diff options
Diffstat (limited to 'gcc/tree-cfg.cc')
-rw-r--r-- | gcc/tree-cfg.cc | 10239 |
1 files changed, 10239 insertions, 0 deletions
diff --git a/gcc/tree-cfg.cc b/gcc/tree-cfg.cc new file mode 100644 index 0000000..14f121d --- /dev/null +++ b/gcc/tree-cfg.cc @@ -0,0 +1,10239 @@ +/* Control flow functions for trees. + Copyright (C) 2001-2022 Free Software Foundation, Inc. + Contributed by Diego Novillo <dnovillo@redhat.com> + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 3, or (at your option) +any later version. + +GCC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "backend.h" +#include "target.h" +#include "rtl.h" +#include "tree.h" +#include "gimple.h" +#include "cfghooks.h" +#include "tree-pass.h" +#include "ssa.h" +#include "cgraph.h" +#include "gimple-pretty-print.h" +#include "diagnostic-core.h" +#include "fold-const.h" +#include "trans-mem.h" +#include "stor-layout.h" +#include "print-tree.h" +#include "cfganal.h" +#include "gimple-fold.h" +#include "tree-eh.h" +#include "gimple-iterator.h" +#include "gimplify-me.h" +#include "gimple-walk.h" +#include "tree-cfg.h" +#include "tree-ssa-loop-manip.h" +#include "tree-ssa-loop-niter.h" +#include "tree-into-ssa.h" +#include "tree-dfa.h" +#include "tree-ssa.h" +#include "except.h" +#include "cfgloop.h" +#include "tree-ssa-propagate.h" +#include "value-prof.h" +#include "tree-inline.h" +#include "tree-ssa-live.h" +#include "tree-ssa-dce.h" +#include "omp-general.h" +#include "omp-expand.h" +#include "tree-cfgcleanup.h" +#include "gimplify.h" +#include "attribs.h" +#include "selftest.h" +#include "opts.h" +#include "asan.h" +#include "profile.h" +#include "sreal.h" + +/* This file contains functions for building the Control Flow Graph (CFG) + for a function tree. */ + +/* Local declarations. */ + +/* Initial capacity for the basic block array. */ +static const int initial_cfg_capacity = 20; + +/* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs + which use a particular edge. The CASE_LABEL_EXPRs are chained together + via their CASE_CHAIN field, which we clear after we're done with the + hash table to prevent problems with duplication of GIMPLE_SWITCHes. + + Access to this list of CASE_LABEL_EXPRs allows us to efficiently + update the case vector in response to edge redirections. + + Right now this table is set up and torn down at key points in the + compilation process. It would be nice if we could make the table + more persistent. The key is getting notification of changes to + the CFG (particularly edge removal, creation and redirection). */ + +static hash_map<edge, tree> *edge_to_cases; + +/* If we record edge_to_cases, this bitmap will hold indexes + of basic blocks that end in a GIMPLE_SWITCH which we touched + due to edge manipulations. */ + +static bitmap touched_switch_bbs; + +/* OpenMP region idxs for blocks during cfg pass. */ +static vec<int> bb_to_omp_idx; + +/* CFG statistics. */ +struct cfg_stats_d +{ + long num_merged_labels; +}; + +static struct cfg_stats_d cfg_stats; + +/* Data to pass to replace_block_vars_by_duplicates_1. */ +struct replace_decls_d +{ + hash_map<tree, tree> *vars_map; + tree to_context; +}; + +/* Hash table to store last discriminator assigned for each locus. */ +struct locus_discrim_map +{ + int location_line; + int discriminator; +}; + +/* Hashtable helpers. */ + +struct locus_discrim_hasher : free_ptr_hash <locus_discrim_map> +{ + static inline hashval_t hash (const locus_discrim_map *); + static inline bool equal (const locus_discrim_map *, + const locus_discrim_map *); +}; + +/* Trivial hash function for a location_t. ITEM is a pointer to + a hash table entry that maps a location_t to a discriminator. */ + +inline hashval_t +locus_discrim_hasher::hash (const locus_discrim_map *item) +{ + return item->location_line; +} + +/* Equality function for the locus-to-discriminator map. A and B + point to the two hash table entries to compare. */ + +inline bool +locus_discrim_hasher::equal (const locus_discrim_map *a, + const locus_discrim_map *b) +{ + return a->location_line == b->location_line; +} + +static hash_table<locus_discrim_hasher> *discriminator_per_locus; + +/* Basic blocks and flowgraphs. */ +static void make_blocks (gimple_seq); + +/* Edges. */ +static void make_edges (void); +static void assign_discriminators (void); +static void make_cond_expr_edges (basic_block); +static void make_gimple_switch_edges (gswitch *, basic_block); +static bool make_goto_expr_edges (basic_block); +static void make_gimple_asm_edges (basic_block); +static edge gimple_redirect_edge_and_branch (edge, basic_block); +static edge gimple_try_redirect_by_replacing_jump (edge, basic_block); + +/* Various helpers. */ +static inline bool stmt_starts_bb_p (gimple *, gimple *); +static int gimple_verify_flow_info (void); +static void gimple_make_forwarder_block (edge); +static gimple *first_non_label_stmt (basic_block); +static bool verify_gimple_transaction (gtransaction *); +static bool call_can_make_abnormal_goto (gimple *); + +/* Flowgraph optimization and cleanup. */ +static void gimple_merge_blocks (basic_block, basic_block); +static bool gimple_can_merge_blocks_p (basic_block, basic_block); +static void remove_bb (basic_block); +static edge find_taken_edge_computed_goto (basic_block, tree); +static edge find_taken_edge_cond_expr (const gcond *, tree); + +void +init_empty_tree_cfg_for_function (struct function *fn) +{ + /* Initialize the basic block array. */ + init_flow (fn); + profile_status_for_fn (fn) = PROFILE_ABSENT; + n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS; + last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS; + vec_safe_grow_cleared (basic_block_info_for_fn (fn), + initial_cfg_capacity, true); + + /* Build a mapping of labels to their associated blocks. */ + vec_safe_grow_cleared (label_to_block_map_for_fn (fn), + initial_cfg_capacity, true); + + SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn)); + SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn)); + + ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb + = EXIT_BLOCK_PTR_FOR_FN (fn); + EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb + = ENTRY_BLOCK_PTR_FOR_FN (fn); +} + +void +init_empty_tree_cfg (void) +{ + init_empty_tree_cfg_for_function (cfun); +} + +/*--------------------------------------------------------------------------- + Create basic blocks +---------------------------------------------------------------------------*/ + +/* Entry point to the CFG builder for trees. SEQ is the sequence of + statements to be added to the flowgraph. */ + +static void +build_gimple_cfg (gimple_seq seq) +{ + /* Register specific gimple functions. */ + gimple_register_cfg_hooks (); + + memset ((void *) &cfg_stats, 0, sizeof (cfg_stats)); + + init_empty_tree_cfg (); + + make_blocks (seq); + + /* Make sure there is always at least one block, even if it's empty. */ + if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS) + create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun)); + + /* Adjust the size of the array. */ + if (basic_block_info_for_fn (cfun)->length () + < (size_t) n_basic_blocks_for_fn (cfun)) + vec_safe_grow_cleared (basic_block_info_for_fn (cfun), + n_basic_blocks_for_fn (cfun)); + + /* To speed up statement iterator walks, we first purge dead labels. */ + cleanup_dead_labels (); + + /* Group case nodes to reduce the number of edges. + We do this after cleaning up dead labels because otherwise we miss + a lot of obvious case merging opportunities. */ + group_case_labels (); + + /* Create the edges of the flowgraph. */ + discriminator_per_locus = new hash_table<locus_discrim_hasher> (13); + make_edges (); + assign_discriminators (); + cleanup_dead_labels (); + delete discriminator_per_locus; + discriminator_per_locus = NULL; +} + +/* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove + them and propagate the information to LOOP. We assume that the annotations + come immediately before the condition in BB, if any. */ + +static void +replace_loop_annotate_in_block (basic_block bb, class loop *loop) +{ + gimple_stmt_iterator gsi = gsi_last_bb (bb); + gimple *stmt = gsi_stmt (gsi); + + if (!(stmt && gimple_code (stmt) == GIMPLE_COND)) + return; + + for (gsi_prev_nondebug (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi)) + { + stmt = gsi_stmt (gsi); + if (gimple_code (stmt) != GIMPLE_CALL) + break; + if (!gimple_call_internal_p (stmt) + || gimple_call_internal_fn (stmt) != IFN_ANNOTATE) + break; + + switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1))) + { + case annot_expr_ivdep_kind: + loop->safelen = INT_MAX; + break; + case annot_expr_unroll_kind: + loop->unroll + = (unsigned short) tree_to_shwi (gimple_call_arg (stmt, 2)); + cfun->has_unroll = true; + break; + case annot_expr_no_vector_kind: + loop->dont_vectorize = true; + break; + case annot_expr_vector_kind: + loop->force_vectorize = true; + cfun->has_force_vectorize_loops = true; + break; + case annot_expr_parallel_kind: + loop->can_be_parallel = true; + loop->safelen = INT_MAX; + break; + default: + gcc_unreachable (); + } + + stmt = gimple_build_assign (gimple_call_lhs (stmt), + gimple_call_arg (stmt, 0)); + gsi_replace (&gsi, stmt, true); + } +} + +/* Look for ANNOTATE calls with loop annotation kind; if found, remove + them and propagate the information to the loop. We assume that the + annotations come immediately before the condition of the loop. */ + +static void +replace_loop_annotate (void) +{ + basic_block bb; + gimple_stmt_iterator gsi; + gimple *stmt; + + for (auto loop : loops_list (cfun, 0)) + { + /* First look into the header. */ + replace_loop_annotate_in_block (loop->header, loop); + + /* Then look into the latch, if any. */ + if (loop->latch) + replace_loop_annotate_in_block (loop->latch, loop); + + /* Push the global flag_finite_loops state down to individual loops. */ + loop->finite_p = flag_finite_loops; + } + + /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */ + FOR_EACH_BB_FN (bb, cfun) + { + for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi)) + { + stmt = gsi_stmt (gsi); + if (gimple_code (stmt) != GIMPLE_CALL) + continue; + if (!gimple_call_internal_p (stmt) + || gimple_call_internal_fn (stmt) != IFN_ANNOTATE) + continue; + + switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1))) + { + case annot_expr_ivdep_kind: + case annot_expr_unroll_kind: + case annot_expr_no_vector_kind: + case annot_expr_vector_kind: + case annot_expr_parallel_kind: + break; + default: + gcc_unreachable (); + } + + warning_at (gimple_location (stmt), 0, "ignoring loop annotation"); + stmt = gimple_build_assign (gimple_call_lhs (stmt), + gimple_call_arg (stmt, 0)); + gsi_replace (&gsi, stmt, true); + } + } +} + +static unsigned int +execute_build_cfg (void) +{ + gimple_seq body = gimple_body (current_function_decl); + + build_gimple_cfg (body); + gimple_set_body (current_function_decl, NULL); + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Scope blocks:\n"); + dump_scope_blocks (dump_file, dump_flags); + } + cleanup_tree_cfg (); + + bb_to_omp_idx.release (); + + loop_optimizer_init (AVOID_CFG_MODIFICATIONS); + replace_loop_annotate (); + return 0; +} + +namespace { + +const pass_data pass_data_build_cfg = +{ + GIMPLE_PASS, /* type */ + "cfg", /* name */ + OPTGROUP_NONE, /* optinfo_flags */ + TV_TREE_CFG, /* tv_id */ + PROP_gimple_leh, /* properties_required */ + ( PROP_cfg | PROP_loops ), /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + 0, /* todo_flags_finish */ +}; + +class pass_build_cfg : public gimple_opt_pass +{ +public: + pass_build_cfg (gcc::context *ctxt) + : gimple_opt_pass (pass_data_build_cfg, ctxt) + {} + + /* opt_pass methods: */ + virtual unsigned int execute (function *) { return execute_build_cfg (); } + +}; // class pass_build_cfg + +} // anon namespace + +gimple_opt_pass * +make_pass_build_cfg (gcc::context *ctxt) +{ + return new pass_build_cfg (ctxt); +} + + +/* Return true if T is a computed goto. */ + +bool +computed_goto_p (gimple *t) +{ + return (gimple_code (t) == GIMPLE_GOTO + && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL); +} + +/* Returns true if the sequence of statements STMTS only contains + a call to __builtin_unreachable (). */ + +bool +gimple_seq_unreachable_p (gimple_seq stmts) +{ + if (stmts == NULL + /* Return false if -fsanitize=unreachable, we don't want to + optimize away those calls, but rather turn them into + __ubsan_handle_builtin_unreachable () or __builtin_trap () + later. */ + || sanitize_flags_p (SANITIZE_UNREACHABLE)) + return false; + + gimple_stmt_iterator gsi = gsi_last (stmts); + + if (!gimple_call_builtin_p (gsi_stmt (gsi), BUILT_IN_UNREACHABLE)) + return false; + + for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi)) + { + gimple *stmt = gsi_stmt (gsi); + if (gimple_code (stmt) != GIMPLE_LABEL + && !is_gimple_debug (stmt) + && !gimple_clobber_p (stmt)) + return false; + } + return true; +} + +/* Returns true for edge E where e->src ends with a GIMPLE_COND and + the other edge points to a bb with just __builtin_unreachable (). + I.e. return true for C->M edge in: + <bb C>: + ... + if (something) + goto <bb N>; + else + goto <bb M>; + <bb N>: + __builtin_unreachable (); + <bb M>: */ + +bool +assert_unreachable_fallthru_edge_p (edge e) +{ + basic_block pred_bb = e->src; + gimple *last = last_stmt (pred_bb); + if (last && gimple_code (last) == GIMPLE_COND) + { + basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest; + if (other_bb == e->dest) + other_bb = EDGE_SUCC (pred_bb, 1)->dest; + if (EDGE_COUNT (other_bb->succs) == 0) + return gimple_seq_unreachable_p (bb_seq (other_bb)); + } + return false; +} + + +/* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call + could alter control flow except via eh. We initialize the flag at + CFG build time and only ever clear it later. */ + +static void +gimple_call_initialize_ctrl_altering (gimple *stmt) +{ + int flags = gimple_call_flags (stmt); + + /* A call alters control flow if it can make an abnormal goto. */ + if (call_can_make_abnormal_goto (stmt) + /* A call also alters control flow if it does not return. */ + || flags & ECF_NORETURN + /* TM ending statements have backedges out of the transaction. + Return true so we split the basic block containing them. + Note that the TM_BUILTIN test is merely an optimization. */ + || ((flags & ECF_TM_BUILTIN) + && is_tm_ending_fndecl (gimple_call_fndecl (stmt))) + /* BUILT_IN_RETURN call is same as return statement. */ + || gimple_call_builtin_p (stmt, BUILT_IN_RETURN) + /* IFN_UNIQUE should be the last insn, to make checking for it + as cheap as possible. */ + || (gimple_call_internal_p (stmt) + && gimple_call_internal_unique_p (stmt))) + gimple_call_set_ctrl_altering (stmt, true); + else + gimple_call_set_ctrl_altering (stmt, false); +} + + +/* Insert SEQ after BB and build a flowgraph. */ + +static basic_block +make_blocks_1 (gimple_seq seq, basic_block bb) +{ + gimple_stmt_iterator i = gsi_start (seq); + gimple *stmt = NULL; + gimple *prev_stmt = NULL; + bool start_new_block = true; + bool first_stmt_of_seq = true; + + while (!gsi_end_p (i)) + { + /* PREV_STMT should only be set to a debug stmt if the debug + stmt is before nondebug stmts. Once stmt reaches a nondebug + nonlabel, prev_stmt will be set to it, so that + stmt_starts_bb_p will know to start a new block if a label is + found. However, if stmt was a label after debug stmts only, + keep the label in prev_stmt even if we find further debug + stmts, for there may be other labels after them, and they + should land in the same block. */ + if (!prev_stmt || !stmt || !is_gimple_debug (stmt)) + prev_stmt = stmt; + stmt = gsi_stmt (i); + + if (stmt && is_gimple_call (stmt)) + gimple_call_initialize_ctrl_altering (stmt); + + /* If the statement starts a new basic block or if we have determined + in a previous pass that we need to create a new block for STMT, do + so now. */ + if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt)) + { + if (!first_stmt_of_seq) + gsi_split_seq_before (&i, &seq); + bb = create_basic_block (seq, bb); + start_new_block = false; + prev_stmt = NULL; + } + + /* Now add STMT to BB and create the subgraphs for special statement + codes. */ + gimple_set_bb (stmt, bb); + + /* If STMT is a basic block terminator, set START_NEW_BLOCK for the + next iteration. */ + if (stmt_ends_bb_p (stmt)) + { + /* If the stmt can make abnormal goto use a new temporary + for the assignment to the LHS. This makes sure the old value + of the LHS is available on the abnormal edge. Otherwise + we will end up with overlapping life-ranges for abnormal + SSA names. */ + if (gimple_has_lhs (stmt) + && stmt_can_make_abnormal_goto (stmt) + && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt)))) + { + tree lhs = gimple_get_lhs (stmt); + tree tmp = create_tmp_var (TREE_TYPE (lhs)); + gimple *s = gimple_build_assign (lhs, tmp); + gimple_set_location (s, gimple_location (stmt)); + gimple_set_block (s, gimple_block (stmt)); + gimple_set_lhs (stmt, tmp); + gsi_insert_after (&i, s, GSI_SAME_STMT); + } + start_new_block = true; + } + + gsi_next (&i); + first_stmt_of_seq = false; + } + return bb; +} + +/* Build a flowgraph for the sequence of stmts SEQ. */ + +static void +make_blocks (gimple_seq seq) +{ + /* Look for debug markers right before labels, and move the debug + stmts after the labels. Accepting labels among debug markers + adds no value, just complexity; if we wanted to annotate labels + with view numbers (so sequencing among markers would matter) or + somesuch, we're probably better off still moving the labels, but + adding other debug annotations in their original positions or + emitting nonbind or bind markers associated with the labels in + the original position of the labels. + + Moving labels would probably be simpler, but we can't do that: + moving labels assigns label ids to them, and doing so because of + debug markers makes for -fcompare-debug and possibly even codegen + differences. So, we have to move the debug stmts instead. To + that end, we scan SEQ backwards, marking the position of the + latest (earliest we find) label, and moving debug stmts that are + not separated from it by nondebug nonlabel stmts after the + label. */ + if (MAY_HAVE_DEBUG_MARKER_STMTS) + { + gimple_stmt_iterator label = gsi_none (); + + for (gimple_stmt_iterator i = gsi_last (seq); !gsi_end_p (i); gsi_prev (&i)) + { + gimple *stmt = gsi_stmt (i); + + /* If this is the first label we encounter (latest in SEQ) + before nondebug stmts, record its position. */ + if (is_a <glabel *> (stmt)) + { + if (gsi_end_p (label)) + label = i; + continue; + } + + /* Without a recorded label position to move debug stmts to, + there's nothing to do. */ + if (gsi_end_p (label)) + continue; + + /* Move the debug stmt at I after LABEL. */ + if (is_gimple_debug (stmt)) + { + gcc_assert (gimple_debug_nonbind_marker_p (stmt)); + /* As STMT is removed, I advances to the stmt after + STMT, so the gsi_prev in the for "increment" + expression gets us to the stmt we're to visit after + STMT. LABEL, however, would advance to the moved + stmt if we passed it to gsi_move_after, so pass it a + copy instead, so as to keep LABEL pointing to the + LABEL. */ + gimple_stmt_iterator copy = label; + gsi_move_after (&i, ©); + continue; + } + + /* There aren't any (more?) debug stmts before label, so + there isn't anything else to move after it. */ + label = gsi_none (); + } + } + + make_blocks_1 (seq, ENTRY_BLOCK_PTR_FOR_FN (cfun)); +} + +/* Create and return a new empty basic block after bb AFTER. */ + +static basic_block +create_bb (void *h, void *e, basic_block after) +{ + basic_block bb; + + gcc_assert (!e); + + /* Create and initialize a new basic block. Since alloc_block uses + GC allocation that clears memory to allocate a basic block, we do + not have to clear the newly allocated basic block here. */ + bb = alloc_block (); + + bb->index = last_basic_block_for_fn (cfun); + bb->flags = BB_NEW; + set_bb_seq (bb, h ? (gimple_seq) h : NULL); + + /* Add the new block to the linked list of blocks. */ + link_block (bb, after); + + /* Grow the basic block array if needed. */ + if ((size_t) last_basic_block_for_fn (cfun) + == basic_block_info_for_fn (cfun)->length ()) + vec_safe_grow_cleared (basic_block_info_for_fn (cfun), + last_basic_block_for_fn (cfun) + 1); + + /* Add the newly created block to the array. */ + SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb); + + n_basic_blocks_for_fn (cfun)++; + last_basic_block_for_fn (cfun)++; + + return bb; +} + + +/*--------------------------------------------------------------------------- + Edge creation +---------------------------------------------------------------------------*/ + +/* If basic block BB has an abnormal edge to a basic block + containing IFN_ABNORMAL_DISPATCHER internal call, return + that the dispatcher's basic block, otherwise return NULL. */ + +basic_block +get_abnormal_succ_dispatcher (basic_block bb) +{ + edge e; + edge_iterator ei; + + FOR_EACH_EDGE (e, ei, bb->succs) + if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL) + { + gimple_stmt_iterator gsi + = gsi_start_nondebug_after_labels_bb (e->dest); + gimple *g = gsi_stmt (gsi); + if (g && gimple_call_internal_p (g, IFN_ABNORMAL_DISPATCHER)) + return e->dest; + } + return NULL; +} + +/* Helper function for make_edges. Create a basic block with + with ABNORMAL_DISPATCHER internal call in it if needed, and + create abnormal edges from BBS to it and from it to FOR_BB + if COMPUTED_GOTO is false, otherwise factor the computed gotos. */ + +static void +handle_abnormal_edges (basic_block *dispatcher_bbs, basic_block for_bb, + auto_vec<basic_block> *bbs, bool computed_goto) +{ + basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0); + unsigned int idx = 0; + basic_block bb; + bool inner = false; + + if (!bb_to_omp_idx.is_empty ()) + { + dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index]; + if (bb_to_omp_idx[for_bb->index] != 0) + inner = true; + } + + /* If the dispatcher has been created already, then there are basic + blocks with abnormal edges to it, so just make a new edge to + for_bb. */ + if (*dispatcher == NULL) + { + /* Check if there are any basic blocks that need to have + abnormal edges to this dispatcher. If there are none, return + early. */ + if (bb_to_omp_idx.is_empty ()) + { + if (bbs->is_empty ()) + return; + } + else + { + FOR_EACH_VEC_ELT (*bbs, idx, bb) + if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index]) + break; + if (bb == NULL) + return; + } + + /* Create the dispatcher bb. */ + *dispatcher = create_basic_block (NULL, for_bb); + if (computed_goto) + { + /* Factor computed gotos into a common computed goto site. Also + record the location of that site so that we can un-factor the + gotos after we have converted back to normal form. */ + gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher); + + /* Create the destination of the factored goto. Each original + computed goto will put its desired destination into this + variable and jump to the label we create immediately below. */ + tree var = create_tmp_var (ptr_type_node, "gotovar"); + + /* Build a label for the new block which will contain the + factored computed goto. */ + tree factored_label_decl + = create_artificial_label (UNKNOWN_LOCATION); + gimple *factored_computed_goto_label + = gimple_build_label (factored_label_decl); + gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT); + + /* Build our new computed goto. */ + gimple *factored_computed_goto = gimple_build_goto (var); + gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT); + + FOR_EACH_VEC_ELT (*bbs, idx, bb) + { + if (!bb_to_omp_idx.is_empty () + && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index]) + continue; + + gsi = gsi_last_bb (bb); + gimple *last = gsi_stmt (gsi); + + gcc_assert (computed_goto_p (last)); + + /* Copy the original computed goto's destination into VAR. */ + gimple *assignment + = gimple_build_assign (var, gimple_goto_dest (last)); + gsi_insert_before (&gsi, assignment, GSI_SAME_STMT); + + edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU); + e->goto_locus = gimple_location (last); + gsi_remove (&gsi, true); + } + } + else + { + tree arg = inner ? boolean_true_node : boolean_false_node; + gimple *g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER, + 1, arg); + gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher); + gsi_insert_after (&gsi, g, GSI_NEW_STMT); + + /* Create predecessor edges of the dispatcher. */ + FOR_EACH_VEC_ELT (*bbs, idx, bb) + { + if (!bb_to_omp_idx.is_empty () + && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index]) + continue; + make_edge (bb, *dispatcher, EDGE_ABNORMAL); + } + } + } + + make_edge (*dispatcher, for_bb, EDGE_ABNORMAL); +} + +/* Creates outgoing edges for BB. Returns 1 when it ends with an + computed goto, returns 2 when it ends with a statement that + might return to this function via an nonlocal goto, otherwise + return 0. Updates *PCUR_REGION with the OMP region this BB is in. */ + +static int +make_edges_bb (basic_block bb, struct omp_region **pcur_region, int *pomp_index) +{ + gimple *last = last_stmt (bb); + bool fallthru = false; + int ret = 0; + + if (!last) + return ret; + + switch (gimple_code (last)) + { + case GIMPLE_GOTO: + if (make_goto_expr_edges (bb)) + ret = 1; + fallthru = false; + break; + case GIMPLE_RETURN: + { + edge e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0); + e->goto_locus = gimple_location (last); + fallthru = false; + } + break; + case GIMPLE_COND: + make_cond_expr_edges (bb); + fallthru = false; + break; + case GIMPLE_SWITCH: + make_gimple_switch_edges (as_a <gswitch *> (last), bb); + fallthru = false; + break; + case GIMPLE_RESX: + make_eh_edges (last); + fallthru = false; + break; + case GIMPLE_EH_DISPATCH: + fallthru = make_eh_dispatch_edges (as_a <geh_dispatch *> (last)); + break; + + case GIMPLE_CALL: + /* If this function receives a nonlocal goto, then we need to + make edges from this call site to all the nonlocal goto + handlers. */ + if (stmt_can_make_abnormal_goto (last)) + ret = 2; + + /* If this statement has reachable exception handlers, then + create abnormal edges to them. */ + make_eh_edges (last); + + /* BUILTIN_RETURN is really a return statement. */ + if (gimple_call_builtin_p (last, BUILT_IN_RETURN)) + { + make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0); + fallthru = false; + } + /* Some calls are known not to return. */ + else + fallthru = !gimple_call_noreturn_p (last); + break; + + case GIMPLE_ASSIGN: + /* A GIMPLE_ASSIGN may throw internally and thus be considered + control-altering. */ + if (is_ctrl_altering_stmt (last)) + make_eh_edges (last); + fallthru = true; + break; + + case GIMPLE_ASM: + make_gimple_asm_edges (bb); + fallthru = true; + break; + + CASE_GIMPLE_OMP: + fallthru = omp_make_gimple_edges (bb, pcur_region, pomp_index); + break; + + case GIMPLE_TRANSACTION: + { + gtransaction *txn = as_a <gtransaction *> (last); + tree label1 = gimple_transaction_label_norm (txn); + tree label2 = gimple_transaction_label_uninst (txn); + + if (label1) + make_edge (bb, label_to_block (cfun, label1), EDGE_FALLTHRU); + if (label2) + make_edge (bb, label_to_block (cfun, label2), + EDGE_TM_UNINSTRUMENTED | (label1 ? 0 : EDGE_FALLTHRU)); + + tree label3 = gimple_transaction_label_over (txn); + if (gimple_transaction_subcode (txn) + & (GTMA_HAVE_ABORT | GTMA_IS_OUTER)) + make_edge (bb, label_to_block (cfun, label3), EDGE_TM_ABORT); + + fallthru = false; + } + break; + + default: + gcc_assert (!stmt_ends_bb_p (last)); + fallthru = true; + break; + } + + if (fallthru) + make_edge (bb, bb->next_bb, EDGE_FALLTHRU); + + return ret; +} + +/* Join all the blocks in the flowgraph. */ + +static void +make_edges (void) +{ + basic_block bb; + struct omp_region *cur_region = NULL; + auto_vec<basic_block> ab_edge_goto; + auto_vec<basic_block> ab_edge_call; + int cur_omp_region_idx = 0; + + /* Create an edge from entry to the first block with executable + statements in it. */ + make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), + BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS), + EDGE_FALLTHRU); + + /* Traverse the basic block array placing edges. */ + FOR_EACH_BB_FN (bb, cfun) + { + int mer; + + if (!bb_to_omp_idx.is_empty ()) + bb_to_omp_idx[bb->index] = cur_omp_region_idx; + + mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx); + if (mer == 1) + ab_edge_goto.safe_push (bb); + else if (mer == 2) + ab_edge_call.safe_push (bb); + + if (cur_region && bb_to_omp_idx.is_empty ()) + bb_to_omp_idx.safe_grow_cleared (n_basic_blocks_for_fn (cfun), true); + } + + /* Computed gotos are hell to deal with, especially if there are + lots of them with a large number of destinations. So we factor + them to a common computed goto location before we build the + edge list. After we convert back to normal form, we will un-factor + the computed gotos since factoring introduces an unwanted jump. + For non-local gotos and abnormal edges from calls to calls that return + twice or forced labels, factor the abnormal edges too, by having all + abnormal edges from the calls go to a common artificial basic block + with ABNORMAL_DISPATCHER internal call and abnormal edges from that + basic block to all forced labels and calls returning twice. + We do this per-OpenMP structured block, because those regions + are guaranteed to be single entry single exit by the standard, + so it is not allowed to enter or exit such regions abnormally this way, + thus all computed gotos, non-local gotos and setjmp/longjmp calls + must not transfer control across SESE region boundaries. */ + if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ()) + { + gimple_stmt_iterator gsi; + basic_block dispatcher_bb_array[2] = { NULL, NULL }; + basic_block *dispatcher_bbs = dispatcher_bb_array; + int count = n_basic_blocks_for_fn (cfun); + + if (!bb_to_omp_idx.is_empty ()) + dispatcher_bbs = XCNEWVEC (basic_block, 2 * count); + + FOR_EACH_BB_FN (bb, cfun) + { + for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) + { + glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi)); + tree target; + + if (!label_stmt) + break; + + target = gimple_label_label (label_stmt); + + /* Make an edge to every label block that has been marked as a + potential target for a computed goto or a non-local goto. */ + if (FORCED_LABEL (target)) + handle_abnormal_edges (dispatcher_bbs, bb, &ab_edge_goto, + true); + if (DECL_NONLOCAL (target)) + { + handle_abnormal_edges (dispatcher_bbs, bb, &ab_edge_call, + false); + break; + } + } + + if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi))) + gsi_next_nondebug (&gsi); + if (!gsi_end_p (gsi)) + { + /* Make an edge to every setjmp-like call. */ + gimple *call_stmt = gsi_stmt (gsi); + if (is_gimple_call (call_stmt) + && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE) + || gimple_call_builtin_p (call_stmt, + BUILT_IN_SETJMP_RECEIVER))) + handle_abnormal_edges (dispatcher_bbs, bb, &ab_edge_call, + false); + } + } + + if (!bb_to_omp_idx.is_empty ()) + XDELETE (dispatcher_bbs); + } + + omp_free_regions (); +} + +/* Add SEQ after GSI. Start new bb after GSI, and created further bbs as + needed. Returns true if new bbs were created. + Note: This is transitional code, and should not be used for new code. We + should be able to get rid of this by rewriting all target va-arg + gimplification hooks to use an interface gimple_build_cond_value as described + in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */ + +bool +gimple_find_sub_bbs (gimple_seq seq, gimple_stmt_iterator *gsi) +{ + gimple *stmt = gsi_stmt (*gsi); + basic_block bb = gimple_bb (stmt); + basic_block lastbb, afterbb; + int old_num_bbs = n_basic_blocks_for_fn (cfun); + edge e; + lastbb = make_blocks_1 (seq, bb); + if (old_num_bbs == n_basic_blocks_for_fn (cfun)) + return false; + e = split_block (bb, stmt); + /* Move e->dest to come after the new basic blocks. */ + afterbb = e->dest; + unlink_block (afterbb); + link_block (afterbb, lastbb); + redirect_edge_succ (e, bb->next_bb); + bb = bb->next_bb; + while (bb != afterbb) + { + struct omp_region *cur_region = NULL; + profile_count cnt = profile_count::zero (); + bool all = true; + + int cur_omp_region_idx = 0; + int mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx); + gcc_assert (!mer && !cur_region); + add_bb_to_loop (bb, afterbb->loop_father); + + edge e; + edge_iterator ei; + FOR_EACH_EDGE (e, ei, bb->preds) + { + if (e->count ().initialized_p ()) + cnt += e->count (); + else + all = false; + } + tree_guess_outgoing_edge_probabilities (bb); + if (all || profile_status_for_fn (cfun) == PROFILE_READ) + bb->count = cnt; + + bb = bb->next_bb; + } + return true; +} + +/* Find the next available discriminator value for LOCUS. The + discriminator distinguishes among several basic blocks that + share a common locus, allowing for more accurate sample-based + profiling. */ + +static int +next_discriminator_for_locus (int line) +{ + struct locus_discrim_map item; + struct locus_discrim_map **slot; + + item.location_line = line; + item.discriminator = 0; + slot = discriminator_per_locus->find_slot_with_hash (&item, line, INSERT); + gcc_assert (slot); + if (*slot == HTAB_EMPTY_ENTRY) + { + *slot = XNEW (struct locus_discrim_map); + gcc_assert (*slot); + (*slot)->location_line = line; + (*slot)->discriminator = 0; + } + (*slot)->discriminator++; + return (*slot)->discriminator; +} + +/* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */ + +static bool +same_line_p (location_t locus1, expanded_location *from, location_t locus2) +{ + expanded_location to; + + if (locus1 == locus2) + return true; + + to = expand_location (locus2); + + if (from->line != to.line) + return false; + if (from->file == to.file) + return true; + return (from->file != NULL + && to.file != NULL + && filename_cmp (from->file, to.file) == 0); +} + +/* Assign discriminators to each basic block. */ + +static void +assign_discriminators (void) +{ + basic_block bb; + + FOR_EACH_BB_FN (bb, cfun) + { + edge e; + edge_iterator ei; + gimple *last = last_stmt (bb); + location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION; + + if (locus == UNKNOWN_LOCATION) + continue; + + expanded_location locus_e = expand_location (locus); + + FOR_EACH_EDGE (e, ei, bb->succs) + { + gimple *first = first_non_label_stmt (e->dest); + gimple *last = last_stmt (e->dest); + if ((first && same_line_p (locus, &locus_e, + gimple_location (first))) + || (last && same_line_p (locus, &locus_e, + gimple_location (last)))) + { + if (e->dest->discriminator != 0 && bb->discriminator == 0) + bb->discriminator + = next_discriminator_for_locus (locus_e.line); + else + e->dest->discriminator + = next_discriminator_for_locus (locus_e.line); + } + } + } +} + +/* Create the edges for a GIMPLE_COND starting at block BB. */ + +static void +make_cond_expr_edges (basic_block bb) +{ + gcond *entry = as_a <gcond *> (last_stmt (bb)); + gimple *then_stmt, *else_stmt; + basic_block then_bb, else_bb; + tree then_label, else_label; + edge e; + + gcc_assert (entry); + gcc_assert (gimple_code (entry) == GIMPLE_COND); + + /* Entry basic blocks for each component. */ + then_label = gimple_cond_true_label (entry); + else_label = gimple_cond_false_label (entry); + then_bb = label_to_block (cfun, then_label); + else_bb = label_to_block (cfun, else_label); + then_stmt = first_stmt (then_bb); + else_stmt = first_stmt (else_bb); + + e = make_edge (bb, then_bb, EDGE_TRUE_VALUE); + e->goto_locus = gimple_location (then_stmt); + e = make_edge (bb, else_bb, EDGE_FALSE_VALUE); + if (e) + e->goto_locus = gimple_location (else_stmt); + + /* We do not need the labels anymore. */ + gimple_cond_set_true_label (entry, NULL_TREE); + gimple_cond_set_false_label (entry, NULL_TREE); +} + + +/* Called for each element in the hash table (P) as we delete the + edge to cases hash table. + + Clear all the CASE_CHAINs to prevent problems with copying of + SWITCH_EXPRs and structure sharing rules, then free the hash table + element. */ + +bool +edge_to_cases_cleanup (edge const &, tree const &value, void *) +{ + tree t, next; + + for (t = value; t; t = next) + { + next = CASE_CHAIN (t); + CASE_CHAIN (t) = NULL; + } + + return true; +} + +/* Start recording information mapping edges to case labels. */ + +void +start_recording_case_labels (void) +{ + gcc_assert (edge_to_cases == NULL); + edge_to_cases = new hash_map<edge, tree>; + touched_switch_bbs = BITMAP_ALLOC (NULL); +} + +/* Return nonzero if we are recording information for case labels. */ + +static bool +recording_case_labels_p (void) +{ + return (edge_to_cases != NULL); +} + +/* Stop recording information mapping edges to case labels and + remove any information we have recorded. */ +void +end_recording_case_labels (void) +{ + bitmap_iterator bi; + unsigned i; + edge_to_cases->traverse<void *, edge_to_cases_cleanup> (NULL); + delete edge_to_cases; + edge_to_cases = NULL; + EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi) + { + basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i); + if (bb) + { + gimple *stmt = last_stmt (bb); + if (stmt && gimple_code (stmt) == GIMPLE_SWITCH) + group_case_labels_stmt (as_a <gswitch *> (stmt)); + } + } + BITMAP_FREE (touched_switch_bbs); +} + +/* If we are inside a {start,end}_recording_cases block, then return + a chain of CASE_LABEL_EXPRs from T which reference E. + + Otherwise return NULL. */ + +static tree +get_cases_for_edge (edge e, gswitch *t) +{ + tree *slot; + size_t i, n; + + /* If we are not recording cases, then we do not have CASE_LABEL_EXPR + chains available. Return NULL so the caller can detect this case. */ + if (!recording_case_labels_p ()) + return NULL; + + slot = edge_to_cases->get (e); + if (slot) + return *slot; + + /* If we did not find E in the hash table, then this must be the first + time we have been queried for information about E & T. Add all the + elements from T to the hash table then perform the query again. */ + + n = gimple_switch_num_labels (t); + for (i = 0; i < n; i++) + { + tree elt = gimple_switch_label (t, i); + tree lab = CASE_LABEL (elt); + basic_block label_bb = label_to_block (cfun, lab); + edge this_edge = find_edge (e->src, label_bb); + + /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create + a new chain. */ + tree &s = edge_to_cases->get_or_insert (this_edge); + CASE_CHAIN (elt) = s; + s = elt; + } + + return *edge_to_cases->get (e); +} + +/* Create the edges for a GIMPLE_SWITCH starting at block BB. */ + +static void +make_gimple_switch_edges (gswitch *entry, basic_block bb) +{ + size_t i, n; + + n = gimple_switch_num_labels (entry); + + for (i = 0; i < n; ++i) + { + basic_block label_bb = gimple_switch_label_bb (cfun, entry, i); + make_edge (bb, label_bb, 0); + } +} + + +/* Return the basic block holding label DEST. */ + +basic_block +label_to_block (struct function *ifun, tree dest) +{ + int uid = LABEL_DECL_UID (dest); + + /* We would die hard when faced by an undefined label. Emit a label to + the very first basic block. This will hopefully make even the dataflow + and undefined variable warnings quite right. */ + if (seen_error () && uid < 0) + { + gimple_stmt_iterator gsi = + gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS)); + gimple *stmt; + + stmt = gimple_build_label (dest); + gsi_insert_before (&gsi, stmt, GSI_NEW_STMT); + uid = LABEL_DECL_UID (dest); + } + if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid) + return NULL; + return (*ifun->cfg->x_label_to_block_map)[uid]; +} + +/* Create edges for a goto statement at block BB. Returns true + if abnormal edges should be created. */ + +static bool +make_goto_expr_edges (basic_block bb) +{ + gimple_stmt_iterator last = gsi_last_bb (bb); + gimple *goto_t = gsi_stmt (last); + + /* A simple GOTO creates normal edges. */ + if (simple_goto_p (goto_t)) + { + tree dest = gimple_goto_dest (goto_t); + basic_block label_bb = label_to_block (cfun, dest); + edge e = make_edge (bb, label_bb, EDGE_FALLTHRU); + e->goto_locus = gimple_location (goto_t); + gsi_remove (&last, true); + return false; + } + + /* A computed GOTO creates abnormal edges. */ + return true; +} + +/* Create edges for an asm statement with labels at block BB. */ + +static void +make_gimple_asm_edges (basic_block bb) +{ + gasm *stmt = as_a <gasm *> (last_stmt (bb)); + int i, n = gimple_asm_nlabels (stmt); + + for (i = 0; i < n; ++i) + { + tree label = TREE_VALUE (gimple_asm_label_op (stmt, i)); + basic_block label_bb = label_to_block (cfun, label); + make_edge (bb, label_bb, 0); + } +} + +/*--------------------------------------------------------------------------- + Flowgraph analysis +---------------------------------------------------------------------------*/ + +/* Cleanup useless labels in basic blocks. This is something we wish + to do early because it allows us to group case labels before creating + the edges for the CFG, and it speeds up block statement iterators in + all passes later on. + We rerun this pass after CFG is created, to get rid of the labels that + are no longer referenced. After then we do not run it any more, since + (almost) no new labels should be created. */ + +/* A map from basic block index to the leading label of that block. */ +struct label_record +{ + /* The label. */ + tree label; + + /* True if the label is referenced from somewhere. */ + bool used; +}; + +/* Given LABEL return the first label in the same basic block. */ + +static tree +main_block_label (tree label, label_record *label_for_bb) +{ + basic_block bb = label_to_block (cfun, label); + tree main_label = label_for_bb[bb->index].label; + + /* label_to_block possibly inserted undefined label into the chain. */ + if (!main_label) + { + label_for_bb[bb->index].label = label; + main_label = label; + } + + label_for_bb[bb->index].used = true; + return main_label; +} + +/* Clean up redundant labels within the exception tree. */ + +static void +cleanup_dead_labels_eh (label_record *label_for_bb) +{ + eh_landing_pad lp; + eh_region r; + tree lab; + int i; + + if (cfun->eh == NULL) + return; + + for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i) + if (lp && lp->post_landing_pad) + { + lab = main_block_label (lp->post_landing_pad, label_for_bb); + if (lab != lp->post_landing_pad) + { + EH_LANDING_PAD_NR (lp->post_landing_pad) = 0; + lp->post_landing_pad = lab; + EH_LANDING_PAD_NR (lab) = lp->index; + } + } + + FOR_ALL_EH_REGION (r) + switch (r->type) + { + case ERT_CLEANUP: + case ERT_MUST_NOT_THROW: + break; + + case ERT_TRY: + { + eh_catch c; + for (c = r->u.eh_try.first_catch; c ; c = c->next_catch) + { + lab = c->label; + if (lab) + c->label = main_block_label (lab, label_for_bb); + } + } + break; + + case ERT_ALLOWED_EXCEPTIONS: + lab = r->u.allowed.label; + if (lab) + r->u.allowed.label = main_block_label (lab, label_for_bb); + break; + } +} + + +/* Cleanup redundant labels. This is a three-step process: + 1) Find the leading label for each block. + 2) Redirect all references to labels to the leading labels. + 3) Cleanup all useless labels. */ + +void +cleanup_dead_labels (void) +{ + basic_block bb; + label_record *label_for_bb = XCNEWVEC (struct label_record, + last_basic_block_for_fn (cfun)); + + /* Find a suitable label for each block. We use the first user-defined + label if there is one, or otherwise just the first label we see. */ + FOR_EACH_BB_FN (bb, cfun) + { + gimple_stmt_iterator i; + + for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i)) + { + tree label; + glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i)); + + if (!label_stmt) + break; + + label = gimple_label_label (label_stmt); + + /* If we have not yet seen a label for the current block, + remember this one and see if there are more labels. */ + if (!label_for_bb[bb->index].label) + { + label_for_bb[bb->index].label = label; + continue; + } + + /* If we did see a label for the current block already, but it + is an artificially created label, replace it if the current + label is a user defined label. */ + if (!DECL_ARTIFICIAL (label) + && DECL_ARTIFICIAL (label_for_bb[bb->index].label)) + { + label_for_bb[bb->index].label = label; + break; + } + } + } + + /* Now redirect all jumps/branches to the selected label. + First do so for each block ending in a control statement. */ + FOR_EACH_BB_FN (bb, cfun) + { + gimple *stmt = last_stmt (bb); + tree label, new_label; + + if (!stmt) + continue; + + switch (gimple_code (stmt)) + { + case GIMPLE_COND: + { + gcond *cond_stmt = as_a <gcond *> (stmt); + label = gimple_cond_true_label (cond_stmt); + if (label) + { + new_label = main_block_label (label, label_for_bb); + if (new_label != label) + gimple_cond_set_true_label (cond_stmt, new_label); + } + + label = gimple_cond_false_label (cond_stmt); + if (label) + { + new_label = main_block_label (label, label_for_bb); + if (new_label != label) + gimple_cond_set_false_label (cond_stmt, new_label); + } + } + break; + + case GIMPLE_SWITCH: + { + gswitch *switch_stmt = as_a <gswitch *> (stmt); + size_t i, n = gimple_switch_num_labels (switch_stmt); + + /* Replace all destination labels. */ + for (i = 0; i < n; ++i) + { + tree case_label = gimple_switch_label (switch_stmt, i); + label = CASE_LABEL (case_label); + new_label = main_block_label (label, label_for_bb); + if (new_label != label) + CASE_LABEL (case_label) = new_label; + } + break; + } + + case GIMPLE_ASM: + { + gasm *asm_stmt = as_a <gasm *> (stmt); + int i, n = gimple_asm_nlabels (asm_stmt); + + for (i = 0; i < n; ++i) + { + tree cons = gimple_asm_label_op (asm_stmt, i); + tree label = main_block_label (TREE_VALUE (cons), label_for_bb); + TREE_VALUE (cons) = label; + } + break; + } + + /* We have to handle gotos until they're removed, and we don't + remove them until after we've created the CFG edges. */ + case GIMPLE_GOTO: + if (!computed_goto_p (stmt)) + { + ggoto *goto_stmt = as_a <ggoto *> (stmt); + label = gimple_goto_dest (goto_stmt); + new_label = main_block_label (label, label_for_bb); + if (new_label != label) + gimple_goto_set_dest (goto_stmt, new_label); + } + break; + + case GIMPLE_TRANSACTION: + { + gtransaction *txn = as_a <gtransaction *> (stmt); + + label = gimple_transaction_label_norm (txn); + if (label) + { + new_label = main_block_label (label, label_for_bb); + if (new_label != label) + gimple_transaction_set_label_norm (txn, new_label); + } + + label = gimple_transaction_label_uninst (txn); + if (label) + { + new_label = main_block_label (label, label_for_bb); + if (new_label != label) + gimple_transaction_set_label_uninst (txn, new_label); + } + + label = gimple_transaction_label_over (txn); + if (label) + { + new_label = main_block_label (label, label_for_bb); + if (new_label != label) + gimple_transaction_set_label_over (txn, new_label); + } + } + break; + + default: + break; + } + } + + /* Do the same for the exception region tree labels. */ + cleanup_dead_labels_eh (label_for_bb); + + /* Finally, purge dead labels. All user-defined labels and labels that + can be the target of non-local gotos and labels which have their + address taken are preserved. */ + FOR_EACH_BB_FN (bb, cfun) + { + gimple_stmt_iterator i; + tree label_for_this_bb = label_for_bb[bb->index].label; + + if (!label_for_this_bb) + continue; + + /* If the main label of the block is unused, we may still remove it. */ + if (!label_for_bb[bb->index].used) + label_for_this_bb = NULL; + + for (i = gsi_start_bb (bb); !gsi_end_p (i); ) + { + tree label; + glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i)); + + if (!label_stmt) + break; + + label = gimple_label_label (label_stmt); + + if (label == label_for_this_bb + || !DECL_ARTIFICIAL (label) + || DECL_NONLOCAL (label) + || FORCED_LABEL (label)) + gsi_next (&i); + else + { + gcc_checking_assert (EH_LANDING_PAD_NR (label) == 0); + gsi_remove (&i, true); + } + } + } + + free (label_for_bb); +} + +/* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine + the ones jumping to the same label. + Eg. three separate entries 1: 2: 3: become one entry 1..3: */ + +bool +group_case_labels_stmt (gswitch *stmt) +{ + int old_size = gimple_switch_num_labels (stmt); + int i, next_index, new_size; + basic_block default_bb = NULL; + hash_set<tree> *removed_labels = NULL; + + default_bb = gimple_switch_default_bb (cfun, stmt); + + /* Look for possible opportunities to merge cases. */ + new_size = i = 1; + while (i < old_size) + { + tree base_case, base_high; + basic_block base_bb; + + base_case = gimple_switch_label (stmt, i); + + gcc_assert (base_case); + base_bb = label_to_block (cfun, CASE_LABEL (base_case)); + + /* Discard cases that have the same destination as the default case or + whose destination blocks have already been removed as unreachable. */ + if (base_bb == NULL + || base_bb == default_bb + || (removed_labels + && removed_labels->contains (CASE_LABEL (base_case)))) + { + i++; + continue; + } + + base_high = CASE_HIGH (base_case) + ? CASE_HIGH (base_case) + : CASE_LOW (base_case); + next_index = i + 1; + + /* Try to merge case labels. Break out when we reach the end + of the label vector or when we cannot merge the next case + label with the current one. */ + while (next_index < old_size) + { + tree merge_case = gimple_switch_label (stmt, next_index); + basic_block merge_bb = label_to_block (cfun, CASE_LABEL (merge_case)); + wide_int bhp1 = wi::to_wide (base_high) + 1; + + /* Merge the cases if they jump to the same place, + and their ranges are consecutive. */ + if (merge_bb == base_bb + && (removed_labels == NULL + || !removed_labels->contains (CASE_LABEL (merge_case))) + && wi::to_wide (CASE_LOW (merge_case)) == bhp1) + { + base_high + = (CASE_HIGH (merge_case) + ? CASE_HIGH (merge_case) : CASE_LOW (merge_case)); + CASE_HIGH (base_case) = base_high; + next_index++; + } + else + break; + } + + /* Discard cases that have an unreachable destination block. */ + if (EDGE_COUNT (base_bb->succs) == 0 + && gimple_seq_unreachable_p (bb_seq (base_bb)) + /* Don't optimize this if __builtin_unreachable () is the + implicitly added one by the C++ FE too early, before + -Wreturn-type can be diagnosed. We'll optimize it later + during switchconv pass or any other cfg cleanup. */ + && (gimple_in_ssa_p (cfun) + || (LOCATION_LOCUS (gimple_location (last_stmt (base_bb))) + != BUILTINS_LOCATION))) + { + edge base_edge = find_edge (gimple_bb (stmt), base_bb); + if (base_edge != NULL) + { + for (gimple_stmt_iterator gsi = gsi_start_bb (base_bb); + !gsi_end_p (gsi); gsi_next (&gsi)) + if (glabel *stmt = dyn_cast <glabel *> (gsi_stmt (gsi))) + { + if (FORCED_LABEL (gimple_label_label (stmt)) + || DECL_NONLOCAL (gimple_label_label (stmt))) + { + /* Forced/non-local labels aren't going to be removed, + but they will be moved to some neighbouring basic + block. If some later case label refers to one of + those labels, we should throw that case away rather + than keeping it around and refering to some random + other basic block without an edge to it. */ + if (removed_labels == NULL) + removed_labels = new hash_set<tree>; + removed_labels->add (gimple_label_label (stmt)); + } + } + else + break; + remove_edge_and_dominated_blocks (base_edge); + } + i = next_index; + continue; + } + + if (new_size < i) + gimple_switch_set_label (stmt, new_size, + gimple_switch_label (stmt, i)); + i = next_index; + new_size++; + } + + gcc_assert (new_size <= old_size); + + if (new_size < old_size) + gimple_switch_set_num_labels (stmt, new_size); + + delete removed_labels; + return new_size < old_size; +} + +/* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH), + and scan the sorted vector of cases. Combine the ones jumping to the + same label. */ + +bool +group_case_labels (void) +{ + basic_block bb; + bool changed = false; + + FOR_EACH_BB_FN (bb, cfun) + { + gimple *stmt = last_stmt (bb); + if (stmt && gimple_code (stmt) == GIMPLE_SWITCH) + changed |= group_case_labels_stmt (as_a <gswitch *> (stmt)); + } + + return changed; +} + +/* Checks whether we can merge block B into block A. */ + +static bool +gimple_can_merge_blocks_p (basic_block a, basic_block b) +{ + gimple *stmt; + + if (!single_succ_p (a)) + return false; + + if (single_succ_edge (a)->flags & EDGE_COMPLEX) + return false; + + if (single_succ (a) != b) + return false; + + if (!single_pred_p (b)) + return false; + + if (a == ENTRY_BLOCK_PTR_FOR_FN (cfun) + || b == EXIT_BLOCK_PTR_FOR_FN (cfun)) + return false; + + /* If A ends by a statement causing exceptions or something similar, we + cannot merge the blocks. */ + stmt = last_stmt (a); + if (stmt && stmt_ends_bb_p (stmt)) + return false; + + /* Do not allow a block with only a non-local label to be merged. */ + if (stmt) + if (glabel *label_stmt = dyn_cast <glabel *> (stmt)) + if (DECL_NONLOCAL (gimple_label_label (label_stmt))) + return false; + + /* Examine the labels at the beginning of B. */ + for (gimple_stmt_iterator gsi = gsi_start_bb (b); !gsi_end_p (gsi); + gsi_next (&gsi)) + { + tree lab; + glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi)); + if (!label_stmt) + break; + lab = gimple_label_label (label_stmt); + + /* Do not remove user forced labels or for -O0 any user labels. */ + if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab))) + return false; + } + + /* Protect simple loop latches. We only want to avoid merging + the latch with the loop header or with a block in another + loop in this case. */ + if (current_loops + && b->loop_father->latch == b + && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES) + && (b->loop_father->header == a + || b->loop_father != a->loop_father)) + return false; + + /* It must be possible to eliminate all phi nodes in B. If ssa form + is not up-to-date and a name-mapping is registered, we cannot eliminate + any phis. Symbols marked for renaming are never a problem though. */ + for (gphi_iterator gsi = gsi_start_phis (b); !gsi_end_p (gsi); + gsi_next (&gsi)) + { + gphi *phi = gsi.phi (); + /* Technically only new names matter. */ + if (name_registered_for_update_p (PHI_RESULT (phi))) + return false; + } + + /* When not optimizing, don't merge if we'd lose goto_locus. */ + if (!optimize + && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION) + { + location_t goto_locus = single_succ_edge (a)->goto_locus; + gimple_stmt_iterator prev, next; + prev = gsi_last_nondebug_bb (a); + next = gsi_after_labels (b); + if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next))) + gsi_next_nondebug (&next); + if ((gsi_end_p (prev) + || gimple_location (gsi_stmt (prev)) != goto_locus) + && (gsi_end_p (next) + || gimple_location (gsi_stmt (next)) != goto_locus)) + return false; + } + + return true; +} + +/* Replaces all uses of NAME by VAL. */ + +void +replace_uses_by (tree name, tree val) +{ + imm_use_iterator imm_iter; + use_operand_p use; + gimple *stmt; + edge e; + + FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name) + { + /* Mark the block if we change the last stmt in it. */ + if (cfgcleanup_altered_bbs + && stmt_ends_bb_p (stmt)) + bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index); + + FOR_EACH_IMM_USE_ON_STMT (use, imm_iter) + { + replace_exp (use, val); + + if (gimple_code (stmt) == GIMPLE_PHI) + { + e = gimple_phi_arg_edge (as_a <gphi *> (stmt), + PHI_ARG_INDEX_FROM_USE (use)); + if (e->flags & EDGE_ABNORMAL + && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val)) + { + /* This can only occur for virtual operands, since + for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name)) + would prevent replacement. */ + gcc_checking_assert (virtual_operand_p (name)); + SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1; + } + } + } + + if (gimple_code (stmt) != GIMPLE_PHI) + { + gimple_stmt_iterator gsi = gsi_for_stmt (stmt); + gimple *orig_stmt = stmt; + size_t i; + + /* FIXME. It shouldn't be required to keep TREE_CONSTANT + on ADDR_EXPRs up-to-date on GIMPLE. Propagation will + only change sth from non-invariant to invariant, and only + when propagating constants. */ + if (is_gimple_min_invariant (val)) + for (i = 0; i < gimple_num_ops (stmt); i++) + { + tree op = gimple_op (stmt, i); + /* Operands may be empty here. For example, the labels + of a GIMPLE_COND are nulled out following the creation + of the corresponding CFG edges. */ + if (op && TREE_CODE (op) == ADDR_EXPR) + recompute_tree_invariant_for_addr_expr (op); + } + + if (fold_stmt (&gsi)) + stmt = gsi_stmt (gsi); + + if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt)) + gimple_purge_dead_eh_edges (gimple_bb (stmt)); + + update_stmt (stmt); + } + } + + gcc_checking_assert (has_zero_uses (name)); + + /* Also update the trees stored in loop structures. */ + if (current_loops) + { + for (auto loop : loops_list (cfun, 0)) + substitute_in_loop_info (loop, name, val); + } +} + +/* Merge block B into block A. */ + +static void +gimple_merge_blocks (basic_block a, basic_block b) +{ + gimple_stmt_iterator last, gsi; + gphi_iterator psi; + + if (dump_file) + fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index); + + /* Remove all single-valued PHI nodes from block B of the form + V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */ + gsi = gsi_last_bb (a); + for (psi = gsi_start_phis (b); !gsi_end_p (psi); ) + { + gimple *phi = gsi_stmt (psi); + tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0); + gimple *copy; + bool may_replace_uses = (virtual_operand_p (def) + || may_propagate_copy (def, use)); + + /* In case we maintain loop closed ssa form, do not propagate arguments + of loop exit phi nodes. */ + if (current_loops + && loops_state_satisfies_p (LOOP_CLOSED_SSA) + && !virtual_operand_p (def) + && TREE_CODE (use) == SSA_NAME + && a->loop_father != b->loop_father) + may_replace_uses = false; + + if (!may_replace_uses) + { + gcc_assert (!virtual_operand_p (def)); + + /* Note that just emitting the copies is fine -- there is no problem + with ordering of phi nodes. This is because A is the single + predecessor of B, therefore results of the phi nodes cannot + appear as arguments of the phi nodes. */ + copy = gimple_build_assign (def, use); + gsi_insert_after (&gsi, copy, GSI_NEW_STMT); + remove_phi_node (&psi, false); + } + else + { + /* If we deal with a PHI for virtual operands, we can simply + propagate these without fussing with folding or updating + the stmt. */ + if (virtual_operand_p (def)) + { + imm_use_iterator iter; + use_operand_p use_p; + gimple *stmt; + + FOR_EACH_IMM_USE_STMT (stmt, iter, def) + FOR_EACH_IMM_USE_ON_STMT (use_p, iter) + SET_USE (use_p, use); + + if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)) + SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1; + } + else + replace_uses_by (def, use); + + remove_phi_node (&psi, true); + } + } + + /* Ensure that B follows A. */ + move_block_after (b, a); + + gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU); + gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a))); + + /* Remove labels from B and set gimple_bb to A for other statements. */ + for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);) + { + gimple *stmt = gsi_stmt (gsi); + if (glabel *label_stmt = dyn_cast <glabel *> (stmt)) + { + tree label = gimple_label_label (label_stmt); + int lp_nr; + + gsi_remove (&gsi, false); + + /* Now that we can thread computed gotos, we might have + a situation where we have a forced label in block B + However, the label at the start of block B might still be + used in other ways (think about the runtime checking for + Fortran assigned gotos). So we cannot just delete the + label. Instead we move the label to the start of block A. */ + if (FORCED_LABEL (label)) + { + gimple_stmt_iterator dest_gsi = gsi_start_bb (a); + tree first_label = NULL_TREE; + if (!gsi_end_p (dest_gsi)) + if (glabel *first_label_stmt + = dyn_cast <glabel *> (gsi_stmt (dest_gsi))) + first_label = gimple_label_label (first_label_stmt); + if (first_label + && (DECL_NONLOCAL (first_label) + || EH_LANDING_PAD_NR (first_label) != 0)) + gsi_insert_after (&dest_gsi, stmt, GSI_NEW_STMT); + else + gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT); + } + /* Other user labels keep around in a form of a debug stmt. */ + else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_BIND_STMTS) + { + gimple *dbg = gimple_build_debug_bind (label, + integer_zero_node, + stmt); + gimple_debug_bind_reset_value (dbg); + gsi_insert_before (&gsi, dbg, GSI_SAME_STMT); + } + + lp_nr = EH_LANDING_PAD_NR (label); + if (lp_nr) + { + eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr); + lp->post_landing_pad = NULL; + } + } + else + { + gimple_set_bb (stmt, a); + gsi_next (&gsi); + } + } + + /* When merging two BBs, if their counts are different, the larger count + is selected as the new bb count. This is to handle inconsistent + profiles. */ + if (a->loop_father == b->loop_father) + { + a->count = a->count.merge (b->count); + } + + /* Merge the sequences. */ + last = gsi_last_bb (a); + gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT); + set_bb_seq (b, NULL); + + if (cfgcleanup_altered_bbs) + bitmap_set_bit (cfgcleanup_altered_bbs, a->index); +} + + +/* Return the one of two successors of BB that is not reachable by a + complex edge, if there is one. Else, return BB. We use + this in optimizations that use post-dominators for their heuristics, + to catch the cases in C++ where function calls are involved. */ + +basic_block +single_noncomplex_succ (basic_block bb) +{ + edge e0, e1; + if (EDGE_COUNT (bb->succs) != 2) + return bb; + + e0 = EDGE_SUCC (bb, 0); + e1 = EDGE_SUCC (bb, 1); + if (e0->flags & EDGE_COMPLEX) + return e1->dest; + if (e1->flags & EDGE_COMPLEX) + return e0->dest; + + return bb; +} + +/* T is CALL_EXPR. Set current_function_calls_* flags. */ + +void +notice_special_calls (gcall *call) +{ + int flags = gimple_call_flags (call); + + if (flags & ECF_MAY_BE_ALLOCA) + cfun->calls_alloca = true; + if (flags & ECF_RETURNS_TWICE) + cfun->calls_setjmp = true; +} + + +/* Clear flags set by notice_special_calls. Used by dead code removal + to update the flags. */ + +void +clear_special_calls (void) +{ + cfun->calls_alloca = false; + cfun->calls_setjmp = false; +} + +/* Remove PHI nodes associated with basic block BB and all edges out of BB. */ + +static void +remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb) +{ + /* Since this block is no longer reachable, we can just delete all + of its PHI nodes. */ + remove_phi_nodes (bb); + + /* Remove edges to BB's successors. */ + while (EDGE_COUNT (bb->succs) > 0) + remove_edge (EDGE_SUCC (bb, 0)); +} + + +/* Remove statements of basic block BB. */ + +static void +remove_bb (basic_block bb) +{ + gimple_stmt_iterator i; + + if (dump_file) + { + fprintf (dump_file, "Removing basic block %d\n", bb->index); + if (dump_flags & TDF_DETAILS) + { + dump_bb (dump_file, bb, 0, TDF_BLOCKS); + fprintf (dump_file, "\n"); + } + } + + if (current_loops) + { + class loop *loop = bb->loop_father; + + /* If a loop gets removed, clean up the information associated + with it. */ + if (loop->latch == bb + || loop->header == bb) + free_numbers_of_iterations_estimates (loop); + } + + /* Remove all the instructions in the block. */ + if (bb_seq (bb) != NULL) + { + /* Walk backwards so as to get a chance to substitute all + released DEFs into debug stmts. See + eliminate_unnecessary_stmts() in tree-ssa-dce.c for more + details. */ + for (i = gsi_last_bb (bb); !gsi_end_p (i);) + { + gimple *stmt = gsi_stmt (i); + glabel *label_stmt = dyn_cast <glabel *> (stmt); + if (label_stmt + && (FORCED_LABEL (gimple_label_label (label_stmt)) + || DECL_NONLOCAL (gimple_label_label (label_stmt)))) + { + basic_block new_bb; + gimple_stmt_iterator new_gsi; + + /* A non-reachable non-local label may still be referenced. + But it no longer needs to carry the extra semantics of + non-locality. */ + if (DECL_NONLOCAL (gimple_label_label (label_stmt))) + { + DECL_NONLOCAL (gimple_label_label (label_stmt)) = 0; + FORCED_LABEL (gimple_label_label (label_stmt)) = 1; + } + + new_bb = bb->prev_bb; + /* Don't move any labels into ENTRY block. */ + if (new_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)) + { + new_bb = single_succ (new_bb); + gcc_assert (new_bb != bb); + } + if ((unsigned) bb->index < bb_to_omp_idx.length () + && ((unsigned) new_bb->index >= bb_to_omp_idx.length () + || (bb_to_omp_idx[bb->index] + != bb_to_omp_idx[new_bb->index]))) + { + /* During cfg pass make sure to put orphaned labels + into the right OMP region. */ + unsigned int i; + int idx; + new_bb = NULL; + FOR_EACH_VEC_ELT (bb_to_omp_idx, i, idx) + if (i >= NUM_FIXED_BLOCKS + && idx == bb_to_omp_idx[bb->index] + && i != (unsigned) bb->index) + { + new_bb = BASIC_BLOCK_FOR_FN (cfun, i); + break; + } + if (new_bb == NULL) + { + new_bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)); + gcc_assert (new_bb != bb); + } + } + new_gsi = gsi_after_labels (new_bb); + gsi_remove (&i, false); + gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT); + } + else + { + /* Release SSA definitions. */ + release_defs (stmt); + gsi_remove (&i, true); + } + + if (gsi_end_p (i)) + i = gsi_last_bb (bb); + else + gsi_prev (&i); + } + } + + if ((unsigned) bb->index < bb_to_omp_idx.length ()) + bb_to_omp_idx[bb->index] = -1; + remove_phi_nodes_and_edges_for_unreachable_block (bb); + bb->il.gimple.seq = NULL; + bb->il.gimple.phi_nodes = NULL; +} + + +/* Given a basic block BB and a value VAL for use in the final statement + of the block (if a GIMPLE_COND, GIMPLE_SWITCH, or computed goto), return + the edge that will be taken out of the block. + If VAL is NULL_TREE, then the current value of the final statement's + predicate or index is used. + If the value does not match a unique edge, NULL is returned. */ + +edge +find_taken_edge (basic_block bb, tree val) +{ + gimple *stmt; + + stmt = last_stmt (bb); + + /* Handle ENTRY and EXIT. */ + if (!stmt) + return NULL; + + if (gimple_code (stmt) == GIMPLE_COND) + return find_taken_edge_cond_expr (as_a <gcond *> (stmt), val); + + if (gimple_code (stmt) == GIMPLE_SWITCH) + return find_taken_edge_switch_expr (as_a <gswitch *> (stmt), val); + + if (computed_goto_p (stmt)) + { + /* Only optimize if the argument is a label, if the argument is + not a label then we cannot construct a proper CFG. + + It may be the case that we only need to allow the LABEL_REF to + appear inside an ADDR_EXPR, but we also allow the LABEL_REF to + appear inside a LABEL_EXPR just to be safe. */ + if (val + && (TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR) + && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL) + return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0)); + } + + /* Otherwise we only know the taken successor edge if it's unique. */ + return single_succ_p (bb) ? single_succ_edge (bb) : NULL; +} + +/* Given a constant value VAL and the entry block BB to a GOTO_EXPR + statement, determine which of the outgoing edges will be taken out of the + block. Return NULL if either edge may be taken. */ + +static edge +find_taken_edge_computed_goto (basic_block bb, tree val) +{ + basic_block dest; + edge e = NULL; + + dest = label_to_block (cfun, val); + if (dest) + e = find_edge (bb, dest); + + /* It's possible for find_edge to return NULL here on invalid code + that abuses the labels-as-values extension (e.g. code that attempts to + jump *between* functions via stored labels-as-values; PR 84136). + If so, then we simply return that NULL for the edge. + We don't currently have a way of detecting such invalid code, so we + can't assert that it was the case when a NULL edge occurs here. */ + + return e; +} + +/* Given COND_STMT and a constant value VAL for use as the predicate, + determine which of the two edges will be taken out of + the statement's block. Return NULL if either edge may be taken. + If VAL is NULL_TREE, then the current value of COND_STMT's predicate + is used. */ + +static edge +find_taken_edge_cond_expr (const gcond *cond_stmt, tree val) +{ + edge true_edge, false_edge; + + if (val == NULL_TREE) + { + /* Use the current value of the predicate. */ + if (gimple_cond_true_p (cond_stmt)) + val = integer_one_node; + else if (gimple_cond_false_p (cond_stmt)) + val = integer_zero_node; + else + return NULL; + } + else if (TREE_CODE (val) != INTEGER_CST) + return NULL; + + extract_true_false_edges_from_block (gimple_bb (cond_stmt), + &true_edge, &false_edge); + + return (integer_zerop (val) ? false_edge : true_edge); +} + +/* Given SWITCH_STMT and an INTEGER_CST VAL for use as the index, determine + which edge will be taken out of the statement's block. Return NULL if any + edge may be taken. + If VAL is NULL_TREE, then the current value of SWITCH_STMT's index + is used. */ + +edge +find_taken_edge_switch_expr (const gswitch *switch_stmt, tree val) +{ + basic_block dest_bb; + edge e; + tree taken_case; + + if (gimple_switch_num_labels (switch_stmt) == 1) + taken_case = gimple_switch_default_label (switch_stmt); + else + { + if (val == NULL_TREE) + val = gimple_switch_index (switch_stmt); + if (TREE_CODE (val) != INTEGER_CST) + return NULL; + else + taken_case = find_case_label_for_value (switch_stmt, val); + } + dest_bb = label_to_block (cfun, CASE_LABEL (taken_case)); + + e = find_edge (gimple_bb (switch_stmt), dest_bb); + gcc_assert (e); + return e; +} + + +/* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL. + We can make optimal use here of the fact that the case labels are + sorted: We can do a binary search for a case matching VAL. */ + +tree +find_case_label_for_value (const gswitch *switch_stmt, tree val) +{ + size_t low, high, n = gimple_switch_num_labels (switch_stmt); + tree default_case = gimple_switch_default_label (switch_stmt); + + for (low = 0, high = n; high - low > 1; ) + { + size_t i = (high + low) / 2; + tree t = gimple_switch_label (switch_stmt, i); + int cmp; + + /* Cache the result of comparing CASE_LOW and val. */ + cmp = tree_int_cst_compare (CASE_LOW (t), val); + + if (cmp > 0) + high = i; + else + low = i; + + if (CASE_HIGH (t) == NULL) + { + /* A singe-valued case label. */ + if (cmp == 0) + return t; + } + else + { + /* A case range. We can only handle integer ranges. */ + if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0) + return t; + } + } + + return default_case; +} + + +/* Dump a basic block on stderr. */ + +void +gimple_debug_bb (basic_block bb) +{ + dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS); +} + + +/* Dump basic block with index N on stderr. */ + +basic_block +gimple_debug_bb_n (int n) +{ + gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n)); + return BASIC_BLOCK_FOR_FN (cfun, n); +} + + +/* Dump the CFG on stderr. + + FLAGS are the same used by the tree dumping functions + (see TDF_* in dumpfile.h). */ + +void +gimple_debug_cfg (dump_flags_t flags) +{ + gimple_dump_cfg (stderr, flags); +} + + +/* Dump the program showing basic block boundaries on the given FILE. + + FLAGS are the same used by the tree dumping functions (see TDF_* in + tree.h). */ + +void +gimple_dump_cfg (FILE *file, dump_flags_t flags) +{ + if (flags & TDF_DETAILS) + { + dump_function_header (file, current_function_decl, flags); + fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n", + n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun), + last_basic_block_for_fn (cfun)); + + brief_dump_cfg (file, flags); + fprintf (file, "\n"); + } + + if (flags & TDF_STATS) + dump_cfg_stats (file); + + dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS); +} + + +/* Dump CFG statistics on FILE. */ + +void +dump_cfg_stats (FILE *file) +{ + static long max_num_merged_labels = 0; + unsigned long size, total = 0; + long num_edges; + basic_block bb; + const char * const fmt_str = "%-30s%-13s%12s\n"; + const char * const fmt_str_1 = "%-30s%13d" PRsa (11) "\n"; + const char * const fmt_str_2 = "%-30s%13ld" PRsa (11) "\n"; + const char * const fmt_str_3 = "%-43s" PRsa (11) "\n"; + const char *funcname = current_function_name (); + + fprintf (file, "\nCFG Statistics for %s\n\n", funcname); + + fprintf (file, "---------------------------------------------------------\n"); + fprintf (file, fmt_str, "", " Number of ", "Memory"); + fprintf (file, fmt_str, "", " instances ", "used "); + fprintf (file, "---------------------------------------------------------\n"); + + size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def); + total += size; + fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun), + SIZE_AMOUNT (size)); + + num_edges = 0; + FOR_EACH_BB_FN (bb, cfun) + num_edges += EDGE_COUNT (bb->succs); + size = num_edges * sizeof (class edge_def); + total += size; + fprintf (file, fmt_str_2, "Edges", num_edges, SIZE_AMOUNT (size)); + + fprintf (file, "---------------------------------------------------------\n"); + fprintf (file, fmt_str_3, "Total memory used by CFG data", + SIZE_AMOUNT (total)); + fprintf (file, "---------------------------------------------------------\n"); + fprintf (file, "\n"); + + if (cfg_stats.num_merged_labels > max_num_merged_labels) + max_num_merged_labels = cfg_stats.num_merged_labels; + + fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n", + cfg_stats.num_merged_labels, max_num_merged_labels); + + fprintf (file, "\n"); +} + + +/* Dump CFG statistics on stderr. Keep extern so that it's always + linked in the final executable. */ + +DEBUG_FUNCTION void +debug_cfg_stats (void) +{ + dump_cfg_stats (stderr); +} + +/*--------------------------------------------------------------------------- + Miscellaneous helpers +---------------------------------------------------------------------------*/ + +/* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control + flow. Transfers of control flow associated with EH are excluded. */ + +static bool +call_can_make_abnormal_goto (gimple *t) +{ + /* If the function has no non-local labels, then a call cannot make an + abnormal transfer of control. */ + if (!cfun->has_nonlocal_label + && !cfun->calls_setjmp) + return false; + + /* Likewise if the call has no side effects. */ + if (!gimple_has_side_effects (t)) + return false; + + /* Likewise if the called function is leaf. */ + if (gimple_call_flags (t) & ECF_LEAF) + return false; + + return true; +} + + +/* Return true if T can make an abnormal transfer of control flow. + Transfers of control flow associated with EH are excluded. */ + +bool +stmt_can_make_abnormal_goto (gimple *t) +{ + if (computed_goto_p (t)) + return true; + if (is_gimple_call (t)) + return call_can_make_abnormal_goto (t); + return false; +} + + +/* Return true if T represents a stmt that always transfers control. */ + +bool +is_ctrl_stmt (gimple *t) +{ + switch (gimple_code (t)) + { + case GIMPLE_COND: + case GIMPLE_SWITCH: + case GIMPLE_GOTO: + case GIMPLE_RETURN: + case GIMPLE_RESX: + return true; + default: + return false; + } +} + + +/* Return true if T is a statement that may alter the flow of control + (e.g., a call to a non-returning function). */ + +bool +is_ctrl_altering_stmt (gimple *t) +{ + gcc_assert (t); + + switch (gimple_code (t)) + { + case GIMPLE_CALL: + /* Per stmt call flag indicates whether the call could alter + controlflow. */ + if (gimple_call_ctrl_altering_p (t)) + return true; + break; + + case GIMPLE_EH_DISPATCH: + /* EH_DISPATCH branches to the individual catch handlers at + this level of a try or allowed-exceptions region. It can + fallthru to the next statement as well. */ + return true; + + case GIMPLE_ASM: + if (gimple_asm_nlabels (as_a <gasm *> (t)) > 0) + return true; + break; + + CASE_GIMPLE_OMP: + /* OpenMP directives alter control flow. */ + return true; + + case GIMPLE_TRANSACTION: + /* A transaction start alters control flow. */ + return true; + + default: + break; + } + + /* If a statement can throw, it alters control flow. */ + return stmt_can_throw_internal (cfun, t); +} + + +/* Return true if T is a simple local goto. */ + +bool +simple_goto_p (gimple *t) +{ + return (gimple_code (t) == GIMPLE_GOTO + && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL); +} + + +/* Return true if STMT should start a new basic block. PREV_STMT is + the statement preceding STMT. It is used when STMT is a label or a + case label. Labels should only start a new basic block if their + previous statement wasn't a label. Otherwise, sequence of labels + would generate unnecessary basic blocks that only contain a single + label. */ + +static inline bool +stmt_starts_bb_p (gimple *stmt, gimple *prev_stmt) +{ + if (stmt == NULL) + return false; + + /* PREV_STMT is only set to a debug stmt if the debug stmt is before + any nondebug stmts in the block. We don't want to start another + block in this case: the debug stmt will already have started the + one STMT would start if we weren't outputting debug stmts. */ + if (prev_stmt && is_gimple_debug (prev_stmt)) + return false; + + /* Labels start a new basic block only if the preceding statement + wasn't a label of the same type. This prevents the creation of + consecutive blocks that have nothing but a single label. */ + if (glabel *label_stmt = dyn_cast <glabel *> (stmt)) + { + /* Nonlocal and computed GOTO targets always start a new block. */ + if (DECL_NONLOCAL (gimple_label_label (label_stmt)) + || FORCED_LABEL (gimple_label_label (label_stmt))) + return true; + + if (glabel *plabel = safe_dyn_cast <glabel *> (prev_stmt)) + { + if (DECL_NONLOCAL (gimple_label_label (plabel)) + || !DECL_ARTIFICIAL (gimple_label_label (plabel))) + return true; + + cfg_stats.num_merged_labels++; + return false; + } + else + return true; + } + else if (gimple_code (stmt) == GIMPLE_CALL) + { + if (gimple_call_flags (stmt) & ECF_RETURNS_TWICE) + /* setjmp acts similar to a nonlocal GOTO target and thus should + start a new block. */ + return true; + if (gimple_call_internal_p (stmt, IFN_PHI) + && prev_stmt + && gimple_code (prev_stmt) != GIMPLE_LABEL + && (gimple_code (prev_stmt) != GIMPLE_CALL + || ! gimple_call_internal_p (prev_stmt, IFN_PHI))) + /* PHI nodes start a new block unless preceeded by a label + or another PHI. */ + return true; + } + + return false; +} + + +/* Return true if T should end a basic block. */ + +bool +stmt_ends_bb_p (gimple *t) +{ + return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t); +} + +/* Remove block annotations and other data structures. */ + +void +delete_tree_cfg_annotations (struct function *fn) +{ + vec_free (label_to_block_map_for_fn (fn)); +} + +/* Return the virtual phi in BB. */ + +gphi * +get_virtual_phi (basic_block bb) +{ + for (gphi_iterator gsi = gsi_start_phis (bb); + !gsi_end_p (gsi); + gsi_next (&gsi)) + { + gphi *phi = gsi.phi (); + + if (virtual_operand_p (PHI_RESULT (phi))) + return phi; + } + + return NULL; +} + +/* Return the first statement in basic block BB. */ + +gimple * +first_stmt (basic_block bb) +{ + gimple_stmt_iterator i = gsi_start_bb (bb); + gimple *stmt = NULL; + + while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i)))) + { + gsi_next (&i); + stmt = NULL; + } + return stmt; +} + +/* Return the first non-label statement in basic block BB. */ + +static gimple * +first_non_label_stmt (basic_block bb) +{ + gimple_stmt_iterator i = gsi_start_bb (bb); + while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL) + gsi_next (&i); + return !gsi_end_p (i) ? gsi_stmt (i) : NULL; +} + +/* Return the last statement in basic block BB. */ + +gimple * +last_stmt (basic_block bb) +{ + gimple_stmt_iterator i = gsi_last_bb (bb); + gimple *stmt = NULL; + + while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i)))) + { + gsi_prev (&i); + stmt = NULL; + } + return stmt; +} + +/* Return the last statement of an otherwise empty block. Return NULL + if the block is totally empty, or if it contains more than one + statement. */ + +gimple * +last_and_only_stmt (basic_block bb) +{ + gimple_stmt_iterator i = gsi_last_nondebug_bb (bb); + gimple *last, *prev; + + if (gsi_end_p (i)) + return NULL; + + last = gsi_stmt (i); + gsi_prev_nondebug (&i); + if (gsi_end_p (i)) + return last; + + /* Empty statements should no longer appear in the instruction stream. + Everything that might have appeared before should be deleted by + remove_useless_stmts, and the optimizers should just gsi_remove + instead of smashing with build_empty_stmt. + + Thus the only thing that should appear here in a block containing + one executable statement is a label. */ + prev = gsi_stmt (i); + if (gimple_code (prev) == GIMPLE_LABEL) + return last; + else + return NULL; +} + +/* Returns the basic block after which the new basic block created + by splitting edge EDGE_IN should be placed. Tries to keep the new block + near its "logical" location. This is of most help to humans looking + at debugging dumps. */ + +basic_block +split_edge_bb_loc (edge edge_in) +{ + basic_block dest = edge_in->dest; + basic_block dest_prev = dest->prev_bb; + + if (dest_prev) + { + edge e = find_edge (dest_prev, dest); + if (e && !(e->flags & EDGE_COMPLEX)) + return edge_in->src; + } + return dest_prev; +} + +/* Split a (typically critical) edge EDGE_IN. Return the new block. + Abort on abnormal edges. */ + +static basic_block +gimple_split_edge (edge edge_in) +{ + basic_block new_bb, after_bb, dest; + edge new_edge, e; + + /* Abnormal edges cannot be split. */ + gcc_assert (!(edge_in->flags & EDGE_ABNORMAL)); + + dest = edge_in->dest; + + after_bb = split_edge_bb_loc (edge_in); + + new_bb = create_empty_bb (after_bb); + new_bb->count = edge_in->count (); + + /* We want to avoid re-allocating PHIs when we first + add the fallthru edge from new_bb to dest but we also + want to avoid changing PHI argument order when + first redirecting edge_in away from dest. The former + avoids changing PHI argument order by adding them + last and then the redirection swapping it back into + place by means of unordered remove. + So hack around things by temporarily removing all PHIs + from the destination during the edge redirection and then + making sure the edges stay in order. */ + gimple_seq saved_phis = phi_nodes (dest); + unsigned old_dest_idx = edge_in->dest_idx; + set_phi_nodes (dest, NULL); + new_edge = make_single_succ_edge (new_bb, dest, EDGE_FALLTHRU); + e = redirect_edge_and_branch (edge_in, new_bb); + gcc_assert (e == edge_in && new_edge->dest_idx == old_dest_idx); + /* set_phi_nodes sets the BB of the PHI nodes, so do it manually here. */ + dest->il.gimple.phi_nodes = saved_phis; + + return new_bb; +} + + +/* Verify properties of the address expression T whose base should be + TREE_ADDRESSABLE if VERIFY_ADDRESSABLE is true. */ + +static bool +verify_address (tree t, bool verify_addressable) +{ + bool old_constant; + bool old_side_effects; + bool new_constant; + bool new_side_effects; + + old_constant = TREE_CONSTANT (t); + old_side_effects = TREE_SIDE_EFFECTS (t); + + recompute_tree_invariant_for_addr_expr (t); + new_side_effects = TREE_SIDE_EFFECTS (t); + new_constant = TREE_CONSTANT (t); + + if (old_constant != new_constant) + { + error ("constant not recomputed when %<ADDR_EXPR%> changed"); + return true; + } + if (old_side_effects != new_side_effects) + { + error ("side effects not recomputed when %<ADDR_EXPR%> changed"); + return true; + } + + tree base = TREE_OPERAND (t, 0); + while (handled_component_p (base)) + base = TREE_OPERAND (base, 0); + + if (!(VAR_P (base) + || TREE_CODE (base) == PARM_DECL + || TREE_CODE (base) == RESULT_DECL)) + return false; + + if (verify_addressable && !TREE_ADDRESSABLE (base)) + { + error ("address taken but %<TREE_ADDRESSABLE%> bit not set"); + return true; + } + + return false; +} + + +/* Verify if EXPR is a valid GIMPLE reference expression. If + REQUIRE_LVALUE is true verifies it is an lvalue. Returns true + if there is an error, otherwise false. */ + +static bool +verify_types_in_gimple_reference (tree expr, bool require_lvalue) +{ + const char *code_name = get_tree_code_name (TREE_CODE (expr)); + + if (TREE_CODE (expr) == REALPART_EXPR + || TREE_CODE (expr) == IMAGPART_EXPR + || TREE_CODE (expr) == BIT_FIELD_REF) + { + tree op = TREE_OPERAND (expr, 0); + if (!is_gimple_reg_type (TREE_TYPE (expr))) + { + error ("non-scalar %qs", code_name); + return true; + } + + if (TREE_CODE (expr) == BIT_FIELD_REF) + { + tree t1 = TREE_OPERAND (expr, 1); + tree t2 = TREE_OPERAND (expr, 2); + poly_uint64 size, bitpos; + if (!poly_int_tree_p (t1, &size) + || !poly_int_tree_p (t2, &bitpos) + || !types_compatible_p (bitsizetype, TREE_TYPE (t1)) + || !types_compatible_p (bitsizetype, TREE_TYPE (t2))) + { + error ("invalid position or size operand to %qs", code_name); + return true; + } + if (INTEGRAL_TYPE_P (TREE_TYPE (expr)) + && maybe_ne (TYPE_PRECISION (TREE_TYPE (expr)), size)) + { + error ("integral result type precision does not match " + "field size of %qs", code_name); + return true; + } + else if (!INTEGRAL_TYPE_P (TREE_TYPE (expr)) + && TYPE_MODE (TREE_TYPE (expr)) != BLKmode + && maybe_ne (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr))), + size)) + { + error ("mode size of non-integral result does not " + "match field size of %qs", + code_name); + return true; + } + if (INTEGRAL_TYPE_P (TREE_TYPE (op)) + && !type_has_mode_precision_p (TREE_TYPE (op))) + { + error ("%qs of non-mode-precision operand", code_name); + return true; + } + if (!AGGREGATE_TYPE_P (TREE_TYPE (op)) + && maybe_gt (size + bitpos, + tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (op))))) + { + error ("position plus size exceeds size of referenced object in " + "%qs", code_name); + return true; + } + } + + if ((TREE_CODE (expr) == REALPART_EXPR + || TREE_CODE (expr) == IMAGPART_EXPR) + && !useless_type_conversion_p (TREE_TYPE (expr), + TREE_TYPE (TREE_TYPE (op)))) + { + error ("type mismatch in %qs reference", code_name); + debug_generic_stmt (TREE_TYPE (expr)); + debug_generic_stmt (TREE_TYPE (TREE_TYPE (op))); + return true; + } + expr = op; + } + + while (handled_component_p (expr)) + { + code_name = get_tree_code_name (TREE_CODE (expr)); + + if (TREE_CODE (expr) == REALPART_EXPR + || TREE_CODE (expr) == IMAGPART_EXPR + || TREE_CODE (expr) == BIT_FIELD_REF) + { + error ("non-top-level %qs", code_name); + return true; + } + + tree op = TREE_OPERAND (expr, 0); + + if (TREE_CODE (expr) == ARRAY_REF + || TREE_CODE (expr) == ARRAY_RANGE_REF) + { + if (!is_gimple_val (TREE_OPERAND (expr, 1)) + || (TREE_OPERAND (expr, 2) + && !is_gimple_val (TREE_OPERAND (expr, 2))) + || (TREE_OPERAND (expr, 3) + && !is_gimple_val (TREE_OPERAND (expr, 3)))) + { + error ("invalid operands to %qs", code_name); + debug_generic_stmt (expr); + return true; + } + } + + /* Verify if the reference array element types are compatible. */ + if (TREE_CODE (expr) == ARRAY_REF + && !useless_type_conversion_p (TREE_TYPE (expr), + TREE_TYPE (TREE_TYPE (op)))) + { + error ("type mismatch in %qs", code_name); + debug_generic_stmt (TREE_TYPE (expr)); + debug_generic_stmt (TREE_TYPE (TREE_TYPE (op))); + return true; + } + if (TREE_CODE (expr) == ARRAY_RANGE_REF + && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)), + TREE_TYPE (TREE_TYPE (op)))) + { + error ("type mismatch in %qs", code_name); + debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr))); + debug_generic_stmt (TREE_TYPE (TREE_TYPE (op))); + return true; + } + + if (TREE_CODE (expr) == COMPONENT_REF) + { + if (TREE_OPERAND (expr, 2) + && !is_gimple_val (TREE_OPERAND (expr, 2))) + { + error ("invalid %qs offset operator", code_name); + return true; + } + if (!useless_type_conversion_p (TREE_TYPE (expr), + TREE_TYPE (TREE_OPERAND (expr, 1)))) + { + error ("type mismatch in %qs", code_name); + debug_generic_stmt (TREE_TYPE (expr)); + debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1))); + return true; + } + } + + if (TREE_CODE (expr) == VIEW_CONVERT_EXPR) + { + /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check + that their operand is not an SSA name or an invariant when + requiring an lvalue (this usually means there is a SRA or IPA-SRA + bug). Otherwise there is nothing to verify, gross mismatches at + most invoke undefined behavior. */ + if (require_lvalue + && (TREE_CODE (op) == SSA_NAME + || is_gimple_min_invariant (op))) + { + error ("conversion of %qs on the left hand side of %qs", + get_tree_code_name (TREE_CODE (op)), code_name); + debug_generic_stmt (expr); + return true; + } + else if (TREE_CODE (op) == SSA_NAME + && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op))) + { + error ("conversion of register to a different size in %qs", + code_name); + debug_generic_stmt (expr); + return true; + } + else if (!handled_component_p (op)) + return false; + } + + expr = op; + } + + code_name = get_tree_code_name (TREE_CODE (expr)); + + if (TREE_CODE (expr) == MEM_REF) + { + if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)) + || (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR + && verify_address (TREE_OPERAND (expr, 0), false))) + { + error ("invalid address operand in %qs", code_name); + debug_generic_stmt (expr); + return true; + } + if (!poly_int_tree_p (TREE_OPERAND (expr, 1)) + || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1)))) + { + error ("invalid offset operand in %qs", code_name); + debug_generic_stmt (expr); + return true; + } + if (MR_DEPENDENCE_CLIQUE (expr) != 0 + && MR_DEPENDENCE_CLIQUE (expr) > cfun->last_clique) + { + error ("invalid clique in %qs", code_name); + debug_generic_stmt (expr); + return true; + } + } + else if (TREE_CODE (expr) == TARGET_MEM_REF) + { + if (!TMR_BASE (expr) + || !is_gimple_mem_ref_addr (TMR_BASE (expr)) + || (TREE_CODE (TMR_BASE (expr)) == ADDR_EXPR + && verify_address (TMR_BASE (expr), false))) + { + error ("invalid address operand in %qs", code_name); + return true; + } + if (!TMR_OFFSET (expr) + || !poly_int_tree_p (TMR_OFFSET (expr)) + || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr)))) + { + error ("invalid offset operand in %qs", code_name); + debug_generic_stmt (expr); + return true; + } + if (MR_DEPENDENCE_CLIQUE (expr) != 0 + && MR_DEPENDENCE_CLIQUE (expr) > cfun->last_clique) + { + error ("invalid clique in %qs", code_name); + debug_generic_stmt (expr); + return true; + } + } + else if (TREE_CODE (expr) == INDIRECT_REF) + { + error ("%qs in gimple IL", code_name); + debug_generic_stmt (expr); + return true; + } + + if (!require_lvalue + && (TREE_CODE (expr) == SSA_NAME || is_gimple_min_invariant (expr))) + return false; + + if (TREE_CODE (expr) != SSA_NAME && is_gimple_id (expr)) + return false; + + if (TREE_CODE (expr) != TARGET_MEM_REF + && TREE_CODE (expr) != MEM_REF) + { + error ("invalid expression for min lvalue"); + return true; + } + + return false; +} + +/* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ) + list of pointer-to types that is trivially convertible to DEST. */ + +static bool +one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj) +{ + tree src; + + if (!TYPE_POINTER_TO (src_obj)) + return true; + + for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src)) + if (useless_type_conversion_p (dest, src)) + return true; + + return false; +} + +/* Return true if TYPE1 is a fixed-point type and if conversions to and + from TYPE2 can be handled by FIXED_CONVERT_EXPR. */ + +static bool +valid_fixed_convert_types_p (tree type1, tree type2) +{ + return (FIXED_POINT_TYPE_P (type1) + && (INTEGRAL_TYPE_P (type2) + || SCALAR_FLOAT_TYPE_P (type2) + || FIXED_POINT_TYPE_P (type2))); +} + +/* Verify the contents of a GIMPLE_CALL STMT. Returns true when there + is a problem, otherwise false. */ + +static bool +verify_gimple_call (gcall *stmt) +{ + tree fn = gimple_call_fn (stmt); + tree fntype, fndecl; + unsigned i; + + if (gimple_call_internal_p (stmt)) + { + if (fn) + { + error ("gimple call has two targets"); + debug_generic_stmt (fn); + return true; + } + } + else + { + if (!fn) + { + error ("gimple call has no target"); + return true; + } + } + + if (fn && !is_gimple_call_addr (fn)) + { + error ("invalid function in gimple call"); + debug_generic_stmt (fn); + return true; + } + + if (fn + && (!POINTER_TYPE_P (TREE_TYPE (fn)) + || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE + && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE))) + { + error ("non-function in gimple call"); + return true; + } + + fndecl = gimple_call_fndecl (stmt); + if (fndecl + && TREE_CODE (fndecl) == FUNCTION_DECL + && DECL_LOOPING_CONST_OR_PURE_P (fndecl) + && !DECL_PURE_P (fndecl) + && !TREE_READONLY (fndecl)) + { + error ("invalid pure const state for function"); + return true; + } + + tree lhs = gimple_call_lhs (stmt); + if (lhs + && (!is_gimple_reg (lhs) + && (!is_gimple_lvalue (lhs) + || verify_types_in_gimple_reference + (TREE_CODE (lhs) == WITH_SIZE_EXPR + ? TREE_OPERAND (lhs, 0) : lhs, true)))) + { + error ("invalid LHS in gimple call"); + return true; + } + + if (gimple_call_ctrl_altering_p (stmt) + && gimple_call_noreturn_p (stmt) + && should_remove_lhs_p (lhs)) + { + error ("LHS in %<noreturn%> call"); + return true; + } + + fntype = gimple_call_fntype (stmt); + if (fntype + && lhs + && !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (fntype)) + /* ??? At least C++ misses conversions at assignments from + void * call results. + For now simply allow arbitrary pointer type conversions. */ + && !(POINTER_TYPE_P (TREE_TYPE (lhs)) + && POINTER_TYPE_P (TREE_TYPE (fntype)))) + { + error ("invalid conversion in gimple call"); + debug_generic_stmt (TREE_TYPE (lhs)); + debug_generic_stmt (TREE_TYPE (fntype)); + return true; + } + + if (gimple_call_chain (stmt) + && !is_gimple_val (gimple_call_chain (stmt))) + { + error ("invalid static chain in gimple call"); + debug_generic_stmt (gimple_call_chain (stmt)); + return true; + } + + /* If there is a static chain argument, the call should either be + indirect, or the decl should have DECL_STATIC_CHAIN set. */ + if (gimple_call_chain (stmt) + && fndecl + && !DECL_STATIC_CHAIN (fndecl)) + { + error ("static chain with function that doesn%'t use one"); + return true; + } + + if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)) + { + switch (DECL_FUNCTION_CODE (fndecl)) + { + case BUILT_IN_UNREACHABLE: + case BUILT_IN_TRAP: + if (gimple_call_num_args (stmt) > 0) + { + /* Built-in unreachable with parameters might not be caught by + undefined behavior sanitizer. Front-ends do check users do not + call them that way but we also produce calls to + __builtin_unreachable internally, for example when IPA figures + out a call cannot happen in a legal program. In such cases, + we must make sure arguments are stripped off. */ + error ("%<__builtin_unreachable%> or %<__builtin_trap%> call " + "with arguments"); + return true; + } + break; + default: + break; + } + } + + /* For a call to .DEFERRED_INIT, + LHS = DEFERRED_INIT (SIZE of the DECL, INIT_TYPE, NAME of the DECL) + we should guarantee that when the 1st argument is a constant, it should + be the same as the size of the LHS. */ + + if (gimple_call_internal_p (stmt, IFN_DEFERRED_INIT)) + { + tree size_of_arg0 = gimple_call_arg (stmt, 0); + tree size_of_lhs = TYPE_SIZE_UNIT (TREE_TYPE (lhs)); + + if (TREE_CODE (lhs) == SSA_NAME) + lhs = SSA_NAME_VAR (lhs); + + poly_uint64 size_from_arg0, size_from_lhs; + bool is_constant_size_arg0 = poly_int_tree_p (size_of_arg0, + &size_from_arg0); + bool is_constant_size_lhs = poly_int_tree_p (size_of_lhs, + &size_from_lhs); + if (is_constant_size_arg0 && is_constant_size_lhs) + if (maybe_ne (size_from_arg0, size_from_lhs)) + { + error ("%<DEFFERED_INIT%> calls should have same " + "constant size for the first argument and LHS"); + return true; + } + } + + /* ??? The C frontend passes unpromoted arguments in case it + didn't see a function declaration before the call. So for now + leave the call arguments mostly unverified. Once we gimplify + unit-at-a-time we have a chance to fix this. */ + for (i = 0; i < gimple_call_num_args (stmt); ++i) + { + tree arg = gimple_call_arg (stmt, i); + if ((is_gimple_reg_type (TREE_TYPE (arg)) + && !is_gimple_val (arg)) + || (!is_gimple_reg_type (TREE_TYPE (arg)) + && !is_gimple_lvalue (arg))) + { + error ("invalid argument to gimple call"); + debug_generic_expr (arg); + return true; + } + if (!is_gimple_reg (arg)) + { + if (TREE_CODE (arg) == WITH_SIZE_EXPR) + arg = TREE_OPERAND (arg, 0); + if (verify_types_in_gimple_reference (arg, false)) + return true; + } + } + + return false; +} + +/* Verifies the gimple comparison with the result type TYPE and + the operands OP0 and OP1, comparison code is CODE. */ + +static bool +verify_gimple_comparison (tree type, tree op0, tree op1, enum tree_code code) +{ + tree op0_type = TREE_TYPE (op0); + tree op1_type = TREE_TYPE (op1); + + if (!is_gimple_val (op0) || !is_gimple_val (op1)) + { + error ("invalid operands in gimple comparison"); + return true; + } + + /* For comparisons we do not have the operations type as the + effective type the comparison is carried out in. Instead + we require that either the first operand is trivially + convertible into the second, or the other way around. */ + if (!useless_type_conversion_p (op0_type, op1_type) + && !useless_type_conversion_p (op1_type, op0_type)) + { + error ("mismatching comparison operand types"); + debug_generic_expr (op0_type); + debug_generic_expr (op1_type); + return true; + } + + /* The resulting type of a comparison may be an effective boolean type. */ + if (INTEGRAL_TYPE_P (type) + && (TREE_CODE (type) == BOOLEAN_TYPE + || TYPE_PRECISION (type) == 1)) + { + if ((TREE_CODE (op0_type) == VECTOR_TYPE + || TREE_CODE (op1_type) == VECTOR_TYPE) + && code != EQ_EXPR && code != NE_EXPR + && !VECTOR_BOOLEAN_TYPE_P (op0_type) + && !VECTOR_INTEGER_TYPE_P (op0_type)) + { + error ("unsupported operation or type for vector comparison" + " returning a boolean"); + debug_generic_expr (op0_type); + debug_generic_expr (op1_type); + return true; + } + } + /* Or a boolean vector type with the same element count + as the comparison operand types. */ + else if (TREE_CODE (type) == VECTOR_TYPE + && TREE_CODE (TREE_TYPE (type)) == BOOLEAN_TYPE) + { + if (TREE_CODE (op0_type) != VECTOR_TYPE + || TREE_CODE (op1_type) != VECTOR_TYPE) + { + error ("non-vector operands in vector comparison"); + debug_generic_expr (op0_type); + debug_generic_expr (op1_type); + return true; + } + + if (maybe_ne (TYPE_VECTOR_SUBPARTS (type), + TYPE_VECTOR_SUBPARTS (op0_type))) + { + error ("invalid vector comparison resulting type"); + debug_generic_expr (type); + return true; + } + } + else + { + error ("bogus comparison result type"); + debug_generic_expr (type); + return true; + } + + return false; +} + +/* Verify a gimple assignment statement STMT with an unary rhs. + Returns true if anything is wrong. */ + +static bool +verify_gimple_assign_unary (gassign *stmt) +{ + enum tree_code rhs_code = gimple_assign_rhs_code (stmt); + tree lhs = gimple_assign_lhs (stmt); + tree lhs_type = TREE_TYPE (lhs); + tree rhs1 = gimple_assign_rhs1 (stmt); + tree rhs1_type = TREE_TYPE (rhs1); + + if (!is_gimple_reg (lhs)) + { + error ("non-register as LHS of unary operation"); + return true; + } + + if (!is_gimple_val (rhs1)) + { + error ("invalid operand in unary operation"); + return true; + } + + const char* const code_name = get_tree_code_name (rhs_code); + + /* First handle conversions. */ + switch (rhs_code) + { + CASE_CONVERT: + { + /* Allow conversions between vectors with the same number of elements, + provided that the conversion is OK for the element types too. */ + if (VECTOR_TYPE_P (lhs_type) + && VECTOR_TYPE_P (rhs1_type) + && known_eq (TYPE_VECTOR_SUBPARTS (lhs_type), + TYPE_VECTOR_SUBPARTS (rhs1_type))) + { + lhs_type = TREE_TYPE (lhs_type); + rhs1_type = TREE_TYPE (rhs1_type); + } + else if (VECTOR_TYPE_P (lhs_type) || VECTOR_TYPE_P (rhs1_type)) + { + error ("invalid vector types in nop conversion"); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + return true; + } + + /* Allow conversions from pointer type to integral type only if + there is no sign or zero extension involved. + For targets were the precision of ptrofftype doesn't match that + of pointers we allow conversions to types where + POINTERS_EXTEND_UNSIGNED specifies how that works. */ + if ((POINTER_TYPE_P (lhs_type) + && INTEGRAL_TYPE_P (rhs1_type)) + || (POINTER_TYPE_P (rhs1_type) + && INTEGRAL_TYPE_P (lhs_type) + && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type) +#if defined(POINTERS_EXTEND_UNSIGNED) + || (TYPE_MODE (rhs1_type) == ptr_mode + && (TYPE_PRECISION (lhs_type) + == BITS_PER_WORD /* word_mode */ + || (TYPE_PRECISION (lhs_type) + == GET_MODE_PRECISION (Pmode)))) +#endif + ))) + return false; + + /* Allow conversion from integral to offset type and vice versa. */ + if ((TREE_CODE (lhs_type) == OFFSET_TYPE + && INTEGRAL_TYPE_P (rhs1_type)) + || (INTEGRAL_TYPE_P (lhs_type) + && TREE_CODE (rhs1_type) == OFFSET_TYPE)) + return false; + + /* Otherwise assert we are converting between types of the + same kind. */ + if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type)) + { + error ("invalid types in nop conversion"); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + return true; + } + + return false; + } + + case ADDR_SPACE_CONVERT_EXPR: + { + if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type) + || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type)) + == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type)))) + { + error ("invalid types in address space conversion"); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + return true; + } + + return false; + } + + case FIXED_CONVERT_EXPR: + { + if (!valid_fixed_convert_types_p (lhs_type, rhs1_type) + && !valid_fixed_convert_types_p (rhs1_type, lhs_type)) + { + error ("invalid types in fixed-point conversion"); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + return true; + } + + return false; + } + + case FLOAT_EXPR: + { + if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type)) + && (!VECTOR_INTEGER_TYPE_P (rhs1_type) + || !VECTOR_FLOAT_TYPE_P (lhs_type))) + { + error ("invalid types in conversion to floating-point"); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + return true; + } + + return false; + } + + case FIX_TRUNC_EXPR: + { + if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type)) + && (!VECTOR_INTEGER_TYPE_P (lhs_type) + || !VECTOR_FLOAT_TYPE_P (rhs1_type))) + { + error ("invalid types in conversion to integer"); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + return true; + } + + return false; + } + + case VEC_UNPACK_HI_EXPR: + case VEC_UNPACK_LO_EXPR: + case VEC_UNPACK_FLOAT_HI_EXPR: + case VEC_UNPACK_FLOAT_LO_EXPR: + case VEC_UNPACK_FIX_TRUNC_HI_EXPR: + case VEC_UNPACK_FIX_TRUNC_LO_EXPR: + if (TREE_CODE (rhs1_type) != VECTOR_TYPE + || TREE_CODE (lhs_type) != VECTOR_TYPE + || (!INTEGRAL_TYPE_P (TREE_TYPE (lhs_type)) + && !SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type))) + || (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type)) + && !SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))) + || ((rhs_code == VEC_UNPACK_HI_EXPR + || rhs_code == VEC_UNPACK_LO_EXPR) + && (INTEGRAL_TYPE_P (TREE_TYPE (lhs_type)) + != INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type)))) + || ((rhs_code == VEC_UNPACK_FLOAT_HI_EXPR + || rhs_code == VEC_UNPACK_FLOAT_LO_EXPR) + && (INTEGRAL_TYPE_P (TREE_TYPE (lhs_type)) + || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))) + || ((rhs_code == VEC_UNPACK_FIX_TRUNC_HI_EXPR + || rhs_code == VEC_UNPACK_FIX_TRUNC_LO_EXPR) + && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type)) + || SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type)))) + || (maybe_ne (GET_MODE_SIZE (element_mode (lhs_type)), + 2 * GET_MODE_SIZE (element_mode (rhs1_type))) + && (!VECTOR_BOOLEAN_TYPE_P (lhs_type) + || !VECTOR_BOOLEAN_TYPE_P (rhs1_type))) + || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (lhs_type), + TYPE_VECTOR_SUBPARTS (rhs1_type))) + { + error ("type mismatch in %qs expression", code_name); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + return true; + } + + return false; + + case NEGATE_EXPR: + case ABS_EXPR: + case BIT_NOT_EXPR: + case PAREN_EXPR: + case CONJ_EXPR: + /* Disallow pointer and offset types for many of the unary gimple. */ + if (POINTER_TYPE_P (lhs_type) + || TREE_CODE (lhs_type) == OFFSET_TYPE) + { + error ("invalid types for %qs", code_name); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + return true; + } + break; + + case ABSU_EXPR: + if (!ANY_INTEGRAL_TYPE_P (lhs_type) + || !TYPE_UNSIGNED (lhs_type) + || !ANY_INTEGRAL_TYPE_P (rhs1_type) + || TYPE_UNSIGNED (rhs1_type) + || element_precision (lhs_type) != element_precision (rhs1_type)) + { + error ("invalid types for %qs", code_name); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + return true; + } + return false; + + case VEC_DUPLICATE_EXPR: + if (TREE_CODE (lhs_type) != VECTOR_TYPE + || !useless_type_conversion_p (TREE_TYPE (lhs_type), rhs1_type)) + { + error ("%qs should be from a scalar to a like vector", code_name); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + return true; + } + return false; + + default: + gcc_unreachable (); + } + + /* For the remaining codes assert there is no conversion involved. */ + if (!useless_type_conversion_p (lhs_type, rhs1_type)) + { + error ("non-trivial conversion in unary operation"); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + return true; + } + + return false; +} + +/* Verify a gimple assignment statement STMT with a binary rhs. + Returns true if anything is wrong. */ + +static bool +verify_gimple_assign_binary (gassign *stmt) +{ + enum tree_code rhs_code = gimple_assign_rhs_code (stmt); + tree lhs = gimple_assign_lhs (stmt); + tree lhs_type = TREE_TYPE (lhs); + tree rhs1 = gimple_assign_rhs1 (stmt); + tree rhs1_type = TREE_TYPE (rhs1); + tree rhs2 = gimple_assign_rhs2 (stmt); + tree rhs2_type = TREE_TYPE (rhs2); + + if (!is_gimple_reg (lhs)) + { + error ("non-register as LHS of binary operation"); + return true; + } + + if (!is_gimple_val (rhs1) + || !is_gimple_val (rhs2)) + { + error ("invalid operands in binary operation"); + return true; + } + + const char* const code_name = get_tree_code_name (rhs_code); + + /* First handle operations that involve different types. */ + switch (rhs_code) + { + case COMPLEX_EXPR: + { + if (TREE_CODE (lhs_type) != COMPLEX_TYPE + || !