diff options
Diffstat (limited to 'gcc/hwint.cc')
-rw-r--r-- | gcc/hwint.cc | 190 |
1 files changed, 190 insertions, 0 deletions
diff --git a/gcc/hwint.cc b/gcc/hwint.cc new file mode 100644 index 0000000..e53e0bf --- /dev/null +++ b/gcc/hwint.cc @@ -0,0 +1,190 @@ +/* Operations on HOST_WIDE_INT. + Copyright (C) 1987-2022 Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" + +#if GCC_VERSION < 3004 + +/* The functions clz_hwi, ctz_hwi, ffs_hwi, floor_log2, ceil_log2, + and exact_log2 are defined as inline functions in hwint.h + if GCC_VERSION >= 3004. + The definitions here are used for older versions of GCC and + non-GCC bootstrap compilers. */ + +/* Given X, an unsigned number, return the largest int Y such that 2**Y <= X. + If X is 0, return -1. */ + +int +floor_log2 (unsigned HOST_WIDE_INT x) +{ + int t = 0; + + if (x == 0) + return -1; + + if (HOST_BITS_PER_WIDE_INT > 64) + if (x >= HOST_WIDE_INT_1U << (t + 64)) + t += 64; + if (HOST_BITS_PER_WIDE_INT > 32) + if (x >= HOST_WIDE_INT_1U << (t + 32)) + t += 32; + if (x >= HOST_WIDE_INT_1U << (t + 16)) + t += 16; + if (x >= HOST_WIDE_INT_1U << (t + 8)) + t += 8; + if (x >= HOST_WIDE_INT_1U << (t + 4)) + t += 4; + if (x >= HOST_WIDE_INT_1U << (t + 2)) + t += 2; + if (x >= HOST_WIDE_INT_1U << (t + 1)) + t += 1; + + return t; +} + +/* Given X, an unsigned number, return the least Y such that 2**Y >= X. */ + +int +ceil_log2 (unsigned HOST_WIDE_INT x) +{ + return x == 0 ? 0 : floor_log2 (x - 1) + 1; +} + +/* Return the logarithm of X, base 2, considering X unsigned, + if X is a power of 2. Otherwise, returns -1. */ + +int +exact_log2 (unsigned HOST_WIDE_INT x) +{ + if (!pow2p_hwi (x)) + return -1; + return floor_log2 (x); +} + +/* Given X, an unsigned number, return the number of least significant bits + that are zero. When X == 0, the result is the word size. */ + +int +ctz_hwi (unsigned HOST_WIDE_INT x) +{ + return x ? floor_log2 (least_bit_hwi (x)) : HOST_BITS_PER_WIDE_INT; +} + +/* Similarly for most significant bits. */ + +int +clz_hwi (unsigned HOST_WIDE_INT x) +{ + return HOST_BITS_PER_WIDE_INT - 1 - floor_log2 (x); +} + +/* Similar to ctz_hwi, except that the least significant bit is numbered + starting from 1, and X == 0 yields 0. */ + +int +ffs_hwi (unsigned HOST_WIDE_INT x) +{ + return 1 + floor_log2 (least_bit_hwi (x)); +} + +/* Return the number of set bits in X. */ + +int +popcount_hwi (unsigned HOST_WIDE_INT x) +{ + int i, ret = 0; + size_t bits = sizeof (x) * CHAR_BIT; + + for (i = 0; i < bits; i += 1) + { + ret += x & 1; + x >>= 1; + } + + return ret; +} + +#endif /* GCC_VERSION < 3004 */ + + +/* Compute the greatest common divisor of two numbers A and B using + Euclid's algorithm. */ + +HOST_WIDE_INT +gcd (HOST_WIDE_INT a, HOST_WIDE_INT b) +{ + HOST_WIDE_INT x, y, z; + + x = abs_hwi (a); + y = abs_hwi (b); + + while (x > 0) + { + z = y % x; + y = x; + x = z; + } + + return y; +} + +/* For X and Y positive integers, return X multiplied by Y and check + that the result does not overflow. */ + +HOST_WIDE_INT +pos_mul_hwi (HOST_WIDE_INT x, HOST_WIDE_INT y) +{ + if (x != 0) + gcc_checking_assert ((HOST_WIDE_INT_MAX) / x >= y); + + return x * y; +} + +/* Return X multiplied by Y and check that the result does not + overflow. */ + +HOST_WIDE_INT +mul_hwi (HOST_WIDE_INT x, HOST_WIDE_INT y) +{ + gcc_checking_assert (x != HOST_WIDE_INT_MIN + && y != HOST_WIDE_INT_MIN); + + if (x >= 0) + { + if (y >= 0) + return pos_mul_hwi (x, y); + + return -pos_mul_hwi (x, -y); + } + + if (y >= 0) + return -pos_mul_hwi (-x, y); + + return pos_mul_hwi (-x, -y); +} + +/* Compute the least common multiple of two numbers A and B . */ + +HOST_WIDE_INT +least_common_multiple (HOST_WIDE_INT a, HOST_WIDE_INT b) +{ + return mul_hwi (abs_hwi (a) / gcd (a, b), abs_hwi (b)); +} |