aboutsummaryrefslogtreecommitdiff
path: root/gcc/struct-equiv.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/struct-equiv.c')
-rw-r--r--gcc/struct-equiv.c1339
1 files changed, 0 insertions, 1339 deletions
diff --git a/gcc/struct-equiv.c b/gcc/struct-equiv.c
deleted file mode 100644
index 6675e5b..0000000
--- a/gcc/struct-equiv.c
+++ /dev/null
@@ -1,1339 +0,0 @@
-/* Control flow optimization code for GNU compiler.
- Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
- 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
- Free Software Foundation, Inc.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 3, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-/* Try to match two basic blocks - or their ends - for structural equivalence.
- We scan the blocks from their ends backwards, and expect that insns are
- identical, except for certain cases involving registers. A mismatch
- We scan the blocks from their ends backwards, hoping to find a match, I.e.
- insns are identical, except for certain cases involving registers. A
- mismatch between register number RX (used in block X) and RY (used in the
- same way in block Y) can be handled in one of the following cases:
- 1. RX and RY are local to their respective blocks; they are set there and
- die there. If so, they can effectively be ignored.
- 2. RX and RY die in their blocks, but live at the start. If any path
- gets redirected through X instead of Y, the caller must emit
- compensation code to move RY to RX. If there are overlapping inputs,
- the function resolve_input_conflict ensures that this can be done.
- Information about these registers are tracked in the X_LOCAL, Y_LOCAL,
- LOCAL_COUNT and LOCAL_RVALUE fields.
- 3. RX and RY live throughout their blocks, including the start and the end.
- Either RX and RY must be identical, or we have to replace all uses in
- block X with a new pseudo, which is stored in the INPUT_REG field. The
- caller can then use block X instead of block Y by copying RY to the new
- pseudo.
-
- The main entry point to this file is struct_equiv_block_eq. This function
- uses a struct equiv_info to accept some of its inputs, to keep track of its
- internal state, to pass down to its helper functions, and to communicate
- some of the results back to the caller.
-
- Most scans will result in a failure to match a sufficient number of insns
- to make any optimization worth while, therefore the process is geared more
- to quick scanning rather than the ability to exactly backtrack when we
- find a mismatch. The information gathered is still meaningful to make a
- preliminary decision if we want to do an optimization, we might only
- slightly overestimate the number of matchable insns, and underestimate
- the number of inputs an miss an input conflict. Sufficient information
- is gathered so that when we make another pass, we won't have to backtrack
- at the same point.
- Another issue is that information in memory attributes and/or REG_NOTES
- might have to be merged or discarded to make a valid match. We don't want
- to discard such information when we are not certain that we want to merge
- the two (partial) blocks.
- For these reasons, struct_equiv_block_eq has to be called first with the
- STRUCT_EQUIV_START bit set in the mode parameter. This will calculate the
- number of matched insns and the number and types of inputs. If the
- need_rerun field is set, the results are only tentative, and the caller
- has to call again with STRUCT_EQUIV_RERUN till need_rerun is false in
- order to get a reliable match.
- To install the changes necessary for the match, the function has to be
- called again with STRUCT_EQUIV_FINAL.
-
- While scanning an insn, we process first all the SET_DESTs, then the
- SET_SRCes, then the REG_NOTES, in order to keep the register liveness
- information consistent.
- If we were to mix up the order for sources / destinations in an insn where
- a source is also a destination, we'd end up being mistaken to think that
- the register is not live in the preceding insn. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "rtl.h"
-#include "regs.h"
-#include "output.h"
-#include "insn-config.h"
-#include "flags.h"
-#include "recog.h"
-#include "tm_p.h"
-#include "target.h"
-#include "emit-rtl.h"
-#include "reload.h"
-#include "df.h"
-
-static void merge_memattrs (rtx, rtx);
-static bool set_dest_equiv_p (rtx x, rtx y, struct equiv_info *info);
-static bool set_dest_addr_equiv_p (rtx x, rtx y, struct equiv_info *info);
-static void find_dying_inputs (struct equiv_info *info);
-static bool resolve_input_conflict (struct equiv_info *info);
-
-/* After reload, some moves, as indicated by SECONDARY_RELOAD_CLASS and
- SECONDARY_MEMORY_NEEDED, cannot be done directly. For our purposes, we
- consider them impossible to generate after reload (even though some
- might be synthesized when you throw enough code at them).
- Since we don't know while processing a cross-jump if a local register
- that is currently live will eventually be live and thus be an input,
- we keep track of potential inputs that would require an impossible move
- by using a prohibitively high cost for them.
- This number, multiplied with the larger of STRUCT_EQUIV_MAX_LOCAL and
- FIRST_PSEUDO_REGISTER, must fit in the input_cost field of
- struct equiv_info. */
-#define IMPOSSIBLE_MOVE_FACTOR 20000
-
-
-
-/* Removes the memory attributes of MEM expression
- if they are not equal. */
-
-void
-merge_memattrs (rtx x, rtx y)
-{
- int i;
- int j;
- enum rtx_code code;
- const char *fmt;
-
- if (x == y)
- return;
- if (x == 0 || y == 0)
- return;
-
- code = GET_CODE (x);
-
- if (code != GET_CODE (y))
- return;
-
- if (GET_MODE (x) != GET_MODE (y))
- return;
-
- if (code == MEM && MEM_ATTRS (x) != MEM_ATTRS (y))
- {
- if (! MEM_ATTRS (x))
- MEM_ATTRS (y) = 0;
- else if (! MEM_ATTRS (y))
- MEM_ATTRS (x) = 0;
- else
- {
- rtx mem_size;
-
- if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
- {
- set_mem_alias_set (x, 0);
- set_mem_alias_set (y, 0);
- }
-
- if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
- {
- set_mem_expr (x, 0);
- set_mem_expr (y, 0);
- set_mem_offset (x, 0);
- set_mem_offset (y, 0);
- }
- else if (MEM_OFFSET (x) != MEM_OFFSET (y))
- {
- set_mem_offset (x, 0);
- set_mem_offset (y, 0);
- }
-
- if (!MEM_SIZE (x))
- mem_size = NULL_RTX;
- else if (!MEM_SIZE (y))
- mem_size = NULL_RTX;
- else
- mem_size = GEN_INT (MAX (INTVAL (MEM_SIZE (x)),
- INTVAL (MEM_SIZE (y))));
- set_mem_size (x, mem_size);
- set_mem_size (y, mem_size);
-
- set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
- set_mem_align (y, MEM_ALIGN (x));
- }
- }
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- switch (fmt[i])
- {
- case 'E':
- /* Two vectors must have the same length. */
- if (XVECLEN (x, i) != XVECLEN (y, i))
- return;
-
- for (j = 0; j < XVECLEN (x, i); j++)
- merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
-
- break;
-
- case 'e':
- merge_memattrs (XEXP (x, i), XEXP (y, i));
- }
- }
- return;
-}
-
-/* In SET, assign the bit for the register number of REG the value VALUE.
