aboutsummaryrefslogtreecommitdiff
path: root/gcc/hsa-regalloc.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/hsa-regalloc.c')
-rw-r--r--gcc/hsa-regalloc.c729
1 files changed, 0 insertions, 729 deletions
diff --git a/gcc/hsa-regalloc.c b/gcc/hsa-regalloc.c
deleted file mode 100644
index 7614efe..0000000
--- a/gcc/hsa-regalloc.c
+++ /dev/null
@@ -1,729 +0,0 @@
-/* HSAIL IL Register allocation and out-of-SSA.
- Copyright (C) 2013-2020 Free Software Foundation, Inc.
- Contributed by Michael Matz <matz@suse.de>
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 3, or (at your option)
-any later version.
-
-GCC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "is-a.h"
-#include "vec.h"
-#include "tree.h"
-#include "dominance.h"
-#include "basic-block.h"
-#include "function.h"
-#include "cfganal.h"
-#include "cfg.h"
-#include "bitmap.h"
-#include "dumpfile.h"
-#include "cgraph.h"
-#include "print-tree.h"
-#include "cfghooks.h"
-#include "alloc-pool.h"
-#include "symbol-summary.h"
-#include "hsa-common.h"
-
-
-/* Process a PHI node PHI of basic block BB as a part of naive out-f-ssa. */
-
-static void
-naive_process_phi (hsa_insn_phi *phi, const vec<edge> &predecessors)
-{
- unsigned count = phi->operand_count ();
- for (unsigned i = 0; i < count; i++)
- {
- gcc_checking_assert (phi->get_op (i));
- hsa_op_base *op = phi->get_op (i);
- hsa_bb *hbb;
- edge e;
-
- if (!op)
- break;
-
- e = predecessors[i];
- if (single_succ_p (e->src))
- hbb = hsa_bb_for_bb (e->src);
- else
- {
- basic_block old_dest = e->dest;
- hbb = hsa_init_new_bb (split_edge (e));
-
- /* If switch insn used this edge, fix jump table. */
- hsa_bb *source = hsa_bb_for_bb (e->src);
- hsa_insn_sbr *sbr;
- if (source->m_last_insn
- && (sbr = dyn_cast <hsa_insn_sbr *> (source->m_last_insn)))
- sbr->replace_all_labels (old_dest, hbb->m_bb);
- }
-
- hsa_build_append_simple_mov (phi->m_dest, op, hbb);
- }
-}
-
-/* Naive out-of SSA. */
-
-static void
-naive_outof_ssa (void)
-{
- basic_block bb;
-
- hsa_cfun->m_in_ssa = false;
-
- FOR_ALL_BB_FN (bb, cfun)
- {
- hsa_bb *hbb = hsa_bb_for_bb (bb);
- hsa_insn_phi *phi;
-
- /* naive_process_phi can call split_edge on an incoming edge which order if
- the incoming edges to the basic block and thus make it inconsistent with
- the ordering of PHI arguments, so we collect them in advance. */
- auto_vec<edge, 8> predecessors;
- unsigned pred_count = EDGE_COUNT (bb->preds);
- for (unsigned i = 0; i < pred_count; i++)
- predecessors.safe_push (EDGE_PRED (bb, i));
-
- for (phi = hbb->m_first_phi;
- phi;
- phi = phi->m_next ? as_a <hsa_insn_phi *> (phi->m_next) : NULL)
- naive_process_phi (phi, predecessors);
-
- /* Zap PHI nodes, they will be deallocated when everything else will. */
- hbb->m_first_phi = NULL;
- hbb->m_last_phi = NULL;
- }
-}
-
-/* Return register class number for the given HSA TYPE. 0 means the 'c' one
- bit register class, 1 means 's' 32 bit class, 2 stands for 'd' 64 bit class
- and 3 for 'q' 128 bit class. */
-
-static int
-m_reg_class_for_type (BrigType16_t type)
-{
- switch (type)
- {
- case BRIG_TYPE_B1:
- return 0;
-
- case BRIG_TYPE_U8:
- case BRIG_TYPE_U16:
- case BRIG_TYPE_U32:
- case BRIG_TYPE_S8:
- case BRIG_TYPE_S16:
- case BRIG_TYPE_S32:
- case BRIG_TYPE_F16:
- case BRIG_TYPE_F32:
- case BRIG_TYPE_B8:
- case BRIG_TYPE_B16:
- case BRIG_TYPE_B32:
- case BRIG_TYPE_U8X4:
- case BRIG_TYPE_S8X4:
- case BRIG_TYPE_U16X2:
- case BRIG_TYPE_S16X2:
- case BRIG_TYPE_F16X2:
- return 1;
-
- case BRIG_TYPE_U64:
- case BRIG_TYPE_S64:
- case BRIG_TYPE_F64:
- case BRIG_TYPE_B64:
- case BRIG_TYPE_U8X8:
- case BRIG_TYPE_S8X8:
- case BRIG_TYPE_U16X4:
- case BRIG_TYPE_S16X4:
- case BRIG_TYPE_F16X4:
- case BRIG_TYPE_U32X2:
- case BRIG_TYPE_S32X2:
- case BRIG_TYPE_F32X2:
- return 2;
-
- case BRIG_TYPE_B128:
- case BRIG_TYPE_U8X16:
- case BRIG_TYPE_S8X16:
- case BRIG_TYPE_U16X8:
- case BRIG_TYPE_S16X8:
- case BRIG_TYPE_F16X8:
- case BRIG_TYPE_U32X4:
- case BRIG_TYPE_U64X2:
- case BRIG_TYPE_S32X4:
- case BRIG_TYPE_S64X2:
- case BRIG_TYPE_F32X4:
- case BRIG_TYPE_F64X2:
- return 3;
-
- default:
- gcc_unreachable ();
- }
-}
-
-/* If the Ith operands of INSN is or contains a register (in an address),
- return the address of that register operand. If not return NULL. */
-
-static hsa_op_reg **
-insn_reg_addr (hsa_insn_basic *insn, int i)
-{
- hsa_op_base *op = insn->get_op (i);
- if (!op)
- return NULL;
- hsa_op_reg *reg = dyn_cast <hsa_op_reg *> (op);
- if (reg)
- return (hsa_op_reg **) insn->get_op_addr (i);
- hsa_op_address *addr = dyn_cast <hsa_op_address *> (op);
- if (addr && addr->m_reg)
- return &addr->m_reg;
- return NULL;
-}
-
-struct m_reg_class_desc
-{
- unsigned next_avail, max_num;
- unsigned used_num, max_used;
- uint64_t used[2];
- char cl_char;
-};
-
-/* Rewrite the instructions in BB to observe spilled live ranges.
- CLASSES is the global register class state. */
-
-static void
-rewrite_code_bb (basic_block bb, struct m_reg_class_desc *classes)
-{
- hsa_bb *hbb = hsa_bb_for_bb (bb);
- hsa_insn_basic *insn, *next_insn;
-
- for (insn = hbb->m_first_insn; insn; insn = next_insn)
- {
- next_insn = insn->m_next;
- unsigned count = insn->operand_count ();
- for (unsigned i = 0; i < count; i++)
- {
- gcc_checking_assert (insn->get_op (i));
- hsa_op_reg **regaddr = insn_reg_addr (insn, i);
-
- if (regaddr)
- {
- hsa_op_reg *reg = *regaddr;
- if (reg->m_reg_class)
- continue;
- gcc_assert (reg->m_spill_sym);
-
- int cl = m_reg_class_for_type (reg->m_type);
- hsa_op_reg *tmp, *tmp2;
- if (insn->op_output_p (i))
- tmp = hsa_spill_out (insn, reg, &tmp2);
- else
- tmp = hsa_spill_in (insn, reg, &tmp2);
-
- *regaddr = tmp;
-
- tmp->m_reg_class = classes[cl].cl_char;
- tmp->m_hard_num = (char) (classes[cl].max_num + i);
- if (tmp2)
- {
- gcc_assert (cl == 0);
- tmp2->m_reg_class = classes[1].cl_char;
- tmp2->m_hard_num = (char) (classes[1].max_num + i);
- }
- }
- }
- }
-}
-
-/* Dump current function to dump file F, with info specific
- to register allocation. */
-
-void
-dump_hsa_cfun_regalloc (FILE *f)
-{
- basic_block bb;
-
- fprintf (f, "\nHSAIL IL for %s\n", hsa_cfun->m_name);
-
- FOR_ALL_BB_FN (bb, cfun)
- {
- hsa_bb *hbb = (class hsa_bb *) bb->aux;
- bitmap_print (dump_file, hbb->m_livein, "m_livein ", "\n");
- dump_hsa_bb (f, hbb);
- bitmap_print (dump_file, hbb->m_liveout, "m_liveout ", "\n");
- }
-}
-
-/* Given the global register allocation state CLASSES and a
- register REG, try to give it a hardware register. If successful,
- store that hardreg in REG and return it, otherwise return -1.