(INTEGRAL_TYPE_P (rhs1_type) + || SCALAR_FLOAT_TYPE_P (rhs1_type)) + || !(INTEGRAL_TYPE_P (rhs2_type) + || SCALAR_FLOAT_TYPE_P (rhs2_type))) + { + error ("type mismatch in %qs", code_name); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + debug_generic_expr (rhs2_type); + return true; + } + + return false; + } + + case LSHIFT_EXPR: + case RSHIFT_EXPR: + case LROTATE_EXPR: + case RROTATE_EXPR: + { + /* Shifts and rotates are ok on integral types, fixed point + types and integer vector types. */ + if ((!INTEGRAL_TYPE_P (rhs1_type) + && !FIXED_POINT_TYPE_P (rhs1_type) + && !(TREE_CODE (rhs1_type) == VECTOR_TYPE + && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type)))) + || (!INTEGRAL_TYPE_P (rhs2_type) + /* Vector shifts of vectors are also ok. */ + && !(TREE_CODE (rhs1_type) == VECTOR_TYPE + && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type)) + && TREE_CODE (rhs2_type) == VECTOR_TYPE + && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type)))) + || !useless_type_conversion_p (lhs_type, rhs1_type)) + { + error ("type mismatch in %qs", code_name); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + debug_generic_expr (rhs2_type); + return true; + } + + return false; + } + + case WIDEN_LSHIFT_EXPR: + { + if (!INTEGRAL_TYPE_P (lhs_type) + || !INTEGRAL_TYPE_P (rhs1_type) + || TREE_CODE (rhs2) != INTEGER_CST + || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))) + { + error ("type mismatch in %qs", code_name); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + debug_generic_expr (rhs2_type); + return true; + } + + return false; + } + + case VEC_WIDEN_LSHIFT_HI_EXPR: + case VEC_WIDEN_LSHIFT_LO_EXPR: + { + if (TREE_CODE (rhs1_type) != VECTOR_TYPE + || TREE_CODE (lhs_type) != VECTOR_TYPE + || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type)) + || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type)) + || TREE_CODE (rhs2) != INTEGER_CST + || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type)) + > TYPE_PRECISION (TREE_TYPE (lhs_type)))) + { + error ("type mismatch in %qs", code_name); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + debug_generic_expr (rhs2_type); + return true; + } + + return false; + } + + case WIDEN_PLUS_EXPR: + case WIDEN_MINUS_EXPR: + case PLUS_EXPR: + case MINUS_EXPR: + { + tree lhs_etype = lhs_type; + tree rhs1_etype = rhs1_type; + tree rhs2_etype = rhs2_type; + if (TREE_CODE (lhs_type) == VECTOR_TYPE) + { + if (TREE_CODE (rhs1_type) != VECTOR_TYPE + || TREE_CODE (rhs2_type) != VECTOR_TYPE) + { + error ("invalid non-vector operands to %qs", code_name); + return true; + } + lhs_etype = TREE_TYPE (lhs_type); + rhs1_etype = TREE_TYPE (rhs1_type); + rhs2_etype = TREE_TYPE (rhs2_type); + } + if (POINTER_TYPE_P (lhs_etype) + || POINTER_TYPE_P (rhs1_etype) + || POINTER_TYPE_P (rhs2_etype)) + { + error ("invalid (pointer) operands %qs", code_name); + return true; + } + + /* Continue with generic binary expression handling. */ + break; + } + + case POINTER_PLUS_EXPR: + { + if (!POINTER_TYPE_P (rhs1_type) + || !useless_type_conversion_p (lhs_type, rhs1_type) + || !ptrofftype_p (rhs2_type)) + { + error ("type mismatch in %qs", code_name); + debug_generic_stmt (lhs_type); + debug_generic_stmt (rhs1_type); + debug_generic_stmt (rhs2_type); + return true; + } + + return false; + } + + case POINTER_DIFF_EXPR: + { + if (!POINTER_TYPE_P (rhs1_type) + || !POINTER_TYPE_P (rhs2_type) + /* Because we special-case pointers to void we allow difference + of arbitrary pointers with the same mode. */ + || TYPE_MODE (rhs1_type) != TYPE_MODE (rhs2_type) + || !INTEGRAL_TYPE_P (lhs_type) + || TYPE_UNSIGNED (lhs_type) + || TYPE_PRECISION (lhs_type) != TYPE_PRECISION (rhs1_type)) + { + error ("type mismatch in %qs", code_name); + debug_generic_stmt (lhs_type); + debug_generic_stmt (rhs1_type); + debug_generic_stmt (rhs2_type); + return true; + } + + return false; + } + + case TRUTH_ANDIF_EXPR: + case TRUTH_ORIF_EXPR: + case TRUTH_AND_EXPR: + case TRUTH_OR_EXPR: + case TRUTH_XOR_EXPR: + + gcc_unreachable (); + + case LT_EXPR: + case LE_EXPR: + case GT_EXPR: + case GE_EXPR: + case EQ_EXPR: + case NE_EXPR: + case UNORDERED_EXPR: + case ORDERED_EXPR: + case UNLT_EXPR: + case UNLE_EXPR: + case UNGT_EXPR: + case UNGE_EXPR: + case UNEQ_EXPR: + case LTGT_EXPR: + /* Comparisons are also binary, but the result type is not + connected to the operand types. */ + return verify_gimple_comparison (lhs_type, rhs1, rhs2, rhs_code); + + case WIDEN_MULT_EXPR: + if (TREE_CODE (lhs_type) != INTEGER_TYPE) + return true; + return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)) + || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))); + + case WIDEN_SUM_EXPR: + { + if (((TREE_CODE (rhs1_type) != VECTOR_TYPE + || TREE_CODE (lhs_type) != VECTOR_TYPE) + && ((!INTEGRAL_TYPE_P (rhs1_type) + && !SCALAR_FLOAT_TYPE_P (rhs1_type)) + || (!INTEGRAL_TYPE_P (lhs_type) + && !SCALAR_FLOAT_TYPE_P (lhs_type)))) + || !useless_type_conversion_p (lhs_type, rhs2_type) + || maybe_lt (GET_MODE_SIZE (element_mode (rhs2_type)), + 2 * GET_MODE_SIZE (element_mode (rhs1_type)))) + { + error ("type mismatch in %qs", code_name); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + debug_generic_expr (rhs2_type); + return true; + } + return false; + } + + case VEC_WIDEN_MINUS_HI_EXPR: + case VEC_WIDEN_MINUS_LO_EXPR: + case VEC_WIDEN_PLUS_HI_EXPR: + case VEC_WIDEN_PLUS_LO_EXPR: + case VEC_WIDEN_MULT_HI_EXPR: + case VEC_WIDEN_MULT_LO_EXPR: + case VEC_WIDEN_MULT_EVEN_EXPR: + case VEC_WIDEN_MULT_ODD_EXPR: + { + if (TREE_CODE (rhs1_type) != VECTOR_TYPE + || TREE_CODE (lhs_type) != VECTOR_TYPE + || !types_compatible_p (rhs1_type, rhs2_type) + || maybe_ne (GET_MODE_SIZE (element_mode (lhs_type)), + 2 * GET_MODE_SIZE (element_mode (rhs1_type)))) + { + error ("type mismatch in %qs", code_name); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + debug_generic_expr (rhs2_type); + return true; + } + return false; + } + + case VEC_PACK_TRUNC_EXPR: + /* ??? We currently use VEC_PACK_TRUNC_EXPR to simply concat + vector boolean types. */ + if (VECTOR_BOOLEAN_TYPE_P (lhs_type) + && VECTOR_BOOLEAN_TYPE_P (rhs1_type) + && types_compatible_p (rhs1_type, rhs2_type) + && known_eq (TYPE_VECTOR_SUBPARTS (lhs_type), + 2 * TYPE_VECTOR_SUBPARTS (rhs1_type))) + return false; + + /* Fallthru. */ + case VEC_PACK_SAT_EXPR: + case VEC_PACK_FIX_TRUNC_EXPR: + { + if (TREE_CODE (rhs1_type) != VECTOR_TYPE + || TREE_CODE (lhs_type) != VECTOR_TYPE + || !((rhs_code == VEC_PACK_FIX_TRUNC_EXPR + && SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)) + && INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))) + || (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type)) + == INTEGRAL_TYPE_P (TREE_TYPE (lhs_type)))) + || !types_compatible_p (rhs1_type, rhs2_type) + || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type)), + 2 * GET_MODE_SIZE (element_mode (lhs_type))) + || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (rhs1_type), + TYPE_VECTOR_SUBPARTS (lhs_type))) + { + error ("type mismatch in %qs", code_name); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + debug_generic_expr (rhs2_type); + return true; + } + + return false; + } + + case VEC_PACK_FLOAT_EXPR: + if (TREE_CODE (rhs1_type) != VECTOR_TYPE + || TREE_CODE (lhs_type) != VECTOR_TYPE + || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type)) + || !SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type)) + || !types_compatible_p (rhs1_type, rhs2_type) + || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type)), + 2 * GET_MODE_SIZE (element_mode (lhs_type))) + || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (rhs1_type), + TYPE_VECTOR_SUBPARTS (lhs_type))) + { + error ("type mismatch in %qs", code_name); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + debug_generic_expr (rhs2_type); + return true; + } + + return false; + + case MULT_EXPR: + case MULT_HIGHPART_EXPR: + case TRUNC_DIV_EXPR: + case CEIL_DIV_EXPR: + case FLOOR_DIV_EXPR: + case ROUND_DIV_EXPR: + case TRUNC_MOD_EXPR: + case CEIL_MOD_EXPR: + case FLOOR_MOD_EXPR: + case ROUND_MOD_EXPR: + case RDIV_EXPR: + case EXACT_DIV_EXPR: + /* Disallow pointer and offset types for many of the binary gimple. */ + if (POINTER_TYPE_P (lhs_type) + || TREE_CODE (lhs_type) == OFFSET_TYPE) + { + error ("invalid types for %qs", code_name); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + debug_generic_expr (rhs2_type); + return true; + } + /* Continue with generic binary expression handling. */ + break; + + case MIN_EXPR: + case MAX_EXPR: + case BIT_IOR_EXPR: + case BIT_XOR_EXPR: + case BIT_AND_EXPR: + /* Continue with generic binary expression handling. */ + break; + + case VEC_SERIES_EXPR: + if (!useless_type_conversion_p (rhs1_type, rhs2_type)) + { + error ("type mismatch in %qs", code_name); + debug_generic_expr (rhs1_type); + debug_generic_expr (rhs2_type); + return true; + } + if (TREE_CODE (lhs_type) != VECTOR_TYPE + || !useless_type_conversion_p (TREE_TYPE (lhs_type), rhs1_type)) + { + error ("vector type expected in %qs", code_name); + debug_generic_expr (lhs_type); + return true; + } + return false; + + default: + gcc_unreachable (); + } + + if (!useless_type_conversion_p (lhs_type, rhs1_type) + || !useless_type_conversion_p (lhs_type, rhs2_type)) + { + error ("type mismatch in binary expression"); + debug_generic_stmt (lhs_type); + debug_generic_stmt (rhs1_type); + debug_generic_stmt (rhs2_type); + return true; + } + + return false; +} + +/* Verify a gimple assignment statement STMT with a ternary rhs. + Returns true if anything is wrong. */ + +static bool +verify_gimple_assign_ternary (gassign *stmt) +{ + enum tree_code rhs_code = gimple_assign_rhs_code (stmt); + tree lhs = gimple_assign_lhs (stmt); + tree lhs_type = TREE_TYPE (lhs); + tree rhs1 = gimple_assign_rhs1 (stmt); + tree rhs1_type = TREE_TYPE (rhs1); + tree rhs2 = gimple_assign_rhs2 (stmt); + tree rhs2_type = TREE_TYPE (rhs2); + tree rhs3 = gimple_assign_rhs3 (stmt); + tree rhs3_type = TREE_TYPE (rhs3); + + if (!is_gimple_reg (lhs)) + { + error ("non-register as LHS of ternary operation"); + return true; + } + + if ((rhs_code == COND_EXPR + ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1)) + || !is_gimple_val (rhs2) + || !is_gimple_val (rhs3)) + { + error ("invalid operands in ternary operation"); + return true; + } + + const char* const code_name = get_tree_code_name (rhs_code); + + /* First handle operations that involve different types. */ + switch (rhs_code) + { + case WIDEN_MULT_PLUS_EXPR: + case WIDEN_MULT_MINUS_EXPR: + if ((!INTEGRAL_TYPE_P (rhs1_type) + && !FIXED_POINT_TYPE_P (rhs1_type)) + || !useless_type_conversion_p (rhs1_type, rhs2_type) + || !useless_type_conversion_p (lhs_type, rhs3_type) + || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type) + || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)) + { + error ("type mismatch in %qs", code_name); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + debug_generic_expr (rhs2_type); + debug_generic_expr (rhs3_type); + return true; + } + break; + + case VEC_COND_EXPR: + if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type) + || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type), + TYPE_VECTOR_SUBPARTS (lhs_type))) + { + error ("the first argument of a %qs must be of a " + "boolean vector type of the same number of elements " + "as the result", code_name); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + return true; + } + if (!is_gimple_val (rhs1)) + return true; + /* Fallthrough. */ + case COND_EXPR: + if (!is_gimple_val (rhs1) + && verify_gimple_comparison (TREE_TYPE (rhs1), + TREE_OPERAND (rhs1, 0), + TREE_OPERAND (rhs1, 1), + TREE_CODE (rhs1))) + return true; + if (!useless_type_conversion_p (lhs_type, rhs2_type) + || !useless_type_conversion_p (lhs_type, rhs3_type)) + { + error ("type mismatch in %qs", code_name); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs2_type); + debug_generic_expr (rhs3_type); + return true; + } + break; + + case VEC_PERM_EXPR: + if (!useless_type_conversion_p (lhs_type, rhs1_type) + || !useless_type_conversion_p (lhs_type, rhs2_type)) + { + error ("type mismatch in %qs", code_name); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + debug_generic_expr (rhs2_type); + debug_generic_expr (rhs3_type); + return true; + } + + if (TREE_CODE (rhs1_type) != VECTOR_TYPE + || TREE_CODE (rhs2_type) != VECTOR_TYPE + || TREE_CODE (rhs3_type) != VECTOR_TYPE) + { + error ("vector types expected in %qs", code_name); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + debug_generic_expr (rhs2_type); + debug_generic_expr (rhs3_type); + return true; + } + + if (maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type), + TYPE_VECTOR_SUBPARTS (rhs2_type)) + || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs2_type), + TYPE_VECTOR_SUBPARTS (rhs3_type)) + || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs3_type), + TYPE_VECTOR_SUBPARTS (lhs_type))) + { + error ("vectors with different element number found in %qs", + code_name); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + debug_generic_expr (rhs2_type); + debug_generic_expr (rhs3_type); + return true; + } + + if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE + || (TREE_CODE (rhs3) != VECTOR_CST + && (GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE + (TREE_TYPE (rhs3_type))) + != GET_MODE_BITSIZE (SCALAR_TYPE_MODE + (TREE_TYPE (rhs1_type)))))) + { + error ("invalid mask type in %qs", code_name); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + debug_generic_expr (rhs2_type); + debug_generic_expr (rhs3_type); + return true; + } + + return false; + + case SAD_EXPR: + if (!useless_type_conversion_p (rhs1_type, rhs2_type) + || !useless_type_conversion_p (lhs_type, rhs3_type) + || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))) + > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type)))) + { + error ("type mismatch in %qs", code_name); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + debug_generic_expr (rhs2_type); + debug_generic_expr (rhs3_type); + return true; + } + + if (TREE_CODE (rhs1_type) != VECTOR_TYPE + || TREE_CODE (rhs2_type) != VECTOR_TYPE + || TREE_CODE (rhs3_type) != VECTOR_TYPE) + { + error ("vector types expected in %qs", code_name); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + debug_generic_expr (rhs2_type); + debug_generic_expr (rhs3_type); + return true; + } + + return false; + + case BIT_INSERT_EXPR: + if (! useless_type_conversion_p (lhs_type, rhs1_type)) + { + error ("type mismatch in %qs", code_name); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + return true; + } + if (! ((INTEGRAL_TYPE_P (rhs1_type) + && INTEGRAL_TYPE_P (rhs2_type)) + /* Vector element insert. */ + || (VECTOR_TYPE_P (rhs1_type) + && types_compatible_p (TREE_TYPE (rhs1_type), rhs2_type)) + /* Aligned sub-vector insert. */ + || (VECTOR_TYPE_P (rhs1_type) + && VECTOR_TYPE_P (rhs2_type) + && types_compatible_p (TREE_TYPE (rhs1_type), + TREE_TYPE (rhs2_type)) + && multiple_p (TYPE_VECTOR_SUBPARTS (rhs1_type), + TYPE_VECTOR_SUBPARTS (rhs2_type)) + && multiple_of_p (bitsizetype, rhs3, TYPE_SIZE (rhs2_type))))) + { + error ("not allowed type combination in %qs", code_name); + debug_generic_expr (rhs1_type); + debug_generic_expr (rhs2_type); + return true; + } + if (! tree_fits_uhwi_p (rhs3) + || ! types_compatible_p (bitsizetype, TREE_TYPE (rhs3)) + || ! tree_fits_uhwi_p (TYPE_SIZE (rhs2_type))) + { + error ("invalid position or size in %qs", code_name); + return true; + } + if (INTEGRAL_TYPE_P (rhs1_type) + && !type_has_mode_precision_p (rhs1_type)) + { + error ("%qs into non-mode-precision operand", code_name); + return true; + } + if (INTEGRAL_TYPE_P (rhs1_type)) + { + unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3); + if (bitpos >= TYPE_PRECISION (rhs1_type) + || (bitpos + TYPE_PRECISION (rhs2_type) + > TYPE_PRECISION (rhs1_type))) + { + error ("insertion out of range in %qs", code_name); + return true; + } + } + else if (VECTOR_TYPE_P (rhs1_type)) + { + unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3); + unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TYPE_SIZE (rhs2_type)); + if (bitpos % bitsize != 0) + { + error ("%qs not at element boundary", code_name); + return true; + } + } + return false; + + case DOT_PROD_EXPR: + { + if (((TREE_CODE (rhs1_type) != VECTOR_TYPE + || TREE_CODE (lhs_type) != VECTOR_TYPE) + && ((!INTEGRAL_TYPE_P (rhs1_type) + && !SCALAR_FLOAT_TYPE_P (rhs1_type)) + || (!INTEGRAL_TYPE_P (lhs_type) + && !SCALAR_FLOAT_TYPE_P (lhs_type)))) + /* rhs1_type and rhs2_type may differ in sign. */ + || !tree_nop_conversion_p (rhs1_type, rhs2_type) + || !useless_type_conversion_p (lhs_type, rhs3_type) + || maybe_lt (GET_MODE_SIZE (element_mode (rhs3_type)), + 2 * GET_MODE_SIZE (element_mode (rhs1_type)))) + { + error ("type mismatch in %qs", code_name); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + debug_generic_expr (rhs2_type); + return true; + } + return false; + } + + case REALIGN_LOAD_EXPR: + /* FIXME. */ + return false; + + default: + gcc_unreachable (); + } + return false; +} + +/* Verify a gimple assignment statement STMT with a single rhs. + Returns true if anything is wrong. */ + +static bool +verify_gimple_assign_single (gassign *stmt) +{ + enum tree_code rhs_code = gimple_assign_rhs_code (stmt); + tree lhs = gimple_assign_lhs (stmt); + tree lhs_type = TREE_TYPE (lhs); + tree rhs1 = gimple_assign_rhs1 (stmt); + tree rhs1_type = TREE_TYPE (rhs1); + bool res = false; + + const char* const code_name = get_tree_code_name (rhs_code); + + if (!useless_type_conversion_p (lhs_type, rhs1_type)) + { + error ("non-trivial conversion in %qs", code_name); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + return true; + } + + if (gimple_clobber_p (stmt) + && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF)) + { + error ("%qs LHS in clobber statement", + get_tree_code_name (TREE_CODE (lhs))); + debug_generic_expr (lhs); + return true; + } + + if (TREE_CODE (lhs) == WITH_SIZE_EXPR) + { + error ("%qs LHS in assignment statement", + get_tree_code_name (TREE_CODE (lhs))); + debug_generic_expr (lhs); + return true; + } + + if (handled_component_p (lhs) + || TREE_CODE (lhs) == MEM_REF + || TREE_CODE (lhs) == TARGET_MEM_REF) + res |= verify_types_in_gimple_reference (lhs, true); + + /* Special codes we cannot handle via their class. */ + switch (rhs_code) + { + case ADDR_EXPR: + { + tree op = TREE_OPERAND (rhs1, 0); + if (!is_gimple_addressable (op)) + { + error ("invalid operand in %qs", code_name); + return true; + } + + /* Technically there is no longer a need for matching types, but + gimple hygiene asks for this check. In LTO we can end up + combining incompatible units and thus end up with addresses + of globals that change their type to a common one. */ + if (!in_lto_p + && !types_compatible_p (TREE_TYPE (op), + TREE_TYPE (TREE_TYPE (rhs1))) + && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1), + TREE_TYPE (op))) + { + error ("type mismatch in %qs", code_name); + debug_generic_stmt (TREE_TYPE (rhs1)); + debug_generic_stmt (TREE_TYPE (op)); + return true; + } + + return (verify_address (rhs1, true) + || verify_types_in_gimple_reference (op, true)); + } + + /* tcc_reference */ + case INDIRECT_REF: + error ("%qs in gimple IL", code_name); + return true; + + case COMPONENT_REF: + case BIT_FIELD_REF: + case ARRAY_REF: + case ARRAY_RANGE_REF: + case VIEW_CONVERT_EXPR: + case REALPART_EXPR: + case IMAGPART_EXPR: + case TARGET_MEM_REF: + case MEM_REF: + if (!is_gimple_reg (lhs) + && is_gimple_reg_type (TREE_TYPE (lhs))) + { + error ("invalid RHS for gimple memory store: %qs", code_name); + debug_generic_stmt (lhs); + debug_generic_stmt (rhs1); + return true; + } + return res || verify_types_in_gimple_reference (rhs1, false); + + /* tcc_constant */ + case SSA_NAME: + case INTEGER_CST: + case REAL_CST: + case FIXED_CST: + case COMPLEX_CST: + case VECTOR_CST: + case STRING_CST: + return res; + + /* tcc_declaration */ + case CONST_DECL: + return res; + case VAR_DECL: + case PARM_DECL: + if (!is_gimple_reg (lhs) + && !is_gimple_reg (rhs1) + && is_gimple_reg_type (TREE_TYPE (lhs))) + { + error ("invalid RHS for gimple memory store: %qs", code_name); + debug_generic_stmt (lhs); + debug_generic_stmt (rhs1); + return true; + } + return res; + + case CONSTRUCTOR: + if (TREE_CODE (rhs1_type) == VECTOR_TYPE) + { + unsigned int i; + tree elt_i, elt_v, elt_t = NULL_TREE; + + if (CONSTRUCTOR_NELTS (rhs1) == 0) + return res; + /* For vector CONSTRUCTORs we require that either it is empty + CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements + (then the element count must be correct to cover the whole + outer vector and index must be NULL on all elements, or it is + a CONSTRUCTOR of scalar elements, where we as an exception allow + smaller number of elements (assuming zero filling) and + consecutive indexes as compared to NULL indexes (such + CONSTRUCTORs can appear in the IL from FEs). */ + FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v) + { + if (elt_t == NULL_TREE) + { + elt_t = TREE_TYPE (elt_v); + if (TREE_CODE (elt_t) == VECTOR_TYPE) + { + tree elt_t = TREE_TYPE (elt_v); + if (!useless_type_conversion_p (TREE_TYPE (rhs1_type), + TREE_TYPE (elt_t))) + { + error ("incorrect type of vector %qs elements", + code_name); + debug_generic_stmt (rhs1); + return true; + } + else if (maybe_ne (CONSTRUCTOR_NELTS (rhs1) + * TYPE_VECTOR_SUBPARTS (elt_t), + TYPE_VECTOR_SUBPARTS (rhs1_type))) + { + error ("incorrect number of vector %qs elements", + code_name); + debug_generic_stmt (rhs1); + return true; + } + } + else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type), + elt_t)) + { + error ("incorrect type of vector %qs elements", + code_name); + debug_generic_stmt (rhs1); + return true; + } + else if (maybe_gt (CONSTRUCTOR_NELTS (rhs1), + TYPE_VECTOR_SUBPARTS (rhs1_type))) + { + error ("incorrect number of vector %qs elements", + code_name); + debug_generic_stmt (rhs1); + return true; + } + } + else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v))) + { + error ("incorrect type of vector CONSTRUCTOR elements"); + debug_generic_stmt (rhs1); + return true; + } + if (elt_i != NULL_TREE + && (TREE_CODE (elt_t) == VECTOR_TYPE + || TREE_CODE (elt_i) != INTEGER_CST + || compare_tree_int (elt_i, i) != 0)) + { + error ("vector %qs with non-NULL element index", + code_name); + debug_generic_stmt (rhs1); + return true; + } + if (!is_gimple_val (elt_v)) + { + error ("vector %qs element is not a GIMPLE value", + code_name); + debug_generic_stmt (rhs1); + return true; + } + } + } + else if (CONSTRUCTOR_NELTS (rhs1) != 0) + { + error ("non-vector %qs with elements", code_name); + debug_generic_stmt (rhs1); + return true; + } + return res; + + case ASSERT_EXPR: + /* FIXME. */ + rhs1 = fold (ASSERT_EXPR_COND (rhs1)); + if (rhs1 == boolean_false_node) + { + error ("%qs with an always-false condition", code_name); + debug_generic_stmt (rhs1); + return true; + } + break; + + case WITH_SIZE_EXPR: + error ("%qs RHS in assignment statement", + get_tree_code_name (rhs_code)); + debug_generic_expr (rhs1); + return true; + + case OBJ_TYPE_REF: + /* FIXME. */ + return res; + + default:; + } + + return res; +} + +/* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there + is a problem, otherwise false. */ + +static bool +verify_gimple_assign (gassign *stmt) +{ + switch (gimple_assign_rhs_class (stmt)) + { + case GIMPLE_SINGLE_RHS: + return verify_gimple_assign_single (stmt); + + case GIMPLE_UNARY_RHS: + return verify_gimple_assign_unary (stmt); + + case GIMPLE_BINARY_RHS: + return verify_gimple_assign_binary (stmt); + + case GIMPLE_TERNARY_RHS: + return verify_gimple_assign_ternary (stmt); + + default: + gcc_unreachable (); + } +} + +/* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there + is a problem, otherwise false. */ + +static bool +verify_gimple_return (greturn *stmt) +{ + tree op = gimple_return_retval (stmt); + tree restype = TREE_TYPE (TREE_TYPE (cfun->decl)); + + /* We cannot test for present return values as we do not fix up missing + return values from the original source. */ + if (op == NULL) + return false; + + if (!is_gimple_val (op) + && TREE_CODE (op) != RESULT_DECL) + { + error ("invalid operand in return statement"); + debug_generic_stmt (op); + return true; + } + + if ((TREE_CODE (op) == RESULT_DECL + && DECL_BY_REFERENCE (op)) + || (TREE_CODE (op) == SSA_NAME + && SSA_NAME_VAR (op) + && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL + && DECL_BY_REFERENCE (SSA_NAME_VAR (op)))) + op = TREE_TYPE (op); + + if (!useless_type_conversion_p (restype, TREE_TYPE (op))) + { + error ("invalid conversion in return statement"); + debug_generic_stmt (restype); + debug_generic_stmt (TREE_TYPE (op)); + return true; + } + + return false; +} + + +/* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there + is a problem, otherwise false. */ + +static bool +verify_gimple_goto (ggoto *stmt) +{ + tree dest = gimple_goto_dest (stmt); + + /* ??? We have two canonical forms of direct goto destinations, a + bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */ + if (TREE_CODE (dest) != LABEL_DECL + && (!is_gimple_val (dest) + || !POINTER_TYPE_P (TREE_TYPE (dest)))) + { + error ("goto destination is neither a label nor a pointer"); + return true; + } + + return false; +} + +/* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there + is a problem, otherwise false. */ + +static bool +verify_gimple_switch (gswitch *stmt) +{ + unsigned int i, n; + tree elt, prev_upper_bound = NULL_TREE; + tree index_type, elt_type = NULL_TREE; + + if (!is_gimple_val (gimple_switch_index (stmt))) + { + error ("invalid operand to switch statement"); + debug_generic_stmt (gimple_switch_index (stmt)); + return true; + } + + index_type = TREE_TYPE (gimple_switch_index (stmt)); + if (! INTEGRAL_TYPE_P (index_type)) + { + error ("non-integral type switch statement"); + debug_generic_expr (index_type); + return true; + } + + elt = gimple_switch_label (stmt, 0); + if (CASE_LOW (elt) != NULL_TREE + || CASE_HIGH (elt) != NULL_TREE + || CASE_CHAIN (elt) != NULL_TREE) + { + error ("invalid default case label in switch statement"); + debug_generic_expr (elt); + return true; + } + + n = gimple_switch_num_labels (stmt); + for (i = 1; i < n; i++) + { + elt = gimple_switch_label (stmt, i); + + if (CASE_CHAIN (elt)) + { + error ("invalid %<CASE_CHAIN%>"); + debug_generic_expr (elt); + return true; + } + if (! CASE_LOW (elt)) + { + error ("invalid case label in switch statement"); + debug_generic_expr (elt); + return true; + } + if (CASE_HIGH (elt) + && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt))) + { + error ("invalid case range in switch statement"); + debug_generic_expr (elt); + return true; + } + + if (! elt_type) + { + elt_type = TREE_TYPE (CASE_LOW (elt)); + if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type)) + { + error ("type precision mismatch in switch statement"); + return true; + } + } + if (TREE_TYPE (CASE_LOW (elt)) != elt_type + || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type)) + { + error ("type mismatch for case label in switch statement"); + debug_generic_expr (elt); + return true; + } + + if (prev_upper_bound) + { + if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt))) + { + error ("case labels not sorted in switch statement"); + return true; + } + } + + prev_upper_bound = CASE_HIGH (elt); + if (! prev_upper_bound) + prev_upper_bound = CASE_LOW (elt); + } + + return false; +} + +/* Verify a gimple debug statement STMT. + Returns true if anything is wrong. */ + +static bool +verify_gimple_debug (gimple *stmt ATTRIBUTE_UNUSED) +{ + /* There isn't much that could be wrong in a gimple debug stmt. A + gimple debug bind stmt, for example, maps a tree, that's usually + a VAR_DECL or a PARM_DECL, but that could also be some scalarized + component or member of an aggregate type, to another tree, that + can be an arbitrary expression. These stmts expand into debug + insns, and are converted to debug notes by var-tracking.c. */ + return false; +} + +/* Verify a gimple label statement STMT. + Returns true if anything is wrong. */ + +static bool +verify_gimple_label (glabel *stmt) +{ + tree decl = gimple_label_label (stmt); + int uid; + bool err = false; + + if (TREE_CODE (decl) != LABEL_DECL) + return true; + if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl) + && DECL_CONTEXT (decl) != current_function_decl) + { + error ("label context is not the current function declaration"); + err |= true; + } + + uid = LABEL_DECL_UID (decl); + if (cfun->cfg + && (uid == -1 + || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt))) + { + error ("incorrect entry in %<label_to_block_map%>"); + err |= true; + } + + uid = EH_LANDING_PAD_NR (decl); + if (uid) + { + eh_landing_pad lp = get_eh_landing_pad_from_number (uid); + if (decl != lp->post_landing_pad) + { + error ("incorrect setting of landing pad number"); + err |= true; + } + } + + return err; +} + +/* Verify a gimple cond statement STMT. + Returns true if anything is wrong. */ + +static bool +verify_gimple_cond (gcond *stmt) +{ + if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison) + { + error ("invalid comparison code in gimple cond"); + return true; + } + if (!(!gimple_cond_true_label (stmt) + || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL) + || !