aboutsummaryrefslogtreecommitdiff
path: root/gcc/gimple-range.cc
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/gimple-range.cc')
-rw-r--r--gcc/gimple-range.cc1309
1 files changed, 1309 insertions, 0 deletions
diff --git a/gcc/gimple-range.cc b/gcc/gimple-range.cc
new file mode 100644
index 0000000..e6cbb3a
--- /dev/null
+++ b/gcc/gimple-range.cc
@@ -0,0 +1,1309 @@
+/* Code for GIMPLE range related routines.
+ Copyright (C) 2019-2020 Free Software Foundation, Inc.
+ Contributed by Andrew MacLeod <amacleod@redhat.com>
+ and Aldy Hernandez <aldyh@redhat.com>.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 3, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "backend.h"
+#include "insn-codes.h"
+#include "rtl.h"
+#include "tree.h"
+#include "gimple.h"
+#include "ssa.h"
+#include "gimple-pretty-print.h"
+#include "gimple-iterator.h"
+#include "optabs-tree.h"
+#include "gimple-fold.h"
+#include "tree-cfg.h"
+#include "fold-const.h"
+#include "tree-cfg.h"
+#include "wide-int.h"
+#include "fold-const.h"
+#include "case-cfn-macros.h"
+#include "omp-general.h"
+#include "cfgloop.h"
+#include "tree-ssa-loop.h"
+#include "tree-scalar-evolution.h"
+#include "dbgcnt.h"
+#include "alloc-pool.h"
+#include "vr-values.h"
+#include "gimple-range.h"
+
+
+// Adjust the range for a pointer difference where the operands came
+// from a memchr.
+//
+// This notices the following sequence:
+//
+// def = __builtin_memchr (arg, 0, sz)
+// n = def - arg
+//
+// The range for N can be narrowed to [0, PTRDIFF_MAX - 1].
+
+static void
+adjust_pointer_diff_expr (irange &res, const gimple *diff_stmt)
+{
+ tree op0 = gimple_assign_rhs1 (diff_stmt);
+ tree op1 = gimple_assign_rhs2 (diff_stmt);
+ tree op0_ptype = TREE_TYPE (TREE_TYPE (op0));
+ tree op1_ptype = TREE_TYPE (TREE_TYPE (op1));
+ gimple *call;
+
+ if (TREE_CODE (op0) == SSA_NAME
+ && TREE_CODE (op1) == SSA_NAME
+ && (call = SSA_NAME_DEF_STMT (op0))
+ && is_gimple_call (call)
+ && gimple_call_builtin_p (call, BUILT_IN_MEMCHR)
+ && TYPE_MODE (op0_ptype) == TYPE_MODE (char_type_node)
+ && TYPE_PRECISION (op0_ptype) == TYPE_PRECISION (char_type_node)
+ && TYPE_MODE (op1_ptype) == TYPE_MODE (char_type_node)
+ && TYPE_PRECISION (op1_ptype) == TYPE_PRECISION (char_type_node)
+ && gimple_call_builtin_p (call, BUILT_IN_MEMCHR)
+ && vrp_operand_equal_p (op1, gimple_call_arg (call, 0))
+ && integer_zerop (gimple_call_arg (call, 1)))
+ {
+ tree max = vrp_val_max (ptrdiff_type_node);
+ wide_int wmax = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
+ tree expr_type = gimple_expr_type (diff_stmt);
+ tree range_min = build_zero_cst (expr_type);
+ tree range_max = wide_int_to_tree (expr_type, wmax - 1);
+ int_range<1> r (range_min, range_max);
+ res.intersect (r);
+ }
+}
+
+// This function looks for situations when walking the use/def chains
+// may provide additonal contextual range information not exposed on
+// this statement. Like knowing the IMAGPART return value from a
+// builtin function is a boolean result.
+
+// We should rework how we're called, as we have an op_unknown entry
+// for IMAGPART_EXPR and POINTER_DIFF_EXPR in range-ops just so this
+// function gets called.
+
+static void
+gimple_range_adjustment (irange &res, const gimple *stmt)
+{
+ switch (gimple_expr_code (stmt))
+ {
+ case POINTER_DIFF_EXPR:
+ adjust_pointer_diff_expr (res, stmt);
+ return;
+
+ case IMAGPART_EXPR:
+ {
+ tree name = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
+ if (TREE_CODE (name) == SSA_NAME)
+ {
+ gimple *def_stmt = SSA_NAME_DEF_STMT (name);
+ if (def_stmt && is_gimple_call (def_stmt)
+ && gimple_call_internal_p (def_stmt))
+ {
+ switch (gimple_call_internal_fn (def_stmt))
+ {
+ case IFN_ADD_OVERFLOW:
+ case IFN_SUB_OVERFLOW:
+ case IFN_MUL_OVERFLOW:
+ case IFN_ATOMIC_COMPARE_EXCHANGE:
+ {
+ int_range<1> r;
+ r.set_varying (boolean_type_node);
+ tree type = TREE_TYPE (gimple_assign_lhs (stmt));
+ range_cast (r, type);
+ res.intersect (r);
+ }
+ default:
+ break;
+ }
+ }
+ }
+ break;
+ }
+
+ default:
+ break;
+ }
+}
+
+// ------------------------------------------------------------------------
+
+// This function will calculate the "constant" range on edge E from
+// switch SW returning it in R, and return the switch statement
+// itself. This is currently not very efficent as the way we
+// represent switches in GIMPLE does not map well to this calculation.
