diff options
Diffstat (limited to 'gcc/fortran/trans-intrinsic.cc')
-rw-r--r-- | gcc/fortran/trans-intrinsic.cc | 12457 |
1 files changed, 12457 insertions, 0 deletions
diff --git a/gcc/fortran/trans-intrinsic.cc b/gcc/fortran/trans-intrinsic.cc new file mode 100644 index 0000000..a7cbbeb --- /dev/null +++ b/gcc/fortran/trans-intrinsic.cc @@ -0,0 +1,12457 @@ +/* Intrinsic translation + Copyright (C) 2002-2022 Free Software Foundation, Inc. + Contributed by Paul Brook <paul@nowt.org> + and Steven Bosscher <s.bosscher@student.tudelft.nl> + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +/* trans-intrinsic.c-- generate GENERIC trees for calls to intrinsics. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "memmodel.h" +#include "tm.h" /* For UNITS_PER_WORD. */ +#include "tree.h" +#include "gfortran.h" +#include "trans.h" +#include "stringpool.h" +#include "fold-const.h" +#include "internal-fn.h" +#include "tree-nested.h" +#include "stor-layout.h" +#include "toplev.h" /* For rest_of_decl_compilation. */ +#include "arith.h" +#include "trans-const.h" +#include "trans-types.h" +#include "trans-array.h" +#include "dependency.h" /* For CAF array alias analysis. */ +#include "attribs.h" + +/* Only for gfc_trans_assign and gfc_trans_pointer_assign. */ + +/* This maps Fortran intrinsic math functions to external library or GCC + builtin functions. */ +typedef struct GTY(()) gfc_intrinsic_map_t { + /* The explicit enum is required to work around inadequacies in the + garbage collection/gengtype parsing mechanism. */ + enum gfc_isym_id id; + + /* Enum value from the "language-independent", aka C-centric, part + of gcc, or END_BUILTINS of no such value set. */ + enum built_in_function float_built_in; + enum built_in_function double_built_in; + enum built_in_function long_double_built_in; + enum built_in_function complex_float_built_in; + enum built_in_function complex_double_built_in; + enum built_in_function complex_long_double_built_in; + + /* True if the naming pattern is to prepend "c" for complex and + append "f" for kind=4. False if the naming pattern is to + prepend "_gfortran_" and append "[rc](4|8|10|16)". */ + bool libm_name; + + /* True if a complex version of the function exists. */ + bool complex_available; + + /* True if the function should be marked const. */ + bool is_constant; + + /* The base library name of this function. */ + const char *name; + + /* Cache decls created for the various operand types. */ + tree real4_decl; + tree real8_decl; + tree real10_decl; + tree real16_decl; + tree complex4_decl; + tree complex8_decl; + tree complex10_decl; + tree complex16_decl; +} +gfc_intrinsic_map_t; + +/* ??? The NARGS==1 hack here is based on the fact that (c99 at least) + defines complex variants of all of the entries in mathbuiltins.def + except for atan2. */ +#define DEFINE_MATH_BUILTIN(ID, NAME, ARGTYPE) \ + { GFC_ISYM_ ## ID, BUILT_IN_ ## ID ## F, BUILT_IN_ ## ID, \ + BUILT_IN_ ## ID ## L, END_BUILTINS, END_BUILTINS, END_BUILTINS, \ + true, false, true, NAME, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, \ + NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE}, + +#define DEFINE_MATH_BUILTIN_C(ID, NAME, ARGTYPE) \ + { GFC_ISYM_ ## ID, BUILT_IN_ ## ID ## F, BUILT_IN_ ## ID, \ + BUILT_IN_ ## ID ## L, BUILT_IN_C ## ID ## F, BUILT_IN_C ## ID, \ + BUILT_IN_C ## ID ## L, true, true, true, NAME, NULL_TREE, NULL_TREE, \ + NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE}, + +#define LIB_FUNCTION(ID, NAME, HAVE_COMPLEX) \ + { GFC_ISYM_ ## ID, END_BUILTINS, END_BUILTINS, END_BUILTINS, \ + END_BUILTINS, END_BUILTINS, END_BUILTINS, \ + false, HAVE_COMPLEX, true, NAME, NULL_TREE, NULL_TREE, NULL_TREE, \ + NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE } + +#define OTHER_BUILTIN(ID, NAME, TYPE, CONST) \ + { GFC_ISYM_NONE, BUILT_IN_ ## ID ## F, BUILT_IN_ ## ID, \ + BUILT_IN_ ## ID ## L, END_BUILTINS, END_BUILTINS, END_BUILTINS, \ + true, false, CONST, NAME, NULL_TREE, NULL_TREE, \ + NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE}, + +static GTY(()) gfc_intrinsic_map_t gfc_intrinsic_map[] = +{ + /* Functions built into gcc itself (DEFINE_MATH_BUILTIN and + DEFINE_MATH_BUILTIN_C), then the built-ins that don't correspond + to any GFC_ISYM id directly, which use the OTHER_BUILTIN macro. */ +#include "mathbuiltins.def" + + /* Functions in libgfortran. */ + LIB_FUNCTION (ERFC_SCALED, "erfc_scaled", false), + LIB_FUNCTION (SIND, "sind", false), + LIB_FUNCTION (COSD, "cosd", false), + LIB_FUNCTION (TAND, "tand", false), + + /* End the list. */ + LIB_FUNCTION (NONE, NULL, false) + +}; +#undef OTHER_BUILTIN +#undef LIB_FUNCTION +#undef DEFINE_MATH_BUILTIN +#undef DEFINE_MATH_BUILTIN_C + + +enum rounding_mode { RND_ROUND, RND_TRUNC, RND_CEIL, RND_FLOOR }; + + +/* Find the correct variant of a given builtin from its argument. */ +static tree +builtin_decl_for_precision (enum built_in_function base_built_in, + int precision) +{ + enum built_in_function i = END_BUILTINS; + + gfc_intrinsic_map_t *m; + for (m = gfc_intrinsic_map; m->double_built_in != base_built_in ; m++) + ; + + if (precision == TYPE_PRECISION (float_type_node)) + i = m->float_built_in; + else if (precision == TYPE_PRECISION (double_type_node)) + i = m->double_built_in; + else if (precision == TYPE_PRECISION (long_double_type_node) + && (!gfc_real16_is_float128 + || long_double_type_node != gfc_float128_type_node)) + i = m->long_double_built_in; + else if (precision == TYPE_PRECISION (gfc_float128_type_node)) + { + /* Special treatment, because it is not exactly a built-in, but + a library function. */ + return m->real16_decl; + } + + return (i == END_BUILTINS ? NULL_TREE : builtin_decl_explicit (i)); +} + + +tree +gfc_builtin_decl_for_float_kind (enum built_in_function double_built_in, + int kind) +{ + int i = gfc_validate_kind (BT_REAL, kind, false); + + if (gfc_real_kinds[i].c_float128) + { + /* For _Float128, the story is a bit different, because we return + a decl to a library function rather than a built-in. */ + gfc_intrinsic_map_t *m; + for (m = gfc_intrinsic_map; m->double_built_in != double_built_in ; m++) + ; + + return m->real16_decl; + } + + return builtin_decl_for_precision (double_built_in, + gfc_real_kinds[i].mode_precision); +} + + +/* Evaluate the arguments to an intrinsic function. The value + of NARGS may be less than the actual number of arguments in EXPR + to allow optional "KIND" arguments that are not included in the + generated code to be ignored. */ + +static void +gfc_conv_intrinsic_function_args (gfc_se *se, gfc_expr *expr, + tree *argarray, int nargs) +{ + gfc_actual_arglist *actual; + gfc_expr *e; + gfc_intrinsic_arg *formal; + gfc_se argse; + int curr_arg; + + formal = expr->value.function.isym->formal; + actual = expr->value.function.actual; + + for (curr_arg = 0; curr_arg < nargs; curr_arg++, + actual = actual->next, + formal = formal ? formal->next : NULL) + { + gcc_assert (actual); + e = actual->expr; + /* Skip omitted optional arguments. */ + if (!e) + { + --curr_arg; + continue; + } + + /* Evaluate the parameter. This will substitute scalarized + references automatically. */ + gfc_init_se (&argse, se); + + if (e->ts.type == BT_CHARACTER) + { + gfc_conv_expr (&argse, e); + gfc_conv_string_parameter (&argse); + argarray[curr_arg++] = argse.string_length; + gcc_assert (curr_arg < nargs); + } + else + gfc_conv_expr_val (&argse, e); + + /* If an optional argument is itself an optional dummy argument, + check its presence and substitute a null if absent. */ + if (e->expr_type == EXPR_VARIABLE + && e->symtree->n.sym->attr.optional + && formal + && formal->optional) + gfc_conv_missing_dummy (&argse, e, formal->ts, 0); + + gfc_add_block_to_block (&se->pre, &argse.pre); + gfc_add_block_to_block (&se->post, &argse.post); + argarray[curr_arg] = argse.expr; + } +} + +/* Count the number of actual arguments to the intrinsic function EXPR + including any "hidden" string length arguments. */ + +static unsigned int +gfc_intrinsic_argument_list_length (gfc_expr *expr) +{ + int n = 0; + gfc_actual_arglist *actual; + + for (actual = expr->value.function.actual; actual; actual = actual->next) + { + if (!actual->expr) + continue; + + if (actual->expr->ts.type == BT_CHARACTER) + n += 2; + else + n++; + } + + return n; +} + + +/* Conversions between different types are output by the frontend as + intrinsic functions. We implement these directly with inline code. */ + +static void +gfc_conv_intrinsic_conversion (gfc_se * se, gfc_expr * expr) +{ + tree type; + tree *args; + int nargs; + + nargs = gfc_intrinsic_argument_list_length (expr); + args = XALLOCAVEC (tree, nargs); + + /* Evaluate all the arguments passed. Whilst we're only interested in the + first one here, there are other parts of the front-end that assume this + and will trigger an ICE if it's not the case. */ + type = gfc_typenode_for_spec (&expr->ts); + gcc_assert (expr->value.function.actual->expr); + gfc_conv_intrinsic_function_args (se, expr, args, nargs); + + /* Conversion between character kinds involves a call to a library + function. */ + if (expr->ts.type == BT_CHARACTER) + { + tree fndecl, var, addr, tmp; + + if (expr->ts.kind == 1 + && expr->value.function.actual->expr->ts.kind == 4) + fndecl = gfor_fndecl_convert_char4_to_char1; + else if (expr->ts.kind == 4 + && expr->value.function.actual->expr->ts.kind == 1) + fndecl = gfor_fndecl_convert_char1_to_char4; + else + gcc_unreachable (); + + /* Create the variable storing the converted value. */ + type = gfc_get_pchar_type (expr->ts.kind); + var = gfc_create_var (type, "str"); + addr = gfc_build_addr_expr (build_pointer_type (type), var); + + /* Call the library function that will perform the conversion. */ + gcc_assert (nargs >= 2); + tmp = build_call_expr_loc (input_location, + fndecl, 3, addr, args[0], args[1]); + gfc_add_expr_to_block (&se->pre, tmp); + + /* Free the temporary afterwards. */ + tmp = gfc_call_free (var); + gfc_add_expr_to_block (&se->post, tmp); + + se->expr = var; + se->string_length = args[0]; + + return; + } + + /* Conversion from complex to non-complex involves taking the real + component of the value. */ + if (TREE_CODE (TREE_TYPE (args[0])) == COMPLEX_TYPE + && expr->ts.type != BT_COMPLEX) + { + tree artype; + + artype = TREE_TYPE (TREE_TYPE (args[0])); + args[0] = fold_build1_loc (input_location, REALPART_EXPR, artype, + args[0]); + } + + se->expr = convert (type, args[0]); +} + +/* This is needed because the gcc backend only implements + FIX_TRUNC_EXPR, which is the same as INT() in Fortran. + FLOOR(x) = INT(x) <= x ? INT(x) : INT(x) - 1 + Similarly for CEILING. */ + +static tree +build_fixbound_expr (stmtblock_t * pblock, tree arg, tree type, int up) +{ + tree tmp; + tree cond; + tree argtype; + tree intval; + + argtype = TREE_TYPE (arg); + arg = gfc_evaluate_now (arg, pblock); + + intval = convert (type, arg); + intval = gfc_evaluate_now (intval, pblock); + + tmp = convert (argtype, intval); + cond = fold_build2_loc (input_location, up ? GE_EXPR : LE_EXPR, + logical_type_node, tmp, arg); + + tmp = fold_build2_loc (input_location, up ? PLUS_EXPR : MINUS_EXPR, type, + intval, build_int_cst (type, 1)); + tmp = fold_build3_loc (input_location, COND_EXPR, type, cond, intval, tmp); + return tmp; +} + + +/* Round to nearest integer, away from zero. */ + +static tree +build_round_expr (tree arg, tree restype) +{ + tree argtype; + tree fn; + int argprec, resprec; + + argtype = TREE_TYPE (arg); + argprec = TYPE_PRECISION (argtype); + resprec = TYPE_PRECISION (restype); + + /* Depending on the type of the result, choose the int intrinsic (iround, + available only as a builtin, therefore cannot use it for _Float128), long + int intrinsic (lround family) or long long intrinsic (llround). If we + don't have an appropriate function that converts directly to the integer + type (such as kind == 16), just use ROUND, and then convert the result to + an integer. We might also need to convert the result afterwards. */ + if (resprec <= INT_TYPE_SIZE && argprec <= LONG_DOUBLE_TYPE_SIZE) + fn = builtin_decl_for_precision (BUILT_IN_IROUND, argprec); + else if (resprec <= LONG_TYPE_SIZE) + fn = builtin_decl_for_precision (BUILT_IN_LROUND, argprec); + else if (resprec <= LONG_LONG_TYPE_SIZE) + fn = builtin_decl_for_precision (BUILT_IN_LLROUND, argprec); + else if (resprec >= argprec) + fn = builtin_decl_for_precision (BUILT_IN_ROUND, argprec); + else + gcc_unreachable (); + + return convert (restype, build_call_expr_loc (input_location, + fn, 1, arg)); +} + + +/* Convert a real to an integer using a specific rounding mode. + Ideally we would just build the corresponding GENERIC node, + however the RTL expander only actually supports FIX_TRUNC_EXPR. */ + +static tree +build_fix_expr (stmtblock_t * pblock, tree arg, tree type, + enum rounding_mode op) +{ + switch (op) + { + case RND_FLOOR: + return build_fixbound_expr (pblock, arg, type, 0); + + case RND_CEIL: + return build_fixbound_expr (pblock, arg, type, 1); + + case RND_ROUND: + return build_round_expr (arg, type); + + case RND_TRUNC: + return fold_build1_loc (input_location, FIX_TRUNC_EXPR, type, arg); + + default: + gcc_unreachable (); + } +} + + +/* Round a real value using the specified rounding mode. + We use a temporary integer of that same kind size as the result. + Values larger than those that can be represented by this kind are + unchanged, as they will not be accurate enough to represent the + rounding. + huge = HUGE (KIND (a)) + aint (a) = ((a > huge) || (a < -huge)) ? a : (real)(int)a + */ + +static void +gfc_conv_intrinsic_aint (gfc_se * se, gfc_expr * expr, enum rounding_mode op) +{ + tree type; + tree itype; + tree arg[2]; + tree tmp; + tree cond; + tree decl; + mpfr_t huge; + int n, nargs; + int kind; + + kind = expr->ts.kind; + nargs = gfc_intrinsic_argument_list_length (expr); + + decl = NULL_TREE; + /* We have builtin functions for some cases. */ + switch (op) + { + case RND_ROUND: + decl = gfc_builtin_decl_for_float_kind (BUILT_IN_ROUND, kind); + break; + + case RND_TRUNC: + decl = gfc_builtin_decl_for_float_kind (BUILT_IN_TRUNC, kind); + break; + + default: + gcc_unreachable (); + } + + /* Evaluate the argument. */ + gcc_assert (expr->value.function.actual->expr); + gfc_conv_intrinsic_function_args (se, expr, arg, nargs); + + /* Use a builtin function if one exists. */ + if (decl != NULL_TREE) + { + se->expr = build_call_expr_loc (input_location, decl, 1, arg[0]); + return; + } + + /* This code is probably redundant, but we'll keep it lying around just + in case. */ + type = gfc_typenode_for_spec (&expr->ts); + arg[0] = gfc_evaluate_now (arg[0], &se->pre); + + /* Test if the value is too large to handle sensibly. */ + gfc_set_model_kind (kind); + mpfr_init (huge); + n = gfc_validate_kind (BT_INTEGER, kind, false); + mpfr_set_z (huge, gfc_integer_kinds[n].huge, GFC_RND_MODE); + tmp = gfc_conv_mpfr_to_tree (huge, kind, 0); + cond = fold_build2_loc (input_location, LT_EXPR, logical_type_node, arg[0], + tmp); + + mpfr_neg (huge, huge, GFC_RND_MODE); + tmp = gfc_conv_mpfr_to_tree (huge, kind, 0); + tmp = fold_build2_loc (input_location, GT_EXPR, logical_type_node, arg[0], + tmp); + cond = fold_build2_loc (input_location, TRUTH_AND_EXPR, logical_type_node, + cond, tmp); + itype = gfc_get_int_type (kind); + + tmp = build_fix_expr (&se->pre, arg[0], itype, op); + tmp = convert (type, tmp); + se->expr = fold_build3_loc (input_location, COND_EXPR, type, cond, tmp, + arg[0]); + mpfr_clear (huge); +} + + +/* Convert to an integer using the specified rounding mode. */ + +static void +gfc_conv_intrinsic_int (gfc_se * se, gfc_expr * expr, enum rounding_mode op) +{ + tree type; + tree *args; + int nargs; + + nargs = gfc_intrinsic_argument_list_length (expr); + args = XALLOCAVEC (tree, nargs); + + /* Evaluate the argument, we process all arguments even though we only + use the first one for code generation purposes. */ + type = gfc_typenode_for_spec (&expr->ts); + gcc_assert (expr->value.function.actual->expr); + gfc_conv_intrinsic_function_args (se, expr, args, nargs); + + if (TREE_CODE (TREE_TYPE (args[0])) == INTEGER_TYPE) + { + /* Conversion to a different integer kind. */ + se->expr = convert (type, args[0]); + } + else + { + /* Conversion from complex to non-complex involves taking the real + component of the value. */ + if (TREE_CODE (TREE_TYPE (args[0])) == COMPLEX_TYPE + && expr->ts.type != BT_COMPLEX) + { + tree artype; + + artype = TREE_TYPE (TREE_TYPE (args[0])); + args[0] = fold_build1_loc (input_location, REALPART_EXPR, artype, + args[0]); + } + + se->expr = build_fix_expr (&se->pre, args[0], type, op); + } +} + + +/* Get the imaginary component of a value. */ + +static void +gfc_conv_intrinsic_imagpart (gfc_se * se, gfc_expr * expr) +{ + tree arg; + + gfc_conv_intrinsic_function_args (se, expr, &arg, 1); + se->expr = fold_build1_loc (input_location, IMAGPART_EXPR, + TREE_TYPE (TREE_TYPE (arg)), arg); +} + + +/* Get the complex conjugate of a value. */ + +static void +gfc_conv_intrinsic_conjg (gfc_se * se, gfc_expr * expr) +{ + tree arg; + + gfc_conv_intrinsic_function_args (se, expr, &arg, 1); + se->expr = fold_build1_loc (input_location, CONJ_EXPR, TREE_TYPE (arg), arg); +} + + + +static tree +define_quad_builtin (const char *name, tree type, bool is_const) +{ + tree fndecl; + fndecl = build_decl (input_location, FUNCTION_DECL, get_identifier (name), + type); + + /* Mark the decl as external. */ + DECL_EXTERNAL (fndecl) = 1; + TREE_PUBLIC (fndecl) = 1; + + /* Mark it __attribute__((const)). */ + TREE_READONLY (fndecl) = is_const; + + rest_of_decl_compilation (fndecl, 1, 0); + + return fndecl; +} + +/* Add SIMD attribute for FNDECL built-in if the built-in + name is in VECTORIZED_BUILTINS. */ + +static void +add_simd_flag_for_built_in (tree fndecl) +{ + if (gfc_vectorized_builtins == NULL + || fndecl == NULL_TREE) + return; + + const char *name = IDENTIFIER_POINTER (DECL_NAME (fndecl)); + int *clauses = gfc_vectorized_builtins->get (name); + if (clauses) + { + for (unsigned i = 0; i < 3; i++) + if (*clauses & (1 << i)) + { + gfc_simd_clause simd_type = (gfc_simd_clause)*clauses; + tree omp_clause = NULL_TREE; + if (simd_type == SIMD_NONE) + ; /* No SIMD clause. */ + else + { + omp_clause_code code + = (simd_type == SIMD_INBRANCH + ? OMP_CLAUSE_INBRANCH : OMP_CLAUSE_NOTINBRANCH); + omp_clause = build_omp_clause (UNKNOWN_LOCATION, code); + omp_clause = build_tree_list (NULL_TREE, omp_clause); + } + + DECL_ATTRIBUTES (fndecl) + = tree_cons (get_identifier ("omp declare simd"), omp_clause, + DECL_ATTRIBUTES (fndecl)); + } + } +} + + /* Set SIMD attribute to all built-in functions that are mentioned + in gfc_vectorized_builtins vector. */ + +void +gfc_adjust_builtins (void) +{ + gfc_intrinsic_map_t *m; + for (m = gfc_intrinsic_map; + m->id != GFC_ISYM_NONE || m->double_built_in != END_BUILTINS; m++) + { + add_simd_flag_for_built_in (m->real4_decl); + add_simd_flag_for_built_in (m->complex4_decl); + add_simd_flag_for_built_in (m->real8_decl); + add_simd_flag_for_built_in (m->complex8_decl); + add_simd_flag_for_built_in (m->real10_decl); + add_simd_flag_for_built_in (m->complex10_decl); + add_simd_flag_for_built_in (m->real16_decl); + add_simd_flag_for_built_in (m->complex16_decl); + add_simd_flag_for_built_in (m->real16_decl); + add_simd_flag_for_built_in (m->complex16_decl); + } + + /* Release all strings. */ + if (gfc_vectorized_builtins != NULL) + { + for (hash_map<nofree_string_hash, int>::iterator it + = gfc_vectorized_builtins->begin (); + it != gfc_vectorized_builtins->end (); ++it) + free (CONST_CAST (char *, (*it).first)); + + delete gfc_vectorized_builtins; + gfc_vectorized_builtins = NULL; + } +} + +/* Initialize function decls for library functions. The external functions + are created as required. Builtin functions are added here. */ + +void +gfc_build_intrinsic_lib_fndecls (void) +{ + gfc_intrinsic_map_t *m; + tree quad_decls[END_BUILTINS + 1]; + + if (gfc_real16_is_float128) + { + /* If we have soft-float types, we create the decls for their + C99-like library functions. For now, we only handle _Float128 + q-suffixed functions. */ + + tree type, complex_type, func_1, func_2, func_cabs, func_frexp; + tree func_iround, func_lround, func_llround, func_scalbn, func_cpow; + + memset (quad_decls, 0, sizeof(tree) * (END_BUILTINS + 1)); + + type = gfc_float128_type_node; + complex_type = gfc_complex_float128_type_node; + /* type (*) (type) */ + func_1 = build_function_type_list (type, type, NULL_TREE); + /* int (*) (type) */ + func_iround = build_function_type_list (integer_type_node, + type, NULL_TREE); + /* long (*) (type) */ + func_lround = build_function_type_list (long_integer_type_node, + type, NULL_TREE); + /* long long (*) (type) */ + func_llround = build_function_type_list (long_long_integer_type_node, + type, NULL_TREE); + /* type (*) (type, type) */ + func_2 = build_function_type_list (type, type, type, NULL_TREE); + /* type (*) (type, &int) */ + func_frexp + = build_function_type_list (type, + type, + build_pointer_type (integer_type_node), + NULL_TREE); + /* type (*) (type, int) */ + func_scalbn = build_function_type_list (type, + type, integer_type_node, NULL_TREE); + /* type (*) (complex type) */ + func_cabs = build_function_type_list (type, complex_type, NULL_TREE); + /* complex type (*) (complex type, complex type) */ + func_cpow + = build_function_type_list (complex_type, + complex_type, complex_type, NULL_TREE); + +#define DEFINE_MATH_BUILTIN(ID, NAME, ARGTYPE) +#define DEFINE_MATH_BUILTIN_C(ID, NAME, ARGTYPE) +#define LIB_FUNCTION(ID, NAME, HAVE_COMPLEX) + + /* Only these built-ins are actually needed here. These are used directly + from the code, when calling builtin_decl_for_precision() or + builtin_decl_for_float_type(). The others are all constructed by + gfc_get_intrinsic_lib_fndecl(). */ +#define OTHER_BUILTIN(ID, NAME, TYPE, CONST) \ + quad_decls[BUILT_IN_ ## ID] = define_quad_builtin (NAME "q", func_ ## TYPE, CONST); + +#include "mathbuiltins.def" + +#undef OTHER_BUILTIN +#undef LIB_FUNCTION +#undef DEFINE_MATH_BUILTIN +#undef DEFINE_MATH_BUILTIN_C + + /* There is one built-in we defined manually, because it gets called + with builtin_decl_for_precision() or builtin_decl_for_float_type() + even though it is not an OTHER_BUILTIN: it is SQRT. */ + quad_decls[BUILT_IN_SQRT] = define_quad_builtin ("sqrtq", func_1, true); + + } + + /* Add GCC builtin functions. */ + for (m = gfc_intrinsic_map; + m->id != GFC_ISYM_NONE || m->double_built_in != END_BUILTINS; m++) + { + if (m->float_built_in != END_BUILTINS) + m->real4_decl = builtin_decl_explicit (m->float_built_in); + if (m->complex_float_built_in != END_BUILTINS) + m->complex4_decl = builtin_decl_explicit (m->complex_float_built_in); + if (m->double_built_in != END_BUILTINS) + m->real8_decl = builtin_decl_explicit (m->double_built_in); + if (m->complex_double_built_in != END_BUILTINS) + m->complex8_decl = builtin_decl_explicit (m->complex_double_built_in); + + /* If real(kind=10) exists, it is always long double. */ + if (m->long_double_built_in != END_BUILTINS) + m->real10_decl = builtin_decl_explicit (m->long_double_built_in); + if (m->complex_long_double_built_in != END_BUILTINS) + m->complex10_decl + = builtin_decl_explicit (m->complex_long_double_built_in); + + if (!gfc_real16_is_float128) + { + if (m->long_double_built_in != END_BUILTINS) + m->real16_decl = builtin_decl_explicit (m->long_double_built_in); + if (m->complex_long_double_built_in != END_BUILTINS) + m->complex16_decl + = builtin_decl_explicit (m->complex_long_double_built_in); + } + else if (quad_decls[m->double_built_in] != NULL_TREE) + { + /* Quad-precision function calls are constructed when first + needed by builtin_decl_for_precision(), except for those + that will be used directly (define by OTHER_BUILTIN). */ + m->real16_decl = quad_decls[m->double_built_in]; + } + else if (quad_decls[m->complex_double_built_in] != NULL_TREE) + { + /* Same thing for the complex ones. */ + m->complex16_decl = quad_decls[m->double_built_in]; + } + } +} + + +/* Create a fndecl for a simple intrinsic library function. */ + +static tree +gfc_get_intrinsic_lib_fndecl (gfc_intrinsic_map_t * m, gfc_expr * expr) +{ + tree type; + vec<tree, va_gc> *argtypes; + tree fndecl; + gfc_actual_arglist *actual; + tree *pdecl; + gfc_typespec *ts; + char name[GFC_MAX_SYMBOL_LEN + 3]; + + ts = &expr->ts; + if (ts->type == BT_REAL) + { + switch (ts->kind) + { + case 4: + pdecl = &m->real4_decl; + break; + case 8: + pdecl = &m->real8_decl; + break; + case 10: + pdecl = &m->real10_decl; + break; + case 16: + pdecl = &m->real16_decl; + break; + default: + gcc_unreachable (); + } + } + else if (ts->type == BT_COMPLEX) + { + gcc_assert (m->complex_available); + + switch (ts->kind) + { + case 4: + pdecl = &m->complex4_decl; + break; + case 8: + pdecl = &m->complex8_decl; + break; + case 10: + pdecl = &m->complex10_decl; + break; + case 16: + pdecl = &m->complex16_decl; + break; + default: + gcc_unreachable (); + } + } + else + gcc_unreachable (); + + if (*pdecl) + return *pdecl; + + if (m->libm_name) + { + int n = gfc_validate_kind (BT_REAL, ts->kind, false); + if (gfc_real_kinds[n].c_float) + snprintf (name, sizeof (name), "%s%s%s", + ts->type == BT_COMPLEX ? "c" : "", m->name, "f"); + else if (gfc_real_kinds[n].c_double) + snprintf (name, sizeof (name), "%s%s", + ts->type == BT_COMPLEX ? "c" : "", m->name); + else if (gfc_real_kinds[n].c_long_double) + snprintf (name, sizeof (name), "%s%s%s", + ts->type == BT_COMPLEX ? "c" : "", m->name, "l"); + else if (gfc_real_kinds[n].c_float128) + snprintf (name, sizeof (name), "%s%s%s", + ts->type == BT_COMPLEX ? "c" : "", m->name, "q"); + else + gcc_unreachable (); + } + else + { + snprintf (name, sizeof (name), PREFIX ("%s_%c%d"), m->name, + ts->type == BT_COMPLEX ? 'c' : 'r', + gfc_type_abi_kind (ts)); + } + + argtypes = NULL; + for (actual = expr->value.function.actual; actual; actual = actual->next) + { + type = gfc_typenode_for_spec (&actual->expr->ts); + vec_safe_push (argtypes, type); + } + type = build_function_type_vec (gfc_typenode_for_spec (ts), argtypes); + fndecl = build_decl (input_location, + FUNCTION_DECL, get_identifier (name), type); + + /* Mark the decl as external. */ + DECL_EXTERNAL (fndecl) = 1; + TREE_PUBLIC (fndecl) = 1; + + /* Mark it __attribute__((const)), if possible. */ + TREE_READONLY (fndecl) = m->is_constant; + + rest_of_decl_compilation (fndecl, 1, 0); + + (*pdecl) = fndecl; + return fndecl; +} + + +/* Convert an intrinsic function into an external or builtin call. */ + +static void +gfc_conv_intrinsic_lib_function (gfc_se * se, gfc_expr * expr) +{ + gfc_intrinsic_map_t *m; + tree fndecl; + tree rettype; + tree *args; + unsigned int num_args; + gfc_isym_id id; + + id = expr->value.function.isym->id; + /* Find the entry for this function. */ + for (m = gfc_intrinsic_map; + m->id != GFC_ISYM_NONE || m->double_built_in != END_BUILTINS; m++) + { + if (id == m->id) + break; + } + + if (m->id == GFC_ISYM_NONE) + { + gfc_internal_error ("Intrinsic function %qs (%d) not recognized", + expr->value.function.name, id); + } + + /* Get the decl and generate the call. */ + num_args = gfc_intrinsic_argument_list_length (expr); + args = XALLOCAVEC (tree, num_args); + + gfc_conv_intrinsic_function_args (se, expr, args, num_args); + fndecl = gfc_get_intrinsic_lib_fndecl (m, expr); + rettype = TREE_TYPE (TREE_TYPE (fndecl)); + + fndecl = build_addr (fndecl); + se->expr = build_call_array_loc (input_location, rettype, fndecl, num_args, args); +} + + +/* If bounds-checking is enabled, create code to verify at runtime that the + string lengths for both expressions are the same (needed for e.g. MERGE). + If bounds-checking is not enabled, does nothing. */ + +void +gfc_trans_same_strlen_check (const char* intr_name, locus* where, + tree a, tree b, stmtblock_t* target) +{ + tree cond; + tree name; + + /* If bounds-checking is disabled, do nothing. */ + if (!(gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)) + return; + + /* Compare the two string lengths. */ + cond = fold_build2_loc (input_location, NE_EXPR, logical_type_node, a, b); + + /* Output the runtime-check. */ + name = gfc_build_cstring_const (intr_name); + name = gfc_build_addr_expr (pchar_type_node, name); + gfc_trans_runtime_check (true, false, cond, target, where, + "Unequal character lengths (%ld/%ld) in %s", + fold_convert (long_integer_type_node, a), + fold_convert (long_integer_type_node, b), name); +} + + +/* The EXPONENT(X) intrinsic function is translated into + int ret; + return isfinite(X) ? (frexp (X, &ret) , ret) : huge + so that if X is a NaN or infinity, the result is HUGE(0). + */ + +static void +gfc_conv_intrinsic_exponent (gfc_se *se, gfc_expr *expr) +{ + tree arg, type, res, tmp, frexp, cond, huge; + int i; + + frexp = gfc_builtin_decl_for_float_kind (BUILT_IN_FREXP, + expr->value.function.actual->expr->ts.kind); + + gfc_conv_intrinsic_function_args (se, expr, &arg, 1); + arg = gfc_evaluate_now (arg, &se->pre); + + i = gfc_validate_kind (BT_INTEGER, gfc_c_int_kind, false); + huge = gfc_conv_mpz_to_tree (gfc_integer_kinds[i].huge, gfc_c_int_kind); + cond = build_call_expr_loc (input_location, + builtin_decl_explicit (BUILT_IN_ISFINITE), + 1, arg); + + res = gfc_create_var (integer_type_node, NULL); + tmp = build_call_expr_loc (input_location, frexp, 2, arg, + gfc_build_addr_expr (NULL_TREE, res)); + tmp = fold_build2_loc (input_location, COMPOUND_EXPR, integer_type_node, + tmp, res); + se->expr = fold_build3_loc (input_location, COND_EXPR, integer_type_node, + cond, tmp, huge); + + type = gfc_typenode_for_spec (&expr->ts); + se->expr = fold_convert (type, se->expr); +} + + +/* Fill in the following structure + struct caf_vector_t { + size_t nvec; // size of the vector + union { + struct { + void *vector; + int kind; + } v; + struct { + ptrdiff_t lower_bound; + ptrdiff_t upper_bound; + ptrdiff_t stride; + } triplet; + } u; + } */ + +static void +conv_caf_vector_subscript_elem (stmtblock_t *block, int i, tree desc, + tree lower, tree upper, tree stride, + tree vector, int kind, tree nvec) +{ + tree field, type, tmp; + + desc = gfc_build_array_ref (desc, gfc_rank_cst[i], NULL_TREE); + type = TREE_TYPE (desc); + + field = gfc_advance_chain (TYPE_FIELDS (type), 0); + tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), + desc, field, NULL_TREE); + gfc_add_modify (block, tmp, fold_convert (TREE_TYPE (field), nvec)); + + /* Access union. */ + field = gfc_advance_chain (TYPE_FIELDS (type), 1); + desc = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), + desc, field, NULL_TREE); + type = TREE_TYPE (desc); + + /* Access the inner struct. */ + field = gfc_advance_chain (TYPE_FIELDS (type), vector != NULL_TREE ? 