aboutsummaryrefslogtreecommitdiff
path: root/gcc/lambda-mat.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/lambda-mat.c')
-rw-r--r--gcc/lambda-mat.c73
1 files changed, 11 insertions, 62 deletions
diff --git a/gcc/lambda-mat.c b/gcc/lambda-mat.c
index fb9098b..50fdb69 100644
--- a/gcc/lambda-mat.c
+++ b/gcc/lambda-mat.c
@@ -27,18 +27,16 @@ along with GCC; see the file COPYING3. If not see
#include "tree-flow.h"
#include "lambda.h"
-static void lambda_matrix_get_column (lambda_matrix, int, int,
- lambda_vector);
-
/* Allocate a matrix of M rows x N cols. */
lambda_matrix
-lambda_matrix_new (int m, int n)
+lambda_matrix_new (int m, int n, struct obstack * lambda_obstack)
{
lambda_matrix mat;
int i;
- mat = GGC_NEWVEC (lambda_vector, m);
+ mat = (lambda_matrix) obstack_alloc (lambda_obstack,
+ sizeof (lambda_vector *) * m);
for (i = 0; i < m; i++)
mat[i] = lambda_vector_new (n);
@@ -165,19 +163,6 @@ lambda_matrix_mult (lambda_matrix mat1, lambda_matrix mat2,
}
}
-/* Get column COL from the matrix MAT and store it in VEC. MAT has
- N rows, so the length of VEC must be N. */
-
-static void
-lambda_matrix_get_column (lambda_matrix mat, int n, int col,
- lambda_vector vec)
-{
- int i;
-
- for (i = 0; i < n; i++)
- vec[i] = mat[i][col];
-}
-
/* Delete rows r1 to r2 (not including r2). */
void
@@ -307,10 +292,12 @@ lambda_matrix_col_mc (lambda_matrix mat, int m, int c1, int const1)
When MAT is a 2 x 2 matrix, we don't go through the whole process, because
it is easily inverted by inspection and it is a very common case. */
-static int lambda_matrix_inverse_hard (lambda_matrix, lambda_matrix, int);
+static int lambda_matrix_inverse_hard (lambda_matrix, lambda_matrix, int,
+ struct obstack *);
int
-lambda_matrix_inverse (lambda_matrix mat, lambda_matrix inv, int n)
+lambda_matrix_inverse (lambda_matrix mat, lambda_matrix inv, int n,
+ struct obstack * lambda_obstack)
{
if (n == 2)
{
@@ -335,20 +322,21 @@ lambda_matrix_inverse (lambda_matrix mat, lambda_matrix inv, int n)
return det;
}
else
- return lambda_matrix_inverse_hard (mat, inv, n);
+ return lambda_matrix_inverse_hard (mat, inv, n, lambda_obstack);
}
/* If MAT is not a special case, invert it the hard way. */
static int
-lambda_matrix_inverse_hard (lambda_matrix mat, lambda_matrix inv, int n)
+lambda_matrix_inverse_hard (lambda_matrix mat, lambda_matrix inv, int n,
+ struct obstack * lambda_obstack)
{
lambda_vector row;
lambda_matrix temp;
int i, j;
int determinant;
- temp = lambda_matrix_new (n, n);
+ temp = lambda_matrix_new (n, n, lambda_obstack);
lambda_matrix_copy (mat, temp, n, n);
lambda_matrix_id (inv, n);
@@ -592,45 +580,6 @@ lambda_matrix_first_nz_vec (lambda_matrix mat, int rowsize, int colsize,
return rowsize;
}
-/* Calculate the projection of E sub k to the null space of B. */
-
-void
-lambda_matrix_project_to_null (lambda_matrix B, int rowsize,
- int colsize, int k, lambda_vector x)
-{
- lambda_matrix M1, M2, M3, I;
- int determinant;
-
- /* Compute c(I-B^T inv(B B^T) B) e sub k. */
-
- /* M1 is the transpose of B. */
- M1 = lambda_matrix_new (colsize, colsize);
- lambda_matrix_transpose (B, M1, rowsize, colsize);
-
- /* M2 = B * B^T */
- M2 = lambda_matrix_new (colsize, colsize);
- lambda_matrix_mult (B, M1, M2, rowsize, colsize, rowsize);
-
- /* M3 = inv(M2) */
- M3 = lambda_matrix_new (colsize, colsize);
- determinant = lambda_matrix_inverse (M2, M3, rowsize);
-
- /* M2 = B^T (inv(B B^T)) */
- lambda_matrix_mult (M1, M3, M2, colsize, rowsize, rowsize);
-
- /* M1 = B^T (inv(B B^T)) B */
- lambda_matrix_mult (M2, B, M1, colsize, rowsize, colsize);
- lambda_matrix_negate (M1, M1, colsize, colsize);
-
- I = lambda_matrix_new (colsize, colsize);
- lambda_matrix_id (I, colsize);
-
- lambda_matrix_add_mc (I, determinant, M1, 1, M2, colsize, colsize);
-
- lambda_matrix_get_column (M2, colsize, k - 1, x);
-
-}
-
/* Multiply a vector VEC by a matrix MAT.
MAT is an M*N matrix, and VEC is a vector with length N. The result
is stored in DEST which must be a vector of length M. */