+
+static gimple *
+calc_range_for_switch_on_edge (irange &r, gswitch *sw, edge e)
+{
+ unsigned x, lim;
+ lim = gimple_switch_num_labels (sw);
+ tree type = TREE_TYPE (gimple_switch_index (sw));
+
+ // ADA and FORTRAN currently have cases where the index is 64 bits
+ // and the case arguments are 32 bit, causing a trap when we create
+ // a case_range. Until this is resolved
+ // (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87798) punt on
+ // these switches. Furthermore, cfamily fails during a bootstrap
+ // due to a signed index and unsigned cases. So punting unless
+ // types_compatible_p () for now.
+ tree case_type = TREE_TYPE (CASE_LOW (gimple_switch_label (sw, 1)));
+ if (lim > 1 && !types_compatible_p (type, case_type))
+ return NULL;
+
+ edge default_edge = gimple_switch_default_edge (cfun, sw);
+ if (e != default_edge)
+ {
+ r.set_undefined ();
+ // Union all the ranges for each switch edge, ignoring the
+ // default edge.
+ for (x = 1; x < lim; x++)
+ {
+ if (gimple_switch_edge (cfun, sw, x) != e)
+ continue;
+ tree low = CASE_LOW (gimple_switch_label (sw, x));
+ tree high = CASE_HIGH (gimple_switch_label (sw, x));
+ if (!high)
+ high = low;
+ int_range<1> case_range (low, high);
+ r.union_ (case_range);
+ }
+ }
+ else
+ {
+ r.set_varying (type);
+ // Loop through all the switches edges, ignoring the default
+ // edge, while intersecting the ranges not covered by the case.
+ for (x = 1; x < lim; x++)
+ {
+ // Some other edge could still point to the default edge
+ // destination. Ignore it.
+ if (gimple_switch_edge (cfun, sw, x) == default_edge)
+ continue;
+ tree low = CASE_LOW (gimple_switch_label (sw, x));
+ tree high = CASE_HIGH (gimple_switch_label (sw, x));
+ if (!high)
+ high = low;
+ int_range<1> case_range (low, high, VR_ANTI_RANGE);
+ r.intersect (case_range);
+ }
+ }
+ return sw;
+}
+
+
+// If there is a range control statment at the end of block BB, return it.
+
+gimple_stmt_iterator
+gsi_outgoing_range_stmt (basic_block bb)
+{
+ gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
+ if (!gsi_end_p (gsi))
+ {
+ gimple *s = gsi_stmt (gsi);
+ if (is_a<gcond *> (s) || is_a<gswitch *> (s))
+ return gsi;
+ }
+ return gsi_none ();
+}
+
+
+// If there is a range control statment at the end of block BB, return it.
+
+gimple *
+gimple_outgoing_range_stmt_p (basic_block bb)
+{
+ // This will return NULL if there is not a branch statement.
+ return gsi_stmt (gsi_outgoing_range_stmt (bb));
+}
+
+
+// Calculate the range forced on on edge E by control flow, return it
+// in R. Return the statment which defines the range, otherwise
+// return NULL
+
+gimple *
+gimple_outgoing_edge_range_p (irange &r, edge e)
+{
+ // Determine if there is an outgoing edge.
+ gimple *s = gimple_outgoing_range_stmt_p (e->src);
+ if (!s)
+ return NULL;
+
+ if (is_a<gcond *> (s))
+ {
+ if (e->flags & EDGE_TRUE_VALUE)
+ r = int_range<1> (boolean_true_node, boolean_true_node);
+ else if (e->flags & EDGE_FALSE_VALUE)
+ r = int_range<1> (boolean_false_node, boolean_false_node);
+ else
+ gcc_unreachable ();
+ return s;
+ }
+
+ gcc_checking_assert (is_a<gswitch *> (s));
+ gswitch *sw = as_a<gswitch *> (s);
+ tree type = TREE_TYPE (gimple_switch_index (sw));
+
+ if (!irange::supports_type_p (type))
+ return NULL;
+
+ return calc_range_for_switch_on_edge (r, sw, e);
+}
+
+
+// Return a range in R for the tree EXPR. Return true if a range is
+// representable.
+
+bool
+get_tree_range (irange &r, tree expr)
+{
+ tree type;
+ if (TYPE_P (expr))
+ type = expr;
+ else
+ type = TREE_TYPE (expr);
+
+ // Return false if the type isn't suported.
+ if (!irange::supports_type_p (type))
+ return false;
+
+ switch (TREE_CODE (expr))
+ {
+ case INTEGER_CST:
+ r.set (expr, expr);
+ return true;
+
+ case SSA_NAME:
+ r = gimple_range_global (expr);
+ return true;
+
+ case ADDR_EXPR:
+ {
+ // Handle &var which can show up in phi arguments.
+ bool ov;
+ if (tree_single_nonzero_warnv_p (expr, &ov))
+ {
+ r = range_nonzero (type);
+ return true;
+ }
+ break;
+ }
+
+ default:
+ break;
+ }
+ r.set_varying (type);
+ return true;
+}
+
+// Fold this unary statement using R1 as operand1's range, returning
+// the result in RES. Return false if the operation fails.
+
+bool
+gimple_range_fold (irange &res, const gimple *stmt, const irange &r1)
+{
+ gcc_checking_assert (gimple_range_handler (stmt));
+
+ tree type = gimple_expr_type (stmt);
+ // Unary SSA operations require the LHS type as the second range.