0 : 1); + desc = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), + desc, field, NULL_TREE); + type = TREE_TYPE (desc); + + if (vector != NULL_TREE) + { + /* Set vector and kind. */ + field = gfc_advance_chain (TYPE_FIELDS (type), 0); + tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), + desc, field, NULL_TREE); + gfc_add_modify (block, tmp, fold_convert (TREE_TYPE (field), vector)); + field = gfc_advance_chain (TYPE_FIELDS (type), 1); + tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), + desc, field, NULL_TREE); + gfc_add_modify (block, tmp, build_int_cst (integer_type_node, kind)); + } + else + { + /* Set dim.lower/upper/stride. */ + field = gfc_advance_chain (TYPE_FIELDS (type), 0); + tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), + desc, field, NULL_TREE); + gfc_add_modify (block, tmp, fold_convert (TREE_TYPE (field), lower)); + + field = gfc_advance_chain (TYPE_FIELDS (type), 1); + tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), + desc, field, NULL_TREE); + gfc_add_modify (block, tmp, fold_convert (TREE_TYPE (field), upper)); + + field = gfc_advance_chain (TYPE_FIELDS (type), 2); + tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), + desc, field, NULL_TREE); + gfc_add_modify (block, tmp, fold_convert (TREE_TYPE (field), stride)); + } +} + + +static tree +conv_caf_vector_subscript (stmtblock_t *block, tree desc, gfc_array_ref *ar) +{ + gfc_se argse; + tree var, lower, upper = NULL_TREE, stride = NULL_TREE, vector, nvec; + tree lbound, ubound, tmp; + int i; + + var = gfc_create_var (gfc_get_caf_vector_type (ar->dimen), "vector"); + + for (i = 0; i < ar->dimen; i++) + switch (ar->dimen_type[i]) + { + case DIMEN_RANGE: + if (ar->end[i]) + { + gfc_init_se (&argse, NULL); + gfc_conv_expr (&argse, ar->end[i]); + gfc_add_block_to_block (block, &argse.pre); + upper = gfc_evaluate_now (argse.expr, block); + } + else + upper = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[i]); + if (ar->stride[i]) + { + gfc_init_se (&argse, NULL); + gfc_conv_expr (&argse, ar->stride[i]); + gfc_add_block_to_block (block, &argse.pre); + stride = gfc_evaluate_now (argse.expr, block); + } + else + stride = gfc_index_one_node; + + /* Fall through. */ + case DIMEN_ELEMENT: + if (ar->start[i]) + { + gfc_init_se (&argse, NULL); + gfc_conv_expr (&argse, ar->start[i]); + gfc_add_block_to_block (block, &argse.pre); + lower = gfc_evaluate_now (argse.expr, block); + } + else + lower = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[i]); + if (ar->dimen_type[i] == DIMEN_ELEMENT) + { + upper = lower; + stride = gfc_index_one_node; + } + vector = NULL_TREE; + nvec = size_zero_node; + conv_caf_vector_subscript_elem (block, i, var, lower, upper, stride, + vector, 0, nvec); + break; + + case DIMEN_VECTOR: + gfc_init_se (&argse, NULL); + argse.descriptor_only = 1; + gfc_conv_expr_descriptor (&argse, ar->start[i]); + gfc_add_block_to_block (block, &argse.pre); + vector = argse.expr; + lbound = gfc_conv_descriptor_lbound_get (vector, gfc_rank_cst[0]); + ubound = gfc_conv_descriptor_ubound_get (vector, gfc_rank_cst[0]); + nvec = gfc_conv_array_extent_dim (lbound, ubound, NULL); + tmp = gfc_conv_descriptor_stride_get (vector, gfc_rank_cst[0]); + nvec = fold_build2_loc (input_location, TRUNC_DIV_EXPR, + TREE_TYPE (nvec), nvec, tmp); + lower = gfc_index_zero_node; + upper = gfc_index_zero_node; + stride = gfc_index_zero_node; + vector = gfc_conv_descriptor_data_get (vector); + conv_caf_vector_subscript_elem (block, i, var, lower, upper, stride, + vector, ar->start[i]->ts.kind, nvec); + break; + default: + gcc_unreachable(); + } + return gfc_build_addr_expr (NULL_TREE, var); +} + + +static tree +compute_component_offset (tree field, tree type) +{ + tree tmp; + if (DECL_FIELD_BIT_OFFSET (field) != NULL_TREE + && !integer_zerop (DECL_FIELD_BIT_OFFSET (field))) + { + tmp = fold_build2 (TRUNC_DIV_EXPR, type, + DECL_FIELD_BIT_OFFSET (field), + bitsize_unit_node); + return fold_build2 (PLUS_EXPR, type, DECL_FIELD_OFFSET (field), tmp); + } + else + return DECL_FIELD_OFFSET (field); +} + + +static tree +conv_expr_ref_to_caf_ref (stmtblock_t *block, gfc_expr *expr) +{ + gfc_ref *ref = expr->ref, *last_comp_ref; + tree caf_ref = NULL_TREE, prev_caf_ref = NULL_TREE, reference_type, tmp, tmp2, + field, last_type, inner_struct, mode, mode_rhs, dim_array, dim, dim_type, + start, end, stride, vector, nvec; + gfc_se se; + bool ref_static_array = false; + tree last_component_ref_tree = NULL_TREE; + int i, last_type_n; + + if (expr->symtree) + { + last_component_ref_tree = expr->symtree->n.sym->backend_decl; + ref_static_array = !expr->symtree->n.sym->attr.allocatable + && !expr->symtree->n.sym->attr.pointer; + } + + /* Prevent uninit-warning. */ + reference_type = NULL_TREE; + + /* Skip refs upto the first coarray-ref. */ + last_comp_ref = NULL; + while (ref && (ref->type != REF_ARRAY || ref->u.ar.codimen == 0)) + { + /* Remember the type of components skipped. */ + if (ref->type == REF_COMPONENT) + last_comp_ref = ref; + ref = ref->next; + } + /* When a component was skipped, get the type information of the last + component ref, else get the type from the symbol. */ + if (last_comp_ref) + { + last_type = gfc_typenode_for_spec (&last_comp_ref->u.c.component->ts); + last_type_n = last_comp_ref->u.c.component->ts.type; + } + else + { + last_type = gfc_typenode_for_spec (&expr->symtree->n.sym->ts); + last_type_n = expr->symtree->n.sym->ts.type; + } + + while (ref) + { + if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0 + && ref->u.ar.dimen == 0) + { + /* Skip pure coindexes. */ + ref = ref->next; + continue; + } + tmp = gfc_create_var (gfc_get_caf_reference_type (), "caf_ref"); + reference_type = TREE_TYPE (tmp); + + if (caf_ref == NULL_TREE) + caf_ref = tmp; + + /* Construct the chain of refs. */ + if (prev_caf_ref != NULL_TREE) + { + field = gfc_advance_chain (TYPE_FIELDS (reference_type), 0); + tmp2 = fold_build3_loc (input_location, COMPONENT_REF, + TREE_TYPE (field), prev_caf_ref, field, + NULL_TREE); + gfc_add_modify (block, tmp2, gfc_build_addr_expr (TREE_TYPE (field), + tmp)); + } + prev_caf_ref = tmp; + + switch (ref->type) + { + case REF_COMPONENT: + last_type = gfc_typenode_for_spec (&ref->u.c.component->ts); + last_type_n = ref->u.c.component->ts.type; + /* Set the type of the ref. */ + field = gfc_advance_chain (TYPE_FIELDS (reference_type), 1); + tmp = fold_build3_loc (input_location, COMPONENT_REF, + TREE_TYPE (field), prev_caf_ref, field, + NULL_TREE); + gfc_add_modify (block, tmp, build_int_cst (integer_type_node, + GFC_CAF_REF_COMPONENT)); + + /* Ref the c in union u. */ + field = gfc_advance_chain (TYPE_FIELDS (reference_type), 3); + tmp = fold_build3_loc (input_location, COMPONENT_REF, + TREE_TYPE (field), prev_caf_ref, field, + NULL_TREE); + field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (field)), 0); + inner_struct = fold_build3_loc (input_location, COMPONENT_REF, + TREE_TYPE (field), tmp, field, + NULL_TREE); + + /* Set the offset. */ + field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (inner_struct)), 0); + tmp = fold_build3_loc (input_location, COMPONENT_REF, + TREE_TYPE (field), inner_struct, field, + NULL_TREE); + /* Computing the offset is somewhat harder. The bit_offset has to be + taken into account. When the bit_offset in the field_decl is non- + null, divide it by the bitsize_unit and add it to the regular + offset. */ + tmp2 = compute_component_offset (ref->u.c.component->backend_decl, + TREE_TYPE (tmp)); + gfc_add_modify (block, tmp, fold_convert (TREE_TYPE (tmp), tmp2)); + + /* Set caf_token_offset. */ + field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (inner_struct)), 1); + tmp = fold_build3_loc (input_location, COMPONENT_REF, + TREE_TYPE (field), inner_struct, field, + NULL_TREE); + if ((ref->u.c.component->attr.allocatable + || ref->u.c.component->attr.pointer) + && ref->u.c.component->attr.dimension) + { + tree arr_desc_token_offset; + /* Get the token field from the descriptor. */ + arr_desc_token_offset = TREE_OPERAND ( + gfc_conv_descriptor_token (ref->u.c.component->backend_decl), 1); + arr_desc_token_offset + = compute_component_offset (arr_desc_token_offset, + TREE_TYPE (tmp)); + tmp2 = fold_build2_loc (input_location, PLUS_EXPR, + TREE_TYPE (tmp2), tmp2, + arr_desc_token_offset); + } + else if (ref->u.c.component->caf_token) + tmp2 = compute_component_offset (ref->u.c.component->caf_token, + TREE_TYPE (tmp)); + else + tmp2 = integer_zero_node; + gfc_add_modify (block, tmp, fold_convert (TREE_TYPE (tmp), tmp2)); + + /* Remember whether this ref was to a non-allocatable/non-pointer + component so the next array ref can be tailored correctly. */ + ref_static_array = !ref->u.c.component->attr.allocatable + && !ref->u.c.component->attr.pointer; + last_component_ref_tree = ref_static_array + ? ref->u.c.component->backend_decl : NULL_TREE; + break; + case REF_ARRAY: + if (ref_static_array && ref->u.ar.as->type == AS_DEFERRED) + ref_static_array = false; + /* Set the type of the ref. */ + field = gfc_advance_chain (TYPE_FIELDS (reference_type), 1); + tmp = fold_build3_loc (input_location, COMPONENT_REF, + TREE_TYPE (field), prev_caf_ref, field, + NULL_TREE); + gfc_add_modify (block, tmp, build_int_cst (integer_type_node, + ref_static_array + ? GFC_CAF_REF_STATIC_ARRAY + : GFC_CAF_REF_ARRAY)); + + /* Ref the a in union u. */ + field = gfc_advance_chain (TYPE_FIELDS (reference_type), 3); + tmp = fold_build3_loc (input_location, COMPONENT_REF, + TREE_TYPE (field), prev_caf_ref, field, + NULL_TREE); + field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (field)), 1); + inner_struct = fold_build3_loc (input_location, COMPONENT_REF, + TREE_TYPE (field), tmp, field, + NULL_TREE); + + /* Set the static_array_type in a for static arrays. */ + if (ref_static_array) + { + field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (inner_struct)), + 1); + tmp = fold_build3_loc (input_location, COMPONENT_REF, + TREE_TYPE (field), inner_struct, field, + NULL_TREE); + gfc_add_modify (block, tmp, build_int_cst (TREE_TYPE (tmp), + last_type_n)); + } + /* Ref the mode in the inner_struct. */ + field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (inner_struct)), 0); + mode = fold_build3_loc (input_location, COMPONENT_REF, + TREE_TYPE (field), inner_struct, field, + NULL_TREE); + /* Ref the dim in the inner_struct. */ + field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (inner_struct)), 2); + dim_array = fold_build3_loc (input_location, COMPONENT_REF, + TREE_TYPE (field), inner_struct, field, + NULL_TREE); + for (i = 0; i < ref->u.ar.dimen; ++i) + { + /* Ref dim i. */ + dim = gfc_build_array_ref (dim_array, gfc_rank_cst[i], NULL_TREE); + dim_type = TREE_TYPE (dim); + mode_rhs = start = end = stride = NULL_TREE; + switch (ref->u.ar.dimen_type[i]) + { + case DIMEN_RANGE: + if (ref->u.ar.end[i]) + { + gfc_init_se (&se, NULL); + gfc_conv_expr (&se, ref->u.ar.end[i]); + gfc_add_block_to_block (block, &se.pre); + if (ref_static_array) + { + /* Make the index zero-based, when reffing a static + array. */ + end = se.expr; + gfc_init_se (&se, NULL); + gfc_conv_expr (&se, ref->u.ar.as->lower[i]); + gfc_add_block_to_block (block, &se.pre); + se.expr = fold_build2 (MINUS_EXPR, + gfc_array_index_type, + end, fold_convert ( + gfc_array_index_type, + se.expr)); + } + end = gfc_evaluate_now (fold_convert ( + gfc_array_index_type, + se.expr), + block); + } + else if (ref_static_array) + end = fold_build2 (MINUS_EXPR, + gfc_array_index_type, + gfc_conv_array_ubound ( + last_component_ref_tree, i), + gfc_conv_array_lbound ( + last_component_ref_tree, i)); + else + { + end = NULL_TREE; + mode_rhs = build_int_cst (unsigned_char_type_node, + GFC_CAF_ARR_REF_OPEN_END); + } + if (ref->u.ar.stride[i]) + { + gfc_init_se (&se, NULL); + gfc_conv_expr (&se, ref->u.ar.stride[i]); + gfc_add_block_to_block (block, &se.pre); + stride = gfc_evaluate_now (fold_convert ( + gfc_array_index_type, + se.expr), + block); + if (ref_static_array) + { + /* Make the index zero-based, when reffing a static + array. */ + stride = fold_build2 (MULT_EXPR, + gfc_array_index_type, + gfc_conv_array_stride ( + last_component_ref_tree, + i), + stride); + gcc_assert (end != NULL_TREE); + /* Multiply with the product of array's stride and + the step of the ref to a virtual upper bound. + We cannot compute the actual upper bound here or + the caflib would compute the extend + incorrectly. */ + end = fold_build2 (MULT_EXPR, gfc_array_index_type, + end, gfc_conv_array_stride ( + last_component_ref_tree, + i)); + end = gfc_evaluate_now (end, block); + stride = gfc_evaluate_now (stride, block); + } + } + else if (ref_static_array) + { + stride = gfc_conv_array_stride (last_component_ref_tree, + i); + end = fold_build2 (MULT_EXPR, gfc_array_index_type, + end, stride); + end = gfc_evaluate_now (end, block); + } + else + /* Always set a ref stride of one to make caflib's + handling easier. */ + stride = gfc_index_one_node; + + /* Fall through. */ + case DIMEN_ELEMENT: + if (ref->u.ar.start[i]) + { + gfc_init_se (&se, NULL); + gfc_conv_expr (&se, ref->u.ar.start[i]); + gfc_add_block_to_block (block, &se.pre); + if (ref_static_array) + { + /* Make the index zero-based, when reffing a static + array. */ + start = fold_convert (gfc_array_index_type, se.expr); + gfc_init_se (&se, NULL); + gfc_conv_expr (&se, ref->u.ar.as->lower[i]); + gfc_add_block_to_block (block, &se.pre); + se.expr = fold_build2 (MINUS_EXPR, + gfc_array_index_type, + start, fold_convert ( + gfc_array_index_type, + se.expr)); + /* Multiply with the stride. */ + se.expr = fold_build2 (MULT_EXPR, + gfc_array_index_type, + se.expr, + gfc_conv_array_stride ( + last_component_ref_tree, + i)); + } + start = gfc_evaluate_now (fold_convert ( + gfc_array_index_type, + se.expr), + block); + if (mode_rhs == NULL_TREE) + mode_rhs = build_int_cst (unsigned_char_type_node, + ref->u.ar.dimen_type[i] + == DIMEN_ELEMENT + ? GFC_CAF_ARR_REF_SINGLE + : GFC_CAF_ARR_REF_RANGE); + } + else if (ref_static_array) + { + start = integer_zero_node; + mode_rhs = build_int_cst (unsigned_char_type_node, + ref->u.ar.start[i] == NULL + ? GFC_CAF_ARR_REF_FULL + : GFC_CAF_ARR_REF_RANGE); + } + else if (end == NULL_TREE) + mode_rhs = build_int_cst (unsigned_char_type_node, + GFC_CAF_ARR_REF_FULL); + else + mode_rhs = build_int_cst (unsigned_char_type_node, + GFC_CAF_ARR_REF_OPEN_START); + + /* Ref the s in dim. */ + field = gfc_advance_chain (TYPE_FIELDS (dim_type), 0); + tmp = fold_build3_loc (input_location, COMPONENT_REF, + TREE_TYPE (field), dim, field, + NULL_TREE); + + /* Set start in s. */ + if (start != NULL_TREE) + { + field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (tmp)), + 0); + tmp2 = fold_build3_loc (input_location, COMPONENT_REF, + TREE_TYPE (field), tmp, field, + NULL_TREE); + gfc_add_modify (block, tmp2, + fold_convert (TREE_TYPE (tmp2), start)); + } + + /* Set end in s. */ + if (end != NULL_TREE) + { + field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (tmp)), + 1); + tmp2 = fold_build3_loc (input_location, COMPONENT_REF, + TREE_TYPE (field), tmp, field, + NULL_TREE); + gfc_add_modify (block, tmp2, + fold_convert (TREE_TYPE (tmp2), end)); + } + + /* Set end in s. */ + if (stride != NULL_TREE) + { + field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (tmp)), + 2); + tmp2 = fold_build3_loc (input_location, COMPONENT_REF, + TREE_TYPE (field), tmp, field, + NULL_TREE); + gfc_add_modify (block, tmp2, + fold_convert (TREE_TYPE (tmp2), stride)); + } + break; + case DIMEN_VECTOR: + /* TODO: In case of static array. */ + gcc_assert (!ref_static_array); + mode_rhs = build_int_cst (unsigned_char_type_node, + GFC_CAF_ARR_REF_VECTOR); + gfc_init_se (&se, NULL); + se.descriptor_only = 1; + gfc_conv_expr_descriptor (&se, ref->u.ar.start[i]); + gfc_add_block_to_block (block, &se.pre); + vector = se.expr; + tmp = gfc_conv_descriptor_lbound_get (vector, + gfc_rank_cst[0]); + tmp2 = gfc_conv_descriptor_ubound_get (vector, + gfc_rank_cst[0]); + nvec = gfc_conv_array_extent_dim (tmp, tmp2, NULL); + tmp = gfc_conv_descriptor_stride_get (vector, + gfc_rank_cst[0]); + nvec = fold_build2_loc (input_location, TRUNC_DIV_EXPR, + TREE_TYPE (nvec), nvec, tmp); + vector = gfc_conv_descriptor_data_get (vector); + + /* Ref the v in dim. */ + field = gfc_advance_chain (TYPE_FIELDS (dim_type), 1); + tmp = fold_build3_loc (input_location, COMPONENT_REF, + TREE_TYPE (field), dim, field, + NULL_TREE); + + /* Set vector in v. */ + field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (tmp)), 0); + tmp2 = fold_build3_loc (input_location, COMPONENT_REF, + TREE_TYPE (field), tmp, field, + NULL_TREE); + gfc_add_modify (block, tmp2, fold_convert (TREE_TYPE (tmp2), + vector)); + + /* Set nvec in v. */ + field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (tmp)), 1); + tmp2 = fold_build3_loc (input_location, COMPONENT_REF, + TREE_TYPE (field), tmp, field, + NULL_TREE); + gfc_add_modify (block, tmp2, fold_convert (TREE_TYPE (tmp2), + nvec)); + + /* Set kind in v. */ + field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (tmp)), 2); + tmp2 = fold_build3_loc (input_location, COMPONENT_REF, + TREE_TYPE (field), tmp, field, + NULL_TREE); + gfc_add_modify (block, tmp2, build_int_cst (integer_type_node, + ref->u.ar.start[i]->ts.kind)); + break; + default: + gcc_unreachable (); + } + /* Set the mode for dim i. */ + tmp = gfc_build_array_ref (mode, gfc_rank_cst[i], NULL_TREE); + gfc_add_modify (block, tmp, fold_convert (TREE_TYPE (tmp), + mode_rhs)); + } + + /* Set the mode for dim i+1 to GFC_ARR_REF_NONE. */ + if (i < GFC_MAX_DIMENSIONS) + { + tmp = gfc_build_array_ref (mode, gfc_rank_cst[i], NULL_TREE); + gfc_add_modify (block, tmp, + build_int_cst (unsigned_char_type_node, + GFC_CAF_ARR_REF_NONE)); + } + break; + default: + gcc_unreachable (); + } + + /* Set the size of the current type. */ + field = gfc_advance_chain (TYPE_FIELDS (reference_type), 2); + tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), + prev_caf_ref, field, NULL_TREE); + gfc_add_modify (block, tmp, fold_convert (TREE_TYPE (field), + TYPE_SIZE_UNIT (last_type))); + + ref = ref->next; + } + + if (prev_caf_ref != NULL_TREE) + { + field = gfc_advance_chain (TYPE_FIELDS (reference_type), 0); + tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), + prev_caf_ref, field, NULL_TREE); + gfc_add_modify (block, tmp, fold_convert (TREE_TYPE (field), + null_pointer_node)); + } + return caf_ref != NULL_TREE ? gfc_build_addr_expr (NULL_TREE, caf_ref) + : NULL_TREE; +} + +/* Get data from a remote coarray. */ + +static void +gfc_conv_intrinsic_caf_get (gfc_se *se, gfc_expr *expr, tree lhs, tree lhs_kind, + tree may_require_tmp, bool may_realloc, + symbol_attribute *caf_attr) +{ + gfc_expr *array_expr, *tmp_stat; + gfc_se argse; + tree caf_decl, token, offset, image_index, tmp; + tree res_var, dst_var, type, kind, vec, stat; + tree caf_reference; + symbol_attribute caf_attr_store; + + gcc_assert (flag_coarray == GFC_FCOARRAY_LIB); + + if (se->ss && se->ss->info->useflags) + { + /* Access the previously obtained result. */ + gfc_conv_tmp_array_ref (se); + return; + } + + /* If lhs is set, the CAF_GET intrinsic has already been stripped. */ + array_expr = (lhs == NULL_TREE) ? expr->value.function.actual->expr : expr; + type = gfc_typenode_for_spec (&array_expr->ts); + + if (caf_attr == NULL) + { + caf_attr_store = gfc_caf_attr (array_expr); + caf_attr = &caf_attr_store; + } + + res_var = lhs; + dst_var = lhs; + + vec = null_pointer_node; + tmp_stat = gfc_find_stat_co (expr); + + if (tmp_stat) + { + gfc_se stat_se; + gfc_init_se (&stat_se, NULL); + gfc_conv_expr_reference (&stat_se, tmp_stat); + stat = stat_se.expr; + gfc_add_block_to_block (&se->pre, &stat_se.pre); + gfc_add_block_to_block (&se->post, &stat_se.post); + } + else + stat = null_pointer_node; + + /* Only use the new get_by_ref () where it is necessary. I.e., when the lhs + is reallocatable or the right-hand side has allocatable components. */ + if (caf_attr->alloc_comp || caf_attr->pointer_comp || may_realloc) + { + /* Get using caf_get_by_ref. */ + caf_reference = conv_expr_ref_to_caf_ref (&se->pre, array_expr); + + if (caf_reference != NULL_TREE) + { + if (lhs == NULL_TREE) + { + if (array_expr->ts.type == BT_CHARACTER) + gfc_init_se (&argse, NULL); + if (array_expr->rank == 0) + { + symbol_attribute attr; + gfc_clear_attr (&attr); + if (array_expr->ts.type == BT_CHARACTER) + { + res_var = gfc_conv_string_tmp (se, + build_pointer_type (type), + array_expr->ts.u.cl->backend_decl); + argse.string_length = array_expr->ts.u.cl->backend_decl; + } + else + res_var = gfc_create_var (type, "caf_res"); + dst_var = gfc_conv_scalar_to_descriptor (se, res_var, attr); + dst_var = gfc_build_addr_expr (NULL_TREE, dst_var); + } + else + { + /* Create temporary. */ + if (array_expr->ts.type == BT_CHARACTER) + gfc_conv_expr_descriptor (&argse, array_expr); + may_realloc = gfc_trans_create_temp_array (&se->pre, + &se->post, + se->ss, type, + NULL_TREE, false, + false, false, + &array_expr->where) + == NULL_TREE; + res_var = se->ss->info->data.array.descriptor; + dst_var = gfc_build_addr_expr (NULL_TREE, res_var); + if (may_realloc) + { + tmp = gfc_conv_descriptor_data_get (res_var); + tmp = gfc_deallocate_with_status (tmp, NULL_TREE, + NULL_TREE, NULL_TREE, + NULL_TREE, true, + NULL, + GFC_CAF_COARRAY_NOCOARRAY); + gfc_add_expr_to_block (&se->post, tmp); + } + } + } + + kind = build_int_cst (integer_type_node, expr->ts.kind); + if (lhs_kind == NULL_TREE) + lhs_kind = kind; + + caf_decl = gfc_get_tree_for_caf_expr (array_expr); + if (TREE_CODE (TREE_TYPE (caf_decl)) == REFERENCE_TYPE) + caf_decl = build_fold_indirect_ref_loc (input_location, caf_decl); + image_index = gfc_caf_get_image_index (&se->pre, array_expr, + caf_decl); + gfc_get_caf_token_offset (se, &token, NULL, caf_decl, NULL, + array_expr); + + /* No overlap possible as we have generated a temporary. */ + if (lhs == NULL_TREE) + may_require_tmp = boolean_false_node; + + /* It guarantees memory consistency within the same segment. */ + tmp = gfc_build_string_const (strlen ("memory") + 1, "memory"); + tmp = build5_loc (input_location, ASM_EXPR, void_type_node, + gfc_build_string_const (1, ""), NULL_TREE, + NULL_TREE, tree_cons (NULL_TREE, tmp, NULL_TREE), + NULL_TREE); + ASM_VOLATILE_P (tmp) = 1; + gfc_add_expr_to_block (&se->pre, tmp); + + tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_get_by_ref, + 10, token, image_index, dst_var, + caf_reference, lhs_kind, kind, + may_require_tmp, + may_realloc ? boolean_true_node : + boolean_false_node, + stat, build_int_cst (integer_type_node, + array_expr->ts.type)); + + gfc_add_expr_to_block (&se->pre, tmp); + + if (se->ss) + gfc_advance_se_ss_chain (se); + + se->expr = res_var; + if (array_expr->ts.type == BT_CHARACTER) + se->string_length = argse.string_length; + + return; + } + } + + gfc_init_se (&argse, NULL); + if (array_expr->rank == 0) + { + symbol_attribute attr; + + gfc_clear_attr (&attr); + gfc_conv_expr (&argse, array_expr); + + if (lhs == NULL_TREE) + { + gfc_clear_attr (&attr); + if (array_expr->ts.type == BT_CHARACTER) + res_var = gfc_conv_string_tmp (se, build_pointer_type (type), + argse.string_length); + else + res_var = gfc_create_var (type, "caf_res"); + dst_var = gfc_conv_scalar_to_descriptor (&argse, res_var, attr); + dst_var = gfc_build_addr_expr (NULL_TREE, dst_var); + } + argse.expr = gfc_conv_scalar_to_descriptor (&argse, argse.expr, attr); + argse.expr = gfc_build_addr_expr (NULL_TREE, argse.expr); + } + else + { + /* If has_vector, pass descriptor for whole array and the + vector bounds separately. */ + gfc_array_ref *ar, ar2; + bool has_vector = false; + + if (gfc_is_coindexed (expr) && gfc_has_vector_subscript (expr)) + { + has_vector = true; + ar = gfc_find_array_ref (expr); + ar2 = *ar; + memset (ar, '\0', sizeof (*ar)); + ar->as = ar2.as; + ar->type = AR_FULL; + } + // TODO: Check whether argse.want_coarray = 1 can help with the below. + gfc_conv_expr_descriptor (&argse, array_expr); + /* Using gfc_conv_expr_descriptor, we only get the descriptor, but that + has the wrong type if component references are done. */ + gfc_add_modify (&argse.pre, gfc_conv_descriptor_dtype (argse.expr), + gfc_get_dtype_rank_type (has_vector ? ar2.dimen + : array_expr->rank, + type)); + if (has_vector) + { + vec = conv_caf_vector_subscript (&argse.pre, argse.expr, &ar2); + *ar = ar2; + } + + if (lhs == NULL_TREE) + { + /* Create temporary. */ + for (int n = 0; n < se->ss->loop->dimen; n++) + if (se->loop->to[n] == NULL_TREE) + { + se->loop->from[n] = gfc_conv_descriptor_lbound_get (argse.expr, + gfc_rank_cst[n]); + se->loop->to[n] = gfc_conv_descriptor_ubound_get (argse.expr, + gfc_rank_cst[n]); + } + gfc_trans_create_temp_array (&argse.pre, &argse.post, se->ss, type, + NULL_TREE, false, true, false, + &array_expr->where); + res_var = se->ss->info->data.array.descriptor; + dst_var = gfc_build_addr_expr (NULL_TREE, res_var); + } + argse.expr = gfc_build_addr_expr (NULL_TREE, argse.expr); + } + + kind = build_int_cst (integer_type_node, expr->ts.kind); + if (lhs_kind == NULL_TREE) + lhs_kind = kind; + + gfc_add_block_to_block (&se->pre, &argse.pre); + gfc_add_block_to_block (&se->post, &argse.post); + + caf_decl = gfc_get_tree_for_caf_expr (array_expr); + if (TREE_CODE (TREE_TYPE (caf_decl)) == REFERENCE_TYPE) + caf_decl = build_fold_indirect_ref_loc (input_location, caf_decl); + image_index = gfc_caf_get_image_index (&se->pre, array_expr, caf_decl); + gfc_get_caf_token_offset (se, &token, &offset, caf_decl, argse.expr, + array_expr); + + /* No overlap possible as we have generated a temporary. */ + if (lhs == NULL_TREE) + may_require_tmp = boolean_false_node; + + /* It guarantees memory consistency within the same segment. */ + tmp = gfc_build_string_const (strlen ("memory") + 1, "memory"); + tmp = build5_loc (input_location, ASM_EXPR, void_type_node, + gfc_build_string_const (1, ""), NULL_TREE, NULL_TREE, + tree_cons (NULL_TREE, tmp, NULL_TREE), NULL_TREE); + ASM_VOLATILE_P (tmp) = 1; + gfc_add_expr_to_block (&se->pre, tmp); + + tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_get, 10, + token, offset, image_index, argse.expr, vec, + dst_var, kind, lhs_kind, may_require_tmp, stat); + + gfc_add_expr_to_block (&se->pre, tmp); + + if (se->ss) + gfc_advance_se_ss_chain (se); + + se->expr = res_var; + if (array_expr->ts.type == BT_CHARACTER) + se->string_length = argse.string_length; +} + + +/* Send data to a remote coarray. */ + +static tree +conv_caf_send (gfc_code *code) { + gfc_expr *lhs_expr, *rhs_expr, *tmp_stat, *tmp_team; + gfc_se lhs_se, rhs_se; + stmtblock_t block; + tree caf_decl, token, offset, image_index, tmp, lhs_kind, rhs_kind; + tree may_require_tmp, src_stat, dst_stat, dst_team; + tree lhs_type = NULL_TREE; + tree vec = null_pointer_node, rhs_vec = null_pointer_node; + symbol_attribute lhs_caf_attr, rhs_caf_attr; + + gcc_assert (flag_coarray == GFC_FCOARRAY_LIB); + + lhs_expr = code->ext.actual->expr; + rhs_expr = code->ext.actual->next->expr; + may_require_tmp = gfc_check_dependency (lhs_expr, rhs_expr, true) == 0 + ? boolean_false_node : boolean_true_node; + gfc_init_block (&block); + + lhs_caf_attr = gfc_caf_attr (lhs_expr); + rhs_caf_attr = gfc_caf_attr (rhs_expr); + src_stat = dst_stat = null_pointer_node; + dst_team = null_pointer_node; + + /* LHS. */ + gfc_init_se (&lhs_se, NULL); + if (lhs_expr->rank == 0) + { + if (lhs_expr->ts.type == BT_CHARACTER && lhs_expr->ts.deferred) + { + lhs_se.expr = gfc_get_tree_for_caf_expr (lhs_expr); + lhs_se.expr = gfc_build_addr_expr (NULL_TREE, lhs_se.expr); + } + else + { + symbol_attribute attr; + gfc_clear_attr (&attr); + gfc_conv_expr (&lhs_se, lhs_expr); + lhs_type = TREE_TYPE (lhs_se.expr); + lhs_se.expr = gfc_conv_scalar_to_descriptor (&lhs_se, lhs_se.expr, + attr); + lhs_se.expr = gfc_build_addr_expr (NULL_TREE, lhs_se.expr); + } + } + else if ((lhs_caf_attr.alloc_comp || lhs_caf_attr.pointer_comp) + && lhs_caf_attr.codimension) + { + lhs_se.want_pointer = 1; + gfc_conv_expr_descriptor (&lhs_se, lhs_expr); + /* Using gfc_conv_expr_descriptor, we only get the descriptor, but that + has the wrong type if component references are done. */ + lhs_type = gfc_typenode_for_spec (&lhs_expr->ts); + tmp = build_fold_indirect_ref_loc (input_location, lhs_se.expr); + gfc_add_modify (&lhs_se.pre, gfc_conv_descriptor_dtype (tmp), + gfc_get_dtype_rank_type ( + gfc_has_vector_subscript (lhs_expr) + ? gfc_find_array_ref (lhs_expr)->dimen + : lhs_expr->rank, + lhs_type)); + } + else + { + bool has_vector = gfc_has_vector_subscript (lhs_expr); + + if (gfc_is_coindexed (lhs_expr) || !has_vector) + { + /* If has_vector, pass descriptor for whole array and the + vector bounds separately. */ + gfc_array_ref *ar, ar2; + bool has_tmp_lhs_array = false; + if (has_vector) + { + has_tmp_lhs_array = true; + ar = gfc_find_array_ref (lhs_expr); + ar2 = *ar; + memset (ar, '\0', sizeof (*ar)); + ar->as = ar2.as; + ar->type = AR_FULL; + } + lhs_se.want_pointer = 1; + gfc_conv_expr_descriptor (&lhs_se, lhs_expr); + /* Using gfc_conv_expr_descriptor, we only get the descriptor, but + that has the wrong type if component references are done. */ + lhs_type = gfc_typenode_for_spec (&lhs_expr->ts); + tmp = build_fold_indirect_ref_loc (input_location, lhs_se.expr); + gfc_add_modify (&lhs_se.pre, gfc_conv_descriptor_dtype (tmp), + gfc_get_dtype_rank_type (has_vector ? ar2.dimen + : lhs_expr->rank, + lhs_type)); + if (has_tmp_lhs_array) + { + vec = conv_caf_vector_subscript (&block, lhs_se.expr, &ar2); + *ar = ar2; + } + } + else + { + /* Special casing for arr1 ([...]) = arr2[...], i.e. caf_get to + indexed array expression. This is rewritten to: + + tmp_array = arr2[...] + arr1 ([...]) = tmp_array + + because using the standard gfc_conv_expr (lhs_expr) did the + assignment with lhs and rhs exchanged. */ + + gfc_ss *lss_for_tmparray, *lss_real; + gfc_loopinfo loop; + gfc_se se; + stmtblock_t body; + tree tmparr_desc, src; + tree index = gfc_index_zero_node; + tree stride = gfc_index_zero_node; + int n; + + /* Walk both sides of the assignment, once to get the shape of the + temporary array to create right. */ + lss_for_tmparray = gfc_walk_expr (lhs_expr); + /* And a second time to be able to create an assignment of the + temporary to the lhs_expr. gfc_trans_create_temp_array replaces + the tree in the descriptor with the one for the temporary + array. */ + lss_real = gfc_walk_expr (lhs_expr); + gfc_init_loopinfo (&loop); + gfc_add_ss_to_loop (&loop, lss_for_tmparray); + gfc_add_ss_to_loop (&loop, lss_real); + gfc_conv_ss_startstride (&loop); + gfc_conv_loop_setup (&loop, &lhs_expr->where); + lhs_type = gfc_typenode_for_spec (&lhs_expr->ts); + gfc_trans_create_temp_array (&lhs_se.pre, &lhs_se.post, + lss_for_tmparray, lhs_type, NULL_TREE, + false, true, false, + &lhs_expr->where); + tmparr_desc = lss_for_tmparray->info->data.array.descriptor; + gfc_start_scalarized_body (&loop, &body); + gfc_init_se (&se, NULL); + gfc_copy_loopinfo_to_se (&se, &loop); + se.ss = lss_real; + gfc_conv_expr (&se, lhs_expr); + gfc_add_block_to_block (&body, &se.pre); + + /* Walk over all indexes of the loop. */ + for (n = loop.dimen - 1; n > 0; --n) + { + tmp = loop.loopvar[n]; + tmp = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, tmp, loop.from[n]); + tmp = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, tmp, index); + + stride = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, + loop.to[n - 1], loop.from[n - 1]); + stride = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, + stride, gfc_index_one_node); + + index = fold_build2_loc (input_location, MULT_EXPR, + gfc_array_index_type, tmp, stride); + } + + index = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, + index, loop.from[0]); + + index = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, + loop.loopvar[0], index); + + src = build_fold_indirect_ref (gfc_conv_array_data (tmparr_desc)); + src = gfc_build_array_ref (src, index, NULL); + /* Now create the assignment of lhs_expr = tmp_array. */ + gfc_add_modify (&body, se.expr, src); + gfc_add_block_to_block (&body, &se.post); + lhs_se.expr = gfc_build_addr_expr (NULL_TREE, tmparr_desc); + gfc_trans_scalarizing_loops (&loop, &body); + gfc_add_block_to_block (&loop.pre, &loop.post); + gfc_add_expr_to_block (&lhs_se.post, gfc_finish_block (&loop.pre)); + gfc_free_ss (lss_for_tmparray); + gfc_free_ss (lss_real); + } + } + + lhs_kind = build_int_cst (integer_type_node, lhs_expr->ts.kind); + + /* Special case: RHS is a coarray but LHS is not; this code path avoids a + temporary and a loop. */ + if (!gfc_is_coindexed (lhs_expr) + && (!lhs_caf_attr.codimension + || !(lhs_expr->rank > 0 + && (lhs_caf_attr.allocatable || lhs_caf_attr.pointer)))) + { + bool lhs_may_realloc = lhs_expr->rank > 0 && lhs_caf_attr.allocatable; + gcc_assert (gfc_is_coindexed (rhs_expr)); + gfc_init_se (&rhs_se, NULL); + if (lhs_expr->rank == 0 && lhs_caf_attr.allocatable) + { + gfc_se scal_se; + gfc_init_se (&scal_se, NULL); + scal_se.want_pointer = 1; + gfc_conv_expr (&scal_se, lhs_expr); + /* Ensure scalar on lhs is allocated. */ + gfc_add_block_to_block (&block, &scal_se.pre); + + gfc_allocate_using_malloc (&scal_se.pre, scal_se.expr, + TYPE_SIZE_UNIT ( + gfc_typenode_for_spec (&lhs_expr->ts)), + NULL_TREE); + tmp = fold_build2 (EQ_EXPR, logical_type_node, scal_se.expr, + null_pointer_node); + tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, + tmp, gfc_finish_block (&scal_se.pre), + build_empty_stmt (input_location)); + gfc_add_expr_to_block (&block, tmp); + } + else + lhs_may_realloc = lhs_may_realloc + && gfc_full_array_ref_p (lhs_expr->ref, NULL); + gfc_add_block_to_block (&block, &lhs_se.pre); + gfc_conv_intrinsic_caf_get (&rhs_se, rhs_expr, lhs_se.expr, lhs_kind, + may_require_tmp, lhs_may_realloc, + &rhs_caf_attr); + gfc_add_block_to_block (&block, &rhs_se.pre); + gfc_add_block_to_block (&block, &rhs_se.post); + gfc_add_block_to_block (&block, &lhs_se.post); + return gfc_finish_block (&block); + } + + gfc_add_block_to_block (&block, &lhs_se.pre); + + /* Obtain token, offset and image index for the LHS. */ + caf_decl = gfc_get_tree_for_caf_expr (lhs_expr); + if (TREE_CODE (TREE_TYPE (caf_decl)) == REFERENCE_TYPE) + caf_decl = build_fold_indirect_ref_loc (input_location, caf_decl); + image_index = gfc_caf_get_image_index (&block, lhs_expr, caf_decl); + tmp = lhs_se.expr; + if (lhs_caf_attr.alloc_comp) + gfc_get_caf_token_offset (&lhs_se, &token, NULL, caf_decl, NULL_TREE, + NULL); + else + gfc_get_caf_token_offset (&lhs_se, &token, &offset, caf_decl, tmp, + lhs_expr); + lhs_se.expr = tmp; + + /* RHS. */ + gfc_init_se (&rhs_se, NULL); + if (rhs_expr->expr_type == EXPR_FUNCTION && rhs_expr->value.function.isym + && rhs_expr->value.function.isym->id == GFC_ISYM_CONVERSION) + rhs_expr = rhs_expr->value.function.actual->expr; + if (rhs_expr->rank == 0) + { + symbol_attribute attr; + gfc_clear_attr (&attr); + gfc_conv_expr (&rhs_se, rhs_expr); + rhs_se.expr = gfc_conv_scalar_to_descriptor (&rhs_se, rhs_se.expr, attr); + rhs_se.expr = gfc_build_addr_expr (NULL_TREE, rhs_se.expr); + } + else if ((rhs_caf_attr.alloc_comp || rhs_caf_attr.pointer_comp) + && rhs_caf_attr.codimension) + { + tree tmp2; + rhs_se.want_pointer = 1; + gfc_conv_expr_descriptor (&rhs_se, rhs_expr); + /* Using gfc_conv_expr_descriptor, we only get the descriptor, but that + has the wrong type if component references are done. */ + tmp2 = gfc_typenode_for_spec (&rhs_expr->ts); + tmp = build_fold_indirect_ref_loc (input_location, rhs_se.expr); + gfc_add_modify (&rhs_se.pre, gfc_conv_descriptor_dtype (tmp), + gfc_get_dtype_rank_type ( + gfc_has_vector_subscript (rhs_expr) + ? gfc_find_array_ref (rhs_expr)->dimen + : rhs_expr->rank, + tmp2)); + } + else + { + /* If has_vector, pass descriptor for whole array and the + vector bounds separately. */ + gfc_array_ref *ar, ar2; + bool has_vector = false; + tree tmp2; + + if (gfc_is_coindexed (rhs_expr) && gfc_has_vector_subscript (rhs_expr)) + { + has_vector = true; + ar = gfc_find_array_ref (rhs_expr); + ar2 = *ar; + memset (ar, '\0', sizeof (*ar)); + ar->as = ar2.as; + ar->type = AR_FULL; + } + rhs_se.want_pointer = 1; + gfc_conv_expr_descriptor (&rhs_se, rhs_expr); + /* Using gfc_conv_expr_descriptor, we only get the descriptor, but that + has the wrong type if component references are done. */ + tmp = build_fold_indirect_ref_loc (input_location, rhs_se.expr); + tmp2 = gfc_typenode_for_spec (&rhs_expr->ts); + gfc_add_modify (&rhs_se.pre, gfc_conv_descriptor_dtype (tmp), + gfc_get_dtype_rank_type (has_vector ? ar2.dimen + : rhs_expr->rank, + tmp2)); + if (has_vector) + { + rhs_vec = conv_caf_vector_subscript (&block, rhs_se.expr, &ar2); + *ar = ar2; + } + } + + gfc_add_block_to_block (&block, &rhs_se.pre); + + rhs_kind = build_int_cst (integer_type_node, rhs_expr->ts.kind); + + tmp_stat = gfc_find_stat_co (lhs_expr); + + if (tmp_stat) + { + gfc_se stat_se; + gfc_init_se (&stat_se, NULL); + gfc_conv_expr_reference (&stat_se, tmp_stat); + dst_stat = stat_se.expr; + gfc_add_block_to_block (&block, &stat_se.pre); + gfc_add_block_to_block (&block, &stat_se.post); + } + + tmp_team = gfc_find_team_co (lhs_expr); + + if (tmp_team) + { + gfc_se team_se; + gfc_init_se (&team_se, NULL); + gfc_conv_expr_reference (&team_se, tmp_team); + dst_team = team_se.expr; + gfc_add_block_to_block (&block, &team_se.pre); + gfc_add_block_to_block (&block, &team_se.post); + } + + if (!gfc_is_coindexed (rhs_expr)) + { + if (lhs_caf_attr.alloc_comp || lhs_caf_attr.pointer_comp) + { + tree reference, dst_realloc; + reference = conv_expr_ref_to_caf_ref (&block, lhs_expr); + dst_realloc = lhs_caf_attr.allocatable ? boolean_true_node + : boolean_false_node; + tmp = build_call_expr_loc (input_location, + gfor_fndecl_caf_send_by_ref, + 10, token, image_index, rhs_se.expr, + reference, lhs_kind, rhs_kind, + may_require_tmp, dst_realloc, src_stat, + build_int_cst (integer_type_node, + lhs_expr->ts.type)); + } + else + tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_send, 11, + token, offset, image_index, lhs_se.expr, vec, + rhs_se.expr, lhs_kind, rhs_kind, + may_require_tmp, src_stat, dst_team); + } + else + { + tree rhs_token, rhs_offset, rhs_image_index; + + /* It guarantees memory consistency within the same segment. */ + tmp = gfc_build_string_const (strlen ("memory") + 1, "memory"); + tmp = build5_loc (input_location, ASM_EXPR, void_type_node, + gfc_build_string_const (1, ""), NULL_TREE, NULL_TREE, + tree_cons (NULL_TREE, tmp, NULL_TREE), NULL_TREE); + ASM_VOLATILE_P (tmp) = 1; + gfc_add_expr_to_block (&block, tmp); + + caf_decl = gfc_get_tree_for_caf_expr (rhs_expr); + if (TREE_CODE (TREE_TYPE (caf_decl)) == REFERENCE_TYPE) + caf_decl = build_fold_indirect_ref_loc (input_location, caf_decl); + rhs_image_index = gfc_caf_get_image_index (&block, rhs_expr, caf_decl); + tmp = rhs_se.expr; + if (rhs_caf_attr.alloc_comp || rhs_caf_attr.pointer_comp) + { + tmp_stat = gfc_find_stat_co (lhs_expr); + + if (tmp_stat) + { + gfc_se stat_se; + gfc_init_se (&stat_se, NULL); + gfc_conv_expr_reference (&stat_se, tmp_stat); + src_stat = stat_se.expr; + gfc_add_block_to_block (&block, &stat_se.pre); + gfc_add_block_to_block (&block, &stat_se.post); + } + + gfc_get_caf_token_offset (&rhs_se, &rhs_token, NULL, caf_decl, + NULL_TREE, NULL); + tree lhs_reference, rhs_reference; + lhs_reference = conv_expr_ref_to_caf_ref (&block, lhs_expr); + rhs_reference = conv_expr_ref_to_caf_ref (&block, rhs_expr); + tmp = build_call_expr_loc (input_location, + gfor_fndecl_caf_sendget_by_ref, 13, + token, image_index, lhs_reference, + rhs_token, rhs_image_index, rhs_reference, + lhs_kind, rhs_kind, may_require_tmp, + dst_stat, src_stat, + build_int_cst (integer_type_node, + lhs_expr->ts.type), + build_int_cst (integer_type_node, + rhs_expr->ts.type)); + } + else + { + gfc_get_caf_token_offset (&rhs_se, &rhs_token, &rhs_offset, caf_decl, + tmp, rhs_expr); + tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_sendget, + 14, token, offset, image_index, + lhs_se.expr, vec, rhs_token, rhs_offset, + rhs_image_index, tmp, rhs_vec, lhs_kind, + rhs_kind, may_require_tmp, src_stat); + } + } + gfc_add_expr_to_block (&block, tmp); + gfc_add_block_to_block (&block, &lhs_se.post); + gfc_add_block_to_block (&block, &rhs_se.post); + + /* It guarantees memory consistency within the same segment. */ + tmp = gfc_build_string_const (strlen ("memory") + 1, "memory"); + tmp = build5_loc (input_location, ASM_EXPR, void_type_node, + gfc_build_string_const (1, ""), NULL_TREE, NULL_TREE, + tree_cons (NULL_TREE, tmp, NULL_TREE), NULL_TREE); + ASM_VOLATILE_P (tmp) = 1; + gfc_add_expr_to_block (&block, tmp); + + return gfc_finish_block (&block); +} + + +static void +trans_this_image (gfc_se * se, gfc_expr *expr) +{ + stmtblock_t loop; + tree type, desc, dim_arg, cond, tmp, m, loop_var, exit_label, min_var, + lbound, ubound, extent, ml; + gfc_se argse; + int rank, corank; + gfc_expr *distance = expr->value.function.actual->next->next->expr; + + if (expr->value.function.actual->expr + && !gfc_is_coarray (expr->value.function.actual->expr)) + distance = expr->value.function.actual->expr; + + /* The case -fcoarray=single is handled elsewhere. */ + gcc_assert (flag_coarray != GFC_FCOARRAY_SINGLE); + + /* Argument-free version: THIS_IMAGE(). */ + if (distance || expr->value.function.actual->expr == NULL) + { + if (distance) + { + gfc_init_se (&argse, NULL); + gfc_conv_expr_val (&argse, distance); + gfc_add_block_to_block (&se->pre, &argse.pre); + gfc_add_block_to_block (&se->post, &argse.post); + tmp = fold_convert (integer_type_node, argse.expr); + } + else + tmp = integer_zero_node; + tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_this_image, 1, + tmp); + se->expr = fold_convert (gfc_get_int_type (gfc_default_integer_kind), + tmp); + return; + } + + /* Coarray-argument version: THIS_IMAGE(coarray [, dim]). */ + + type = gfc_get_int_type (gfc_default_integer_kind); + corank = gfc_get_corank (expr->value.function.actual->expr); + rank = expr->value.function.actual->expr->rank; + + /* Obtain the descriptor of the COARRAY. */ + gfc_init_se (&argse, NULL); + argse.want_coarray = 1; + gfc_conv_expr_descriptor (&argse, expr->value.function.actual->expr); + gfc_add_block_to_block (&se->pre, &argse.pre); + gfc_add_block_to_block (&se->post, &argse.post); + desc = argse.expr; + + if (se->ss) + { + /* Create an implicit second parameter from the loop variable. */ + gcc_assert (!expr->value.function.actual->next->expr); + gcc_assert (corank > 0); + gcc_assert (se->loop->dimen == 1); + gcc_assert (se->ss->info->expr == expr); + + dim_arg = se->loop->loopvar[0]; + dim_arg = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, dim_arg, + build_int_cst (TREE_TYPE (dim_arg), 1)); + gfc_advance_se_ss_chain (se); + } + else + { + /* Use the passed DIM= argument. */ + gcc_assert (expr->value.function.actual->next->expr); + gfc_init_se (&argse, NULL); + gfc_conv_expr_type (&argse, expr->value.function.actual->next->expr, + gfc_array_index_type); + gfc_add_block_to_block (&se->pre, &argse.pre); + dim_arg = argse.expr; + + if (INTEGER_CST_P (dim_arg)) + { + if (wi::ltu_p (wi::to_wide (dim_arg), 1) + || wi::gtu_p (wi::to_wide (dim_arg), + GFC_TYPE_ARRAY_CORANK (TREE_TYPE (desc)))) + gfc_error ("%<dim%> argument of %s intrinsic at %L is not a valid " + "dimension index", expr->value.function.isym->name, + &expr->where); + } + else if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS) + { + dim_arg = gfc_evaluate_now (dim_arg, &se->pre); + cond = fold_build2_loc (input_location, LT_EXPR, logical_type_node, + dim_arg, + build_int_cst (TREE_TYPE (dim_arg), 1)); + tmp = gfc_rank_cst[GFC_TYPE_ARRAY_CORANK (TREE_TYPE (desc))]; + tmp = fold_build2_loc (input_location, GT_EXPR, logical_type_node, + dim_arg, tmp); + cond = fold_build2_loc (input_location, TRUTH_ORIF_EXPR, + logical_type_node, cond, tmp); + gfc_trans_runtime_check (true, false, cond, &se->pre, &expr->where, + gfc_msg_fault); + } + } + + /* Used algorithm; cf. Fortran 2008, C.10. Note, due to the scalarizer, + one always has a dim_arg argument. + + m = this_image() - 1 + if (corank == 1) + { + sub(1) = m + lcobound(corank) + return; + } + i = rank + min_var = min (rank + corank - 2, rank + dim_arg - 1) + for (;;) + { + extent = gfc_extent(i) + ml = m + m = m/extent + if (i >= min_var) + goto exit_label + i++ + } + exit_label: + sub(dim_arg) = (dim_arg < corank) ? ml - m*extent + lcobound(dim_arg) + : m + lcobound(corank) + */ + + /* this_image () - 1. */ + tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_this_image, 1, + integer_zero_node); + tmp = fold_build2_loc (input_location, MINUS_EXPR, type, + fold_convert (type, tmp), build_int_cst (type, 1)); + if (corank == 1) + { + /* sub(1) = m + lcobound(corank). */ + lbound = gfc_conv_descriptor_lbound_get (desc, + build_int_cst (TREE_TYPE (gfc_array_index_type), + corank+rank-1)); + lbound = fold_convert (type, lbound); + tmp = fold_build2_loc (input_location, PLUS_EXPR, type, tmp, lbound); + + se->expr = tmp; + return; + } + + m = gfc_create_var (type, NULL); + ml = gfc_create_var (type, NULL); + loop_var = gfc_create_var (integer_type_node, NULL); + min_var = gfc_create_var (integer_type_node, NULL); + + /* m = this_image () - 1. */ + gfc_add_modify (&se->pre, m, tmp); + + /* min_var = min (rank + corank-2, rank + dim_arg - 1). */ + tmp = fold_build2_loc (input_location, PLUS_EXPR, integer_type_node, + fold_convert (integer_type_node, dim_arg), + build_int_cst (integer_type_node, rank - 1)); + tmp = fold_build2_loc (input_location, MIN_EXPR, integer_type_node, + build_int_cst (integer_type_node, rank + corank - 2), + tmp); + gfc_add_modify (&se->pre, min_var, tmp); + + /* i = rank. */ + tmp = build_int_cst (integer_type_node, rank); + gfc_add_modify (&se->pre, loop_var, tmp); + + exit_label = gfc_build_label_decl (NULL_TREE); + TREE_USED (exit_label) = 1; + + /* Loop body. */ + gfc_init_block (&loop); + + /* ml = m. */ + gfc_add_modify (&loop, ml, m); + + /* extent = ... */ + lbound = gfc_conv_descriptor_lbound_get (desc, loop_var); + ubound = gfc_conv_descriptor_ubound_get (desc, loop_var); + extent = gfc_conv_array_extent_dim (lbound, ubound, NULL); + extent = fold_convert (type, extent); + + /* m = m/extent. */ + gfc_add_modify (&loop, m, + fold_build2_loc (input_location, TRUNC_DIV_EXPR, type, + m, extent)); + + /* Exit condition: if (i >= min_var) goto exit_label. */ + cond = fold_build2_loc (input_location, GE_EXPR, logical_type_node, loop_var, + min_var); + tmp = build1_v (GOTO_EXPR, exit_label); + tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, cond, tmp, + build_empty_stmt (input_location)); + gfc_add_expr_to_block (&loop, tmp); + + /* Increment loop variable: i++. */ + gfc_add_modify (&loop, loop_var, + fold_build2_loc (input_location, PLUS_EXPR, integer_type_node, + loop_var, + build_int_cst (integer_type_node, 1))); + + /* Making the loop... actually loop! */ + tmp = gfc_finish_block (&loop); + tmp = build1_v (LOOP_EXPR, tmp); + gfc_add_expr_to_block (&se->pre, tmp); + + /* The exit label. */ + tmp = build1_v (LABEL_EXPR, exit_label); + gfc_add_expr_to_block (&se->pre, tmp); + + /* sub(co_dim) = (co_dim < corank) ? ml - m*extent + lcobound(dim_arg) + : m + lcobound(corank) */ + + cond = fold_build2_loc (input_location, LT_EXPR, logical_type_node, dim_arg, + build_int_cst (TREE_TYPE (dim_arg), corank)); + + lbound = gfc_conv_descriptor_lbound_get (desc, + fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, dim_arg, + build_int_cst (TREE_TYPE (dim_arg), rank-1))); + lbound = fold_convert (type, lbound); + + tmp = fold_build2_loc (input_location, MINUS_EXPR, type, ml, + fold_build2_loc (input_location, MULT_EXPR, type, + m, extent)); + tmp = fold_build2_loc (input_location, PLUS_EXPR, type, tmp, lbound); + + se->expr = fold_build3_loc (input_location, COND_EXPR, type, cond, tmp, + fold_build2_loc (input_location, PLUS_EXPR, type, + m, lbound)); +} + + +/* Convert a call to image_status. */ + +static void +conv_intrinsic_image_status (gfc_se *se, gfc_expr *expr) +{ + unsigned int num_args; + tree *args, tmp; + + num_args = gfc_intrinsic_argument_list_length (expr); + args = XALLOCAVEC (tree, num_args); + gfc_conv_intrinsic_function_args (se, expr, args, num_args); + /* In args[0] the number of the image the status is desired for has to be + given. */ + + if (flag_coarray == GFC_FCOARRAY_SINGLE) + { + tree arg; + arg = gfc_evaluate_now (args[0], &se->pre); + tmp = fold_build2_loc (input_location, EQ_EXPR, logical_type_node, + fold_convert (integer_type_node, arg), + integer_one_node); + tmp = fold_build3_loc (input_location, COND_EXPR, integer_type_node, + tmp, integer_zero_node, + build_int_cst (integer_type_node, + GFC_STAT_STOPPED_IMAGE)); + } + else if (flag_coarray == GFC_FCOARRAY_LIB) + tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_image_status, 2, + args[0], build_int_cst (integer_type_node, -1)); + else + gcc_unreachable (); + + se->expr = tmp; +} + +static void +conv_intrinsic_team_number (gfc_se *se, gfc_expr *expr) +{ + unsigned int num_args; + + tree *args, tmp; + + num_args = gfc_intrinsic_argument_list_length (expr); + args = XALLOCAVEC (tree, num_args); + gfc_conv_intrinsic_function_args (se, expr, args, num_args); + + if (flag_coarray == + GFC_FCOARRAY_SINGLE && expr->value.function.actual->expr) + { + tree arg; + + arg = gfc_evaluate_now (args[0], &se->pre); + tmp = fold_build2_loc (input_location, EQ_EXPR, logical_type_node, + fold_convert (integer_type_node, arg), + integer_one_node); + tmp = fold_build3_loc (input_location, COND_EXPR, integer_type_node, + tmp, integer_zero_node, + build_int_cst (integer_type_node, + GFC_STAT_STOPPED_IMAGE)); + } + else if (flag_coarray == GFC_FCOARRAY_SINGLE) + { + // the value -1 represents that no team has been created yet + tmp = build_int_cst (integer_type_node, -1); + } + else if (flag_coarray == GFC_FCOARRAY_LIB && expr->value.function.actual->expr) + tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_team_number, 1, + args[0], build_int_cst (integer_type_node, -1)); + else if (flag_coarray == GFC_FCOARRAY_LIB) + tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_team_number, 1, + integer_zero_node, build_int_cst (integer_type_node, -1)); + else + gcc_unreachable (); + + se->expr = tmp; +} + + +static void +trans_image_index (gfc_se * se, gfc_expr *expr) +{ + tree num_images, cond, coindex, type, lbound, ubound, desc, subdesc, + tmp, invalid_bound; + gfc_se argse, subse; + int rank, corank, codim; + + type = gfc_get_int_type (gfc_default_integer_kind); + corank = gfc_get_corank (expr->value.function.actual->expr); + rank = expr->value.function.actual->expr->rank; + + /* Obtain the descriptor of the COARRAY. */ + gfc_init_se (&argse, NULL); + argse.want_coarray = 1; + gfc_conv_expr_descriptor (&argse, expr->value.function.actual->expr); + gfc_add_block_to_block (&se->pre, &argse.pre); + gfc_add_block_to_block (&se->post, &argse.post); + desc = argse.expr; + + /* Obtain a handle to the SUB argument. */ + gfc_init_se (&subse, NULL); + gfc_conv_expr_descriptor (&subse, expr->value.function.actual->next->expr); + gfc_add_block_to_block (&se->pre, &subse.pre); + gfc_add_block_to_block (&se->post, &subse.post); + subdesc = build_fold_indirect_ref_loc (input_location, + gfc_conv_descriptor_data_get (subse.expr)); + + /* Fortran 2008 does not require that the values remain in the cobounds, + thus we need explicitly check this - and return 0 if they are exceeded. */ + + lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[rank+corank-1]); + tmp = gfc_build_array_ref (subdesc, gfc_rank_cst[corank-1], NULL); + invalid_bound = fold_build2_loc (input_location, LT_EXPR, logical_type_node, + fold_convert (gfc_array_index_type, tmp), + lbound); + + for (codim = corank + rank - 2; codim >= rank; codim--) + { + lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[codim]); + ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[codim]); + tmp = gfc_build_array_ref (subdesc, gfc_rank_cst[codim-rank], NULL); + cond = fold_build2_loc (input_location, LT_EXPR, logical_type_node, + fold_convert (gfc_array_index_type, tmp), + lbound); + invalid_bound = fold_build2_loc (input_location, TRUTH_OR_EXPR, + logical_type_node, invalid_bound, cond); + cond = fold_build2_loc (input_location, GT_EXPR, logical_type_node, + fold_convert (gfc_array_index_type, tmp), + ubound); + invalid_bound = fold_build2_loc (input_location, TRUTH_OR_EXPR, + logical_type_node, invalid_bound, cond); + } + + invalid_bound = gfc_unlikely (invalid_bound, PRED_FORTRAN_INVALID_BOUND); + + /* See Fortran 2008, C.10 for the following algorithm. */ + + /* coindex = sub(corank) - lcobound(n). */ + coindex = fold_convert (gfc_array_index_type, + gfc_build_array_ref (subdesc, gfc_rank_cst[corank-1], + NULL)); + lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[rank+corank-1]); + coindex = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, + fold_convert (gfc_array_index_type, coindex), + lbound); + + for (codim = corank + rank - 2; codim >= rank; codim--) + { + tree extent, ubound; + + /* coindex = coindex*extent(codim) + sub(codim) - lcobound(codim). */ + lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[codim]); + ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[codim]); + extent = gfc_conv_array_extent_dim (lbound, ubound, NULL); + + /* coindex *= extent. */ + coindex = fold_build2_loc (input_location, MULT_EXPR, + gfc_array_index_type, coindex, extent); + + /* coindex += sub(codim). */ + tmp = gfc_build_array_ref (subdesc, gfc_rank_cst[codim-rank], NULL); + coindex = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, coindex, + fold_convert (gfc_array_index_type, tmp)); + + /* coindex -= lbound(codim). */ + lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[codim]); + coindex = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, coindex, lbound); + } + + coindex = fold_build2_loc (input_location, PLUS_EXPR, type, + fold_convert(type, coindex), + build_int_cst (type, 1)); + + /* Return 0 if "coindex" exceeds num_images(). */ + + if (flag_coarray == GFC_FCOARRAY_SINGLE) + num_images = build_int_cst (type, 1); + else + { + tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_num_images, 2, + integer_zero_node, + build_int_cst (integer_type_node, -1)); + num_images = fold_convert (type, tmp); + } + + tmp = gfc_create_var (type, NULL); + gfc_add_modify (&se->pre, tmp, coindex); + + cond = fold_build2_loc (input_location, GT_EXPR, logical_type_node, tmp, + num_images); + cond = fold_build2_loc (input_location, TRUTH_OR_EXPR, logical_type_node, + cond, + fold_convert (logical_type_node, invalid_bound)); + se->expr = fold_build3_loc (input_location, COND_EXPR, type, cond, + build_int_cst (type, 0), tmp); +} + +static void +trans_num_images (gfc_se * se, gfc_expr *expr) +{ + tree tmp, distance, failed; + gfc_se argse; + + if (expr->value.function.actual->expr) + { + gfc_init_se (&argse, NULL); + gfc_conv_expr_val (&argse, expr->value.function.actual->expr); + gfc_add_block_to_block (&se->pre, &argse.pre); + gfc_add_block_to_block (&se->post, &argse.post); + distance = fold_convert (integer_type_node, argse.expr); + } + else + distance = integer_zero_node; + + if (expr->value.function.actual->next->expr) + { + gfc_init_se (&argse, NULL); + gfc_conv_expr_val (&argse, expr->value.function.actual->next->expr); + gfc_add_block_to_block (&se->pre, &argse.pre); + gfc_add_block_to_block (&se->post, &argse.post); + failed = fold_convert (integer_type_node, argse.expr); + } + else + failed = build_int_cst (integer_type_node, -1); + tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_num_images, 2, + distance, failed); + se->expr = fold_convert (gfc_get_int_type (gfc_default_integer_kind), tmp); +} + + +static void +gfc_conv_intrinsic_rank (gfc_se *se, gfc_expr *expr) +{ + gfc_se argse; + + gfc_init_se (&argse, NULL); + argse.data_not_needed = 1; + argse.descriptor_only = 1; + + gfc_conv_expr_descriptor (&argse, expr->value.function.actual->expr); + gfc_add_block_to_block (&se->pre, &argse.pre); + gfc_add_block_to_block (&se->post, &argse.post); + + se->expr = gfc_conv_descriptor_rank (argse.expr); + se->expr = fold_convert (gfc_get_int_type (gfc_default_integer_kind), + se->expr); +} + + +static void +gfc_conv_intrinsic_is_contiguous (gfc_se * se, gfc_expr * expr) +{ + gfc_expr *arg; + arg = expr->value.function.actual->expr; + gfc_conv_is_contiguous_expr (se, arg); + se->expr = fold_convert (gfc_typenode_for_spec (&expr->ts), se->expr); +} + +/* This function does the work for gfc_conv_intrinsic_is_contiguous, + plus it can be called directly. */ + +void +gfc_conv_is_contiguous_expr (gfc_se *se, gfc_expr *arg) +{ + gfc_ss *ss; + gfc_se argse; + tree desc, tmp, stride, extent, cond; + int i; + tree fncall0; + gfc_array_spec *as; + + if (arg->ts.type == BT_CLASS) + gfc_add_class_array_ref (arg); + + ss = gfc_walk_expr (arg); + gcc_assert (ss != gfc_ss_terminator); + gfc_init_se (&argse, NULL); + argse.data_not_needed = 1; + gfc_conv_expr_descriptor (&argse, arg); + + as = gfc_get_full_arrayspec_from_expr (arg); + + /* Create: stride[0] == 1 && stride[1] == extend[0]*stride[0] && ... + Note in addition that zero-sized arrays don't count as contiguous. */ + + if (as && as->type == AS_ASSUMED_RANK) + { + /* Build the call to is_contiguous0. */ + argse.want_pointer = 1; + gfc_conv_expr_descriptor (&argse, arg); + gfc_add_block_to_block (&se->pre, &argse.pre); + gfc_add_block_to_block (&se->post, &argse.post); + desc = gfc_evaluate_now (argse.expr, &se->pre); + fncall0 = build_call_expr_loc (input_location, + gfor_fndecl_is_contiguous0, 1, desc); + se->expr = fncall0; + se->expr = convert (logical_type_node, se->expr); + } + else + { + gfc_add_block_to_block (&se->pre, &argse.pre); + gfc_add_block_to_block (&se->post, &argse.post); + desc = gfc_evaluate_now (argse.expr, &se->pre); + + stride = gfc_conv_descriptor_stride_get (desc, gfc_rank_cst[0]); + cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, + stride, build_int_cst (TREE_TYPE (stride), 1)); + + for (i = 0; i < arg->rank - 1; i++) + { + tmp = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[i]); + extent = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[i]); + extent = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, extent, tmp); + extent = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, extent, + gfc_index_one_node); + tmp = gfc_conv_descriptor_stride_get (desc, gfc_rank_cst[i]); + tmp = fold_build2_loc (input_location, MULT_EXPR, TREE_TYPE (tmp), + tmp, extent); + stride = gfc_conv_descriptor_stride_get (desc, gfc_rank_cst[i+1]); + tmp = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, + stride, tmp); + cond = fold_build2_loc (input_location, TRUTH_AND_EXPR, + boolean_type_node, cond, tmp); + } + se->expr = cond; + } +} + + +/* Evaluate a single upper or lower bound. */ +/* TODO: bound intrinsic generates way too much unnecessary code. */ + +static void +gfc_conv_intrinsic_bound (gfc_se * se, gfc_expr * expr, enum gfc_isym_id op) +{ + gfc_actual_arglist *arg; + gfc_actual_arglist *arg2; + tree desc; + tree type; + tree bound; + tree tmp; + tree cond, cond1; + tree ubound; + tree lbound; + tree size; + gfc_se argse; + gfc_array_spec * as; + bool assumed_rank_lb_one; + + arg = expr->value.function.actual; + arg2 = arg->next; + + if (se->ss) + { + /* Create an implicit second parameter from the loop variable. */ + gcc_assert (!arg2->expr || op == GFC_ISYM_SHAPE); + gcc_assert (se->loop->dimen == 1); + gcc_assert (se->ss->info->expr == expr); + gfc_advance_se_ss_chain (se); + bound = se->loop->loopvar[0]; + bound = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, bound, + se->loop->from[0]); + } + else + { + /* use the passed argument. */ + gcc_assert (arg2->expr); + gfc_init_se (&argse, NULL); + gfc_conv_expr_type (&argse, arg2->expr, gfc_array_index_type); + gfc_add_block_to_block (&se->pre, &argse.pre); + bound = argse.expr; + /* Convert from one based to zero based. */ + bound = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, bound, + gfc_index_one_node); + } + + /* TODO: don't re-evaluate the descriptor on each iteration. */ + /* Get a descriptor for the first parameter. */ + gfc_init_se (&argse, NULL); + gfc_conv_expr_descriptor (&argse, arg->expr); + gfc_add_block_to_block (&se->pre, &argse.pre); + gfc_add_block_to_block (&se->post, &argse.post); + + desc = argse.expr; + + as = gfc_get_full_arrayspec_from_expr (arg->expr); + + if (INTEGER_CST_P (bound)) + { + gcc_assert (op != GFC_ISYM_SHAPE); + if (((!as || as->type != AS_ASSUMED_RANK) + && wi::geu_p (wi::to_wide (bound), + GFC_TYPE_ARRAY_RANK (TREE_TYPE (desc)))) + || wi::gtu_p (wi::to_wide (bound), GFC_MAX_DIMENSIONS)) + gfc_error ("%<dim%> argument of %s intrinsic at %L is not a valid " + "dimension index", + (op == GFC_ISYM_UBOUND) ? "UBOUND" : "LBOUND", + &expr->where); + } + + if (!INTEGER_CST_P (bound) || (as && as->type == AS_ASSUMED_RANK)) + { + if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS) + { + bound = gfc_evaluate_now (bound, &se->pre); + cond = fold_build2_loc (input_location, LT_EXPR, logical_type_node, + bound, build_int_cst (TREE_TYPE (bound), 0)); + if (as && as->type == AS_ASSUMED_RANK) + tmp = gfc_conv_descriptor_rank (desc); + else + tmp = gfc_rank_cst[GFC_TYPE_ARRAY_RANK (TREE_TYPE (desc))]; + tmp = fold_build2_loc (input_location, GE_EXPR, logical_type_node, + bound, fold_convert(TREE_TYPE (bound), tmp)); + cond = fold_build2_loc (input_location, TRUTH_ORIF_EXPR, + logical_type_node, cond, tmp); + gfc_trans_runtime_check (true, false, cond, &se->pre, &expr->where, + gfc_msg_fault); + } + } + + /* Take care of the lbound shift for assumed-rank arrays that are + nonallocatable and nonpointers. Those have a lbound of 1. */ + assumed_rank_lb_one = as && as->type == AS_ASSUMED_RANK + && ((arg->expr->ts.type != BT_CLASS + && !arg->expr->symtree->n.sym->attr.allocatable + && !arg->expr->symtree->n.sym->attr.pointer) + || (arg->expr->ts.type == BT_CLASS + && !CLASS_DATA (arg->expr)->attr.allocatable + && !CLASS_DATA (arg->expr)->attr.class_pointer)); + + ubound = gfc_conv_descriptor_ubound_get (desc, bound); + lbound = gfc_conv_descriptor_lbound_get (desc, bound); + size = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, ubound, lbound); + size = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, size, gfc_index_one_node); + + /* 13.14.53: Result value for LBOUND + + Case (i): For an array section or for an array expression other than a + whole array or array structure component, LBOUND(ARRAY, DIM) + has the value 1. For a whole array or array structure + component, LBOUND(ARRAY, DIM) has the value: + (a) equal to the lower bound for subscript DIM of ARRAY if + dimension DIM of ARRAY does not have extent zero + or if ARRAY is an assumed-size array of rank DIM, + or (b) 1 otherwise. + + 13.14.113: Result value for UBOUND + + Case (i): For an array section or for an array expression other than a + whole array or array structure component, UBOUND(ARRAY, DIM) + has the value equal to the number of elements in the given + dimension; otherwise, it has a value equal to the upper bound + for subscript DIM of ARRAY if dimension DIM of ARRAY does + not have size zero and has value zero if dimension DIM has + size zero. */ + + if (op == GFC_ISYM_LBOUND && assumed_rank_lb_one) + se->expr = gfc_index_one_node; + else if (as) + { + if (op == GFC_ISYM_UBOUND) + { + cond = fold_build2_loc (input_location, GT_EXPR, logical_type_node, + size, gfc_index_zero_node); + se->expr = fold_build3_loc (input_location, COND_EXPR, + gfc_array_index_type, cond, + (assumed_rank_lb_one ? size : ubound), + gfc_index_zero_node); + } + else if (op == GFC_ISYM_LBOUND) + { + cond = fold_build2_loc (input_location, GT_EXPR, logical_type_node, + size, gfc_index_zero_node); + if (as->type == AS_ASSUMED_SIZE) + { + cond1 = fold_build2_loc (input_location, EQ_EXPR, + logical_type_node, bound, + build_int_cst (TREE_TYPE (bound), + arg->expr->rank - 1)); + cond = fold_build2_loc (input_location, TRUTH_OR_EXPR, + logical_type_node, cond, cond1); + } + se->expr = fold_build3_loc (input_location, COND_EXPR, + gfc_array_index_type, cond, + lbound, gfc_index_one_node); + } + else if (op == GFC_ISYM_SHAPE) + se->expr = size; + else + gcc_unreachable (); + + /* According to F2018 16.9.172, para 5, an assumed rank object, + argument associated with and assumed size array, has the ubound + of the final dimension set to -1 and UBOUND must return this. + Similarly for the SHAPE intrinsic. */ + if (op != GFC_ISYM_LBOUND && assumed_rank_lb_one) + { + tree minus_one = build_int_cst (gfc_array_index_type, -1); + tree rank = fold_convert (gfc_array_index_type, + gfc_conv_descriptor_rank (desc)); + rank = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, rank, minus_one); + + /* Fix the expression to stop it from becoming even more + complicated. */ + se->expr = gfc_evaluate_now (se->expr, &se->pre); + + /* Descriptors for assumed-size arrays have ubound = -1 + in the last dimension. */ + cond1 = fold_build2_loc (input_location, EQ_EXPR, + logical_type_node, ubound, minus_one); + cond = fold_build2_loc (input_location, EQ_EXPR, + logical_type_node, bound, rank); + cond = fold_build2_loc (input_location, TRUTH_AND_EXPR, + logical_type_node, cond, cond1); + se->expr = fold_build3_loc (input_location, COND_EXPR, + gfc_array_index_type, cond, + minus_one, se->expr); + } + } + else /* as is null; this is an old-fashioned 1-based array. */ + { + if (op != GFC_ISYM_LBOUND) + { + se->expr = fold_build2_loc (input_location, MAX_EXPR, + gfc_array_index_type, size, + gfc_index_zero_node); + } + else + se->expr = gfc_index_one_node; + } + + + type = gfc_typenode_for_spec (&expr->ts); + se->expr = convert (type, se->expr); +} + + +static void +conv_intrinsic_cobound (gfc_se * se, gfc_expr * expr) +{ + gfc_actual_arglist *arg; + gfc_actual_arglist *arg2; + gfc_se argse; + tree bound, resbound, resbound2, desc, cond, tmp; + tree type; + int corank; + + gcc_assert (expr->value.function.isym->id == GFC_ISYM_LCOBOUND + || expr->value.function.isym->id == GFC_ISYM_UCOBOUND + || expr->value.function.isym->id == GFC_ISYM_THIS_IMAGE); + + arg = expr->value.function.actual; + arg2 = arg->next; + + gcc_assert (arg->expr->expr_type == EXPR_VARIABLE); + corank = gfc_get_corank (arg->expr); + + gfc_init_se (&argse, NULL); + argse.want_coarray = 1; + + gfc_conv_expr_descriptor (&argse, arg->expr); + gfc_add_block_to_block (&se->pre, &argse.pre); + gfc_add_block_to_block (&se->post, &argse.post); + desc = argse.expr; + + if (se->ss) + { + /* Create an implicit second parameter from the loop variable. */ + gcc_assert (!arg2->expr); + gcc_assert (corank > 0); + gcc_assert (se->loop->dimen == 1); + gcc_assert (se->ss->info->expr == expr); + + bound = se->loop->loopvar[0]; + bound = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, + bound, gfc_rank_cst[arg->expr->rank]); + gfc_advance_se_ss_chain (se); + } + else + { + /* use the passed argument. */ + gcc_assert (arg2->expr); + gfc_init_se (&argse, NULL); + gfc_conv_expr_type (&argse, arg2->expr, gfc_array_index_type); + gfc_add_block_to_block (&se->pre, &argse.pre); + bound = argse.expr; + + if (INTEGER_CST_P (bound)) + { + if (wi::ltu_p (wi::to_wide (bound), 1) + || wi::gtu_p (wi::to_wide (bound), + GFC_TYPE_ARRAY_CORANK (TREE_TYPE (desc)))) + gfc_error ("%<dim%> argument of %s intrinsic at %L is not a valid " + "dimension index", expr->value.function.isym->name, + &expr->where); + } + else if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS) + { + bound = gfc_evaluate_now (bound, &se->pre); + cond = fold_build2_loc (input_location, LT_EXPR, logical_type_node, + bound, build_int_cst (TREE_TYPE (bound), 1)); + tmp = gfc_rank_cst[GFC_TYPE_ARRAY_CORANK (TREE_TYPE (desc))]; + tmp = fold_build2_loc (input_location, GT_EXPR, logical_type_node, + bound, tmp); + cond = fold_build2_loc (input_location, TRUTH_ORIF_EXPR, + logical_type_node, cond, tmp); + gfc_trans_runtime_check (true, false, cond, &se->pre, &expr->where, + gfc_msg_fault); + } + + + /* Subtract 1 to get to zero based and add dimensions. */ + switch (arg->expr->rank) + { + case 0: + bound = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, bound, + gfc_index_one_node); + case 1: + break; + default: + bound = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, bound, + gfc_rank_cst[arg->expr->rank - 1]); + } + } + + resbound = gfc_conv_descriptor_lbound_get (desc, bound); + + /* Handle UCOBOUND with special handling of the last codimension. */ + if (expr->value.function.isym->id == GFC_ISYM_UCOBOUND) + { + /* Last codimension: For -fcoarray=single just return + the lcobound - otherwise add + ceiling (real (num_images ()) / real (size)) - 1 + = (num_images () + size - 1) / size - 1 + = (num_images - 1) / size(), + where size is the product of the extent of all but the last + codimension. */ + + if (flag_coarray != GFC_FCOARRAY_SINGLE && corank > 1) + { + tree cosize; + + cosize = gfc_conv_descriptor_cosize (desc, arg->expr->rank, corank); + tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_num_images, + 2, integer_zero_node, + build_int_cst (integer_type_node, -1)); + tmp = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, + fold_convert (gfc_array_index_type, tmp), + build_int_cst (gfc_array_index_type, 1)); + tmp = fold_build2_loc (input_location, TRUNC_DIV_EXPR, + gfc_array_index_type, tmp, + fold_convert (gfc_array_index_type, cosize)); + resbound = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, resbound, tmp); + } + else if (flag_coarray != GFC_FCOARRAY_SINGLE) + { + /* ubound = lbound + num_images() - 1. */ + tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_num_images, + 2, integer_zero_node, + build_int_cst (integer_type_node, -1)); + tmp = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, + fold_convert (gfc_array_index_type, tmp), + build_int_cst (gfc_array_index_type, 1)); + resbound = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, resbound, tmp); + } + + if (corank > 1) + { + cond = fold_build2_loc (input_location, EQ_EXPR, logical_type_node, + bound, + build_int_cst (TREE_TYPE (bound), + arg->expr->rank + corank - 1)); + + resbound2 = gfc_conv_descriptor_ubound_get (desc, bound); + se->expr = fold_build3_loc (input_location, COND_EXPR, + gfc_array_index_type, cond, + resbound, resbound2); + } + else + se->expr = resbound; + } + else + se->expr = resbound; + + type = gfc_typenode_for_spec (&expr->ts); + se->expr = convert (type, se->expr); +} + + +static void +conv_intrinsic_stride (gfc_se * se, gfc_expr * expr) +{ + gfc_actual_arglist *array_arg; + gfc_actual_arglist *dim_arg; + gfc_se argse; + tree desc, tmp; + + array_arg = expr->value.function.actual; + dim_arg = array_arg->next; + + gcc_assert (array_arg->expr->expr_type == EXPR_VARIABLE); + + gfc_init_se (&argse, NULL); + gfc_conv_expr_descriptor (&argse, array_arg->expr); + gfc_add_block_to_block (&se->pre, &argse.pre); + gfc_add_block_to_block (&se->post, &argse.post); + desc = argse.expr; + + gcc_assert (dim_arg->expr); + gfc_init_se (&argse, NULL); + gfc_conv_expr_type (&argse, dim_arg->expr, gfc_array_index_type); + gfc_add_block_to_block (&se->pre, &argse.pre); + tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, + argse.expr, gfc_index_one_node); + se->expr = gfc_conv_descriptor_stride_get (desc, tmp); +} + +static void +gfc_conv_intrinsic_abs (gfc_se * se, gfc_expr * expr) +{ + tree arg, cabs; + + gfc_conv_intrinsic_function_args (se, expr, &arg, 1); + + switch (expr->value.function.actual->expr->ts.type) + { + case BT_INTEGER: + case BT_REAL: + se->expr = fold_build1_loc (input_location, ABS_EXPR, TREE_TYPE (arg), + arg); + break; + + case BT_COMPLEX: + cabs = gfc_builtin_decl_for_float_kind (BUILT_IN_CABS, expr->ts.kind); + se->expr = build_call_expr_loc (input_location, cabs, 1, arg); + break; + + default: + gcc_unreachable (); + } +} + + +/* Create a complex value from one or two real components. */ + +static void +gfc_conv_intrinsic_cmplx (gfc_se * se, gfc_expr * expr, int both) +{ + tree real; + tree imag; + tree type; + tree *args; + unsigned int num_args; + + num_args = gfc_intrinsic_argument_list_length (expr); + args = XALLOCAVEC (tree, num_args); + + type = gfc_typenode_for_spec (&expr->ts); + gfc_conv_intrinsic_function_args (se, expr, args, num_args); + real = convert (TREE_TYPE (type), args[0]); + if (both) + imag = convert (TREE_TYPE (type), args[1]); + else if (TREE_CODE (TREE_TYPE (args[0])) == COMPLEX_TYPE) + { + imag = fold_build1_loc (input_location, IMAGPART_EXPR, + TREE_TYPE (TREE_TYPE (args[0])), args[0]); + imag = convert (TREE_TYPE (type), imag); + } + else + imag = build_real_from_int_cst (TREE_TYPE (type), integer_zero_node); + + se->expr = fold_build2_loc (input_location, COMPLEX_EXPR, type, real, imag); +} + + +/* Remainder function MOD(A, P) = A - INT(A / P) * P + MODULO(A, P) = A - FLOOR (A / P) * P + + The obvious algorithms above are numerically instable for large + arguments, hence these intrinsics are instead implemented via calls + to the fmod family of functions. It is the responsibility of the + user to ensure that the second argument is non-zero. */ + +static void +gfc_conv_intrinsic_mod (gfc_se * se, gfc_expr * expr, int modulo) +{ + tree type; + tree tmp; + tree test; + tree test2; + tree fmod; + tree zero; + tree args[2]; + + gfc_conv_intrinsic_function_args (se, expr, args, 2); + + switch (expr->ts.type) + { + case BT_INTEGER: + /* Integer case is easy, we've got a builtin op. */ + type = TREE_TYPE (args[0]); + + if (modulo) + se->expr = fold_build2_loc (input_location, FLOOR_MOD_EXPR, type, + args[0], args[1]); + else + se->expr = fold_build2_loc (input_location, TRUNC_MOD_EXPR, type, + args[0], args[1]); + break; + + case BT_REAL: + fmod = NULL_TREE; + /* Check if we have a builtin fmod. */ + fmod = gfc_builtin_decl_for_float_kind (BUILT_IN_FMOD, expr->ts.kind); + + /* The builtin should always be available. */ + gcc_assert (fmod != NULL_TREE); + + tmp = build_addr (fmod); + se->expr = build_call_array_loc (input_location, + TREE_TYPE (TREE_TYPE (fmod)), + tmp, 2, args); + if (modulo == 0) + return; + + type = TREE_TYPE (args[0]); + + args[0] = gfc_evaluate_now (args[0], &se->pre); + args[1] = gfc_evaluate_now (args[1], &se->pre); + + /* Definition: + modulo = arg - floor (arg/arg2) * arg2 + + In order to calculate the result accurately, we use the fmod + function as follows. + + res = fmod (arg, arg2); + if (res) + { + if ((arg < 0) xor (arg2 < 0)) + res += arg2; + } + else + res = copysign (0., arg2); + + => As two nested ternary exprs: + + res = res ? (((arg < 0) xor (arg2 < 0)) ? res + arg2 : res) + : copysign (0., arg2); + + */ + + zero = gfc_build_const (type, integer_zero_node); + tmp = gfc_evaluate_now (se->expr, &se->pre); + if (!flag_signed_zeros) + { + test = fold_build2_loc (input_location, LT_EXPR, logical_type_node, + args[0], zero); + test2 = fold_build2_loc (input_location, LT_EXPR, logical_type_node, + args[1], zero); + test2 = fold_build2_loc (input_location, TRUTH_XOR_EXPR, + logical_type_node, test, test2); + test = fold_build2_loc (input_location, NE_EXPR, logical_type_node, + tmp, zero); + test = fold_build2_loc (input_location, TRUTH_AND_EXPR, + logical_type_node, test, test2); + test = gfc_evaluate_now (test, &se->pre); + se->expr = fold_build3_loc (input_location, COND_EXPR, type, test, + fold_build2_loc (input_location, + PLUS_EXPR, + type, tmp, args[1]), + tmp); + } + else + { + tree expr1, copysign, cscall; + copysign = gfc_builtin_decl_for_float_kind (BUILT_IN_COPYSIGN, + expr->ts.kind); + test = fold_build2_loc (input_location, LT_EXPR, logical_type_node, + args[0], zero); + test2 = fold_build2_loc (input_location, LT_EXPR, logical_type_node, + args[1], zero); + test2 = fold_build2_loc (input_location, TRUTH_XOR_EXPR, + logical_type_node, test, test2); + expr1 = fold_build3_loc (input_location, COND_EXPR, type, test2, + fold_build2_loc (input_location, + PLUS_EXPR, + type, tmp, args[1]), + tmp); + test = fold_build2_loc (input_location, NE_EXPR, logical_type_node, + tmp, zero); + cscall = build_call_expr_loc (input_location, copysign, 2, zero, + args[1]); + se->expr = fold_build3_loc (input_location, COND_EXPR, type, test, + expr1, cscall); + } + return; + + default: + gcc_unreachable (); + } +} + +/* DSHIFTL(I,J,S) = (I << S) | (J >> (BITSIZE(J) - S)) + DSHIFTR(I,J,S) = (I << (BITSIZE(I) - S)) | (J >> S) + where the right shifts are logical (i.e. 0's are shifted in). + Because SHIFT_EXPR's want shifts strictly smaller than the integral + type width, we have to special-case both S == 0 and S == BITSIZE(J): + DSHIFTL(I,J,0) = I + DSHIFTL(I,J,BITSIZE) = J + DSHIFTR(I,J,0) = J + DSHIFTR(I,J,BITSIZE) = I. */ + +static void +gfc_conv_intrinsic_dshift (gfc_se * se, gfc_expr * expr, bool dshiftl) +{ + tree type, utype, stype, arg1, arg2, shift, res, left, right; + tree args[3], cond, tmp; + int bitsize; + + gfc_conv_intrinsic_function_args (se, expr, args, 3); + + gcc_assert (TREE_TYPE (args[0]) == TREE_TYPE (args[1])); + type = TREE_TYPE (args[0]); + bitsize = TYPE_PRECISION (type); + utype = unsigned_type_for (type); + stype = TREE_TYPE (args[2]); + + arg1 = gfc_evaluate_now (args[0], &se->pre); + arg2 = gfc_evaluate_now (args[1], &se->pre); + shift = gfc_evaluate_now (args[2], &se->pre); + + /* The generic case. */ + tmp = fold_build2_loc (input_location, MINUS_EXPR, stype, + build_int_cst (stype, bitsize), shift); + left = fold_build2_loc (input_location, LSHIFT_EXPR, type, + arg1, dshiftl ? shift : tmp); + + right = fold_build2_loc (input_location, RSHIFT_EXPR, utype, + fold_convert (utype, arg2), dshiftl ? tmp : shift); + right = fold_convert (type, right); + + res = fold_build2_loc (input_location, BIT_IOR_EXPR, type, left, right); + + /* Special cases. */ + cond = fold_build2_loc (input_location, EQ_EXPR, logical_type_node, shift, + build_int_cst (stype, 0)); + res = fold_build3_loc (input_location, COND_EXPR, type, cond, + dshiftl ? arg1 : arg2, res); + + cond = fold_build2_loc (input_location, EQ_EXPR, logical_type_node, shift, + build_int_cst (stype, bitsize)); + res = fold_build3_loc (input_location, COND_EXPR, type, cond, + dshiftl ? arg2 : arg1, res); + + se->expr = res; +} + + +/* Positive difference DIM (x, y) = ((x - y) < 0) ? 