aboutsummaryrefslogtreecommitdiff
path: root/gcc/lambda.h
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/lambda.h')
-rw-r--r--gcc/lambda.h524
1 files changed, 0 insertions, 524 deletions
diff --git a/gcc/lambda.h b/gcc/lambda.h
deleted file mode 100644
index 382b71f..0000000
--- a/gcc/lambda.h
+++ /dev/null
@@ -1,524 +0,0 @@
-/* Lambda matrix and vector interface.
- Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
- Free Software Foundation, Inc.
- Contributed by Daniel Berlin <dberlin@dberlin.org>
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 3, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-#ifndef LAMBDA_H
-#define LAMBDA_H
-
-#include "vec.h"
-
-/* An integer vector. A vector formally consists of an element of a vector
- space. A vector space is a set that is closed under vector addition
- and scalar multiplication. In this vector space, an element is a list of
- integers. */
-typedef int *lambda_vector;
-DEF_VEC_P(lambda_vector);
-DEF_VEC_ALLOC_P(lambda_vector,heap);
-DEF_VEC_ALLOC_P(lambda_vector,gc);
-
-typedef VEC(lambda_vector, heap) *lambda_vector_vec_p;
-DEF_VEC_P (lambda_vector_vec_p);
-DEF_VEC_ALLOC_P (lambda_vector_vec_p, heap);
-
-/* An integer matrix. A matrix consists of m vectors of length n (IE
- all vectors are the same length). */
-typedef lambda_vector *lambda_matrix;
-
-DEF_VEC_P (lambda_matrix);
-DEF_VEC_ALLOC_P (lambda_matrix, heap);
-
-/* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
- matrix. Rather than use floats, we simply keep a single DENOMINATOR that
- represents the denominator for every element in the matrix. */
-typedef struct lambda_trans_matrix_s
-{
- lambda_matrix matrix;
- int rowsize;
- int colsize;
- int denominator;
-} *lambda_trans_matrix;
-#define LTM_MATRIX(T) ((T)->matrix)
-#define LTM_ROWSIZE(T) ((T)->rowsize)
-#define LTM_COLSIZE(T) ((T)->colsize)
-#define LTM_DENOMINATOR(T) ((T)->denominator)
-
-/* A vector representing a statement in the body of a loop.
- The COEFFICIENTS vector contains a coefficient for each induction variable
- in the loop nest containing the statement.
- The DENOMINATOR represents the denominator for each coefficient in the
- COEFFICIENT vector.
-
- This structure is used during code generation in order to rewrite the old
- induction variable uses in a statement in terms of the newly created
- induction variables. */
-typedef struct lambda_body_vector_s
-{
- lambda_vector coefficients;
- int size;
- int denominator;
-} *lambda_body_vector;
-#define LBV_COEFFICIENTS(T) ((T)->coefficients)
-#define LBV_SIZE(T) ((T)->size)
-#define LBV_DENOMINATOR(T) ((T)->denominator)
-
-/* Piecewise linear expression.
- This structure represents a linear expression with terms for the invariants
- and induction variables of a loop.
- COEFFICIENTS is a vector of coefficients for the induction variables, one
- per loop in the loop nest.
- CONSTANT is the constant portion of the linear expression
- INVARIANT_COEFFICIENTS is a vector of coefficients for the loop invariants,
- one per invariant.
- DENOMINATOR is the denominator for all of the coefficients and constants in
- the expression.
- The linear expressions can be linked together using the NEXT field, in
- order to represent MAX or MIN of a group of linear expressions. */
-typedef struct lambda_linear_expression_s
-{
- lambda_vector coefficients;
- int constant;
- lambda_vector invariant_coefficients;
- int denominator;
- struct lambda_linear_expression_s *next;
-} *lambda_linear_expression;
-
-#define LLE_COEFFICIENTS(T) ((T)->coefficients)
-#define LLE_CONSTANT(T) ((T)->constant)
-#define LLE_INVARIANT_COEFFICIENTS(T) ((T)->invariant_coefficients)
-#define LLE_DENOMINATOR(T) ((T)->denominator)
-#define LLE_NEXT(T) ((T)->next)
-
-struct obstack;
-
-lambda_linear_expression lambda_linear_expression_new (int, int,
- struct obstack *);
-void print_lambda_linear_expression (FILE *, lambda_linear_expression, int,
- int, char);
-
-/* Loop structure. Our loop structure consists of a constant representing the
- STEP of the loop, a set of linear expressions representing the LOWER_BOUND
- of the loop, a set of linear expressions representing the UPPER_BOUND of
- the loop, and a set of linear expressions representing the LINEAR_OFFSET of
- the loop. The linear offset is a set of linear expressions that are
- applied to *both* the lower bound, and the upper bound. */
-typedef struct lambda_loop_s
-{
- lambda_linear_expression lower_bound;
- lambda_linear_expression upper_bound;
- lambda_linear_expression linear_offset;
- int step;
-} *lambda_loop;
-
-#define LL_LOWER_BOUND(T) ((T)->lower_bound)
-#define LL_UPPER_BOUND(T) ((T)->upper_bound)
-#define LL_LINEAR_OFFSET(T) ((T)->linear_offset)
-#define LL_STEP(T) ((T)->step)
-
-/* Loop nest structure.