+ int_range<1> r2 (type);
+
+ return gimple_range_fold (res, stmt, r1, r2);
+}
+
+
+// Fold this binary statement using R1 and R2 as the operands ranges,
+// returning the result in RES. Return false if the operation fails.
+
+bool
+gimple_range_fold (irange &res, const gimple *stmt,
+ const irange &r1, const irange &r2)
+{
+ gcc_checking_assert (gimple_range_handler (stmt));
+
+ gimple_range_handler (stmt)->fold_range (res, gimple_expr_type (stmt),
+ r1, r2);
+
+ // If there are any gimple lookups, do those now.
+ gimple_range_adjustment (res, stmt);
+ return true;
+}
+
+// Return the base of the RHS of an assignment.
+
+tree
+gimple_range_base_of_assignment (const gimple *stmt)
+{
+ gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN);
+ tree op1 = gimple_assign_rhs1 (stmt);
+ if (gimple_assign_rhs_code (stmt) == ADDR_EXPR)
+ return get_base_address (TREE_OPERAND (op1, 0));
+ return op1;
+}
+
+// Return the first operand of this statement if it is a valid operand
+// supported by ranges, otherwise return NULL_TREE. Special case is
+// &(SSA_NAME expr), return the SSA_NAME instead of the ADDR expr.
+
+tree
+gimple_range_operand1 (const gimple *stmt)
+{
+ gcc_checking_assert (gimple_range_handler (stmt));
+
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_COND:
+ return gimple_cond_lhs (stmt);
+ case GIMPLE_ASSIGN:
+ {
+ tree base = gimple_range_base_of_assignment (stmt);
+ if (base && TREE_CODE (base) == MEM_REF)
+ {
+ // If the base address is an SSA_NAME, we return it
+ // here. This allows processing of the range of that
+ // name, while the rest of the expression is simply
+ // ignored. The code in range_ops will see the
+ // ADDR_EXPR and do the right thing.
+ tree ssa = TREE_OPERAND (base, 0);
+ if (TREE_CODE (ssa) == SSA_NAME)
+ return ssa;
+ }
+ return base;
+ }
+ default:
+ break;
+ }
+ return NULL;
+}
+
+
+// Return the second operand of statement STMT, otherwise return NULL_TREE.
+
+tree
+gimple_range_operand2 (const gimple *stmt)
+{
+ gcc_checking_assert (gimple_range_handler (stmt));
+
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_COND:
+ return gimple_cond_rhs (stmt);
+ case GIMPLE_ASSIGN:
+ if (gimple_num_ops (stmt) >= 3)
+ return gimple_assign_rhs2 (stmt);
+ default:
+ break;
+ }
+ return NULL_TREE;
+}
+
+
+
+// Calculate what we can determine of the range of this unary
+// statement's operand if the lhs of the expression has the range
+// LHS_RANGE. Return false if nothing can be determined.
+
+bool
+gimple_range_calc_op1 (irange &r, const gimple *stmt, const irange &lhs_range)
+{
+ gcc_checking_assert (gimple_num_ops (stmt) < 3);
+ // An empty range is viral, so return an empty range.
+
+ tree type = TREE_TYPE (gimple_range_operand1 (stmt));
+ if (lhs_range.undefined_p ())
+ {
+ r.set_undefined ();
+ return true;
+ }
+ // Unary operations require the type of the first operand in the
+ // second range position.
+ int_range<1> type_range (type);
+ return gimple_range_handler (stmt)->op1_range (r, type, lhs_range,
+ type_range);
+}
+
+
+// Calculate what we can determine of the range of this statement's
+// first operand if the lhs of the expression has the range LHS_RANGE
+// and the second operand has the range OP2_RANGE. Return false if
+// nothing can be determined.
+
+bool
+gimple_range_calc_op1 (irange &r, const gimple *stmt,
+ const irange &lhs_range, const irange &op2_range)
+{
+ // Unary operation are allowed to pass a range in for second operand
+ // as there are often additional restrictions beyond the type which
+ // can be imposed. See operator_cast::op1_range.()
+ tree type = TREE_TYPE (gimple_range_operand1 (stmt));
+ // An empty range is viral, so return an empty range.
+ if (op2_range.undefined_p () || lhs_range.undefined_p ())
+ {
+ r.set_undefined ();
+ return true;
+ }
+ return gimple_range_handler (stmt)->op1_range (r, type, lhs_range,
+ op2_range);
+}
+
+
+// Calculate what we can determine of the range of this statement's
+// second operand if the lhs of the expression has the range LHS_RANGE
+// and the first operand has the range OP1_RANGE. Return false if
+// nothing can be determined.
+
+bool
+gimple_range_calc_op2 (irange &r, const gimple *stmt,
+ const irange &lhs_range, const irange &op1_range)
+{
+ tree type = TREE_TYPE (gimple_range_operand2 (stmt));
+ // An empty range is viral, so return an empty range.
+ if (op1_range.undefined_p () || lhs_range.undefined_p ())
+ {
+ r.set_undefined ();
+ return true;
+ }
+ return gimple_range_handler (stmt)->op2_range (r, type, lhs_range,
+ op1_range);
+}
+
+
+// Calculate a range for statement S and return it in R. If NAME is provided it
+// represents the SSA_NAME on the LHS of the statement. It is only required
+// if there is more than one lhs/output. If a range cannot
+// be calculated, return false.
+
+bool
+gimple_ranger::calc_stmt (irange &r, gimple *s, tree name)
+{
+ bool res = false;
+ // If name is specified, make sure it is a LHS of S.