- Also changes CLASSES to accommodate for the allocated register. */
-
-static int
-try_alloc_reg (struct m_reg_class_desc *classes, hsa_op_reg *reg)
-{
- int cl = m_reg_class_for_type (reg->m_type);
- int ret = -1;
- if (classes[1].used_num + classes[2].used_num * 2 + classes[3].used_num * 4
- >= 128 - 5)
- return -1;
- if (classes[cl].used_num < classes[cl].max_num)
- {
- unsigned int i;
- classes[cl].used_num++;
- if (classes[cl].used_num > classes[cl].max_used)
- classes[cl].max_used = classes[cl].used_num;
- for (i = 0; i < classes[cl].used_num; i++)
- if (! (classes[cl].used[i / 64] & (((uint64_t)1) << (i & 63))))
- break;
- ret = i;
- classes[cl].used[i / 64] |= (((uint64_t)1) << (i & 63));
- reg->m_reg_class = classes[cl].cl_char;
- reg->m_hard_num = i;
- }
- return ret;
-}
-
-/* Free up hardregs used by REG, into allocation state CLASSES. */
-
-static void
-free_reg (struct m_reg_class_desc *classes, hsa_op_reg *reg)
-{
- int cl = m_reg_class_for_type (reg->m_type);
- int ret = reg->m_hard_num;
- gcc_assert (reg->m_reg_class == classes[cl].cl_char);
- classes[cl].used_num--;
- classes[cl].used[ret / 64] &= ~(((uint64_t)1) << (ret & 63));
-}
-
-/* Note that the live range for REG ends at least at END. */
-
-static void
-note_lr_end (hsa_op_reg *reg, int end)
-{
- if (reg->m_lr_end < end)
- reg->m_lr_end = end;
-}
-
-/* Note that the live range for REG starts at least at BEGIN. */
-
-static void
-note_lr_begin (hsa_op_reg *reg, int begin)
-{
- if (reg->m_lr_begin > begin)
- reg->m_lr_begin = begin;
-}
-
-/* Given two registers A and B, return -1, 0 or 1 if A's live range
- starts before, at or after B's live range. */
-
-static int
-cmp_begin (const void *a, const void *b)
-{
- const hsa_op_reg * const *rega = (const hsa_op_reg * const *)a;
- const hsa_op_reg * const *regb = (const hsa_op_reg * const *)b;
- int ret;
- if (rega == regb)
- return 0;
- ret = (*rega)->m_lr_begin - (*regb)->m_lr_begin;
- if (ret)
- return ret;
- return ((*rega)->m_order - (*regb)->m_order);
-}
-
-/* Given two registers REGA and REGB, return true if REGA's
- live range ends after REGB's. This results in a sorting order
- with earlier end points at the end. */
-
-static bool
-cmp_end (hsa_op_reg * const &rega, hsa_op_reg * const &regb)
-{
- int ret;
- if (rega == regb)
- return false;
- ret = (regb)->m_lr_end - (rega)->m_lr_end;
- if (ret)
- return ret < 0;
- return (((regb)->m_order - (rega)->m_order)) < 0;
-}
-
-/* Expire all old intervals in ACTIVE (a per-regclass vector),
- that is, those that end before the interval REG starts. Give
- back resources freed so into the state CLASSES. */
-
-static void
-expire_old_intervals (hsa_op_reg *reg, vec<hsa_op_reg*> *active,
- struct m_reg_class_desc *classes)
-{
- for (int i = 0; i < 4; i++)
- while (!active[i].is_empty ())
- {
- hsa_op_reg *a = active[i].pop ();
- if (a->m_lr_end > reg->m_lr_begin)
- {
- active[i].quick_push (a);
- break;
- }
- free_reg (classes, a);
- }
-}
-
-/* The interval REG didn't get a hardreg. Spill it or one of those
- from ACTIVE (if the latter, then REG will become allocated to the