- The loop nest structure consists of a set of loop structures (defined
- above) in LOOPS, along with an integer representing the DEPTH of the loop,
- and an integer representing the number of INVARIANTS in the loop. Both of
- these integers are used to size the associated coefficient vectors in the
- linear expression structures. */
-typedef struct lambda_loopnest_s
-{
- lambda_loop *loops;
- int depth;
- int invariants;
-} *lambda_loopnest;
-
-#define LN_LOOPS(T) ((T)->loops)
-#define LN_DEPTH(T) ((T)->depth)
-#define LN_INVARIANTS(T) ((T)->invariants)
-
-lambda_loopnest lambda_loopnest_new (int, int, struct obstack *);
-lambda_loopnest lambda_loopnest_transform (lambda_loopnest,
- lambda_trans_matrix,
- struct obstack *);
-struct loop;
-bool perfect_nest_p (struct loop *);
-void print_lambda_loopnest (FILE *, lambda_loopnest, char);
-
-void print_lambda_loop (FILE *, lambda_loop, int, int, char);
-
-lambda_matrix lambda_matrix_new (int, int, struct obstack *);
-
-void lambda_matrix_id (lambda_matrix, int);
-bool lambda_matrix_id_p (lambda_matrix, int);
-void lambda_matrix_copy (lambda_matrix, lambda_matrix, int, int);
-void lambda_matrix_negate (lambda_matrix, lambda_matrix, int, int);
-void lambda_matrix_transpose (lambda_matrix, lambda_matrix, int, int);
-void lambda_matrix_add (lambda_matrix, lambda_matrix, lambda_matrix, int,
- int);
-void lambda_matrix_add_mc (lambda_matrix, int, lambda_matrix, int,
- lambda_matrix, int, int);
-void lambda_matrix_mult (lambda_matrix, lambda_matrix, lambda_matrix,
- int, int, int);
-void lambda_matrix_delete_rows (lambda_matrix, int, int, int);
-void lambda_matrix_row_exchange (lambda_matrix, int, int);
-void lambda_matrix_row_add (lambda_matrix, int, int, int, int);
-void lambda_matrix_row_negate (lambda_matrix mat, int, int);
-void lambda_matrix_row_mc (lambda_matrix, int, int, int);
-void lambda_matrix_col_exchange (lambda_matrix, int, int, int);
-void lambda_matrix_col_add (lambda_matrix, int, int, int, int);
-void lambda_matrix_col_negate (lambda_matrix, int, int);
-void lambda_matrix_col_mc (lambda_matrix, int, int, int);
-int lambda_matrix_inverse (lambda_matrix, lambda_matrix, int, struct obstack *);
-void lambda_matrix_hermite (lambda_matrix, int, lambda_matrix, lambda_matrix);
-void lambda_matrix_left_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
-void lambda_matrix_right_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
-int lambda_matrix_first_nz_vec (lambda_matrix, int, int, int);
-void lambda_matrix_project_to_null (lambda_matrix, int, int, int,
- lambda_vector);
-void print_lambda_matrix (FILE *, lambda_matrix, int, int);
-
-lambda_trans_matrix lambda_trans_matrix_new (int, int, struct obstack *);
-bool lambda_trans_matrix_nonsingular_p (lambda_trans_matrix);
-bool lambda_trans_matrix_fullrank_p (lambda_trans_matrix);
-int lambda_trans_matrix_rank (lambda_trans_matrix);
-lambda_trans_matrix lambda_trans_matrix_basis (lambda_trans_matrix);
-lambda_trans_matrix lambda_trans_matrix_padding (lambda_trans_matrix);
-lambda_trans_matrix lambda_trans_matrix_inverse (lambda_trans_matrix,
- struct obstack *);
-void print_lambda_trans_matrix (FILE *, lambda_trans_matrix);
-void lambda_matrix_vector_mult (lambda_matrix, int, int, lambda_vector,
- lambda_vector);
-bool lambda_trans_matrix_id_p (lambda_trans_matrix);
-
-lambda_body_vector lambda_body_vector_new (int, struct obstack *);
-lambda_body_vector lambda_body_vector_compute_new (lambda_trans_matrix,
- lambda_body_vector,
- struct obstack *);