+ gcc_checking_assert (name ? SSA_NAME_DEF_STMT (name) == s : true);
+
+ if (gimple_range_handler (s))
+ res = range_of_range_op (r, s);
+ else if (is_a<gphi *>(s))
+ res = range_of_phi (r, as_a<gphi *> (s));
+ else if (is_a<gcall *>(s))
+ res = range_of_call (r, as_a<gcall *> (s));
+ else if (is_a<gassign *> (s) && gimple_assign_rhs_code (s) == COND_EXPR)
+ res = range_of_cond_expr (r, as_a<gassign *> (s));
+ else
+ {
+ // If no name is specified, try the expression kind.
+ if (!name)
+ {
+ tree t = gimple_expr_type (s);
+ if (!irange::supports_type_p (t))
+ return false;
+ r.set_varying (t);
+ return true;
+ }
+ // We don't understand the stmt, so return the global range.
+ r = gimple_range_global (name);
+ return true;
+ }
+ if (res)
+ {
+ if (r.undefined_p ())
+ return true;
+ if (name && TREE_TYPE (name) != r.type ())
+ range_cast (r, TREE_TYPE (name));
+ return true;
+ }
+ return false;
+}
+
+// Calculate a range for range_op statement S and return it in R. If any
+// If a range cannot be calculated, return false.
+
+bool
+gimple_ranger::range_of_range_op (irange &r, gimple *s)
+{
+ widest_irange range1, range2;
+ tree type = gimple_expr_type (s);
+ gcc_checking_assert (irange::supports_type_p (type));
+
+ tree op1 = gimple_range_operand1 (s);
+ tree op2 = gimple_range_operand2 (s);
+
+ if (range_of_non_trivial_assignment (r, s))
+ return true;
+
+ if (range_of_expr (range1, op1, s))
+ {
+ if (!op2)
+ return gimple_range_fold (r, s, range1);
+
+ if (range_of_expr (range2, op2, s))
+ return gimple_range_fold (r, s, range1, range2);
+ }
+ r.set_varying (type);
+ return true;
+}
+
+
+// Calculate the range of a non-trivial assignment. That is, is one
+// inolving arithmetic on an SSA name (for example, an ADDR_EXPR).
+// Return the range in R.
+//
+// If a range cannot be calculated, return false.
+
+bool
+gimple_ranger::range_of_non_trivial_assignment (irange &r, gimple *stmt)
+{
+ if (gimple_code (stmt) != GIMPLE_ASSIGN)
+ return false;
+
+ tree base = gimple_range_base_of_assignment (stmt);
+ if (base && TREE_CODE (base) == MEM_REF
+ && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
+ {
+ widest_irange range1;
+ tree ssa = TREE_OPERAND (base, 0);
+ if (range_of_expr (range1, ssa, stmt))
+ {
+ tree type = TREE_TYPE (ssa);
+ range_operator *op = range_op_handler (POINTER_PLUS_EXPR, type);
+ int_range<1> offset (TREE_OPERAND (base, 1), TREE_OPERAND (base, 1));
+ op->fold_range (r, type, range1, offset);
+ return true;
+ }
+ }
+ return false;
+}
+
+
+// Calculate a range for phi statement S and return it in R.
+// If a range cannot be calculated, return false.
+
+bool
+gimple_ranger::range_of_phi (irange &r, gphi *phi)
+{
+ tree phi_def = gimple_phi_result (phi);
+ tree type = TREE_TYPE (phi_def);
+ widest_irange phi_range;
+ unsigned x;
+
+ if (!irange::supports_type_p (type))
+ return false;
+
+ // And start with an empty range, unioning in each argument's range.
+ r.set_undefined ();
+ for (x = 0; x < gimple_phi_num_args (phi); x++)
+ {
+ widest_irange arg_range;
+ tree arg = gimple_phi_arg_def (phi, x);
+ edge e = gimple_phi_arg_edge (phi, x);
+
+ range_on_edge (arg_range, e, arg);
+ r.union_ (arg_range);
+ // Once the value reaches varying, stop looking.
+ if (r.varying_p ())
+ break;
+ }
+
+ return true;
+}
+
+
+// Calculate a range for call statement S and return it in R.
+// If a range cannot be calculated, return false.
+
+bool
+gimple_ranger::range_of_call (irange &r, gcall *call)
+{
+ tree type = gimple_call_return_type (call);
+ tree lhs = gimple_call_lhs (call);
+ bool strict_overflow_p;
+
+ if (!irange::supports_type_p (type))
+ return false;
+
+ if (range_of_builtin_call (r, call))
+ ;
+ else if (gimple_stmt_nonnegative_warnv_p (call, &strict_overflow_p))
+ r.set (build_int_cst (type, 0), TYPE_MAX_VALUE (type));
+ else if (gimple_call_nonnull_result_p (call)
+ || gimple_call_nonnull_arg (call))
+ r = range_nonzero (type);
+ else
+ r.set_varying (type);
+
+ // If there is a lHS, intersect that with what is known.