- If REG is a hard register, do so for all its constituent registers.
- Return the number of registers that have become included (as a positive
- number) or excluded (as a negative number). */
-static int
-assign_reg_reg_set (regset set, rtx reg, int value)
-{
- unsigned regno = REGNO (reg);
- int nregs, i, old;
-
- if (regno >= FIRST_PSEUDO_REGISTER)
- {
- gcc_assert (!reload_completed);
- nregs = 1;
- }
- else
- nregs = hard_regno_nregs[regno][GET_MODE (reg)];
- for (old = 0, i = nregs; --i >= 0; regno++)
- {
- if ((value != 0) == REGNO_REG_SET_P (set, regno))
- continue;
- if (value)
- old++, SET_REGNO_REG_SET (set, regno);
- else
- old--, CLEAR_REGNO_REG_SET (set, regno);
- }
- return old;
-}
-
-/* Record state about current inputs / local registers / liveness
- in *P. */
-static inline void
-struct_equiv_make_checkpoint (struct struct_equiv_checkpoint *p,
- struct equiv_info *info)
-{
- *p = info->cur;
-}
-
-/* Call struct_equiv_make_checkpoint (P, INFO) if the current partial block
- is suitable to split off - i.e. there is no dangling cc0 user - and
- if the current cost of the common instructions, minus the cost for
- setting up the inputs, is higher than what has been recorded before
- in CHECKPOINT[N]. Also, if we do so, confirm or cancel any pending
- changes. */
-static void
-struct_equiv_improve_checkpoint (struct struct_equiv_checkpoint *p,
- struct equiv_info *info)
-{
-#ifdef HAVE_cc0
- if (reg_mentioned_p (cc0_rtx, info->cur.x_start)
- && !sets_cc0_p (info->cur.x_start))
- return;
-#endif
- if (info->cur.input_count >= IMPOSSIBLE_MOVE_FACTOR)
- return;
- if (info->input_cost >= 0
- ? (COSTS_N_INSNS(info->cur.ninsns - p->ninsns)
- > info->input_cost * (info->cur.input_count - p->input_count))
- : info->cur.ninsns > p->ninsns && !info->cur.input_count)
- {
- if (info->check_input_conflict && ! resolve_input_conflict (info))
- return;
- /* We have a profitable set of changes. If this is the final pass,
- commit them now. Otherwise, we don't know yet if we can make any
- change, so put the old code back for now. */
- if (info->mode & STRUCT_EQUIV_FINAL)
- confirm_change_group ();
- else
- cancel_changes (0);
- struct_equiv_make_checkpoint (p, info);
- }
-}
-
-/* Restore state about current inputs / local registers / liveness
- from P. */
-static void
-struct_equiv_restore_checkpoint (struct struct_equiv_checkpoint *p,
- struct equiv_info *info)
-{
- info->cur.ninsns = p->ninsns;
- info->cur.x_start = p->x_start;
- info->cur.y_start = p->y_start;
- info->cur.input_count = p->input_count;
- info->cur.input_valid = p->input_valid;
- while (info->cur.local_count > p->local_count)
- {
- info->cur.local_count--;
- info->cur.version--;
- if (REGNO_REG_SET_P (info->x_local_live,
- REGNO (info->x_local[info->cur.local_count])))
- {
- assign_reg_reg_set (info->x_local_live,
- info->x_local[info->cur.local_count], 0);
- assign_reg_reg_set (info->y_local_live,
- info->y_local[info->cur.local_count], 0);
- info->cur.version--;
- }
- }
- if (info->cur.version != p->version)
- info->need_rerun = true;
-}
-
-
-/* Update register liveness to reflect that X is now life (if rvalue is
- nonzero) or dead (if rvalue is zero) in INFO->x_block, and likewise Y
- in INFO->y_block. Return the number of registers the liveness of which
- changed in each block (as a negative number if registers became dead). */
-static int
-note_local_live (struct equiv_info *info, rtx x, rtx y, int rvalue)
-{
- unsigned x_regno = REGNO (x);
- unsigned y_regno = REGNO (y);
- int x_nominal_nregs = (x_regno >= FIRST_PSEUDO_REGISTER
- ? 1 : hard_regno_nregs[x_regno][GET_MODE (x)]);
- int y_nominal_nregs = (y_regno >= FIRST_PSEUDO_REGISTER
- ? 1 : hard_regno_nregs[y_regno][GET_MODE (y)]);
- int x_change = assign_reg_reg_set (info->x_local_live, x, rvalue);
- int y_change = assign_reg_reg_set (info->y_local_live, y, rvalue);
-
- gcc_assert (x_nominal_nregs && y_nominal_nregs);
- gcc_assert (x_change * y_nominal_nregs == y_change * x_nominal_nregs);
- if (y_change)
- {
- if (reload_completed)
- {
- unsigned x_regno ATTRIBUTE_UNUSED = REGNO (x);
- unsigned y_regno ATTRIBUTE_UNUSED = REGNO (y);
- enum machine_mode x_mode = GET_MODE (x);
-
- if (secondary_reload_class (0, REGNO_REG_CLASS (y_regno), x_mode, x)
- != NO_REGS
-#ifdef SECONDARY_MEMORY_NEEDED
- || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (y_regno),
- REGNO_REG_CLASS (x_regno), x_mode)
-#endif
- )
- y_change *= IMPOSSIBLE_MOVE_FACTOR;
- }
- info->cur.input_count += y_change;
- info->cur.version++;
- }
- return x_change;
-}
-
-/* Check if *XP is equivalent to Y. Until an unreconcilable difference is
- found, use in-group changes with validate_change on *XP to make register
- assignments agree. It is the (not necessarily direct) callers
- responsibility to verify / confirm / cancel these changes, as appropriate.