(!gimple_cond_false_label (stmt) + || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL)) + { + error ("invalid labels in gimple cond"); + return true; + } + + return verify_gimple_comparison (boolean_type_node, + gimple_cond_lhs (stmt), + gimple_cond_rhs (stmt), + gimple_cond_code (stmt)); +} + +/* Verify the GIMPLE statement STMT. Returns true if there is an + error, otherwise false. */ + +static bool +verify_gimple_stmt (gimple *stmt) +{ + switch (gimple_code (stmt)) + { + case GIMPLE_ASSIGN: + return verify_gimple_assign (as_a <gassign *> (stmt)); + + case GIMPLE_LABEL: + return verify_gimple_label (as_a <glabel *> (stmt)); + + case GIMPLE_CALL: + return verify_gimple_call (as_a <gcall *> (stmt)); + + case GIMPLE_COND: + return verify_gimple_cond (as_a <gcond *> (stmt)); + + case GIMPLE_GOTO: + return verify_gimple_goto (as_a <ggoto *> (stmt)); + + case GIMPLE_SWITCH: + return verify_gimple_switch (as_a <gswitch *> (stmt)); + + case GIMPLE_RETURN: + return verify_gimple_return (as_a <greturn *> (stmt)); + + case GIMPLE_ASM: + return false; + + case GIMPLE_TRANSACTION: + return verify_gimple_transaction (as_a <gtransaction *> (stmt)); + + /* Tuples that do not have tree operands. */ + case GIMPLE_NOP: + case GIMPLE_PREDICT: + case GIMPLE_RESX: + case GIMPLE_EH_DISPATCH: + case GIMPLE_EH_MUST_NOT_THROW: + return false; + + CASE_GIMPLE_OMP: + /* OpenMP directives are validated by the FE and never operated + on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain + non-gimple expressions when the main index variable has had + its address taken. This does not affect the loop itself + because the header of an GIMPLE_OMP_FOR is merely used to determine + how to setup the parallel iteration. */ + return false; + + case GIMPLE_DEBUG: + return verify_gimple_debug (stmt); + + default: + gcc_unreachable (); + } +} + +/* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem, + and false otherwise. */ + +static bool +verify_gimple_phi (gphi *phi) +{ + bool err = false; + unsigned i; + tree phi_result = gimple_phi_result (phi); + bool virtual_p; + + if (!phi_result) + { + error ("invalid %<PHI%> result"); + return true; + } + + virtual_p = virtual_operand_p (phi_result); + if (TREE_CODE (phi_result) != SSA_NAME + || (virtual_p + && SSA_NAME_VAR (phi_result) != gimple_vop (cfun))) + { + error ("invalid %<PHI%> result"); + err = true; + } + + for (i = 0; i < gimple_phi_num_args (phi); i++) + { + tree t = gimple_phi_arg_def (phi, i); + + if (!t) + { + error ("missing %<PHI%> def"); + err |= true; + continue; + } + /* Addressable variables do have SSA_NAMEs but they + are not considered gimple values. */ + else if ((TREE_CODE (t) == SSA_NAME + && virtual_p != virtual_operand_p (t)) + || (virtual_p + && (TREE_CODE (t) != SSA_NAME + || SSA_NAME_VAR (t) != gimple_vop (cfun))) + || (!virtual_p + && !is_gimple_val (t))) + { + error ("invalid %<PHI%> argument"); + debug_generic_expr (t); + err |= true; + } +#ifdef ENABLE_TYPES_CHECKING + if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t))) + { + error ("incompatible types in %<PHI%> argument %u", i); + debug_generic_stmt (TREE_TYPE (phi_result)); + debug_generic_stmt (TREE_TYPE (t)); + err |= true; + } +#endif + } + + return err; +} + +/* Verify the GIMPLE statements inside the sequence STMTS. */ + +static bool +verify_gimple_in_seq_2 (gimple_seq stmts) +{ + gimple_stmt_iterator ittr; + bool err = false; + + for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr)) + { + gimple *stmt = gsi_stmt (ittr); + + switch (gimple_code (stmt)) + { + case GIMPLE_BIND: + err |= verify_gimple_in_seq_2 ( + gimple_bind_body (as_a <gbind *> (stmt))); + break; + + case GIMPLE_TRY: + err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt)); + err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt)); + break; + + case GIMPLE_EH_FILTER: + err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt)); + break; + + case GIMPLE_EH_ELSE: + { + geh_else *eh_else = as_a <geh_else *> (stmt); + err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else)); + err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else)); + } + break; + + case GIMPLE_CATCH: + err |= verify_gimple_in_seq_2 (gimple_catch_handler ( + as_a <gcatch *> (stmt))); + break; + + case GIMPLE_TRANSACTION: + err |= verify_gimple_transaction (as_a <gtransaction *> (stmt)); + break; + + default: + { + bool err2 = verify_gimple_stmt (stmt); + if (err2) + debug_gimple_stmt (stmt); + err |= err2; + } + } + } + + return err; +} + +/* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there + is a problem, otherwise false. */ + +static bool +verify_gimple_transaction (gtransaction *stmt) +{ + tree lab; + + lab = gimple_transaction_label_norm (stmt); + if (lab != NULL && TREE_CODE (lab) != LABEL_DECL) + return true; + lab = gimple_transaction_label_uninst (stmt); + if (lab != NULL && TREE_CODE (lab) != LABEL_DECL) + return true; + lab = gimple_transaction_label_over (stmt); + if (lab != NULL && TREE_CODE (lab) != LABEL_DECL) + return true; + + return verify_gimple_in_seq_2 (gimple_transaction_body (stmt)); +} + + +/* Verify the GIMPLE statements inside the statement list STMTS. */ + +DEBUG_FUNCTION void +verify_gimple_in_seq (gimple_seq stmts) +{ + timevar_push (TV_TREE_STMT_VERIFY); + if (verify_gimple_in_seq_2 (stmts)) + internal_error ("%<verify_gimple%> failed"); + timevar_pop (TV_TREE_STMT_VERIFY); +} + +/* Return true when the T can be shared. */ + +static bool +tree_node_can_be_shared (tree t) +{ + if (IS_TYPE_OR_DECL_P (t) + || TREE_CODE (t) == SSA_NAME + || TREE_CODE (t) == IDENTIFIER_NODE + || TREE_CODE (t) == CASE_LABEL_EXPR + || is_gimple_min_invariant (t)) + return true; + + if (t == error_mark_node) + return true; + + return false; +} + +/* Called via walk_tree. Verify tree sharing. */ + +static tree +verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data) +{ + hash_set<void *> *visited = (hash_set<void *> *) data; + + if (tree_node_can_be_shared (*tp)) + { + *walk_subtrees = false; + return NULL; + } + + if (visited->add (*tp)) + return *tp; + + return NULL; +} + +/* Called via walk_gimple_stmt. Verify tree sharing. */ + +static tree +verify_node_sharing (tree *tp, int *walk_subtrees, void *data) +{ + struct walk_stmt_info *wi = (struct walk_stmt_info *) data; + return verify_node_sharing_1 (tp, walk_subtrees, wi->info); +} + +static bool eh_error_found; +bool +verify_eh_throw_stmt_node (gimple *const &stmt, const int &, + hash_set<gimple *> *visited) +{ + if (!visited->contains (stmt)) + { + error ("dead statement in EH table"); + debug_gimple_stmt (stmt); + eh_error_found = true; + } + return true; +} + +/* Verify if the location LOCs block is in BLOCKS. */ + +static bool +verify_location (hash_set<tree> *blocks, location_t loc) +{ + tree block = LOCATION_BLOCK (loc); + if (block != NULL_TREE + && !blocks->contains (block)) + { + error ("location references block not in block tree"); + return true; + } + if (block != NULL_TREE) + return verify_location (blocks, BLOCK_SOURCE_LOCATION (block)); + return false; +} + +/* Called via walk_tree. Verify that expressions have no blocks. */ + +static tree +verify_expr_no_block (tree *tp, int *walk_subtrees, void *) +{ + if (!EXPR_P (*tp)) + { + *walk_subtrees = false; + return NULL; + } + + location_t loc = EXPR_LOCATION (*tp); + if (LOCATION_BLOCK (loc) != NULL) + return *tp; + + return NULL; +} + +/* Called via walk_tree. Verify locations of expressions. */ + +static tree +verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data) +{ + hash_set<tree> *blocks = (hash_set<tree> *) data; + tree t = *tp; + + /* ??? This doesn't really belong here but there's no good place to + stick this remainder of old verify_expr. */ + /* ??? This barfs on debug stmts which contain binds to vars with + different function context. */ +#if 0 + if (VAR_P (t) + || TREE_CODE (t) == PARM_DECL + || TREE_CODE (t) == RESULT_DECL) + { + tree context = decl_function_context (t); + if (context != cfun->decl + && !SCOPE_FILE_SCOPE_P (context) + && !TREE_STATIC (t) + && !DECL_EXTERNAL (t)) + { + error ("local declaration from a different function"); + return t; + } + } +#endif + + if (VAR_P (t) && DECL_HAS_DEBUG_EXPR_P (t)) + { + tree x = DECL_DEBUG_EXPR (t); + tree addr = walk_tree (&x, verify_expr_no_block, NULL, NULL); + if (addr) + return addr; + } + if ((VAR_P (t) + || TREE_CODE (t) == PARM_DECL + || TREE_CODE (t) == RESULT_DECL) + && DECL_HAS_VALUE_EXPR_P (t)) + { + tree x = DECL_VALUE_EXPR (t); + tree addr = walk_tree (&x, verify_expr_no_block, NULL, NULL); + if (addr) + return addr; + } + + if (!EXPR_P (t)) + { + *walk_subtrees = false; + return NULL; + } + + location_t loc = EXPR_LOCATION (t); + if (verify_location (blocks, loc)) + return t; + + return NULL; +} + +/* Called via walk_gimple_op. Verify locations of expressions. */ + +static tree +verify_expr_location (tree *tp, int *walk_subtrees, void *data) +{ + struct walk_stmt_info *wi = (struct walk_stmt_info *) data; + return verify_expr_location_1 (tp, walk_subtrees, wi->info); +} + +/* Insert all subblocks of BLOCK into BLOCKS and recurse. */ + +static void +collect_subblocks (hash_set<tree> *blocks, tree block) +{ + tree t; + for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t)) + { + blocks->add (t); + collect_subblocks (blocks, t); + } +} + +/* Disable warnings about missing quoting in GCC diagnostics for + the verification errors. Their format strings don't follow + GCC diagnostic conventions and trigger an ICE in the end. */ +#if __GNUC__ >= 10 +# pragma GCC diagnostic push +# pragma GCC diagnostic ignored "-Wformat-diag" +#endif + +/* Verify the GIMPLE statements in the CFG of FN. */ + +DEBUG_FUNCTION void +verify_gimple_in_cfg (struct function *fn, bool verify_nothrow) +{ + basic_block bb; + bool err = false; + + timevar_push (TV_TREE_STMT_VERIFY); + hash_set<void *> visited; + hash_set<gimple *> visited_throwing_stmts; + + /* Collect all BLOCKs referenced by the BLOCK tree of FN. */ + hash_set<tree> blocks; + if (DECL_INITIAL (fn->decl)) + { + blocks.add (DECL_INITIAL (fn->decl)); + collect_subblocks (&blocks, DECL_INITIAL (fn->decl)); + } + + FOR_EACH_BB_FN (bb, fn) + { + gimple_stmt_iterator gsi; + edge_iterator ei; + edge e; + + for (gphi_iterator gpi = gsi_start_phis (bb); + !gsi_end_p (gpi); + gsi_next (&gpi)) + { + gphi *phi = gpi.phi (); + bool err2 = false; + unsigned i; + + if (gimple_bb (phi) != bb) + { + error ("gimple_bb (phi) is set to a wrong basic block"); + err2 = true; + } + + err2 |= verify_gimple_phi (phi); + + /* Only PHI arguments have locations. */ + if (gimple_location (phi) != UNKNOWN_LOCATION) + { + error ("PHI node with location"); + err2 = true; + } + + for (i = 0; i < gimple_phi_num_args (phi); i++) + { + tree arg = gimple_phi_arg_def (phi, i); + tree addr = walk_tree (&arg, verify_node_sharing_1, + &visited, NULL); + if (addr) + { + error ("incorrect sharing of tree nodes"); + debug_generic_expr (addr); + err2 |= true; + } + location_t loc = gimple_phi_arg_location (phi, i); + if (virtual_operand_p (gimple_phi_result (phi)) + && loc != UNKNOWN_LOCATION) + { + error ("virtual PHI with argument locations"); + err2 = true; + } + addr = walk_tree (&arg, verify_expr_location_1, &blocks, NULL); + if (addr) + { + debug_generic_expr (addr); + err2 = true; + } + err2 |= verify_location (&blocks, loc); + } + + if (err2) + debug_gimple_stmt (phi); + err |= err2; + } + + for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) + { + gimple *stmt = gsi_stmt (gsi); + bool err2 = false; + struct walk_stmt_info wi; + tree addr; + int lp_nr; + + if (gimple_bb (stmt) != bb) + { + error ("gimple_bb (stmt) is set to a wrong basic block"); + err2 = true; + } + + err2 |= verify_gimple_stmt (stmt); + err2 |= verify_location (&blocks, gimple_location (stmt)); + + memset (&wi, 0, sizeof (wi)); + wi.info = (void *) &visited; + addr = walk_gimple_op (stmt, verify_node_sharing, &wi); + if (addr) + { + error ("incorrect sharing of tree nodes"); + debug_generic_expr (addr); + err2 |= true; + } + + memset (&wi, 0, sizeof (wi)); + wi.info = (void *) &blocks; + addr = walk_gimple_op (stmt, verify_expr_location, &wi); + if (addr) + { + debug_generic_expr (addr); + err2 |= true; + } + + /* If the statement is marked as part of an EH region, then it is + expected that the statement could throw. Verify that when we + have optimizations that simplify statements such that we prove + that they cannot throw, that we update other data structures + to match. */ + lp_nr = lookup_stmt_eh_lp (stmt); + if (lp_nr != 0) + visited_throwing_stmts.add (stmt); + if (lp_nr > 0) + { + if (!stmt_could_throw_p (cfun, stmt)) + { + if (verify_nothrow) + { + error ("statement marked for throw, but doesn%'t"); + err2 |= true; + } + } + else if (!gsi_one_before_end_p (gsi)) + { + error ("statement marked for throw in middle of block"); + err2 |= true; + } + } + + if (err2) + debug_gimple_stmt (stmt); + err |= err2; + } + + FOR_EACH_EDGE (e, ei, bb->succs) + if (e->goto_locus != UNKNOWN_LOCATION) + err |= verify_location (&blocks, e->goto_locus); + } + + hash_map<gimple *, int> *eh_table = get_eh_throw_stmt_table (cfun); + eh_error_found = false; + if (eh_table) + eh_table->traverse<hash_set<gimple *> *, verify_eh_throw_stmt_node> + (&visited_throwing_stmts); + + if (err || eh_error_found) + internal_error ("verify_gimple failed"); + + verify_histograms (); + timevar_pop (TV_TREE_STMT_VERIFY); +} + + +/* Verifies that the flow information is OK. */ + +static int +gimple_verify_flow_info (void) +{ + int err = 0; + basic_block bb; + gimple_stmt_iterator gsi; + gimple *stmt; + edge e; + edge_iterator ei; + + if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq + || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes) + { + error ("ENTRY_BLOCK has IL associated with it"); + err = 1; + } + + if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq + || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes) + { + error ("EXIT_BLOCK has IL associated with it"); + err = 1; + } + + FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) + if (e->flags & EDGE_FALLTHRU) + { + error ("fallthru to exit from bb %d", e->src->index); + err = 1; + } + + FOR_EACH_BB_FN (bb, cfun) + { + bool found_ctrl_stmt = false; + + stmt = NULL; + + /* Skip labels on the start of basic block. */ + for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) + { + tree label; + gimple *prev_stmt = stmt; + + stmt = gsi_stmt (gsi); + + if (gimple_code (stmt) != GIMPLE_LABEL) + break; + + label = gimple_label_label (as_a <glabel *> (stmt)); + if (prev_stmt && DECL_NONLOCAL (label)) + { + error ("nonlocal label %qD is not first in a sequence " + "of labels in bb %d", label, bb->index); + err = 1; + } + + if (prev_stmt && EH_LANDING_PAD_NR (label) != 0) + { + error ("EH landing pad label %qD is not first in a sequence " + "of labels in bb %d", label, bb->index); + err = 1; + } + + if (label_to_block (cfun, label) != bb) + { + error ("label %qD to block does not match in bb %d", + label, bb->index); + err = 1; + } + + if (decl_function_context (label) != current_function_decl) + { + error ("label %qD has incorrect context in bb %d", + label, bb->index); + err = 1; + } + } + + /* Verify that body of basic block BB is free of control flow. */ + for (; !gsi_end_p (gsi); gsi_next (&gsi)) + { + gimple *stmt = gsi_stmt (gsi); + + if (found_ctrl_stmt) + { + error ("control flow in the middle of basic block %d", + bb->index); + err = 1; + } + + if (stmt_ends_bb_p (stmt)) + found_ctrl_stmt = true; + + if (glabel *label_stmt = dyn_cast <glabel *> (stmt)) + { + error ("label %qD in the middle of basic block %d", + gimple_label_label (label_stmt), bb->index); + err = 1; + } + } + + gsi = gsi_last_nondebug_bb (bb); + if (gsi_end_p (gsi)) + continue; + + stmt = gsi_stmt (gsi); + + if (gimple_code (stmt) == GIMPLE_LABEL) + continue; + + err |= verify_eh_edges (stmt); + + if (is_ctrl_stmt (stmt)) + { + FOR_EACH_EDGE (e, ei, bb->succs) + if (e->flags & EDGE_FALLTHRU) + { + error ("fallthru edge after a control statement in bb %d", + bb->index); + err = 1; + } + } + + if (gimple_code (stmt) != GIMPLE_COND) + { + /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set + after anything else but if statement. */ + FOR_EACH_EDGE (e, ei, bb->succs) + if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)) + { + error ("true/false edge after a non-GIMPLE_COND in bb %d", + bb->index); + err = 1; + } + } + + switch (gimple_code (stmt)) + { + case GIMPLE_COND: + { + edge true_edge; + edge false_edge; + + extract_true_false_edges_from_block (bb, &true_edge, &false_edge); + + if (!true_edge + || !false_edge + || !(true_edge->flags & EDGE_TRUE_VALUE) + || !(false_edge->flags & EDGE_FALSE_VALUE) + || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL)) + || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL)) + || EDGE_COUNT (bb->succs) >= 3) + { + error ("wrong outgoing edge flags at end of bb %d", + bb->index); + err = 1; + } + } + break; + + case GIMPLE_GOTO: + if (simple_goto_p (stmt)) + { + error ("explicit goto at end of bb %d", bb->index); + err = 1; + } + else + { + /* FIXME. We should double check that the labels in the + destination blocks have their address taken. */ + FOR_EACH_EDGE (e, ei, bb->succs) + if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE + | EDGE_FALSE_VALUE)) + || !(e->flags & EDGE_ABNORMAL)) + { + error ("wrong outgoing edge flags at end of bb %d", + bb->index); + err = 1; + } + } + break; + + case GIMPLE_CALL: + if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN)) + break; + /* fallthru */ + case GIMPLE_RETURN: + if (!single_succ_p (bb) + || (single_succ_edge (bb)->flags + & (EDGE_FALLTHRU | EDGE_ABNORMAL + | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))) + { + error ("wrong outgoing edge flags at end of bb %d", bb->index); + err = 1; + } + if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun)) + { + error ("return edge does not point to exit in bb %d", + bb->index); + err = 1; + } + break; + + case GIMPLE_SWITCH: + { + gswitch *switch_stmt = as_a <gswitch *> (stmt); + tree prev; + edge e; + size_t i, n; + + n = gimple_switch_num_labels (switch_stmt); + + /* Mark all the destination basic blocks. */ + for (i = 0; i < n; ++i) + { + basic_block label_bb = gimple_switch_label_bb (cfun, switch_stmt, i); + gcc_assert (!label_bb->aux || label_bb->aux == (void *)1); + label_bb->aux = (void *)1; + } + + /* Verify that the case labels are sorted. */ + prev = gimple_switch_label (switch_stmt, 0); + for (i = 1; i < n; ++i) + { + tree c = gimple_switch_label (switch_stmt, i); + if (!CASE_LOW (c)) + { + error ("found default case not at the start of " + "case vector"); + err = 1; + continue; + } + if (CASE_LOW (prev) + && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c))) + { + error ("case labels not sorted: "); + print_generic_expr (stderr, prev); + fprintf (stderr," is greater than "); + print_generic_expr (stderr, c); + fprintf (stderr," but comes before it.\n"); + err = 1; + } + prev = c; + } + /* VRP will remove the default case if it can prove it will + never be executed. So do not verify there always exists + a default case here. */ + + FOR_EACH_EDGE (e, ei, bb->succs) + { + if (!e->dest->aux) + { + error ("extra outgoing edge %d->%d", + bb->index, e->dest->index); + err = 1; + } + + e->dest->aux = (void *)2; + if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL + | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))) + { + error ("wrong outgoing edge flags at end of bb %d", + bb->index); + err = 1; + } + } + + /* Check that we have all of them. */ + for (i = 0; i < n; ++i) + { + basic_block label_bb = gimple_switch_label_bb (cfun, + switch_stmt, i); + + if (label_bb->aux != (void *)2) + { + error ("missing edge %i->%i", bb->index, label_bb->index); + err = 1; + } + } + + FOR_EACH_EDGE (e, ei, bb->succs) + e->dest->aux = (void *)0; + } + break; + + case GIMPLE_EH_DISPATCH: + err |= verify_eh_dispatch_edge (as_a <geh_dispatch *> (stmt)); + break; + + default: + break; + } + } + + if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY) + verify_dominators (CDI_DOMINATORS); + + return err; +} + +#if __GNUC__ >= 10 +# pragma GCC diagnostic pop +#endif + +/* Updates phi nodes after creating a forwarder block joined + by edge FALLTHRU. */ + +static void +gimple_make_forwarder_block (edge fallthru) +{ + edge e; + edge_iterator ei; + basic_block dummy, bb; + tree var; + gphi_iterator gsi; + bool forward_location_p; + + dummy = fallthru->src; + bb = fallthru->dest; + + if (single_pred_p (bb)) + return; + + /* We can forward location info if we have only one predecessor. */ + forward_location_p = single_pred_p (dummy); + + /* If we redirected a branch we must create new PHI nodes at the + start of BB. */ + for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi)) + { + gphi *phi, *new_phi; + + phi = gsi.phi (); + var = gimple_phi_result (phi); + new_phi = create_phi_node (var, bb); + gimple_phi_set_result (phi, copy_ssa_name (var, phi)); + add_phi_arg (new_phi, gimple_phi_result (phi), fallthru, + forward_location_p + ? gimple_phi_arg_location (phi, 0) : UNKNOWN_LOCATION); + } + + /* Add the arguments we have stored on edges. */ + FOR_EACH_EDGE (e, ei, bb->preds) + { + if (e == fallthru) + continue; + + flush_pending_stmts (e); + } +} + + +/* Return a non-special label in the head of basic block BLOCK. + Create one if it doesn't exist. */ + +tree +gimple_block_label (basic_block bb) +{ + gimple_stmt_iterator i, s = gsi_start_bb (bb); + bool first = true; + tree label; + glabel *stmt; + + for (i = s; !gsi_end_p (i); first = false, gsi_next (&i)) + { + stmt = dyn_cast <glabel *> (gsi_stmt (i)); + if (!stmt) + break; + label = gimple_label_label (stmt); + if (!DECL_NONLOCAL (label)) + { + if (!first) + gsi_move_before (&i, &s); + return label; + } + } + + label = create_artificial_label (UNKNOWN_LOCATION); + stmt = gimple_build_label (label); + gsi_insert_before (&s, stmt, GSI_NEW_STMT); + return label; +} + + +/* Attempt to perform edge redirection by replacing a possibly complex + jump instruction by a goto or by removing the jump completely. + This can apply only if all edges now point to the same block. The + parameters and return values are equivalent to + redirect_edge_and_branch. */ + +static edge +gimple_try_redirect_by_replacing_jump (edge e, basic_block target) +{ + basic_block src = e->src; + gimple_stmt_iterator i; + gimple *stmt; + + /* We can replace or remove a complex jump only when we have exactly + two edges. */ + if (EDGE_COUNT (src->succs) != 2 + /* Verify that all targets will be TARGET. Specifically, the + edge that is not E must also go to TARGET. */ + || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target) + return NULL; + + i = gsi_last_bb (src); + if (gsi_end_p (i)) + return NULL; + + stmt = gsi_stmt (i); + + if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH) + { + gsi_remove (&i, true); + e = ssa_redirect_edge (e, target); + e->flags = EDGE_FALLTHRU; + return e; + } + + return NULL; +} + + +/* Redirect E to DEST. Return NULL on failure. Otherwise, return the + edge representing the redirected branch. */ + +static edge +gimple_redirect_edge_and_branch (edge e, basic_block dest) +{ + basic_block bb = e->src; + gimple_stmt_iterator gsi; + edge ret; + gimple *stmt; + + if (e->flags & EDGE_ABNORMAL) + return NULL; + + if (e->dest == dest) + return NULL; + + if (e->flags & EDGE_EH) + return redirect_eh_edge (e, dest); + + if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)) + { + ret = gimple_try_redirect_by_replacing_jump (e, dest); + if (ret) + return ret; + } + + gsi = gsi_last_nondebug_bb (bb); + stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi); + + switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK) + { + case GIMPLE_COND: + /* For COND_EXPR, we only need to redirect the edge. */ + break; + + case GIMPLE_GOTO: + /* No non-abnormal edges should lead from a non-simple goto, and + simple ones should be represented implicitly. */ + gcc_unreachable (); + + case GIMPLE_SWITCH: + { + gswitch *switch_stmt = as_a <gswitch *> (stmt); + tree label = gimple_block_label (dest); + tree cases = get_cases_for_edge (e, switch_stmt); + + /* If we have a list of cases associated with E, then use it + as it's a lot faster than walking the entire case vector. */ + if (cases) + { + edge e2 = find_edge (e->src, dest); + tree last, first; + + first = cases; + while (cases) + { + last = cases; + CASE_LABEL (cases) = label; + cases = CASE_CHAIN (cases); + } + + /* If there was already an edge in the CFG, then we need + to move all the cases associated with E to E2. */ + if (e2) + { + tree cases2 = get_cases_for_edge (e2, switch_stmt); + + CASE_CHAIN (last) = CASE_CHAIN (cases2); + CASE_CHAIN (cases2) = first; + } + bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index); + } + else + { + size_t i, n = gimple_switch_num_labels (switch_stmt); + + for (i = 0; i < n; i++) + { + tree elt = gimple_switch_label (switch_stmt, i); + if (label_to_block (cfun, CASE_LABEL (elt)) == e->dest) + CASE_LABEL (elt) = label; + } + } + } + break; + + case GIMPLE_ASM: + { + gasm *asm_stmt = as_a <gasm *> (stmt); + int i, n = gimple_asm_nlabels (asm_stmt); + tree label = NULL; + + for (i = 0; i < n; ++i) + { + tree cons = gimple_asm_label_op (asm_stmt, i); + if (label_to_block (cfun, TREE_VALUE (cons)) == e->dest) + { + if (!label) + label = gimple_block_label (dest); + TREE_VALUE (cons) = label; + } + } + + /* If we didn't find any label matching the former edge in the + asm labels, we must be redirecting the fallthrough + edge. */ + gcc_assert (label || (e->flags & EDGE_FALLTHRU)); + } + break; + + case GIMPLE_RETURN: + gsi_remove (&gsi, true); + e->flags |= EDGE_FALLTHRU; + break; + + case GIMPLE_OMP_RETURN: + case GIMPLE_OMP_CONTINUE: + case GIMPLE_OMP_SECTIONS_SWITCH: + case GIMPLE_OMP_FOR: + /* The edges from OMP constructs can be simply redirected. */ + break; + + case GIMPLE_EH_DISPATCH: + if (!(e->flags & EDGE_FALLTHRU)) + redirect_eh_dispatch_edge (as_a <geh_dispatch *> (stmt), e, dest); + break; + + case GIMPLE_TRANSACTION: + if (e->flags & EDGE_TM_ABORT) + gimple_transaction_set_label_over (as_a <gtransaction *> (stmt), + gimple_block_label (dest)); + else if (e->flags & EDGE_TM_UNINSTRUMENTED) + gimple_transaction_set_label_uninst (as_a <gtransaction *> (stmt), + gimple_block_label (dest)); + else + gimple_transaction_set_label_norm (as_a <gtransaction *> (stmt), + gimple_block_label (dest)); + break; + + default: + /* Otherwise it must be a fallthru edge, and we don't need to + do anything besides redirecting it. */ + gcc_assert (e->flags & EDGE_FALLTHRU); + break; + } + + /* Update/insert PHI nodes as necessary. */ + + /* Now update the edges in the CFG. */ + e = ssa_redirect_edge (e, dest); + + return e; +} + +/* Returns true if it is possible to remove edge E by redirecting + it to the destination of the other edge from E->src. */ + +static bool +gimple_can_remove_branch_p (const_edge e) +{ + if (e->flags & (EDGE_ABNORMAL | EDGE_EH)) + return false; + + return true; +} + +/* Simple wrapper, as we can always redirect fallthru edges. */ + +static basic_block +gimple_redirect_edge_and_branch_force (edge e, basic_block dest) +{ + e = gimple_redirect_edge_and_branch (e, dest); + gcc_assert (e); + + return NULL; +} + + +/* Splits basic block BB after statement STMT (but at least after the + labels). If STMT is NULL, BB is split just after the labels. */ + +static basic_block +gimple_split_block (basic_block bb, void *stmt) +{ + gimple_stmt_iterator gsi; + gimple_stmt_iterator gsi_tgt; + gimple_seq list; + basic_block new_bb; + edge e; + edge_iterator ei; + + new_bb = create_empty_bb (bb); + + /* Redirect the outgoing edges. */ + new_bb->succs = bb->succs; + bb->succs = NULL; + FOR_EACH_EDGE (e, ei, new_bb->succs) + e->src = new_bb; + + /* Get a stmt iterator pointing to the first stmt to move. */ + if (!stmt || gimple_code ((gimple *) stmt) == GIMPLE_LABEL) + gsi = gsi_after_labels (bb); + else + { + gsi = gsi_for_stmt ((gimple *) stmt); + gsi_next (&gsi); + } + + /* Move everything from GSI to the new basic block. */ + if (gsi_end_p (gsi)) + return new_bb; + + /* Split the statement list - avoid re-creating new containers as this + brings ugly quadratic memory consumption in the inliner. + (We are still quadratic since we need to update stmt BB pointers, + sadly.) */ + gsi_split_seq_before (&gsi, &list); + set_bb_seq (new_bb, list); + for (gsi_tgt = gsi_start (list); + !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt)) + gimple_set_bb (gsi_stmt (gsi_tgt), new_bb); + + return new_bb; +} + + +/* Moves basic block BB after block AFTER. */ + +static bool +gimple_move_block_after (basic_block bb, basic_block after) +{ + if (bb->prev_bb == after) + return true; + + unlink_block (bb); + link_block (bb, after); + + return true; +} + + +/* Return TRUE if block BB has no executable statements, otherwise return + FALSE. */ + +static bool +gimple_empty_block_p (basic_block bb) +{ + /* BB must have no executable statements. */ + gimple_stmt_iterator gsi = gsi_after_labels (bb); + if (phi_nodes (bb)) + return false; + while (!gsi_end_p (gsi)) + { + gimple *stmt = gsi_stmt (gsi); + if (is_gimple_debug (stmt)) + ; + else if (gimple_code (stmt) == GIMPLE_NOP + || gimple_code (stmt) == GIMPLE_PREDICT) + ; + else + return false; + gsi_next (&gsi); + } + return true; +} + + +/* Split a basic block if it ends with a conditional branch and if the + other part of the block is not empty. */ + +static basic_block +gimple_split_block_before_cond_jump (basic_block bb) +{ + gimple *last, *split_point; + gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb); + if (gsi_end_p (gsi)) + return NULL; + last = gsi_stmt (gsi); + if (gimple_code (last) != GIMPLE_COND + && gimple_code (last) != GIMPLE_SWITCH) + return NULL; + gsi_prev (&gsi); + split_point = gsi_stmt (gsi); + return split_block (bb, split_point)->dest; +} + + +/* Return true if basic_block can be duplicated. */ + +static bool +gimple_can_duplicate_bb_p (const_basic_block bb) +{ + gimple *last = last_stmt (CONST_CAST_BB (bb)); + + /* Do checks that can only fail for the last stmt, to minimize the work in the + stmt loop. */ + if (last) { + /* A transaction is a single entry multiple exit region. It + must be duplicated in its entirety or not at all. */ + if (gimple_code (last) == GIMPLE_TRANSACTION) + return false; + + /* An IFN_UNIQUE call must be duplicated as part of its group, + or not at all. */ + if (is_gimple_call (last) + && gimple_call_internal_p (last) + && gimple_call_internal_unique_p (last)) + return false; + } + + for (gimple_stmt_iterator gsi = gsi_start_bb (CONST_CAST_BB (bb)); + !gsi_end_p (gsi); gsi_next (&gsi)) + { + gimple *g = gsi_stmt (gsi); + + /* An IFN_GOMP_SIMT_ENTER_ALLOC/IFN_GOMP_SIMT_EXIT call must be + duplicated as part of its group, or not at all. + The IFN_GOMP_SIMT_VOTE_ANY and IFN_GOMP_SIMT_XCHG_* are part of such a + group, so the same holds there. */ + if (is_gimple_call (g) + && (gimple_call_internal_p (g, IFN_GOMP_SIMT_ENTER_ALLOC) + || gimple_call_internal_p (g, IFN_GOMP_SIMT_EXIT) + || gimple_call_internal_p (g, IFN_GOMP_SIMT_VOTE_ANY) + || gimple_call_internal_p (g, IFN_GOMP_SIMT_XCHG_BFLY) + || gimple_call_internal_p (g, IFN_GOMP_SIMT_XCHG_IDX))) + return false; + } + + return true; +} + +/* Create a duplicate of the basic block BB. NOTE: This does not + preserve SSA form. */ + +static basic_block +gimple_duplicate_bb (basic_block bb, copy_bb_data *id) +{ + basic_block new_bb; + gimple_stmt_iterator gsi_tgt; + + new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb); + + /* Copy the PHI nodes. We ignore PHI node arguments here because + the incoming edges have not been setup yet. */ + for (gphi_iterator gpi = gsi_start_phis (bb); + !gsi_end_p (gpi); + gsi_next (&gpi)) + { + gphi *phi, *copy; + phi = gpi.phi (); + copy = create_phi_node (NULL_TREE, new_bb); + create_new_def_for (gimple_phi_result (phi), copy, + gimple_phi_result_ptr (copy)); + gimple_set_uid (copy, gimple_uid (phi)); + } + + gsi_tgt = gsi_start_bb (new_bb); + for (gimple_stmt_iterator gsi = gsi_start_bb (bb); + !gsi_end_p (gsi); + gsi_next (&gsi)) + { + def_operand_p def_p; + ssa_op_iter op_iter; + tree lhs; + gimple *stmt, *copy; + + stmt = gsi_stmt (gsi); + if (gimple_code (stmt) == GIMPLE_LABEL) + continue; + + /* Don't duplicate label debug stmts. */ + if (gimple_debug_bind_p (stmt) + && TREE_CODE (gimple_debug_bind_get_var (stmt)) + == LABEL_DECL) + continue; + + /* Create a new copy of STMT and duplicate STMT's virtual + operands. */ + copy = gimple_copy (stmt); + gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT); + + maybe_duplicate_eh_stmt (copy, stmt); + gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt); + + /* When copying around a stmt writing into a local non-user + aggregate, make sure it won't share stack slot with other + vars. */ + lhs = gimple_get_lhs (stmt); + if (lhs && TREE_CODE (lhs) != SSA_NAME) + { + tree base = get_base_address (lhs); + if (base + && (VAR_P (base) || TREE_CODE (base) == RESULT_DECL) + && DECL_IGNORED_P (base) + && !TREE_STATIC (base) + && !DECL_EXTERNAL (base) + && (!VAR_P (base) || !DECL_HAS_VALUE_EXPR_P (base))) + DECL_NONSHAREABLE (base) = 1; + } + + /* If requested remap dependence info of cliques brought in + via inlining. */ + if (id) + for (unsigned i = 0; i < gimple_num_ops (copy); ++i) + { + tree op = gimple_op (copy, i); + if (!op) + continue; + if (TREE_CODE (op) == ADDR_EXPR + || TREE_CODE (op) == WITH_SIZE_EXPR) + op = TREE_OPERAND (op, 0); + while (handled_component_p (op)) + op = TREE_OPERAND (op, 0); + if ((TREE_CODE (op) == MEM_REF + || TREE_CODE (op) == TARGET_MEM_REF) + && MR_DEPENDENCE_CLIQUE (op) > 1 + && MR_DEPENDENCE_CLIQUE (op) != bb->loop_father->owned_clique) + { + if (!id->dependence_map) + id->dependence_map = new hash_map<dependence_hash, + unsigned short>; + bool existed; + unsigned short &newc = id->dependence_map->get_or_insert + (MR_DEPENDENCE_CLIQUE (op), &existed); + if (!existed) + { + gcc_assert (MR_DEPENDENCE_CLIQUE (op) <= cfun->last_clique); + newc = ++cfun->last_clique; + } + MR_DEPENDENCE_CLIQUE (op) = newc; + } + } + + /* Create new names for all the definitions created by COPY and + add replacement mappings for each new name. */ + FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS) + create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p); + } + + return new_bb; +} + +/* Adds phi node arguments for edge E_COPY after basic block duplication. */ + +static void +add_phi_args_after_copy_edge (edge e_copy) +{ + basic_block bb, bb_copy = e_copy->src, dest; + edge e; + edge_iterator ei; + gphi *phi, *phi_copy; + tree def; + gphi_iterator psi, psi_copy; + + if (gimple_seq_empty_p (phi_nodes (e_copy->dest))) + return; + + bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy; + + if (e_copy->dest->flags & BB_DUPLICATED) + dest = get_bb_original (e_copy->dest); + else + dest = e_copy->dest; + + e = find_edge (bb, dest); + if (!e) + { + /* During loop unrolling the target of the latch edge is copied. + In this case we are not looking for edge to dest, but to + duplicated block whose original was dest. */ + FOR_EACH_EDGE (e, ei, bb->succs) + { + if ((e->dest->flags & BB_DUPLICATED) + && get_bb_original (e->dest) == dest) + break; + } + + gcc_assert (e != NULL); + } + + for (psi = gsi_start_phis (e->dest), + psi_copy = gsi_start_phis (e_copy->dest); + !gsi_end_p (psi); + gsi_next (&psi), gsi_next (&psi_copy)) + { + phi = psi.phi (); + phi_copy = psi_copy.phi (); + def = PHI_ARG_DEF_FROM_EDGE (phi, e); + add_phi_arg (phi_copy, def, e_copy, + gimple_phi_arg_location_from_edge (phi, e)); + } +} + + +/* Basic block BB_COPY was created by code duplication. Add phi node + arguments for edges going out of BB_COPY. The blocks that were + duplicated have BB_DUPLICATED set. */ + +void +add_phi_args_after_copy_bb (basic_block bb_copy) +{ + edge e_copy; + edge_iterator ei; + + FOR_EACH_EDGE (e_copy, ei, bb_copy->succs) + { + add_phi_args_after_copy_edge (e_copy); + } +} + +/* Blocks in REGION_COPY array of length N_REGION were created by + duplication of basic blocks. Add phi node arguments for edges + going from these blocks. If E_COPY is not NULL, also add + phi node arguments for its destination.