+ if (lhs)
+ {
+ value_range def;
+ def = gimple_range_global (lhs);
+ r.intersect (def);
+ }
+ return true;
+}
+
+
+void
+gimple_ranger::range_of_builtin_ubsan_call (irange &r, gcall *call,
+ tree_code code)
+{
+ gcc_checking_assert (code == PLUS_EXPR || code == MINUS_EXPR
+ || code == MULT_EXPR);
+ tree type = gimple_call_return_type (call);
+ range_operator *op = range_op_handler (code, type);
+ gcc_checking_assert (op);
+ widest_irange ir0, ir1;
+ tree arg0 = gimple_call_arg (call, 0);
+ tree arg1 = gimple_call_arg (call, 1);
+ gcc_assert (range_of_expr (ir0, arg0, call));
+ gcc_assert (range_of_expr (ir1, arg1, call));
+
+ bool saved_flag_wrapv = flag_wrapv;
+ /* Pretend the arithmetics is wrapping. If there is
+ any overflow, we'll complain, but will actually do
+ wrapping operation. */
+ flag_wrapv = 1;
+ op->fold_range (r, type, ir0, ir1);
+ flag_wrapv = saved_flag_wrapv;
+
+ /* If for both arguments vrp_valueize returned non-NULL,
+ this should have been already folded and if not, it
+ wasn't folded because of overflow. Avoid removing the
+ UBSAN_CHECK_* calls in that case. */
+ if (r.singleton_p ())
+ r.set_varying (type);
+}
+
+
+bool
+gimple_ranger::range_of_builtin_call (irange &r, gcall *call)
+{
+ combined_fn func = gimple_call_combined_fn (call);
+ if (func == CFN_LAST)
+ return false;
+
+ tree type = gimple_call_return_type (call);
+ tree arg;
+ int mini, maxi, zerov, prec;
+ scalar_int_mode mode;
+
+ switch (func)
+ {
+ case CFN_BUILT_IN_CONSTANT_P:
+ if (cfun->after_inlining)
+ {
+ r.set_zero (type);
+ // r.equiv_clear ();
+ return true;
+ }
+ arg = gimple_call_arg (call, 0);
+ if (range_of_expr (r, arg, call) && r.singleton_p ())
+ {
+ r.set (build_one_cst (type), build_one_cst (type));
+ return true;
+ }
+ break;
+
+ CASE_CFN_FFS:
+ CASE_CFN_POPCOUNT:
+ // __builtin_ffs* and __builtin_popcount* return [0, prec].
+ arg = gimple_call_arg (call, 0);
+ prec = TYPE_PRECISION (TREE_TYPE (arg));
+ mini = 0;
+ maxi = prec;
+ gcc_assert (range_of_expr (r, arg, call));
+ // If arg is non-zero, then ffs or popcount are non-zero.
+ if (!range_includes_zero_p (&r))
+ mini = 1;
+ // If some high bits are known to be zero, decrease the maximum.
+ if (!r.undefined_p ())
+ {
+ wide_int max = r.upper_bound ();
+ maxi = wi::floor_log2 (max) + 1;
+ }
+ r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
+ return true;
+
+ CASE_CFN_PARITY:
+ r.set (build_zero_cst (type), build_one_cst (type));
+ return true;
+
+ CASE_CFN_CLZ:
+ // __builtin_c[lt]z* return [0, prec-1], except when the
+ // argument is 0, but that is undefined behavior.
+ //
+ // On many targets where the CLZ RTL or optab value is defined
+ // for 0, the value is prec, so include that in the range by
+ // default.
+ arg = gimple_call_arg (call, 0);
+ prec = TYPE_PRECISION (TREE_TYPE (arg));
+ mini = 0;
+ maxi = prec;
+ mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
+ if (optab_handler (clz_optab, mode) != CODE_FOR_nothing
+ && CLZ_DEFINED_VALUE_AT_ZERO (mode, zerov)
+ // Only handle the single common value.
+ && zerov != prec)
+ // Magic value to give up, unless we can prove arg is non-zero.
+ mini = -2;
+
+ gcc_assert (range_of_expr (r, arg, call));
+ // From clz of minimum we can compute result maximum.
+ if (r.constant_p ())
+ {
+ maxi = prec - 1 - wi::floor_log2 (r.lower_bound ());
+ if (maxi != prec)
+ mini = 0;
+ }
+ else if (!range_includes_zero_p (&r))
+ {
+ maxi = prec - 1;
+ mini = 0;
+ }
+ if (mini == -2)
+ break;
+ // From clz of maximum we can compute result minimum.
+ if (r.constant_p ())
+ {
+ mini = prec - 1 - wi::floor_log2 (r.upper_bound ());
+ if (mini == prec)
+ break;
+ }
+ if (mini == -2)
+ break;
+ r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
+ return true;
+
+ CASE_CFN_CTZ:
+ // __builtin_ctz* return [0, prec-1], except for when the
+ // argument is 0, but that is undefined behavior.
+ //
+ // If there is a ctz optab for this mode and
+ // CTZ_DEFINED_VALUE_AT_ZERO, include that in the range,
+ // otherwise just assume 0 won't be seen.
+ arg = gimple_call_arg (call, 0);
+ prec = TYPE_PRECISION (TREE_TYPE (arg));
+ mini = 0;
+ maxi = prec - 1;
+ mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
+ if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing
+ && CTZ_DEFINED_VALUE_AT_ZERO (mode, zerov))
+ {
+ // Handle only the two common values.
+ if (zerov == -1)
+ mini = -1;
+ else if (zerov == prec)
+ maxi = prec;
+ else
+ // Magic value to give up, unless we can prove arg is non-zero.
+ mini = -2;
+ }
+ gcc_assert (range_of_expr (r, arg, call));
+ if (!r.undefined_p ())
+ {
+ if (r.lower_bound () != 0)
+ {
+ mini = 0;
+ maxi = prec - 1;
+ }
+ // If some high bits are known to be zero, we can decrease
+ // the maximum.