- RVALUE indicates if the processed piece of rtl is used as a destination, in
- which case we can't have different registers being an input. Returns
- nonzero if the two blocks have been identified as equivalent, zero otherwise.
- RVALUE == 0: destination
- RVALUE == 1: source
- RVALUE == -1: source, ignore SET_DEST of SET / clobber. */
-bool
-rtx_equiv_p (rtx *xp, rtx y, int rvalue, struct equiv_info *info)
-{
- rtx x = *xp;
- enum rtx_code code;
- int length;
- const char *format;
- int i;
-
- if (!y || !x)
- return x == y;
- code = GET_CODE (y);
- if (code != REG && x == y)
- return true;
- if (GET_CODE (x) != code
- || GET_MODE (x) != GET_MODE (y))
- return false;
-
- /* ??? could extend to allow CONST_INT inputs. */
- switch (code)
- {
- case REG:
- {
- unsigned x_regno = REGNO (x);
- unsigned y_regno = REGNO (y);
- int x_common_live, y_common_live;
-
- if (reload_completed
- && (x_regno >= FIRST_PSEUDO_REGISTER
- || y_regno >= FIRST_PSEUDO_REGISTER))
- {
- /* We should only see this in REG_NOTEs. */
- gcc_assert (!info->live_update);
- /* Returning false will cause us to remove the notes. */
- return false;
- }
-#ifdef STACK_REGS
- /* After reg-stack, can only accept literal matches of stack regs. */
- if (info->mode & CLEANUP_POST_REGSTACK
- && (IN_RANGE (x_regno, FIRST_STACK_REG, LAST_STACK_REG)
- || IN_RANGE (y_regno, FIRST_STACK_REG, LAST_STACK_REG)))
- return x_regno == y_regno;
-#endif
-
- /* If the register is a locally live one in one block, the
- corresponding one must be locally live in the other, too, and
- match of identical regnos doesn't apply. */
- if (REGNO_REG_SET_P (info->x_local_live, x_regno))
- {
- if (!REGNO_REG_SET_P (info->y_local_live, y_regno))
- return false;
- }
- else if (REGNO_REG_SET_P (info->y_local_live, y_regno))
- return false;
- else if (x_regno == y_regno)
- {
- if (!rvalue && info->cur.input_valid
- && (reg_overlap_mentioned_p (x, info->x_input)
- || reg_overlap_mentioned_p (x, info->y_input)))
- return false;
-
- /* Update liveness information. */
- if (info->live_update
- && assign_reg_reg_set (info->common_live, x, rvalue))
- info->cur.version++;
-
- return true;
- }
-
- x_common_live = REGNO_REG_SET_P (info->common_live, x_regno);
- y_common_live = REGNO_REG_SET_P (info->common_live, y_regno);
- if (x_common_live != y_common_live)
- return false;
- else if (x_common_live)
- {
- if (! rvalue || info->input_cost < 0 || reload_completed)
- return false;
- /* If info->live_update is not set, we are processing notes.
- We then allow a match with x_input / y_input found in a
- previous pass. */
- if (info->live_update && !info->cur.input_valid)
- {
- info->cur.input_valid = true;
- info->x_input = x;
- info->y_input = y;
- info->cur.input_count += optimize_size ? 2 : 1;
- if (info->input_reg
- && GET_MODE (info->input_reg) != GET_MODE (info->x_input))
- info->input_reg = NULL_RTX;
- if (!info->input_reg)
- info->input_reg = gen_reg_rtx (GET_MODE (info->x_input));
- }
- else if ((info->live_update
- ? ! info->cur.input_valid : ! info->x_input)
- || ! rtx_equal_p (x, info->x_input)
- || ! rtx_equal_p (y, info->y_input))
- return false;
- validate_change (info->cur.x_start, xp, info->input_reg, 1);
- }
- else
- {
- int x_nregs = (x_regno >= FIRST_PSEUDO_REGISTER
- ? 1 : hard_regno_nregs[x_regno][GET_MODE (x)]);
- int y_nregs = (y_regno >= FIRST_PSEUDO_REGISTER
- ? 1 : hard_regno_nregs[y_regno][GET_MODE (y)]);
- int size = GET_MODE_SIZE (GET_MODE (x));
- enum machine_mode x_mode = GET_MODE (x);
- unsigned x_regno_i, y_regno_i;
- int x_nregs_i, y_nregs_i, size_i;
- int local_count = info->cur.local_count;
-
- /* This might be a register local to each block. See if we have
- it already registered. */
- for (i = local_count - 1; i >= 0; i--)
- {
- x_regno_i = REGNO (info->x_local[i]);
- x_nregs_i = (x_regno_i >= FIRST_PSEUDO_REGISTER
- ? 1 : hard_regno_nregs[x_regno_i][GET_MODE (x)]);
- y_regno_i = REGNO (info->y_local[i]);
- y_nregs_i = (y_regno_i >= FIRST_PSEUDO_REGISTER
- ? 1 : hard_regno_nregs[y_regno_i][GET_MODE (y)]);
- size_i = GET_MODE_SIZE (GET_MODE (info->x_local[i]));
-
- /* If we have a new pair of registers that is wider than an
- old pair and enclosing it with matching offsets,
- remove the old pair. If we find a matching, wider, old
- pair, use the old one. If the width is the same, use the
- old one if the modes match, but the new if they don't.