0 : x - y. */ + +static void +gfc_conv_intrinsic_dim (gfc_se * se, gfc_expr * expr) +{ + tree val; + tree tmp; + tree type; + tree zero; + tree args[2]; + + gfc_conv_intrinsic_function_args (se, expr, args, 2); + type = TREE_TYPE (args[0]); + + val = fold_build2_loc (input_location, MINUS_EXPR, type, args[0], args[1]); + val = gfc_evaluate_now (val, &se->pre); + + zero = gfc_build_const (type, integer_zero_node); + tmp = fold_build2_loc (input_location, LE_EXPR, logical_type_node, val, zero); + se->expr = fold_build3_loc (input_location, COND_EXPR, type, tmp, zero, val); +} + + +/* SIGN(A, B) is absolute value of A times sign of B. + The real value versions use library functions to ensure the correct + handling of negative zero. Integer case implemented as: + SIGN(A, B) = { tmp = (A ^ B) >> C; (A + tmp) ^ tmp } + */ + +static void +gfc_conv_intrinsic_sign (gfc_se * se, gfc_expr * expr) +{ + tree tmp; + tree type; + tree args[2]; + + gfc_conv_intrinsic_function_args (se, expr, args, 2); + if (expr->ts.type == BT_REAL) + { + tree abs; + + tmp = gfc_builtin_decl_for_float_kind (BUILT_IN_COPYSIGN, expr->ts.kind); + abs = gfc_builtin_decl_for_float_kind (BUILT_IN_FABS, expr->ts.kind); + + /* We explicitly have to ignore the minus sign. We do so by using + result = (arg1 == 0) ? abs(arg0) : copysign(arg0, arg1). */ + if (!flag_sign_zero + && MODE_HAS_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (args[1])))) + { + tree cond, zero; + zero = build_real_from_int_cst (TREE_TYPE (args[1]), integer_zero_node); + cond = fold_build2_loc (input_location, EQ_EXPR, logical_type_node, + args[1], zero); + se->expr = fold_build3_loc (input_location, COND_EXPR, + TREE_TYPE (args[0]), cond, + build_call_expr_loc (input_location, abs, 1, + args[0]), + build_call_expr_loc (input_location, tmp, 2, + args[0], args[1])); + } + else + se->expr = build_call_expr_loc (input_location, tmp, 2, + args[0], args[1]); + return; + } + + /* Having excluded floating point types, we know we are now dealing + with signed integer types. */ + type = TREE_TYPE (args[0]); + + /* Args[0] is used multiple times below. */ + args[0] = gfc_evaluate_now (args[0], &se->pre); + + /* Construct (A ^ B) >> 31, which generates a bit mask of all zeros if + the signs of A and B are the same, and of all ones if they differ. */ + tmp = fold_build2_loc (input_location, BIT_XOR_EXPR, type, args[0], args[1]); + tmp = fold_build2_loc (input_location, RSHIFT_EXPR, type, tmp, + build_int_cst (type, TYPE_PRECISION (type) - 1)); + tmp = gfc_evaluate_now (tmp, &se->pre); + + /* Construct (A + tmp) ^ tmp, which is A if tmp is zero, and -A if tmp] + is all ones (i.e. -1). */ + se->expr = fold_build2_loc (input_location, BIT_XOR_EXPR, type, + fold_build2_loc (input_location, PLUS_EXPR, + type, args[0], tmp), tmp); +} + + +/* Test for the presence of an optional argument. */ + +static void +gfc_conv_intrinsic_present (gfc_se * se, gfc_expr * expr) +{ + gfc_expr *arg; + + arg = expr->value.function.actual->expr; + gcc_assert (arg->expr_type == EXPR_VARIABLE); + se->expr = gfc_conv_expr_present (arg->symtree->n.sym); + se->expr = convert (gfc_typenode_for_spec (&expr->ts), se->expr); +} + + +/* Calculate the double precision product of two single precision values. */ + +static void +gfc_conv_intrinsic_dprod (gfc_se * se, gfc_expr * expr) +{ + tree type; + tree args[2]; + + gfc_conv_intrinsic_function_args (se, expr, args, 2); + + /* Convert the args to double precision before multiplying. */ + type = gfc_typenode_for_spec (&expr->ts); + args[0] = convert (type, args[0]); + args[1] = convert (type, args[1]); + se->expr = fold_build2_loc (input_location, MULT_EXPR, type, args[0], + args[1]); +} + + +/* Return a length one character string containing an ascii character. */ + +static void +gfc_conv_intrinsic_char (gfc_se * se, gfc_expr * expr) +{ + tree arg[2]; + tree var; + tree type; + unsigned int num_args; + + num_args = gfc_intrinsic_argument_list_length (expr); + gfc_conv_intrinsic_function_args (se, expr, arg, num_args); + + type = gfc_get_char_type (expr->ts.kind); + var = gfc_create_var (type, "char"); + + arg[0] = fold_build1_loc (input_location, NOP_EXPR, type, arg[0]); + gfc_add_modify (&se->pre, var, arg[0]); + se->expr = gfc_build_addr_expr (build_pointer_type (type), var); + se->string_length = build_int_cst (gfc_charlen_type_node, 1); +} + + +static void +gfc_conv_intrinsic_ctime (gfc_se * se, gfc_expr * expr) +{ + tree var; + tree len; + tree tmp; + tree cond; + tree fndecl; + tree *args; + unsigned int num_args; + + num_args = gfc_intrinsic_argument_list_length (expr) + 2; + args = XALLOCAVEC (tree, num_args); + + var = gfc_create_var (pchar_type_node, "pstr"); + len = gfc_create_var (gfc_charlen_type_node, "len"); + + gfc_conv_intrinsic_function_args (se, expr, &args[2], num_args - 2); + args[0] = gfc_build_addr_expr (NULL_TREE, var); + args[1] = gfc_build_addr_expr (NULL_TREE, len); + + fndecl = build_addr (gfor_fndecl_ctime); + tmp = build_call_array_loc (input_location, + TREE_TYPE (TREE_TYPE (gfor_fndecl_ctime)), + fndecl, num_args, args); + gfc_add_expr_to_block (&se->pre, tmp); + + /* Free the temporary afterwards, if necessary. */ + cond = fold_build2_loc (input_location, GT_EXPR, logical_type_node, + len, build_int_cst (TREE_TYPE (len), 0)); + tmp = gfc_call_free (var); + tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location)); + gfc_add_expr_to_block (&se->post, tmp); + + se->expr = var; + se->string_length = len; +} + + +static void +gfc_conv_intrinsic_fdate (gfc_se * se, gfc_expr * expr) +{ + tree var; + tree len; + tree tmp; + tree cond; + tree fndecl; + tree *args; + unsigned int num_args; + + num_args = gfc_intrinsic_argument_list_length (expr) + 2; + args = XALLOCAVEC (tree, num_args); + + var = gfc_create_var (pchar_type_node, "pstr"); + len = gfc_create_var (gfc_charlen_type_node, "len"); + + gfc_conv_intrinsic_function_args (se, expr, &args[2], num_args - 2); + args[0] = gfc_build_addr_expr (NULL_TREE, var); + args[1] = gfc_build_addr_expr (NULL_TREE, len); + + fndecl = build_addr (gfor_fndecl_fdate); + tmp = build_call_array_loc (input_location, + TREE_TYPE (TREE_TYPE (gfor_fndecl_fdate)), + fndecl, num_args, args); + gfc_add_expr_to_block (&se->pre, tmp); + + /* Free the temporary afterwards, if necessary. */ + cond = fold_build2_loc (input_location, GT_EXPR, logical_type_node, + len, build_int_cst (TREE_TYPE (len), 0)); + tmp = gfc_call_free (var); + tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location)); + gfc_add_expr_to_block (&se->post, tmp); + + se->expr = var; + se->string_length = len; +} + + +/* Generate a direct call to free() for the FREE subroutine. */ + +static tree +conv_intrinsic_free (gfc_code *code) +{ + stmtblock_t block; + gfc_se argse; + tree arg, call; + + gfc_init_se (&argse, NULL); + gfc_conv_expr (&argse, code->ext.actual->expr); + arg = fold_convert (ptr_type_node, argse.expr); + + gfc_init_block (&block); + call = build_call_expr_loc (input_location, + builtin_decl_explicit (BUILT_IN_FREE), 1, arg); + gfc_add_expr_to_block (&block, call); + return gfc_finish_block (&block); +} + + +/* Call the RANDOM_INIT library subroutine with a hidden argument for + handling seeding on coarray images. */ + +static tree +conv_intrinsic_random_init (gfc_code *code) +{ + stmtblock_t block; + gfc_se se; + tree arg1, arg2, tmp; + /* On none coarray == lib compiles use LOGICAL(4) else regular LOGICAL. */ + tree used_bool_type_node = flag_coarray == GFC_FCOARRAY_LIB + ? logical_type_node + : gfc_get_logical_type (4); + + /* Make the function call. */ + gfc_init_block (&block); + gfc_init_se (&se, NULL); + + /* Convert REPEATABLE to the desired LOGICAL entity. */ + gfc_conv_expr (&se, code->ext.actual->expr); + gfc_add_block_to_block (&block, &se.pre); + arg1 = fold_convert (used_bool_type_node, gfc_evaluate_now (se.expr, &block)); + gfc_add_block_to_block (&block, &se.post); + + /* Convert IMAGE_DISTINCT to the desired LOGICAL entity. */ + gfc_conv_expr (&se, code->ext.actual->next->expr); + gfc_add_block_to_block (&block, &se.pre); + arg2 = fold_convert (used_bool_type_node, gfc_evaluate_now (se.expr, &block)); + gfc_add_block_to_block (&block, &se.post); + + if (flag_coarray == GFC_FCOARRAY_LIB) + { + tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_random_init, + 2, arg1, arg2); + } + else + { + /* The ABI for libgfortran needs to be maintained, so a hidden + argument must be include if code is compiled with -fcoarray=single + or without the option. Set to 0. */ + tree arg3 = build_int_cst (gfc_get_int_type (4), 0); + tmp = build_call_expr_loc (input_location, gfor_fndecl_random_init, + 3, arg1, arg2, arg3); + } + + gfc_add_expr_to_block (&block, tmp); + + return gfc_finish_block (&block); +} + + +/* Call the SYSTEM_CLOCK library functions, handling the type and kind + conversions. */ + +static tree +conv_intrinsic_system_clock (gfc_code *code) +{ + stmtblock_t block; + gfc_se count_se, count_rate_se, count_max_se; + tree arg1 = NULL_TREE, arg2 = NULL_TREE, arg3 = NULL_TREE; + tree tmp; + int least; + + gfc_expr *count = code->ext.actual->expr; + gfc_expr *count_rate = code->ext.actual->next->expr; + gfc_expr *count_max = code->ext.actual->next->next->expr; + + /* Evaluate our arguments. */ + if (count) + { + gfc_init_se (&count_se, NULL); + gfc_conv_expr (&count_se, count); + } + + if (count_rate) + { + gfc_init_se (&count_rate_se, NULL); + gfc_conv_expr (&count_rate_se, count_rate); + } + + if (count_max) + { + gfc_init_se (&count_max_se, NULL); + gfc_conv_expr (&count_max_se, count_max); + } + + /* Find the smallest kind found of the arguments. */ + least = 16; + least = (count && count->ts.kind < least) ? count->ts.kind : least; + least = (count_rate && count_rate->ts.kind < least) ? count_rate->ts.kind + : least; + least = (count_max && count_max->ts.kind < least) ? count_max->ts.kind + : least; + + /* Prepare temporary variables. */ + + if (count) + { + if (least >= 8) + arg1 = gfc_create_var (gfc_get_int_type (8), "count"); + else if (least == 4) + arg1 = gfc_create_var (gfc_get_int_type (4), "count"); + else if (count->ts.kind == 1) + arg1 = gfc_conv_mpz_to_tree (gfc_integer_kinds[0].pedantic_min_int, + count->ts.kind); + else + arg1 = gfc_conv_mpz_to_tree (gfc_integer_kinds[1].pedantic_min_int, + count->ts.kind); + } + + if (count_rate) + { + if (least >= 8) + arg2 = gfc_create_var (gfc_get_int_type (8), "count_rate"); + else if (least == 4) + arg2 = gfc_create_var (gfc_get_int_type (4), "count_rate"); + else + arg2 = integer_zero_node; + } + + if (count_max) + { + if (least >= 8) + arg3 = gfc_create_var (gfc_get_int_type (8), "count_max"); + else if (least == 4) + arg3 = gfc_create_var (gfc_get_int_type (4), "count_max"); + else + arg3 = integer_zero_node; + } + + /* Make the function call. */ + gfc_init_block (&block); + +if (least <= 2) + { + if (least == 1) + { + arg1 ? gfc_build_addr_expr (NULL_TREE, arg1) + : null_pointer_node; + arg2 ? gfc_build_addr_expr (NULL_TREE, arg2) + : null_pointer_node; + arg3 ? gfc_build_addr_expr (NULL_TREE, arg3) + : null_pointer_node; + } + + if (least == 2) + { + arg1 ? gfc_build_addr_expr (NULL_TREE, arg1) + : null_pointer_node; + arg2 ? gfc_build_addr_expr (NULL_TREE, arg2) + : null_pointer_node; + arg3 ? gfc_build_addr_expr (NULL_TREE, arg3) + : null_pointer_node; + } + } +else + { + if (least == 4) + { + tmp = build_call_expr_loc (input_location, + gfor_fndecl_system_clock4, 3, + arg1 ? gfc_build_addr_expr (NULL_TREE, arg1) + : null_pointer_node, + arg2 ? gfc_build_addr_expr (NULL_TREE, arg2) + : null_pointer_node, + arg3 ? gfc_build_addr_expr (NULL_TREE, arg3) + : null_pointer_node); + gfc_add_expr_to_block (&block, tmp); + } + /* Handle kind>=8, 10, or 16 arguments */ + if (least >= 8) + { + tmp = build_call_expr_loc (input_location, + gfor_fndecl_system_clock8, 3, + arg1 ? gfc_build_addr_expr (NULL_TREE, arg1) + : null_pointer_node, + arg2 ? gfc_build_addr_expr (NULL_TREE, arg2) + : null_pointer_node, + arg3 ? gfc_build_addr_expr (NULL_TREE, arg3) + : null_pointer_node); + gfc_add_expr_to_block (&block, tmp); + } + } + + /* And store values back if needed. */ + if (arg1 && arg1 != count_se.expr) + gfc_add_modify (&block, count_se.expr, + fold_convert (TREE_TYPE (count_se.expr), arg1)); + if (arg2 && arg2 != count_rate_se.expr) + gfc_add_modify (&block, count_rate_se.expr, + fold_convert (TREE_TYPE (count_rate_se.expr), arg2)); + if (arg3 && arg3 != count_max_se.expr) + gfc_add_modify (&block, count_max_se.expr, + fold_convert (TREE_TYPE (count_max_se.expr), arg3)); + + return gfc_finish_block (&block); +} + + +/* Return a character string containing the tty name. */ + +static void +gfc_conv_intrinsic_ttynam (gfc_se * se, gfc_expr * expr) +{ + tree var; + tree len; + tree tmp; + tree cond; + tree fndecl; + tree *args; + unsigned int num_args; + + num_args = gfc_intrinsic_argument_list_length (expr) + 2; + args = XALLOCAVEC (tree, num_args); + + var = gfc_create_var (pchar_type_node, "pstr"); + len = gfc_create_var (gfc_charlen_type_node, "len"); + + gfc_conv_intrinsic_function_args (se, expr, &args[2], num_args - 2); + args[0] = gfc_build_addr_expr (NULL_TREE, var); + args[1] = gfc_build_addr_expr (NULL_TREE, len); + + fndecl = build_addr (gfor_fndecl_ttynam); + tmp = build_call_array_loc (input_location, + TREE_TYPE (TREE_TYPE (gfor_fndecl_ttynam)), + fndecl, num_args, args); + gfc_add_expr_to_block (&se->pre, tmp); + + /* Free the temporary afterwards, if necessary. */ + cond = fold_build2_loc (input_location, GT_EXPR, logical_type_node, + len, build_int_cst (TREE_TYPE (len), 0)); + tmp = gfc_call_free (var); + tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location)); + gfc_add_expr_to_block (&se->post, tmp); + + se->expr = var; + se->string_length = len; +} + + +/* Get the minimum/maximum value of all the parameters. + minmax (a1, a2, a3, ...) + { + mvar = a1; + mvar = COMP (mvar, a2) + mvar = COMP (mvar, a3) + ... + return mvar; + } + Where COMP is MIN/MAX_EXPR for integral types or when we don't + care about NaNs, or IFN_FMIN/MAX when the target has support for + fast NaN-honouring min/max. When neither holds expand a sequence + of explicit comparisons. */ + +/* TODO: Mismatching types can occur when specific names are used. + These should be handled during resolution. */ +static void +gfc_conv_intrinsic_minmax (gfc_se * se, gfc_expr * expr, enum tree_code op) +{ + tree tmp; + tree mvar; + tree val; + tree *args; + tree type; + tree argtype; + gfc_actual_arglist *argexpr; + unsigned int i, nargs; + + nargs = gfc_intrinsic_argument_list_length (expr); + args = XALLOCAVEC (tree, nargs); + + gfc_conv_intrinsic_function_args (se, expr, args, nargs); + type = gfc_typenode_for_spec (&expr->ts); + + /* Only evaluate the argument once. */ + if (!VAR_P (args[0]) && !TREE_CONSTANT (args[0])) + args[0] = gfc_evaluate_now (args[0], &se->pre); + + /* Determine suitable type of temporary, as a GNU extension allows + different argument kinds. */ + argtype = TREE_TYPE (args[0]); + argexpr = expr->value.function.actual; + for (i = 1, argexpr = argexpr->next; i < nargs; i++, argexpr = argexpr->next) + { + tree tmptype = TREE_TYPE (args[i]); + if (TYPE_PRECISION (tmptype) > TYPE_PRECISION (argtype)) + argtype = tmptype; + } + mvar = gfc_create_var (argtype, "M"); + gfc_add_modify (&se->pre, mvar, convert (argtype, args[0])); + + argexpr = expr->value.function.actual; + for (i = 1, argexpr = argexpr->next; i < nargs; i++, argexpr = argexpr->next) + { + tree cond = NULL_TREE; + val = args[i]; + + /* Handle absent optional arguments by ignoring the comparison. */ + if (argexpr->expr->expr_type == EXPR_VARIABLE + && argexpr->expr->symtree->n.sym->attr.optional + && TREE_CODE (val) == INDIRECT_REF) + { + cond = fold_build2_loc (input_location, + NE_EXPR, logical_type_node, + TREE_OPERAND (val, 0), + build_int_cst (TREE_TYPE (TREE_OPERAND (val, 0)), 0)); + } + else if (!VAR_P (val) && !TREE_CONSTANT (val)) + /* Only evaluate the argument once. */ + val = gfc_evaluate_now (val, &se->pre); + + tree calc; + /* For floating point types, the question is what MAX(a, NaN) or + MIN(a, NaN) should return (where "a" is a normal number). + There are valid usecase for returning either one, but the + Fortran standard doesn't specify which one should be chosen. + Also, there is no consensus among other tested compilers. In + short, it's a mess. So lets just do whatever is fastest. */ + tree_code code = op == GT_EXPR ? MAX_EXPR : MIN_EXPR; + calc = fold_build2_loc (input_location, code, argtype, + convert (argtype, val), mvar); + tmp = build2_v (MODIFY_EXPR, mvar, calc); + + if (cond != NULL_TREE) + tmp = build3_v (COND_EXPR, cond, tmp, + build_empty_stmt (input_location)); + gfc_add_expr_to_block (&se->pre, tmp); + } + se->expr = convert (type, mvar); +} + + +/* Generate library calls for MIN and MAX intrinsics for character + variables. */ +static void +gfc_conv_intrinsic_minmax_char (gfc_se * se, gfc_expr * expr, int op) +{ + tree *args; + tree var, len, fndecl, tmp, cond, function; + unsigned int nargs; + + nargs = gfc_intrinsic_argument_list_length (expr); + args = XALLOCAVEC (tree, nargs + 4); + gfc_conv_intrinsic_function_args (se, expr, &args[4], nargs); + + /* Create the result variables. */ + len = gfc_create_var (gfc_charlen_type_node, "len"); + args[0] = gfc_build_addr_expr (NULL_TREE, len); + var = gfc_create_var (gfc_get_pchar_type (expr->ts.kind), "pstr"); + args[1] = gfc_build_addr_expr (ppvoid_type_node, var); + args[2] = build_int_cst (integer_type_node, op); + args[3] = build_int_cst (integer_type_node, nargs / 2); + + if (expr->ts.kind == 1) + function = gfor_fndecl_string_minmax; + else if (expr->ts.kind == 4) + function = gfor_fndecl_string_minmax_char4; + else + gcc_unreachable (); + + /* Make the function call. */ + fndecl = build_addr (function); + tmp = build_call_array_loc (input_location, + TREE_TYPE (TREE_TYPE (function)), fndecl, + nargs + 4, args); + gfc_add_expr_to_block (&se->pre, tmp); + + /* Free the temporary afterwards, if necessary. */ + cond = fold_build2_loc (input_location, GT_EXPR, logical_type_node, + len, build_int_cst (TREE_TYPE (len), 0)); + tmp = gfc_call_free (var); + tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location)); + gfc_add_expr_to_block (&se->post, tmp); + + se->expr = var; + se->string_length = len; +} + + +/* Create a symbol node for this intrinsic. The symbol from the frontend + has the generic name. */ + +static gfc_symbol * +gfc_get_symbol_for_expr (gfc_expr * expr, bool ignore_optional) +{ + gfc_symbol *sym; + + /* TODO: Add symbols for intrinsic function to the global namespace. */ + gcc_assert (strlen (expr->value.function.name) <= GFC_MAX_SYMBOL_LEN - 5); + sym = gfc_new_symbol (expr->value.function.name, NULL); + + sym->ts = expr->ts; + sym->attr.external = 1; + sym->attr.function = 1; + sym->attr.always_explicit = 1; + sym->attr.proc = PROC_INTRINSIC; + sym->attr.flavor = FL_PROCEDURE; + sym->result = sym; + if (expr->rank > 0) + { + sym->attr.dimension = 1; + sym->as = gfc_get_array_spec (); + sym->as->type = AS_ASSUMED_SHAPE; + sym->as->rank = expr->rank; + } + + gfc_copy_formal_args_intr (sym, expr->value.function.isym, + ignore_optional ? expr->value.function.actual + : NULL); + + return sym; +} + +/* Remove empty actual arguments. */ + +static void +remove_empty_actual_arguments (gfc_actual_arglist **ap) +{ + while (*ap) + { + if ((*ap)->expr == NULL) + { + gfc_actual_arglist *r = *ap; + *ap = r->next; + r->next = NULL; + gfc_free_actual_arglist (r); + } + else + ap = &((*ap)->next); + } +} + +#define MAX_SPEC_ARG 12 + +/* Make up an fn spec that's right for intrinsic functions that we + want to call. */ + +static char * +intrinsic_fnspec (gfc_expr *expr) +{ + static char fnspec_buf[MAX_SPEC_ARG*2+1]; + char *fp; + int i; + int num_char_args; + +#define ADD_CHAR(c) do { *fp++ = c; *fp++ = ' '; } while(0) + + /* Set the fndecl. */ + fp = fnspec_buf; + /* Function return value. FIXME: Check if the second letter could + be something other than a space, for further optimization. */ + ADD_CHAR ('.'); + if (expr->rank == 0) + { + if (expr->ts.type == BT_CHARACTER) + { + ADD_CHAR ('w'); /* Address of character. */ + ADD_CHAR ('.'); /* Length of character. */ + } + } + else + ADD_CHAR ('w'); /* Return value is a descriptor. */ + + num_char_args = 0; + for (gfc_actual_arglist *a = expr->value.function.actual; a; a = a->next) + { + if (a->expr == NULL) + continue; + + if (a->name && strcmp (a->name,"%VAL") == 0) + ADD_CHAR ('.'); + else + { + if (a->expr->rank > 0) + ADD_CHAR ('r'); + else + ADD_CHAR ('R'); + } + num_char_args += a->expr->ts.type == BT_CHARACTER; + gcc_assert (fp - fnspec_buf + num_char_args <= MAX_SPEC_ARG*2); + } + + for (i = 0; i < num_char_args; i++) + ADD_CHAR ('.'); + + *fp = '\0'; + return fnspec_buf; +} + +#undef MAX_SPEC_ARG +#undef ADD_CHAR + +/* Generate the right symbol for the specific intrinsic function and + modify the expr accordingly. This assumes that absent optional + arguments should be removed. */ + +gfc_symbol * +specific_intrinsic_symbol (gfc_expr *expr) +{ + gfc_symbol *sym; + + sym = gfc_find_intrinsic_symbol (expr); + if (sym == NULL) + { + sym = gfc_get_intrinsic_function_symbol (expr); + sym->ts = expr->ts; + if (sym->ts.type == BT_CHARACTER && sym->ts.u.cl) + sym->ts.u.cl = gfc_new_charlen (sym->ns, NULL); + + gfc_copy_formal_args_intr (sym, expr->value.function.isym, + expr->value.function.actual, true); + sym->backend_decl + = gfc_get_extern_function_decl (sym, expr->value.function.actual, + intrinsic_fnspec (expr)); + } + + remove_empty_actual_arguments (&(expr->value.function.actual)); + + return sym; +} + +/* Generate a call to an external intrinsic function. FIXME: So far, + this only works for functions which are called with well-defined + types; CSHIFT and friends will come later. */ + +static void +gfc_conv_intrinsic_funcall (gfc_se * se, gfc_expr * expr) +{ + gfc_symbol *sym; + vec<tree, va_gc> *append_args; + bool specific_symbol; + + gcc_assert (!se->ss || se->ss->info->expr == expr); + + if (se->ss) + gcc_assert (expr->rank > 0); + else + gcc_assert (expr->rank == 0); + + switch (expr->value.function.isym->id) + { + case GFC_ISYM_ANY: + case GFC_ISYM_ALL: + case GFC_ISYM_FINDLOC: + case GFC_ISYM_MAXLOC: + case GFC_ISYM_MINLOC: + case GFC_ISYM_MAXVAL: + case GFC_ISYM_MINVAL: + case GFC_ISYM_NORM2: + case GFC_ISYM_PRODUCT: + case GFC_ISYM_SUM: + specific_symbol = true; + break; + default: + specific_symbol = false; + } + + if (specific_symbol) + { + /* Need to copy here because specific_intrinsic_symbol modifies + expr to omit the absent optional arguments. */ + expr = gfc_copy_expr (expr); + sym = specific_intrinsic_symbol (expr); + } + else + sym = gfc_get_symbol_for_expr (expr, se->ignore_optional); + + /* Calls to libgfortran_matmul need to be appended special arguments, + to be able to call the BLAS ?gemm functions if required and possible. */ + append_args = NULL; + if (expr->value.function.isym->id == GFC_ISYM_MATMUL + && !expr->external_blas + && sym->ts.type != BT_LOGICAL) + { + tree cint = gfc_get_int_type (gfc_c_int_kind); + + if (flag_external_blas + && (sym->ts.type == BT_REAL || sym->ts.type == BT_COMPLEX) + && (sym->ts.kind == 4 || sym->ts.kind == 8)) + { + tree gemm_fndecl; + + if (sym->ts.type == BT_REAL) + { + if (sym->ts.kind == 4) + gemm_fndecl = gfor_fndecl_sgemm; + else + gemm_fndecl = gfor_fndecl_dgemm; + } + else + { + if (sym->ts.kind == 4) + gemm_fndecl = gfor_fndecl_cgemm; + else + gemm_fndecl = gfor_fndecl_zgemm; + } + + vec_alloc (append_args, 3); + append_args->quick_push (build_int_cst (cint, 1)); + append_args->quick_push (build_int_cst (cint, + flag_blas_matmul_limit)); + append_args->quick_push (gfc_build_addr_expr (NULL_TREE, + gemm_fndecl)); + } + else + { + vec_alloc (append_args, 3); + append_args->quick_push (build_int_cst (cint, 0)); + append_args->quick_push (build_int_cst (cint, 0)); + append_args->quick_push (null_pointer_node); + } + } + + gfc_conv_procedure_call (se, sym, expr->value.function.actual, expr, + append_args); + + if (specific_symbol) + gfc_free_expr (expr); + else + gfc_free_symbol (sym); +} + +/* ANY and ALL intrinsics. ANY->op == NE_EXPR, ALL->op == EQ_EXPR. + Implemented as + any(a) + { + forall (i=...) + if (a[i] != 0) + return 1 + end forall + return 0 + } + all(a) + { + forall (i=...) + if (a[i] == 0) + return 0 + end forall + return 1 + } + */ +static void +gfc_conv_intrinsic_anyall (gfc_se * se, gfc_expr * expr, enum tree_code op) +{ + tree resvar; + stmtblock_t block; + stmtblock_t body; + tree type; + tree tmp; + tree found; + gfc_loopinfo loop; + gfc_actual_arglist *actual; + gfc_ss *arrayss; + gfc_se arrayse; + tree exit_label; + + if (se->ss) + { + gfc_conv_intrinsic_funcall (se, expr); + return; + } + + actual = expr->value.function.actual; + type = gfc_typenode_for_spec (&expr->ts); + /* Initialize the result. */ + resvar = gfc_create_var (type, "test"); + if (op == EQ_EXPR) + tmp = convert (type, boolean_true_node); + else + tmp = convert (type, boolean_false_node); + gfc_add_modify (&se->pre, resvar, tmp); + + /* Walk the arguments. */ + arrayss = gfc_walk_expr (actual->expr); + gcc_assert (arrayss != gfc_ss_terminator); + + /* Initialize the scalarizer. */ + gfc_init_loopinfo (&loop); + exit_label = gfc_build_label_decl (NULL_TREE); + TREE_USED (exit_label) = 1; + gfc_add_ss_to_loop (&loop, arrayss); + + /* Initialize the loop. */ + gfc_conv_ss_startstride (&loop); + gfc_conv_loop_setup (&loop, &expr->where); + + gfc_mark_ss_chain_used (arrayss, 1); + /* Generate the loop body. */ + gfc_start_scalarized_body (&loop, &body); + + /* If the condition matches then set the return value. */ + gfc_start_block (&block); + if (op == EQ_EXPR) + tmp = convert (type, boolean_false_node); + else + tmp = convert (type, boolean_true_node); + gfc_add_modify (&block, resvar, tmp); + + /* And break out of the loop. */ + tmp = build1_v (GOTO_EXPR, exit_label); + gfc_add_expr_to_block (&block, tmp); + + found = gfc_finish_block (&block); + + /* Check this element. */ + gfc_init_se (&arrayse, NULL); + gfc_copy_loopinfo_to_se (&arrayse, &loop); + arrayse.ss = arrayss; + gfc_conv_expr_val (&arrayse, actual->expr); + + gfc_add_block_to_block (&body, &arrayse.pre); + tmp = fold_build2_loc (input_location, op, logical_type_node, arrayse.expr, + build_int_cst (TREE_TYPE (arrayse.expr), 0)); + tmp = build3_v (COND_EXPR, tmp, found, build_empty_stmt (input_location)); + gfc_add_expr_to_block (&body, tmp); + gfc_add_block_to_block (&body, &arrayse.post); + + gfc_trans_scalarizing_loops (&loop, &body); + + /* Add the exit label. */ + tmp = build1_v (LABEL_EXPR, exit_label); + gfc_add_expr_to_block (&loop.pre, tmp); + + gfc_add_block_to_block (&se->pre, &loop.pre); + gfc_add_block_to_block (&se->pre, &loop.post); + gfc_cleanup_loop (&loop); + + se->expr = resvar; +} + + +/* Generate the constant 180 / pi, which is used in the conversion + of acosd(), asind(), atand(), atan2d(). */ + +static tree +rad2deg (int kind) +{ + tree retval; + mpfr_t pi, t0; + + gfc_set_model_kind (kind); + mpfr_init (pi); + mpfr_init (t0); + mpfr_set_si (t0, 180, GFC_RND_MODE); + mpfr_const_pi (pi, GFC_RND_MODE); + mpfr_div (t0, t0, pi, GFC_RND_MODE); + retval = gfc_conv_mpfr_to_tree (t0, kind, 0); + mpfr_clear (t0); + mpfr_clear (pi); + return retval; +} + + +static gfc_intrinsic_map_t * +gfc_lookup_intrinsic (gfc_isym_id id) +{ + gfc_intrinsic_map_t *m = gfc_intrinsic_map; + for (; m->id != GFC_ISYM_NONE || m->double_built_in != END_BUILTINS; m++) + if (id == m->id) + break; + gcc_assert (id == m->id); + return m; +} + + +/* ACOSD(x) is translated into ACOS(x) * 180 / pi. + ASIND(x) is translated into ASIN(x) * 180 / pi. + ATAND(x) is translated into ATAN(x) * 180 / pi. */ + +static void +gfc_conv_intrinsic_atrigd (gfc_se * se, gfc_expr * expr, gfc_isym_id id) +{ + tree arg; + tree atrigd; + tree type; + gfc_intrinsic_map_t *m; + + type = gfc_typenode_for_spec (&expr->ts); + + gfc_conv_intrinsic_function_args (se, expr, &arg, 1); + + switch (id) + { + case GFC_ISYM_ACOSD: + m = gfc_lookup_intrinsic (GFC_ISYM_ACOS); + break; + case GFC_ISYM_ASIND: + m = gfc_lookup_intrinsic (GFC_ISYM_ASIN); + break; + case GFC_ISYM_ATAND: + m = gfc_lookup_intrinsic (GFC_ISYM_ATAN); + break; + default: + gcc_unreachable (); + } + atrigd = gfc_get_intrinsic_lib_fndecl (m, expr); + atrigd = build_call_expr_loc (input_location, atrigd, 1, arg); + + se->expr = fold_build2_loc (input_location, MULT_EXPR, type, atrigd, + fold_convert (type, rad2deg (expr->ts.kind))); +} + + +/* COTAN(X) is translated into -TAN(X+PI/2) for REAL argument and + COS(X) / SIN(X) for COMPLEX argument. */ + +static void +gfc_conv_intrinsic_cotan (gfc_se *se, gfc_expr *expr) +{ + gfc_intrinsic_map_t *m; + tree arg; + tree type; + + type = gfc_typenode_for_spec (&expr->ts); + gfc_conv_intrinsic_function_args (se, expr, &arg, 1); + + if (expr->ts.type == BT_REAL) + { + tree tan; + tree tmp; + mpfr_t pio2; + + /* Create pi/2. */ + gfc_set_model_kind (expr->ts.kind); + mpfr_init (pio2); + mpfr_const_pi (pio2, GFC_RND_MODE); + mpfr_div_ui (pio2, pio2, 2, GFC_RND_MODE); + tmp = gfc_conv_mpfr_to_tree (pio2, expr->ts.kind, 0); + mpfr_clear (pio2); + + /* Find tan builtin function. */ + m = gfc_lookup_intrinsic (GFC_ISYM_TAN); + tan = gfc_get_intrinsic_lib_fndecl (m, expr); + tmp = fold_build2_loc (input_location, PLUS_EXPR, type, arg, tmp); + tan = build_call_expr_loc (input_location, tan, 1, tmp); + se->expr = fold_build1_loc (input_location, NEGATE_EXPR, type, tan); + } + else + { + tree sin; + tree cos; + + /* Find cos builtin function. */ + m = gfc_lookup_intrinsic (GFC_ISYM_COS); + cos = gfc_get_intrinsic_lib_fndecl (m, expr); + cos = build_call_expr_loc (input_location, cos, 1, arg); + + /* Find sin builtin function. */ + m = gfc_lookup_intrinsic (GFC_ISYM_SIN); + sin = gfc_get_intrinsic_lib_fndecl (m, expr); + sin = build_call_expr_loc (input_location, sin, 1, arg); + + /* Divide cos by sin. */ + se->expr = fold_build2_loc (input_location, RDIV_EXPR, type, cos, sin); + } +} + + +/* COTAND(X) is translated into -TAND(X+90) for REAL argument. */ + +static void +gfc_conv_intrinsic_cotand (gfc_se *se, gfc_expr *expr) +{ + tree arg; + tree type; + tree ninety_tree; + mpfr_t ninety; + + type = gfc_typenode_for_spec (&expr->ts); + gfc_conv_intrinsic_function_args (se, expr, &arg, 1); + + gfc_set_model_kind (expr->ts.kind); + + /* Build the tree for x + 90. */ + mpfr_init_set_ui (ninety, 90, GFC_RND_MODE); + ninety_tree = gfc_conv_mpfr_to_tree (ninety, expr->ts.kind, 0); + arg = fold_build2_loc (input_location, PLUS_EXPR, type, arg, ninety_tree); + mpfr_clear (ninety); + + /* Find tand. */ + gfc_intrinsic_map_t *m = gfc_lookup_intrinsic (GFC_ISYM_TAND); + tree tand = gfc_get_intrinsic_lib_fndecl (m, expr); + tand = build_call_expr_loc (input_location, tand, 1, arg); + + se->expr = fold_build1_loc (input_location, NEGATE_EXPR, type, tand); +} + + +/* ATAN2D(Y,X) is translated into ATAN2(Y,X) * 180 / PI. */ + +static void +gfc_conv_intrinsic_atan2d (gfc_se *se, gfc_expr *expr) +{ + tree args[2]; + tree atan2d; + tree type; + + gfc_conv_intrinsic_function_args (se, expr, args, 2); + type = TREE_TYPE (args[0]); + + gfc_intrinsic_map_t *m = gfc_lookup_intrinsic (GFC_ISYM_ATAN2); + atan2d = gfc_get_intrinsic_lib_fndecl (m, expr); + atan2d = build_call_expr_loc (input_location, atan2d, 2, args[0], args[1]); + + se->expr = fold_build2_loc (input_location, MULT_EXPR, type, atan2d, + rad2deg (expr->ts.kind)); +} + + +/* COUNT(A) = Number of true elements in A. */ +static void +gfc_conv_intrinsic_count (gfc_se * se, gfc_expr * expr) +{ + tree resvar; + tree type; + stmtblock_t body; + tree tmp; + gfc_loopinfo loop; + gfc_actual_arglist *actual; + gfc_ss *arrayss; + gfc_se arrayse; + + if (se->ss) + { + gfc_conv_intrinsic_funcall (se, expr); + return; + } + + actual = expr->value.function.actual; + + type = gfc_typenode_for_spec (&expr->ts); + /* Initialize the result. */ + resvar = gfc_create_var (type, "count"); + gfc_add_modify (&se->pre, resvar, build_int_cst (type, 0)); + + /* Walk the arguments. */ + arrayss = gfc_walk_expr (actual->expr); + gcc_assert (arrayss != gfc_ss_terminator); + + /* Initialize the scalarizer. */ + gfc_init_loopinfo (&loop); + gfc_add_ss_to_loop (&loop, arrayss); + + /* Initialize the loop. */ + gfc_conv_ss_startstride (&loop); + gfc_conv_loop_setup (&loop, &expr->where); + + gfc_mark_ss_chain_used (arrayss, 1); + /* Generate the loop body. */ + gfc_start_scalarized_body (&loop, &body); + + tmp = fold_build2_loc (input_location, PLUS_EXPR, TREE_TYPE (resvar), + resvar, build_int_cst (TREE_TYPE (resvar), 1)); + tmp = build2_v (MODIFY_EXPR, resvar, tmp); + + gfc_init_se (&arrayse, NULL); + gfc_copy_loopinfo_to_se (&arrayse, &loop); + arrayse.ss = arrayss; + gfc_conv_expr_val (&arrayse, actual->expr); + tmp = build3_v (COND_EXPR, arrayse.expr, tmp, + build_empty_stmt (input_location)); + + gfc_add_block_to_block (&body, &arrayse.pre); + gfc_add_expr_to_block (&body, tmp); + gfc_add_block_to_block (&body, &arrayse.post); + + gfc_trans_scalarizing_loops (&loop, &body); + + gfc_add_block_to_block (&se->pre, &loop.pre); + gfc_add_block_to_block (&se->pre, &loop.post); + gfc_cleanup_loop (&loop); + + se->expr = resvar; +} + + +/* Update given gfc_se to have ss component pointing to the nested gfc_ss + struct and return the corresponding loopinfo. */ + +static gfc_loopinfo * +enter_nested_loop (gfc_se *se) +{ + se->ss = se->ss->nested_ss; + gcc_assert (se->ss == se->ss->loop->ss); + + return se->ss->loop; +} + +/* Build the condition for a mask, which may be optional. */ + +static tree +conv_mask_condition (gfc_se *maskse, gfc_expr *maskexpr, + bool optional_mask) +{ + tree present; + tree type; + + if (optional_mask) + { + type = TREE_TYPE (maskse->expr); + present = gfc_conv_expr_present (maskexpr->symtree->n.sym); + present = convert (type, present); + present = fold_build1_loc (input_location, TRUTH_NOT_EXPR, type, + present); + return fold_build2_loc (input_location, TRUTH_ORIF_EXPR, + type, present, maskse->expr); + } + else + return maskse->expr; +} + +/* Inline implementation of the sum and product intrinsics. */ +static void +gfc_conv_intrinsic_arith (gfc_se * se, gfc_expr * expr, enum tree_code op, + bool norm2) +{ + tree resvar; + tree scale = NULL_TREE; + tree type; + stmtblock_t body; + stmtblock_t block; + tree tmp; + gfc_loopinfo loop, *ploop; + gfc_actual_arglist *arg_array, *arg_mask; + gfc_ss *arrayss = NULL; + gfc_ss *maskss = NULL; + gfc_se arrayse; + gfc_se maskse; + gfc_se *parent_se; + gfc_expr *arrayexpr; + gfc_expr *maskexpr; + bool optional_mask; + + if (expr->rank > 0) + { + gcc_assert (gfc_inline_intrinsic_function_p (expr)); + parent_se = se; + } + else + parent_se = NULL; + + type = gfc_typenode_for_spec (&expr->ts); + /* Initialize the result. */ + resvar = gfc_create_var (type, "val"); + if (norm2) + { + /* result = 0.0; + scale = 1.0. */ + scale = gfc_create_var (type, "scale"); + gfc_add_modify (&se->pre, scale, + gfc_build_const (type, integer_one_node)); + tmp = gfc_build_const (type, integer_zero_node); + } + else if (op == PLUS_EXPR || op == BIT_IOR_EXPR || op == BIT_XOR_EXPR) + tmp = gfc_build_const (type, integer_zero_node); + else if (op == NE_EXPR) + /* PARITY. */ + tmp = convert (type, boolean_false_node); + else if (op == BIT_AND_EXPR) + tmp = gfc_build_const (type, fold_build1_loc (input_location, NEGATE_EXPR, + type, integer_one_node)); + else + tmp = gfc_build_const (type, integer_one_node); + + gfc_add_modify (&se->pre, resvar, tmp); + + arg_array = expr->value.function.actual; + + arrayexpr = arg_array->expr; + + if (op == NE_EXPR || norm2) + { + /* PARITY and NORM2. */ + maskexpr = NULL; + optional_mask = false; + } + else + { + arg_mask = arg_array->next->next; + gcc_assert (arg_mask != NULL); + maskexpr = arg_mask->expr; + optional_mask = maskexpr && maskexpr->expr_type == EXPR_VARIABLE + && maskexpr->symtree->n.sym->attr.dummy + && maskexpr->symtree->n.sym->attr.optional; + } + + if (expr->rank == 0) + { + /* Walk the arguments. */ + arrayss = gfc_walk_expr (arrayexpr); + gcc_assert (arrayss != gfc_ss_terminator); + + if (maskexpr && maskexpr->rank > 0) + { + maskss = gfc_walk_expr (maskexpr); + gcc_assert (maskss != gfc_ss_terminator); + } + else + maskss = NULL; + + /* Initialize the scalarizer. */ + gfc_init_loopinfo (&loop); + + /* We add the mask first because the number of iterations is + taken from the last ss, and this breaks if an absent + optional argument is used for mask. */ + + if (maskexpr && maskexpr->rank > 0) + gfc_add_ss_to_loop (&loop, maskss); + gfc_add_ss_to_loop (&loop, arrayss); + + /* Initialize the loop. */ + gfc_conv_ss_startstride (&loop); + gfc_conv_loop_setup (&loop, &expr->where); + + if (maskexpr && maskexpr->rank > 0) + gfc_mark_ss_chain_used (maskss, 1); + gfc_mark_ss_chain_used (arrayss, 1); + + ploop = &loop; + } + else + /* All the work has been done in the parent loops. */ + ploop = enter_nested_loop (se); + + gcc_assert (ploop); + + /* Generate the loop body. */ + gfc_start_scalarized_body (ploop, &body); + + /* If we have a mask, only add this element if the mask is set. */ + if (maskexpr && maskexpr->rank > 0) + { + gfc_init_se (&maskse, parent_se); + gfc_copy_loopinfo_to_se (&maskse, ploop); + if (expr->rank == 0) + maskse.ss = maskss; + gfc_conv_expr_val (&maskse, maskexpr); + gfc_add_block_to_block (&body, &maskse.pre); + + gfc_start_block (&block); + } + else + gfc_init_block (&block); + + /* Do the actual summation/product. */ + gfc_init_se (&arrayse, parent_se); + gfc_copy_loopinfo_to_se (&arrayse, ploop); + if (expr->rank == 0) + arrayse.ss = arrayss; + gfc_conv_expr_val (&arrayse, arrayexpr); + gfc_add_block_to_block (&block, &arrayse.pre); + + if (norm2) + { + /* if (x (i) != 0.0) + { + absX = abs(x(i)) + if (absX > scale) + { + val = scale/absX; + result = 1.0 + result * val * val; + scale = absX; + } + else + { + val = absX/scale; + result += val * val; + } + } */ + tree res1, res2, cond, absX, val; + stmtblock_t ifblock1, ifblock2, ifblock3; + + gfc_init_block (&ifblock1); + + absX = gfc_create_var (type, "absX"); + gfc_add_modify (&ifblock1, absX, + fold_build1_loc (input_location, ABS_EXPR, type, + arrayse.expr)); + val = gfc_create_var (type, "val"); + gfc_add_expr_to_block (&ifblock1, val); + + gfc_init_block (&ifblock2); + gfc_add_modify (&ifblock2, val, + fold_build2_loc (input_location, RDIV_EXPR, type, scale, + absX)); + res1 = fold_build2_loc (input_location, MULT_EXPR, type, val, val); + res1 = fold_build2_loc (input_location, MULT_EXPR, type, resvar, res1); + res1 = fold_build2_loc (input_location, PLUS_EXPR, type, res1, + gfc_build_const (type, integer_one_node)); + gfc_add_modify (&ifblock2, resvar, res1); + gfc_add_modify (&ifblock2, scale, absX); + res1 = gfc_finish_block (&ifblock2); + + gfc_init_block (&ifblock3); + gfc_add_modify (&ifblock3, val, + fold_build2_loc (input_location, RDIV_EXPR, type, absX, + scale)); + res2 = fold_build2_loc (input_location, MULT_EXPR, type, val, val); + res2 = fold_build2_loc (input_location, PLUS_EXPR, type, resvar, res2); + gfc_add_modify (&ifblock3, resvar, res2); + res2 = gfc_finish_block (&ifblock3); + + cond = fold_build2_loc (input_location, GT_EXPR, logical_type_node, + absX, scale); + tmp = build3_v (COND_EXPR, cond, res1, res2); + gfc_add_expr_to_block (&ifblock1, tmp); + tmp = gfc_finish_block (&ifblock1); + + cond = fold_build2_loc (input_location, NE_EXPR, logical_type_node, + arrayse.expr, + gfc_build_const (type, integer_zero_node)); + + tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location)); + gfc_add_expr_to_block (&block, tmp); + } + else + { + tmp = fold_build2_loc (input_location, op, type, resvar, arrayse.expr); + gfc_add_modify (&block, resvar, tmp); + } + + gfc_add_block_to_block (&block, &arrayse.post); + + if (maskexpr && maskexpr->rank > 0) + { + /* We enclose the above in if (mask) {...