+ wide_int max = r.upper_bound ();
+ if (max == 0)
+ break;
+ maxi = wi::floor_log2 (max);
+ }
+ if (mini == -2)
+ break;
+ r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
+ return true;
+
+ CASE_CFN_CLRSB:
+ arg = gimple_call_arg (call, 0);
+ prec = TYPE_PRECISION (TREE_TYPE (arg));
+ r.set (build_int_cst (type, 0), build_int_cst (type, prec - 1));
+ return true;
+ case CFN_UBSAN_CHECK_ADD:
+ range_of_builtin_ubsan_call (r, call, PLUS_EXPR);
+ return true;
+ case CFN_UBSAN_CHECK_SUB:
+ range_of_builtin_ubsan_call (r, call, MINUS_EXPR);
+ return true;
+ case CFN_UBSAN_CHECK_MUL:
+ range_of_builtin_ubsan_call (r, call, MULT_EXPR);
+ return true;
+
+ case CFN_GOACC_DIM_SIZE:
+ case CFN_GOACC_DIM_POS:
+ // Optimizing these two internal functions helps the loop
+ // optimizer eliminate outer comparisons. Size is [1,N]
+ // and pos is [0,N-1].
+ {
+ bool is_pos = func == CFN_GOACC_DIM_POS;
+ int axis = oacc_get_ifn_dim_arg (call);
+ int size = oacc_get_fn_dim_size (current_function_decl, axis);
+ if (!size)
+ // If it's dynamic, the backend might know a hardware limitation.
+ size = targetm.goacc.dim_limit (axis);
+
+ r.set (build_int_cst (type, is_pos ? 0 : 1),
+ size
+ ? build_int_cst (type, size - is_pos) : vrp_val_max (type));
+ return true;
+ }
+
+ case CFN_BUILT_IN_STRLEN:
+ if (tree lhs = gimple_call_lhs (call))
+ if (ptrdiff_type_node
+ && (TYPE_PRECISION (ptrdiff_type_node)
+ == TYPE_PRECISION (TREE_TYPE (lhs))))
+ {
+ tree type = TREE_TYPE (lhs);
+ tree max = vrp_val_max (ptrdiff_type_node);
+ wide_int wmax
+ = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
+ tree range_min = build_zero_cst (type);
+ // To account for the terminating NULL, the maximum length
+ // is one less than the maximum array size, which in turn
+ // is one less than PTRDIFF_MAX (or SIZE_MAX where it's
+ // smaller than the former type).
+ // FIXME: Use max_object_size() - 1 here.
+ tree range_max = wide_int_to_tree (type, wmax - 2);
+ r.set (range_min, range_max);
+ return true;
+ }
+ break;
+ default:
+ break;
+ }
+ return false;
+}
+
+
+
+
+// Calculate a range for COND_EXPR statement S and return it in R.
+// If a range cannot be calculated, return false.
+
+bool
+gimple_ranger::range_of_cond_expr (irange &r, gassign *s)
+{
+ widest_irange cond_range, range1, range2;
+ tree cond = gimple_assign_rhs1 (s);
+ tree op1 = gimple_assign_rhs2 (s);
+ tree op2 = gimple_assign_rhs3 (s);
+
+ gcc_checking_assert (gimple_assign_rhs_code (s) == COND_EXPR);
+ gcc_checking_assert (useless_type_conversion_p (TREE_TYPE (op1),
+ TREE_TYPE (op2)));
+ if (!irange::supports_type_p (TREE_TYPE (op1)))
+ return false;
+
+ gcc_assert (range_of_expr (cond_range, cond, s));
+ gcc_assert (range_of_expr (range1, op1, s));
+ gcc_assert (range_of_expr (range2, op2, s));
+
+ // If the condition is known, choose the appropriate expression.
+ if (cond_range.singleton_p ())
+ {
+ // False, pick second operand
+ if (cond_range.zero_p ())
+ r = range2;
+ else
+ r = range1;
+ }
+ else
+ {
+ r = range1;
+ r.union_ (range2);
+ }
+ return true;
+}
+
+
+
+bool
+gimple_ranger::range_of_expr (irange &r, tree expr, gimple *stmt)
+{
+ if (!gimple_range_ssa_p (expr))
+ return get_tree_range (r, expr);
+
+ // If there is no statement, just get the global value.
+ if (!stmt)
+ {
+ if (!m_cache.m_globals.get_global_range (r, expr))
+ r = gimple_range_global (expr);
+ return true;
+ }
+
+ basic_block bb = gimple_bb (stmt);
+ gimple *def_stmt = SSA_NAME_DEF_STMT (expr);
+
+ // If name is defined in this block, try to get an range from S.
+ if (def_stmt && gimple_bb (def_stmt) == bb)
+ gcc_assert (range_of_stmt (r, def_stmt, expr));
+ else
+ // Otherwise OP comes from outside this block, use range on entry.
+ range_on_entry (r, bb, expr);
+
+ // No range yet, see if there is a dereference in the block.
+ // We don't care if it's between the def and a use within a block
+ // because the entire block must be executed anyway.
+ // FIXME:?? For non-call exceptions we could have a statement throw
+ // which causes an early block exit.
+ // in which case we may need to walk from S back to the def/top of block
+ // to make sure the deref happens between S and there before claiming
+ // there is a deref. Punt for now.