- We don't want to get too fancy with subreg_regno_offset
- here, so we just test two straightforward cases each. */
- if (info->live_update
- && (x_mode != GET_MODE (info->x_local[i])
- ? size >= size_i : size > size_i))
- {
- /* If the new pair is fully enclosing a matching
- existing pair, remove the old one. N.B. because
- we are removing one entry here, the check below
- if we have space for a new entry will succeed. */
- if ((x_regno <= x_regno_i
- && x_regno + x_nregs >= x_regno_i + x_nregs_i
- && x_nregs == y_nregs && x_nregs_i == y_nregs_i
- && x_regno - x_regno_i == y_regno - y_regno_i)
- || (x_regno == x_regno_i && y_regno == y_regno_i
- && x_nregs >= x_nregs_i && y_nregs >= y_nregs_i))
- {
- info->cur.local_count = --local_count;
- info->x_local[i] = info->x_local[local_count];
- info->y_local[i] = info->y_local[local_count];
- continue;
- }
- }
- else
- {
-
- /* If the new pair is fully enclosed within a matching
- existing pair, succeed. */
- if (x_regno >= x_regno_i
- && x_regno + x_nregs <= x_regno_i + x_nregs_i
- && x_nregs == y_nregs && x_nregs_i == y_nregs_i
- && x_regno - x_regno_i == y_regno - y_regno_i)
- break;
- if (x_regno == x_regno_i && y_regno == y_regno_i
- && x_nregs <= x_nregs_i && y_nregs <= y_nregs_i)
- break;
- }
-
- /* Any other overlap causes a match failure. */
- if (x_regno + x_nregs > x_regno_i
- && x_regno_i + x_nregs_i > x_regno)
- return false;
- if (y_regno + y_nregs > y_regno_i
- && y_regno_i + y_nregs_i > y_regno)
- return false;
- }
- if (i < 0)
- {
- /* Not found. Create a new entry if possible. */
- if (!info->live_update
- || info->cur.local_count >= STRUCT_EQUIV_MAX_LOCAL)
- return false;
- info->x_local[info->cur.local_count] = x;
- info->y_local[info->cur.local_count] = y;
- info->cur.local_count++;
- info->cur.version++;
- }
- note_local_live (info, x, y, rvalue);
- }
- return true;
- }
- case SET:
- gcc_assert (rvalue < 0);
- /* Ignore the destinations role as a destination. Still, we have
- to consider input registers embedded in the addresses of a MEM.
- N.B., we process the rvalue aspect of STRICT_LOW_PART /
- ZERO_EXTEND / SIGN_EXTEND along with their lvalue aspect. */
- if(!set_dest_addr_equiv_p (SET_DEST (x), SET_DEST (y), info))
- return false;
- /* Process source. */
- return rtx_equiv_p (&SET_SRC (x), SET_SRC (y), 1, info);
- case PRE_MODIFY:
- /* Process destination. */
- if (!rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 0, info))
- return false;
- /* Process source. */
- return rtx_equiv_p (&XEXP (x, 1), XEXP (y, 1), 1, info);
- case POST_MODIFY:
- {
- rtx x_dest0, x_dest1;
-
- /* Process destination. */
- x_dest0 = XEXP (x, 0);
- gcc_assert (REG_P (x_dest0));
- if (!rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 0, info))
- return false;
- x_dest1 = XEXP (x, 0);
- /* validate_change might have changed the destination. Put it back
- so that we can do a proper match for its role as an input. */
- XEXP (x, 0) = x_dest0;
- if (!rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 1, info))
- return false;
- gcc_assert (x_dest1 == XEXP (x, 0));
- /* Process source. */
- return rtx_equiv_p (&XEXP (x, 1), XEXP (y, 1), 1, info);
- }
- case CLOBBER:
- gcc_assert (rvalue < 0);
- return true;
- /* Some special forms are also rvalues when they appear in lvalue
- positions. However, we must ont try to match a register after we
- have already altered it with validate_change, consider the rvalue
- aspect while we process the lvalue. */
- case STRICT_LOW_PART:
- case ZERO_EXTEND:
- case SIGN_EXTEND:
- {
- rtx x_inner, y_inner;
- enum rtx_code code;
- int change;
-
- if (rvalue)
- break;
- x_inner = XEXP (x, 0);
- y_inner = XEXP (y, 0);
- if (GET_MODE (x_inner) != GET_MODE (y_inner))
- return false;
- code = GET_CODE (x_inner);
- if (code != GET_CODE (y_inner))
- return false;
- /* The address of a MEM is an input that will be processed during
- rvalue == -1 processing. */
- if (code == SUBREG)
- {
- if (SUBREG_BYTE (x_inner) != SUBREG_BYTE (y_inner))
- return false;
- x = x_inner;
- x_inner = SUBREG_REG (x_inner);
- y_inner = SUBREG_REG (y_inner);
- if (GET_MODE (x_inner) != GET_MODE (y_inner))
- return false;
- code = GET_CODE (x_inner);
- if (code != GET_CODE (y_inner))
- return false;
- }
- if (code == MEM)
- return true;
- gcc_assert (code == REG);
- if (! rtx_equiv_p (&XEXP (x, 0), y_inner, rvalue, info))
- return false;
- if (REGNO (x_inner) == REGNO (y_inner))
- {
- change = assign_reg_reg_set (info->common_live, x_inner, 1);
- info->cur.version++;
- }
- else
- change = note_local_live (info, x_inner, y_inner, 1);
- gcc_assert (change);
- return true;
- }
- /* The AUTO_INC / POST_MODIFY / PRE_MODIFY sets are modelled to take
- place during input processing, however, that is benign, since they
- are paired with reads. */
- case MEM:
- return !rvalue || rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), rvalue, info);
- case POST_INC: case POST_DEC: case PRE_INC: case PRE_DEC:
- return (rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 0, info)
- && rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 1, info));
- case PARALLEL:
- /* If this is a top-level PATTERN PARALLEL, we expect the caller to
- have handled the SET_DESTs. A complex or vector PARALLEL can be
- identified by having a mode. */
- gcc_assert (rvalue < 0 || GET_MODE (x) != VOIDmode);
- break;
- case LABEL_REF:
- /* Check special tablejump match case. */
- if (XEXP (y, 0) == info->y_label)
- return (XEXP (x, 0) == info->x_label);
- /* We can't assume nonlocal labels have their following insns yet. */
- if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
- return XEXP (x, 0) == XEXP (y, 0);
-
- /* Two label-refs are equivalent if they point at labels
- in the same position in the instruction stream. */
- return (next_real_insn (XEXP (x, 0))
- == next_real_insn (XEXP (y, 0)));
- case SYMBOL_REF:
- return XSTR (x, 0) == XSTR (y, 0);
- /* Some rtl is guaranteed to be shared, or unique; If we didn't match
- EQ equality above, they aren't the same. */
- case CONST_INT:
- case CODE_LABEL:
- return false;
- default:
- break;
- }
-
- /* For commutative operations, the RTX match if the operands match in any
- order. */
- if (targetm.commutative_p (x, UNKNOWN))
- return ((rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), rvalue, info)
- && rtx_equiv_p (&XEXP (x, 1), XEXP (y, 1), rvalue, info))
- || (rtx_equiv_p (&XEXP (x, 0), XEXP (y, 1), rvalue, info)
- && rtx_equiv_p (&XEXP (x, 1), XEXP (y, 0), rvalue, info)));
-
- /* Process subexpressions - this is similar to rtx_equal_p. */
- length = GET_RTX_LENGTH (code);
- format = GET_RTX_FORMAT (code);
-
- for (i = 0; i < length; ++i)
- {
- switch (format[i])
- {
- case 'w':
- if (XWINT (x, i) != XWINT (y, i))
- return false;
- break;
- case 'n':
- case 'i':
- if (XINT (x, i) != XINT (y, i))
- return false;
- break;
- case 'V':
- case 'E':
- if (XVECLEN (x, i) != XVECLEN (y, i))
- return false;
- if (XVEC (x, i) != 0)
- {
- int j;
- for (j = 0; j < XVECLEN (x, i); ++j)
- {
- if (! rtx_equiv_p (&XVECEXP (x, i, j), XVECEXP (y, i, j),
- rvalue, info))
- return false;
- }
- }
- break;
- case 'e':
- if (! rtx_equiv_p (&XEXP (x, i), XEXP (y, i), rvalue, info))
- return false;
- break;
- case 'S':
- case 's':
- if ((XSTR (x, i) || XSTR (y, i))
- && (! XSTR (x, i) || ! XSTR (y, i)
- || strcmp (XSTR (x, i), XSTR (y, i))))
- return false;
- break;
- case 'u':
- /* These are just backpointers, so they don't matter. */
- break;
- case '0':
- case 't':
- break;
- /* It is believed that rtx's at this level will never
- contain anything but integers and other rtx's,
- except for within LABEL_REFs and SYMBOL_REFs. */
- default:
- gcc_unreachable ();
- }
- }
- return true;
-}
-
-/* Do only the rtx_equiv_p SET_DEST processing for SETs and CLOBBERs.
- Since we are scanning backwards, this the first step in processing each
- insn. Return true for success. */
-static bool
-set_dest_equiv_p (rtx x, rtx y, struct equiv_info *info)
-{
- if (!x || !y)
- return x == y;
- if (GET_CODE (x) != GET_CODE (y))
- return false;
- else if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
- return rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 0, info);
- else if (GET_CODE (x) == PARALLEL)
- {
- int j;
-
- if (XVECLEN (x, 0) != XVECLEN (y, 0))
- return false;
- for (j = 0; j < XVECLEN (x, 0); ++j)
- {
- rtx xe = XVECEXP (x, 0, j);
- rtx ye = XVECEXP (y, 0, j);
-
- if (GET_CODE (xe) != GET_CODE (ye))
- return false;
- if ((GET_CODE (xe) == SET || GET_CODE (xe) == CLOBBER)
- && ! rtx_equiv_p (&XEXP (xe, 0), XEXP (ye, 0), 0, info))
- return false;
- }
- }
- return true;
-}
-
-/* Process MEMs in SET_DEST destinations. We must not process this together
- with REG SET_DESTs, but must do it separately, lest when we see
- [(set (reg:SI foo) (bar))
- (set (mem:SI (reg:SI foo) (baz)))]
- struct_equiv_block_eq could get confused to assume that (reg:SI foo)
- is not live before this instruction. */
-static bool
-set_dest_addr_equiv_p (rtx x, rtx y, struct equiv_info *info)
-{
- enum rtx_code code = GET_CODE (x);
- int length;
- const char *format;
- int i;
-
- if (code != GET_CODE (y))
- return false;
- if (code == MEM)
- return rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 1, info);
-
- /* Process subexpressions. */
- length = GET_RTX_LENGTH (code);
- format = GET_RTX_FORMAT (code);
-
- for (i = 0; i < length; ++i)
- {
- switch (format[i])
- {
- case 'V':
- case 'E':
- if (XVECLEN (x, i) != XVECLEN (y, i))
- return false;
- if (XVEC (x, i) != 0)
- {
- int j;
- for (j = 0; j < XVECLEN (x, i); ++j)
- {
- if (! set_dest_addr_equiv_p (XVECEXP (x, i, j),
- XVECEXP (y, i, j), info))
- return false;
- }
- }
- break;
- case 'e':
- if (! set_dest_addr_equiv_p (XEXP (x, i), XEXP (y, i), info))
- return false;
- break;
- default:
- break;
- }
- }
- return true;
-}
-
-/* Check if the set of REG_DEAD notes attached to I1 and I2 allows us to
- go ahead with merging I1 and I2, which otherwise look fine.