- hardreg that formerly was used by it). */
-
-static void
-spill_at_interval (hsa_op_reg *reg, vec<hsa_op_reg*> *active)
-{
- int cl = m_reg_class_for_type (reg->m_type);
- gcc_assert (!active[cl].is_empty ());
- hsa_op_reg *cand = active[cl][0];
- if (cand->m_lr_end > reg->m_lr_end)
- {
- reg->m_reg_class = cand->m_reg_class;
- reg->m_hard_num = cand->m_hard_num;
- active[cl].ordered_remove (0);
- unsigned place = active[cl].lower_bound (reg, cmp_end);
- active[cl].quick_insert (place, reg);
- }
- else
- cand = reg;
-
- gcc_assert (!cand->m_spill_sym);
- BrigType16_t type = cand->m_type;
- if (type == BRIG_TYPE_B1)
- type = BRIG_TYPE_U8;
- cand->m_reg_class = 0;
- cand->m_spill_sym = hsa_get_spill_symbol (type);
- cand->m_spill_sym->m_name_number = cand->m_order;
-}
-
-/* Given the global register state CLASSES allocate all HSA virtual
- registers either to hardregs or to a spill symbol. */
-
-static void
-linear_scan_regalloc (struct m_reg_class_desc *classes)
-{
- /* Compute liveness. */
- bool changed;
- int i, n;
- int insn_order;
- int *bbs = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
- bitmap work = BITMAP_ALLOC (NULL);
- vec<hsa_op_reg*> ind2reg = vNULL;
- vec<hsa_op_reg*> active[4] = {vNULL, vNULL, vNULL, vNULL};
- hsa_insn_basic *m_last_insn;
-
- /* We will need the reverse post order for linearization,
- and the post order for liveness analysis, which is the same
- backward. */
- n = pre_and_rev_post_order_compute (NULL, bbs, true);
- ind2reg.safe_grow_cleared (hsa_cfun->m_reg_count);
-
- /* Give all instructions a linearized number, at the same time
- build a mapping from register index to register. */
- insn_order = 1;
- for (i = 0; i < n; i++)
- {
- basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bbs[i]);
- hsa_bb *hbb = hsa_bb_for_bb (bb);
- hsa_insn_basic *insn;
- for (insn = hbb->m_first_insn; insn; insn = insn->m_next)
- {
- unsigned opi;
- insn->m_number = insn_order++;
- for (opi = 0; opi < insn->operand_count (); opi++)
- {
- gcc_checking_assert (insn->get_op (opi));
- hsa_op_reg **regaddr = insn_reg_addr (insn, opi);
- if (regaddr)
- ind2reg[(*regaddr)->m_order] = *regaddr;
- }
- }
- }
-
- /* Initialize all live ranges to [after-end, 0). */
- for (i = 0; i < hsa_cfun->m_reg_count; i++)
- if (ind2reg[i])
- ind2reg[i]->m_lr_begin = insn_order, ind2reg[i]->m_lr_end = 0;
-
- /* Classic liveness analysis, as long as something changes:
- m_liveout is union (m_livein of successors)
- m_livein is m_liveout minus defs plus uses. */
- do
- {
- changed = false;
- for (i = n - 1; i >= 0; i--)
- {
- edge e;
- edge_iterator ei;
- basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bbs[i]);
- hsa_bb *hbb = hsa_bb_for_bb (bb);
-
- /* Union of successors m_livein (or empty if none). */
- bool first = true;
- FOR_EACH_EDGE (e, ei, bb->succs)
- if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
- {
- hsa_bb *succ = hsa_bb_for_bb (e->dest);
- if (first)
- {
- bitmap_copy (work, succ->m_livein);
- first = false;
- }
- else
- bitmap_ior_into (work, succ->m_livein);
- }
- if (first)
- bitmap_clear (work);