+ if (!cfun->can_throw_non_call_exceptions && r.varying_p () &&
+ m_cache.m_non_null.non_null_deref_p (expr, bb))
+ r = range_nonzero (TREE_TYPE (expr));
+
+ return true;
+}
+
+
+// Return the range of NAME on entry to block BB in R.
+
+void
+gimple_ranger::range_on_entry (irange &r, basic_block bb, tree name)
+{
+ widest_irange entry_range;
+ gcc_checking_assert (gimple_range_ssa_p (name));
+
+ // Start with any known range
+ gcc_assert (range_of_stmt (r, SSA_NAME_DEF_STMT (name), name));
+
+ // Now see if there is any on_entry value which may refine it.
+ if (m_cache.block_range (entry_range, bb, name))
+ r.intersect (entry_range);
+}
+
+
+// Calculate the range for NAME at the end of block BB and return it in R.
+// Return false if no range can be calculated.
+
+void
+gimple_ranger::range_on_exit (irange &r, basic_block bb, tree name)
+{
+ // on-exit from the exit block?
+ gcc_checking_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
+
+ gimple *s = last_stmt (bb);
+ // If there is no statement in the block and this isn't the entry
+ // block, go get the range_on_entry for this block. For the entry
+ // block, a NULL stmt will return the global value for NAME.
+ if (!s && bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
+ range_on_entry (r, bb, name);
+ else
+ gcc_assert (range_of_expr (r, name, s));
+ gcc_checking_assert (r.undefined_p ()
+ || types_compatible_p (r.type(), TREE_TYPE (name)));
+}
+
+// Calculate a range for NAME on edge E and return it in R.
+
+void
+gimple_ranger::range_on_edge (irange &r, edge e, tree name)
+{
+ widest_irange edge_range;
+ gcc_checking_assert (irange::supports_type_p (TREE_TYPE (name)));
+
+ // PHI arguments can be constants, catch these here.
+ if (!gimple_range_ssa_p (name))
+ {
+ gcc_assert (range_of_expr (r, name));
+ return;
+ }
+
+ range_on_exit (r, e->src, name);
+ gcc_checking_assert (r.undefined_p ()
+ || types_compatible_p (r.type(), TREE_TYPE (name)));
+
+ // Check to see if NAME is defined on edge e.
+ if (m_cache.outgoing_edge_range_p (edge_range, e, name))
+ r.intersect (edge_range);
+}
+
+// Calculate a range for statement S and return it in R. If NAME is
+// provided it represents the SSA_NAME on the LHS of the statement.
+// It is only required if there is more than one lhs/output. Check
+// the global cache for NAME first to see if the evaluation can be
+// avoided. If a range cannot be calculated, return false.
+
+bool
+gimple_ranger::range_of_stmt (irange &r, gimple *s, tree name)
+{
+ // If no name, simply call the base routine.
+ if (!name)
+ name = gimple_get_lhs (s);
+
+ if (!name)
+ return calc_stmt (r, s, NULL_TREE);
+
+ gcc_checking_assert (TREE_CODE (name) == SSA_NAME &&
+ irange::supports_type_p (TREE_TYPE (name)));
+
+ // If this STMT has already been processed, return that value.
+ if (m_cache.m_globals.get_global_range (r, name))
+ return true;
+
+ // Avoid infinite recursion by initializing global cache
+ widest_irange tmp = gimple_range_global (name);
+ m_cache.m_globals.set_global_range (name, tmp);
+
+ gcc_assert (calc_stmt (r, s, name));
+
+ if (is_a<gphi *> (s))
+ r.intersect (tmp);
+ m_cache.m_globals.set_global_range (name, r);
+ return true;
+}
+
+
+// This routine will export whatever global ranges are known to GCC
+// SSA_RANGE_NAME_INFO fields.
+
+void
+gimple_ranger::export_global_ranges ()
+{
+ unsigned x;
+ widest_irange r;
+ if (dump_file)
+ {
+ fprintf (dump_file, "Exported global range table\n");
+ fprintf (dump_file, "===========================\n");
+ }
+
+ for ( x = 1; x < num_ssa_names; x++)
+ {
+ tree name = ssa_name (x);
+ if (name && !SSA_NAME_IN_FREE_LIST (name)
+ && gimple_range_ssa_p (name)
+ && m_cache.m_globals.get_global_range (r, name)
+ && !r.varying_p())
+ {
+ // Make sure the new range is a subset of the old range.
+ widest_irange old_range;
+ old_range = gimple_range_global (name);
+ old_range.intersect (r);
+ /* Disable this while we fix tree-ssa/pr61743-2.c. */
+ //gcc_checking_assert (old_range == r);
+
+ // WTF? Can't write non-null pointer ranges?? stupid set_range_info!
+ if (!POINTER_TYPE_P (TREE_TYPE (name)) && !r.undefined_p ())
+ {
+ value_range vr = r;
+ set_range_info (name, vr);
+ if (dump_file)
+ {
+ print_generic_expr (dump_file, name , TDF_SLIM);
+ fprintf (dump_file, " --> ");
+ vr.dump (dump_file);
+ fprintf (dump_file, "\n");
+ fprintf (dump_file, " irange : ");
+ r.dump (dump_file);
+ fprintf (dump_file, "\n");
+ }
+ }
+ }
+ }
+}
+
+
+// Print the known table values to file F.