} . If the mask is an + optional argument, generate + IF (.NOT. PRESENT(MASK) .OR. MASK(I)). */ + tree ifmask; + tmp = gfc_finish_block (&block); + ifmask = conv_mask_condition (&maskse, maskexpr, optional_mask); + tmp = build3_v (COND_EXPR, ifmask, tmp, + build_empty_stmt (input_location)); + } + else + tmp = gfc_finish_block (&block); + gfc_add_expr_to_block (&body, tmp); + + gfc_trans_scalarizing_loops (ploop, &body); + + /* For a scalar mask, enclose the loop in an if statement. */ + if (maskexpr && maskexpr->rank == 0) + { + gfc_init_block (&block); + gfc_add_block_to_block (&block, &ploop->pre); + gfc_add_block_to_block (&block, &ploop->post); + tmp = gfc_finish_block (&block); + + if (expr->rank > 0) + { + tmp = build3_v (COND_EXPR, se->ss->info->data.scalar.value, tmp, + build_empty_stmt (input_location)); + gfc_advance_se_ss_chain (se); + } + else + { + tree ifmask; + + gcc_assert (expr->rank == 0); + gfc_init_se (&maskse, NULL); + gfc_conv_expr_val (&maskse, maskexpr); + ifmask = conv_mask_condition (&maskse, maskexpr, optional_mask); + tmp = build3_v (COND_EXPR, ifmask, tmp, + build_empty_stmt (input_location)); + } + + gfc_add_expr_to_block (&block, tmp); + gfc_add_block_to_block (&se->pre, &block); + gcc_assert (se->post.head == NULL); + } + else + { + gfc_add_block_to_block (&se->pre, &ploop->pre); + gfc_add_block_to_block (&se->pre, &ploop->post); + } + + if (expr->rank == 0) + gfc_cleanup_loop (ploop); + + if (norm2) + { + /* result = scale * sqrt(result). */ + tree sqrt; + sqrt = gfc_builtin_decl_for_float_kind (BUILT_IN_SQRT, expr->ts.kind); + resvar = build_call_expr_loc (input_location, + sqrt, 1, resvar); + resvar = fold_build2_loc (input_location, MULT_EXPR, type, scale, resvar); + } + + se->expr = resvar; +} + + +/* Inline implementation of the dot_product intrinsic. This function + is based on gfc_conv_intrinsic_arith (the previous function). */ +static void +gfc_conv_intrinsic_dot_product (gfc_se * se, gfc_expr * expr) +{ + tree resvar; + tree type; + stmtblock_t body; + stmtblock_t block; + tree tmp; + gfc_loopinfo loop; + gfc_actual_arglist *actual; + gfc_ss *arrayss1, *arrayss2; + gfc_se arrayse1, arrayse2; + gfc_expr *arrayexpr1, *arrayexpr2; + + type = gfc_typenode_for_spec (&expr->ts); + + /* Initialize the result. */ + resvar = gfc_create_var (type, "val"); + if (expr->ts.type == BT_LOGICAL) + tmp = build_int_cst (type, 0); + else + tmp = gfc_build_const (type, integer_zero_node); + + gfc_add_modify (&se->pre, resvar, tmp); + + /* Walk argument #1. */ + actual = expr->value.function.actual; + arrayexpr1 = actual->expr; + arrayss1 = gfc_walk_expr (arrayexpr1); + gcc_assert (arrayss1 != gfc_ss_terminator); + + /* Walk argument #2. */ + actual = actual->next; + arrayexpr2 = actual->expr; + arrayss2 = gfc_walk_expr (arrayexpr2); + gcc_assert (arrayss2 != gfc_ss_terminator); + + /* Initialize the scalarizer. */ + gfc_init_loopinfo (&loop); + gfc_add_ss_to_loop (&loop, arrayss1); + gfc_add_ss_to_loop (&loop, arrayss2); + + /* Initialize the loop. */ + gfc_conv_ss_startstride (&loop); + gfc_conv_loop_setup (&loop, &expr->where); + + gfc_mark_ss_chain_used (arrayss1, 1); + gfc_mark_ss_chain_used (arrayss2, 1); + + /* Generate the loop body. */ + gfc_start_scalarized_body (&loop, &body); + gfc_init_block (&block); + + /* Make the tree expression for [conjg(]array1[)]. */ + gfc_init_se (&arrayse1, NULL); + gfc_copy_loopinfo_to_se (&arrayse1, &loop); + arrayse1.ss = arrayss1; + gfc_conv_expr_val (&arrayse1, arrayexpr1); + if (expr->ts.type == BT_COMPLEX) + arrayse1.expr = fold_build1_loc (input_location, CONJ_EXPR, type, + arrayse1.expr); + gfc_add_block_to_block (&block, &arrayse1.pre); + + /* Make the tree expression for array2. */ + gfc_init_se (&arrayse2, NULL); + gfc_copy_loopinfo_to_se (&arrayse2, &loop); + arrayse2.ss = arrayss2; + gfc_conv_expr_val (&arrayse2, arrayexpr2); + gfc_add_block_to_block (&block, &arrayse2.pre); + + /* Do the actual product and sum. */ + if (expr->ts.type == BT_LOGICAL) + { + tmp = fold_build2_loc (input_location, TRUTH_AND_EXPR, type, + arrayse1.expr, arrayse2.expr); + tmp = fold_build2_loc (input_location, TRUTH_OR_EXPR, type, resvar, tmp); + } + else + { + tmp = fold_build2_loc (input_location, MULT_EXPR, type, arrayse1.expr, + arrayse2.expr); + tmp = fold_build2_loc (input_location, PLUS_EXPR, type, resvar, tmp); + } + gfc_add_modify (&block, resvar, tmp); + + /* Finish up the loop block and the loop. */ + tmp = gfc_finish_block (&block); + gfc_add_expr_to_block (&body, tmp); + + gfc_trans_scalarizing_loops (&loop, &body); + gfc_add_block_to_block (&se->pre, &loop.pre); + gfc_add_block_to_block (&se->pre, &loop.post); + gfc_cleanup_loop (&loop); + + se->expr = resvar; +} + + +/* Remove unneeded kind= argument from actual argument list when the + result conversion is dealt with in a different place. */ + +static void +strip_kind_from_actual (gfc_actual_arglist * actual) +{ + for (gfc_actual_arglist *a = actual; a; a = a->next) + { + if (a && a->name && strcmp (a->name, "kind") == 0) + { + gfc_free_expr (a->expr); + a->expr = NULL; + } + } +} + +/* Emit code for minloc or maxloc intrinsic. There are many different cases + we need to handle. For performance reasons we sometimes create two + loops instead of one, where the second one is much simpler. + Examples for minloc intrinsic: + 1) Result is an array, a call is generated + 2) Array mask is used and NaNs need to be supported: + limit = Infinity; + pos = 0; + S = from; + while (S <= to) { + if (mask[S]) { + if (pos == 0) pos = S + (1 - from); + if (a[S] <= limit) { limit = a[S]; pos = S + (1 - from); goto lab1; } + } + S++; + } + goto lab2; + lab1:; + while (S <= to) { + if (mask[S]) if (a[S] < limit) { limit = a[S]; pos = S + (1 - from); } + S++; + } + lab2:; + 3) NaNs need to be supported, but it is known at compile time or cheaply + at runtime whether array is nonempty or not: + limit = Infinity; + pos = 0; + S = from; + while (S <= to) { + if (a[S] <= limit) { limit = a[S]; pos = S + (1 - from); goto lab1; } + S++; + } + if (from <= to) pos = 1; + goto lab2; + lab1:; + while (S <= to) { + if (a[S] < limit) { limit = a[S]; pos = S + (1 - from); } + S++; + } + lab2:; + 4) NaNs aren't supported, array mask is used: + limit = infinities_supported ? Infinity : huge (limit); + pos = 0; + S = from; + while (S <= to) { + if (mask[S]) { limit = a[S]; pos = S + (1 - from); goto lab1; } + S++; + } + goto lab2; + lab1:; + while (S <= to) { + if (mask[S]) if (a[S] < limit) { limit = a[S]; pos = S + (1 - from); } + S++; + } + lab2:; + 5) Same without array mask: + limit = infinities_supported ? Infinity : huge (limit); + pos = (from <= to) ? 1 : 0; + S = from; + while (S <= to) { + if (a[S] < limit) { limit = a[S]; pos = S + (1 - from); } + S++; + } + For 3) and 5), if mask is scalar, this all goes into a conditional, + setting pos = 0; in the else branch. + + Since we now also support the BACK argument, instead of using + if (a[S] < limit), we now use + + if (back) + cond = a[S] <= limit; + else + cond = a[S] < limit; + if (cond) { + .... + + The optimizer is smart enough to move the condition out of the loop. + The are now marked as unlikely to for further speedup. */ + +static void +gfc_conv_intrinsic_minmaxloc (gfc_se * se, gfc_expr * expr, enum tree_code op) +{ + stmtblock_t body; + stmtblock_t block; + stmtblock_t ifblock; + stmtblock_t elseblock; + tree limit; + tree type; + tree tmp; + tree cond; + tree elsetmp; + tree ifbody; + tree offset; + tree nonempty; + tree lab1, lab2; + tree b_if, b_else; + gfc_loopinfo loop; + gfc_actual_arglist *actual; + gfc_ss *arrayss; + gfc_ss *maskss; + gfc_se arrayse; + gfc_se maskse; + gfc_expr *arrayexpr; + gfc_expr *maskexpr; + gfc_expr *backexpr; + gfc_se backse; + tree pos; + int n; + bool optional_mask; + + actual = expr->value.function.actual; + + /* The last argument, BACK, is passed by value. Ensure that + by setting its name to %VAL. */ + for (gfc_actual_arglist *a = actual; a; a = a->next) + { + if (a->next == NULL) + a->name = "%VAL"; + } + + if (se->ss) + { + gfc_conv_intrinsic_funcall (se, expr); + return; + } + + arrayexpr = actual->expr; + + /* Special case for character maxloc. Remove unneeded actual + arguments, then call a library function. */ + + if (arrayexpr->ts.type == BT_CHARACTER) + { + gfc_actual_arglist *a; + a = actual; + strip_kind_from_actual (a); + while (a) + { + if (a->name && strcmp (a->name, "dim") == 0) + { + gfc_free_expr (a->expr); + a->expr = NULL; + } + a = a->next; + } + gfc_conv_intrinsic_funcall (se, expr); + return; + } + + /* Initialize the result. */ + pos = gfc_create_var (gfc_array_index_type, "pos"); + offset = gfc_create_var (gfc_array_index_type, "offset"); + type = gfc_typenode_for_spec (&expr->ts); + + /* Walk the arguments. */ + arrayss = gfc_walk_expr (arrayexpr); + gcc_assert (arrayss != gfc_ss_terminator); + + actual = actual->next->next; + gcc_assert (actual); + maskexpr = actual->expr; + optional_mask = maskexpr && maskexpr->expr_type == EXPR_VARIABLE + && maskexpr->symtree->n.sym->attr.dummy + && maskexpr->symtree->n.sym->attr.optional; + backexpr = actual->next->next->expr; + nonempty = NULL; + if (maskexpr && maskexpr->rank != 0) + { + maskss = gfc_walk_expr (maskexpr); + gcc_assert (maskss != gfc_ss_terminator); + } + else + { + mpz_t asize; + if (gfc_array_size (arrayexpr, &asize)) + { + nonempty = gfc_conv_mpz_to_tree (asize, gfc_index_integer_kind); + mpz_clear (asize); + nonempty = fold_build2_loc (input_location, GT_EXPR, + logical_type_node, nonempty, + gfc_index_zero_node); + } + maskss = NULL; + } + + limit = gfc_create_var (gfc_typenode_for_spec (&arrayexpr->ts), "limit"); + switch (arrayexpr->ts.type) + { + case BT_REAL: + tmp = gfc_build_inf_or_huge (TREE_TYPE (limit), arrayexpr->ts.kind); + break; + + case BT_INTEGER: + n = gfc_validate_kind (arrayexpr->ts.type, arrayexpr->ts.kind, false); + tmp = gfc_conv_mpz_to_tree (gfc_integer_kinds[n].huge, + arrayexpr->ts.kind); + break; + + default: + gcc_unreachable (); + } + + /* We start with the most negative possible value for MAXLOC, and the most + positive possible value for MINLOC. The most negative possible value is + -HUGE for BT_REAL and (-HUGE - 1) for BT_INTEGER; the most positive + possible value is HUGE in both cases. */ + if (op == GT_EXPR) + tmp = fold_build1_loc (input_location, NEGATE_EXPR, TREE_TYPE (tmp), tmp); + if (op == GT_EXPR && arrayexpr->ts.type == BT_INTEGER) + tmp = fold_build2_loc (input_location, MINUS_EXPR, TREE_TYPE (tmp), tmp, + build_int_cst (TREE_TYPE (tmp), 1)); + + gfc_add_modify (&se->pre, limit, tmp); + + /* Initialize the scalarizer. */ + gfc_init_loopinfo (&loop); + + /* We add the mask first because the number of iterations is taken + from the last ss, and this breaks if an absent optional argument + is used for mask. */ + + if (maskss) + gfc_add_ss_to_loop (&loop, maskss); + + gfc_add_ss_to_loop (&loop, arrayss); + + /* Initialize the loop. */ + gfc_conv_ss_startstride (&loop); + + /* The code generated can have more than one loop in sequence (see the + comment at the function header). This doesn't work well with the + scalarizer, which changes arrays' offset when the scalarization loops + are generated (see gfc_trans_preloop_setup). Fortunately, {min,max}loc + are currently inlined in the scalar case only (for which loop is of rank + one). As there is no dependency to care about in that case, there is no + temporary, so that we can use the scalarizer temporary code to handle + multiple loops. Thus, we set temp_dim here, we call gfc_mark_ss_chain_used + with flag=3 later, and we use gfc_trans_scalarized_loop_boundary even later + to restore offset. + TODO: this prevents inlining of rank > 0 minmaxloc calls, so this + should eventually go away. We could either create two loops properly, + or find another way to save/restore the array offsets between the two + loops (without conflicting with temporary management), or use a single + loop minmaxloc implementation. See PR 31067. */ + loop.temp_dim = loop.dimen; + gfc_conv_loop_setup (&loop, &expr->where); + + gcc_assert (loop.dimen == 1); + if (nonempty == NULL && maskss == NULL && loop.from[0] && loop.to[0]) + nonempty = fold_build2_loc (input_location, LE_EXPR, logical_type_node, + loop.from[0], loop.to[0]); + + lab1 = NULL; + lab2 = NULL; + /* Initialize the position to zero, following Fortran 2003. We are free + to do this because Fortran 95 allows the result of an entirely false + mask to be processor dependent. If we know at compile time the array + is non-empty and no MASK is used, we can initialize to 1 to simplify + the inner loop. */ + if (nonempty != NULL && !HONOR_NANS (DECL_MODE (limit))) + gfc_add_modify (&loop.pre, pos, + fold_build3_loc (input_location, COND_EXPR, + gfc_array_index_type, + nonempty, gfc_index_one_node, + gfc_index_zero_node)); + else + { + gfc_add_modify (&loop.pre, pos, gfc_index_zero_node); + lab1 = gfc_build_label_decl (NULL_TREE); + TREE_USED (lab1) = 1; + lab2 = gfc_build_label_decl (NULL_TREE); + TREE_USED (lab2) = 1; + } + + /* An offset must be added to the loop + counter to obtain the required position. */ + gcc_assert (loop.from[0]); + + tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, + gfc_index_one_node, loop.from[0]); + gfc_add_modify (&loop.pre, offset, tmp); + + gfc_mark_ss_chain_used (arrayss, lab1 ? 3 : 1); + if (maskss) + gfc_mark_ss_chain_used (maskss, lab1 ? 3 : 1); + /* Generate the loop body. */ + gfc_start_scalarized_body (&loop, &body); + + /* If we have a mask, only check this element if the mask is set. */ + if (maskss) + { + gfc_init_se (&maskse, NULL); + gfc_copy_loopinfo_to_se (&maskse, &loop); + maskse.ss = maskss; + gfc_conv_expr_val (&maskse, maskexpr); + gfc_add_block_to_block (&body, &maskse.pre); + + gfc_start_block (&block); + } + else + gfc_init_block (&block); + + /* Compare with the current limit. */ + gfc_init_se (&arrayse, NULL); + gfc_copy_loopinfo_to_se (&arrayse, &loop); + arrayse.ss = arrayss; + gfc_conv_expr_val (&arrayse, arrayexpr); + gfc_add_block_to_block (&block, &arrayse.pre); + + gfc_init_se (&backse, NULL); + gfc_conv_expr_val (&backse, backexpr); + gfc_add_block_to_block (&block, &backse.pre); + + /* We do the following if this is a more extreme value. */ + gfc_start_block (&ifblock); + + /* Assign the value to the limit... */ + gfc_add_modify (&ifblock, limit, arrayse.expr); + + if (nonempty == NULL && HONOR_NANS (DECL_MODE (limit))) + { + stmtblock_t ifblock2; + tree ifbody2; + + gfc_start_block (&ifblock2); + tmp = fold_build2_loc (input_location, PLUS_EXPR, TREE_TYPE (pos), + loop.loopvar[0], offset); + gfc_add_modify (&ifblock2, pos, tmp); + ifbody2 = gfc_finish_block (&ifblock2); + cond = fold_build2_loc (input_location, EQ_EXPR, logical_type_node, pos, + gfc_index_zero_node); + tmp = build3_v (COND_EXPR, cond, ifbody2, + build_empty_stmt (input_location)); + gfc_add_expr_to_block (&block, tmp); + } + + tmp = fold_build2_loc (input_location, PLUS_EXPR, TREE_TYPE (pos), + loop.loopvar[0], offset); + gfc_add_modify (&ifblock, pos, tmp); + + if (lab1) + gfc_add_expr_to_block (&ifblock, build1_v (GOTO_EXPR, lab1)); + + ifbody = gfc_finish_block (&ifblock); + + if (!lab1 || HONOR_NANS (DECL_MODE (limit))) + { + if (lab1) + cond = fold_build2_loc (input_location, + op == GT_EXPR ? GE_EXPR : LE_EXPR, + logical_type_node, arrayse.expr, limit); + else + { + tree ifbody2, elsebody2; + + /* We switch to > or >= depending on the value of the BACK argument. */ + cond = gfc_create_var (logical_type_node, "cond"); + + gfc_start_block (&ifblock); + b_if = fold_build2_loc (input_location, op == GT_EXPR ? GE_EXPR : LE_EXPR, + logical_type_node, arrayse.expr, limit); + + gfc_add_modify (&ifblock, cond, b_if); + ifbody2 = gfc_finish_block (&ifblock); + + gfc_start_block (&elseblock); + b_else = fold_build2_loc (input_location, op, logical_type_node, + arrayse.expr, limit); + + gfc_add_modify (&elseblock, cond, b_else); + elsebody2 = gfc_finish_block (&elseblock); + + tmp = fold_build3_loc (input_location, COND_EXPR, logical_type_node, + backse.expr, ifbody2, elsebody2); + + gfc_add_expr_to_block (&block, tmp); + } + + cond = gfc_unlikely (cond, PRED_BUILTIN_EXPECT); + ifbody = build3_v (COND_EXPR, cond, ifbody, + build_empty_stmt (input_location)); + } + gfc_add_expr_to_block (&block, ifbody); + + if (maskss) + { + /* We enclose the above in if (mask) {...}. If the mask is an + optional argument, generate IF (.NOT. PRESENT(MASK) + .OR. MASK(I)). */ + + tree ifmask; + ifmask = conv_mask_condition (&maskse, maskexpr, optional_mask); + tmp = gfc_finish_block (&block); + tmp = build3_v (COND_EXPR, ifmask, tmp, + build_empty_stmt (input_location)); + } + else + tmp = gfc_finish_block (&block); + gfc_add_expr_to_block (&body, tmp); + + if (lab1) + { + gfc_trans_scalarized_loop_boundary (&loop, &body); + + if (HONOR_NANS (DECL_MODE (limit))) + { + if (nonempty != NULL) + { + ifbody = build2_v (MODIFY_EXPR, pos, gfc_index_one_node); + tmp = build3_v (COND_EXPR, nonempty, ifbody, + build_empty_stmt (input_location)); + gfc_add_expr_to_block (&loop.code[0], tmp); + } + } + + gfc_add_expr_to_block (&loop.code[0], build1_v (GOTO_EXPR, lab2)); + gfc_add_expr_to_block (&loop.code[0], build1_v (LABEL_EXPR, lab1)); + + /* If we have a mask, only check this element if the mask is set. */ + if (maskss) + { + gfc_init_se (&maskse, NULL); + gfc_copy_loopinfo_to_se (&maskse, &loop); + maskse.ss = maskss; + gfc_conv_expr_val (&maskse, maskexpr); + gfc_add_block_to_block (&body, &maskse.pre); + + gfc_start_block (&block); + } + else + gfc_init_block (&block); + + /* Compare with the current limit. */ + gfc_init_se (&arrayse, NULL); + gfc_copy_loopinfo_to_se (&arrayse, &loop); + arrayse.ss = arrayss; + gfc_conv_expr_val (&arrayse, arrayexpr); + gfc_add_block_to_block (&block, &arrayse.pre); + + /* We do the following if this is a more extreme value. */ + gfc_start_block (&ifblock); + + /* Assign the value to the limit... */ + gfc_add_modify (&ifblock, limit, arrayse.expr); + + tmp = fold_build2_loc (input_location, PLUS_EXPR, TREE_TYPE (pos), + loop.loopvar[0], offset); + gfc_add_modify (&ifblock, pos, tmp); + + ifbody = gfc_finish_block (&ifblock); + + /* We switch to > or >= depending on the value of the BACK argument. */ + { + tree ifbody2, elsebody2; + + cond = gfc_create_var (logical_type_node, "cond"); + + gfc_start_block (&ifblock); + b_if = fold_build2_loc (input_location, op == GT_EXPR ? GE_EXPR : LE_EXPR, + logical_type_node, arrayse.expr, limit); + + gfc_add_modify (&ifblock, cond, b_if); + ifbody2 = gfc_finish_block (&ifblock); + + gfc_start_block (&elseblock); + b_else = fold_build2_loc (input_location, op, logical_type_node, + arrayse.expr, limit); + + gfc_add_modify (&elseblock, cond, b_else); + elsebody2 = gfc_finish_block (&elseblock); + + tmp = fold_build3_loc (input_location, COND_EXPR, logical_type_node, + backse.expr, ifbody2, elsebody2); + } + + gfc_add_expr_to_block (&block, tmp); + cond = gfc_unlikely (cond, PRED_BUILTIN_EXPECT); + tmp = build3_v (COND_EXPR, cond, ifbody, + build_empty_stmt (input_location)); + + gfc_add_expr_to_block (&block, tmp); + + if (maskss) + { + /* We enclose the above in if (mask) {...}. If the mask is + an optional argument, generate IF (.NOT. PRESENT(MASK) + .OR. MASK(I)).*/ + + tree ifmask; + ifmask = conv_mask_condition (&maskse, maskexpr, optional_mask); + tmp = gfc_finish_block (&block); + tmp = build3_v (COND_EXPR, ifmask, tmp, + build_empty_stmt (input_location)); + } + else + tmp = gfc_finish_block (&block); + gfc_add_expr_to_block (&body, tmp); + /* Avoid initializing loopvar[0] again, it should be left where + it finished by the first loop. */ + loop.from[0] = loop.loopvar[0]; + } + + gfc_trans_scalarizing_loops (&loop, &body); + + if (lab2) + gfc_add_expr_to_block (&loop.pre, build1_v (LABEL_EXPR, lab2)); + + /* For a scalar mask, enclose the loop in an if statement. */ + if (maskexpr && maskss == NULL) + { + tree ifmask; + + gfc_init_se (&maskse, NULL); + gfc_conv_expr_val (&maskse, maskexpr); + gfc_init_block (&block); + gfc_add_block_to_block (&block, &loop.pre); + gfc_add_block_to_block (&block, &loop.post); + tmp = gfc_finish_block (&block); + + /* For the else part of the scalar mask, just initialize + the pos variable the same way as above. */ + + gfc_init_block (&elseblock); + gfc_add_modify (&elseblock, pos, gfc_index_zero_node); + elsetmp = gfc_finish_block (&elseblock); + ifmask = conv_mask_condition (&maskse, maskexpr, optional_mask); + tmp = build3_v (COND_EXPR, ifmask, tmp, elsetmp); + gfc_add_expr_to_block (&block, tmp); + gfc_add_block_to_block (&se->pre, &block); + } + else + { + gfc_add_block_to_block (&se->pre, &loop.pre); + gfc_add_block_to_block (&se->pre, &loop.post); + } + gfc_cleanup_loop (&loop); + + se->expr = convert (type, pos); +} + +/* Emit code for findloc. */ + +static void +gfc_conv_intrinsic_findloc (gfc_se *se, gfc_expr *expr) +{ + gfc_actual_arglist *array_arg, *value_arg, *dim_arg, *mask_arg, + *kind_arg, *back_arg; + gfc_expr *value_expr; + int ikind; + tree resvar; + stmtblock_t block; + stmtblock_t body; + stmtblock_t loopblock; + tree type; + tree tmp; + tree found; + tree forward_branch = NULL_TREE; + tree back_branch; + gfc_loopinfo loop; + gfc_ss *arrayss; + gfc_ss *maskss; + gfc_se arrayse; + gfc_se valuese; + gfc_se maskse; + gfc_se backse; + tree exit_label; + gfc_expr *maskexpr; + tree offset; + int i; + bool optional_mask; + + array_arg = expr->value.function.actual; + value_arg = array_arg->next; + dim_arg = value_arg->next; + mask_arg = dim_arg->next; + kind_arg = mask_arg->next; + back_arg = kind_arg->next; + + /* Remove kind and set ikind. */ + if (kind_arg->expr) + { + ikind = mpz_get_si (kind_arg->expr->value.integer); + gfc_free_expr (kind_arg->expr); + kind_arg->expr = NULL; + } + else + ikind = gfc_default_integer_kind; + + value_expr = value_arg->expr; + + /* Unless it's a string, pass VALUE by value. */ + if (value_expr->ts.type != BT_CHARACTER) + value_arg->name = "%VAL"; + + /* Pass BACK argument by value. */ + back_arg->name = "%VAL"; + + /* Call the library if we have a character function or if + rank > 0. */ + if (se->ss || array_arg->expr->ts.type == BT_CHARACTER) + { + se->ignore_optional = 1; + if (expr->rank == 0) + { + /* Remove dim argument. */ + gfc_free_expr (dim_arg->expr); + dim_arg->expr = NULL; + } + gfc_conv_intrinsic_funcall (se, expr); + return; + } + + type = gfc_get_int_type (ikind); + + /* Initialize the result. */ + resvar = gfc_create_var (gfc_array_index_type, "pos"); + gfc_add_modify (&se->pre, resvar, build_int_cst (gfc_array_index_type, 0)); + offset = gfc_create_var (gfc_array_index_type, "offset"); + + maskexpr = mask_arg->expr; + optional_mask = maskexpr && maskexpr->expr_type == EXPR_VARIABLE + && maskexpr->symtree->n.sym->attr.dummy + && maskexpr->symtree->n.sym->attr.optional; + + /* Generate two loops, one for BACK=.true. and one for BACK=.false. */ + + for (i = 0 ; i < 2; i++) + { + /* Walk the arguments. */ + arrayss = gfc_walk_expr (array_arg->expr); + gcc_assert (arrayss != gfc_ss_terminator); + + if (maskexpr && maskexpr->rank != 0) + { + maskss = gfc_walk_expr (maskexpr); + gcc_assert (maskss != gfc_ss_terminator); + } + else + maskss = NULL; + + /* Initialize the scalarizer. */ + gfc_init_loopinfo (&loop); + exit_label = gfc_build_label_decl (NULL_TREE); + TREE_USED (exit_label) = 1; + + /* We add the mask first because the number of iterations is + taken from the last ss, and this breaks if an absent + optional argument is used for mask. */ + + if (maskss) + gfc_add_ss_to_loop (&loop, maskss); + gfc_add_ss_to_loop (&loop, arrayss); + + /* Initialize the loop. */ + gfc_conv_ss_startstride (&loop); + gfc_conv_loop_setup (&loop, &expr->where); + + /* Calculate the offset. */ + tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, + gfc_index_one_node, loop.from[0]); + gfc_add_modify (&loop.pre, offset, tmp); + + gfc_mark_ss_chain_used (arrayss, 1); + if (maskss) + gfc_mark_ss_chain_used (maskss, 1); + + /* The first loop is for BACK=.true. */ + if (i == 0) + loop.reverse[0] = GFC_REVERSE_SET; + + /* Generate the loop body. */ + gfc_start_scalarized_body (&loop, &body); + + /* If we have an array mask, only add the element if it is + set. */ + if (maskss) + { + gfc_init_se (&maskse, NULL); + gfc_copy_loopinfo_to_se (&maskse, &loop); + maskse.ss = maskss; + gfc_conv_expr_val (&maskse, maskexpr); + gfc_add_block_to_block (&body, &maskse.pre); + } + + /* If the condition matches then set the return value. */ + gfc_start_block (&block); + + /* Add the offset. */ + tmp = fold_build2_loc (input_location, PLUS_EXPR, + TREE_TYPE (resvar), + loop.loopvar[0], offset); + gfc_add_modify (&block, resvar, tmp); + /* And break out of the loop. */ + tmp = build1_v (GOTO_EXPR, exit_label); + gfc_add_expr_to_block (&block, tmp); + + found = gfc_finish_block (&block); + + /* Check this element. */ + gfc_init_se (&arrayse, NULL); + gfc_copy_loopinfo_to_se (&arrayse, &loop); + arrayse.ss = arrayss; + gfc_conv_expr_val (&arrayse, array_arg->expr); + gfc_add_block_to_block (&body, &arrayse.pre); + + gfc_init_se (&valuese, NULL); + gfc_conv_expr_val (&valuese, value_arg->expr); + gfc_add_block_to_block (&body, &valuese.pre); + + tmp = fold_build2_loc (input_location, EQ_EXPR, logical_type_node, + arrayse.expr, valuese.expr); + + tmp = build3_v (COND_EXPR, tmp, found, build_empty_stmt (input_location)); + if (maskss) + { + /* We enclose the above in if (mask) {...}. If the mask is + an optional argument, generate IF (.NOT. PRESENT(MASK) + .OR. MASK(I)). */ + + tree ifmask; + ifmask = conv_mask_condition (&maskse, maskexpr, optional_mask); + tmp = build3_v (COND_EXPR, ifmask, tmp, + build_empty_stmt (input_location)); + } + + gfc_add_expr_to_block (&body, tmp); + gfc_add_block_to_block (&body, &arrayse.post); + + gfc_trans_scalarizing_loops (&loop, &body); + + /* Add the exit label. */ + tmp = build1_v (LABEL_EXPR, exit_label); + gfc_add_expr_to_block (&loop.pre, tmp); + gfc_start_block (&loopblock); + gfc_add_block_to_block (&loopblock, &loop.pre); + gfc_add_block_to_block (&loopblock, &loop.post); + if (i == 0) + forward_branch = gfc_finish_block (&loopblock); + else + back_branch = gfc_finish_block (&loopblock); + + gfc_cleanup_loop (&loop); + } + + /* Enclose the two loops in an IF statement. */ + + gfc_init_se (&backse, NULL); + gfc_conv_expr_val (&backse, back_arg->expr); + gfc_add_block_to_block (&se->pre, &backse.pre); + tmp = build3_v (COND_EXPR, backse.expr, forward_branch, back_branch); + + /* For a scalar mask, enclose the loop in an if statement. */ + if (maskexpr && maskss == NULL) + { + tree ifmask; + tree if_stmt; + + gfc_init_se (&maskse, NULL); + gfc_conv_expr_val (&maskse, maskexpr); + gfc_init_block (&block); + gfc_add_expr_to_block (&block, maskse.expr); + ifmask = conv_mask_condition (&maskse, maskexpr, optional_mask); + if_stmt = build3_v (COND_EXPR, ifmask, tmp, + build_empty_stmt (input_location)); + gfc_add_expr_to_block (&block, if_stmt); + tmp = gfc_finish_block (&block); + } + + gfc_add_expr_to_block (&se->pre, tmp); + se->expr = convert (type, resvar); + +} + +/* Emit code for minval or maxval intrinsic. There are many different cases + we need to handle. For performance reasons we sometimes create two + loops instead of one, where the second one is much simpler. + Examples for minval intrinsic: + 1) Result is an array, a call is generated + 2) Array mask is used and NaNs need to be supported, rank 1: + limit = Infinity; + nonempty = false; + S = from; + while (S <= to) { + if (mask[S]) { nonempty = true; if (a[S] <= limit) goto lab; } + S++; + } + limit = nonempty ? NaN : huge (limit); + lab: + while (S <= to) { if(mask[S]) limit = min (a[S], limit); S++; } + 3) NaNs need to be supported, but it is known at compile time or cheaply + at runtime whether array is nonempty or not, rank 1: + limit = Infinity; + S = from; + while (S <= to) { if (a[S] <= limit) goto lab; S++; } + limit = (from <= to) ? NaN : huge (limit); + lab: + while (S <= to) { limit = min (a[S], limit); S++; } + 4) Array mask is used and NaNs need to be supported, rank > 1: + limit = Infinity; + nonempty = false; + fast = false; + S1 = from1; + while (S1 <= to1) { + S2 = from2; + while (S2 <= to2) { + if (mask[S1][S2]) { + if (fast) limit = min (a[S1][S2], limit); + else { + nonempty = true; + if (a[S1][S2] <= limit) { + limit = a[S1][S2]; + fast = true; + } + } + } + S2++; + } + S1++; + } + if (!fast) + limit = nonempty ? NaN : huge (limit); + 5) NaNs need to be supported, but it is known at compile time or cheaply + at runtime whether array is nonempty or not, rank > 1: + limit = Infinity; + fast = false; + S1 = from1; + while (S1 <= to1) { + S2 = from2; + while (S2 <= to2) { + if (fast) limit = min (a[S1][S2], limit); + else { + if (a[S1][S2] <= limit) { + limit = a[S1][S2]; + fast = true; + } + } + S2++; + } + S1++; + } + if (!fast) + limit = (nonempty_array) ? NaN : huge (limit); + 6) NaNs aren't supported, but infinities are. Array mask is used: + limit = Infinity; + nonempty = false; + S = from; + while (S <= to) { + if (mask[S]) { nonempty = true; limit = min (a[S], limit); } + S++; + } + limit = nonempty ? limit : huge (limit); + 7) Same without array mask: + limit = Infinity; + S = from; + while (S <= to) { limit = min (a[S], limit); S++; } + limit = (from <= to) ? limit : huge (limit); + 8) Neither NaNs nor infinities are supported (-ffast-math or BT_INTEGER): + limit = huge (limit); + S = from; + while (S <= to) { limit = min (a[S], limit); S++); } + (or + while (S <= to) { if (mask[S]) limit = min (a[S], limit); S++; } + with array mask instead). + For 3), 5), 7) and 8), if mask is scalar, this all goes into a conditional, + setting limit = huge (limit); in the else branch. */ + +static void +gfc_conv_intrinsic_minmaxval (gfc_se * se, gfc_expr * expr, enum tree_code op) +{ + tree limit; + tree type; + tree tmp; + tree ifbody; + tree nonempty; + tree nonempty_var; + tree lab; + tree fast; + tree huge_cst = NULL, nan_cst = NULL; + stmtblock_t body; + stmtblock_t block, block2; + gfc_loopinfo loop; + gfc_actual_arglist *actual; + gfc_ss *arrayss; + gfc_ss *maskss; + gfc_se arrayse; + gfc_se maskse; + gfc_expr *arrayexpr; + gfc_expr *maskexpr; + int n; + bool optional_mask; + + if (se->ss) + { + gfc_conv_intrinsic_funcall (se, expr); + return; + } + + actual = expr->value.function.actual; + arrayexpr = actual->expr; + + if (arrayexpr->ts.type == BT_CHARACTER) + { + gfc_actual_arglist *dim = actual->next; + if (expr->rank == 0 && dim->expr != 0) + { + gfc_free_expr (dim->expr); + dim->expr = NULL; + } + gfc_conv_intrinsic_funcall (se, expr); + return; + } + + type = gfc_typenode_for_spec (&expr->ts); + /* Initialize the result. */ + limit = gfc_create_var (type, "limit"); + n = gfc_validate_kind (expr->ts.type, expr->ts.kind, false); + switch (expr->ts.type) + { + case BT_REAL: + huge_cst = gfc_conv_mpfr_to_tree (gfc_real_kinds[n].huge, + expr->ts.kind, 0); + if (HONOR_INFINITIES (DECL_MODE (limit))) + { + REAL_VALUE_TYPE real; + real_inf (&real); + tmp = build_real (type, real); + } + else + tmp = huge_cst; + if (HONOR_NANS (DECL_MODE (limit))) + nan_cst = gfc_build_nan (type, ""); + break; + + case BT_INTEGER: + tmp = gfc_conv_mpz_to_tree (gfc_integer_kinds[n].huge, expr->ts.kind); + break; + + default: + gcc_unreachable (); + } + + /* We start with the most negative possible value for MAXVAL, and the most + positive possible value for MINVAL. The most negative possible value is + -HUGE for BT_REAL and (-HUGE - 1) for BT_INTEGER; the most positive + possible value is HUGE in both cases. */ + if (op == GT_EXPR) + { + tmp = fold_build1_loc (input_location, NEGATE_EXPR, TREE_TYPE (tmp), tmp); + if (huge_cst) + huge_cst = fold_build1_loc (input_location, NEGATE_EXPR, + TREE_TYPE (huge_cst), huge_cst); + } + + if (op == GT_EXPR && expr->ts.type == BT_INTEGER) + tmp = fold_build2_loc (input_location, MINUS_EXPR, TREE_TYPE (tmp), + tmp, build_int_cst (type, 1)); + + gfc_add_modify (&se->pre, limit, tmp); + + /* Walk the arguments. */ + arrayss = gfc_walk_expr (arrayexpr); + gcc_assert (arrayss != gfc_ss_terminator); + + actual = actual->next->next; + gcc_assert (actual); + maskexpr = actual->expr; + optional_mask = maskexpr && maskexpr->expr_type == EXPR_VARIABLE + && maskexpr->symtree->n.sym->attr.dummy + && maskexpr->symtree->n.sym->attr.optional; + nonempty = NULL; + if (maskexpr && maskexpr->rank != 0) + { + maskss = gfc_walk_expr (maskexpr); + gcc_assert (maskss != gfc_ss_terminator); + } + else + { + mpz_t asize; + if (gfc_array_size (arrayexpr, &asize)) + { + nonempty = gfc_conv_mpz_to_tree (asize, gfc_index_integer_kind); + mpz_clear (asize); + nonempty = fold_build2_loc (input_location, GT_EXPR, + logical_type_node, nonempty, + gfc_index_zero_node); + } + maskss = NULL; + } + + /* Initialize the scalarizer. */ + gfc_init_loopinfo (&loop); + + /* We add the mask first because the number of iterations is taken + from the last ss, and this breaks if an absent optional argument + is used for mask. */ + + if (maskss) + gfc_add_ss_to_loop (&loop, maskss); + gfc_add_ss_to_loop (&loop, arrayss); + + /* Initialize the loop. */ + gfc_conv_ss_startstride (&loop); + + /* The code generated can have more than one loop in sequence (see the + comment at the function header). This doesn't work well with the + scalarizer, which changes arrays' offset when the scalarization loops + are generated (see gfc_trans_preloop_setup). Fortunately, {min,max}val + are currently inlined in the scalar case only. As there is no dependency + to care about in that case, there is no temporary, so that we can use the + scalarizer temporary code to handle multiple loops. Thus, we set temp_dim + here, we call gfc_mark_ss_chain_used with flag=3 later, and we use + gfc_trans_scalarized_loop_boundary even later to restore offset. + TODO: this prevents inlining of rank > 0 minmaxval calls, so this + should eventually go away. We could either create two loops properly, + or find another way to save/restore the array offsets between the two + loops (without conflicting with temporary management), or use a single + loop minmaxval implementation. See PR 31067. */ + loop.temp_dim = loop.dimen; + gfc_conv_loop_setup (&loop, &expr->where); + + if (nonempty == NULL && maskss == NULL + && loop.dimen == 1 && loop.from[0] && loop.to[0]) + nonempty = fold_build2_loc (input_location, LE_EXPR, logical_type_node, + loop.from[0], loop.to[0]); + nonempty_var = NULL; + if (nonempty == NULL + && (HONOR_INFINITIES (DECL_MODE (limit)) + || HONOR_NANS (DECL_MODE (limit)))) + { + nonempty_var = gfc_create_var (logical_type_node, "nonempty"); + gfc_add_modify (&se->pre, nonempty_var, logical_false_node); + nonempty = nonempty_var; + } + lab = NULL; + fast = NULL; + if (HONOR_NANS (DECL_MODE (limit))) + { + if (loop.dimen == 1) + { + lab = gfc_build_label_decl (NULL_TREE); + TREE_USED (lab) = 1; + } + else + { + fast = gfc_create_var (logical_type_node, "fast"); + gfc_add_modify (&se->pre, fast, logical_false_node); + } + } + + gfc_mark_ss_chain_used (arrayss, lab ? 