*/ + +void +add_phi_args_after_copy (basic_block *region_copy, unsigned n_region, + edge e_copy) +{ + unsigned i; + + for (i = 0; i < n_region; i++) + region_copy[i]->flags |= BB_DUPLICATED; + + for (i = 0; i < n_region; i++) + add_phi_args_after_copy_bb (region_copy[i]); + if (e_copy) + add_phi_args_after_copy_edge (e_copy); + + for (i = 0; i < n_region; i++) + region_copy[i]->flags &= ~BB_DUPLICATED; +} + +/* Duplicates a REGION (set of N_REGION basic blocks) with just a single + important exit edge EXIT. By important we mean that no SSA name defined + inside region is live over the other exit edges of the region. All entry + edges to the region must go to ENTRY->dest. The edge ENTRY is redirected + to the duplicate of the region. Dominance and loop information is + updated if UPDATE_DOMINANCE is true, but not the SSA web. If + UPDATE_DOMINANCE is false then we assume that the caller will update the + dominance information after calling this function. The new basic + blocks are stored to REGION_COPY in the same order as they had in REGION, + provided that REGION_COPY is not NULL. + The function returns false if it is unable to copy the region, + true otherwise. */ + +bool +gimple_duplicate_sese_region (edge entry, edge exit, + basic_block *region, unsigned n_region, + basic_block *region_copy, + bool update_dominance) +{ + unsigned i; + bool free_region_copy = false, copying_header = false; + class loop *loop = entry->dest->loop_father; + edge exit_copy; + edge redirected; + profile_count total_count = profile_count::uninitialized (); + profile_count entry_count = profile_count::uninitialized (); + + if (!can_copy_bbs_p (region, n_region)) + return false; + + /* Some sanity checking. Note that we do not check for all possible + missuses of the functions. I.e. if you ask to copy something weird, + it will work, but the state of structures probably will not be + correct. */ + for (i = 0; i < n_region; i++) + { + /* We do not handle subloops, i.e. all the blocks must belong to the + same loop. */ + if (region[i]->loop_father != loop) + return false; + + if (region[i] != entry->dest + && region[i] == loop->header) + return false; + } + + /* In case the function is used for loop header copying (which is the primary + use), ensure that EXIT and its copy will be new latch and entry edges. */ + if (loop->header == entry->dest) + { + copying_header = true; + + if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src)) + return false; + + for (i = 0; i < n_region; i++) + if (region[i] != exit->src + && dominated_by_p (CDI_DOMINATORS, region[i], exit->src)) + return false; + } + + initialize_original_copy_tables (); + + if (copying_header) + set_loop_copy (loop, loop_outer (loop)); + else + set_loop_copy (loop, loop); + + if (!region_copy) + { + region_copy = XNEWVEC (basic_block, n_region); + free_region_copy = true; + } + + /* Record blocks outside the region that are dominated by something + inside. */ + auto_vec<basic_block> doms; + if (update_dominance) + { + doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region); + } + + if (entry->dest->count.initialized_p ()) + { + total_count = entry->dest->count; + entry_count = entry->count (); + /* Fix up corner cases, to avoid division by zero or creation of negative + frequencies. */ + if (entry_count > total_count) + entry_count = total_count; + } + + copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop, + split_edge_bb_loc (entry), update_dominance); + if (total_count.initialized_p () && entry_count.initialized_p ()) + { + scale_bbs_frequencies_profile_count (region, n_region, + total_count - entry_count, + total_count); + scale_bbs_frequencies_profile_count (region_copy, n_region, entry_count, + total_count); + } + + if (copying_header) + { + loop->header = exit->dest; + loop->latch = exit->src; + } + + /* Redirect the entry and add the phi node arguments. */ + redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest)); + gcc_assert (redirected != NULL); + flush_pending_stmts (entry); + + /* Concerning updating of dominators: We must recount dominators + for entry block and its copy. Anything that is outside of the + region, but was dominated by something inside needs recounting as + well. */ + if (update_dominance) + { + set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src); + doms.safe_push (get_bb_original (entry->dest)); + iterate_fix_dominators (CDI_DOMINATORS, doms, false); + } + + /* Add the other PHI node arguments. */ + add_phi_args_after_copy (region_copy, n_region, NULL); + + if (free_region_copy) + free (region_copy); + + free_original_copy_tables (); + return true; +} + +/* Checks if BB is part of the region defined by N_REGION BBS. */ +static bool +bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region) +{ + unsigned int n; + + for (n = 0; n < n_region; n++) + { + if (bb == bbs[n]) + return true; + } + return false; +} + +/* Duplicates REGION consisting of N_REGION blocks. The new blocks + are stored to REGION_COPY in the same order in that they appear + in REGION, if REGION_COPY is not NULL. ENTRY is the entry to + the region, EXIT an exit from it. The condition guarding EXIT + is moved to ENTRY. Returns true if duplication succeeds, false + otherwise. + + For example, + + some_code; + if (cond) + A; + else + B; + + is transformed to + + if (cond) + { + some_code; + A; + } + else + { + some_code; + B; + } +*/ + +bool +gimple_duplicate_sese_tail (edge entry, edge exit, + basic_block *region, unsigned n_region, + basic_block *region_copy) +{ + unsigned i; + bool free_region_copy = false; + class loop *loop = exit->dest->loop_father; + class loop *orig_loop = entry->dest->loop_father; + basic_block switch_bb, entry_bb, nentry_bb; + profile_count total_count = profile_count::uninitialized (), + exit_count = profile_count::uninitialized (); + edge exits[2], nexits[2], e; + gimple_stmt_iterator gsi; + gimple *cond_stmt; + edge sorig, snew; + basic_block exit_bb; + gphi_iterator psi; + gphi *phi; + tree def; + class loop *target, *aloop, *cloop; + + gcc_assert (EDGE_COUNT (exit->src->succs) == 2); + exits[0] = exit; + exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit); + + if (!can_copy_bbs_p (region, n_region)) + return false; + + initialize_original_copy_tables (); + set_loop_copy (orig_loop, loop); + + target= loop; + for (aloop = orig_loop->inner; aloop; aloop = aloop->next) + { + if (bb_part_of_region_p (aloop->header, region, n_region)) + { + cloop = duplicate_loop (aloop, target); + duplicate_subloops (aloop, cloop); + } + } + + if (!region_copy) + { + region_copy = XNEWVEC (basic_block, n_region); + free_region_copy = true; + } + + gcc_assert (!need_ssa_update_p (cfun)); + + /* Record blocks outside the region that are dominated by something + inside. */ + auto_vec<basic_block> doms = get_dominated_by_region (CDI_DOMINATORS, region, + n_region); + + total_count = exit->src->count; + exit_count = exit->count (); + /* Fix up corner cases, to avoid division by zero or creation of negative + frequencies. */ + if (exit_count > total_count) + exit_count = total_count; + + copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop, + split_edge_bb_loc (exit), true); + if (total_count.initialized_p () && exit_count.initialized_p ()) + { + scale_bbs_frequencies_profile_count (region, n_region, + total_count - exit_count, + total_count); + scale_bbs_frequencies_profile_count (region_copy, n_region, exit_count, + total_count); + } + + /* Create the switch block, and put the exit condition to it. */ + entry_bb = entry->dest; + nentry_bb = get_bb_copy (entry_bb); + if (!last_stmt (entry->src) + || !stmt_ends_bb_p (last_stmt (entry->src))) + switch_bb = entry->src; + else + switch_bb = split_edge (entry); + set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb); + + gsi = gsi_last_bb (switch_bb); + cond_stmt = last_stmt (exit->src); + gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND); + cond_stmt = gimple_copy (cond_stmt); + + gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT); + + sorig = single_succ_edge (switch_bb); + sorig->flags = exits[1]->flags; + sorig->probability = exits[1]->probability; + snew = make_edge (switch_bb, nentry_bb, exits[0]->flags); + snew->probability = exits[0]->probability; + + + /* Register the new edge from SWITCH_BB in loop exit lists. */ + rescan_loop_exit (snew, true, false); + + /* Add the PHI node arguments. */ + add_phi_args_after_copy (region_copy, n_region, snew); + + /* Get rid of now superfluous conditions and associated edges (and phi node + arguments). */ + exit_bb = exit->dest; + + e = redirect_edge_and_branch (exits[0], exits[1]->dest); + PENDING_STMT (e) = NULL; + + /* The latch of ORIG_LOOP was copied, and so was the backedge + to the original header. We redirect this backedge to EXIT_BB. */ + for (i = 0; i < n_region; i++) + if (get_bb_original (region_copy[i]) == orig_loop->latch) + { + gcc_assert (single_succ_edge (region_copy[i])); + e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb); + PENDING_STMT (e) = NULL; + for (psi = gsi_start_phis (exit_bb); + !gsi_end_p (psi); + gsi_next (&psi)) + { + phi = psi.phi (); + def = PHI_ARG_DEF (phi, nexits[0]->dest_idx); + add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e)); + } + } + e = redirect_edge_and_branch (nexits[1], nexits[0]->dest); + PENDING_STMT (e) = NULL; + + /* Anything that is outside of the region, but was dominated by something + inside needs to update dominance info. */ + iterate_fix_dominators (CDI_DOMINATORS, doms, false); + /* Update the SSA web. */ + update_ssa (TODO_update_ssa); + + if (free_region_copy) + free (region_copy); + + free_original_copy_tables (); + return true; +} + +/* Add all the blocks dominated by ENTRY to the array BBS_P. Stop + adding blocks when the dominator traversal reaches EXIT. This + function silently assumes that ENTRY strictly dominates EXIT. */ + +void +gather_blocks_in_sese_region (basic_block entry, basic_block exit, + vec<basic_block> *bbs_p) +{ + basic_block son; + + for (son = first_dom_son (CDI_DOMINATORS, entry); + son; + son = next_dom_son (CDI_DOMINATORS, son)) + { + bbs_p->safe_push (son); + if (son != exit) + gather_blocks_in_sese_region (son, exit, bbs_p); + } +} + +/* Replaces *TP with a duplicate (belonging to function TO_CONTEXT). + The duplicates are recorded in VARS_MAP. */ + +static void +replace_by_duplicate_decl (tree *tp, hash_map<tree, tree> *vars_map, + tree to_context) +{ + tree t = *tp, new_t; + struct function *f = DECL_STRUCT_FUNCTION (to_context); + + if (DECL_CONTEXT (t) == to_context) + return; + + bool existed; + tree &loc = vars_map->get_or_insert (t, &existed); + + if (!existed) + { + if (SSA_VAR_P (t)) + { + new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t)); + add_local_decl (f, new_t); + } + else + { + gcc_assert (TREE_CODE (t) == CONST_DECL); + new_t = copy_node (t); + } + DECL_CONTEXT (new_t) = to_context; + + loc = new_t; + } + else + new_t = loc; + + *tp = new_t; +} + + +/* Creates an ssa name in TO_CONTEXT equivalent to NAME. + VARS_MAP maps old ssa names and var_decls to the new ones. */ + +static tree +replace_ssa_name (tree name, hash_map<tree, tree> *vars_map, + tree to_context) +{ + tree new_name; + + gcc_assert (!virtual_operand_p (name)); + + tree *loc = vars_map->get (name); + + if (!loc) + { + tree decl = SSA_NAME_VAR (name); + if (decl) + { + gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name)); + replace_by_duplicate_decl (&decl, vars_map, to_context); + new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context), + decl, SSA_NAME_DEF_STMT (name)); + } + else + new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context), + name, SSA_NAME_DEF_STMT (name)); + + /* Now that we've used the def stmt to define new_name, make sure it + doesn't define name anymore. */ + SSA_NAME_DEF_STMT (name) = NULL; + + vars_map->put (name, new_name); + } + else + new_name = *loc; + + return new_name; +} + +struct move_stmt_d +{ + tree orig_block; + tree new_block; + tree from_context; + tree to_context; + hash_map<tree, tree> *vars_map; + htab_t new_label_map; + hash_map<void *, void *> *eh_map; + bool remap_decls_p; +}; + +/* Helper for move_block_to_fn. Set TREE_BLOCK in every expression + contained in *TP if it has been ORIG_BLOCK previously and change the + DECL_CONTEXT of every local variable referenced in *TP. */ + +static tree +move_stmt_op (tree *tp, int *walk_subtrees, void *data) +{ + struct walk_stmt_info *wi = (struct walk_stmt_info *) data; + struct move_stmt_d *p = (struct move_stmt_d *) wi->info; + tree t = *tp; + + if (EXPR_P (t)) + { + tree block = TREE_BLOCK (t); + if (block == NULL_TREE) + ; + else if (block == p->orig_block + || p->orig_block == NULL_TREE) + { + /* tree_node_can_be_shared says we can share invariant + addresses but unshare_expr copies them anyways. Make sure + to unshare before adjusting the block in place - we do not + always see a copy here. */ + if (TREE_CODE (t) == ADDR_EXPR + && is_gimple_min_invariant (t)) + *tp = t = unshare_expr (t); + TREE_SET_BLOCK (t, p->new_block); + } + else if (flag_checking) + { + while (block && TREE_CODE (block) == BLOCK && block != p->orig_block) + block = BLOCK_SUPERCONTEXT (block); + gcc_assert (block == p->orig_block); + } + } + else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME) + { + if (TREE_CODE (t) == SSA_NAME) + *tp = replace_ssa_name (t, p->vars_map, p->to_context); + else if (TREE_CODE (t) == PARM_DECL + && gimple_in_ssa_p (cfun)) + *tp = *(p->vars_map->get (t)); + else if (TREE_CODE (t) == LABEL_DECL) + { + if (p->new_label_map) + { + struct tree_map in, *out; + in.base.from = t; + out = (struct tree_map *) + htab_find_with_hash (p->new_label_map, &in, DECL_UID (t)); + if (out) + *tp = t = out->to; + } + + /* For FORCED_LABELs we can end up with references from other + functions if some SESE regions are outlined. It is UB to + jump in between them, but they could be used just for printing + addresses etc. In that case, DECL_CONTEXT on the label should + be the function containing the glabel stmt with that LABEL_DECL, + rather than whatever function a reference to the label was seen + last time. */ + if (!FORCED_LABEL (t) && !DECL_NONLOCAL (t)) + DECL_CONTEXT (t) = p->to_context; + } + else if (p->remap_decls_p) + { + /* Replace T with its duplicate. T should no longer appear in the + parent function, so this looks wasteful; however, it may appear + in referenced_vars, and more importantly, as virtual operands of + statements, and in alias lists of other variables. It would be + quite difficult to expunge it from all those places. ??? It might + suffice to do this for addressable variables. */ + if ((VAR_P (t) && !is_global_var (t)) + || TREE_CODE (t) == CONST_DECL) + replace_by_duplicate_decl (tp, p->vars_map, p->to_context); + } + *walk_subtrees = 0; + } + else if (TYPE_P (t)) + *walk_subtrees = 0; + + return NULL_TREE; +} + +/* Helper for move_stmt_r. Given an EH region number for the source + function, map that to the duplicate EH regio number in the dest. */ + +static int +move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p) +{ + eh_region old_r, new_r; + + old_r = get_eh_region_from_number (old_nr); + new_r = static_cast<eh_region> (*p->eh_map->get (old_r)); + + return new_r->index; +} + +/* Similar, but operate on INTEGER_CSTs. */ + +static tree +move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p) +{ + int old_nr, new_nr; + + old_nr = tree_to_shwi (old_t_nr); + new_nr = move_stmt_eh_region_nr (old_nr, p); + + return build_int_cst (integer_type_node, new_nr); +} + +/* Like move_stmt_op, but for gimple statements. + + Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression + contained in the current statement in *GSI_P and change the + DECL_CONTEXT of every local variable referenced in the current + statement. */ + +static tree +move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p, + struct walk_stmt_info *wi) +{ + struct move_stmt_d *p = (struct move_stmt_d *) wi->info; + gimple *stmt = gsi_stmt (*gsi_p); + tree block = gimple_block (stmt); + + if (block == p->orig_block + || (p->orig_block == NULL_TREE + && block != NULL_TREE)) + gimple_set_block (stmt, p->new_block); + + switch (gimple_code (stmt)) + { + case GIMPLE_CALL: + /* Remap the region numbers for __builtin_eh_{pointer,filter}. */ + { + tree r, fndecl = gimple_call_fndecl (stmt); + if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)) + switch (DECL_FUNCTION_CODE (fndecl)) + { + case BUILT_IN_EH_COPY_VALUES: + r = gimple_call_arg (stmt, 1); + r = move_stmt_eh_region_tree_nr (r, p); + gimple_call_set_arg (stmt, 1, r); + /* FALLTHRU */ + + case BUILT_IN_EH_POINTER: + case BUILT_IN_EH_FILTER: + r = gimple_call_arg (stmt, 0); + r = move_stmt_eh_region_tree_nr (r, p); + gimple_call_set_arg (stmt, 0, r); + break; + + default: + break; + } + } + break; + + case GIMPLE_RESX: + { + gresx *resx_stmt = as_a <gresx *> (stmt); + int r = gimple_resx_region (resx_stmt); + r = move_stmt_eh_region_nr (r, p); + gimple_resx_set_region (resx_stmt, r); + } + break; + + case GIMPLE_EH_DISPATCH: + { + geh_dispatch *eh_dispatch_stmt = as_a <geh_dispatch *> (stmt); + int r = gimple_eh_dispatch_region (eh_dispatch_stmt); + r = move_stmt_eh_region_nr (r, p); + gimple_eh_dispatch_set_region (eh_dispatch_stmt, r); + } + break; + + case GIMPLE_OMP_RETURN: + case GIMPLE_OMP_CONTINUE: + break; + + case GIMPLE_LABEL: + { + /* For FORCED_LABEL, move_stmt_op doesn't adjust DECL_CONTEXT, + so that such labels can be referenced from other regions. + Make sure to update it when seeing a GIMPLE_LABEL though, + that is the owner of the label. */ + walk_gimple_op (stmt, move_stmt_op, wi); + *handled_ops_p = true; + tree label = gimple_label_label (as_a <glabel *> (stmt)); + if (FORCED_LABEL (label) || DECL_NONLOCAL (label)) + DECL_CONTEXT (label) = p->to_context; + } + break; + + default: + if (is_gimple_omp (stmt)) + { + /* Do not remap variables inside OMP directives. Variables + referenced in clauses and directive header belong to the + parent function and should not be moved into the child + function. */ + bool save_remap_decls_p = p->remap_decls_p; + p->remap_decls_p = false; + *handled_ops_p = true; + + walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r, + move_stmt_op, wi); + + p->remap_decls_p = save_remap_decls_p; + } + break; + } + + return NULL_TREE; +} + +/* Move basic block BB from function CFUN to function DEST_FN. The + block is moved out of the original linked list and placed after + block AFTER in the new list. Also, the block is removed from the + original array of blocks and placed in DEST_FN's array of blocks. + If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is + updated to reflect the moved edges. + + The local variables are remapped to new instances, VARS_MAP is used + to record the mapping. */ + +static void +move_block_to_fn (struct function *dest_cfun, basic_block bb, + basic_block after, bool update_edge_count_p, + struct move_stmt_d *d) +{ + struct control_flow_graph *cfg; + edge_iterator ei; + edge e; + gimple_stmt_iterator si; + unsigned old_len; + + /* Remove BB from dominance structures. */ + delete_from_dominance_info (CDI_DOMINATORS, bb); + + /* Move BB from its current loop to the copy in the new function. */ + if (current_loops) + { + class loop *new_loop = (class loop *)bb->loop_father->aux; + if (new_loop) + bb->loop_father = new_loop; + } + + /* Link BB to the new linked list. */ + move_block_after (bb, after); + + /* Update the edge count in the corresponding flowgraphs. */ + if (update_edge_count_p) + FOR_EACH_EDGE (e, ei, bb->succs) + { + cfun->cfg->x_n_edges--; + dest_cfun->cfg->x_n_edges++; + } + + /* Remove BB from the original basic block array. */ + (*cfun->cfg->x_basic_block_info)[bb->index] = NULL; + cfun->cfg->x_n_basic_blocks--; + + /* Grow DEST_CFUN's basic block array if needed. */ + cfg = dest_cfun->cfg; + cfg->x_n_basic_blocks++; + if (bb->index >= cfg->x_last_basic_block) + cfg->x_last_basic_block = bb->index + 1; + + old_len = vec_safe_length (cfg->x_basic_block_info); + if ((unsigned) cfg->x_last_basic_block >= old_len) + vec_safe_grow_cleared (cfg->x_basic_block_info, + cfg->x_last_basic_block + 1); + + (*cfg->x_basic_block_info)[bb->index] = bb; + + /* Remap the variables in phi nodes. */ + for (gphi_iterator psi = gsi_start_phis (bb); + !gsi_end_p (psi); ) + { + gphi *phi = psi.phi (); + use_operand_p use; + tree op = PHI_RESULT (phi); + ssa_op_iter oi; + unsigned i; + + if (virtual_operand_p (op)) + { + /* Remove the phi nodes for virtual operands (alias analysis will be + run for the new function, anyway). But replace all uses that + might be outside of the region we move. */ + use_operand_p use_p; + imm_use_iterator iter; + gimple *use_stmt; + FOR_EACH_IMM_USE_STMT (use_stmt, iter, op) + FOR_EACH_IMM_USE_ON_STMT (use_p, iter) + SET_USE (use_p, SSA_NAME_VAR (op)); + remove_phi_node (&psi, true); + continue; + } + + SET_PHI_RESULT (phi, + replace_ssa_name (op, d->vars_map, dest_cfun->decl)); + FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE) + { + op = USE_FROM_PTR (use); + if (TREE_CODE (op) == SSA_NAME) + SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl)); + } + + for (i = 0; i < EDGE_COUNT (bb->preds); i++) + { + location_t locus = gimple_phi_arg_location (phi, i); + tree block = LOCATION_BLOCK (locus); + + if (locus == UNKNOWN_LOCATION) + continue; + if (d->orig_block == NULL_TREE || block == d->orig_block) + { + locus = set_block (locus, d->new_block); + gimple_phi_arg_set_location (phi, i, locus); + } + } + + gsi_next (&psi); + } + + for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si)) + { + gimple *stmt = gsi_stmt (si); + struct walk_stmt_info wi; + + memset (&wi, 0, sizeof (wi)); + wi.info = d; + walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi); + + if (glabel *label_stmt = dyn_cast <glabel *> (stmt)) + { + tree label = gimple_label_label (label_stmt); + int uid = LABEL_DECL_UID (label); + + gcc_assert (uid > -1); + + old_len = vec_safe_length (cfg->x_label_to_block_map); + if (old_len <= (unsigned) uid) + vec_safe_grow_cleared (cfg->x_label_to_block_map, uid + 1); + + (*cfg->x_label_to_block_map)[uid] = bb; + (*cfun->cfg->x_label_to_block_map)[uid] = NULL; + + gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl); + + if (uid >= dest_cfun->cfg->last_label_uid) + dest_cfun->cfg->last_label_uid = uid + 1; + } + + maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0); + remove_stmt_from_eh_lp_fn (cfun, stmt); + + gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt); + gimple_remove_stmt_histograms (cfun, stmt); + + /* We cannot leave any operands allocated from the operand caches of + the current function. */ + free_stmt_operands (cfun, stmt); + push_cfun (dest_cfun); + update_stmt (stmt); + if (is_gimple_call (stmt)) + notice_special_calls (as_a <gcall *> (stmt)); + pop_cfun (); + } + + FOR_EACH_EDGE (e, ei, bb->succs) + if (e->goto_locus != UNKNOWN_LOCATION) + { + tree block = LOCATION_BLOCK (e->goto_locus); + if (d->orig_block == NULL_TREE + || block == d->orig_block) + e->goto_locus = set_block (e->goto_locus, d->new_block); + } +} + +/* Examine the statements in BB (which is in SRC_CFUN); find and return + the outermost EH region. Use REGION as the incoming base EH region. + If there is no single outermost region, return NULL and set *ALL to + true. */ + +static eh_region +find_outermost_region_in_block (struct function *src_cfun, + basic_block bb, eh_region region, + bool *all) +{ + gimple_stmt_iterator si; + + for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si)) + { + gimple *stmt = gsi_stmt (si); + eh_region stmt_region; + int lp_nr; + + lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt); + stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr); + if (stmt_region) + { + if (region == NULL) + region = stmt_region; + else if (stmt_region != region) + { + region = eh_region_outermost (src_cfun, stmt_region, region); + if (region == NULL) + { + *all = true; + return NULL; + } + } + } + } + + return region; +} + +static tree +new_label_mapper (tree decl, void *data) +{ + htab_t hash = (htab_t) data; + struct tree_map *m; + void **slot; + + gcc_assert (TREE_CODE (decl) == LABEL_DECL); + + m = XNEW (struct tree_map); + m->hash = DECL_UID (decl); + m->base.from = decl; + m->to = create_artificial_label (UNKNOWN_LOCATION); + LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl); + if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid) + cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1; + + slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT); + gcc_assert (*slot == NULL); + + *slot = m; + + return m->to; +} + +/* Tree walker to replace the decls used inside value expressions by + duplicates. */ + +static tree +replace_block_vars_by_duplicates_1 (tree *tp, int *walk_subtrees, void *data) +{ + struct replace_decls_d *rd = (struct replace_decls_d *)data; + + switch (TREE_CODE (*tp)) + { + case VAR_DECL: + case PARM_DECL: + case RESULT_DECL: + replace_by_duplicate_decl (tp, rd->vars_map, rd->to_context); + break; + default: + break; + } + + if (IS_TYPE_OR_DECL_P (*tp)) + *walk_subtrees = false; + + return NULL; +} + +/* Change DECL_CONTEXT of all BLOCK_VARS in block, including + subblocks. */ + +static void +replace_block_vars_by_duplicates (tree block, hash_map<tree, tree> *vars_map, + tree to_context) +{ + tree *tp, t; + + for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp)) + { + t = *tp; + if (!VAR_P (t) && TREE_CODE (t) != CONST_DECL) + continue; + replace_by_duplicate_decl (&t, vars_map, to_context); + if (t != *tp) + { + if (VAR_P (*tp) && DECL_HAS_VALUE_EXPR_P (*tp)) + { + tree x = DECL_VALUE_EXPR (*tp); + struct replace_decls_d rd = { vars_map, to_context }; + unshare_expr (x); + walk_tree (&x, replace_block_vars_by_duplicates_1, &rd, NULL); + SET_DECL_VALUE_EXPR (t, x); + DECL_HAS_VALUE_EXPR_P (t) = 1; + } + DECL_CHAIN (t) = DECL_CHAIN (*tp); + *tp = t; + } + } + + for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block)) + replace_block_vars_by_duplicates (block, vars_map, to_context); +} + +/* Fixup the loop arrays and numbers after moving LOOP and its subloops + from FN1 to FN2. */ + +static void +fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2, + class loop *loop) +{ + /* Discard it from the old loop array. */ + (*get_loops (fn1))[loop->num] = NULL; + + /* Place it in the new loop array, assigning it a new number. */ + loop->num = number_of_loops (fn2); + vec_safe_push (loops_for_fn (fn2)->larray, loop); + + /* Recurse to children. */ + for (loop = loop->inner; loop; loop = loop->next) + fixup_loop_arrays_after_move (fn1, fn2, loop); +} + +/* Verify that the blocks in BBS_P are a single-entry, single-exit region + delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */ + +DEBUG_FUNCTION void +verify_sese (basic_block entry, basic_block exit, vec<basic_block> *bbs_p) +{ + basic_block bb; + edge_iterator ei; + edge e; + bitmap bbs = BITMAP_ALLOC (NULL); + int i; + + gcc_assert (entry != NULL); + gcc_assert (entry != exit); + gcc_assert (bbs_p != NULL); + + gcc_assert (bbs_p->length () > 0); + + FOR_EACH_VEC_ELT (*bbs_p, i, bb) + bitmap_set_bit (bbs, bb->index); + + gcc_assert (bitmap_bit_p (bbs, entry->index)); + gcc_assert (exit == NULL || bitmap_bit_p (bbs, exit->index)); + + FOR_EACH_VEC_ELT (*bbs_p, i, bb) + { + if (bb == entry) + { + gcc_assert (single_pred_p (entry)); + gcc_assert (!bitmap_bit_p (bbs, single_pred (entry)->index)); + } + else + for (ei = ei_start (bb->preds); !ei_end_p (ei); ei_next (&ei)) + { + e = ei_edge (ei); + gcc_assert (bitmap_bit_p (bbs, e->src->index)); + } + + if (bb == exit) + { + gcc_assert (single_succ_p (exit)); + gcc_assert (!bitmap_bit_p (bbs, single_succ (exit)->index)); + } + else + for (ei = ei_start (bb->succs); !ei_end_p (ei); ei_next (&ei)) + { + e = ei_edge (ei); + gcc_assert (bitmap_bit_p (bbs, e->dest->index)); + } + } + + BITMAP_FREE (bbs); +} + +/* If FROM is an SSA_NAME, mark the version in bitmap DATA. */ + +bool +gather_ssa_name_hash_map_from (tree const &from, tree const &, void *data) +{ + bitmap release_names = (bitmap)data; + + if (TREE_CODE (from) != SSA_NAME) + return true; + + bitmap_set_bit (release_names, SSA_NAME_VERSION (from)); + return true; +} + +/* Return LOOP_DIST_ALIAS call if present in BB. */ + +static gimple * +find_loop_dist_alias (basic_block bb) +{ + gimple *g = last_stmt (bb); + if (g == NULL || gimple_code (g) != GIMPLE_COND) + return NULL; + + gimple_stmt_iterator gsi = gsi_for_stmt (g); + gsi_prev (&gsi); + if (gsi_end_p (gsi)) + return NULL; + + g = gsi_stmt (gsi); + if (gimple_call_internal_p (g, IFN_LOOP_DIST_ALIAS)) + return g; + return NULL; +} + +/* Fold loop internal call G like IFN_LOOP_VECTORIZED/IFN_LOOP_DIST_ALIAS + to VALUE and update any immediate uses of it's LHS. */ + +void +fold_loop_internal_call (gimple *g, tree value) +{ + tree lhs = gimple_call_lhs (g); + use_operand_p use_p; + imm_use_iterator iter; + gimple *use_stmt; + gimple_stmt_iterator gsi = gsi_for_stmt (g); + + replace_call_with_value (&gsi, value); + FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs) + { + FOR_EACH_IMM_USE_ON_STMT (use_p, iter) + SET_USE (use_p, value); + update_stmt (use_stmt); + } +} + +/* Move a single-entry, single-exit region delimited by ENTRY_BB and + EXIT_BB to function DEST_CFUN. The whole region is replaced by a + single basic block in the original CFG and the new basic block is + returned. DEST_CFUN must not have a CFG yet. + + Note that the region need not be a pure SESE region. Blocks inside + the region may contain calls to abort/exit. The only restriction + is that ENTRY_BB should be the only entry point and it must + dominate EXIT_BB. + + Change TREE_BLOCK of all statements in ORIG_BLOCK to the new + functions outermost BLOCK, move all subblocks of ORIG_BLOCK + to the new function. + + All local variables referenced in the region are assumed to be in + the corresponding BLOCK_VARS and unexpanded variable lists + associated with DEST_CFUN. + + TODO: investigate whether we can reuse gimple_duplicate_sese_region to + reimplement move_sese_region_to_fn by duplicating the region rather than + moving it. */ + +basic_block +move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb, + basic_block exit_bb, tree orig_block) +{ + vec<basic_block> bbs; + basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb); + basic_block after, bb, *entry_pred, *exit_succ, abb; + struct function *saved_cfun = cfun; + int *entry_flag, *exit_flag; + profile_probability *entry_prob, *exit_prob; + unsigned i, num_entry_edges, num_exit_edges, num_nodes; + edge e; + edge_iterator ei; + htab_t new_label_map; + hash_map<void *, void *> *eh_map; + class loop *loop = entry_bb->loop_father; + class loop *loop0 = get_loop (saved_cfun, 0); + struct move_stmt_d d; + + /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE + region. */ + gcc_assert (entry_bb != exit_bb + && (!exit_bb + || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb))); + + /* Collect all the blocks in the region. Manually add ENTRY_BB + because it won't be added by dfs_enumerate_from. */ + bbs.create (0); + bbs.safe_push (entry_bb); + gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs); + + if (flag_checking) + verify_sese (entry_bb, exit_bb, &bbs); + + /* The blocks that used to be dominated by something in BBS will now be + dominated by the new block. */ + auto_vec<basic_block> dom_bbs = get_dominated_by_region (CDI_DOMINATORS, + bbs.address (), + bbs.length ()); + + /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember + the predecessor edges to ENTRY_BB and the successor edges to + EXIT_BB so that we can re-attach them to the new basic block that + will replace the region. */ + num_entry_edges = EDGE_COUNT (entry_bb->preds); + entry_pred = XNEWVEC (basic_block, num_entry_edges); + entry_flag = XNEWVEC (int, num_entry_edges); + entry_prob = XNEWVEC (profile_probability, num_entry_edges); + i = 0; + for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;) + { + entry_prob[i] = e->probability; + entry_flag[i] = e->flags; + entry_pred[i++] = e->src; + remove_edge (e); + } + + if (exit_bb) + { + num_exit_edges = EDGE_COUNT (exit_bb->succs); + exit_succ = XNEWVEC (basic_block, num_exit_edges); + exit_flag = XNEWVEC (int, num_exit_edges); + exit_prob = XNEWVEC (profile_probability, num_exit_edges); + i = 0; + for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;) + { + exit_prob[i] = e->probability; + exit_flag[i] = e->flags; + exit_succ[i++] = e->dest; + remove_edge (e); + } + } + else + { + num_exit_edges = 0; + exit_succ = NULL; + exit_flag = NULL; + exit_prob = NULL; + } + + /* Switch context to the child function to initialize DEST_FN's CFG. */ + gcc_assert (dest_cfun->cfg == NULL); + push_cfun (dest_cfun); + + init_empty_tree_cfg (); + + /* Initialize EH information for the new function. */ + eh_map = NULL; + new_label_map = NULL; + if (saved_cfun->eh) + { + eh_region region = NULL; + bool all = false; + + FOR_EACH_VEC_ELT (bbs, i, bb) + { + region = find_outermost_region_in_block (saved_cfun, bb, region, &all); + if (all) + break; + } + + init_eh_for_function (); + if (region != NULL || all) + { + new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free); + eh_map = duplicate_eh_regions (saved_cfun, region, 0, + new_label_mapper, new_label_map); + } + } + + /* Initialize an empty loop tree. */ + struct loops *loops = ggc_cleared_alloc<struct loops> (); + init_loops_structure (dest_cfun, loops, 1); + loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES; + set_loops_for_fn (dest_cfun, loops); + + vec<loop_p, va_gc> *larray = get_loops (saved_cfun)->copy (); + + /* Move the outlined loop tree part. */ + num_nodes = bbs.length (); + FOR_EACH_VEC_ELT (bbs, i, bb) + { + if (bb->loop_father->header == bb) + { + class loop *this_loop = bb->loop_father; + class loop *outer = loop_outer (this_loop); + if (outer == loop + /* If the SESE region contains some bbs ending with + a noreturn call, those are considered to belong + to the outermost loop in saved_cfun, rather than + the entry_bb's loop_father. */ + || outer == loop0) + { + if (outer != loop) + num_nodes -= this_loop->num_nodes; + flow_loop_tree_node_remove (bb->loop_father); + flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop); + fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop); + } + } + else if (bb->loop_father == loop0 && loop0 != loop) + num_nodes--; + + /* Remove loop exits from the outlined region. */ + if (loops_for_fn (saved_cfun)->exits) + FOR_EACH_EDGE (e, ei, bb->succs) + { + struct loops *l = loops_for_fn (saved_cfun); + loop_exit **slot + = l->exits->find_slot_with_hash (e, htab_hash_pointer (e), + NO_INSERT); + if (slot) + l->exits->clear_slot (slot); + } + } + + /* Adjust the number of blocks in the tree root of the outlined part. */ + get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2; + + /* Setup a mapping to be used by move_block_to_fn. */ + loop->aux = current_loops->tree_root; + loop0->aux = current_loops->tree_root; + + /* Fix up orig_loop_num. If the block referenced in it has been moved + to dest_cfun, update orig_loop_num field, otherwise clear it. */ + signed char *moved_orig_loop_num = NULL; + for (auto dloop : loops_list (dest_cfun, 0)) + if (dloop->orig_loop_num) + { + if (moved_orig_loop_num == NULL) + moved_orig_loop_num + = XCNEWVEC (signed char, vec_safe_length (larray)); + if ((*larray)[dloop->orig_loop_num] != NULL + && get_loop (saved_cfun, dloop->orig_loop_num) == NULL) + { + if (moved_orig_loop_num[dloop->orig_loop_num] >= 0 + && moved_orig_loop_num[dloop->orig_loop_num] < 2) + moved_orig_loop_num[dloop->orig_loop_num]++; + dloop->orig_loop_num = (*larray)[dloop->orig_loop_num]->num; + } + else + { + moved_orig_loop_num[dloop->orig_loop_num] = -1; + dloop->orig_loop_num = 0; + } + } + pop_cfun (); + + if (moved_orig_loop_num) + { + FOR_EACH_VEC_ELT (bbs, i, bb) + { + gimple *g = find_loop_dist_alias (bb); + if (g == NULL) + continue; + + int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0)); + gcc_assert (orig_loop_num + && (unsigned) orig_loop_num < vec_safe_length (larray)); + if (moved_orig_loop_num[orig_loop_num] == 2) + { + /* If we have moved both loops with this orig_loop_num into + dest_cfun and the LOOP_DIST_ALIAS call is being moved there + too, update the first argument. */ + gcc_assert ((*larray)[orig_loop_num] != NULL + && (get_loop (saved_cfun, orig_loop_num) == NULL)); + tree t = build_int_cst (integer_type_node, + (*larray)[orig_loop_num]->num); + gimple_call_set_arg (g, 0, t); + update_stmt (g); + /* Make sure the following loop will not update it. */ + moved_orig_loop_num[orig_loop_num] = 0; + } + else + /* Otherwise at least one of the loops stayed in saved_cfun. + Remove the LOOP_DIST_ALIAS call. */ + fold_loop_internal_call (g, gimple_call_arg (g, 1)); + } + FOR_EACH_BB_FN (bb, saved_cfun) + { + gimple *g = find_loop_dist_alias (bb); + if (g == NULL) + continue; + int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0)); + gcc_assert (orig_loop_num + && (unsigned) orig_loop_num < vec_safe_length (larray)); + if (moved_orig_loop_num[orig_loop_num]) + /* LOOP_DIST_ALIAS call remained in saved_cfun, if at least one + of the corresponding loops was moved, remove it. */ + fold_loop_internal_call (g, gimple_call_arg (g, 1)); + } + XDELETEVEC (moved_orig_loop_num); + } + ggc_free (larray); + + /* Move blocks from BBS into DEST_CFUN. */ + gcc_assert (bbs.length () >= 2); + after = dest_cfun->cfg->x_entry_block_ptr; + hash_map<tree, tree> vars_map; + + memset (&d, 0, sizeof (d)); + d.orig_block = orig_block; + d.new_block = DECL_INITIAL (dest_cfun->decl); + d.from_context = cfun->decl; + d.to_context = dest_cfun->decl; + d.vars_map = &vars_map; + d.new_label_map = new_label_map; + d.eh_map = eh_map; + d.remap_decls_p = true; + + if (gimple_in_ssa_p (cfun)) + for (tree arg = DECL_ARGUMENTS (d.to_context); arg; arg = DECL_CHAIN (arg)) + { + tree narg = make_ssa_name_fn (dest_cfun, arg, gimple_build_nop ()); + set_ssa_default_def (dest_cfun, arg, narg); + vars_map.put (arg, narg); + } + + FOR_EACH_VEC_ELT (bbs, i, bb) + { + /* No need to update edge counts on the last block. It has + already been updated earlier when we detached the region from + the original CFG. */ + move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d); + after = bb; + } + + /* Adjust the maximum clique used. */ + dest_cfun->last_clique = saved_cfun->last_clique; + + loop->aux = NULL; + loop0->aux = NULL; + /* Loop sizes are no longer correct, fix them up. */ + loop->num_nodes -= num_nodes; + for (class loop *outer = loop_outer (loop); + outer; outer = loop_outer (outer)) + outer->num_nodes -= num_nodes; + loop0->num_nodes -= bbs.length () - num_nodes; + + if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vectorize_loops) + { + class loop *aloop; + for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++) + if (aloop != NULL) + { + if (aloop->simduid) + { + replace_by_duplicate_decl (&aloop->simduid, d.vars_map, + d.to_context); + dest_cfun->has_simduid_loops = true; + } + if (aloop->force_vectorize) + dest_cfun->has_force_vectorize_loops = true; + } + } + + /* Rewire BLOCK_SUBBLOCKS of orig_block. */ + if (orig_block) + { + tree block; + gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl)) + == NULL_TREE); + BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl)) + = BLOCK_SUBBLOCKS (orig_block); + for (block = BLOCK_SUBBLOCKS (orig_block); + block; block = BLOCK_CHAIN (block)) + BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl); + BLOCK_SUBBLOCKS (orig_block) = NULL_TREE; + } + + replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl), + &vars_map, dest_cfun->decl); + + if (new_label_map) + htab_delete (new_label_map); + if (eh_map) + delete eh_map; + + /* We need to release ssa-names in a defined order, so first find them, + and then iterate in ascending version order. */ + bitmap release_names = BITMAP_ALLOC (NULL); + vars_map.traverse<void *, gather_ssa_name_hash_map_from> (release_names); + bitmap_iterator bi; + EXECUTE_IF_SET_IN_BITMAP (release_names, 0, i, bi) + release_ssa_name (ssa_name (i)); + BITMAP_FREE (release_names); + + /* Rewire the entry and exit blocks. The successor to the entry + block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in + the child function. Similarly, the predecessor of DEST_FN's + EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We + need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the + various CFG manipulation function get to the right CFG. + + FIXME, this is silly. The CFG ought to become a parameter to + these helpers. */ + push_cfun (dest_cfun); + ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = entry_bb->count; + make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU); + if (exit_bb) + { + make_single_succ_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0); + EXIT_BLOCK_PTR_FOR_FN (cfun)->count = exit_bb->count; + } + else + EXIT_BLOCK_PTR_FOR_FN (cfun)->count = profile_count::zero (); + pop_cfun (); + + /* Back in the original function, the SESE region has disappeared, + create a new basic block in its place. */ + bb = create_empty_bb (entry_pred[0]); + if (current_loops) + add_bb_to_loop (bb, loop); + for (i = 0; i < num_entry_edges; i++) + { + e = make_edge (entry_pred[i], bb, entry_flag[i]); + e->probability = entry_prob[i]; + } + + for (i = 0; i < num_exit_edges; i++) + { + e = make_edge (bb, exit_succ[i], exit_flag[i]); + e->probability = exit_prob[i]; + } + + set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry); + FOR_EACH_VEC_ELT (dom_bbs, i, abb) + set_immediate_dominator (CDI_DOMINATORS, abb, bb); + + if (exit_bb) + { + free (exit_prob); + free (exit_flag); + free (exit_succ); + } + free (entry_prob); + free (entry_flag); + free (entry_pred); + bbs.release (); + + return bb; +} + +/* Dump default def DEF to file FILE using FLAGS and indentation + SPC. */ + +static void +dump_default_def (FILE *file, tree def, int spc, dump_flags_t flags) +{ + for (int i = 0; i < spc; ++i) + fprintf (file, " "); + dump_ssaname_info_to_file (file, def, spc); + + print_generic_expr (file, TREE_TYPE (def), flags); + fprintf (file, " "); + print_generic_expr (file, def, flags); + fprintf (file, " = "); + print_generic_expr (file, SSA_NAME_VAR (def), flags); + fprintf (file, ";\n"); +} + +/* Print no_sanitize attribute to FILE for a given attribute VALUE. */ + +static void +print_no_sanitize_attr_value (FILE *file, tree value) +{ + unsigned int flags = tree_to_uhwi (value); + bool first = true; + for (int i = 0; sanitizer_opts[i].name != NULL; ++i) + { + if ((sanitizer_opts[i].flag & flags) == sanitizer_opts[i].flag) + { + if (!first) + fprintf (file, " | "); + fprintf (file, "%s", sanitizer_opts[i].name); + first = false; + } + } +} + +/* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h) + */ + +void +dump_function_to_file (tree fndecl, FILE *file, dump_flags_t flags) +{ + tree arg, var, old_current_fndecl = current_function_decl; + struct function *dsf; + bool ignore_topmost_bind = false, any_var = false; + basic_block bb; + tree chain; + bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL + && decl_is_tm_clone (fndecl)); + struct function *fun = DECL_STRUCT_FUNCTION (fndecl); + + tree fntype = TREE_TYPE (fndecl); + tree attrs[] = { DECL_ATTRIBUTES (fndecl), TYPE_ATTRIBUTES (fntype) }; + + for (int i = 0; i != 2; ++i) + { + if (!attrs[i]) + continue; + + fprintf (file, "__attribute__(("); + + bool first = true; + tree chain; + for (chain = attrs[i]; chain; first = false, chain = TREE_CHAIN (chain)) + { + if (!first) + fprintf (file, ", "); + + tree name = get_attribute_name (chain); + print_generic_expr (file, name, dump_flags); + if (TREE_VALUE (chain) != NULL_TREE) + { + fprintf (file, " ("); + + if (strstr (IDENTIFIER_POINTER (name), "no_sanitize")) + print_no_sanitize_attr_value (file, TREE_VALUE (chain)); + else + print_generic_expr (file, TREE_VALUE (chain), dump_flags); + fprintf (file, ")"); + } + } + + fprintf (file, "))\n"); + } + + current_function_decl = fndecl; + if (flags & TDF_GIMPLE) + { + static bool hotness_bb_param_printed = false; + if (profile_info != NULL + && !hotness_bb_param_printed) + { + hotness_bb_param_printed = true; + fprintf (file, + "/* --param=gimple-fe-computed-hot-bb-threshold=%" PRId64 + " */\n", get_hot_bb_threshold ()); + } + + print_generic_expr (file, TREE_TYPE (TREE_TYPE (fndecl)), + dump_flags | TDF_SLIM); + fprintf (file, " __GIMPLE (%s", + (fun->curr_properties & PROP_ssa) ? "ssa" + : (fun->curr_properties & PROP_cfg) ? "cfg" + : ""); + + if (fun && fun->cfg) + { + basic_block bb = ENTRY_BLOCK_PTR_FOR_FN (fun); + if (bb->count.initialized_p ()) + fprintf (file, ",%s(%" PRIu64 ")", + profile_quality_as_string (bb->count.quality ()), + bb->count.value ()); + if (dump_flags & TDF_UID) + fprintf (file, ")\n%sD_%u (", function_name (fun), + DECL_UID (fndecl)); + else + fprintf (file, ")\n%s (", function_name (fun)); + } + } + else + { + print_generic_expr (file, TREE_TYPE (fntype), dump_flags); + if (dump_flags & TDF_UID) + fprintf (file, " %sD.%u %s(", function_name (fun), DECL_UID (fndecl), + tmclone ? "[tm-clone] " : ""); + else + fprintf (file, " %s %s(", function_name (fun), + tmclone ? "[tm-clone] " : ""); + } + + arg = DECL_ARGUMENTS (fndecl); + while (arg) + { + print_generic_expr (file, TREE_TYPE (arg), dump_flags); + fprintf (file, " "); + print_generic_expr (file, arg, dump_flags); + if (DECL_CHAIN (arg)) + fprintf (file, ", "); + arg = DECL_CHAIN (arg); + } + fprintf (file, ")\n"); + + dsf = DECL_STRUCT_FUNCTION (fndecl); + if (dsf && (flags & TDF_EH)) + dump_eh_tree (file, dsf); + + if (flags & TDF_RAW && !gimple_has_body_p (fndecl)) + { + dump_node (fndecl, TDF_SLIM | flags, file); + current_function_decl = old_current_fndecl; + return; + } + + /* When GIMPLE is lowered, the variables are no longer available in + BIND_EXPRs, so display them separately. */ + if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf)) + { + unsigned ix; + ignore_topmost_bind = true; + + fprintf (file, "{\n"); + if (gimple_in_ssa_p (fun) + && (flags & TDF_ALIAS)) + { + for (arg = DECL_ARGUMENTS (fndecl); arg != NULL; + arg = DECL_CHAIN (arg)) + { + tree def = ssa_default_def (fun, arg); + if (def) + dump_default_def (file, def, 2, flags); + } + + tree res = DECL_RESULT (fun->decl); + if (res != NULL_TREE + && DECL_BY_REFERENCE (res)) + { + tree def = ssa_default_def (fun, res); + if (def) + dump_default_def (file, def, 2, flags); + } + + tree static_chain = fun->static_chain_decl; + if (static_chain != NULL_TREE) + { + tree def = ssa_default_def (fun, static_chain); + if (def) + dump_default_def (file, def, 2, flags); + } + } + + if (!vec_safe_is_empty (fun->local_decls)) + FOR_EACH_LOCAL_DECL (fun, ix, var) + { + print_generic_decl (file, var, flags); + fprintf (file, "\n"); + + any_var = true; + } + + tree name; + + if (gimple_in_ssa_p (fun)) + FOR_EACH_SSA_NAME (ix, name, fun) + { + if (!SSA_NAME_VAR (name) + /* SSA name with decls without a name still get + dumped as _N, list those explicitely as well even + though we've dumped the decl declaration as D.xxx + above. */ + || !SSA_NAME_IDENTIFIER (name)) + { + fprintf (file, " "); + print_generic_expr (file, TREE_TYPE (name), flags); + fprintf (file, " "); + print_generic_expr (file, name, flags); + fprintf (file, ";\n"); + + any_var = true; + } + } + } + + if (fun && fun->decl == fndecl + && fun->cfg + && basic_block_info_for_fn (fun)) + { + /* If the CFG has been built, emit a CFG-based dump. */ + if (!ignore_topmost_bind) + fprintf (file, "{\n"); + + if (any_var && n_basic_blocks_for_fn (fun)) + fprintf (file, "\n"); + + FOR_EACH_BB_FN (bb, fun) + dump_bb (file, bb, 2, flags); + + fprintf (file, "}\n"); + } + else if (fun && (fun->curr_properties & PROP_gimple_any)) + { + /* The function is now in GIMPLE form but the CFG has not been + built yet. Emit the single sequence of GIMPLE statements + that make up its body. */ + gimple_seq body = gimple_body (fndecl); + + if (gimple_seq_first_stmt (body) + && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body) + && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND) + print_gimple_seq (file, body, 0, flags); + else + { + if (!ignore_topmost_bind) + fprintf (file, "{\n"); + + if (any_var) + fprintf (file, "\n"); + + print_gimple_seq (file, body, 2, flags); + fprintf (file, "}\n"); + } + } + else + { + int indent; + + /* Make a tree based dump. */ + chain = DECL_SAVED_TREE (fndecl); + if (chain && TREE_CODE (chain) == BIND_EXPR) + { + if (ignore_topmost_bind) + { + chain = BIND_EXPR_BODY (chain); + indent = 2; + } + else + indent = 0; + } + else + { + if (!ignore_topmost_bind) + { + fprintf (file, "{\n"); + /* No topmost bind, pretend it's ignored for later. */ + ignore_topmost_bind = true; + } + indent = 2; + } + + if (any_var) + fprintf (file, "\n"); + + print_generic_stmt_indented (file, chain, flags, indent); + if (ignore_topmost_bind) + fprintf (file, "}\n"); + } + + if (flags & TDF_ENUMERATE_LOCALS) + dump_enumerated_decls (file, flags); + fprintf (file, "\n\n"); + + current_function_decl = old_current_fndecl; +} + +/* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */ + +DEBUG_FUNCTION void +debug_function (tree fn, dump_flags_t flags) +{ + dump_function_to_file (fn, stderr, flags); +} + + +/* Print on FILE the indexes for the predecessors of basic_block BB. */ + +static void +print_pred_bbs (FILE *file, basic_block bb) +{ + edge e; + edge_iterator ei; + + FOR_EACH_EDGE (e, ei, bb->preds) + fprintf (file, "bb_%d ", e->src->index); +} + + +/* Print on FILE the indexes for the successors of basic_block BB. */ + +static void +print_succ_bbs (FILE *file, basic_block bb) +{ + edge e; + edge_iterator ei; + + FOR_EACH_EDGE (e, ei, bb->succs) + fprintf (file, "bb_%d ", e->dest->index); +} + +/* Print to FILE the basic block BB following the VERBOSITY level. */ + +void +print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity) +{ + char *s_indent = (char *) alloca ((size_t) indent + 1); + memset ((void *) s_indent, ' ', (size_t) indent); + s_indent[indent] = '\0'; + + /* Print basic_block's header. */ + if (verbosity >= 2) + { + fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index); + print_pred_bbs (file, bb); + fprintf (file, "}, succs = {"); + print_succ_bbs (file, bb); + fprintf (file, "})\n"); + } + + /* Print basic_block's body. */ + if (verbosity >= 3) + { + fprintf (file, "%s {\n", s_indent); + dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS); + fprintf (file, "%s }\n", s_indent); + } +} + +static void print_loop_and_siblings (FILE *, class loop *, int, int); + +/* Pretty print LOOP on FILE, indented INDENT spaces. Following + VERBOSITY level this outputs the contents of the loop, or just its + structure. */ + +static void +print_loop (FILE *file, class loop *loop, int indent, int verbosity) +{ + char *s_indent; + basic_block bb; + + if (loop == NULL) + return; + + s_indent = (char *) alloca ((size_t) indent + 1); + memset ((void *) s_indent, ' ', (size_t) indent); + s_indent[indent] = '\0'; + + /* Print loop's header. */ + fprintf (file, "%sloop_%d (", s_indent, loop->num); + if (loop->header) + fprintf (file, "header = %d", loop->header->index); + else + { + fprintf (file, "deleted)\n"); + return; + } + if (loop->latch) + fprintf (file, ", latch = %d", loop->latch->index); + else + fprintf (file, ", multiple latches"); + fprintf (file, ", niter = "); + print_generic_expr (file, loop->nb_iterations); + + if (loop->any_upper_bound) + { + fprintf (file, ", upper_bound = "); + print_decu (loop->nb_iterations_upper_bound, file); + } + if (loop->any_likely_upper_bound) + { + fprintf (file, ", likely_upper_bound = "); + print_decu (loop->nb_iterations_likely_upper_bound, file); + } + + if (loop->any_estimate) + { + fprintf (file, ", estimate = "); + print_decu (loop->nb_iterations_estimate, file); + } + if (loop->unroll) + fprintf (file, ", unroll = %d", loop->unroll); + fprintf (file, ")\n"); + + /* Print loop's body. */ + if (verbosity >= 1) + { + fprintf (file, "%s{\n", s_indent); + FOR_EACH_BB_FN (bb, cfun) + if (bb->loop_father == loop) + print_loops_bb (file, bb, indent, verbosity); + + print_loop_and_siblings (file, loop->inner, indent + 2, verbosity); + fprintf (file, "%s}\n", s_indent); + } +} + +/* Print the LOOP and its sibling loops on FILE, indented INDENT + spaces. Following VERBOSITY level this outputs the contents of the + loop, or just its structure. */ + +static void +print_loop_and_siblings (FILE *file, class loop *loop, int indent, + int verbosity) +{ + if (loop == NULL) + return; + + print_loop (file, loop, indent, verbosity); + print_loop_and_siblings (file, loop->next, indent, verbosity); +} + +/* Follow a CFG edge from the entry point of the program, and on entry + of a loop, pretty print the loop structure on FILE. */ + +void +print_loops (FILE *file, int verbosity) +{ + basic_block bb; + + bb = ENTRY_BLOCK_PTR_FOR_FN (cfun); + fprintf (file, "\nLoops in function: %s\n", current_function_name ()); + if (bb && bb->loop_father) + print_loop_and_siblings (file, bb->loop_father, 0, verbosity); +} + +/* Dump a loop. */ + +DEBUG_FUNCTION void +debug (class loop &ref) +{ + print_loop (stderr, &ref, 0, /*verbosity*/0); +} + +DEBUG_FUNCTION void +debug (class loop *ptr) +{ + if (ptr) + debug (*ptr); + else + fprintf (stderr, "<nil>\n"); +} + +/* Dump a loop verbosely. */ + +DEBUG_FUNCTION void +debug_verbose (class loop &ref) +{ + print_loop (stderr, &ref, 0, /*verbosity*/3); +} + +DEBUG_FUNCTION void +debug_verbose (class loop *ptr) +{ + if (ptr) + debug (*ptr); + else + fprintf (stderr, "<nil>\n"); +} + + +/* Debugging loops structure at tree level, at some VERBOSITY level. */ + +DEBUG_FUNCTION void +debug_loops (int verbosity) +{ + print_loops (stderr, verbosity); +} + +/* Print on stderr the code of LOOP, at some VERBOSITY level. */ + +DEBUG_FUNCTION void +debug_loop (class loop *loop, int verbosity) +{ + print_loop (stderr, loop, 0, verbosity); +} + +/* Print on stderr the code of loop number NUM, at some VERBOSITY + level. */ + +DEBUG_FUNCTION void +debug_loop_num (unsigned num, int verbosity) +{ + debug_loop (get_loop (cfun, num), verbosity); +} + +/* Return true if BB ends with a call, possibly followed by some + instructions that must stay with the call. Return false, + otherwise. */ + +static bool +gimple_block_ends_with_call_p (basic_block bb) +{ + gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb); + return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi)); +} + + +/* Return true if BB ends with a conditional branch. Return false, + otherwise. */ + +static bool +gimple_block_ends_with_condjump_p (const_basic_block bb) +{ + gimple *stmt = last_stmt (CONST_CAST_BB (bb)); + return (stmt && gimple_code (stmt) == GIMPLE_COND); +} + + +/* Return true if statement T may terminate execution of BB in ways not + explicitly represtented in the CFG. */ + +bool +stmt_can_terminate_bb_p (gimple *t) +{ + tree fndecl = NULL_TREE; + int call_flags = 0; + + /* Eh exception not handled internally terminates execution of the whole + function. */ + if (stmt_can_throw_external (cfun, t)) + return true; + + /* NORETURN and LONGJMP calls already have an edge to exit. + CONST and PURE calls do not need one. + We don't currently check for CONST and PURE here, although + it would be a good idea, because those attributes are + figured out from the RTL in mark_constant_function, and + the counter incrementation code from -fprofile-arcs + leads to different results from -fbranch-probabilities. */ + if (is_gimple_call (t)) + { + fndecl = gimple_call_fndecl (t); + call_flags = gimple_call_flags (t); + } + + if (is_gimple_call (t) + && fndecl + && fndecl_built_in_p (fndecl) + && (call_flags & ECF_NOTHROW) + && !(call_flags & ECF_RETURNS_TWICE) + /* fork() doesn't really return twice, but the effect of + wrapping it in __gcov_fork() which calls __gcov_dump() and + __gcov_reset() and clears the counters before forking has the same + effect as returning twice. Force a fake edge. */ + && !fndecl_built_in_p (fndecl, BUILT_IN_FORK)) + return false; + + if (is_gimple_call (t)) + { + edge_iterator ei; + edge e; + basic_block bb; + + if (call_flags & (ECF_PURE | ECF_CONST) + && !(call_flags & ECF_LOOPING_CONST_OR_PURE)) + return false; + + /* Function call may do longjmp, terminate program or do other things. + Special case noreturn that have non-abnormal edges out as in this case + the fact is sufficiently represented by lack of edges out of T. */ + if (!(call_flags & ECF_NORETURN)) + return true; + + bb = gimple_bb (t); + FOR_EACH_EDGE (e, ei, bb->succs) + if ((e->flags & EDGE_FAKE) == 0) + return true; + } + + if (gasm *asm_stmt = dyn_cast <gasm *> (t)) + if (gimple_asm_volatile_p (asm_stmt) || gimple_asm_input_p (asm_stmt)) + return true; + + return false; +} + + +/* Add fake edges to the function exit for any non constant and non + noreturn calls (or noreturn calls with EH/abnormal edges), + volatile inline assembly in the bitmap of blocks specified by BLOCKS + or to the whole CFG if BLOCKS is zero. Return the number of blocks + that were split. + + The goal is to expose cases in which entering a basic block does + not imply that all subsequent instructions must be executed. */ + +static int +gimple_flow_call_edges_add (sbitmap blocks) +{ + int i; + int blocks_split = 0; + int last_bb = last_basic_block_for_fn (cfun); + bool check_last_block = false; + + if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS) + return 0; + + if (! blocks) + check_last_block = true; + else + check_last_block = bitmap_bit_p (blocks, + EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index); + + /* In the last basic block, before epilogue generation, there will be + a fallthru edge to EXIT. Special care is required if the last insn + of the last basic block is a call because make_edge folds duplicate + edges, which would result in the fallthru edge also being marked + fake, which would result in the fallthru edge being removed by + remove_fake_edges, which would result in an invalid CFG. + + Moreover, we can't elide the outgoing fake edge, since the block + profiler needs to take this into account in order to solve the minimal + spanning tree in the case that the call doesn't return. + + Handle this by adding a dummy instruction in a new last basic block. */ + if (check_last_block) + { + basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb; + gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb); + gimple *t = NULL; + + if (!gsi_end_p (gsi)) + t = gsi_stmt (gsi); + + if (t && stmt_can_terminate_bb_p (t)) + { + edge e; + + e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun)); + if (e) + { + gsi_insert_on_edge (e, gimple_build_nop ()); + gsi_commit_edge_inserts (); + } + } + } + + /* Now add fake edges to the function exit for any non constant + calls since there is no way that we can determine if they will + return or not... */ + for (i = 0; i < last_bb; i++) + { + basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i); + gimple_stmt_iterator gsi; + gimple *stmt, *last_stmt; + + if (!bb) + continue; + + if (blocks && !bitmap_bit_p (blocks, i)) + continue; + + gsi = gsi_last_nondebug_bb (bb); + if (!gsi_end_p (gsi)) + { + last_stmt = gsi_stmt (gsi); + do + { + stmt = gsi_stmt (gsi); + if (stmt_can_terminate_bb_p (stmt)) + { + edge e; + + /* The handling above of the final block before the + epilogue should be enough to verify that there is + no edge to the exit block in CFG already. + Calling make_edge in such case would cause us to + mark that edge as fake and remove it later. */ + if (flag_checking && stmt == last_stmt) + { + e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun)); + gcc_assert (e == NULL); + } + + /* Note that the following may create a new basic block + and renumber the existing basic blocks. */ + if (stmt != last_stmt) + { + e = split_block (bb, stmt); + if (e) + blocks_split++; + } + e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE); + e->probability = profile_probability::guessed_never (); + } + gsi_prev (&gsi); + } + while (!gsi_end_p (gsi)); + } + } + + if (blocks_split) + checking_verify_flow_info (); + + return blocks_split; +} + +/* Removes edge E and all the blocks dominated by it, and updates dominance + information. The IL in E->src needs to be updated separately. + If dominance info is not available, only the edge E is removed.*/ + +void +remove_edge_and_dominated_blocks (edge e) +{ + vec<basic_block> bbs_to_fix_dom = vNULL; + edge f; + edge_iterator ei; + bool none_removed = false; + unsigned i; + basic_block bb, dbb; + bitmap_iterator bi; + + /* If we are removing a path inside a non-root loop that may change + loop ownership of blocks or remove loops. Mark loops for fixup. */ + if (current_loops + && loop_outer (e->src->loop_father) != NULL + && e->src->loop_father == e->dest->loop_father) + loops_state_set (LOOPS_NEED_FIXUP); + + if (!dom_info_available_p (CDI_DOMINATORS)) + { + remove_edge (e); + return; + } + + /* No updating is needed for edges to exit. */ + if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)) + { + if (cfgcleanup_altered_bbs) + bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index); + remove_edge (e); + return; + } + + /* First, we find the basic blocks to remove. If E->dest has a predecessor + that is not dominated by E->dest, then this set is empty. Otherwise, + all the basic blocks dominated by E->dest are removed. + + Also, to DF_IDOM we store the immediate dominators of the blocks in + the dominance frontier of E (i.e., of the successors of the + removed blocks, if there are any, and of E->dest otherwise). */ + FOR_EACH_EDGE (f, ei, e->dest->preds) + { + if (f == e) + continue; + + if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest)) + { + none_removed = true; + break; + } + } + + auto_bitmap df, df_idom; + auto_vec<basic_block> bbs_to_remove; + if (none_removed) + bitmap_set_bit (df_idom, + get_immediate_dominator (CDI_DOMINATORS, e->dest)->index); + else + { + bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest); + FOR_EACH_VEC_ELT (bbs_to_remove, i, bb) + { + FOR_EACH_EDGE (f, ei, bb->succs) + { + if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)) + bitmap_set_bit (df, f->dest->index); + } + } + FOR_EACH_VEC_ELT (bbs_to_remove, i, bb) + bitmap_clear_bit (df, bb->index); + + EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi) + { + bb = BASIC_BLOCK_FOR_FN (cfun, i); + bitmap_set_bit (df_idom, + get_immediate_dominator (CDI_DOMINATORS, bb)->index); + } + } + + if (cfgcleanup_altered_bbs) + { + /* Record the set of the altered basic blocks. */ + bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index); + bitmap_ior_into (cfgcleanup_altered_bbs, df); + } + + /* Remove E and the cancelled blocks. */ + if (none_removed) + remove_edge (e); + else + { + /* Walk backwards so as to get a chance to substitute all + released DEFs into debug stmts. See + eliminate_unnecessary_stmts() in tree-ssa-dce.c for more + details. */ + for (i = bbs_to_remove.length (); i-- > 0; ) + delete_basic_block (bbs_to_remove[i]); + } + + /* Update the dominance information. The immediate dominator may change only + for blocks whose immediate dominator belongs to DF_IDOM: + + Suppose that idom(X) = Y before removal of E and idom(X) != Y after the + removal. Let Z the arbitrary block such that idom(Z) = Y and + Z dominates X after the removal. Before removal, there exists a path P + from Y to X that avoids Z. Let F be the last edge on P that is + removed, and let W = F->dest. Before removal, idom(W) = Y (since Y + dominates W, and because of P, Z does not dominate W), and W belongs to + the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */ + EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi) + { + bb = BASIC_BLOCK_FOR_FN (cfun, i); + for (dbb = first_dom_son (CDI_DOMINATORS, bb); + dbb; + dbb = next_dom_son (CDI_DOMINATORS, dbb)) + bbs_to_fix_dom.safe_push (dbb); + } + + iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true); + + bbs_to_fix_dom.release (); +} + +/* Purge dead EH edges from basic block BB. */ + +bool +gimple_purge_dead_eh_edges (basic_block bb) +{ + bool changed = false; + edge e; + edge_iterator ei; + gimple *stmt = last_stmt (bb); + + if (stmt && stmt_can_throw_internal (cfun, stmt)) + return false; + + for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); ) + { + if (e->flags & EDGE_EH) + { + remove_edge_and_dominated_blocks (e); + changed = true; + } + else + ei_next (&ei); + } + + return changed; +} + +/* Purge dead EH edges from basic block listed in BLOCKS. */ + +bool +gimple_purge_all_dead_eh_edges (const_bitmap blocks) +{ + bool changed = false; + unsigned i; + bitmap_iterator bi; + + EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi) + { + basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i); + + /* Earlier gimple_purge_dead_eh_edges could have removed + this basic block already. */ + gcc_assert (bb || changed); + if (bb != NULL) + changed |= gimple_purge_dead_eh_edges (bb); + } + + return changed; +} + +/* Purge dead abnormal call edges from basic block BB. */ + +bool +gimple_purge_dead_abnormal_call_edges (basic_block bb) +{ + bool changed = false; + edge e; + edge_iterator ei; + gimple *stmt = last_stmt (bb); + + if (!cfun->has_nonlocal_label + && !cfun->calls_setjmp) + return false; + + if (stmt && stmt_can_make_abnormal_goto (stmt)) + return false; + + for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); ) + { + if (e->flags & EDGE_ABNORMAL) + { + if (e->flags & EDGE_FALLTHRU) + e->flags &= ~EDGE_ABNORMAL; + else + remove_edge_and_dominated_blocks (e); + changed = true; + } + else + ei_next (&ei); + } + + return changed; +} + +/* Purge dead abnormal call edges from basic block listed in BLOCKS. */ + +bool +gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks) +{ + bool changed = false; + unsigned i; + bitmap_iterator bi; + + EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi) + { + basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i); + + /* Earlier gimple_purge_dead_abnormal_call_edges could have removed + this basic block already. */ + gcc_assert (bb || changed); + if (bb != NULL) + changed |= gimple_purge_dead_abnormal_call_edges (bb); + } + + return changed; +} + +/* This function is called whenever a new edge is created or + redirected. */ + +static void +gimple_execute_on_growing_pred (edge e) +{ + basic_block bb = e->dest; + + if (!gimple_seq_empty_p (phi_nodes (bb))) + reserve_phi_args_for_new_edge (bb); +} + +/* This function is called immediately before edge E is removed from + the edge vector E->dest->preds. */ + +static void +gimple_execute_on_shrinking_pred (edge e) +{ + if (!gimple_seq_empty_p (phi_nodes (e->dest))) + remove_phi_args (e); +} + +/*--------------------------------------------------------------------------- + Helper functions for Loop versioning + ---------------------------------------------------------------------------*/ + +/* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy + of 'first'. Both of them are dominated by 'new_head' basic block. When + 'new_head' was created by 'second's incoming edge it received phi arguments + on the edge by split_edge(). Later, additional edge 'e' was created to + connect 'new_head' and 'first'. Now this routine adds phi args on this + additional edge 'e' that new_head to second edge received as part of edge + splitting. */ + +static void +gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second, + basic_block new_head, edge e) +{ + gphi *phi1, *phi2; + gphi_iterator psi1, psi2; + tree def; + edge e2 = find_edge (new_head, second); + + /* Because NEW_HEAD has been created by splitting SECOND's incoming + edge, we should always have an edge from NEW_HEAD to SECOND. */ + gcc_assert (e2 != NULL); + + /* Browse all 'second' basic block phi nodes and add phi args to + edge 'e' for 'first' head. PHI args are always in correct order. */ + + for (psi2 = gsi_start_phis (second), + psi1 = gsi_start_phis (first); + !gsi_end_p (psi2) && !gsi_end_p (psi1); + gsi_next (&psi2), gsi_next (&psi1)) + { + phi1 = psi1.phi (); + phi2 = psi2.phi (); + def = PHI_ARG_DEF (phi2, e2->dest_idx); + add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2)); + } +} + + +/* Adds a if else statement to COND_BB with condition COND_EXPR. + SECOND_HEAD is the destination of the THEN and FIRST_HEAD is + the destination of the ELSE part. */ + +static void +gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED, + basic_block second_head ATTRIBUTE_UNUSED, + basic_block cond_bb, void *cond_e) +{ + gimple_stmt_iterator gsi; + gimple *new_cond_expr; + tree cond_expr = (tree) cond_e; + edge e0; + + /* Build new conditional expr */ + new_cond_expr = gimple_build_cond_from_tree (cond_expr, + NULL_TREE, NULL_TREE); + + /* Add new cond in cond_bb. */ + gsi = gsi_last_bb (cond_bb); + gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT); + + /* Adjust edges appropriately to connect new head with first head + as well as second head. */ + e0 = single_succ_edge (cond_bb); + e0->flags &= ~EDGE_FALLTHRU; + e0->flags |= EDGE_FALSE_VALUE; +} + + +/* Do book-keeping of basic block BB for the profile consistency checker. + Store the counting in RECORD. */ +static void +gimple_account_profile_record (basic_block bb, + struct profile_record *record) +{ + gimple_stmt_iterator i; + for (i = gsi_start_nondebug_after_labels_bb (bb); !gsi_end_p (i); + gsi_next_nondebug (&i)) + { + record->size + += estimate_num_insns (gsi_stmt (i), &eni_size_weights); + if (profile_info) + { + if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa ().initialized_p () + && ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa ().nonzero_p () + && bb->count.ipa ().initialized_p ()) + record->time + += estimate_num_insns (gsi_stmt (i), + &eni_time_weights) + * bb->count.ipa ().to_gcov_type (); + } + else if (bb->count.initialized_p () + && ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.initialized_p ()) + record->time + += estimate_num_insns + (gsi_stmt (i), + &eni_time_weights) + * bb->count.to_sreal_scale + (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count).to_double (); + else + record->time + += estimate_num_insns (gsi_stmt (i), &eni_time_weights); + } +} + +struct cfg_hooks gimple_cfg_hooks = { + "gimple", + gimple_verify_flow_info, + gimple_dump_bb, /* dump_bb */ + gimple_dump_bb_for_graph, /* dump_bb_for_graph */ + create_bb, /* create_basic_block */ + gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */ + gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */ + gimple_can_remove_branch_p, /* can_remove_branch_p */ + remove_bb, /* delete_basic_block */ + gimple_split_block, /* split_block */ + gimple_move_block_after, /* move_block_after */ + gimple_can_merge_blocks_p, /* can_merge_blocks_p */ + gimple_merge_blocks, /* merge_blocks */ + gimple_predict_edge, /* predict_edge */ + gimple_predicted_by_p, /* predicted_by_p */ + gimple_can_duplicate_bb_p, /* can_duplicate_block_p */ + gimple_duplicate_bb, /* duplicate_block */ + gimple_split_edge, /* split_edge */ + gimple_make_forwarder_block, /* make_forward_block */ + NULL, /* tidy_fallthru_edge */ + NULL, /* force_nonfallthru */ + gimple_block_ends_with_call_p,/* block_ends_with_call_p */ + gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */ + gimple_flow_call_edges_add, /* flow_call_edges_add */ + gimple_execute_on_growing_pred, /* execute_on_growing_pred */ + gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */ + gimple_duplicate_loop_body_to_header_edge, /* duplicate loop for trees */ + gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */ + gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/ + extract_true_false_edges_from_block, /* extract_cond_bb_edges */ + flush_pending_stmts, /* flush_pending_stmts */ + gimple_empty_block_p, /* block_empty_p */ + gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */ + gimple_account_profile_record, +}; + + +/* Split all critical edges. Split some extra (not necessarily critical) edges + if FOR_EDGE_INSERTION_P is true. */ + +unsigned int +split_critical_edges (bool for_edge_insertion_p /* = false */) +{ + basic_block bb; + edge e; + edge_iterator ei; + + /* split_edge can redirect edges out of SWITCH_EXPRs, which can get + expensive. So we want to enable recording of edge to CASE_LABEL_EXPR + mappings around the calls to split_edge. */ + start_recording_case_labels (); + FOR_ALL_BB_FN (bb, cfun) + { + FOR_EACH_EDGE (e, ei, bb->succs) + { + if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL)) + split_edge (e); + /* PRE inserts statements to edges and expects that + since split_critical_edges was done beforehand, committing edge + insertions will not split more edges. In addition to critical + edges we must split edges that have multiple successors and + end by control flow statements, such as RESX. + Go ahead and split them too. This matches the logic in + gimple_find_edge_insert_loc. */ + else if (for_edge_insertion_p + && (!single_pred_p (e->dest) + || !gimple_seq_empty_p (phi_nodes (e->dest)) + || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)) + && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun) + && !