-
- bitmap_copy (hbb->m_liveout, work);
-
- /* Remove defs, include uses in a backward insn walk. */
- hsa_insn_basic *insn;
- for (insn = hbb->m_last_insn; insn; insn = insn->m_prev)
- {
- unsigned opi;
- unsigned ndefs = insn->input_count ();
- for (opi = 0; opi < ndefs && insn->get_op (opi); opi++)
- {
- gcc_checking_assert (insn->get_op (opi));
- hsa_op_reg **regaddr = insn_reg_addr (insn, opi);
- if (regaddr)
- bitmap_clear_bit (work, (*regaddr)->m_order);
- }
- for (; opi < insn->operand_count (); opi++)
- {
- gcc_checking_assert (insn->get_op (opi));
- hsa_op_reg **regaddr = insn_reg_addr (insn, opi);
- if (regaddr)
- bitmap_set_bit (work, (*regaddr)->m_order);
- }
- }
-
- /* Note if that changed something. */
- if (bitmap_ior_into (hbb->m_livein, work))
- changed = true;
- }
- }
- while (changed);
-
- /* Make one pass through all instructions in linear order,
- noting and merging possible live range start and end points. */
- m_last_insn = NULL;
- for (i = n - 1; i >= 0; i--)
- {
- basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bbs[i]);
- hsa_bb *hbb = hsa_bb_for_bb (bb);
- hsa_insn_basic *insn;
- int after_end_number;
- unsigned bit;
- bitmap_iterator bi;
-
- if (m_last_insn)
- after_end_number = m_last_insn->m_number;
- else
- after_end_number = insn_order;
- /* Everything live-out in this BB has at least an end point
- after us. */
- EXECUTE_IF_SET_IN_BITMAP (hbb->m_liveout, 0, bit, bi)
- note_lr_end (ind2reg[bit], after_end_number);
-
- for (insn = hbb->m_last_insn; insn; insn = insn->m_prev)
- {
- unsigned opi;
- unsigned ndefs = insn->input_count ();
- for (opi = 0; opi < insn->operand_count (); opi++)
- {
- gcc_checking_assert (insn->get_op (opi));
- hsa_op_reg **regaddr = insn_reg_addr (insn, opi);
- if (regaddr)
- {
- hsa_op_reg *reg = *regaddr;
- if (opi < ndefs)
- note_lr_begin (reg, insn->m_number);
- else
- note_lr_end (reg, insn->m_number);
- }
- }
- }
-
- /* Everything live-in in this BB has a start point before
- our first insn. */
- int before_start_number;
- if (hbb->m_first_insn)
- before_start_number = hbb->m_first_insn->m_number;
- else
- before_start_number = after_end_number;
- before_start_number--;
- EXECUTE_IF_SET_IN_BITMAP (hbb->m_livein, 0, bit, bi)
- note_lr_begin (ind2reg[bit], before_start_number);
-
- if (hbb->m_first_insn)
- m_last_insn = hbb->m_first_insn;
- }
-
- for (i = 0; i < hsa_cfun->m_reg_count; i++)
- if (ind2reg[i])
- {
- /* All regs that have still their start at after all code actually
- are defined at the start of the routine (prologue). */
- if (ind2reg[i]->m_lr_begin == insn_order)
- ind2reg[i]->m_lr_begin = 0;
- /* All regs that have no use but a def will have lr_end == 0,
- they are actually live from def until after the insn they are
- defined in. */
- if (ind2reg[i]->m_lr_end == 0)
- ind2reg[i]->m_lr_end = ind2reg[i]->m_lr_begin + 1;
- }
-
- /* Sort all intervals by increasing start point. */
- gcc_assert (ind2reg.length () == (size_t) hsa_cfun->m_reg_count);
-
- if (flag_checking)
- for (unsigned i = 0; i < ind2reg.length (); i++)
- gcc_assert (ind2reg[i]);