- Inputs / local registers for the inputs of I1 and I2 have already been
- set up. */
-static bool
-death_notes_match_p (rtx i1 ATTRIBUTE_UNUSED, rtx i2 ATTRIBUTE_UNUSED,
- struct equiv_info *info ATTRIBUTE_UNUSED)
-{
-#ifdef STACK_REGS
- /* If cross_jump_death_matters is not 0, the insn's mode
- indicates whether or not the insn contains any stack-like regs. */
-
- if ((info->mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
- {
- /* If register stack conversion has already been done, then
- death notes must also be compared before it is certain that
- the two instruction streams match. */
-
- rtx note;
- HARD_REG_SET i1_regset, i2_regset;
-
- CLEAR_HARD_REG_SET (i1_regset);
- CLEAR_HARD_REG_SET (i2_regset);
-
- for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
- if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
- SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
-
- for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
- if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
- {
- unsigned regno = REGNO (XEXP (note, 0));
- int i;
-
- for (i = info->cur.local_count - 1; i >= 0; i--)
- if (regno == REGNO (info->y_local[i]))
- {
- regno = REGNO (info->x_local[i]);
- break;
- }
- SET_HARD_REG_BIT (i2_regset, regno);
- }
-
- if (!hard_reg_set_equal_p (i1_regset, i2_regset))
- return false;
- }
-#endif
- return true;
-}
-
-/* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
-
-bool
-insns_match_p (rtx i1, rtx i2, struct equiv_info *info)
-{
- int rvalue_change_start;
- struct struct_equiv_checkpoint before_rvalue_change;
-
- /* Verify that I1 and I2 are equivalent. */
- if (GET_CODE (i1) != GET_CODE (i2))
- return false;
-
- info->cur.x_start = i1;
- info->cur.y_start = i2;
-
- /* If this is a CALL_INSN, compare register usage information.
- If we don't check this on stack register machines, the two
- CALL_INSNs might be merged leaving reg-stack.c with mismatching
- numbers of stack registers in the same basic block.
- If we don't check this on machines with delay slots, a delay slot may
- be filled that clobbers a parameter expected by the subroutine.
-
- ??? We take the simple route for now and assume that if they're
- equal, they were constructed identically. */
-
- if (CALL_P (i1))
- {
- if (SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2)
- || ! set_dest_equiv_p (PATTERN (i1), PATTERN (i2), info)
- || ! set_dest_equiv_p (CALL_INSN_FUNCTION_USAGE (i1),
- CALL_INSN_FUNCTION_USAGE (i2), info)
- || ! rtx_equiv_p (&CALL_INSN_FUNCTION_USAGE (i1),
- CALL_INSN_FUNCTION_USAGE (i2), -1, info))
- {
- cancel_changes (0);
- return false;
- }
- }
- else if (INSN_P (i1))
- {
- if (! set_dest_equiv_p (PATTERN (i1), PATTERN (i2), info))
- {
- cancel_changes (0);
- return false;
- }
- }
- rvalue_change_start = num_validated_changes ();
- struct_equiv_make_checkpoint (&before_rvalue_change, info);
- /* Check death_notes_match_p *after* the inputs have been processed,
- so that local inputs will already have been set up. */
- if (! INSN_P (i1)
- || (!bitmap_bit_p (info->equiv_used, info->cur.ninsns)
- && rtx_equiv_p (&PATTERN (i1), PATTERN (i2), -1, info)
- && death_notes_match_p (i1, i2, info)
- && verify_changes (0)))
- return true;
-
- /* Do not do EQUIV substitution after reload. First, we're undoing the
- work of reload_cse. Second, we may be undoing the work of the post-
- reload splitting pass. */
- /* ??? Possibly add a new phase switch variable that can be used by
- targets to disallow the troublesome insns after splitting. */
- if (!reload_completed)
- {
- rtx equiv1, equiv2;
-
- cancel_changes (rvalue_change_start);
- struct_equiv_restore_checkpoint (&before_rvalue_change, info);
-
- /* The following code helps take care of G++ cleanups. */
- equiv1 = find_reg_equal_equiv_note (i1);
- equiv2 = find_reg_equal_equiv_note (i2);
- if (equiv1 && equiv2
- /* If the equivalences are not to a constant, they may
- reference pseudos that no longer exist, so we can't
- use them. */
- && (! reload_completed
- || (CONSTANT_P (XEXP (equiv1, 0))
- && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))))
- {
- rtx s1 = single_set (i1);
- rtx s2 = single_set (i2);
-
- if (s1 != 0 && s2 != 0)
- {
- validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
- validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
- /* Only inspecting the new SET_SRC is not good enough,
- because there may also be bare USEs in a single_set
- PARALLEL. */
- if (rtx_equiv_p (&PATTERN (i1), PATTERN (i2), -1, info)
- && death_notes_match_p (i1, i2, info)
- && verify_changes (0))
- {
- /* Mark this insn so that we'll use the equivalence in
- all subsequent passes. */
- bitmap_set_bit (info->equiv_used, info->cur.ninsns);
- return true;
- }
- }
- }
- }
-
- cancel_changes (0);
- return false;
-}
-
-/* Set up mode and register information in INFO. Return true for success. */
-bool
-struct_equiv_init (int mode, struct equiv_info *info)
-{
- if (!REG_SET_EQUAL_P (DF_LR_OUT (info->x_block),
- DF_LR_OUT (info->y_block)))
- {
-#ifdef STACK_REGS
- unsigned rn;
-
- if (!(mode & CLEANUP_POST_REGSTACK))
- return false;
- /* After reg-stack. Remove bogus live info about stack regs. N.B.