+
+void
+gimple_ranger::dump (FILE *f)
+{
+ basic_block bb;
+
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ unsigned x;
+ edge_iterator ei;
+ edge e;
+ widest_irange range;
+ fprintf (f, "\n=========== BB %d ============\n", bb->index);
+ m_cache.m_on_entry.dump (f, bb);
+
+ dump_bb (f, bb, 4, TDF_NONE);
+
+ // Now find any globals defined in this block
+ for (x = 1; x < num_ssa_names; x++)
+ {
+ tree name = ssa_name (x);
+ if (gimple_range_ssa_p (name) && SSA_NAME_DEF_STMT (name) &&
+ gimple_bb (SSA_NAME_DEF_STMT (name)) == bb &&
+ m_cache.m_globals.get_global_range (range, name))
+ {
+ if (!range.varying_p ())
+ {
+ print_generic_expr (f, name, TDF_SLIM);
+ fprintf (f, " : ");
+ range.dump (f);
+ fprintf (f, "\n");
+ }
+
+ }
+ }
+
+ // And now outgoing edges, if they define anything.
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ {
+ for (x = 1; x < num_ssa_names; x++)
+ {
+ tree name = gimple_range_ssa_p (ssa_name (x));
+ if (name && m_cache.outgoing_edge_range_p (range, e, name))
+ {
+ gimple *s = SSA_NAME_DEF_STMT (name);
+ // Only print the range if this is the def block, or
+ // the on entry cache for either end of the edge is
+ // set.
+ if ((s && bb == gimple_bb (s)) ||
+ m_cache.block_range (range, bb, name, false) ||
+ m_cache.block_range (range, e->dest, name, false))
+ {
+ range_on_edge (range, e, name);
+ if (!range.varying_p ())
+ {
+ fprintf (f, "%d->%d ", e->src->index,
+ e->dest->index);
+ char c = ' ';
+ if (e->flags & EDGE_TRUE_VALUE)
+ fprintf (f, " (T)%c", c);
+ else if (e->flags & EDGE_FALSE_VALUE)
+ fprintf (f, " (F)%c", c);
+ else
+ fprintf (f, " ");
+ print_generic_expr (f, name, TDF_SLIM);
+ fprintf(f, " : \t");
+ range.dump(f);
+ fprintf (f, "\n");
+ }
+ }
+ }
+ }
+ }
+ }
+
+ m_cache.m_globals.dump (dump_file);
+ fprintf (f, "\n");
+
+ if (dump_flags & TDF_DETAILS)
+ {
+ fprintf (f, "\nDUMPING GORI MAP\n");
+ m_cache.dump (f);
+ fprintf (f, "\n");
+ }
+}
+
+
+// loop_ranger implementation.
+
+loop_ranger::loop_ranger ()
+{
+ m_vr_values = new vr_values;
+}
+
+loop_ranger::~loop_ranger ()
+{
+ delete m_vr_values;
+}
+
+void
+loop_ranger::range_of_ssa_name_with_loop_info (irange &r, tree name,
+ class loop *l, gphi *phi)
+{
+ gcc_checking_assert (TREE_CODE (name) == SSA_NAME);
+ value_range_equiv vr;
+ vr.set_varying (TREE_TYPE (name));
+ m_vr_values->adjust_range_with_scev (&vr, l, phi, name);
+ vr.normalize_symbolics ();
+ r = vr;
+}
+
+// If NAME is either a PHI result or a PHI argument, see if we can
+// determine range information by querying loop info. If so, return
+// TRUE and set the range in R.
+
+bool
+loop_ranger::range_with_loop_info (irange &r, tree name)
+{
+ if (!scev_initialized_p ())
+ return false;
+
+ gimple *def = SSA_NAME_DEF_STMT (name);
+ class loop *l = loop_containing_stmt (def);
+ if (!l)
+ return false;
+
+ basic_block header = l->header;
+ for (gphi_iterator iter = gsi_start_phis (header);
+ !gsi_end_p (iter); gsi_next (&iter))
+ {
+ gphi *phi = iter.phi ();
+ if (PHI_RESULT (phi) == name)
+ {
+ range_of_ssa_name_with_loop_info (r, name, l, phi);
+ return true;
+ }
+ for (size_t i = 0; i < gimple_phi_num_args (phi); ++i)
+ if (PHI_ARG_DEF (phi, i) == name)
+ {
+ range_of_ssa_name_with_loop_info (r, name, l, phi);
+ return true;
+ }
+ }
+ return false;
+}
+
+bool
+loop_ranger::range_of_stmt (irange &r, gimple *stmt, tree name)
+{
+ // If there is no global range for a PHI, start the party with
+ // whatever information SCEV may have.
+ if (gphi *phi = dyn_cast<gphi *> (stmt))
+ {
+ tree phi_result = PHI_RESULT (phi);
+ if (!POINTER_TYPE_P (TREE_TYPE (phi_result))
+ && !m_cache.m_globals.get_global_range (r, phi_result)
+ && range_with_loop_info (r, phi_result))
+ {
+ value_range loop_range;
+ get_range_info (phi_result, loop_range);
+ r.intersect (loop_range);
+ if (!r.varying_p ())
+ set_range_info (phi_result, r);
+ }
+ }
+ return super::range_of_stmt (r, stmt, name);
+}
+
+void
+loop_ranger::range_on_edge (irange &r, edge e, tree name)
+{
+ super::range_on_edge (r, e, name);
+
+ if (TREE_CODE (name) == SSA_NAME)
+ {
+ value_range loop_range;
+ if (range_with_loop_info (loop_range, name))
+ r.intersect (loop_range);
+ }
+}