-void print_lambda_body_vector (FILE *, lambda_body_vector);
-lambda_loopnest gcc_loopnest_to_lambda_loopnest (struct loop *,
- VEC(tree,heap) **,
- VEC(tree,heap) **,
- struct obstack *);
-void lambda_loopnest_to_gcc_loopnest (struct loop *,
- VEC(tree,heap) *, VEC(tree,heap) *,
- VEC(gimple,heap) **,
- lambda_loopnest, lambda_trans_matrix,
- struct obstack *);
-void remove_iv (gimple);
-tree find_induction_var_from_exit_cond (struct loop *);
-
-static inline void lambda_vector_negate (lambda_vector, lambda_vector, int);
-static inline void lambda_vector_mult_const (lambda_vector, lambda_vector, int, int);
-static inline void lambda_vector_add (lambda_vector, lambda_vector,
- lambda_vector, int);
-static inline void lambda_vector_add_mc (lambda_vector, int, lambda_vector, int,
- lambda_vector, int);
-static inline void lambda_vector_copy (lambda_vector, lambda_vector, int);
-static inline bool lambda_vector_zerop (lambda_vector, int);
-static inline void lambda_vector_clear (lambda_vector, int);
-static inline bool lambda_vector_equal (lambda_vector, lambda_vector, int);
-static inline int lambda_vector_min_nz (lambda_vector, int, int);
-static inline int lambda_vector_first_nz (lambda_vector, int, int);
-static inline void print_lambda_vector (FILE *, lambda_vector, int);
-
-/* Allocate a new vector of given SIZE. */
-
-static inline lambda_vector
-lambda_vector_new (int size)
-{
- return (lambda_vector) ggc_alloc_cleared_atomic (sizeof (int) * size);
-}
-
-
-
-/* Multiply vector VEC1 of length SIZE by a constant CONST1,
- and store the result in VEC2. */
-
-static inline void
-lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
- int size, int const1)
-{
- int i;
-
- if (const1 == 0)
- lambda_vector_clear (vec2, size);
- else
- for (i = 0; i < size; i++)
- vec2[i] = const1 * vec1[i];
-}
-
-/* Negate vector VEC1 with length SIZE and store it in VEC2. */
-
-static inline void
-lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
- int size)
-{
- lambda_vector_mult_const (vec1, vec2, size, -1);
-}
-
-/* VEC3 = VEC1+VEC2, where all three the vectors are of length SIZE. */
-
-static inline void
-lambda_vector_add (lambda_vector vec1, lambda_vector vec2,
- lambda_vector vec3, int size)
-{
- int i;
- for (i = 0; i < size; i++)
- vec3[i] = vec1[i] + vec2[i];
-}
-
-/* VEC3 = CONSTANT1*VEC1 + CONSTANT2*VEC2. All vectors have length SIZE. */
-
-static inline void
-lambda_vector_add_mc (lambda_vector vec1, int const1,
- lambda_vector vec2, int const2,
- lambda_vector vec3, int size)
-{
- int i;
- for (i = 0; i < size; i++)
- vec3[i] = const1 * vec1[i] + const2 * vec2[i];
-}
-
-/* Copy the elements of vector VEC1 with length SIZE to VEC2. */
-
-static inline void
-lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
- int size)
-{
- memcpy (vec2, vec1, size * sizeof (*vec1));
-}
-
-/* Return true if vector VEC1 of length SIZE is the zero vector. */
-
-static inline bool
-lambda_vector_zerop (lambda_vector vec1, int size)
-{
- int i;
- for (i = 0; i < size; i++)
- if (vec1[i] != 0)
- return false;
- return true;
-}
-
-/* Clear out vector VEC1 of length SIZE. */
-
-static inline void
-lambda_vector_clear (lambda_vector vec1, int size)
-{
- memset (vec1, 0, size * sizeof (*vec1));
-}
-
-/* Return true if two vectors are equal. */
-
-static inline bool
-lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
-{
- int i;
- for (i = 0; i < size; i++)
- if (vec1[i] != vec2[i])
- return false;
- return true;
-}
-
-/* Return the minimum nonzero element in vector VEC1 between START and N.