(e->flags & EDGE_ABNORMAL)) + { + gimple_stmt_iterator gsi; + + gsi = gsi_last_bb (e->src); + if (!gsi_end_p (gsi) + && stmt_ends_bb_p (gsi_stmt (gsi)) + && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN + && !gimple_call_builtin_p (gsi_stmt (gsi), + BUILT_IN_RETURN))) + split_edge (e); + } + } + } + end_recording_case_labels (); + return 0; +} + +namespace { + +const pass_data pass_data_split_crit_edges = +{ + GIMPLE_PASS, /* type */ + "crited", /* name */ + OPTGROUP_NONE, /* optinfo_flags */ + TV_TREE_SPLIT_EDGES, /* tv_id */ + PROP_cfg, /* properties_required */ + PROP_no_crit_edges, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + 0, /* todo_flags_finish */ +}; + +class pass_split_crit_edges : public gimple_opt_pass +{ +public: + pass_split_crit_edges (gcc::context *ctxt) + : gimple_opt_pass (pass_data_split_crit_edges, ctxt) + {} + + /* opt_pass methods: */ + virtual unsigned int execute (function *) { return split_critical_edges (); } + + opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); } +}; // class pass_split_crit_edges + +} // anon namespace + +gimple_opt_pass * +make_pass_split_crit_edges (gcc::context *ctxt) +{ + return new pass_split_crit_edges (ctxt); +} + + +/* Insert COND expression which is GIMPLE_COND after STMT + in basic block BB with appropriate basic block split + and creation of a new conditionally executed basic block. + Update profile so the new bb is visited with probability PROB. + Return created basic block. */ +basic_block +insert_cond_bb (basic_block bb, gimple *stmt, gimple *cond, + profile_probability prob) +{ + edge fall = split_block (bb, stmt); + gimple_stmt_iterator iter = gsi_last_bb (bb); + basic_block new_bb; + + /* Insert cond statement. */ + gcc_assert (gimple_code (cond) == GIMPLE_COND); + if (gsi_end_p (iter)) + gsi_insert_before (&iter, cond, GSI_CONTINUE_LINKING); + else + gsi_insert_after (&iter, cond, GSI_CONTINUE_LINKING); + + /* Create conditionally executed block. */ + new_bb = create_empty_bb (bb); + edge e = make_edge (bb, new_bb, EDGE_TRUE_VALUE); + e->probability = prob; + new_bb->count = e->count (); + make_single_succ_edge (new_bb, fall->dest, EDGE_FALLTHRU); + + /* Fix edge for split bb. */ + fall->flags = EDGE_FALSE_VALUE; + fall->probability -= e->probability; + + /* Update dominance info. */ + if (dom_info_available_p (CDI_DOMINATORS)) + { + set_immediate_dominator (CDI_DOMINATORS, new_bb, bb); + set_immediate_dominator (CDI_DOMINATORS, fall->dest, bb); + } + + /* Update loop info. */ + if (current_loops) + add_bb_to_loop (new_bb, bb->loop_father); + + return new_bb; +} + + + +/* Given a basic block B which ends with a conditional and has + precisely two successors, determine which of the edges is taken if + the conditional is true and which is taken if the conditional is + false. Set TRUE_EDGE and FALSE_EDGE appropriately. */ + +void +extract_true_false_edges_from_block (basic_block b, + edge *true_edge, + edge *false_edge) +{ + edge e = EDGE_SUCC (b, 0); + + if (e->flags & EDGE_TRUE_VALUE) + { + *true_edge = e; + *false_edge = EDGE_SUCC (b, 1); + } + else + { + *false_edge = e; + *true_edge = EDGE_SUCC (b, 1); + } +} + + +/* From a controlling predicate in the immediate dominator DOM of + PHIBLOCK determine the edges into PHIBLOCK that are chosen if the + predicate evaluates to true and false and store them to + *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if + they are non-NULL. Returns true if the edges can be determined, + else return false. */ + +bool +extract_true_false_controlled_edges (basic_block dom, basic_block phiblock, + edge *true_controlled_edge, + edge *false_controlled_edge) +{ + basic_block bb = phiblock; + edge true_edge, false_edge, tem; + edge e0 = NULL, e1 = NULL; + + /* We have to verify that one edge into the PHI node is dominated + by the true edge of the predicate block and the other edge + dominated by the false edge. This ensures that the PHI argument + we are going to take is completely determined by the path we + take from the predicate block. + We can only use BB dominance checks below if the destination of + the true/false edges are dominated by their edge, thus only + have a single predecessor. */ + extract_true_false_edges_from_block (dom, &true_edge, &false_edge); + tem = EDGE_PRED (bb, 0); + if (tem == true_edge + || (single_pred_p (true_edge->dest) + && (tem->src == true_edge->dest + || dominated_by_p (CDI_DOMINATORS, + tem->src, true_edge->dest)))) + e0 = tem; + else if (tem == false_edge + || (single_pred_p (false_edge->dest) + && (tem->src == false_edge->dest + || dominated_by_p (CDI_DOMINATORS, + tem->src, false_edge->dest)))) + e1 = tem; + else + return false; + tem = EDGE_PRED (bb, 1); + if (tem == true_edge + || (single_pred_p (true_edge->dest) + && (tem->src == true_edge->dest + || dominated_by_p (CDI_DOMINATORS, + tem->src, true_edge->dest)))) + e0 = tem; + else if (tem == false_edge + || (single_pred_p (false_edge->dest) + && (tem->src == false_edge->dest + || dominated_by_p (CDI_DOMINATORS, + tem->src, false_edge->dest)))) + e1 = tem; + else + return false; + if (!e0 || !e1) + return false; + + if (true_controlled_edge) + *true_controlled_edge = e0; + if (false_controlled_edge) + *false_controlled_edge = e1; + + return true; +} + +/* Generate a range test LHS CODE RHS that determines whether INDEX is in the + range [low, high]. Place associated stmts before *GSI. */ + +void +generate_range_test (basic_block bb, tree index, tree low, tree high, + tree *lhs, tree *rhs) +{ + tree type = TREE_TYPE (index); + tree utype = range_check_type (type); + + low = fold_convert (utype, low); + high = fold_convert (utype, high); + + gimple_seq seq = NULL; + index = gimple_convert (&seq, utype, index); + *lhs = gimple_build (&seq, MINUS_EXPR, utype, index, low); + *rhs = const_binop (MINUS_EXPR, utype, high, low); + + gimple_stmt_iterator gsi = gsi_last_bb (bb); + gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT); +} + +/* Return the basic block that belongs to label numbered INDEX + of a switch statement. */ + +basic_block +gimple_switch_label_bb (function *ifun, gswitch *gs, unsigned index) +{ + return label_to_block (ifun, CASE_LABEL (gimple_switch_label (gs, index))); +} + +/* Return the default basic block of a switch statement. */ + +basic_block +gimple_switch_default_bb (function *ifun, gswitch *gs) +{ + return gimple_switch_label_bb (ifun, gs, 0); +} + +/* Return the edge that belongs to label numbered INDEX + of a switch statement. */ + +edge +gimple_switch_edge (function *ifun, gswitch *gs, unsigned index) +{ + return find_edge (gimple_bb (gs), gimple_switch_label_bb (ifun, gs, index)); +} + +/* Return the default edge of a switch statement. */ + +edge +gimple_switch_default_edge (function *ifun, gswitch *gs) +{ + return gimple_switch_edge (ifun, gs, 0); +} + +/* Return true if the only executable statement in BB is a GIMPLE_COND. */ + +bool +cond_only_block_p (basic_block bb) +{ + /* BB must have no executable statements. */ + gimple_stmt_iterator gsi = gsi_after_labels (bb); + if (phi_nodes (bb)) + return false; + while (!gsi_end_p (gsi)) + { + gimple *stmt = gsi_stmt (gsi); + if (is_gimple_debug (stmt)) + ; + else if (gimple_code (stmt) == GIMPLE_NOP + || gimple_code (stmt) == GIMPLE_PREDICT + || gimple_code (stmt) == GIMPLE_COND) + ; + else + return false; + gsi_next (&gsi); + } + return true; +} + + +/* Emit return warnings. */ + +namespace { + +const pass_data pass_data_warn_function_return = +{ + GIMPLE_PASS, /* type */ + "*warn_function_return", /* name */ + OPTGROUP_NONE, /* optinfo_flags */ + TV_NONE, /* tv_id */ + PROP_cfg, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + 0, /* todo_flags_finish */ +}; + +class pass_warn_function_return : public gimple_opt_pass +{ +public: + pass_warn_function_return (gcc::context *ctxt) + : gimple_opt_pass (pass_data_warn_function_return, ctxt) + {} + + /* opt_pass methods: */ + virtual unsigned int execute (function *); + +}; // class pass_warn_function_return + +unsigned int +pass_warn_function_return::execute (function *fun) +{ + location_t location; + gimple *last; + edge e; + edge_iterator ei; + + if (!targetm.warn_func_return (fun->decl)) + return 0; + + /* If we have a path to EXIT, then we do return. */ + if (TREE_THIS_VOLATILE (fun->decl) + && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0) + { + location = UNKNOWN_LOCATION; + for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (fun)->preds); + (e = ei_safe_edge (ei)); ) + { + last = last_stmt (e->src); + if ((gimple_code (last) == GIMPLE_RETURN + || gimple_call_builtin_p (last, BUILT_IN_RETURN)) + && location == UNKNOWN_LOCATION + && ((location = LOCATION_LOCUS (gimple_location (last))) + != UNKNOWN_LOCATION) + && !optimize) + break; + /* When optimizing, replace return stmts in noreturn functions + with __builtin_unreachable () call. */ + if (optimize && gimple_code (last) == GIMPLE_RETURN) + { + tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE); + gimple *new_stmt = gimple_build_call (fndecl, 0); + gimple_set_location (new_stmt, gimple_location (last)); + gimple_stmt_iterator gsi = gsi_for_stmt (last); + gsi_replace (&gsi, new_stmt, true); + remove_edge (e); + } + else + ei_next (&ei); + } + if (location == UNKNOWN_LOCATION) + location = cfun->function_end_locus; + warning_at (location, 0, "%<noreturn%> function does return"); + } + + /* If we see "return;" in some basic block, then we do reach the end + without returning a value. */ + else if (warn_return_type > 0 + && !warning_suppressed_p (fun->decl, OPT_Wreturn_type) + && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun->decl)))) + { + FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds) + { + gimple *last = last_stmt (e->src); + greturn *return_stmt = dyn_cast <greturn *> (last); + if (return_stmt + && gimple_return_retval (return_stmt) == NULL + && !warning_suppressed_p (last, OPT_Wreturn_type)) + { + location = gimple_location (last); + if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION) + location = fun->function_end_locus; + if (warning_at (location, OPT_Wreturn_type, + "control reaches end of non-void function")) + suppress_warning (fun->decl, OPT_Wreturn_type); + break; + } + } + /* The C++ FE turns fallthrough from the end of non-void function + into __builtin_unreachable () call with BUILTINS_LOCATION. + Recognize those too. */ + basic_block bb; + if (!warning_suppressed_p (fun->decl, OPT_Wreturn_type)) + FOR_EACH_BB_FN (bb, fun) + if (EDGE_COUNT (bb->succs) == 0) + { + gimple *last = last_stmt (bb); + const enum built_in_function ubsan_missing_ret + = BUILT_IN_UBSAN_HANDLE_MISSING_RETURN; + if (last + && ((LOCATION_LOCUS (gimple_location (last)) + == BUILTINS_LOCATION + && gimple_call_builtin_p (last, BUILT_IN_UNREACHABLE)) + || gimple_call_builtin_p (last, ubsan_missing_ret))) + { + gimple_stmt_iterator gsi = gsi_for_stmt (last); + gsi_prev_nondebug (&gsi); + gimple *prev = gsi_stmt (gsi); + if (prev == NULL) + location = UNKNOWN_LOCATION; + else + location = gimple_location (prev); + if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION) + location = fun->function_end_locus; + if (warning_at (location, OPT_Wreturn_type, + "control reaches end of non-void function")) + suppress_warning (fun->decl, OPT_Wreturn_type); + break; + } + } + } + return 0; +} + +} // anon namespace + +gimple_opt_pass * +make_pass_warn_function_return (gcc::context *ctxt) +{ + return new pass_warn_function_return (ctxt); +} + +/* Walk a gimplified function and warn for functions whose return value is + ignored and attribute((warn_unused_result)) is set. This is done before + inlining, so we don't have to worry about that. */ + +static void +do_warn_unused_result (gimple_seq seq) +{ + tree fdecl, ftype; + gimple_stmt_iterator i; + + for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i)) + { + gimple *g = gsi_stmt (i); + + switch (gimple_code (g)) + { + case GIMPLE_BIND: + do_warn_unused_result (gimple_bind_body (as_a <gbind *>(g))); + break; + case GIMPLE_TRY: + do_warn_unused_result (gimple_try_eval (g)); + do_warn_unused_result (gimple_try_cleanup (g)); + break; + case GIMPLE_CATCH: + do_warn_unused_result (gimple_catch_handler ( + as_a <gcatch *> (g))); + break; + case GIMPLE_EH_FILTER: + do_warn_unused_result (gimple_eh_filter_failure (g)); + break; + + case GIMPLE_CALL: + if (gimple_call_lhs (g)) + break; + if (gimple_call_internal_p (g)) + break; + + /* This is a naked call, as opposed to a GIMPLE_CALL with an + LHS. All calls whose value is ignored should be + represented like this. Look for the attribute. */ + fdecl = gimple_call_fndecl (g); + ftype = gimple_call_fntype (g); + + if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype))) + { + location_t loc = gimple_location (g); + + if (fdecl) + warning_at (loc, OPT_Wunused_result, + "ignoring return value of %qD " + "declared with attribute %<warn_unused_result%>", + fdecl); + else + warning_at (loc, OPT_Wunused_result, + "ignoring return value of function " + "declared with attribute %<warn_unused_result%>"); + } + break; + + default: + /* Not a container, not a call, or a call whose value is used. */ + break; + } + } +} + +namespace { + +const pass_data pass_data_warn_unused_result = +{ + GIMPLE_PASS, /* type */ + "*warn_unused_result", /* name */ + OPTGROUP_NONE, /* optinfo_flags */ + TV_NONE, /* tv_id */ + PROP_gimple_any, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + 0, /* todo_flags_finish */ +}; + +class pass_warn_unused_result : public gimple_opt_pass +{ +public: + pass_warn_unused_result (gcc::context *ctxt) + : gimple_opt_pass (pass_data_warn_unused_result, ctxt) + {} + + /* opt_pass methods: */ + virtual bool gate (function *) { return flag_warn_unused_result; } + virtual unsigned int execute (function *) + { + do_warn_unused_result (gimple_body (current_function_decl)); + return 0; + } + +}; // class pass_warn_unused_result + +} // anon namespace + +gimple_opt_pass * +make_pass_warn_unused_result (gcc::context *ctxt) +{ + return new pass_warn_unused_result (ctxt); +} + +/* Maybe Remove stores to variables we marked write-only. + Return true if a store was removed. */ +static bool +maybe_remove_writeonly_store (gimple_stmt_iterator &gsi, gimple *stmt, + bitmap dce_ssa_names) +{ + /* Keep access when store has side effect, i.e. in case when source + is volatile. */ + if (!gimple_store_p (stmt) + || gimple_has_side_effects (stmt) + || optimize_debug) + return false; + + tree lhs = get_base_address (gimple_get_lhs (stmt)); + + if (!VAR_P (lhs) + || (!TREE_STATIC (lhs) && !DECL_EXTERNAL (lhs)) + || !varpool_node::get (lhs)->writeonly) + return false; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Removing statement, writes" + " to write only var:\n"); + print_gimple_stmt (dump_file, stmt, 0, + TDF_VOPS|TDF_MEMSYMS); + } + + /* Mark ssa name defining to be checked for simple dce. */ + if (gimple_assign_single_p (stmt)) + { + tree rhs = gimple_assign_rhs1 (stmt); + if (TREE_CODE (rhs) == SSA_NAME + && !SSA_NAME_IS_DEFAULT_DEF (rhs)) + bitmap_set_bit (dce_ssa_names, SSA_NAME_VERSION (rhs)); + } + unlink_stmt_vdef (stmt); + gsi_remove (&gsi, true); + release_defs (stmt); + return true; +} + +/* IPA passes, compilation of earlier functions or inlining + might have changed some properties, such as marked functions nothrow, + pure, const or noreturn. + Remove redundant edges and basic blocks, and create new ones if necessary. */ + +unsigned int +execute_fixup_cfg (void) +{ + basic_block bb; + gimple_stmt_iterator gsi; + int todo = 0; + cgraph_node *node = cgraph_node::get (current_function_decl); + /* Same scaling is also done by ipa_merge_profiles. */ + profile_count num = node->count; + profile_count den = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count; + bool scale = num.initialized_p () && !(num == den); + auto_bitmap dce_ssa_names; + + if (scale) + { + profile_count::adjust_for_ipa_scaling (&num, &den); + ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = node->count; + EXIT_BLOCK_PTR_FOR_FN (cfun)->count + = EXIT_BLOCK_PTR_FOR_FN (cfun)->count.apply_scale (num, den); + } + + FOR_EACH_BB_FN (bb, cfun) + { + if (scale) + bb->count = bb->count.apply_scale (num, den); + for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);) + { + gimple *stmt = gsi_stmt (gsi); + tree decl = is_gimple_call (stmt) + ? gimple_call_fndecl (stmt) + : NULL; + if (decl) + { + int flags = gimple_call_flags (stmt); + if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE)) + { + if (gimple_purge_dead_abnormal_call_edges (bb)) + todo |= TODO_cleanup_cfg; + + if (gimple_in_ssa_p (cfun)) + { + todo |= TODO_update_ssa | TODO_cleanup_cfg; + update_stmt (stmt); + } + } + + if (flags & ECF_NORETURN + && fixup_noreturn_call (stmt)) + todo |= TODO_cleanup_cfg; + } + + /* Remove stores to variables we marked write-only. */ + if (maybe_remove_writeonly_store (gsi, stmt, dce_ssa_names)) + { + todo |= TODO_update_ssa | TODO_cleanup_cfg; + continue; + } + + /* For calls we can simply remove LHS when it is known + to be write-only. */ + if (is_gimple_call (stmt) + && gimple_get_lhs (stmt)) + { + tree lhs = get_base_address (gimple_get_lhs (stmt)); + + if (VAR_P (lhs) + && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs)) + && varpool_node::get (lhs)->writeonly) + { + gimple_call_set_lhs (stmt, NULL); + update_stmt (stmt); + todo |= TODO_update_ssa | TODO_cleanup_cfg; + } + } + + if (maybe_clean_eh_stmt (stmt) + && gimple_purge_dead_eh_edges (bb)) + todo |= TODO_cleanup_cfg; + gsi_next (&gsi); + } + + /* If we have a basic block with no successors that does not + end with a control statement or a noreturn call end it with + a call to __builtin_unreachable. This situation can occur + when inlining a noreturn call that does in fact return. */ + if (EDGE_COUNT (bb->succs) == 0) + { + gimple *stmt = last_stmt (bb); + if (!stmt + || (!is_ctrl_stmt (stmt) + && (!is_gimple_call (stmt) + || !gimple_call_noreturn_p (stmt)))) + { + if (stmt && is_gimple_call (stmt)) + gimple_call_set_ctrl_altering (stmt, false); + tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE); + stmt = gimple_build_call (fndecl, 0); + gimple_stmt_iterator gsi = gsi_last_bb (bb); + gsi_insert_after (&gsi, stmt, GSI_NEW_STMT); + if (!cfun->after_inlining) + { + gcall *call_stmt = dyn_cast <gcall *> (stmt); + node->create_edge (cgraph_node::get_create (fndecl), + call_stmt, bb->count); + } + } + } + } + if (scale) + { + update_max_bb_count (); + compute_function_frequency (); + } + + if (current_loops + && (todo & TODO_cleanup_cfg)) + loops_state_set (LOOPS_NEED_FIXUP); + + simple_dce_from_worklist (dce_ssa_names); + + return todo; +} + +namespace { + +const pass_data pass_data_fixup_cfg = +{ + GIMPLE_PASS, /* type */ + "fixup_cfg", /* name */ + OPTGROUP_NONE, /* optinfo_flags */ + TV_NONE, /* tv_id */ + PROP_cfg, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + 0, /* todo_flags_finish */ +}; + +class pass_fixup_cfg : public gimple_opt_pass +{ +public: + pass_fixup_cfg (gcc::context *ctxt) + : gimple_opt_pass (pass_data_fixup_cfg, ctxt) + {} + + /* opt_pass methods: */ + opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); } + virtual unsigned int execute (function *) { return execute_fixup_cfg (); } + +}; // class pass_fixup_cfg + +} // anon namespace + +gimple_opt_pass * +make_pass_fixup_cfg (gcc::context *ctxt) +{ + return new pass_fixup_cfg (ctxt); +} + +/* Garbage collection support for edge_def. */ + +extern void gt_ggc_mx (tree&); +extern void gt_ggc_mx (gimple *&); +extern void gt_ggc_mx (rtx&); +extern void gt_ggc_mx (basic_block&); + +static void +gt_ggc_mx (rtx_insn *& x) +{ + if (x) + gt_ggc_mx_rtx_def ((void *) x); +} + +void +gt_ggc_mx (edge_def *e) +{ + tree block = LOCATION_BLOCK (e->goto_locus); + gt_ggc_mx (e->src); + gt_ggc_mx (e->dest); + if (current_ir_type () == IR_GIMPLE) + gt_ggc_mx (e->insns.g); + else + gt_ggc_mx (e->insns.r); + gt_ggc_mx (block); +} + +/* PCH support for edge_def. */ + +extern void gt_pch_nx (tree&); +extern void gt_pch_nx (gimple *&); +extern void gt_pch_nx (rtx&); +extern void gt_pch_nx (basic_block&); + +static void +gt_pch_nx (rtx_insn *& x) +{ + if (x) + gt_pch_nx_rtx_def ((void *) x); +} + +void +gt_pch_nx (edge_def *e) +{ + tree block = LOCATION_BLOCK (e->goto_locus); + gt_pch_nx (e->src); + gt_pch_nx (e->dest); + if (current_ir_type () == IR_GIMPLE) + gt_pch_nx (e->insns.g); + else + gt_pch_nx (e->insns.r); + gt_pch_nx (block); +} + +void +gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie) +{ + tree block = LOCATION_BLOCK (e->goto_locus); + op (&(e->src), NULL, cookie); + op (&(e->dest), NULL, cookie); + if (current_ir_type () == IR_GIMPLE) + op (&(e->insns.g), NULL, cookie); + else + op (&(e->insns.r), NULL, cookie); + op (&(block), &(block), cookie); +} + +#if CHECKING_P + +namespace selftest { + +/* Helper function for CFG selftests: create a dummy function decl + and push it as cfun. */ + +static tree +push_fndecl (const char *name) +{ + tree fn_type = build_function_type_array (integer_type_node, 0, NULL); + /* FIXME: this uses input_location: */ + tree fndecl = build_fn_decl (name, fn_type); + tree retval = build_decl (UNKNOWN_LOCATION, RESULT_DECL, + NULL_TREE, integer_type_node); + DECL_RESULT (fndecl) = retval; + push_struct_function (fndecl); + function *fun = DECL_STRUCT_FUNCTION (fndecl); + ASSERT_TRUE (fun != NULL); + init_empty_tree_cfg_for_function (fun); + ASSERT_EQ (2, n_basic_blocks_for_fn (fun)); + ASSERT_EQ (0, n_edges_for_fn (fun)); + return fndecl; +} + +/* These tests directly create CFGs. + Compare with the static fns within tree-cfg.c: + - build_gimple_cfg + - make_blocks: calls create_basic_block (seq, bb); + - make_edges. */ + +/* Verify a simple cfg of the form: + ENTRY -> A -> B -> C -> EXIT. */ + +static void +test_linear_chain () +{ + gimple_register_cfg_hooks (); + + tree fndecl = push_fndecl ("cfg_test_linear_chain"); + function *fun = DECL_STRUCT_FUNCTION (fndecl); + + /* Create some empty blocks. */ + basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun)); + basic_block bb_b = create_empty_bb (bb_a); + basic_block bb_c = create_empty_bb (bb_b); + + ASSERT_EQ (5, n_basic_blocks_for_fn (fun)); + ASSERT_EQ (0, n_edges_for_fn (fun)); + + /* Create some edges: a simple linear chain of BBs. */ + make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU); + make_edge (bb_a, bb_b, 0); + make_edge (bb_b, bb_c, 0); + make_edge (bb_c, EXIT_BLOCK_PTR_FOR_FN (fun), 0); + + /* Verify the edges. */ + ASSERT_EQ (4, n_edges_for_fn (fun)); + ASSERT_EQ (NULL, ENTRY_BLOCK_PTR_FOR_FN (fun)->preds); + ASSERT_EQ (1, ENTRY_BLOCK_PTR_FOR_FN (fun)->succs->length ()); + ASSERT_EQ (1, bb_a->preds->length ()); + ASSERT_EQ (1, bb_a->succs->length ()); + ASSERT_EQ (1, bb_b->preds->length ()); + ASSERT_EQ (1, bb_b->succs->length ()); + ASSERT_EQ (1, bb_c->preds->length ()); + ASSERT_EQ (1, bb_c->succs->length ()); + ASSERT_EQ (1, EXIT_BLOCK_PTR_FOR_FN (fun)->preds->length ()); + ASSERT_EQ (NULL, EXIT_BLOCK_PTR_FOR_FN (fun)->succs); + + /* Verify the dominance information + Each BB in our simple chain should be dominated by the one before + it. */ + calculate_dominance_info (CDI_DOMINATORS); + ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b)); + ASSERT_EQ (bb_b, get_immediate_dominator (CDI_DOMINATORS, bb_c)); + auto_vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b); + ASSERT_EQ (1, dom_by_b.length ()); + ASSERT_EQ (bb_c, dom_by_b[0]); + free_dominance_info (CDI_DOMINATORS); + + /* Similarly for post-dominance: each BB in our chain is post-dominated + by the one after it. */ + calculate_dominance_info (CDI_POST_DOMINATORS); + ASSERT_EQ (bb_b, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a)); + ASSERT_EQ (bb_c, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b)); + auto_vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b); + ASSERT_EQ (1, postdom_by_b.length ()); + ASSERT_EQ (bb_a, postdom_by_b[0]); + free_dominance_info (CDI_POST_DOMINATORS); + + pop_cfun (); +} + +/* Verify a simple CFG of the form: + ENTRY + | + A + / \ + /t \f + B C + \ / + \ / + D + | + EXIT. */ + +static void +test_diamond () +{ + gimple_register_cfg_hooks (); + + tree fndecl = push_fndecl ("cfg_test_diamond"); + function *fun = DECL_STRUCT_FUNCTION (fndecl); + + /* Create some empty blocks. */ + basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun)); + basic_block bb_b = create_empty_bb (bb_a); + basic_block bb_c = create_empty_bb (bb_a); + basic_block bb_d = create_empty_bb (bb_b); + + ASSERT_EQ (6, n_basic_blocks_for_fn (fun)); + ASSERT_EQ (0, n_edges_for_fn (fun)); + + /* Create the edges. */ + make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU); + make_edge (bb_a, bb_b, EDGE_TRUE_VALUE); + make_edge (bb_a, bb_c, EDGE_FALSE_VALUE); + make_edge (bb_b, bb_d, 0); + make_edge (bb_c, bb_d, 0); + make_edge (bb_d, EXIT_BLOCK_PTR_FOR_FN (fun), 0); + + /* Verify the edges. */ + ASSERT_EQ (6, n_edges_for_fn (fun)); + ASSERT_EQ (1, bb_a->preds->length ()); + ASSERT_EQ (2, bb_a->succs->length ()); + ASSERT_EQ (1, bb_b->preds->length ()); + ASSERT_EQ (1, bb_b->succs->length ()); + ASSERT_EQ (1, bb_c->preds->length ()); + ASSERT_EQ (1, bb_c->succs->length ()); + ASSERT_EQ (2, bb_d->preds->length ()); + ASSERT_EQ (1, bb_d->succs->length ()); + + /* Verify the dominance information. */ + calculate_dominance_info (CDI_DOMINATORS); + ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b)); + ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_c)); + ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_d)); + auto_vec<basic_block> dom_by_a = get_dominated_by (CDI_DOMINATORS, bb_a); + ASSERT_EQ (3, dom_by_a.length ()); /* B, C, D, in some order. */ + dom_by_a.release (); + auto_vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b); + ASSERT_EQ (0, dom_by_b.length ()); + dom_by_b.release (); + free_dominance_info (CDI_DOMINATORS); + + /* Similarly for post-dominance. */ + calculate_dominance_info (CDI_POST_DOMINATORS); + ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a)); + ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b)); + ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_c)); + auto_vec<basic_block> postdom_by_d = get_dominated_by (CDI_POST_DOMINATORS, bb_d); + ASSERT_EQ (3, postdom_by_d.length ()); /* A, B, C in some order. */ + postdom_by_d.release (); + auto_vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b); + ASSERT_EQ (0, postdom_by_b.length ()); + postdom_by_b.release (); + free_dominance_info (CDI_POST_DOMINATORS); + + pop_cfun (); +} + +/* Verify that we can handle a CFG containing a "complete" aka + fully-connected subgraph (where A B C D below all have edges + pointing to each other node, also to themselves). + e.g.: + ENTRY EXIT + | ^ + | / + | / + | / + V/ + A<--->B + ^^ ^^ + | \ / | + | X | + | / \ | + VV VV + C<--->D +*/ + +static void +test_fully_connected () +{ + gimple_register_cfg_hooks (); + + tree fndecl = push_fndecl ("cfg_fully_connected"); + function *fun = DECL_STRUCT_FUNCTION (fndecl); + + const int n = 4; + + /* Create some empty blocks. */ + auto_vec <basic_block> subgraph_nodes; + for (int i = 0; i < n; i++) + subgraph_nodes.safe_push (create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun))); + + ASSERT_EQ (n + 2, n_basic_blocks_for_fn (fun)); + ASSERT_EQ (0, n_edges_for_fn (fun)); + + /* Create the edges. */ + make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), subgraph_nodes[0], EDGE_FALLTHRU); + make_edge (subgraph_nodes[0], EXIT_BLOCK_PTR_FOR_FN (fun), 0); + for (int i = 0; i < n; i++) + for (int j = 0; j < n; j++) + make_edge (subgraph_nodes[i], subgraph_nodes[j], 0); + + /* Verify the edges. */ + ASSERT_EQ (2 + (n * n), n_edges_for_fn (fun)); + /* The first one is linked to ENTRY/EXIT as well as itself and + everything else. */ + ASSERT_EQ (n + 1, subgraph_nodes[0]->preds->length ()); + ASSERT_EQ (n + 1, subgraph_nodes[0]->succs->length ()); + /* The other ones in the subgraph are linked to everything in + the subgraph (including themselves). */ + for (int i = 1; i < n; i++) + { + ASSERT_EQ (n, subgraph_nodes[i]->preds->length ()); + ASSERT_EQ (n, subgraph_nodes[i]->succs->length ()); + } + + /* Verify the dominance information. */ + calculate_dominance_info (CDI_DOMINATORS); + /* The initial block in the subgraph should be dominated by ENTRY. */ + ASSERT_EQ (ENTRY_BLOCK_PTR_FOR_FN (fun), + get_immediate_dominator (CDI_DOMINATORS, + subgraph_nodes[0])); + /* Every other block in the subgraph should be dominated by the + initial block. */ + for (int i = 1; i < n; i++) + ASSERT_EQ (subgraph_nodes[0], + get_immediate_dominator (CDI_DOMINATORS, + subgraph_nodes[i])); + free_dominance_info (CDI_DOMINATORS); + + /* Similarly for post-dominance. */ + calculate_dominance_info (CDI_POST_DOMINATORS); + /* The initial block in the subgraph should be postdominated by EXIT. */ + ASSERT_EQ (EXIT_BLOCK_PTR_FOR_FN (fun), + get_immediate_dominator (CDI_POST_DOMINATORS, + subgraph_nodes[0])); + /* Every other block in the subgraph should be postdominated by the + initial block, since that leads to EXIT. */ + for (int i = 1; i < n; i++) + ASSERT_EQ (subgraph_nodes[0], + get_immediate_dominator (CDI_POST_DOMINATORS, + subgraph_nodes[i])); + free_dominance_info (CDI_POST_DOMINATORS); + + pop_cfun (); +} + +/* Run all of the selftests within this file. */ + +void +tree_cfg_c_tests () +{ + test_linear_chain (); + test_diamond (); + test_fully_connected (); +} + +} // namespace selftest + +/* TODO: test the dominator/postdominator logic with various graphs/nodes: + - loop + - nested loops + - switch statement (a block with many out-edges) + - something that jumps to itself + - etc */ + +#endif /* CHECKING_P */ |