- these regs are not necessarily all dead - we swap random bogosity
- against constant bogosity. However, clearing these bits at
- least makes the regsets comparable. */
- for (rn = FIRST_STACK_REG; rn <= LAST_STACK_REG; rn++)
- {
- CLEAR_REGNO_REG_SET (DF_LR_OUT (info->x_block), rn);
- CLEAR_REGNO_REG_SET (DF_LR_OUT (info->y_block), rn);
- }
- if (!REG_SET_EQUAL_P (DF_LR_OUT (info->x_block),
- DF_LR_OUT (info->y_block)))
-#endif
- return false;
- }
- info->mode = mode;
- if (mode & STRUCT_EQUIV_START)
- {
- info->x_input = info->y_input = info->input_reg = NULL_RTX;
- info->equiv_used = ALLOC_REG_SET (&reg_obstack);
- info->check_input_conflict = false;
- }
- info->had_input_conflict = false;
- info->cur.ninsns = info->cur.version = 0;
- info->cur.local_count = info->cur.input_count = 0;
- info->cur.x_start = info->cur.y_start = NULL_RTX;
- info->x_label = info->y_label = NULL_RTX;
- info->need_rerun = false;
- info->live_update = true;
- info->cur.input_valid = false;
- info->common_live = ALLOC_REG_SET (&reg_obstack);
- info->x_local_live = ALLOC_REG_SET (&reg_obstack);
- info->y_local_live = ALLOC_REG_SET (&reg_obstack);
- COPY_REG_SET (info->common_live, DF_LR_OUT (info->x_block));
- struct_equiv_make_checkpoint (&info->best_match, info);
- return true;
-}
-
-/* Insns XI and YI have been matched. Merge memory attributes and reg
- notes. */
-static void
-struct_equiv_merge (rtx xi, rtx yi, struct equiv_info *info)
-{
- rtx equiv1, equiv2;
-
- merge_memattrs (xi, yi);
-
- /* If the merged insns have different REG_EQUAL notes, then
- remove them. */
- info->live_update = false;
- equiv1 = find_reg_equal_equiv_note (xi);
- equiv2 = find_reg_equal_equiv_note (yi);
- if (equiv1 && !equiv2)
- remove_note (xi, equiv1);
- else if (!equiv1 && equiv2)
- remove_note (yi, equiv2);
- else if (equiv1 && equiv2
- && !rtx_equiv_p (&XEXP (equiv1, 0), XEXP (equiv2, 0),
- 1, info))
- {
- remove_note (xi, equiv1);
- remove_note (yi, equiv2);
- }
- info->live_update = true;
-}
-
-/* Return number of matched insns.
- This function must be called up to three times for a successful cross-jump
- match:
- first to find out which instructions do match. While trying to match
- another instruction that doesn't match, we destroy information in info
- about the actual inputs. So if there have been any before the last
- match attempt, we need to call this function again to recompute the
- actual inputs up to the actual start of the matching sequence.
- When we are then satisfied that the cross-jump is worthwhile, we
- call this function a third time to make any changes needed to make the
- sequences match: apply equivalences, remove non-matching
- notes and merge memory attributes. */
-int
-struct_equiv_block_eq (int mode, struct equiv_info *info)
-{
- rtx x_stop, y_stop;
- rtx xi, yi;
- int i;
-
- if (mode & STRUCT_EQUIV_START)
- {
- x_stop = BB_HEAD (info->x_block);
- y_stop = BB_HEAD (info->y_block);
- if (!x_stop || !y_stop)
- return 0;
- }
- else
- {
- x_stop = info->cur.x_start;
- y_stop = info->cur.y_start;
- }
- if (!struct_equiv_init (mode, info))
- gcc_unreachable ();
-
- /* Skip simple jumps at the end of the blocks. Complex jumps still
- need to be compared for equivalence, which we'll do below. */
-
- xi = BB_END (info->x_block);
- if (onlyjump_p (xi)
- || (returnjump_p (xi) && !side_effects_p (PATTERN (xi))))
- {
- info->cur.x_start = xi;
- xi = PREV_INSN (xi);
- }
-
- yi = BB_END (info->y_block);
- if (onlyjump_p (yi)
- || (returnjump_p (yi) && !side_effects_p (PATTERN (yi))))
- {
- info->cur.y_start = yi;
- /* Count everything except for unconditional jump as insn. */
- /* ??? Is it right to count unconditional jumps with a clobber?
- Should we count conditional returns? */
- if (!simplejump_p (yi) && !returnjump_p (yi) && info->cur.x_start)
- info->cur.ninsns++;
- yi = PREV_INSN (yi);
- }
-
- if (mode & STRUCT_EQUIV_MATCH_JUMPS)
- {
- /* The caller is expected to have compared the jumps already, but we
- need to match them again to get any local registers and inputs. */
- gcc_assert (!info->cur.x_start == !info->cur.y_start);
- if (info->cur.x_start)
- {
- if (any_condjump_p (info->cur.x_start)
- ? !condjump_equiv_p (info, false)
- : !insns_match_p (info->cur.x_start, info->cur.y_start, info))
- gcc_unreachable ();
- }
- else if (any_condjump_p (xi) && any_condjump_p (yi))
- {
- info->cur.x_start = xi;
- info->cur.y_start = yi;
- xi = PREV_INSN (xi);
- yi = PREV_INSN (yi);
- info->cur.ninsns++;
- if (!condjump_equiv_p (info, false))
- gcc_unreachable ();
- }
- if (info->cur.x_start && info->mode & STRUCT_EQUIV_FINAL)
- struct_equiv_merge (info->cur.x_start, info->cur.y_start, info);
- }
-
- struct_equiv_improve_checkpoint (&info->best_match, info);
- info->x_end = xi;
- info->y_end = yi;
- if (info->cur.x_start != x_stop)
- for (;;)
- {
- /* Ignore notes. */
- while (!INSN_P (xi) && xi != x_stop)
- xi = PREV_INSN (xi);
-
- while (!INSN_P (yi) && yi != y_stop)
- yi = PREV_INSN (yi);
-
- if (!insns_match_p (xi, yi, info))
- break;
- if (INSN_P (xi))
- {
- if (info->mode & STRUCT_EQUIV_FINAL)
- struct_equiv_merge (xi, yi, info);
- info->cur.ninsns++;
- struct_equiv_improve_checkpoint (&info->best_match, info);
- }
- if (xi == x_stop || yi == y_stop)
- {
- /* If we reached the start of at least one of the blocks, but
- best_match hasn't been advanced back to the first valid insn
- yet, represent the increased benefit of completing the block
- as an increased instruction count. */
- if (info->best_match.x_start != info->cur.x_start
- && (xi == BB_HEAD (info->x_block)
- || yi == BB_HEAD (info->y_block)))
- {
- info->cur.ninsns++;
- struct_equiv_improve_checkpoint (&info->best_match, info);
- info->cur.ninsns--;
- if (info->best_match.ninsns > info->cur.ninsns)
- info->best_match.ninsns = info->cur.ninsns;
- }
- break;
- }
- xi = PREV_INSN (xi);
- yi = PREV_INSN (yi);
- }
-
- /* If we failed to match an insn, but had some changes registered from
- trying to make the insns match, we need to cancel these changes now. */
- cancel_changes (0);
- /* Restore to best_match to get the sequence with the best known-so-far
- cost-benefit difference. */
- struct_equiv_restore_checkpoint (&info->best_match, info);
-
- /* Include preceding notes and labels in the cross-jump / if-conversion.