-
- ind2reg.qsort (cmp_begin);
- for (i = 0; i < 4; i++)
- active[i].reserve_exact (hsa_cfun->m_reg_count);
-
- /* Now comes the linear scan allocation. */
- for (i = 0; i < hsa_cfun->m_reg_count; i++)
- {
- hsa_op_reg *reg = ind2reg[i];
- if (!reg)
- continue;
- expire_old_intervals (reg, active, classes);
- int cl = m_reg_class_for_type (reg->m_type);
- if (try_alloc_reg (classes, reg) >= 0)
- {
- unsigned place = active[cl].lower_bound (reg, cmp_end);
- active[cl].quick_insert (place, reg);
- }
- else
- spill_at_interval (reg, active);
-
- /* Some interesting dumping as we go. */
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, " reg%d: [%5d, %5d)->",
- reg->m_order, reg->m_lr_begin, reg->m_lr_end);
- if (reg->m_reg_class)
- fprintf (dump_file, "$%c%i", reg->m_reg_class, reg->m_hard_num);
- else
- fprintf (dump_file, "[%%__%s_%i]",
- hsa_seg_name (reg->m_spill_sym->m_segment),
- reg->m_spill_sym->m_name_number);
- for (int cl = 0; cl < 4; cl++)
- {
- bool first = true;
- hsa_op_reg *r;
- fprintf (dump_file, " {");
- for (int j = 0; active[cl].iterate (j, &r); j++)
- if (first)
- {
- fprintf (dump_file, "%d", r->m_order);
- first = false;
- }
- else
- fprintf (dump_file, ", %d", r->m_order);
- fprintf (dump_file, "}");
- }
- fprintf (dump_file, "\n");
- }
- }
-
- BITMAP_FREE (work);
- free (bbs);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "------- After liveness: -------\n");
- dump_hsa_cfun_regalloc (dump_file);
- fprintf (dump_file, " ----- Intervals:\n");
- for (i = 0; i < hsa_cfun->m_reg_count; i++)
- {
- hsa_op_reg *reg = ind2reg[i];
- if (!reg)
- continue;
- fprintf (dump_file, " reg%d: [%5d, %5d)->", reg->m_order,
- reg->m_lr_begin, reg->m_lr_end);
- if (reg->m_reg_class)
- fprintf (dump_file, "$%c%i\n", reg->m_reg_class, reg->m_hard_num);
- else
- fprintf (dump_file, "[%%__%s_%i]\n",
- hsa_seg_name (reg->m_spill_sym->m_segment),
- reg->m_spill_sym->m_name_number);
- }
- }
-
- for (i = 0; i < 4; i++)
- active[i].release ();
- ind2reg.release ();
-}
-
-/* Entry point for register allocation. */
-
-static void
-regalloc (void)
-{
- basic_block bb;
- m_reg_class_desc classes[4];
-
- /* If there are no registers used in the function, exit right away. */
- if (hsa_cfun->m_reg_count == 0)
- return;
-
- memset (classes, 0, sizeof (classes));
- classes[0].next_avail = 0;
- classes[0].max_num = 7;
- classes[0].cl_char = 'c';
- classes[1].cl_char = 's';
- classes[2].cl_char = 'd';
- classes[3].cl_char = 'q';
-
- for (int i = 1; i < 4; i++)
- {
- classes[i].next_avail = 0;
- classes[i].max_num = 20;
- }
-
- linear_scan_regalloc (classes);
-
- FOR_ALL_BB_FN (bb, cfun)
- rewrite_code_bb (bb, classes);
-}
-
-/* Out of SSA and register allocation on HSAIL IL. */
-
-void
-hsa_regalloc (void)
-{
- hsa_cfun->update_dominance ();
- naive_outof_ssa ();
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "------- After out-of-SSA: -------\n");
- dump_hsa_cfun (dump_file);
- }
-
- regalloc ();
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "------- After register allocation: -------\n");
- dump_hsa_cfun (dump_file);
- }
-}