- We must have START <= N. */
-
-static inline int
-lambda_vector_min_nz (lambda_vector vec1, int n, int start)
-{
- int j;
- int min = -1;
-
- gcc_assert (start <= n);
- for (j = start; j < n; j++)
- {
- if (vec1[j])
- if (min < 0 || vec1[j] < vec1[min])
- min = j;
- }
- gcc_assert (min >= 0);
-
- return min;
-}
-
-/* Return the first nonzero element of vector VEC1 between START and N.
- We must have START <= N. Returns N if VEC1 is the zero vector. */
-
-static inline int
-lambda_vector_first_nz (lambda_vector vec1, int n, int start)
-{
- int j = start;
- while (j < n && vec1[j] == 0)
- j++;
- return j;
-}
-
-
-/* Multiply a vector by a matrix. */
-
-static inline void
-lambda_vector_matrix_mult (lambda_vector vect, int m, lambda_matrix mat,
- int n, lambda_vector dest)
-{
- int i, j;
- lambda_vector_clear (dest, n);
- for (i = 0; i < n; i++)
- for (j = 0; j < m; j++)
- dest[i] += mat[j][i] * vect[j];
-}
-
-/* Compare two vectors returning an integer less than, equal to, or
- greater than zero if the first argument is considered to be respectively
- less than, equal to, or greater than the second.
- We use the lexicographic order. */
-
-static inline int
-lambda_vector_compare (lambda_vector vec1, int length1, lambda_vector vec2,
- int length2)
-{
- int min_length;
- int i;
-
- if (length1 < length2)
- min_length = length1;
- else
- min_length = length2;
-
- for (i = 0; i < min_length; i++)
- if (vec1[i] < vec2[i])
- return -1;
- else if (vec1[i] > vec2[i])
- return 1;
- else
- continue;
-
- return length1 - length2;
-}
-
-/* Print out a vector VEC of length N to OUTFILE. */
-
-static inline void
-print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
-{
- int i;
-
- for (i = 0; i < n; i++)
- fprintf (outfile, "%3d ", vector[i]);
- fprintf (outfile, "\n");
-}
-
-/* Compute the greatest common divisor of two numbers using
- Euclid's algorithm. */
-
-static inline int
-gcd (int a, int b)
-{
- int x, y, z;
-
- x = abs (a);
- y = abs (b);
-
- while (x > 0)
- {
- z = y % x;
- y = x;
- x = z;
- }
-
- return y;
-}
-
-/* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
-
-static inline int
-lambda_vector_gcd (lambda_vector vector, int size)
-{
- int i;
- int gcd1 = 0;
-
- if (size > 0)
- {
- gcd1 = vector[0];
- for (i = 1; i < size; i++)
- gcd1 = gcd (gcd1, vector[i]);
- }
- return gcd1;
-}
-
-/* Returns true when the vector V is lexicographically positive, in
- other words, when the first nonzero element is positive. */
-
-static inline bool
-lambda_vector_lexico_pos (lambda_vector v,
- unsigned n)
-{
- unsigned i;
- for (i = 0; i < n; i++)
- {
- if (v[i] == 0)
- continue;
- if (v[i] < 0)
- return false;
- if (v[i] > 0)
- return true;
- }
- return true;
-}
-
-/* Given a vector of induction variables IVS, and a vector of
- coefficients COEFS, build a tree that is a linear combination of
- the induction variables. */
-
-static inline tree
-build_linear_expr (tree type, lambda_vector coefs, VEC (tree, heap) *ivs)
-{
- unsigned i;
- tree iv;
- tree expr = build_zero_cst (type);
-
- for (i = 0; VEC_iterate (tree, ivs, i, iv); i++)
- {
- int k = coefs[i];
-
- if (k == 1)
- expr = fold_build2 (PLUS_EXPR, type, expr, iv);
-
- else if (k != 0)
- expr = fold_build2 (PLUS_EXPR, type, expr,
- fold_build2 (MULT_EXPR, type, iv,
- build_int_cst (type, k)));
- }
-
- return expr;
-}
-
-/* Returns the dependence level for a vector DIST of size LENGTH.
- LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
- to the sequence of statements, not carried by any loop. */
-
-
-static inline unsigned
-dependence_level (lambda_vector dist_vect, int length)
-{
- int i;
-
- for (i = 0; i < length; i++)
- if (dist_vect[i] != 0)
- return i + 1;
-
- return 0;
-}
-
-#endif /* LAMBDA_H */