3 : 1); + if (maskss) + gfc_mark_ss_chain_used (maskss, lab ? 3 : 1); + /* Generate the loop body. */ + gfc_start_scalarized_body (&loop, &body); + + /* If we have a mask, only add this element if the mask is set. */ + if (maskss) + { + gfc_init_se (&maskse, NULL); + gfc_copy_loopinfo_to_se (&maskse, &loop); + maskse.ss = maskss; + gfc_conv_expr_val (&maskse, maskexpr); + gfc_add_block_to_block (&body, &maskse.pre); + + gfc_start_block (&block); + } + else + gfc_init_block (&block); + + /* Compare with the current limit. */ + gfc_init_se (&arrayse, NULL); + gfc_copy_loopinfo_to_se (&arrayse, &loop); + arrayse.ss = arrayss; + gfc_conv_expr_val (&arrayse, arrayexpr); + gfc_add_block_to_block (&block, &arrayse.pre); + + gfc_init_block (&block2); + + if (nonempty_var) + gfc_add_modify (&block2, nonempty_var, logical_true_node); + + if (HONOR_NANS (DECL_MODE (limit))) + { + tmp = fold_build2_loc (input_location, op == GT_EXPR ? GE_EXPR : LE_EXPR, + logical_type_node, arrayse.expr, limit); + if (lab) + ifbody = build1_v (GOTO_EXPR, lab); + else + { + stmtblock_t ifblock; + + gfc_init_block (&ifblock); + gfc_add_modify (&ifblock, limit, arrayse.expr); + gfc_add_modify (&ifblock, fast, logical_true_node); + ifbody = gfc_finish_block (&ifblock); + } + tmp = build3_v (COND_EXPR, tmp, ifbody, + build_empty_stmt (input_location)); + gfc_add_expr_to_block (&block2, tmp); + } + else + { + /* MIN_EXPR/MAX_EXPR has unspecified behavior with NaNs or + signed zeros. */ + tmp = fold_build2_loc (input_location, + op == GT_EXPR ? MAX_EXPR : MIN_EXPR, + type, arrayse.expr, limit); + gfc_add_modify (&block2, limit, tmp); + } + + if (fast) + { + tree elsebody = gfc_finish_block (&block2); + + /* MIN_EXPR/MAX_EXPR has unspecified behavior with NaNs or + signed zeros. */ + if (HONOR_NANS (DECL_MODE (limit))) + { + tmp = fold_build2_loc (input_location, op, logical_type_node, + arrayse.expr, limit); + ifbody = build2_v (MODIFY_EXPR, limit, arrayse.expr); + ifbody = build3_v (COND_EXPR, tmp, ifbody, + build_empty_stmt (input_location)); + } + else + { + tmp = fold_build2_loc (input_location, + op == GT_EXPR ? MAX_EXPR : MIN_EXPR, + type, arrayse.expr, limit); + ifbody = build2_v (MODIFY_EXPR, limit, tmp); + } + tmp = build3_v (COND_EXPR, fast, ifbody, elsebody); + gfc_add_expr_to_block (&block, tmp); + } + else + gfc_add_block_to_block (&block, &block2); + + gfc_add_block_to_block (&block, &arrayse.post); + + tmp = gfc_finish_block (&block); + if (maskss) + { + /* We enclose the above in if (mask) {...}. If the mask is an + optional argument, generate IF (.NOT. PRESENT(MASK) + .OR. MASK(I)). */ + tree ifmask; + ifmask = conv_mask_condition (&maskse, maskexpr, optional_mask); + tmp = build3_v (COND_EXPR, ifmask, tmp, + build_empty_stmt (input_location)); + } + gfc_add_expr_to_block (&body, tmp); + + if (lab) + { + gfc_trans_scalarized_loop_boundary (&loop, &body); + + tmp = fold_build3_loc (input_location, COND_EXPR, type, nonempty, + nan_cst, huge_cst); + gfc_add_modify (&loop.code[0], limit, tmp); + gfc_add_expr_to_block (&loop.code[0], build1_v (LABEL_EXPR, lab)); + + /* If we have a mask, only add this element if the mask is set. */ + if (maskss) + { + gfc_init_se (&maskse, NULL); + gfc_copy_loopinfo_to_se (&maskse, &loop); + maskse.ss = maskss; + gfc_conv_expr_val (&maskse, maskexpr); + gfc_add_block_to_block (&body, &maskse.pre); + + gfc_start_block (&block); + } + else + gfc_init_block (&block); + + /* Compare with the current limit. */ + gfc_init_se (&arrayse, NULL); + gfc_copy_loopinfo_to_se (&arrayse, &loop); + arrayse.ss = arrayss; + gfc_conv_expr_val (&arrayse, arrayexpr); + gfc_add_block_to_block (&block, &arrayse.pre); + + /* MIN_EXPR/MAX_EXPR has unspecified behavior with NaNs or + signed zeros. */ + if (HONOR_NANS (DECL_MODE (limit))) + { + tmp = fold_build2_loc (input_location, op, logical_type_node, + arrayse.expr, limit); + ifbody = build2_v (MODIFY_EXPR, limit, arrayse.expr); + tmp = build3_v (COND_EXPR, tmp, ifbody, + build_empty_stmt (input_location)); + gfc_add_expr_to_block (&block, tmp); + } + else + { + tmp = fold_build2_loc (input_location, + op == GT_EXPR ? MAX_EXPR : MIN_EXPR, + type, arrayse.expr, limit); + gfc_add_modify (&block, limit, tmp); + } + + gfc_add_block_to_block (&block, &arrayse.post); + + tmp = gfc_finish_block (&block); + if (maskss) + /* We enclose the above in if (mask) {...}. */ + { + tree ifmask; + ifmask = conv_mask_condition (&maskse, maskexpr, optional_mask); + tmp = build3_v (COND_EXPR, ifmask, tmp, + build_empty_stmt (input_location)); + } + + gfc_add_expr_to_block (&body, tmp); + /* Avoid initializing loopvar[0] again, it should be left where + it finished by the first loop. */ + loop.from[0] = loop.loopvar[0]; + } + gfc_trans_scalarizing_loops (&loop, &body); + + if (fast) + { + tmp = fold_build3_loc (input_location, COND_EXPR, type, nonempty, + nan_cst, huge_cst); + ifbody = build2_v (MODIFY_EXPR, limit, tmp); + tmp = build3_v (COND_EXPR, fast, build_empty_stmt (input_location), + ifbody); + gfc_add_expr_to_block (&loop.pre, tmp); + } + else if (HONOR_INFINITIES (DECL_MODE (limit)) && !lab) + { + tmp = fold_build3_loc (input_location, COND_EXPR, type, nonempty, limit, + huge_cst); + gfc_add_modify (&loop.pre, limit, tmp); + } + + /* For a scalar mask, enclose the loop in an if statement. */ + if (maskexpr && maskss == NULL) + { + tree else_stmt; + tree ifmask; + + gfc_init_se (&maskse, NULL); + gfc_conv_expr_val (&maskse, maskexpr); + gfc_init_block (&block); + gfc_add_block_to_block (&block, &loop.pre); + gfc_add_block_to_block (&block, &loop.post); + tmp = gfc_finish_block (&block); + + if (HONOR_INFINITIES (DECL_MODE (limit))) + else_stmt = build2_v (MODIFY_EXPR, limit, huge_cst); + else + else_stmt = build_empty_stmt (input_location); + + ifmask = conv_mask_condition (&maskse, maskexpr, optional_mask); + tmp = build3_v (COND_EXPR, ifmask, tmp, else_stmt); + gfc_add_expr_to_block (&block, tmp); + gfc_add_block_to_block (&se->pre, &block); + } + else + { + gfc_add_block_to_block (&se->pre, &loop.pre); + gfc_add_block_to_block (&se->pre, &loop.post); + } + + gfc_cleanup_loop (&loop); + + se->expr = limit; +} + +/* BTEST (i, pos) = (i & (1 << pos)) != 0. */ +static void +gfc_conv_intrinsic_btest (gfc_se * se, gfc_expr * expr) +{ + tree args[2]; + tree type; + tree tmp; + + gfc_conv_intrinsic_function_args (se, expr, args, 2); + type = TREE_TYPE (args[0]); + + /* Optionally generate code for runtime argument check. */ + if (gfc_option.rtcheck & GFC_RTCHECK_BITS) + { + tree below = fold_build2_loc (input_location, LT_EXPR, + logical_type_node, args[1], + build_int_cst (TREE_TYPE (args[1]), 0)); + tree nbits = build_int_cst (TREE_TYPE (args[1]), TYPE_PRECISION (type)); + tree above = fold_build2_loc (input_location, GE_EXPR, + logical_type_node, args[1], nbits); + tree scond = fold_build2_loc (input_location, TRUTH_ORIF_EXPR, + logical_type_node, below, above); + gfc_trans_runtime_check (true, false, scond, &se->pre, &expr->where, + "POS argument (%ld) out of range 0:%ld " + "in intrinsic BTEST", + fold_convert (long_integer_type_node, args[1]), + fold_convert (long_integer_type_node, nbits)); + } + + tmp = fold_build2_loc (input_location, LSHIFT_EXPR, type, + build_int_cst (type, 1), args[1]); + tmp = fold_build2_loc (input_location, BIT_AND_EXPR, type, args[0], tmp); + tmp = fold_build2_loc (input_location, NE_EXPR, logical_type_node, tmp, + build_int_cst (type, 0)); + type = gfc_typenode_for_spec (&expr->ts); + se->expr = convert (type, tmp); +} + + +/* Generate code for BGE, BGT, BLE and BLT intrinsics. */ +static void +gfc_conv_intrinsic_bitcomp (gfc_se * se, gfc_expr * expr, enum tree_code op) +{ + tree args[2]; + + gfc_conv_intrinsic_function_args (se, expr, args, 2); + + /* Convert both arguments to the unsigned type of the same size. */ + args[0] = fold_convert (unsigned_type_for (TREE_TYPE (args[0])), args[0]); + args[1] = fold_convert (unsigned_type_for (TREE_TYPE (args[1])), args[1]); + + /* If they have unequal type size, convert to the larger one. */ + if (TYPE_PRECISION (TREE_TYPE (args[0])) + > TYPE_PRECISION (TREE_TYPE (args[1]))) + args[1] = fold_convert (TREE_TYPE (args[0]), args[1]); + else if (TYPE_PRECISION (TREE_TYPE (args[1])) + > TYPE_PRECISION (TREE_TYPE (args[0]))) + args[0] = fold_convert (TREE_TYPE (args[1]), args[0]); + + /* Now, we compare them. */ + se->expr = fold_build2_loc (input_location, op, logical_type_node, + args[0], args[1]); +} + + +/* Generate code to perform the specified operation. */ +static void +gfc_conv_intrinsic_bitop (gfc_se * se, gfc_expr * expr, enum tree_code op) +{ + tree args[2]; + + gfc_conv_intrinsic_function_args (se, expr, args, 2); + se->expr = fold_build2_loc (input_location, op, TREE_TYPE (args[0]), + args[0], args[1]); +} + +/* Bitwise not. */ +static void +gfc_conv_intrinsic_not (gfc_se * se, gfc_expr * expr) +{ + tree arg; + + gfc_conv_intrinsic_function_args (se, expr, &arg, 1); + se->expr = fold_build1_loc (input_location, BIT_NOT_EXPR, + TREE_TYPE (arg), arg); +} + +/* Set or clear a single bit. */ +static void +gfc_conv_intrinsic_singlebitop (gfc_se * se, gfc_expr * expr, int set) +{ + tree args[2]; + tree type; + tree tmp; + enum tree_code op; + + gfc_conv_intrinsic_function_args (se, expr, args, 2); + type = TREE_TYPE (args[0]); + + /* Optionally generate code for runtime argument check. */ + if (gfc_option.rtcheck & GFC_RTCHECK_BITS) + { + tree below = fold_build2_loc (input_location, LT_EXPR, + logical_type_node, args[1], + build_int_cst (TREE_TYPE (args[1]), 0)); + tree nbits = build_int_cst (TREE_TYPE (args[1]), TYPE_PRECISION (type)); + tree above = fold_build2_loc (input_location, GE_EXPR, + logical_type_node, args[1], nbits); + tree scond = fold_build2_loc (input_location, TRUTH_ORIF_EXPR, + logical_type_node, below, above); + size_t len_name = strlen (expr->value.function.isym->name); + char *name = XALLOCAVEC (char, len_name + 1); + for (size_t i = 0; i < len_name; i++) + name[i] = TOUPPER (expr->value.function.isym->name[i]); + name[len_name] = '\0'; + tree iname = gfc_build_addr_expr (pchar_type_node, + gfc_build_cstring_const (name)); + gfc_trans_runtime_check (true, false, scond, &se->pre, &expr->where, + "POS argument (%ld) out of range 0:%ld " + "in intrinsic %s", + fold_convert (long_integer_type_node, args[1]), + fold_convert (long_integer_type_node, nbits), + iname); + } + + tmp = fold_build2_loc (input_location, LSHIFT_EXPR, type, + build_int_cst (type, 1), args[1]); + if (set) + op = BIT_IOR_EXPR; + else + { + op = BIT_AND_EXPR; + tmp = fold_build1_loc (input_location, BIT_NOT_EXPR, type, tmp); + } + se->expr = fold_build2_loc (input_location, op, type, args[0], tmp); +} + +/* Extract a sequence of bits. + IBITS(I, POS, LEN) = (I >> POS) & ~((~0) << LEN). */ +static void +gfc_conv_intrinsic_ibits (gfc_se * se, gfc_expr * expr) +{ + tree args[3]; + tree type; + tree tmp; + tree mask; + + gfc_conv_intrinsic_function_args (se, expr, args, 3); + type = TREE_TYPE (args[0]); + + /* Optionally generate code for runtime argument check. */ + if (gfc_option.rtcheck & GFC_RTCHECK_BITS) + { + tree tmp1 = fold_convert (long_integer_type_node, args[1]); + tree tmp2 = fold_convert (long_integer_type_node, args[2]); + tree nbits = build_int_cst (long_integer_type_node, + TYPE_PRECISION (type)); + tree below = fold_build2_loc (input_location, LT_EXPR, + logical_type_node, args[1], + build_int_cst (TREE_TYPE (args[1]), 0)); + tree above = fold_build2_loc (input_location, GT_EXPR, + logical_type_node, tmp1, nbits); + tree scond = fold_build2_loc (input_location, TRUTH_ORIF_EXPR, + logical_type_node, below, above); + gfc_trans_runtime_check (true, false, scond, &se->pre, &expr->where, + "POS argument (%ld) out of range 0:%ld " + "in intrinsic IBITS", tmp1, nbits); + below = fold_build2_loc (input_location, LT_EXPR, + logical_type_node, args[2], + build_int_cst (TREE_TYPE (args[2]), 0)); + above = fold_build2_loc (input_location, GT_EXPR, + logical_type_node, tmp2, nbits); + scond = fold_build2_loc (input_location, TRUTH_ORIF_EXPR, + logical_type_node, below, above); + gfc_trans_runtime_check (true, false, scond, &se->pre, &expr->where, + "LEN argument (%ld) out of range 0:%ld " + "in intrinsic IBITS", tmp2, nbits); + above = fold_build2_loc (input_location, PLUS_EXPR, + long_integer_type_node, tmp1, tmp2); + scond = fold_build2_loc (input_location, GT_EXPR, + logical_type_node, above, nbits); + gfc_trans_runtime_check (true, false, scond, &se->pre, &expr->where, + "POS(%ld)+LEN(%ld)>BIT_SIZE(%ld) " + "in intrinsic IBITS", tmp1, tmp2, nbits); + } + + mask = build_int_cst (type, -1); + mask = fold_build2_loc (input_location, LSHIFT_EXPR, type, mask, args[2]); + mask = fold_build1_loc (input_location, BIT_NOT_EXPR, type, mask); + + tmp = fold_build2_loc (input_location, RSHIFT_EXPR, type, args[0], args[1]); + + se->expr = fold_build2_loc (input_location, BIT_AND_EXPR, type, tmp, mask); +} + +static void +gfc_conv_intrinsic_shift (gfc_se * se, gfc_expr * expr, bool right_shift, + bool arithmetic) +{ + tree args[2], type, num_bits, cond; + tree bigshift; + + gfc_conv_intrinsic_function_args (se, expr, args, 2); + + args[0] = gfc_evaluate_now (args[0], &se->pre); + args[1] = gfc_evaluate_now (args[1], &se->pre); + type = TREE_TYPE (args[0]); + + if (!arithmetic) + args[0] = fold_convert (unsigned_type_for (type), args[0]); + else + gcc_assert (right_shift); + + se->expr = fold_build2_loc (input_location, + right_shift ? RSHIFT_EXPR : LSHIFT_EXPR, + TREE_TYPE (args[0]), args[0], args[1]); + + if (!arithmetic) + se->expr = fold_convert (type, se->expr); + + if (!arithmetic) + bigshift = build_int_cst (type, 0); + else + { + tree nonneg = fold_build2_loc (input_location, GE_EXPR, + logical_type_node, args[0], + build_int_cst (TREE_TYPE (args[0]), 0)); + bigshift = fold_build3_loc (input_location, COND_EXPR, type, nonneg, + build_int_cst (type, 0), + build_int_cst (type, -1)); + } + + /* The Fortran standard allows shift widths <= BIT_SIZE(I), whereas + gcc requires a shift width < BIT_SIZE(I), so we have to catch this + special case. */ + num_bits = build_int_cst (TREE_TYPE (args[1]), TYPE_PRECISION (type)); + + /* Optionally generate code for runtime argument check. */ + if (gfc_option.rtcheck & GFC_RTCHECK_BITS) + { + tree below = fold_build2_loc (input_location, LT_EXPR, + logical_type_node, args[1], + build_int_cst (TREE_TYPE (args[1]), 0)); + tree above = fold_build2_loc (input_location, GT_EXPR, + logical_type_node, args[1], num_bits); + tree scond = fold_build2_loc (input_location, TRUTH_ORIF_EXPR, + logical_type_node, below, above); + size_t len_name = strlen (expr->value.function.isym->name); + char *name = XALLOCAVEC (char, len_name + 1); + for (size_t i = 0; i < len_name; i++) + name[i] = TOUPPER (expr->value.function.isym->name[i]); + name[len_name] = '\0'; + tree iname = gfc_build_addr_expr (pchar_type_node, + gfc_build_cstring_const (name)); + gfc_trans_runtime_check (true, false, scond, &se->pre, &expr->where, + "SHIFT argument (%ld) out of range 0:%ld " + "in intrinsic %s", + fold_convert (long_integer_type_node, args[1]), + fold_convert (long_integer_type_node, num_bits), + iname); + } + + cond = fold_build2_loc (input_location, GE_EXPR, logical_type_node, + args[1], num_bits); + + se->expr = fold_build3_loc (input_location, COND_EXPR, type, cond, + bigshift, se->expr); +} + +/* ISHFT (I, SHIFT) = (abs (shift) >= BIT_SIZE (i)) + ? 0 + : ((shift >= 0) ? i << shift : i >> -shift) + where all shifts are logical shifts. */ +static void +gfc_conv_intrinsic_ishft (gfc_se * se, gfc_expr * expr) +{ + tree args[2]; + tree type; + tree utype; + tree tmp; + tree width; + tree num_bits; + tree cond; + tree lshift; + tree rshift; + + gfc_conv_intrinsic_function_args (se, expr, args, 2); + + args[0] = gfc_evaluate_now (args[0], &se->pre); + args[1] = gfc_evaluate_now (args[1], &se->pre); + + type = TREE_TYPE (args[0]); + utype = unsigned_type_for (type); + + width = fold_build1_loc (input_location, ABS_EXPR, TREE_TYPE (args[1]), + args[1]); + + /* Left shift if positive. */ + lshift = fold_build2_loc (input_location, LSHIFT_EXPR, type, args[0], width); + + /* Right shift if negative. + We convert to an unsigned type because we want a logical shift. + The standard doesn't define the case of shifting negative + numbers, and we try to be compatible with other compilers, most + notably g77, here. */ + rshift = fold_convert (type, fold_build2_loc (input_location, RSHIFT_EXPR, + utype, convert (utype, args[0]), width)); + + tmp = fold_build2_loc (input_location, GE_EXPR, logical_type_node, args[1], + build_int_cst (TREE_TYPE (args[1]), 0)); + tmp = fold_build3_loc (input_location, COND_EXPR, type, tmp, lshift, rshift); + + /* The Fortran standard allows shift widths <= BIT_SIZE(I), whereas + gcc requires a shift width < BIT_SIZE(I), so we have to catch this + special case. */ + num_bits = build_int_cst (TREE_TYPE (args[1]), TYPE_PRECISION (type)); + + /* Optionally generate code for runtime argument check. */ + if (gfc_option.rtcheck & GFC_RTCHECK_BITS) + { + tree outside = fold_build2_loc (input_location, GT_EXPR, + logical_type_node, width, num_bits); + gfc_trans_runtime_check (true, false, outside, &se->pre, &expr->where, + "SHIFT argument (%ld) out of range -%ld:%ld " + "in intrinsic ISHFT", + fold_convert (long_integer_type_node, args[1]), + fold_convert (long_integer_type_node, num_bits), + fold_convert (long_integer_type_node, num_bits)); + } + + cond = fold_build2_loc (input_location, GE_EXPR, logical_type_node, width, + num_bits); + se->expr = fold_build3_loc (input_location, COND_EXPR, type, cond, + build_int_cst (type, 0), tmp); +} + + +/* Circular shift. AKA rotate or barrel shift. */ + +static void +gfc_conv_intrinsic_ishftc (gfc_se * se, gfc_expr * expr) +{ + tree *args; + tree type; + tree tmp; + tree lrot; + tree rrot; + tree zero; + tree nbits; + unsigned int num_args; + + num_args = gfc_intrinsic_argument_list_length (expr); + args = XALLOCAVEC (tree, num_args); + + gfc_conv_intrinsic_function_args (se, expr, args, num_args); + + type = TREE_TYPE (args[0]); + nbits = build_int_cst (long_integer_type_node, TYPE_PRECISION (type)); + + if (num_args == 3) + { + /* Use a library function for the 3 parameter version. */ + tree int4type = gfc_get_int_type (4); + + /* We convert the first argument to at least 4 bytes, and + convert back afterwards. This removes the need for library + functions for all argument sizes, and function will be + aligned to at least 32 bits, so there's no loss. */ + if (expr->ts.kind < 4) + args[0] = convert (int4type, args[0]); + + /* Convert the SHIFT and SIZE args to INTEGER*4 otherwise we would + need loads of library functions. They cannot have values > + BIT_SIZE (I) so the conversion is safe. */ + args[1] = convert (int4type, args[1]); + args[2] = convert (int4type, args[2]); + + /* Optionally generate code for runtime argument check. */ + if (gfc_option.rtcheck & GFC_RTCHECK_BITS) + { + tree size = fold_convert (long_integer_type_node, args[2]); + tree below = fold_build2_loc (input_location, LE_EXPR, + logical_type_node, size, + build_int_cst (TREE_TYPE (args[1]), 0)); + tree above = fold_build2_loc (input_location, GT_EXPR, + logical_type_node, size, nbits); + tree scond = fold_build2_loc (input_location, TRUTH_ORIF_EXPR, + logical_type_node, below, above); + gfc_trans_runtime_check (true, false, scond, &se->pre, &expr->where, + "SIZE argument (%ld) out of range 1:%ld " + "in intrinsic ISHFTC", size, nbits); + tree width = fold_convert (long_integer_type_node, args[1]); + width = fold_build1_loc (input_location, ABS_EXPR, + long_integer_type_node, width); + scond = fold_build2_loc (input_location, GT_EXPR, + logical_type_node, width, size); + gfc_trans_runtime_check (true, false, scond, &se->pre, &expr->where, + "SHIFT argument (%ld) out of range -%ld:%ld " + "in intrinsic ISHFTC", + fold_convert (long_integer_type_node, args[1]), + size, size); + } + + switch (expr->ts.kind) + { + case 1: + case 2: + case 4: + tmp = gfor_fndecl_math_ishftc4; + break; + case 8: + tmp = gfor_fndecl_math_ishftc8; + break; + case 16: + tmp = gfor_fndecl_math_ishftc16; + break; + default: + gcc_unreachable (); + } + se->expr = build_call_expr_loc (input_location, + tmp, 3, args[0], args[1], args[2]); + /* Convert the result back to the original type, if we extended + the first argument's width above. */ + if (expr->ts.kind < 4) + se->expr = convert (type, se->expr); + + return; + } + + /* Evaluate arguments only once. */ + args[0] = gfc_evaluate_now (args[0], &se->pre); + args[1] = gfc_evaluate_now (args[1], &se->pre); + + /* Optionally generate code for runtime argument check. */ + if (gfc_option.rtcheck & GFC_RTCHECK_BITS) + { + tree width = fold_convert (long_integer_type_node, args[1]); + width = fold_build1_loc (input_location, ABS_EXPR, + long_integer_type_node, width); + tree outside = fold_build2_loc (input_location, GT_EXPR, + logical_type_node, width, nbits); + gfc_trans_runtime_check (true, false, outside, &se->pre, &expr->where, + "SHIFT argument (%ld) out of range -%ld:%ld " + "in intrinsic ISHFTC", + fold_convert (long_integer_type_node, args[1]), + nbits, nbits); + } + + /* Rotate left if positive. */ + lrot = fold_build2_loc (input_location, LROTATE_EXPR, type, args[0], args[1]); + + /* Rotate right if negative. */ + tmp = fold_build1_loc (input_location, NEGATE_EXPR, TREE_TYPE (args[1]), + args[1]); + rrot = fold_build2_loc (input_location,RROTATE_EXPR, type, args[0], tmp); + + zero = build_int_cst (TREE_TYPE (args[1]), 0); + tmp = fold_build2_loc (input_location, GT_EXPR, logical_type_node, args[1], + zero); + rrot = fold_build3_loc (input_location, COND_EXPR, type, tmp, lrot, rrot); + + /* Do nothing if shift == 0. */ + tmp = fold_build2_loc (input_location, EQ_EXPR, logical_type_node, args[1], + zero); + se->expr = fold_build3_loc (input_location, COND_EXPR, type, tmp, args[0], + rrot); +} + + +/* LEADZ (i) = (i == 0) ? BIT_SIZE (i) + : __builtin_clz(i) - (BIT_SIZE('int') - BIT_SIZE(i)) + + The conditional expression is necessary because the result of LEADZ(0) + is defined, but the result of __builtin_clz(0) is undefined for most + targets. + + For INTEGER kinds smaller than the C 'int' type, we have to subtract the + difference in bit size between the argument of LEADZ and the C int. */ + +static void +gfc_conv_intrinsic_leadz (gfc_se * se, gfc_expr * expr) +{ + tree arg; + tree arg_type; + tree cond; + tree result_type; + tree leadz; + tree bit_size; + tree tmp; + tree func; + int s, argsize; + + gfc_conv_intrinsic_function_args (se, expr, &arg, 1); + argsize = TYPE_PRECISION (TREE_TYPE (arg)); + + /* Which variant of __builtin_clz* should we call? */ + if (argsize <= INT_TYPE_SIZE) + { + arg_type = unsigned_type_node; + func = builtin_decl_explicit (BUILT_IN_CLZ); + } + else if (argsize <= LONG_TYPE_SIZE) + { + arg_type = long_unsigned_type_node; + func = builtin_decl_explicit (BUILT_IN_CLZL); + } + else if (argsize <= LONG_LONG_TYPE_SIZE) + { + arg_type = long_long_unsigned_type_node; + func = builtin_decl_explicit (BUILT_IN_CLZLL); + } + else + { + gcc_assert (argsize == 2 * LONG_LONG_TYPE_SIZE); + arg_type = gfc_build_uint_type (argsize); + func = NULL_TREE; + } + + /* Convert the actual argument twice: first, to the unsigned type of the + same size; then, to the proper argument type for the built-in + function. But the return type is of the default INTEGER kind. */ + arg = fold_convert (gfc_build_uint_type (argsize), arg); + arg = fold_convert (arg_type, arg); + arg = gfc_evaluate_now (arg, &se->pre); + result_type = gfc_get_int_type (gfc_default_integer_kind); + + /* Compute LEADZ for the case i .ne. 0. */ + if (func) + { + s = TYPE_PRECISION (arg_type) - argsize; + tmp = fold_convert (result_type, + build_call_expr_loc (input_location, func, + 1, arg)); + leadz = fold_build2_loc (input_location, MINUS_EXPR, result_type, + tmp, build_int_cst (result_type, s)); + } + else + { + /* We end up here if the argument type is larger than 'long long'. + We generate this code: + + if (x & (ULL_MAX << ULL_SIZE) != 0) + return clzll ((unsigned long long) (x >> ULLSIZE)); + else + return ULL_SIZE + clzll ((unsigned long long) x); + where ULL_MAX is the largest value that a ULL_MAX can hold + (0xFFFFFFFFFFFFFFFF for a 64-bit long long type), and ULLSIZE + is the bit-size of the long long type (64 in this example). */ + tree ullsize, ullmax, tmp1, tmp2, btmp; + + ullsize = build_int_cst (result_type, LONG_LONG_TYPE_SIZE); + ullmax = fold_build1_loc (input_location, BIT_NOT_EXPR, + long_long_unsigned_type_node, + build_int_cst (long_long_unsigned_type_node, + 0)); + + cond = fold_build2_loc (input_location, LSHIFT_EXPR, arg_type, + fold_convert (arg_type, ullmax), ullsize); + cond = fold_build2_loc (input_location, BIT_AND_EXPR, arg_type, + arg, cond); + cond = fold_build2_loc (input_location, NE_EXPR, logical_type_node, + cond, build_int_cst (arg_type, 0)); + + tmp1 = fold_build2_loc (input_location, RSHIFT_EXPR, arg_type, + arg, ullsize); + tmp1 = fold_convert (long_long_unsigned_type_node, tmp1); + btmp = builtin_decl_explicit (BUILT_IN_CLZLL); + tmp1 = fold_convert (result_type, + build_call_expr_loc (input_location, btmp, 1, tmp1)); + + tmp2 = fold_convert (long_long_unsigned_type_node, arg); + btmp = builtin_decl_explicit (BUILT_IN_CLZLL); + tmp2 = fold_convert (result_type, + build_call_expr_loc (input_location, btmp, 1, tmp2)); + tmp2 = fold_build2_loc (input_location, PLUS_EXPR, result_type, + tmp2, ullsize); + + leadz = fold_build3_loc (input_location, COND_EXPR, result_type, + cond, tmp1, tmp2); + } + + /* Build BIT_SIZE. */ + bit_size = build_int_cst (result_type, argsize); + + cond = fold_build2_loc (input_location, EQ_EXPR, logical_type_node, + arg, build_int_cst (arg_type, 0)); + se->expr = fold_build3_loc (input_location, COND_EXPR, result_type, cond, + bit_size, leadz); +} + + +/* TRAILZ(i) = (i == 0) ? BIT_SIZE (i) : __builtin_ctz(i) + + The conditional expression is necessary because the result of TRAILZ(0) + is defined, but the result of __builtin_ctz(0) is undefined for most + targets. */ + +static void +gfc_conv_intrinsic_trailz (gfc_se * se, gfc_expr *expr) +{ + tree arg; + tree arg_type; + tree cond; + tree result_type; + tree trailz; + tree bit_size; + tree func; + int argsize; + + gfc_conv_intrinsic_function_args (se, expr, &arg, 1); + argsize = TYPE_PRECISION (TREE_TYPE (arg)); + + /* Which variant of __builtin_ctz* should we call? */ + if (argsize <= INT_TYPE_SIZE) + { + arg_type = unsigned_type_node; + func = builtin_decl_explicit (BUILT_IN_CTZ); + } + else if (argsize <= LONG_TYPE_SIZE) + { + arg_type = long_unsigned_type_node; + func = builtin_decl_explicit (BUILT_IN_CTZL); + } + else if (argsize <= LONG_LONG_TYPE_SIZE) + { + arg_type = long_long_unsigned_type_node; + func = builtin_decl_explicit (BUILT_IN_CTZLL); + } + else + { + gcc_assert (argsize == 2 * LONG_LONG_TYPE_SIZE); + arg_type = gfc_build_uint_type (argsize); + func = NULL_TREE; + } + + /* Convert the actual argument twice: first, to the unsigned type of the + same size; then, to the proper argument type for the built-in + function. But the return type is of the default INTEGER kind. */ + arg = fold_convert (gfc_build_uint_type (argsize), arg); + arg = fold_convert (arg_type, arg); + arg = gfc_evaluate_now (arg, &se->pre); + result_type = gfc_get_int_type (gfc_default_integer_kind); + + /* Compute TRAILZ for the case i .ne. 0. */ + if (func) + trailz = fold_convert (result_type, build_call_expr_loc (input_location, + func, 1, arg)); + else + { + /* We end up here if the argument type is larger than 'long long'. + We generate this code: + + if ((x & ULL_MAX) == 0) + return ULL_SIZE + ctzll ((unsigned long long) (x >> ULLSIZE)); + else + return ctzll ((unsigned long long) x); + + where ULL_MAX is the largest value that a ULL_MAX can hold + (0xFFFFFFFFFFFFFFFF for a 64-bit long long type), and ULLSIZE + is the bit-size of the long long type (64 in this example). */ + tree ullsize, ullmax, tmp1, tmp2, btmp; + + ullsize = build_int_cst (result_type, LONG_LONG_TYPE_SIZE); + ullmax = fold_build1_loc (input_location, BIT_NOT_EXPR, + long_long_unsigned_type_node, + build_int_cst (long_long_unsigned_type_node, 0)); + + cond = fold_build2_loc (input_location, BIT_AND_EXPR, arg_type, arg, + fold_convert (arg_type, ullmax)); + cond = fold_build2_loc (input_location, EQ_EXPR, logical_type_node, cond, + build_int_cst (arg_type, 0)); + + tmp1 = fold_build2_loc (input_location, RSHIFT_EXPR, arg_type, + arg, ullsize); + tmp1 = fold_convert (long_long_unsigned_type_node, tmp1); + btmp = builtin_decl_explicit (BUILT_IN_CTZLL); + tmp1 = fold_convert (result_type, + build_call_expr_loc (input_location, btmp, 1, tmp1)); + tmp1 = fold_build2_loc (input_location, PLUS_EXPR, result_type, + tmp1, ullsize); + + tmp2 = fold_convert (long_long_unsigned_type_node, arg); + btmp = builtin_decl_explicit (BUILT_IN_CTZLL); + tmp2 = fold_convert (result_type, + build_call_expr_loc (input_location, btmp, 1, tmp2)); + + trailz = fold_build3_loc (input_location, COND_EXPR, result_type, + cond, tmp1, tmp2); + } + + /* Build BIT_SIZE. */ + bit_size = build_int_cst (result_type, argsize); + + cond = fold_build2_loc (input_location, EQ_EXPR, logical_type_node, + arg, build_int_cst (arg_type, 0)); + se->expr = fold_build3_loc (input_location, COND_EXPR, result_type, cond, + bit_size, trailz); +} + +/* Using __builtin_popcount for POPCNT and __builtin_parity for POPPAR; + for types larger than "long long", we call the long long built-in for + the lower and higher bits and combine the result. */ + +static void +gfc_conv_intrinsic_popcnt_poppar (gfc_se * se, gfc_expr *expr, int parity) +{ + tree arg; + tree arg_type; + tree result_type; + tree func; + int argsize; + + gfc_conv_intrinsic_function_args (se, expr, &arg, 1); + argsize = TYPE_PRECISION (TREE_TYPE (arg)); + result_type = gfc_get_int_type (gfc_default_integer_kind); + + /* Which variant of the builtin should we call? */ + if (argsize <= INT_TYPE_SIZE) + { + arg_type = unsigned_type_node; + func = builtin_decl_explicit (parity + ? BUILT_IN_PARITY + : BUILT_IN_POPCOUNT); + } + else if (argsize <= LONG_TYPE_SIZE) + { + arg_type = long_unsigned_type_node; + func = builtin_decl_explicit (parity + ? BUILT_IN_PARITYL + : BUILT_IN_POPCOUNTL); + } + else if (argsize <= LONG_LONG_TYPE_SIZE) + { + arg_type = long_long_unsigned_type_node; + func = builtin_decl_explicit (parity + ? BUILT_IN_PARITYLL + : BUILT_IN_POPCOUNTLL); + } + else + { + /* Our argument type is larger than 'long long', which mean none + of the POPCOUNT builtins covers it. We thus call the 'long long' + variant multiple times, and add the results. */ + tree utype, arg2, call1, call2; + + /* For now, we only cover the case where argsize is twice as large + as 'long long'. */ + gcc_assert (argsize == 2 * LONG_LONG_TYPE_SIZE); + + func = builtin_decl_explicit (parity + ? BUILT_IN_PARITYLL + : BUILT_IN_POPCOUNTLL); + + /* Convert it to an integer, and store into a variable. */ + utype = gfc_build_uint_type (argsize); + arg = fold_convert (utype, arg); + arg = gfc_evaluate_now (arg, &se->pre); + + /* Call the builtin twice. */ + call1 = build_call_expr_loc (input_location, func, 1, + fold_convert (long_long_unsigned_type_node, + arg)); + + arg2 = fold_build2_loc (input_location, RSHIFT_EXPR, utype, arg, + build_int_cst (utype, LONG_LONG_TYPE_SIZE)); + call2 = build_call_expr_loc (input_location, func, 1, + fold_convert (long_long_unsigned_type_node, + arg2)); + + /* Combine the results. */ + if (parity) + se->expr = fold_build2_loc (input_location, BIT_XOR_EXPR, result_type, + call1, call2); + else + se->expr = fold_build2_loc (input_location, PLUS_EXPR, result_type, + call1, call2); + + return; + } + + /* Convert the actual argument twice: first, to the unsigned type of the + same size; then, to the proper argument type for the built-in + function. */ + arg = fold_convert (gfc_build_uint_type (argsize), arg); + arg = fold_convert (arg_type, arg); + + se->expr = fold_convert (result_type, + build_call_expr_loc (input_location, func, 1, arg)); +} + + +/* Process an intrinsic with unspecified argument-types that has an optional + argument (which could be of type character), e.g. EOSHIFT. For those, we + need to append the string length of the optional argument if it is not + present and the type is really character. + primary specifies the position (starting at 1) of the non-optional argument + specifying the type and optional gives the position of the optional + argument in the arglist. */ + +static void +conv_generic_with_optional_char_arg (gfc_se* se, gfc_expr* expr, + unsigned primary, unsigned optional) +{ + gfc_actual_arglist* prim_arg; + gfc_actual_arglist* opt_arg; + unsigned cur_pos; + gfc_actual_arglist* arg; + gfc_symbol* sym; + vec<tree, va_gc> *append_args; + + /* Find the two arguments given as position. */ + cur_pos = 0; + prim_arg = NULL; + opt_arg = NULL; + for (arg = expr->value.function.actual; arg; arg = arg->next) + { + ++cur_pos; + + if (cur_pos == primary) + prim_arg = arg; + if (cur_pos == optional) + opt_arg = arg; + + if (cur_pos >= primary && cur_pos >= optional) + break; + } + gcc_assert (prim_arg); + gcc_assert (prim_arg->expr); + gcc_assert (opt_arg); + + /* If we do have type CHARACTER and the optional argument is really absent, + append a dummy 0 as string length. */ + append_args = NULL; + if (prim_arg->expr->ts.type == BT_CHARACTER && !opt_arg->expr) + { + tree dummy; + + dummy = build_int_cst (gfc_charlen_type_node, 0); + vec_alloc (append_args, 1); + append_args->quick_push (dummy); + } + + /* Build the call itself. */ + gcc_assert (!se->ignore_optional); + sym = gfc_get_symbol_for_expr (expr, false); + gfc_conv_procedure_call (se, sym, expr->value.function.actual, expr, + append_args); + gfc_free_symbol (sym); +} + +/* The length of a character string. */ +static void +gfc_conv_intrinsic_len (gfc_se * se, gfc_expr * expr) +{ + tree len; + tree type; + tree decl; + gfc_symbol *sym; + gfc_se argse; + gfc_expr *arg; + + gcc_assert (!se->ss); + + arg = expr->value.function.actual->expr; + + type = gfc_typenode_for_spec (&expr->ts); + switch (arg->expr_type) + { + case EXPR_CONSTANT: + len = build_int_cst (gfc_charlen_type_node, arg->value.character.length); + break; + + case EXPR_ARRAY: + /* Obtain the string length from the function used by + trans-array.c(gfc_trans_array_constructor). */ + len = NULL_TREE; + get_array_ctor_strlen (&se->pre, arg->value.constructor, &len); + break; + + case EXPR_VARIABLE: + if (arg->ref == NULL + || (arg->ref->next == NULL && arg->ref->type == REF_ARRAY)) + { + /* This doesn't catch all cases. + See http://gcc.gnu.org/ml/fortran/2004-06/msg00165.html + and the surrounding thread. */ + sym = arg->symtree->n.sym; + decl = gfc_get_symbol_decl (sym); + if (decl == current_function_decl && sym->attr.function + && (sym->result == sym)) + decl = gfc_get_fake_result_decl (sym, 0); + + len = sym->ts.u.cl->backend_decl; + gcc_assert (len); + break; + } + + /* Fall through. */ + + default: + gfc_init_se (&argse, se); + if (arg->rank == 0) + gfc_conv_expr (&argse, arg); + else + gfc_conv_expr_descriptor (&argse, arg); + gfc_add_block_to_block (&se->pre, &argse.pre); + gfc_add_block_to_block (&se->post, &argse.post); + len = argse.string_length; + break; + } + se->expr = convert (type, len); +} + +/* The length of a character string not including trailing blanks. */ +static void +gfc_conv_intrinsic_len_trim (gfc_se * se, gfc_expr * expr) +{ + int kind = expr->value.function.actual->expr->ts.kind; + tree args[2], type, fndecl; + + gfc_conv_intrinsic_function_args (se, expr, args, 2); + type = gfc_typenode_for_spec (&expr->ts); + + if (kind == 1) + fndecl = gfor_fndecl_string_len_trim; + else if (kind == 4) + fndecl = gfor_fndecl_string_len_trim_char4; + else + gcc_unreachable (); + + se->expr = build_call_expr_loc (input_location, + fndecl, 2, args[0], args[1]); + se->expr = convert (type, se->expr); +} + + +/* Returns the starting position of a substring within a string. */ + +static void +gfc_conv_intrinsic_index_scan_verify (gfc_se * se, gfc_expr * expr, + tree function) +{ + tree logical4_type_node = gfc_get_logical_type (4); + tree type; + tree fndecl; + tree *args; + unsigned int num_args; + + args = XALLOCAVEC (tree, 5); + + /* Get number of arguments; characters count double due to the + string length argument. Kind= is not passed to the library + and thus ignored. */ + if (expr->value.function.actual->next->next->expr == NULL) + num_args = 4; + else + num_args = 5; + + gfc_conv_intrinsic_function_args (se, expr, args, num_args); + type = gfc_typenode_for_spec (&expr->ts); + + if (num_args == 4) + args[4] = build_int_cst (logical4_type_node, 0); + else + args[4] = convert (logical4_type_node, args[4]); + + fndecl = build_addr (function); + se->expr = build_call_array_loc (input_location, + TREE_TYPE (TREE_TYPE (function)), fndecl, + 5, args); + se->expr = convert (type, se->expr); + +} + +/* The ascii value for a single character. */ +static void +gfc_conv_intrinsic_ichar (gfc_se * se, gfc_expr * expr) +{ + tree args[3], type, pchartype; + int nargs; + + nargs = gfc_intrinsic_argument_list_length (expr); + gfc_conv_intrinsic_function_args (se, expr, args, nargs); + gcc_assert (POINTER_TYPE_P (TREE_TYPE (args[1]))); + pchartype = gfc_get_pchar_type (expr->value.function.actual->expr->ts.kind); + args[1] = fold_build1_loc (input_location, NOP_EXPR, pchartype, args[1]); + type = gfc_typenode_for_spec (&expr->ts); + + se->expr = build_fold_indirect_ref_loc (input_location, + args[1]); + se->expr = convert (type, se->expr); +} + + +/* Intrinsic ISNAN calls __builtin_isnan. */ + +static void +gfc_conv_intrinsic_isnan (gfc_se * se, gfc_expr * expr) +{ + tree arg; + + gfc_conv_intrinsic_function_args (se, expr, &arg, 1); + se->expr = build_call_expr_loc (input_location, + builtin_decl_explicit (BUILT_IN_ISNAN), + 1, arg); + STRIP_TYPE_NOPS (se->expr); + se->expr = fold_convert (gfc_typenode_for_spec (&expr->ts), se->expr); +} + + +/* Intrinsics IS_IOSTAT_END and IS_IOSTAT_EOR just need to compare + their argument against a constant integer value. */ + +static void +gfc_conv_has_intvalue (gfc_se * se, gfc_expr * expr, const int value) +{ + tree arg; + + gfc_conv_intrinsic_function_args (se, expr, &arg, 1); + se->expr = fold_build2_loc (input_location, EQ_EXPR, + gfc_typenode_for_spec (&expr->ts), + arg, build_int_cst (TREE_TYPE (arg), value)); +} + + + +/* MERGE (tsource, fsource, mask) = mask ? tsource : fsource. */ + +static void +gfc_conv_intrinsic_merge (gfc_se * se, gfc_expr * expr) +{ + tree tsource; + tree fsource; + tree mask; + tree type; + tree len, len2; + tree *args; + unsigned int num_args; + + num_args = gfc_intrinsic_argument_list_length (expr); + args = XALLOCAVEC (tree, num_args); + + gfc_conv_intrinsic_function_args (se, expr, args, num_args); + if (expr->ts.type != BT_CHARACTER) + { + tsource = args[0]; + fsource = args[1]; + mask = args[2]; + } + else + { + /* We do the same as in the non-character case, but the argument + list is different because of the string length arguments. We + also have to set the string length for the result. */ + len = args[0]; + tsource = args[1]; + len2 = args[2]; + fsource = args[3]; + mask = args[4]; + + gfc_trans_same_strlen_check ("MERGE intrinsic", &expr->where, len, len2, + &se->pre); + se->string_length = len; + } + type = TREE_TYPE (tsource); + se->expr = fold_build3_loc (input_location, COND_EXPR, type, mask, tsource, + fold_convert (type, fsource)); +} + + +/* MERGE_BITS (I, J, MASK) = (I & MASK) | (I & (~MASK)). */ + +static void +gfc_conv_intrinsic_merge_bits (gfc_se * se, gfc_expr * expr) +{ + tree args[3], mask, type; + + gfc_conv_intrinsic_function_args (se, expr, args, 3); + mask = gfc_evaluate_now (args[2], &se->pre); + + type = TREE_TYPE (args[0]); + gcc_assert (TREE_TYPE (args[1]) == type); + gcc_assert (TREE_TYPE (mask) == type); + + args[0] = fold_build2_loc (input_location, BIT_AND_EXPR, type, args[0], mask); + args[1] = fold_build2_loc (input_location, BIT_AND_EXPR, type, args[1], + fold_build1_loc (input_location, BIT_NOT_EXPR, + type, mask)); + se->expr = fold_build2_loc (input_location, BIT_IOR_EXPR, type, + args[0], args[1]); +} + + +/* MASKL(n) = n == 0 ? 0 : (~0) << (BIT_SIZE - n) + MASKR(n) = n == BIT_SIZE ? ~0 : ~((~0) << n) */ + +static void +gfc_conv_intrinsic_mask (gfc_se * se, gfc_expr * expr, int left) +{ + tree arg, allones, type, utype, res, cond, bitsize; + int i; + + gfc_conv_intrinsic_function_args (se, expr, &arg, 1); + arg = gfc_evaluate_now (arg, &se->pre); + + type = gfc_get_int_type (expr->ts.kind); + utype = unsigned_type_for (type); + + i = gfc_validate_kind (BT_INTEGER, expr->ts.kind, false); + bitsize = build_int_cst (TREE_TYPE (arg), gfc_integer_kinds[i].bit_size); + + allones = fold_build1_loc (input_location, BIT_NOT_EXPR, utype, + build_int_cst (utype, 0)); + + if (left) + { + /* Left-justified mask. */ + res = fold_build2_loc (input_location, MINUS_EXPR, TREE_TYPE (arg), + bitsize, arg); + res = fold_build2_loc (input_location, LSHIFT_EXPR, utype, allones, + fold_convert (utype, res)); + + /* Special case arg == 0, because SHIFT_EXPR wants a shift strictly + smaller than type width. */ + cond = fold_build2_loc (input_location, EQ_EXPR, logical_type_node, arg, + build_int_cst (TREE_TYPE (arg), 0)); + res = fold_build3_loc (input_location, COND_EXPR, utype, cond, + build_int_cst (utype, 0), res); + } + else + { + /* Right-justified mask. */ + res = fold_build2_loc (input_location, LSHIFT_EXPR, utype, allones, + fold_convert (utype, arg)); + res = fold_build1_loc (input_location, BIT_NOT_EXPR, utype, res); + + /* Special case agr == bit_size, because SHIFT_EXPR wants a shift + strictly smaller than type width. */ + cond = fold_build2_loc (input_location, EQ_EXPR, logical_type_node, + arg, bitsize); + res = fold_build3_loc (input_location, COND_EXPR, utype, + cond, allones, res); + } + + se->expr = fold_convert (type, res); +} + + +/* FRACTION (s) is translated into: + isfinite (s) ? frexp (s, &dummy_int) : NaN */ +static void +gfc_conv_intrinsic_fraction (gfc_se * se, gfc_expr * expr) +{ + tree arg, type, tmp, res, frexp, cond; + + frexp = gfc_builtin_decl_for_float_kind (BUILT_IN_FREXP, expr->ts.kind); + + type = gfc_typenode_for_spec (&expr->ts); + gfc_conv_intrinsic_function_args (se, expr, &arg, 1); + arg = gfc_evaluate_now (arg, &se->pre); + + cond = build_call_expr_loc (input_location, + builtin_decl_explicit (BUILT_IN_ISFINITE), + 1, arg); + + tmp = gfc_create_var (integer_type_node, NULL); + res = build_call_expr_loc (input_location, frexp, 2, + fold_convert (type, arg), + gfc_build_addr_expr (NULL_TREE, tmp)); + res = fold_convert (type, res); + + se->expr = fold_build3_loc (input_location, COND_EXPR, type, + cond, res, gfc_build_nan (type, "")); +} + + +/* NEAREST (s, dir) is translated into + tmp = copysign (HUGE_VAL, dir); + return nextafter (s, tmp); + */ +static void +gfc_conv_intrinsic_nearest (gfc_se * se, gfc_expr * expr) +{ + tree args[2], type, tmp, nextafter, copysign, huge_val; + + nextafter = gfc_builtin_decl_for_float_kind (BUILT_IN_NEXTAFTER, expr->ts.kind); + copysign = gfc_builtin_decl_for_float_kind (BUILT_IN_COPYSIGN, expr->ts.kind); + + type = gfc_typenode_for_spec (&expr->ts); + gfc_conv_intrinsic_function_args (se, expr, args, 2); + + huge_val = gfc_build_inf_or_huge (type, expr->ts.kind); + tmp = build_call_expr_loc (input_location, copysign, 2, huge_val, + fold_convert (type, args[1])); + se->expr = build_call_expr_loc (input_location, nextafter, 2, + fold_convert (type, args[0]), tmp); + se->expr = fold_convert (type, se->expr); +} + + +/* SPACING (s) is translated into + int e; + if (!isfinite (s)) + res = NaN; + else if (s == 0) + res = tiny; + else + { + frexp (s, &e); + e = e - prec; + e = MAX_EXPR (e, emin); + res = scalbn (1., e); + } + return res; + + where prec is the precision of s, gfc_real_kinds[k].digits, + emin is min_exponent - 1, gfc_real_kinds[k].min_exponent - 1, + and tiny is tiny(s), gfc_real_kinds[k].tiny. */ + +static void +gfc_conv_intrinsic_spacing (gfc_se * se, gfc_expr * expr) +{ + tree arg, type, prec, emin, tiny, res, e; + tree cond, nan, tmp, frexp, scalbn; + int k; + stmtblock_t block; + + k = gfc_validate_kind (BT_REAL, expr->ts.kind, false); + prec = build_int_cst (integer_type_node, gfc_real_kinds[k].digits); + emin = build_int_cst (integer_type_node, gfc_real_kinds[k].min_exponent - 1); + tiny = gfc_conv_mpfr_to_tree (gfc_real_kinds[k].tiny, expr->ts.kind, 0); + + frexp = gfc_builtin_decl_for_float_kind (BUILT_IN_FREXP, expr->ts.kind); + scalbn = gfc_builtin_decl_for_float_kind (BUILT_IN_SCALBN, expr->ts.kind); + + gfc_conv_intrinsic_function_args (se, expr, &arg, 1); + arg = gfc_evaluate_now (arg, &se->pre); + + type = gfc_typenode_for_spec (&expr->ts); + e = gfc_create_var (integer_type_node, NULL); + res = gfc_create_var (type, NULL); + + + /* Build the block for s /= 0. */ + gfc_start_block (&block); + tmp = build_call_expr_loc (input_location, frexp, 2, arg, + gfc_build_addr_expr (NULL_TREE, e)); + gfc_add_expr_to_block (&block, tmp); + + tmp = fold_build2_loc (input_location, MINUS_EXPR, integer_type_node, e, + prec); + gfc_add_modify (&block, e, fold_build2_loc (input_location, MAX_EXPR, + integer_type_node, tmp, emin)); + + tmp = build_call_expr_loc (input_location, scalbn, 2, + build_real_from_int_cst (type, integer_one_node), e); + gfc_add_modify (&block, res, tmp); + + /* Finish by building the IF statement for value zero. */ + cond = fold_build2_loc (input_location, EQ_EXPR, logical_type_node, arg, + build_real_from_int_cst (type, integer_zero_node)); + tmp = build3_v (COND_EXPR, cond, build2_v (MODIFY_EXPR, res, tiny), + gfc_finish_block (&block)); + + /* And deal with infinities and NaNs. */ + cond = build_call_expr_loc (input_location, + builtin_decl_explicit (BUILT_IN_ISFINITE), + 1, arg); + nan = gfc_build_nan (type, ""); + tmp = build3_v (COND_EXPR, cond, tmp, build2_v (MODIFY_EXPR, res, nan)); + + gfc_add_expr_to_block (&se->pre, tmp); + se->expr = res; +} + + +/* RRSPACING (s) is translated into + int e; + real x; + x = fabs (s); + if (isfinite (x)) + { + if (x != 0) + { + frexp (s, &e); + x = scalbn (x, precision - e); + } + } + else + x = NaN; + return x; + + where precision is gfc_real_kinds[k].digits. */ + +static void +gfc_conv_intrinsic_rrspacing (gfc_se * se, gfc_expr * expr) +{ + tree arg, type, e, x, cond, nan, stmt, tmp, frexp, scalbn, fabs; + int prec, k; + stmtblock_t block; + + k = gfc_validate_kind (BT_REAL, expr->ts.kind, false); + prec = gfc_real_kinds[k].digits; + + frexp = gfc_builtin_decl_for_float_kind (BUILT_IN_FREXP, expr->ts.kind); + scalbn = gfc_builtin_decl_for_float_kind (BUILT_IN_SCALBN, expr->ts.kind); + fabs = gfc_builtin_decl_for_float_kind (BUILT_IN_FABS, expr->ts.kind); + + type = gfc_typenode_for_spec (&expr->ts); + gfc_conv_intrinsic_function_args (se, expr, &arg, 1); + arg = gfc_evaluate_now (arg, &se->pre); + + e = gfc_create_var (integer_type_node, NULL); + x = gfc_create_var (type, NULL); + gfc_add_modify (&se->pre, x, + build_call_expr_loc (input_location, fabs, 1, arg)); + + + gfc_start_block (&block); + tmp = build_call_expr_loc (input_location, frexp, 2, arg, + gfc_build_addr_expr (NULL_TREE, e)); + gfc_add_expr_to_block (&block, tmp); + + tmp = fold_build2_loc (input_location, MINUS_EXPR, integer_type_node, + build_int_cst (integer_type_node, prec), e); + tmp = build_call_expr_loc (input_location, scalbn, 2, x, tmp); + gfc_add_modify (&block, x, tmp); + stmt = gfc_finish_block (&block); + + /* if (x != 0) */ + cond = fold_build2_loc (input_location, NE_EXPR, logical_type_node, x, + build_real_from_int_cst (type, integer_zero_node)); + tmp = build3_v (COND_EXPR, cond, stmt, build_empty_stmt (input_location)); + + /* And deal with infinities and NaNs. */ + cond = build_call_expr_loc (input_location, + builtin_decl_explicit (BUILT_IN_ISFINITE), + 1, x); + nan = gfc_build_nan (type, ""); + tmp = build3_v (COND_EXPR, cond, tmp, build2_v (MODIFY_EXPR, x, nan)); + + gfc_add_expr_to_block (&se->pre, tmp); + se->expr = fold_convert (type, x); +} + + +/* SCALE (s, i) is translated into scalbn (s, i). */ +static void +gfc_conv_intrinsic_scale (gfc_se * se, gfc_expr * expr) +{ + tree args[2], type, scalbn; + + scalbn = gfc_builtin_decl_for_float_kind (BUILT_IN_SCALBN, expr->ts.kind); + + type = gfc_typenode_for_spec (&expr->ts); + gfc_conv_intrinsic_function_args (se, expr, args, 2); + se->expr = build_call_expr_loc (input_location, scalbn, 2, + fold_convert (type, args[0]), + fold_convert (integer_type_node, args[1])); + se->expr = fold_convert (type, se->expr); +} + + +/* SET_EXPONENT (s, i) is translated into + isfinite(s) ? scalbn (frexp (s, &dummy_int), i) : NaN */ +static void +gfc_conv_intrinsic_set_exponent (gfc_se * se, gfc_expr * expr) +{ + tree args[2], type, tmp, frexp, scalbn, cond, nan, res; + + frexp = gfc_builtin_decl_for_float_kind (BUILT_IN_FREXP, expr->ts.kind); + scalbn = gfc_builtin_decl_for_float_kind (BUILT_IN_SCALBN, expr->ts.kind); + + type = gfc_typenode_for_spec (&expr->ts); + gfc_conv_intrinsic_function_args (se, expr, args, 2); + args[0] = gfc_evaluate_now (args[0], &se->pre); + + tmp = gfc_create_var (integer_type_node, NULL); + tmp = build_call_expr_loc (input_location, frexp, 2, + fold_convert (type, args[0]), + gfc_build_addr_expr (NULL_TREE, tmp)); + res = build_call_expr_loc (input_location, scalbn, 2, tmp, + fold_convert (integer_type_node, args[1])); + res = fold_convert (type, res); + + /* Call to isfinite */ + cond = build_call_expr_loc (input_location, + builtin_decl_explicit (BUILT_IN_ISFINITE), + 1, args[0]); + nan = gfc_build_nan (type, ""); + + se->expr = fold_build3_loc (input_location, COND_EXPR, type, cond, + res, nan); +} + + +static void +gfc_conv_intrinsic_size (gfc_se * se, gfc_expr * expr) +{ + gfc_actual_arglist *actual; + tree arg1; + tree type; + tree size; + gfc_se argse; + gfc_expr *e; + gfc_symbol *sym = NULL; + + gfc_init_se (&argse, NULL); + actual = expr->value.function.actual; + + if (actual->expr->ts.type == BT_CLASS) + gfc_add_class_array_ref (actual->expr); + + e = actual->expr; + + /* These are emerging from the interface mapping, when a class valued + function appears as the rhs in a realloc on assign statement, where + the size of the result is that of one of the actual arguments. */ + if (e->expr_type == EXPR_VARIABLE + && e->symtree->n.sym->ns == NULL /* This is distinctive! */ + && e->symtree->n.sym->ts.type == BT_CLASS + && e->ref && e->ref->type == REF_COMPONENT + && strcmp (e->ref->u.c.component->name, "_data") == 0) + sym = e->symtree->n.sym; + + if ((gfc_option.rtcheck & GFC_RTCHECK_POINTER) + && e + && (e->expr_type == EXPR_VARIABLE || e->expr_type == EXPR_FUNCTION)) + { + symbol_attribute attr; + char *msg; + tree temp; + tree cond; + + if (e->symtree->n.sym && IS_CLASS_ARRAY (e->symtree->n.sym)) + { + attr = CLASS_DATA (e->symtree->n.sym)->attr; + attr.pointer = attr.class_pointer; + } + else + attr = gfc_expr_attr (e); + + if (attr.allocatable) + msg = xasprintf ("Allocatable argument '%s' is not allocated", + e->symtree->n.sym->name); + else if (attr.pointer) + msg = xasprintf ("Pointer argument '%s' is not associated", + e->symtree->n.sym->name); + else + goto end_arg_check; + + if (sym) + { + temp = gfc_class_data_get (sym->backend_decl); + temp = gfc_conv_descriptor_data_get (temp); + } + else + { + argse.descriptor_only = 1; + gfc_conv_expr_descriptor (&argse, actual->expr); + temp = gfc_conv_descriptor_data_get (argse.expr); + } + + cond = fold_build2_loc (input_location, EQ_EXPR, + logical_type_node, temp, + fold_convert (TREE_TYPE (temp), + null_pointer_node)); + gfc_trans_runtime_check (true, false, cond, &argse.pre, &e->where, msg); + + free (msg); + } + end_arg_check: + + argse.data_not_needed = 1; + if (gfc_is_class_array_function (e)) + { + /* For functions that return a class array conv_expr_descriptor is not + able to get the descriptor right. Therefore this special case. */ + gfc_conv_expr_reference (&argse, e); + argse.expr = gfc_class_data_get (argse.expr); + } + else if (sym && sym->backend_decl) + { + gcc_assert (GFC_CLASS_TYPE_P (TREE_TYPE (sym->backend_decl))); + argse.expr = gfc_class_data_get (sym->backend_decl); + } + else + gfc_conv_expr_descriptor (&argse, actual->expr); + gfc_add_block_to_block (&se->pre, &argse.pre); + gfc_add_block_to_block (&se->post, &argse.post); + arg1 = argse.expr; + + actual = actual->next; + if (actual->expr) + { + stmtblock_t block; + gfc_init_block (&block); + gfc_init_se (&argse, NULL); + gfc_conv_expr_type (&argse, actual->expr, + gfc_array_index_type); + gfc_add_block_to_block (&block, &argse.pre); + tree tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, + argse.expr, gfc_index_one_node); + size = gfc_tree_array_size (&block, arg1, e, tmp); + + /* Unusually, for an intrinsic, size does not exclude + an optional arg2, so we must test for it. */ + if (actual->expr->expr_type == EXPR_VARIABLE + && actual->expr->symtree->n.sym->attr.dummy + && actual->expr->symtree->n.sym->attr.optional) + { + tree cond; + stmtblock_t block2; + gfc_init_block (&block2); + gfc_init_se (&argse, NULL); + argse.want_pointer = 1; + argse.data_not_needed = 1; + gfc_conv_expr (&argse, actual->expr); + gfc_add_block_to_block (&se->pre, &argse.pre); + cond = fold_build2_loc (input_location, NE_EXPR, logical_type_node, + argse.expr, null_pointer_node); + cond = gfc_evaluate_now (cond, &se->pre); + /* 'block2' contains the arg2 absent case, 'block' the arg2 present + case; size_var can be used in both blocks. */ + tree size_var = gfc_create_var (TREE_TYPE (size), "size"); + tmp = fold_build2_loc (input_location, MODIFY_EXPR, + TREE_TYPE (size_var), size_var, size); + gfc_add_expr_to_block (&block, tmp); + size = gfc_tree_array_size (&block2, arg1, e, NULL_TREE); + tmp = fold_build2_loc (input_location, MODIFY_EXPR, + TREE_TYPE (size_var), size_var, size); + gfc_add_expr_to_block (&block2, tmp); + tmp = build3_v (COND_EXPR, cond, gfc_finish_block (&block), + gfc_finish_block (&block2)); + gfc_add_expr_to_block (&se->pre, tmp); + size = size_var; + } + else + gfc_add_block_to_block (&se->pre, &block); + } + else + size = gfc_tree_array_size (&se->pre, arg1, e, NULL_TREE); + type = gfc_typenode_for_spec (&expr->ts); + se->expr = convert (type, size); +} + + +/* Helper function to compute the size of a character variable, + excluding the terminating null characters. The result has + gfc_array_index_type type. */ + +tree +size_of_string_in_bytes (int kind, tree string_length) +{ + tree bytesize; + int i = gfc_validate_kind (BT_CHARACTER, kind, false); + + bytesize = build_int_cst (gfc_array_index_type, + gfc_character_kinds[i].bit_size / 8); + + return fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, + bytesize, + fold_convert (gfc_array_index_type, string_length)); +} + + +static void +gfc_conv_intrinsic_sizeof (gfc_se *se, gfc_expr *expr) +{ + gfc_expr *arg; + gfc_se argse; + tree source_bytes; + tree tmp; + tree lower; + tree upper; + tree byte_size; + tree field; + int n; + + gfc_init_se (&argse, NULL); + arg = expr->value.function.actual->expr; + + if (arg->rank || arg->ts.type == BT_ASSUMED) + gfc_conv_expr_descriptor (&argse, arg); + else + gfc_conv_expr_reference (&argse, arg); + + if (arg->ts.type == BT_ASSUMED) + { + /* This only works if an array descriptor has been passed; thus, extract + the size from the descriptor. */ + gcc_assert (TYPE_PRECISION (gfc_array_index_type) + == TYPE_PRECISION (size_type_node)); + tmp = arg->symtree->n.sym->backend_decl; + tmp = DECL_LANG_SPECIFIC (tmp) + && GFC_DECL_SAVED_DESCRIPTOR (tmp) != NULL_TREE + ? GFC_DECL_SAVED_DESCRIPTOR (tmp) : tmp; + if (POINTER_TYPE_P (TREE_TYPE (tmp))) + tmp = build_fold_indirect_ref_loc (input_location, tmp); + + tmp = gfc_conv_descriptor_dtype (tmp); + field = gfc_advance_chain (TYPE_FIELDS (get_dtype_type_node ()), + GFC_DTYPE_ELEM_LEN); + tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), + tmp, field, NULL_TREE); + + byte_size = fold_convert (gfc_array_index_type, tmp); + } + else if (arg->ts.type == BT_CLASS) + { + /* Conv_expr_descriptor returns a component_ref to _data component of the + class object. The class object may be a non-pointer object, e.g. + located on the stack, or a memory location pointed to, e.g. a + parameter, i.e., an indirect_ref. */ + if (arg->rank < 0 + || (arg->rank > 0 && !VAR_P (argse.expr) + && ((INDIRECT_REF_P (TREE_OPERAND (argse.expr, 0)) + && GFC_DECL_CLASS (TREE_OPERAND ( + TREE_OPERAND (argse.expr, 0), 0))) + || GFC_DECL_CLASS (TREE_OPERAND (argse.expr, 0))))) + byte_size = gfc_class_vtab_size_get (TREE_OPERAND (argse.expr, 0)); + else if (arg->rank > 0 + || (arg->rank == 0 + && arg->ref && arg->ref->type == REF_COMPONENT)) + /* The scalarizer added an additional temp. To get the class' vptr + one has to look at the original backend_decl. */ + byte_size = gfc_class_vtab_size_get ( + GFC_DECL_SAVED_DESCRIPTOR (arg->symtree->n.sym->backend_decl)); + else + byte_size = gfc_class_vtab_size_get (argse.expr); + } + else + { + if (arg->ts.type == BT_CHARACTER) + byte_size = size_of_string_in_bytes (arg->ts.kind, argse.string_length); + else + { + if (arg->rank == 0) + byte_size = TREE_TYPE (build_fold_indirect_ref_loc (input_location, + argse.expr)); + else + byte_size = gfc_get_element_type (TREE_TYPE (argse.expr)); + byte_size = fold_convert (gfc_array_index_type, + size_in_bytes (byte_size)); + } + } + + if (arg->rank == 0) + se->expr = byte_size; + else + { + source_bytes = gfc_create_var (gfc_array_index_type, "bytes"); + gfc_add_modify (&argse.pre, source_bytes, byte_size); + + if (arg->rank == -1) + { + tree cond, loop_var, exit_label; + stmtblock_t body; + + tmp = fold_convert (gfc_array_index_type, + gfc_conv_descriptor_rank (argse.expr)); + loop_var = gfc_create_var (gfc_array_index_type, "i"); + gfc_add_modify (&argse.pre, loop_var, gfc_index_zero_node); + exit_label = gfc_build_label_decl (NULL_TREE); + + /* Create loop: + for (;;) + { + if (i >= rank) + goto exit; + source_bytes = source_bytes * array.dim[i].extent; + i = i + 1; + } + exit: */ + gfc_start_block (&body); + cond = fold_build2_loc (input_location, GE_EXPR, logical_type_node, + loop_var, tmp); + tmp = build1_v (GOTO_EXPR, exit_label); + tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, + cond, tmp, build_empty_stmt (input_location)); + gfc_add_expr_to_block (&body, tmp); + + lower = gfc_conv_descriptor_lbound_get (argse.expr, loop_var); + upper = gfc_conv_descriptor_ubound_get (argse.expr, loop_var); + tmp = gfc_conv_array_extent_dim (lower, upper, NULL); + tmp = fold_build2_loc (input_location, MULT_EXPR, + gfc_array_index_type, tmp, source_bytes); + gfc_add_modify (&body, source_bytes, tmp); + + tmp = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, loop_var, + gfc_index_one_node); + gfc_add_modify_loc (input_location, &body, loop_var, tmp); + + tmp = gfc_finish_block (&body); + + tmp = fold_build1_loc (input_location, LOOP_EXPR, void_type_node, + tmp); + gfc_add_expr_to_block (&argse.pre, tmp); + + tmp = build1_v (LABEL_EXPR, exit_label); + gfc_add_expr_to_block (&argse.pre, tmp); + } + else + { + /* Obtain the size of the array in bytes. */ + for (n = 0; n < arg->rank; n++) + { + tree idx; + idx = gfc_rank_cst[n]; + lower = gfc_conv_descriptor_lbound_get (argse.expr, idx); + upper = gfc_conv_descriptor_ubound_get (argse.expr, idx); + tmp = gfc_conv_array_extent_dim (lower, upper, NULL); + tmp = fold_build2_loc (input_location, MULT_EXPR, + gfc_array_index_type, tmp, source_bytes); + gfc_add_modify (&argse.pre, source_bytes, tmp); + } + } + se->expr = source_bytes; + } + + gfc_add_block_to_block (&se->pre, &argse.pre); +} + + +static void +gfc_conv_intrinsic_storage_size (gfc_se *se, gfc_expr *expr) +{ + gfc_expr *arg; + gfc_se argse; + tree type, result_type, tmp; + + arg = expr->value.function.actual->expr; + + gfc_init_se (&argse, NULL); + result_type = gfc_get_int_type (expr->ts.kind); + + if (arg->rank == 0) + { + if (arg->ts.type == BT_CLASS) + { + gfc_add_vptr_component (arg); + gfc_add_size_component (arg); + gfc_conv_expr (&argse, arg); + tmp = fold_convert (result_type, argse.expr); + goto done; + } + + gfc_conv_expr_reference (&argse, arg); + type = TREE_TYPE (build_fold_indirect_ref_loc (input_location, + argse.expr)); + } + else + { + argse.want_pointer = 0; + gfc_conv_expr_descriptor (&argse, arg); + if (arg->ts.type == BT_CLASS) + { + if (arg->rank > 0) + tmp = gfc_class_vtab_size_get ( + GFC_DECL_SAVED_DESCRIPTOR (arg->symtree->n.sym->backend_decl)); + else + tmp = gfc_class_vtab_size_get (TREE_OPERAND (argse.expr, 0)); + tmp = fold_convert (result_type, tmp); + goto done; + } + type = gfc_get_element_type (TREE_TYPE (argse.expr)); + } + + /* Obtain the argument's word length. */ + if (arg->ts.type == BT_CHARACTER) + tmp = size_of_string_in_bytes (arg->ts.kind, argse.string_length); + else + tmp = size_in_bytes (type); + tmp = fold_convert (result_type, tmp); + +done: + se->expr = fold_build2_loc (input_location, MULT_EXPR, result_type, tmp, + build_int_cst (result_type, BITS_PER_UNIT)); + gfc_add_block_to_block (&se->pre, &argse.pre); +} + + +/* Intrinsic string comparison functions. */ + +static void +gfc_conv_intrinsic_strcmp (gfc_se * se, gfc_expr * expr, enum tree_code op) +{ + tree args[4]; + + gfc_conv_intrinsic_function_args (se, expr, args, 4); + + se->expr + = gfc_build_compare_string (args[0], args[1], args[2], args[3], + expr->value.function.actual->expr->ts.kind, + op); + se->expr = fold_build2_loc (input_location, op, + gfc_typenode_for_spec (&expr->ts), se->expr, + build_int_cst (TREE_TYPE (se->expr), 0)); +} + +/* Generate a call to the adjustl/adjustr library function. */ +static void +gfc_conv_intrinsic_adjust (gfc_se * se, gfc_expr * expr, tree fndecl) +{ + tree args[3]; + tree len; + tree type; + tree var; + tree tmp; + + gfc_conv_intrinsic_function_args (se, expr, &args[1], 2); + len = args[1]; + + type = TREE_TYPE (args[2]); + var = gfc_conv_string_tmp (se, type, len); + args[0] = var; + + tmp = build_call_expr_loc (input_location, + fndecl, 3, args[0], args[1], args[2]); + gfc_add_expr_to_block (&se->pre, tmp); + se->expr = var; + se->string_length = len; +} + + +/* Generate code for the TRANSFER intrinsic: + For scalar results: + DEST = TRANSFER (SOURCE, MOLD) + where: + typeof<DEST> = typeof<MOLD> + and: + MOLD is scalar. + + For array results: + DEST(1:N) = TRANSFER (SOURCE, MOLD[, SIZE]) + where: + typeof<DEST> = typeof<MOLD> + and: + N = min (sizeof (SOURCE(:)), sizeof (DEST(:)), + sizeof (DEST(0) * SIZE). */ +static void +gfc_conv_intrinsic_transfer (gfc_se * se, gfc_expr * expr) +{ + tree tmp; + tree tmpdecl; + tree ptr; + tree extent; + tree source; + tree source_type; + tree source_bytes; + tree mold_type; + tree dest_word_len; + tree size_words; + tree size_bytes; + tree upper; + tree lower; + tree stmt; + tree class_ref = NULL_TREE; + gfc_actual_arglist *arg; + gfc_se argse; + gfc_array_info *info; + stmtblock_t block; + int n; + bool scalar_mold; + gfc_expr *source_expr, *mold_expr, *class_expr; + + info = NULL; + if (se->loop) + info = &se->ss->info->data.array; + + /* Convert SOURCE. The output from this stage is:- + source_bytes = length of the source in bytes + source = pointer to the source data. */ + arg = expr->value.function.actual; + source_expr = arg->expr; + + /* Ensure double transfer through LOGICAL preserves all + the needed bits. */ + if (arg->expr->expr_type == EXPR_FUNCTION + && arg->expr->value.function.esym == NULL + && arg->expr->value.function.isym != NULL + && arg->expr->value.function.isym->id == GFC_ISYM_TRANSFER + && arg->expr->ts.type == BT_LOGICAL + && expr->ts.type != arg->expr->ts.type) + arg->expr->value.function.name = "__transfer_in_transfer"; + + gfc_init_se (&argse, NULL); + + source_bytes = gfc_create_var (gfc_array_index_type, NULL); + + /* Obtain the pointer to source and the length of source in bytes. */ + if (arg->expr->rank == 0) + { + gfc_conv_expr_reference (&argse, arg->expr); + if (arg->expr->ts.type == BT_CLASS) + { + tmp = build_fold_indirect_ref_loc (input_location, argse.expr); + if (GFC_CLASS_TYPE_P (TREE_TYPE (tmp))) + source = gfc_class_data_get (tmp); + else + { + /* Array elements are evaluated as a reference to the data. + To obtain the vptr for the element size, the argument + expression must be stripped to the class reference and + re-evaluated. The pre and post blocks are not needed. */ + gcc_assert (arg->expr->expr_type == EXPR_VARIABLE); + source = argse.expr; + class_expr = gfc_find_and_cut_at_last_class_ref (arg->expr); + gfc_init_se (&argse, NULL); + gfc_conv_expr (&argse, class_expr); + class_ref = argse.expr; + } + } + else + source = argse.expr; + + /* Obtain the source word length. */ + switch (arg->expr->ts.type) + { + case BT_CHARACTER: + tmp = size_of_string_in_bytes (arg->expr->ts.kind, + argse.string_length); + break; + case BT_CLASS: + if (class_ref != NULL_TREE) + tmp = gfc_class_vtab_size_get (class_ref); + else + tmp = gfc_class_vtab_size_get (argse.expr); + break; + default: + source_type = TREE_TYPE (build_fold_indirect_ref_loc (input_location, + source)); + tmp = fold_convert (gfc_array_index_type, + size_in_bytes (source_type)); + break; + } + } + else + { + argse.want_pointer = 0; + gfc_conv_expr_descriptor (&argse, arg->expr); + source = gfc_conv_descriptor_data_get (argse.expr); + source_type = gfc_get_element_type (TREE_TYPE (argse.expr)); + + /* Repack the source if not simply contiguous. */ + if (!gfc_is_simply_contiguous (arg->expr, false, true)) + { + tmp = gfc_build_addr_expr (NULL_TREE, argse.expr); + + if (warn_array_temporaries) + gfc_warning (OPT_Warray_temporaries, + "Creating array temporary at %L", &expr->where); + + source = build_call_expr_loc (input_location, + gfor_fndecl_in_pack, 1, tmp); + source = gfc_evaluate_now (source, &argse.pre); + + /* Free the temporary. */ + gfc_start_block (&block); + tmp = gfc_call_free (source); + gfc_add_expr_to_block (&block, tmp); + stmt = gfc_finish_block (&block); + + /* Clean up if it was repacked. */ + gfc_init_block (&block); + tmp = gfc_conv_array_data (argse.expr); + tmp = fold_build2_loc (input_location, NE_EXPR, logical_type_node, + source, tmp); + tmp = build3_v (COND_EXPR, tmp, stmt, + build_empty_stmt (input_location)); + gfc_add_expr_to_block (&block, tmp); + gfc_add_block_to_block (&block, &se->post); + gfc_init_block (&se->post); + gfc_add_block_to_block (&se->post, &block); + } + + /* Obtain the source word length. */ + if (arg->expr->ts.type == BT_CHARACTER) + tmp = size_of_string_in_bytes (arg->expr->ts.kind, + argse.string_length); + else + tmp = fold_convert (gfc_array_index_type, + size_in_bytes (source_type)); + + /* Obtain the size of the array in bytes. */ + extent = gfc_create_var (gfc_array_index_type, NULL); + for (n = 0; n < arg->expr->rank; n++) + { + tree idx; + idx = gfc_rank_cst[n]; + gfc_add_modify (&argse.pre, source_bytes, tmp); + lower = gfc_conv_descriptor_lbound_get (argse.expr, idx); + upper = gfc_conv_descriptor_ubound_get (argse.expr, idx); + tmp = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, upper, lower); + gfc_add_modify (&argse.pre, extent, tmp); + tmp = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, extent, + gfc_index_one_node); + tmp = fold_build2_loc (input_location, MULT_EXPR, + gfc_array_index_type, tmp, source_bytes); + } + } + + gfc_add_modify (&argse.pre, source_bytes, tmp); + gfc_add_block_to_block (&se->pre, &argse.pre); + gfc_add_block_to_block (&se->post, &argse.post); + + /* Now convert MOLD. The outputs are: + mold_type = the TREE type of MOLD + dest_word_len = destination word length in bytes. */ + arg = arg->next; + mold_expr = arg->expr; + + gfc_init_se (&argse, NULL); + + scalar_mold = arg->expr->rank == 0; + + if (arg->expr->rank == 0) + { + gfc_conv_expr_reference (&argse, arg->expr); + mold_type = TREE_TYPE (build_fold_indirect_ref_loc (input_location, + argse.expr)); + } + else + { + gfc_init_se (&argse, NULL); + argse.want_pointer = 0; + gfc_conv_expr_descriptor (&argse, arg->expr); + mold_type = gfc_get_element_type (TREE_TYPE (argse.expr)); + } + + gfc_add_block_to_block (&se->pre, &argse.pre); + gfc_add_block_to_block (&se->post, &argse.post); + + if (strcmp (expr->value.function.name, "__transfer_in_transfer") == 0) + { + /* If this TRANSFER is nested in another TRANSFER, use a type + that preserves all bits. */ + if (arg->expr->ts.type == BT_LOGICAL) + mold_type = gfc_get_int_type (arg->expr->ts.kind); + } + + /* Obtain the destination word length. */ + switch (arg->expr->ts.type) + { + case BT_CHARACTER: + tmp = size_of_string_in_bytes (arg->expr->ts.kind, argse.string_length); + mold_type = gfc_get_character_type_len (arg->expr->ts.kind, + argse.string_length); + break; + case BT_CLASS: + tmp = gfc_class_vtab_size_get (argse.expr); + break; + default: + tmp = fold_convert (gfc_array_index_type, size_in_bytes (mold_type)); + break; + } + dest_word_len = gfc_create_var (gfc_array_index_type, NULL); + gfc_add_modify (&se->pre, dest_word_len, tmp); + + /* Finally convert SIZE, if it is present. */ + arg = arg->next; + size_words = gfc_create_var (gfc_array_index_type, NULL); + + if (arg->expr) + { + gfc_init_se (&argse, NULL); + gfc_conv_expr_reference (&argse, arg->expr); + tmp = convert (gfc_array_index_type, + build_fold_indirect_ref_loc (input_location, + argse.expr)); + gfc_add_block_to_block (&se->pre, &argse.pre); + gfc_add_block_to_block (&se->post, &argse.post); + } + else + tmp = NULL_TREE; + + /* Separate array and scalar results. */ + if (scalar_mold && tmp == NULL_TREE) + goto scalar_transfer; + + size_bytes = gfc_create_var (gfc_array_index_type, NULL); + if (tmp != NULL_TREE) + tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, + tmp, dest_word_len); + else + tmp = source_bytes; + + gfc_add_modify (&se->pre, size_bytes, tmp); + gfc_add_modify (&se->pre, size_words, + fold_build2_loc (input_location, CEIL_DIV_EXPR, + gfc_array_index_type, + size_bytes, dest_word_len)); + + /* Evaluate the bounds of the result. If the loop range exists, we have + to check if it is too large. If so, we modify loop->to be consistent + with min(size, size(source)). Otherwise, size is made consistent with + the loop range, so that the right number of bytes is transferred.