - else - { - DECL_IGNORED_P (r) = 1; - suppress_warning (r); - } - - return r; -} - -/* Retrieve a value for a complex component of VAR. */ - -static tree -get_component_var (tree var, bool imag_p) -{ - size_t decl_index = DECL_UID (var) * 2 + imag_p; - tree ret = cvc_lookup (decl_index); - - if (ret == NULL) - { - ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var, - imag_p ? "CI" : "CR", - imag_p ? "$imag" : "$real", - imag_p ? IMAGPART_EXPR : REALPART_EXPR); - cvc_insert (decl_index, ret); - } - - return ret; -} - -/* Retrieve a value for a complex component of SSA_NAME. */ - -static tree -get_component_ssa_name (tree ssa_name, bool imag_p) -{ - complex_lattice_t lattice = find_lattice_value (ssa_name); - size_t ssa_name_index; - tree ret; - - if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG)) - { - tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name)); - if (SCALAR_FLOAT_TYPE_P (inner_type)) - return build_real (inner_type, dconst0); - else - return build_int_cst (inner_type, 0); - } - - ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p; - ret = complex_ssa_name_components[ssa_name_index]; - if (ret == NULL) - { - if (SSA_NAME_VAR (ssa_name)) - ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p); - else - ret = TREE_TYPE (TREE_TYPE (ssa_name)); - ret = make_ssa_name (ret); - - /* Copy some properties from the original. In particular, whether it - is used in an abnormal phi, and whether it's uninitialized. */ - SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret) - = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name); - if (SSA_NAME_IS_DEFAULT_DEF (ssa_name) - && TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL) - { - SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name); - set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret); - } - - complex_ssa_name_components[ssa_name_index] = ret; - } - - return ret; -} - -/* Set a value for a complex component of SSA_NAME, return a - gimple_seq of stuff that needs doing. */ - -static gimple_seq -set_component_ssa_name (tree ssa_name, bool imag_p, tree value) -{ - complex_lattice_t lattice = find_lattice_value (ssa_name); - size_t ssa_name_index; - tree comp; - gimple *last; - gimple_seq list; - - /* We know the value must be zero, else there's a bug in our lattice - analysis. But the value may well be a variable known to contain - zero. We should be safe ignoring it. */ - if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG)) - return NULL; - - /* If we've already assigned an SSA_NAME to this component, then this - means that our walk of the basic blocks found a use before the set. - This is fine. Now we should create an initialization for the value - we created earlier. */ - ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p; - comp = complex_ssa_name_components[ssa_name_index]; - if (comp) - ; - - /* If we've nothing assigned, and the value we're given is already stable, - then install that as the value for this SSA_NAME. This preemptively - copy-propagates the value, which avoids unnecessary memory allocation. */ - else if (is_gimple_min_invariant (value) - && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name)) - { - complex_ssa_name_components[ssa_name_index] = value; - return NULL; - } - else if (TREE_CODE (value) == SSA_NAME - && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name)) - { - /* Replace an anonymous base value with the variable from cvc_lookup. - This should result in better debug info. */ - if (!SSA_NAME_IS_DEFAULT_DEF (value) - && SSA_NAME_VAR (ssa_name) - && (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value))) - && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name))) - { - comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p); - replace_ssa_name_symbol (value, comp); - } - - complex_ssa_name_components[ssa_name_index] = value; - return NULL; - } - - /* Finally, we need to stabilize the result by installing the value into - a new ssa name. */ - else - comp = get_component_ssa_name (ssa_name, imag_p); - - /* Do all the work to assign VALUE to COMP. */ - list = NULL; - value = force_gimple_operand (value, &list, false, NULL); - last = gimple_build_assign (comp, value); - gimple_seq_add_stmt (&list, last); - gcc_assert (SSA_NAME_DEF_STMT (comp) == last); - - return list; -} - -/* Extract the real or imaginary part of a complex variable or constant. - Make sure that it's a proper gimple_val and gimplify it if not. - Emit any new code before gsi. */ - -static tree -extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p, - bool gimple_p, bool phiarg_p = false) -{ - switch (TREE_CODE (t)) - { - case COMPLEX_CST: - return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t); - - case COMPLEX_EXPR: - gcc_unreachable (); - - case BIT_FIELD_REF: - { - tree inner_type = TREE_TYPE (TREE_TYPE (t)); - t = unshare_expr (t); - TREE_TYPE (t) = inner_type; - TREE_OPERAND (t, 1) = TYPE_SIZE (inner_type); - if (imagpart_p) - TREE_OPERAND (t, 2) = size_binop (PLUS_EXPR, TREE_OPERAND (t, 2), - TYPE_SIZE (inner_type)); - if (gimple_p) - t = force_gimple_operand_gsi (gsi, t, true, NULL, true, - GSI_SAME_STMT); - return t; - } - - case VAR_DECL: - case RESULT_DECL: - case PARM_DECL: - case COMPONENT_REF: - case ARRAY_REF: - case VIEW_CONVERT_EXPR: - case MEM_REF: - { - tree inner_type = TREE_TYPE (TREE_TYPE (t)); - - t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR), - inner_type, unshare_expr (t)); - - if (gimple_p) - t = force_gimple_operand_gsi (gsi, t, true, NULL, true, - GSI_SAME_STMT); - - return t; - } - - case SSA_NAME: - t = get_component_ssa_name (t, imagpart_p); - if (TREE_CODE (t) == SSA_NAME && SSA_NAME_DEF_STMT (t) == NULL) - gcc_assert (phiarg_p); - return t; - - default: - gcc_unreachable (); - } -} - -/* Update the complex components of the ssa name on the lhs of STMT. */ - -static void -update_complex_components (gimple_stmt_iterator *gsi, gimple *stmt, tree r, - tree i) -{ - tree lhs; - gimple_seq list; - - lhs = gimple_get_lhs (stmt); - - list = set_component_ssa_name (lhs, false, r); - if (list) - gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING); - - list = set_component_ssa_name (lhs, true, i); - if (list) - gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING); -} - -static void -update_complex_components_on_edge (edge e, tree lhs, tree r, tree i) -{ - gimple_seq list; - - list = set_component_ssa_name (lhs, false, r); - if (list) - gsi_insert_seq_on_edge (e, list); - - list = set_component_ssa_name (lhs, true, i); - if (list) - gsi_insert_seq_on_edge (e, list); -} - - -/* Update an assignment to a complex variable in place. */ - -static void -update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i) -{ - gimple *old_stmt = gsi_stmt (*gsi); - gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i); - gimple *stmt = gsi_stmt (*gsi); - update_stmt (stmt); - if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)) - bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index); - - update_complex_components (gsi, gsi_stmt (*gsi), r, i); -} - - -/* Generate code at the entry point of the function to initialize the - component variables for a complex parameter. */ - -static void -update_parameter_components (void) -{ - edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)); - tree parm; - - for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm)) - { - tree type = TREE_TYPE (parm); - tree ssa_name, r, i; - - if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm)) - continue; - - type = TREE_TYPE (type); - ssa_name = ssa_default_def (cfun, parm); - if (!ssa_name) - continue; - - r = build1 (REALPART_EXPR, type, ssa_name); - i = build1 (IMAGPART_EXPR, type, ssa_name); - update_complex_components_on_edge (entry_edge, ssa_name, r, i); - } -} - -/* Generate code to set the component variables of a complex variable - to match the PHI statements in block BB. */ - -static void -update_phi_components (basic_block bb) -{ - gphi_iterator gsi; - - for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) - { - gphi *phi = gsi.phi (); - - if (is_complex_reg (gimple_phi_result (phi))) - { - gphi *p[2] = { NULL, NULL }; - unsigned int i, j, n; - bool revisit_phi = false; - - for (j = 0; j < 2; j++) - { - tree l = get_component_ssa_name (gimple_phi_result (phi), j > 0); - if (TREE_CODE (l) == SSA_NAME) - p[j] = create_phi_node (l, bb); - } - - for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i) - { - tree comp, arg = gimple_phi_arg_def (phi, i); - for (j = 0; j < 2; j++) - if (p[j]) - { - comp = extract_component (NULL, arg, j > 0, false, true); - if (TREE_CODE (comp) == SSA_NAME - && SSA_NAME_DEF_STMT (comp) == NULL) - { - /* For the benefit of any gimple simplification during - this pass that might walk SSA_NAME def stmts, - don't add SSA_NAMEs without definitions into the - PHI arguments, but put a decl in there instead - temporarily, and revisit this PHI later on. */ - if (SSA_NAME_VAR (comp)) - comp = SSA_NAME_VAR (comp); - else - comp = create_tmp_reg (TREE_TYPE (comp), - get_name (comp)); - revisit_phi = true; - } - SET_PHI_ARG_DEF (p[j], i, comp); - } - } - - if (revisit_phi) - { - phis_to_revisit.safe_push (phi); - phis_to_revisit.safe_push (p[0]); - phis_to_revisit.safe_push (p[1]); - } - } - } -} - -/* Expand a complex move to scalars. */ - -static void -expand_complex_move (gimple_stmt_iterator *gsi, tree type) -{ - tree inner_type = TREE_TYPE (type); - tree r, i, lhs, rhs; - gimple *stmt = gsi_stmt (*gsi); - - if (is_gimple_assign (stmt)) - { - lhs = gimple_assign_lhs (stmt); - if (gimple_num_ops (stmt) == 2) - rhs = gimple_assign_rhs1 (stmt); - else - rhs = NULL_TREE; - } - else if (is_gimple_call (stmt)) - { - lhs = gimple_call_lhs (stmt); - rhs = NULL_TREE; - } - else - gcc_unreachable (); - - if (TREE_CODE (lhs) == SSA_NAME) - { - if (is_ctrl_altering_stmt (stmt)) - { - edge e; - - /* The value is not assigned on the exception edges, so we need not - concern ourselves there. We do need to update on the fallthru - edge. Find it. */ - e = find_fallthru_edge (gsi_bb (*gsi)->succs); - if (!e) - gcc_unreachable (); - - r = build1 (REALPART_EXPR, inner_type, lhs); - i = build1 (IMAGPART_EXPR, inner_type, lhs); - update_complex_components_on_edge (e, lhs, r, i); - } - else if (is_gimple_call (stmt) - || gimple_has_side_effects (stmt) - || gimple_assign_rhs_code (stmt) == PAREN_EXPR) - { - r = build1 (REALPART_EXPR, inner_type, lhs); - i = build1 (IMAGPART_EXPR, inner_type, lhs); - update_complex_components (gsi, stmt, r, i); - } - else - { - if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR) - { - r = extract_component (gsi, rhs, 0, true); - i = extract_component (gsi, rhs, 1, true); - } - else - { - r = gimple_assign_rhs1 (stmt); - i = gimple_assign_rhs2 (stmt); - } - update_complex_assignment (gsi, r, i); - } - } - else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs)) - { - tree x; - gimple *t; - location_t loc; - - loc = gimple_location (stmt); - r = extract_component (gsi, rhs, 0, false); - i = extract_component (gsi, rhs, 1, false); - - x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs)); - t = gimple_build_assign (x, r); - gimple_set_location (t, loc); - gsi_insert_before (gsi, t, GSI_SAME_STMT); - - if (stmt == gsi_stmt (*gsi)) - { - x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs)); - gimple_assign_set_lhs (stmt, x); - gimple_assign_set_rhs1 (stmt, i); - } - else - { - x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs)); - t = gimple_build_assign (x, i); - gimple_set_location (t, loc); - gsi_insert_before (gsi, t, GSI_SAME_STMT); - - stmt = gsi_stmt (*gsi); - gcc_assert (gimple_code (stmt) == GIMPLE_RETURN); - gimple_return_set_retval (as_a <greturn *> (stmt), lhs); - } - - update_stmt (stmt); - } -} - -/* Expand complex addition to scalars: - a + b = (ar + br) + i(ai + bi) - a - b = (ar - br) + i(ai + bi) -*/ - -static void -expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type, - tree ar, tree ai, tree br, tree bi, - enum tree_code code, - complex_lattice_t al, complex_lattice_t bl) -{ - tree rr, ri; - gimple_seq stmts = NULL; - location_t loc = gimple_location (gsi_stmt (*gsi)); - - switch (PAIR (al, bl)) - { - case PAIR (ONLY_REAL, ONLY_REAL): - rr = gimple_build (&stmts, loc, code, inner_type, ar, br); - ri = ai; - break; - - case PAIR (ONLY_REAL, ONLY_IMAG): - rr = ar; - if (code == MINUS_EXPR) - ri = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, ai, bi); - else - ri = bi; - break; - - case PAIR (ONLY_IMAG, ONLY_REAL): - if (code == MINUS_EXPR) - rr = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, ar, br); - else - rr = br; - ri = ai; - break; - - case PAIR (ONLY_IMAG, ONLY_IMAG): - rr = ar; - ri = gimple_build (&stmts, loc, code, inner_type, ai, bi); - break; - - case PAIR (VARYING, ONLY_REAL): - rr = gimple_build (&stmts, loc, code, inner_type, ar, br); - ri = ai; - break; - - case PAIR (VARYING, ONLY_IMAG): - rr = ar; - ri = gimple_build (&stmts, loc, code, inner_type, ai, bi); - break; - - case PAIR (ONLY_REAL, VARYING): - if (code == MINUS_EXPR) - goto general; - rr = gimple_build (&stmts, loc, code, inner_type, ar, br); - ri = bi; - break; - - case PAIR (ONLY_IMAG, VARYING): - if (code == MINUS_EXPR) - goto general; - rr = br; - ri = gimple_build (&stmts, loc, code, inner_type, ai, bi); - break; - - case PAIR (VARYING, VARYING): - general: - rr = gimple_build (&stmts, loc, code, inner_type, ar, br); - ri = gimple_build (&stmts, loc, code, inner_type, ai, bi); - break; - - default: - gcc_unreachable (); - } - - gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); - update_complex_assignment (gsi, rr, ri); -} - -/* Expand a complex multiplication or division to a libcall to the c99 - compliant routines. TYPE is the complex type of the operation. - If INPLACE_P replace the statement at GSI with - the libcall and return NULL_TREE. Else insert the call, assign its - result to an output variable and return that variable. If INPLACE_P - is true then the statement being replaced should be an assignment - statement. */ - -static tree -expand_complex_libcall (gimple_stmt_iterator *gsi, tree type, tree ar, tree ai, - tree br, tree bi, enum tree_code code, bool inplace_p) -{ - machine_mode mode; - enum built_in_function bcode; - tree fn, lhs; - gcall *stmt; - - mode = TYPE_MODE (type); - gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT); - - if (code == MULT_EXPR) - bcode = ((enum built_in_function) - (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT)); - else if (code == RDIV_EXPR) - bcode = ((enum built_in_function) - (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT)); - else - gcc_unreachable (); - fn = builtin_decl_explicit (bcode); - stmt = gimple_build_call (fn, 4, ar, ai, br, bi); - - if (inplace_p) - { - gimple *old_stmt = gsi_stmt (*gsi); - gimple_call_set_nothrow (stmt, !stmt_could_throw_p (cfun, old_stmt)); - lhs = gimple_assign_lhs (old_stmt); - gimple_call_set_lhs (stmt, lhs); - gsi_replace (gsi, stmt, true); - - type = TREE_TYPE (type); - if (stmt_can_throw_internal (cfun, stmt)) - { - edge_iterator ei; - edge e; - FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs) - if (!