- One, this may bring us to the head of the blocks.
- Two, it keeps line number notes as matched as may be. */
- if (info->cur.ninsns)
- {
- xi = info->cur.x_start;
- yi = info->cur.y_start;
- while (xi != x_stop && !INSN_P (PREV_INSN (xi)))
- xi = PREV_INSN (xi);
-
- while (yi != y_stop && !INSN_P (PREV_INSN (yi)))
- yi = PREV_INSN (yi);
-
- info->cur.x_start = xi;
- info->cur.y_start = yi;
- }
-
- if (!info->cur.input_valid)
- info->x_input = info->y_input = info->input_reg = NULL_RTX;
- if (!info->need_rerun)
- {
- find_dying_inputs (info);
- if (info->mode & STRUCT_EQUIV_FINAL)
- {
- if (info->check_input_conflict && ! resolve_input_conflict (info))
- gcc_unreachable ();
- }
- else
- {
- bool input_conflict = info->had_input_conflict;
-
- if (!input_conflict
- && info->dying_inputs > 1
- && bitmap_intersect_p (info->x_local_live, info->y_local_live))
- {
- regset_head clobbered_regs;
-
- INIT_REG_SET (&clobbered_regs);
- for (i = 0; i < info->cur.local_count; i++)
- {
- if (assign_reg_reg_set (&clobbered_regs, info->y_local[i], 0))
- {
- input_conflict = true;
- break;
- }
- assign_reg_reg_set (&clobbered_regs, info->x_local[i], 1);
- }
- CLEAR_REG_SET (&clobbered_regs);
- }
- if (input_conflict && !info->check_input_conflict)
- info->need_rerun = true;
- info->check_input_conflict = input_conflict;
- }
- }
-
- if (info->mode & STRUCT_EQUIV_NEED_FULL_BLOCK
- && (info->cur.x_start != x_stop || info->cur.y_start != y_stop))
- return 0;
- return info->cur.ninsns;
-}
-
-/* For each local register, set info->local_rvalue to true iff the register
- is a dying input. Store the total number of these in info->dying_inputs. */
-static void
-find_dying_inputs (struct equiv_info *info)
-{
- int i;
-
- info->dying_inputs = 0;
- for (i = info->cur.local_count-1; i >=0; i--)
- {
- rtx x = info->x_local[i];
- unsigned regno = REGNO (x);
- int nregs = (regno >= FIRST_PSEUDO_REGISTER
- ? 1 : hard_regno_nregs[regno][GET_MODE (x)]);
-
- for (info->local_rvalue[i] = false; nregs > 0; regno++, --nregs)
- if (REGNO_REG_SET_P (info->x_local_live, regno))
- {
- info->dying_inputs++;
- info->local_rvalue[i] = true;
- break;
- }
- }
-}
-
-/* For each local register that is a dying input, y_local[i] will be
- copied to x_local[i]. We'll do this in ascending order. Try to
- re-order the locals to avoid conflicts like r3 = r2; r4 = r3; .
- Return true iff the re-ordering is successful, or not necessary. */
-static bool
-resolve_input_conflict (struct equiv_info *info)
-{
- int i, j, end;
- int nswaps = 0;
- rtx save_x_local[STRUCT_EQUIV_MAX_LOCAL];
- rtx save_y_local[STRUCT_EQUIV_MAX_LOCAL];
-
- find_dying_inputs (info);
- if (info->dying_inputs <= 1)
- return true;
- memcpy (save_x_local, info->x_local, sizeof save_x_local);
- memcpy (save_y_local, info->y_local, sizeof save_y_local);
- end = info->cur.local_count - 1;
- for (i = 0; i <= end; i++)
- {
- /* Cycle detection with regsets is expensive, so we just check that
- we don't exceed the maximum number of swaps needed in the acyclic
- case. */
- int max_swaps = end - i;
-
- /* Check if x_local[i] will be clobbered. */
- if (!info->local_rvalue[i])
- continue;
- /* Check if any later value needs to be copied earlier. */
- for (j = i + 1; j <= end; j++)
- {
- rtx tmp;
-
- if (!info->local_rvalue[j])
- continue;
- if (!reg_overlap_mentioned_p (info->x_local[i], info->y_local[j]))
- continue;
- if (--max_swaps < 0)
- {
- memcpy (info->x_local, save_x_local, sizeof save_x_local);
- memcpy (info->y_local, save_y_local, sizeof save_y_local);
- return false;
- }
- nswaps++;
- tmp = info->x_local[i];
- info->x_local[i] = info->x_local[j];
- info->x_local[j] = tmp;
- tmp = info->y_local[i];
- info->y_local[i] = info->y_local[j];
- info->y_local[j] = tmp;
- j = i;
- }
- }
- info->had_input_conflict = true;
- if (dump_file && nswaps)
- fprintf (dump_file, "Resolved input conflict, %d %s.\n",
- nswaps, nswaps == 1 ? "swap" : "swaps");
- return true;
-}