(e->flags & EDGE_EH)) - break; - basic_block bb = split_edge (e); - gimple_stmt_iterator gsi2 = gsi_start_bb (bb); - update_complex_components (&gsi2, stmt, - build1 (REALPART_EXPR, type, lhs), - build1 (IMAGPART_EXPR, type, lhs)); - return NULL_TREE; - } - else - update_complex_components (gsi, stmt, - build1 (REALPART_EXPR, type, lhs), - build1 (IMAGPART_EXPR, type, lhs)); - SSA_NAME_DEF_STMT (lhs) = stmt; - return NULL_TREE; - } - - gimple_call_set_nothrow (stmt, true); - lhs = make_ssa_name (type); - gimple_call_set_lhs (stmt, lhs); - gsi_insert_before (gsi, stmt, GSI_SAME_STMT); - - return lhs; -} - -/* Perform a complex multiplication on two complex constants A, B represented - by AR, AI, BR, BI of type TYPE. - The operation we want is: a * b = (ar*br - ai*bi) + i(ar*bi + br*ai). - Insert the GIMPLE statements into GSI. Store the real and imaginary - components of the result into RR and RI. */ - -static void -expand_complex_multiplication_components (gimple_seq *stmts, location_t loc, - tree type, tree ar, tree ai, - tree br, tree bi, - tree *rr, tree *ri) -{ - tree t1, t2, t3, t4; - - t1 = gimple_build (stmts, loc, MULT_EXPR, type, ar, br); - t2 = gimple_build (stmts, loc, MULT_EXPR, type, ai, bi); - t3 = gimple_build (stmts, loc, MULT_EXPR, type, ar, bi); - - /* Avoid expanding redundant multiplication for the common - case of squaring a complex number. */ - if (ar == br && ai == bi) - t4 = t3; - else - t4 = gimple_build (stmts, loc, MULT_EXPR, type, ai, br); - - *rr = gimple_build (stmts, loc, MINUS_EXPR, type, t1, t2); - *ri = gimple_build (stmts, loc, PLUS_EXPR, type, t3, t4); -} - -/* Expand complex multiplication to scalars: - a * b = (ar*br - ai*bi) + i(ar*bi + br*ai) -*/ - -static void -expand_complex_multiplication (gimple_stmt_iterator *gsi, tree type, - tree ar, tree ai, tree br, tree bi, - complex_lattice_t al, complex_lattice_t bl) -{ - tree rr, ri; - tree inner_type = TREE_TYPE (type); - location_t loc = gimple_location (gsi_stmt (*gsi)); - gimple_seq stmts = NULL; - - if (al < bl) - { - complex_lattice_t tl; - rr = ar, ar = br, br = rr; - ri = ai, ai = bi, bi = ri; - tl = al, al = bl, bl = tl; - } - - switch (PAIR (al, bl)) - { - case PAIR (ONLY_REAL, ONLY_REAL): - rr = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, br); - ri = ai; - break; - - case PAIR (ONLY_IMAG, ONLY_REAL): - rr = ar; - if (TREE_CODE (ai) == REAL_CST - && real_identical (&TREE_REAL_CST (ai), &dconst1)) - ri = br; - else - ri = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, br); - break; - - case PAIR (ONLY_IMAG, ONLY_IMAG): - rr = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, bi); - rr = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, rr); - ri = ar; - break; - - case PAIR (VARYING, ONLY_REAL): - rr = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, br); - ri = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, br); - break; - - case PAIR (VARYING, ONLY_IMAG): - rr = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, bi); - rr = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, rr); - ri = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, bi); - break; - - case PAIR (VARYING, VARYING): - if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type)) - { - /* If optimizing for size or not at all just do a libcall. - Same if there are exception-handling edges or signaling NaNs. */ - if (optimize == 0 || optimize_bb_for_size_p (gsi_bb (*gsi)) - || stmt_can_throw_internal (cfun, gsi_stmt (*gsi)) - || flag_signaling_nans) - { - expand_complex_libcall (gsi, type, ar, ai, br, bi, - MULT_EXPR, true); - return; - } - - if (!HONOR_NANS (inner_type)) - { - /* If we are not worrying about NaNs expand to - (ar*br - ai*bi) + i(ar*bi + br*ai) directly. */ - expand_complex_multiplication_components (&stmts, loc, inner_type, - ar, ai, br, bi, - &rr, &ri); - break; - } - - /* Else, expand x = a * b into - x = (ar*br - ai*bi) + i(ar*bi + br*ai); - if (isunordered (__real__ x, __imag__ x)) - x = __muldc3 (a, b); */ - - tree tmpr, tmpi; - expand_complex_multiplication_components (&stmts, loc, - inner_type, ar, ai, - br, bi, &tmpr, &tmpi); - gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); - stmts = NULL; - - gimple *check - = gimple_build_cond (UNORDERED_EXPR, tmpr, tmpi, - NULL_TREE, NULL_TREE); - - basic_block orig_bb = gsi_bb (*gsi); - /* We want to keep track of the original complex multiplication - statement as we're going to modify it later in - update_complex_assignment. Make sure that insert_cond_bb leaves - that statement in the join block. */ - gsi_prev (gsi); - basic_block cond_bb - = insert_cond_bb (gsi_bb (*gsi), gsi_stmt (*gsi), check, - profile_probability::very_unlikely ()); - - gimple_stmt_iterator cond_bb_gsi = gsi_last_bb (cond_bb); - gsi_insert_after (&cond_bb_gsi, gimple_build_nop (), GSI_NEW_STMT); - - tree libcall_res - = expand_complex_libcall (&cond_bb_gsi, type, ar, ai, br, - bi, MULT_EXPR, false); - gimple_seq stmts2 = NULL; - tree cond_real = gimple_build (&stmts2, loc, REALPART_EXPR, - inner_type, libcall_res); - tree cond_imag = gimple_build (&stmts2, loc, IMAGPART_EXPR, - inner_type, libcall_res); - gsi_insert_seq_before (&cond_bb_gsi, stmts2, GSI_SAME_STMT); - - basic_block join_bb = single_succ_edge (cond_bb)->dest; - *gsi = gsi_start_nondebug_after_labels_bb (join_bb); - - /* We have a conditional block with some assignments in cond_bb. - Wire up the PHIs to wrap up. */ - rr = make_ssa_name (inner_type); - ri = make_ssa_name (inner_type); - edge cond_to_join = single_succ_edge (cond_bb); - edge orig_to_join = find_edge (orig_bb, join_bb); - - gphi *real_phi = create_phi_node (rr, gsi_bb (*gsi)); - add_phi_arg (real_phi, cond_real, cond_to_join, UNKNOWN_LOCATION); - add_phi_arg (real_phi, tmpr, orig_to_join, UNKNOWN_LOCATION); - - gphi *imag_phi = create_phi_node (ri, gsi_bb (*gsi)); - add_phi_arg (imag_phi, cond_imag, cond_to_join, UNKNOWN_LOCATION); - add_phi_arg (imag_phi, tmpi, orig_to_join, UNKNOWN_LOCATION); - } - else - /* If we are not worrying about NaNs expand to - (ar*br - ai*bi) + i(ar*bi + br*ai) directly. */ - expand_complex_multiplication_components (&stmts, loc, - inner_type, ar, ai, - br, bi, &rr, &ri); - break; - - default: - gcc_unreachable (); - } - - gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); - update_complex_assignment (gsi, rr, ri); -} - -/* Keep this algorithm in sync with fold-const.c:const_binop(). - - Expand complex division to scalars, straightforward algorithm. - a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t) - t = br*br + bi*bi -*/ - -static void -expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type, - tree ar, tree ai, tree br, tree bi, - enum tree_code code) -{ - gimple_seq stmts = NULL; - location_t loc = gimple_location (gsi_stmt (*gsi)); - tree rr, ri, div, t1, t2, t3; - - t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, br, br); - t2 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, bi, bi); - div = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, t2); - - t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, br); - t2 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, bi); - t3 = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, t2); - rr = gimple_build (&stmts, loc, code, inner_type, t3, div); - - t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, br); - t2 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, bi); - t3 = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, t1, t2); - ri = gimple_build (&stmts, loc, code, inner_type, t3, div); - - gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); - update_complex_assignment (gsi, rr, ri); -} - -/* Keep this algorithm in sync with fold-const.c:const_binop(). - - Expand complex division to scalars, modified algorithm to minimize - overflow with wide input ranges. */ - -static void -expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type, - tree ar, tree ai, tree br, tree bi, - enum tree_code code) -{ - tree rr, ri, ratio, div, t1, t2, tr, ti, compare; - basic_block bb_cond, bb_true, bb_false, bb_join; - gimple *stmt; - gimple_seq stmts = NULL; - location_t loc = gimple_location (gsi_stmt (*gsi)); - - /* Examine |br| < |bi|, and branch. */ - t1 = gimple_build (&stmts, loc, ABS_EXPR, inner_type, br); - t2 = gimple_build (&stmts, loc, ABS_EXPR, inner_type, bi); - compare = gimple_build (&stmts, loc, - LT_EXPR, boolean_type_node, t1, t2); - - bb_cond = bb_true = bb_false = bb_join = NULL; - rr = ri = tr = ti = NULL; - if (TREE_CODE (compare) != INTEGER_CST) - { - edge e; - gimple *stmt; - - gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); - stmts = NULL; - stmt = gimple_build_cond (NE_EXPR, compare, boolean_false_node, - NULL_TREE, NULL_TREE); - gsi_insert_before (gsi, stmt, GSI_SAME_STMT); - - /* Split the original block, and create the TRUE and FALSE blocks. */ - e = split_block (gsi_bb (*gsi), stmt); - bb_cond = e->src; - bb_join = e->dest; - bb_true = create_empty_bb (bb_cond); - bb_false = create_empty_bb (bb_true); - bb_true->count = bb_false->count - = bb_cond->count.apply_probability (profile_probability::even ()); - - /* Wire the blocks together. */ - e->flags = EDGE_TRUE_VALUE; - /* TODO: With value profile we could add an historgram to determine real - branch outcome. */ - e->probability = profile_probability::even (); - redirect_edge_succ (e, bb_true); - edge e2 = make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE); - e2->probability = profile_probability::even (); - make_single_succ_edge (bb_true, bb_join, EDGE_FALLTHRU); - make_single_succ_edge (bb_false, bb_join, EDGE_FALLTHRU); - add_bb_to_loop (bb_true, bb_cond->loop_father); - add_bb_to_loop (bb_false, bb_cond->loop_father); - - /* Update dominance info. Note that bb_join's data was - updated by split_block. */ - if (dom_info_available_p (CDI_DOMINATORS)) - { - set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond); - set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond); - } - - rr = create_tmp_reg (inner_type); - ri = create_tmp_reg (inner_type); - } - else - { - gimple_seq_discard (stmts); - stmts = NULL; - } - - /* In the TRUE branch, we compute - ratio = br/bi; - div = (br * ratio) + bi; - tr = (ar * ratio) + ai; - ti = (ai * ratio) - ar; - tr = tr / div; - ti = ti / div; */ - if (bb_true || integer_nonzerop (compare)) - { - if (bb_true) - { - *gsi = gsi_last_bb (bb_true); - gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT); - } - - ratio = gimple_build (&stmts, loc, code, inner_type, br, bi); - - t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, br, ratio); - div = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, bi); - - t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, ratio); - tr = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, ai); - - t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, ratio); - ti = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, t1, ar); - - tr = gimple_build (&stmts, loc, code, inner_type, tr, div); - ti = gimple_build (&stmts, loc, code, inner_type, ti, div); - gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); - stmts = NULL; - - if (bb_true) - { - stmt = gimple_build_assign (rr, tr); - gsi_insert_before (gsi, stmt, GSI_SAME_STMT); - stmt = gimple_build_assign (ri, ti); - gsi_insert_before (gsi, stmt, GSI_SAME_STMT); - gsi_remove (gsi, true); - } - } - - /* In the FALSE branch, we compute - ratio = d/c; - divisor = (d * ratio) + c; - tr = (b * ratio) + a; - ti = b - (a * ratio); - tr = tr / div; - ti = ti / div; */ - if (bb_false || integer_zerop (compare)) - { - if (bb_false) - { - *gsi = gsi_last_bb (bb_false); - gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT); - } - - ratio = gimple_build (&stmts, loc, code, inner_type, bi, br); - - t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, bi, ratio); - div = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, br); - - t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, ratio); - tr = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, ar); - - t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, ratio); - ti = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, ai, t1); - - tr = gimple_build (&stmts, loc, code, inner_type, tr, div); - ti = gimple_build (&stmts, loc, code, inner_type, ti, div); - gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); - stmts = NULL; - - if (bb_false) - { - stmt = gimple_build_assign (rr, tr); - gsi_insert_before (gsi, stmt, GSI_SAME_STMT); - stmt = gimple_build_assign (ri, ti); - gsi_insert_before (gsi, stmt, GSI_SAME_STMT); - gsi_remove (gsi, true); - } - } - - if (bb_join) - *gsi = gsi_start_bb (bb_join); - else - rr = tr, ri = ti; - - update_complex_assignment (gsi, rr, ri); -} - -/* Expand complex division to scalars. */ - -static void -expand_complex_division (gimple_stmt_iterator *gsi, tree type, - tree ar, tree ai, tree br, tree bi, - enum tree_code code, - complex_lattice_t al, complex_lattice_t bl) -{ - tree rr, ri; - gimple_seq stmts = NULL; - location_t loc = gimple_location (gsi_stmt (*gsi)); - - tree inner_type = TREE_TYPE (type); - switch (PAIR (al, bl)) - { - case PAIR (ONLY_REAL, ONLY_REAL): - rr = gimple_build (&stmts, loc, code, inner_type, ar, br); - ri = ai; - break; - - case PAIR (ONLY_REAL, ONLY_IMAG): - rr = ai; - ri = gimple_build (&stmts, loc, code, inner_type, ar, bi); - ri = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ri); - break; - - case PAIR (ONLY_IMAG, ONLY_REAL): - rr = ar; - ri = gimple_build (&stmts, loc, code, inner_type, ai, br); - break; - - case PAIR (ONLY_IMAG, ONLY_IMAG): - rr = gimple_build (&stmts, loc, code, inner_type, ai, bi); - ri = ar; - break; - - case PAIR (VARYING, ONLY_REAL): - rr = gimple_build (&stmts, loc, code, inner_type, ar, br); - ri = gimple_build (&stmts, loc, code, inner_type, ai, br); - break; - - case PAIR (VARYING, ONLY_IMAG): - rr = gimple_build (&stmts, loc, code, inner_type, ai, bi); - ri = gimple_build (&stmts, loc, code, inner_type, ar, bi); - ri = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ri); - break; - - case PAIR (ONLY_REAL, VARYING): - case PAIR (ONLY_IMAG, VARYING): - case PAIR (VARYING, VARYING): - switch (flag_complex_method) - { - case 0: - /* straightforward implementation of complex divide acceptable. */ - expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code); - break; - - case 2: - if (SCALAR_FLOAT_TYPE_P (inner_type)) - { - expand_complex_libcall (gsi, type, ar, ai, br, bi, code, true); - break; - } - /* FALLTHRU */ - - case 1: - /* wide ranges of inputs must work for complex divide. */ - expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code); - break; - - default: - gcc_unreachable (); - } - return; - - default: - gcc_unreachable (); - } - - gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); - update_complex_assignment (gsi, rr, ri); -} - -/* Expand complex negation to scalars: - -a = (-ar) + i(-ai) -*/ - -static void -expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type, - tree ar, tree ai) -{ - tree rr, ri; - gimple_seq stmts = NULL; - location_t loc = gimple_location (gsi_stmt (*gsi)); - - rr = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ar); - ri = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ai); - - gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); - update_complex_assignment (gsi, rr, ri); -} - -/* Expand complex conjugate to scalars: - ~a = (ar) + i(-ai) -*/ - -static void -expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type, - tree ar, tree ai) -{ - tree ri; - gimple_seq stmts = NULL; - location_t loc = gimple_location (gsi_stmt (*gsi)); - - ri = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ai); - - gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); - update_complex_assignment (gsi, ar, ri); -} - -/* Expand complex comparison (EQ or NE only). */ - -static void -expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai, - tree br, tree bi, enum tree_code code) -{ - tree cr, ci, cc, type; - gimple *stmt = gsi_stmt (*gsi); - gimple_seq stmts = NULL; - location_t loc = gimple_location (stmt); - - cr = gimple_build (&stmts, loc, code, boolean_type_node, ar, br); - ci = gimple_build (&stmts, loc, code, boolean_type_node, ai, bi); - cc = gimple_build (&stmts, loc, - (code == EQ_EXPR ? BIT_AND_EXPR : BIT_IOR_EXPR), - boolean_type_node, cr, ci); - gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); - - switch (gimple_code (stmt)) - { - case GIMPLE_RETURN: - { - greturn *return_stmt = as_a <greturn *> (stmt); - type = TREE_TYPE (gimple_return_retval (return_stmt)); - gimple_return_set_retval (return_stmt, fold_convert (type, cc)); - } - break; - - case GIMPLE_ASSIGN: - type = TREE_TYPE (gimple_assign_lhs (stmt)); - gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc)); - stmt = gsi_stmt (*gsi); - break; - - case GIMPLE_COND: - { - gcond *cond_stmt = as_a <gcond *> (stmt); - gimple_cond_set_code (cond_stmt, EQ_EXPR); - gimple_cond_set_lhs (cond_stmt, cc); - gimple_cond_set_rhs (cond_stmt, boolean_true_node); - } - break; - - default: - gcc_unreachable (); - } - - update_stmt (stmt); - if (maybe_clean_eh_stmt (stmt)) - bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index); -} - -/* Expand inline asm that sets some complex SSA_NAMEs. */ - -static void -expand_complex_asm (gimple_stmt_iterator *gsi) -{ - gasm *stmt = as_a <gasm *> (gsi_stmt (*gsi)); - unsigned int i; - - for (i = 0; i < gimple_asm_noutputs (stmt); ++i) - { - tree link = gimple_asm_output_op (stmt, i); - tree op = TREE_VALUE (link); - if (TREE_CODE (op) == SSA_NAME - && TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE) - { - tree type = TREE_TYPE (op); - tree inner_type = TREE_TYPE (type); - tree r = build1 (REALPART_EXPR, inner_type, op); - tree i = build1 (IMAGPART_EXPR, inner_type, op); - gimple_seq list = set_component_ssa_name (op, false, r); - - if (list) - gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING); - - list = set_component_ssa_name (op, true, i); - if (list) - gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING); - } - } -} - -/* Process one statement. If we identify a complex operation, expand it. */ - -static void -expand_complex_operations_1 (gimple_stmt_iterator *gsi) -{ - gimple *stmt = gsi_stmt (*gsi); - tree type, inner_type, lhs; - tree ac, ar, ai, bc, br, bi; - complex_lattice_t al, bl; - enum tree_code code; - - if (gimple_code (stmt) == GIMPLE_ASM) - { - expand_complex_asm (gsi); - return; - } - - lhs = gimple_get_lhs (stmt); - if (!lhs && gimple_code (stmt) != GIMPLE_COND) - return; - - type = TREE_TYPE (gimple_op (stmt, 0)); - code = gimple_expr_code (stmt); - - /* Initial filter for operations we handle. */ - switch (code) - { - case PLUS_EXPR: - case MINUS_EXPR: - case MULT_EXPR: - case TRUNC_DIV_EXPR: - case CEIL_DIV_EXPR: - case FLOOR_DIV_EXPR: - case ROUND_DIV_EXPR: - case RDIV_EXPR: - case NEGATE_EXPR: - case CONJ_EXPR: - if (TREE_CODE (type) != COMPLEX_TYPE) - return; - inner_type = TREE_TYPE (type); - break; - - case EQ_EXPR: - case NE_EXPR: - /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR - subcode, so we need to access the operands using gimple_op. */ - inner_type = TREE_TYPE (gimple_op (stmt, 1)); - if (TREE_CODE (inner_type) != COMPLEX_TYPE) - return; - break; - - default: - { - tree rhs; - - /* GIMPLE_COND may also fallthru here, but we do not need to - do anything with it. */ - if (gimple_code (stmt) == GIMPLE_COND) - return; - - if (TREE_CODE (type) == COMPLEX_TYPE) - expand_complex_move (gsi, type); - else if (is_gimple_assign (stmt) - && (gimple_assign_rhs_code (stmt) == REALPART_EXPR - || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR) - && TREE_CODE (lhs) == SSA_NAME) - { - rhs = gimple_assign_rhs1 (stmt); - rhs = extract_component (gsi, TREE_OPERAND (rhs, 0), - gimple_assign_rhs_code (stmt) - == IMAGPART_EXPR, - false); - gimple_assign_set_rhs_from_tree (gsi, rhs); - stmt = gsi_stmt (*gsi); - update_stmt (stmt); - } - } - return; - } - - /* Extract the components of the two complex values. Make sure and - handle the common case of the same value used twice specially. */ - if (is_gimple_assign (stmt)) - { - ac = gimple_assign_rhs1 (stmt); - bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL; - } - /* GIMPLE_CALL cannot get here. */ - else - { - ac = gimple_cond_lhs (stmt); - bc = gimple_cond_rhs (stmt); - } - - ar = extract_component (gsi, ac, false, true); - ai = extract_component (gsi, ac, true, true); - - if (ac == bc) - br = ar, bi = ai; - else if (bc) - { - br = extract_component (gsi, bc, 0, true); - bi = extract_component (gsi, bc, 1, true); - } - else - br = bi = NULL_TREE; - - al = find_lattice_value (ac); - if (al == UNINITIALIZED) - al = VARYING; - - if (TREE_CODE_CLASS (code) == tcc_unary) - bl = UNINITIALIZED; - else if (ac == bc) - bl = al; - else - { - bl = find_lattice_value (bc); - if (bl == UNINITIALIZED) - bl = VARYING; - } - - switch (code) - { - case PLUS_EXPR: - case MINUS_EXPR: - expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl); - break; - - case MULT_EXPR: - expand_complex_multiplication (gsi, type, ar, ai, br, bi, al, bl); - break; - - case TRUNC_DIV_EXPR: - case CEIL_DIV_EXPR: - case FLOOR_DIV_EXPR: - case ROUND_DIV_EXPR: - case RDIV_EXPR: - expand_complex_division (gsi, type, ar, ai, br, bi, code, al, bl); - break; - - case NEGATE_EXPR: - expand_complex_negation (gsi, inner_type, ar, ai); - break; - - case CONJ_EXPR: - expand_complex_conjugate (gsi, inner_type, ar, ai); - break; - - case EQ_EXPR: - case NE_EXPR: - expand_complex_comparison (gsi, ar, ai, br, bi, code); - break; - - default: - gcc_unreachable (); - } -} - - -/* Entry point for complex operation lowering during optimization. */ - -static unsigned int -tree_lower_complex (void) -{ - gimple_stmt_iterator gsi; - basic_block bb; - int n_bbs, i; - int *rpo; - - if (!init_dont_simulate_again ()) - return 0; - - complex_lattice_values.create (num_ssa_names); - complex_lattice_values.safe_grow_cleared (num_ssa_names, true); - - init_parameter_lattice_values (); - class complex_propagate complex_propagate; - complex_propagate.ssa_propagate (); - - need_eh_cleanup = BITMAP_ALLOC (NULL); - - complex_variable_components = new int_tree_htab_type (10); - - complex_ssa_name_components.create (2 * num_ssa_names); - complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names, true); - - update_parameter_components (); - - rpo = XNEWVEC (int, last_basic_block_for_fn (cfun)); - n_bbs = pre_and_rev_post_order_compute (NULL, rpo, false); - for (i = 0; i < n_bbs; i++) - { - bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]); - if (!bb) - continue; - update_phi_components (bb); - for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) - expand_complex_operations_1 (&gsi); - } - - free (rpo); - - if (!phis_to_revisit.is_empty ()) - { - unsigned int n = phis_to_revisit.length (); - for (unsigned int j = 0; j < n; j += 3) - for (unsigned int k = 0; k < 2; k++) - if (gphi *phi = phis_to_revisit[j + k + 1]) - { - unsigned int m = gimple_phi_num_args (phi); - for (unsigned int l = 0; l < m; ++l) - { - tree op = gimple_phi_arg_def (phi, l); - if (TREE_CODE (op) == SSA_NAME - || is_gimple_min_invariant (op)) - continue; - tree arg = gimple_phi_arg_def (phis_to_revisit[j], l); - op = extract_component (NULL, arg, k > 0, false, false); - SET_PHI_ARG_DEF (phi, l, op); - } - } - phis_to_revisit.release (); - } - - gsi_commit_edge_inserts (); - - unsigned todo - = gimple_purge_all_dead_eh_edges (need_eh_cleanup) ? TODO_cleanup_cfg : 0; - BITMAP_FREE (need_eh_cleanup); - - delete complex_variable_components; - complex_variable_components = NULL; - complex_ssa_name_components.release (); - complex_lattice_values.release (); - return todo; -} - -namespace { - -const pass_data pass_data_lower_complex = -{ - GIMPLE_PASS, /* type */ - "cplxlower", /* name */ - OPTGROUP_NONE, /* optinfo_flags */ - TV_NONE, /* tv_id */ - PROP_ssa, /* properties_required */ - PROP_gimple_lcx, /* properties_provided */ - 0, /* properties_destroyed */ - 0, /* todo_flags_start */ - TODO_update_ssa, /* todo_flags_finish */ -}; - -class pass_lower_complex : public gimple_opt_pass -{ -public: - pass_lower_complex (gcc::context *ctxt) - : gimple_opt_pass (pass_data_lower_complex, ctxt) - {} - - /* opt_pass methods: */ - opt_pass * clone () { return new pass_lower_complex (m_ctxt); } - virtual unsigned int execute (function *) { return tree_lower_complex (); } - -}; // class pass_lower_complex - -} // anon namespace - -gimple_opt_pass * -make_pass_lower_complex (gcc::context *ctxt) -{ - return new pass_lower_complex (ctxt); -} - - -namespace { - -const pass_data pass_data_lower_complex_O0 = -{ - GIMPLE_PASS, /* type */ - "cplxlower0", /* name */ - OPTGROUP_NONE, /* optinfo_flags */ - TV_NONE, /* tv_id */ - PROP_cfg, /* properties_required */ - PROP_gimple_lcx, /* properties_provided */ - 0, /* properties_destroyed */ - 0, /* todo_flags_start */ - TODO_update_ssa, /* todo_flags_finish */ -}; - -class pass_lower_complex_O0 : public gimple_opt_pass -{ -public: - pass_lower_complex_O0 (gcc::context *ctxt) - : gimple_opt_pass (pass_data_lower_complex_O0, ctxt) - {} - - /* opt_pass methods: */ - virtual bool gate (function *fun) - { - /* With errors, normal optimization passes are not run. If we don't - lower complex operations at all, rtl expansion will abort. */ - return !(fun->curr_properties & PROP_gimple_lcx); - } - - virtual unsigned int execute (function *) { return tree_lower_complex (); } - -}; // class pass_lower_complex_O0 - -} // anon namespace - -gimple_opt_pass * -make_pass_lower_complex_O0 (gcc::context *ctxt) -{ - return new pass_lower_complex_O0 (ctxt); -} |