*/ + n = se->loop->order[0]; + if (se->loop->to[n] != NULL_TREE) + { + tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, + se->loop->to[n], se->loop->from[n]); + tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, + tmp, gfc_index_one_node); + tmp = fold_build2_loc (input_location, MIN_EXPR, gfc_array_index_type, + tmp, size_words); + gfc_add_modify (&se->pre, size_words, tmp); + gfc_add_modify (&se->pre, size_bytes, + fold_build2_loc (input_location, MULT_EXPR, + gfc_array_index_type, + size_words, dest_word_len)); + upper = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, + size_words, se->loop->from[n]); + upper = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, + upper, gfc_index_one_node); + } + else + { + upper = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, + size_words, gfc_index_one_node); + se->loop->from[n] = gfc_index_zero_node; + } + + se->loop->to[n] = upper; + + /* Build a destination descriptor, using the pointer, source, as the + data field. */ + gfc_trans_create_temp_array (&se->pre, &se->post, se->ss, mold_type, + NULL_TREE, false, true, false, &expr->where); + + /* Cast the pointer to the result. */ + tmp = gfc_conv_descriptor_data_get (info->descriptor); + tmp = fold_convert (pvoid_type_node, tmp); + + /* Use memcpy to do the transfer. */ + tmp + = build_call_expr_loc (input_location, + builtin_decl_explicit (BUILT_IN_MEMCPY), 3, tmp, + fold_convert (pvoid_type_node, source), + fold_convert (size_type_node, + fold_build2_loc (input_location, + MIN_EXPR, + gfc_array_index_type, + size_bytes, + source_bytes))); + gfc_add_expr_to_block (&se->pre, tmp); + + se->expr = info->descriptor; + if (expr->ts.type == BT_CHARACTER) + { + tmp = fold_convert (gfc_charlen_type_node, + TYPE_SIZE_UNIT (gfc_get_char_type (expr->ts.kind))); + se->string_length = fold_build2_loc (input_location, TRUNC_DIV_EXPR, + gfc_charlen_type_node, + dest_word_len, tmp); + } + + return; + +/* Deal with scalar results. */ +scalar_transfer: + extent = fold_build2_loc (input_location, MIN_EXPR, gfc_array_index_type, + dest_word_len, source_bytes); + extent = fold_build2_loc (input_location, MAX_EXPR, gfc_array_index_type, + extent, gfc_index_zero_node); + + if (expr->ts.type == BT_CHARACTER) + { + tree direct, indirect, free; + + ptr = convert (gfc_get_pchar_type (expr->ts.kind), source); + tmpdecl = gfc_create_var (gfc_get_pchar_type (expr->ts.kind), + "transfer"); + + /* If source is longer than the destination, use a pointer to + the source directly. */ + gfc_init_block (&block); + gfc_add_modify (&block, tmpdecl, ptr); + direct = gfc_finish_block (&block); + + /* Otherwise, allocate a string with the length of the destination + and copy the source into it. */ + gfc_init_block (&block); + tmp = gfc_get_pchar_type (expr->ts.kind); + tmp = gfc_call_malloc (&block, tmp, dest_word_len); + gfc_add_modify (&block, tmpdecl, + fold_convert (TREE_TYPE (ptr), tmp)); + tmp = build_call_expr_loc (input_location, + builtin_decl_explicit (BUILT_IN_MEMCPY), 3, + fold_convert (pvoid_type_node, tmpdecl), + fold_convert (pvoid_type_node, ptr), + fold_convert (size_type_node, extent)); + gfc_add_expr_to_block (&block, tmp); + indirect = gfc_finish_block (&block); + + /* Wrap it up with the condition. */ + tmp = fold_build2_loc (input_location, LE_EXPR, logical_type_node, + dest_word_len, source_bytes); + tmp = build3_v (COND_EXPR, tmp, direct, indirect); + gfc_add_expr_to_block (&se->pre, tmp); + + /* Free the temporary string, if necessary. */ + free = gfc_call_free (tmpdecl); + tmp = fold_build2_loc (input_location, GT_EXPR, logical_type_node, + dest_word_len, source_bytes); + tmp = build3_v (COND_EXPR, tmp, free, build_empty_stmt (input_location)); + gfc_add_expr_to_block (&se->post, tmp); + + se->expr = tmpdecl; + tmp = fold_convert (gfc_charlen_type_node, + TYPE_SIZE_UNIT (gfc_get_char_type (expr->ts.kind))); + se->string_length = fold_build2_loc (input_location, TRUNC_DIV_EXPR, + gfc_charlen_type_node, + dest_word_len, tmp); + } + else + { + tmpdecl = gfc_create_var (mold_type, "transfer"); + + ptr = convert (build_pointer_type (mold_type), source); + + /* For CLASS results, allocate the needed memory first. */ + if (mold_expr->ts.type == BT_CLASS) + { + tree cdata; + cdata = gfc_class_data_get (tmpdecl); + tmp = gfc_call_malloc (&se->pre, TREE_TYPE (cdata), dest_word_len); + gfc_add_modify (&se->pre, cdata, tmp); + } + + /* Use memcpy to do the transfer. */ + if (mold_expr->ts.type == BT_CLASS) + tmp = gfc_class_data_get (tmpdecl); + else + tmp = gfc_build_addr_expr (NULL_TREE, tmpdecl); + + tmp = build_call_expr_loc (input_location, + builtin_decl_explicit (BUILT_IN_MEMCPY), 3, + fold_convert (pvoid_type_node, tmp), + fold_convert (pvoid_type_node, ptr), + fold_convert (size_type_node, extent)); + gfc_add_expr_to_block (&se->pre, tmp); + + /* For CLASS results, set the _vptr. */ + if (mold_expr->ts.type == BT_CLASS) + { + tree vptr; + gfc_symbol *vtab; + vptr = gfc_class_vptr_get (tmpdecl); + vtab = gfc_find_derived_vtab (source_expr->ts.u.derived); + gcc_assert (vtab); + tmp = gfc_build_addr_expr (NULL_TREE, gfc_get_symbol_decl (vtab)); + gfc_add_modify (&se->pre, vptr, fold_convert (TREE_TYPE (vptr), tmp)); + } + + se->expr = tmpdecl; + } +} + + +/* Generate a call to caf_is_present. */ + +static tree +trans_caf_is_present (gfc_se *se, gfc_expr *expr) +{ + tree caf_reference, caf_decl, token, image_index; + + /* Compile the reference chain. */ + caf_reference = conv_expr_ref_to_caf_ref (&se->pre, expr); + gcc_assert (caf_reference != NULL_TREE); + + caf_decl = gfc_get_tree_for_caf_expr (expr); + if (TREE_CODE (TREE_TYPE (caf_decl)) == REFERENCE_TYPE) + caf_decl = build_fold_indirect_ref_loc (input_location, caf_decl); + image_index = gfc_caf_get_image_index (&se->pre, expr, caf_decl); + gfc_get_caf_token_offset (se, &token, NULL, caf_decl, NULL, + expr); + + return build_call_expr_loc (input_location, gfor_fndecl_caf_is_present, + 3, token, image_index, caf_reference); +} + + +/* Test whether this ref-chain refs this image only. */ + +static bool +caf_this_image_ref (gfc_ref *ref) +{ + for ( ; ref; ref = ref->next) + if (ref->type == REF_ARRAY && ref->u.ar.codimen) + return ref->u.ar.dimen_type[ref->u.ar.dimen] == DIMEN_THIS_IMAGE; + + return false; +} + + +/* Generate code for the ALLOCATED intrinsic. + Generate inline code that directly check the address of the argument. */ + +static void +gfc_conv_allocated (gfc_se *se, gfc_expr *expr) +{ + gfc_se arg1se; + tree tmp; + bool coindexed_caf_comp = false; + gfc_expr *e = expr->value.function.actual->expr; + + gfc_init_se (&arg1se, NULL); + if (e->ts.type == BT_CLASS) + { + /* Make sure that class array expressions have both a _data + component reference and an array reference.... */ + if (CLASS_DATA (e)->attr.dimension) + gfc_add_class_array_ref (e); + /* .... whilst scalars only need the _data component. */ + else + gfc_add_data_component (e); + } + + /* When 'e' references an allocatable component in a coarray, then call + the caf-library function caf_is_present (). */ + if (flag_coarray == GFC_FCOARRAY_LIB && e->expr_type == EXPR_FUNCTION + && e->value.function.isym + && e->value.function.isym->id == GFC_ISYM_CAF_GET) + { + e = e->value.function.actual->expr; + if (gfc_expr_attr (e).codimension) + { + /* Last partref is the coindexed coarray. As coarrays are collectively + (de)allocated, the allocation status must be the same as the one of + the local allocation. Convert to local access. */ + for (gfc_ref *ref = e->ref; ref; ref = ref->next) + if (ref->type == REF_ARRAY && ref->u.ar.codimen) + { + for (int i = ref->u.ar.dimen; + i < ref->u.ar.dimen + ref->u.ar.codimen; ++i) + ref->u.ar.dimen_type[i] = DIMEN_THIS_IMAGE; + break; + } + } + else if (!caf_this_image_ref (e->ref)) + coindexed_caf_comp = true; + } + if (coindexed_caf_comp) + tmp = trans_caf_is_present (se, e); + else + { + if (e->rank == 0) + { + /* Allocatable scalar. */ + arg1se.want_pointer = 1; + gfc_conv_expr (&arg1se, e); + tmp = arg1se.expr; + } + else + { + /* Allocatable array. */ + arg1se.descriptor_only = 1; + gfc_conv_expr_descriptor (&arg1se, e); + tmp = gfc_conv_descriptor_data_get (arg1se.expr); + } + + tmp = fold_build2_loc (input_location, NE_EXPR, logical_type_node, tmp, + fold_convert (TREE_TYPE (tmp), null_pointer_node)); + } + + /* Components of pointer array references sometimes come back with a pre block. */ + if (arg1se.pre.head) + gfc_add_block_to_block (&se->pre, &arg1se.pre); + + se->expr = convert (gfc_typenode_for_spec (&expr->ts), tmp); +} + + +/* Generate code for the ASSOCIATED intrinsic. + If both POINTER and TARGET are arrays, generate a call to library function + _gfor_associated, and pass descriptors of POINTER and TARGET to it. + In other cases, generate inline code that directly compare the address of + POINTER with the address of TARGET. */ + +static void +gfc_conv_associated (gfc_se *se, gfc_expr *expr) +{ + gfc_actual_arglist *arg1; + gfc_actual_arglist *arg2; + gfc_se arg1se; + gfc_se arg2se; + tree tmp2; + tree tmp; + tree nonzero_arraylen = NULL_TREE; + gfc_ss *ss; + bool scalar; + + gfc_init_se (&arg1se, NULL); + gfc_init_se (&arg2se, NULL); + arg1 = expr->value.function.actual; + arg2 = arg1->next; + + /* Check whether the expression is a scalar or not; we cannot use + arg1->expr->rank as it can be nonzero for proc pointers. */ + ss = gfc_walk_expr (arg1->expr); + scalar = ss == gfc_ss_terminator; + if (!scalar) + gfc_free_ss_chain (ss); + + if (!arg2->expr) + { + /* No optional target. */ + if (scalar) + { + /* A pointer to a scalar. */ + arg1se.want_pointer = 1; + gfc_conv_expr (&arg1se, arg1->expr); + if (arg1->expr->symtree->n.sym->attr.proc_pointer + && arg1->expr->symtree->n.sym->attr.dummy) + arg1se.expr = build_fold_indirect_ref_loc (input_location, + arg1se.expr); + if (arg1->expr->ts.type == BT_CLASS) + { + tmp2 = gfc_class_data_get (arg1se.expr); + if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (tmp2))) + tmp2 = gfc_conv_descriptor_data_get (tmp2); + } + else + tmp2 = arg1se.expr; + } + else + { + /* A pointer to an array. */ + gfc_conv_expr_descriptor (&arg1se, arg1->expr); + tmp2 = gfc_conv_descriptor_data_get (arg1se.expr); + } + gfc_add_block_to_block (&se->pre, &arg1se.pre); + gfc_add_block_to_block (&se->post, &arg1se.post); + tmp = fold_build2_loc (input_location, NE_EXPR, logical_type_node, tmp2, + fold_convert (TREE_TYPE (tmp2), null_pointer_node)); + se->expr = tmp; + } + else + { + /* An optional target. */ + if (arg2->expr->ts.type == BT_CLASS + && arg2->expr->expr_type != EXPR_FUNCTION) + gfc_add_data_component (arg2->expr); + + if (scalar) + { + /* A pointer to a scalar. */ + arg1se.want_pointer = 1; + gfc_conv_expr (&arg1se, arg1->expr); + if (arg1->expr->symtree->n.sym->attr.proc_pointer + && arg1->expr->symtree->n.sym->attr.dummy) + arg1se.expr = build_fold_indirect_ref_loc (input_location, + arg1se.expr); + if (arg1->expr->ts.type == BT_CLASS) + arg1se.expr = gfc_class_data_get (arg1se.expr); + + arg2se.want_pointer = 1; + gfc_conv_expr (&arg2se, arg2->expr); + if (arg2->expr->symtree->n.sym->attr.proc_pointer + && arg2->expr->symtree->n.sym->attr.dummy) + arg2se.expr = build_fold_indirect_ref_loc (input_location, + arg2se.expr); + if (arg2->expr->ts.type == BT_CLASS) + { + arg2se.expr = gfc_evaluate_now (arg2se.expr, &arg2se.pre); + arg2se.expr = gfc_class_data_get (arg2se.expr); + } + gfc_add_block_to_block (&se->pre, &arg1se.pre); + gfc_add_block_to_block (&se->post, &arg1se.post); + gfc_add_block_to_block (&se->pre, &arg2se.pre); + gfc_add_block_to_block (&se->post, &arg2se.post); + tmp = fold_build2_loc (input_location, EQ_EXPR, logical_type_node, + arg1se.expr, arg2se.expr); + tmp2 = fold_build2_loc (input_location, NE_EXPR, logical_type_node, + arg1se.expr, null_pointer_node); + se->expr = fold_build2_loc (input_location, TRUTH_AND_EXPR, + logical_type_node, tmp, tmp2); + } + else + { + /* An array pointer of zero length is not associated if target is + present. */ + arg1se.descriptor_only = 1; + gfc_conv_expr_lhs (&arg1se, arg1->expr); + if (arg1->expr->rank == -1) + { + tmp = gfc_conv_descriptor_rank (arg1se.expr); + tmp = fold_build2_loc (input_location, MINUS_EXPR, + TREE_TYPE (tmp), tmp, + build_int_cst (TREE_TYPE (tmp), 1)); + } + else + tmp = gfc_rank_cst[arg1->expr->rank - 1]; + tmp = gfc_conv_descriptor_stride_get (arg1se.expr, tmp); + if (arg2->expr->rank != 0) + nonzero_arraylen = fold_build2_loc (input_location, NE_EXPR, + logical_type_node, tmp, + build_int_cst (TREE_TYPE (tmp), 0)); + + /* A pointer to an array, call library function _gfor_associated. */ + arg1se.want_pointer = 1; + gfc_conv_expr_descriptor (&arg1se, arg1->expr); + gfc_add_block_to_block (&se->pre, &arg1se.pre); + gfc_add_block_to_block (&se->post, &arg1se.post); + + arg2se.want_pointer = 1; + arg2se.force_no_tmp = 1; + if (arg2->expr->rank != 0) + gfc_conv_expr_descriptor (&arg2se, arg2->expr); + else + { + gfc_conv_expr (&arg2se, arg2->expr); + arg2se.expr + = gfc_conv_scalar_to_descriptor (&arg2se, arg2se.expr, + gfc_expr_attr (arg2->expr)); + arg2se.expr = gfc_build_addr_expr (NULL_TREE, arg2se.expr); + } + gfc_add_block_to_block (&se->pre, &arg2se.pre); + gfc_add_block_to_block (&se->post, &arg2se.post); + se->expr = build_call_expr_loc (input_location, + gfor_fndecl_associated, 2, + arg1se.expr, arg2se.expr); + se->expr = convert (logical_type_node, se->expr); + if (arg2->expr->rank != 0) + se->expr = fold_build2_loc (input_location, TRUTH_AND_EXPR, + logical_type_node, se->expr, + nonzero_arraylen); + } + + /* If target is present zero character length pointers cannot + be associated. */ + if (arg1->expr->ts.type == BT_CHARACTER) + { + tmp = arg1se.string_length; + tmp = fold_build2_loc (input_location, NE_EXPR, + logical_type_node, tmp, + build_zero_cst (TREE_TYPE (tmp))); + se->expr = fold_build2_loc (input_location, TRUTH_AND_EXPR, + logical_type_node, se->expr, tmp); + } + } + + se->expr = convert (gfc_typenode_for_spec (&expr->ts), se->expr); +} + + +/* Generate code for the SAME_TYPE_AS intrinsic. + Generate inline code that directly checks the vindices. */ + +static void +gfc_conv_same_type_as (gfc_se *se, gfc_expr *expr) +{ + gfc_expr *a, *b; + gfc_se se1, se2; + tree tmp; + tree conda = NULL_TREE, condb = NULL_TREE; + + gfc_init_se (&se1, NULL); + gfc_init_se (&se2, NULL); + + a = expr->value.function.actual->expr; + b = expr->value.function.actual->next->expr; + + bool unlimited_poly_a = UNLIMITED_POLY (a); + bool unlimited_poly_b = UNLIMITED_POLY (b); + if (unlimited_poly_a) + { + se1.want_pointer = 1; + gfc_add_vptr_component (a); + } + else if (a->ts.type == BT_CLASS) + { + gfc_add_vptr_component (a); + gfc_add_hash_component (a); + } + else if (a->ts.type == BT_DERIVED) + a = gfc_get_int_expr (gfc_default_integer_kind, NULL, + a->ts.u.derived->hash_value); + + if (unlimited_poly_b) + { + se2.want_pointer = 1; + gfc_add_vptr_component (b); + } + else if (b->ts.type == BT_CLASS) + { + gfc_add_vptr_component (b); + gfc_add_hash_component (b); + } + else if (b->ts.type == BT_DERIVED) + b = gfc_get_int_expr (gfc_default_integer_kind, NULL, + b->ts.u.derived->hash_value); + + gfc_conv_expr (&se1, a); + gfc_conv_expr (&se2, b); + + if (unlimited_poly_a) + { + conda = fold_build2_loc (input_location, NE_EXPR, logical_type_node, + se1.expr, + build_int_cst (TREE_TYPE (se1.expr), 0)); + se1.expr = gfc_vptr_hash_get (se1.expr); + } + + if (unlimited_poly_b) + { + condb = fold_build2_loc (input_location, NE_EXPR, logical_type_node, + se2.expr, + build_int_cst (TREE_TYPE (se2.expr), 0)); + se2.expr = gfc_vptr_hash_get (se2.expr); + } + + tmp = fold_build2_loc (input_location, EQ_EXPR, + logical_type_node, se1.expr, + fold_convert (TREE_TYPE (se1.expr), se2.expr)); + + if (conda) + tmp = fold_build2_loc (input_location, TRUTH_ANDIF_EXPR, + logical_type_node, conda, tmp); + + if (condb) + tmp = fold_build2_loc (input_location, TRUTH_ANDIF_EXPR, + logical_type_node, condb, tmp); + + se->expr = convert (gfc_typenode_for_spec (&expr->ts), tmp); +} + + +/* Generate code for SELECTED_CHAR_KIND (NAME) intrinsic function. */ + +static void +gfc_conv_intrinsic_sc_kind (gfc_se *se, gfc_expr *expr) +{ + tree args[2]; + + gfc_conv_intrinsic_function_args (se, expr, args, 2); + se->expr = build_call_expr_loc (input_location, + gfor_fndecl_sc_kind, 2, args[0], args[1]); + se->expr = fold_convert (gfc_typenode_for_spec (&expr->ts), se->expr); +} + + +/* Generate code for SELECTED_INT_KIND (R) intrinsic function. */ + +static void +gfc_conv_intrinsic_si_kind (gfc_se *se, gfc_expr *expr) +{ + tree arg, type; + + gfc_conv_intrinsic_function_args (se, expr, &arg, 1); + + /* The argument to SELECTED_INT_KIND is INTEGER(4). */ + type = gfc_get_int_type (4); + arg = gfc_build_addr_expr (NULL_TREE, fold_convert (type, arg)); + + /* Convert it to the required type. */ + type = gfc_typenode_for_spec (&expr->ts); + se->expr = build_call_expr_loc (input_location, + gfor_fndecl_si_kind, 1, arg); + se->expr = fold_convert (type, se->expr); +} + + +/* Generate code for SELECTED_REAL_KIND (P, R, RADIX) intrinsic function. */ + +static void +gfc_conv_intrinsic_sr_kind (gfc_se *se, gfc_expr *expr) +{ + gfc_actual_arglist *actual; + tree type; + gfc_se argse; + vec<tree, va_gc> *args = NULL; + + for (actual = expr->value.function.actual; actual; actual = actual->next) + { + gfc_init_se (&argse, se); + + /* Pass a NULL pointer for an absent arg. */ + if (actual->expr == NULL) + argse.expr = null_pointer_node; + else + { + gfc_typespec ts; + gfc_clear_ts (&ts); + + if (actual->expr->ts.kind != gfc_c_int_kind) + { + /* The arguments to SELECTED_REAL_KIND are INTEGER(4). */ + ts.type = BT_INTEGER; + ts.kind = gfc_c_int_kind; + gfc_convert_type (actual->expr, &ts, 2); + } + gfc_conv_expr_reference (&argse, actual->expr); + } + + gfc_add_block_to_block (&se->pre, &argse.pre); + gfc_add_block_to_block (&se->post, &argse.post); + vec_safe_push (args, argse.expr); + } + + /* Convert it to the required type. */ + type = gfc_typenode_for_spec (&expr->ts); + se->expr = build_call_expr_loc_vec (input_location, + gfor_fndecl_sr_kind, args); + se->expr = fold_convert (type, se->expr); +} + + +/* Generate code for TRIM (A) intrinsic function. */ + +static void +gfc_conv_intrinsic_trim (gfc_se * se, gfc_expr * expr) +{ + tree var; + tree len; + tree addr; + tree tmp; + tree cond; + tree fndecl; + tree function; + tree *args; + unsigned int num_args; + + num_args = gfc_intrinsic_argument_list_length (expr) + 2; + args = XALLOCAVEC (tree, num_args); + + var = gfc_create_var (gfc_get_pchar_type (expr->ts.kind), "pstr"); + addr = gfc_build_addr_expr (ppvoid_type_node, var); + len = gfc_create_var (gfc_charlen_type_node, "len"); + + gfc_conv_intrinsic_function_args (se, expr, &args[2], num_args - 2); + args[0] = gfc_build_addr_expr (NULL_TREE, len); + args[1] = addr; + + if (expr->ts.kind == 1) + function = gfor_fndecl_string_trim; + else if (expr->ts.kind == 4) + function = gfor_fndecl_string_trim_char4; + else + gcc_unreachable (); + + fndecl = build_addr (function); + tmp = build_call_array_loc (input_location, + TREE_TYPE (TREE_TYPE (function)), fndecl, + num_args, args); + gfc_add_expr_to_block (&se->pre, tmp); + + /* Free the temporary afterwards, if necessary. */ + cond = fold_build2_loc (input_location, GT_EXPR, logical_type_node, + len, build_int_cst (TREE_TYPE (len), 0)); + tmp = gfc_call_free (var); + tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location)); + gfc_add_expr_to_block (&se->post, tmp); + + se->expr = var; + se->string_length = len; +} + + +/* Generate code for REPEAT (STRING, NCOPIES) intrinsic function. */ + +static void +gfc_conv_intrinsic_repeat (gfc_se * se, gfc_expr * expr) +{ + tree args[3], ncopies, dest, dlen, src, slen, ncopies_type; + tree type, cond, tmp, count, exit_label, n, max, largest; + tree size; + stmtblock_t block, body; + int i; + + /* We store in charsize the size of a character. */ + i = gfc_validate_kind (BT_CHARACTER, expr->ts.kind, false); + size = build_int_cst (sizetype, gfc_character_kinds[i].bit_size / 8); + + /* Get the arguments. */ + gfc_conv_intrinsic_function_args (se, expr, args, 3); + slen = fold_convert (sizetype, gfc_evaluate_now (args[0], &se->pre)); + src = args[1]; + ncopies = gfc_evaluate_now (args[2], &se->pre); + ncopies_type = TREE_TYPE (ncopies); + + /* Check that NCOPIES is not negative. */ + cond = fold_build2_loc (input_location, LT_EXPR, logical_type_node, ncopies, + build_int_cst (ncopies_type, 0)); + gfc_trans_runtime_check (true, false, cond, &se->pre, &expr->where, + "Argument NCOPIES of REPEAT intrinsic is negative " + "(its value is %ld)", + fold_convert (long_integer_type_node, ncopies)); + + /* If the source length is zero, any non negative value of NCOPIES + is valid, and nothing happens. */ + n = gfc_create_var (ncopies_type, "ncopies"); + cond = fold_build2_loc (input_location, EQ_EXPR, logical_type_node, slen, + size_zero_node); + tmp = fold_build3_loc (input_location, COND_EXPR, ncopies_type, cond, + build_int_cst (ncopies_type, 0), ncopies); + gfc_add_modify (&se->pre, n, tmp); + ncopies = n; + + /* Check that ncopies is not too large: ncopies should be less than + (or equal to) MAX / slen, where MAX is the maximal integer of + the gfc_charlen_type_node type. If slen == 0, we need a special + case to avoid the division by zero. */ + max = fold_build2_loc (input_location, TRUNC_DIV_EXPR, sizetype, + fold_convert (sizetype, + TYPE_MAX_VALUE (gfc_charlen_type_node)), + slen); + largest = TYPE_PRECISION (sizetype) > TYPE_PRECISION (ncopies_type) + ? sizetype : ncopies_type; + cond = fold_build2_loc (input_location, GT_EXPR, logical_type_node, + fold_convert (largest, ncopies), + fold_convert (largest, max)); + tmp = fold_build2_loc (input_location, EQ_EXPR, logical_type_node, slen, + size_zero_node); + cond = fold_build3_loc (input_location, COND_EXPR, logical_type_node, tmp, + logical_false_node, cond); + gfc_trans_runtime_check (true, false, cond, &se->pre, &expr->where, + "Argument NCOPIES of REPEAT intrinsic is too large"); + + /* Compute the destination length. */ + dlen = fold_build2_loc (input_location, MULT_EXPR, gfc_charlen_type_node, + fold_convert (gfc_charlen_type_node, slen), + fold_convert (gfc_charlen_type_node, ncopies)); + type = gfc_get_character_type (expr->ts.kind, expr->ts.u.cl); + dest = gfc_conv_string_tmp (se, build_pointer_type (type), dlen); + + /* Generate the code to do the repeat operation: + for (i = 0; i < ncopies; i++) + memmove (dest + (i * slen * size), src, slen*size); */ + gfc_start_block (&block); + count = gfc_create_var (sizetype, "count"); + gfc_add_modify (&block, count, size_zero_node); + exit_label = gfc_build_label_decl (NULL_TREE); + + /* Start the loop body. */ + gfc_start_block (&body); + + /* Exit the loop if count >= ncopies. */ + cond = fold_build2_loc (input_location, GE_EXPR, logical_type_node, count, + fold_convert (sizetype, ncopies)); + tmp = build1_v (GOTO_EXPR, exit_label); + TREE_USED (exit_label) = 1; + tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, cond, tmp, + build_empty_stmt (input_location)); + gfc_add_expr_to_block (&body, tmp); + + /* Call memmove (dest + (i*slen*size), src, slen*size). */ + tmp = fold_build2_loc (input_location, MULT_EXPR, sizetype, slen, + count); + tmp = fold_build2_loc (input_location, MULT_EXPR, sizetype, tmp, + size); + tmp = fold_build_pointer_plus_loc (input_location, + fold_convert (pvoid_type_node, dest), tmp); + tmp = build_call_expr_loc (input_location, + builtin_decl_explicit (BUILT_IN_MEMMOVE), + 3, tmp, src, + fold_build2_loc (input_location, MULT_EXPR, + size_type_node, slen, size)); + gfc_add_expr_to_block (&body, tmp); + + /* Increment count. */ + tmp = fold_build2_loc (input_location, PLUS_EXPR, sizetype, + count, size_one_node); + gfc_add_modify (&body, count, tmp); + + /* Build the loop. */ + tmp = build1_v (LOOP_EXPR, gfc_finish_block (&body)); + gfc_add_expr_to_block (&block, tmp); + + /* Add the exit label. */ + tmp = build1_v (LABEL_EXPR, exit_label); + gfc_add_expr_to_block (&block, tmp); + + /* Finish the block. */ + tmp = gfc_finish_block (&block); + gfc_add_expr_to_block (&se->pre, tmp); + + /* Set the result value. */ + se->expr = dest; + se->string_length = dlen; +} + + +/* Generate code for the IARGC intrinsic. */ + +static void +gfc_conv_intrinsic_iargc (gfc_se * se, gfc_expr * expr) +{ + tree tmp; + tree fndecl; + tree type; + + /* Call the library function. This always returns an INTEGER(4). */ + fndecl = gfor_fndecl_iargc; + tmp = build_call_expr_loc (input_location, + fndecl, 0); + + /* Convert it to the required type. */ + type = gfc_typenode_for_spec (&expr->ts); + tmp = fold_convert (type, tmp); + + se->expr = tmp; +} + + +/* Generate code for the KILL intrinsic. */ + +static void +conv_intrinsic_kill (gfc_se *se, gfc_expr *expr) +{ + tree *args; + tree int4_type_node = gfc_get_int_type (4); + tree pid; + tree sig; + tree tmp; + unsigned int num_args; + + num_args = gfc_intrinsic_argument_list_length (expr); + args = XALLOCAVEC (tree, num_args); + gfc_conv_intrinsic_function_args (se, expr, args, num_args); + + /* Convert PID to a INTEGER(4) entity. */ + pid = convert (int4_type_node, args[0]); + + /* Convert SIG to a INTEGER(4) entity. */ + sig = convert (int4_type_node, args[1]); + + tmp = build_call_expr_loc (input_location, gfor_fndecl_kill, 2, pid, sig); + + se->expr = fold_convert (TREE_TYPE (args[0]), tmp); +} + + +static tree +conv_intrinsic_kill_sub (gfc_code *code) +{ + stmtblock_t block; + gfc_se se, se_stat; + tree int4_type_node = gfc_get_int_type (4); + tree pid; + tree sig; + tree statp; + tree tmp; + + /* Make the function call. */ + gfc_init_block (&block); + gfc_init_se (&se, NULL); + + /* Convert PID to a INTEGER(4) entity. */ + gfc_conv_expr (&se, code->ext.actual->expr); + gfc_add_block_to_block (&block, &se.pre); + pid = fold_convert (int4_type_node, gfc_evaluate_now (se.expr, &block)); + gfc_add_block_to_block (&block, &se.post); + + /* Convert SIG to a INTEGER(4) entity. */ + gfc_conv_expr (&se, code->ext.actual->next->expr); + gfc_add_block_to_block (&block, &se.pre); + sig = fold_convert (int4_type_node, gfc_evaluate_now (se.expr, &block)); + gfc_add_block_to_block (&block, &se.post); + + /* Deal with an optional STATUS. */ + if (code->ext.actual->next->next->expr) + { + gfc_init_se (&se_stat, NULL); + gfc_conv_expr (&se_stat, code->ext.actual->next->next->expr); + statp = gfc_create_var (gfc_get_int_type (4), "_statp"); + } + else + statp = NULL_TREE; + + tmp = build_call_expr_loc (input_location, gfor_fndecl_kill_sub, 3, pid, sig, + statp ? gfc_build_addr_expr (NULL_TREE, statp) : null_pointer_node); + + gfc_add_expr_to_block (&block, tmp); + + if (statp && statp != se_stat.expr) + gfc_add_modify (&block, se_stat.expr, + fold_convert (TREE_TYPE (se_stat.expr), statp)); + + return gfc_finish_block (&block); +} + + + +/* The loc intrinsic returns the address of its argument as + gfc_index_integer_kind integer. */ + +static void +gfc_conv_intrinsic_loc (gfc_se * se, gfc_expr * expr) +{ + tree temp_var; + gfc_expr *arg_expr; + + gcc_assert (!se->ss); + + arg_expr = expr->value.function.actual->expr; + if (arg_expr->rank == 0) + { + if (arg_expr->ts.type == BT_CLASS) + gfc_add_data_component (arg_expr); + gfc_conv_expr_reference (se, arg_expr); + } + else + gfc_conv_array_parameter (se, arg_expr, true, NULL, NULL, NULL); + se->expr = convert (gfc_get_int_type (gfc_index_integer_kind), se->expr); + + /* Create a temporary variable for loc return value. Without this, + we get an error an ICE in gcc/expr.c(expand_expr_addr_expr_1). */ + temp_var = gfc_create_var (gfc_get_int_type (gfc_index_integer_kind), NULL); + gfc_add_modify (&se->pre, temp_var, se->expr); + se->expr = temp_var; +} + + +/* The following routine generates code for the intrinsic + functions from the ISO_C_BINDING module: + * C_LOC + * C_FUNLOC + * C_ASSOCIATED */ + +static void +conv_isocbinding_function (gfc_se *se, gfc_expr *expr) +{ + gfc_actual_arglist *arg = expr->value.function.actual; + + if (expr->value.function.isym->id == GFC_ISYM_C_LOC) + { + if (arg->expr->rank == 0) + gfc_conv_expr_reference (se, arg->expr); + else if (gfc_is_simply_contiguous (arg->expr, false, false)) + gfc_conv_array_parameter (se, arg->expr, true, NULL, NULL, NULL); + else + { + gfc_conv_expr_descriptor (se, arg->expr); + se->expr = gfc_conv_descriptor_data_get (se->expr); + } + + /* TODO -- the following two lines shouldn't be necessary, but if + they're removed, a bug is exposed later in the code path. + This workaround was thus introduced, but will have to be + removed; please see PR 35150 for details about the issue. */ + se->expr = convert (pvoid_type_node, se->expr); + se->expr = gfc_evaluate_now (se->expr, &se->pre); + } + else if (expr->value.function.isym->id == GFC_ISYM_C_FUNLOC) + gfc_conv_expr_reference (se, arg->expr); + else if (expr->value.function.isym->id == GFC_ISYM_C_ASSOCIATED) + { + gfc_se arg1se; + gfc_se arg2se; + + /* Build the addr_expr for the first argument. The argument is + already an *address* so we don't need to set want_pointer in + the gfc_se. */ + gfc_init_se (&arg1se, NULL); + gfc_conv_expr (&arg1se, arg->expr); + gfc_add_block_to_block (&se->pre, &arg1se.pre); + gfc_add_block_to_block (&se->post, &arg1se.post); + + /* See if we were given two arguments. */ + if (arg->next->expr == NULL) + /* Only given one arg so generate a null and do a + not-equal comparison against the first arg. */ + se->expr = fold_build2_loc (input_location, NE_EXPR, logical_type_node, + arg1se.expr, + fold_convert (TREE_TYPE (arg1se.expr), + null_pointer_node)); + else + { + tree eq_expr; + tree not_null_expr; + + /* Given two arguments so build the arg2se from second arg. */ + gfc_init_se (&arg2se, NULL); + gfc_conv_expr (&arg2se, arg->next->expr); + gfc_add_block_to_block (&se->pre, &arg2se.pre); + gfc_add_block_to_block (&se->post, &arg2se.post); + + /* Generate test to compare that the two args are equal. */ + eq_expr = fold_build2_loc (input_location, EQ_EXPR, logical_type_node, + arg1se.expr, arg2se.expr); + /* Generate test to ensure that the first arg is not null. */ + not_null_expr = fold_build2_loc (input_location, NE_EXPR, + logical_type_node, + arg1se.expr, null_pointer_node); + + /* Finally, the generated test must check that both arg1 is not + NULL and that it is equal to the second arg. */ + se->expr = fold_build2_loc (input_location, TRUTH_AND_EXPR, + logical_type_node, + not_null_expr, eq_expr); + } + } + else + gcc_unreachable (); +} + + +/* The following routine generates code for the intrinsic + subroutines from the ISO_C_BINDING module: + * C_F_POINTER + * C_F_PROCPOINTER. */ + +static tree +conv_isocbinding_subroutine (gfc_code *code) +{ + gfc_se se; + gfc_se cptrse; + gfc_se fptrse; + gfc_se shapese; + gfc_ss *shape_ss; + tree desc, dim, tmp, stride, offset; + stmtblock_t body, block; + gfc_loopinfo loop; + gfc_actual_arglist *arg = code->ext.actual; + + gfc_init_se (&se, NULL); + gfc_init_se (&cptrse, NULL); + gfc_conv_expr (&cptrse, arg->expr); + gfc_add_block_to_block (&se.pre, &cptrse.pre); + gfc_add_block_to_block (&se.post, &cptrse.post); + + gfc_init_se (&fptrse, NULL); + if (arg->next->expr->rank == 0) + { + fptrse.want_pointer = 1; + gfc_conv_expr (&fptrse, arg->next->expr); + gfc_add_block_to_block (&se.pre, &fptrse.pre); + gfc_add_block_to_block (&se.post, &fptrse.post); + if (arg->next->expr->symtree->n.sym->attr.proc_pointer + && arg->next->expr->symtree->n.sym->attr.dummy) + fptrse.expr = build_fold_indirect_ref_loc (input_location, + fptrse.expr); + se.expr = fold_build2_loc (input_location, MODIFY_EXPR, + TREE_TYPE (fptrse.expr), + fptrse.expr, + fold_convert (TREE_TYPE (fptrse.expr), + cptrse.expr)); + gfc_add_expr_to_block (&se.pre, se.expr); + gfc_add_block_to_block (&se.pre, &se.post); + return gfc_finish_block (&se.pre); + } + + gfc_start_block (&block); + + /* Get the descriptor of the Fortran pointer. */ + fptrse.descriptor_only = 1; + gfc_conv_expr_descriptor (&fptrse, arg->next->expr); + gfc_add_block_to_block (&block, &fptrse.pre); + desc = fptrse.expr; + + /* Set the span field. */ + tmp = TYPE_SIZE_UNIT (gfc_get_element_type (TREE_TYPE (desc))); + tmp = fold_convert (gfc_array_index_type, tmp); + gfc_conv_descriptor_span_set (&block, desc, tmp); + + /* Set data value, dtype, and offset. */ + tmp = GFC_TYPE_ARRAY_DATAPTR_TYPE (TREE_TYPE (desc)); + gfc_conv_descriptor_data_set (&block, desc, fold_convert (tmp, cptrse.expr)); + gfc_add_modify (&block, gfc_conv_descriptor_dtype (desc), + gfc_get_dtype (TREE_TYPE (desc))); + + /* Start scalarization of the bounds, using the shape argument. */ + + shape_ss = gfc_walk_expr (arg->next->next->expr); + gcc_assert (shape_ss != gfc_ss_terminator); + gfc_init_se (&shapese, NULL); + + gfc_init_loopinfo (&loop); + gfc_add_ss_to_loop (&loop, shape_ss); + gfc_conv_ss_startstride (&loop); + gfc_conv_loop_setup (&loop, &arg->next->expr->where); + gfc_mark_ss_chain_used (shape_ss, 1); + + gfc_copy_loopinfo_to_se (&shapese, &loop); + shapese.ss = shape_ss; + + stride = gfc_create_var (gfc_array_index_type, "stride"); + offset = gfc_create_var (gfc_array_index_type, "offset"); + gfc_add_modify (&block, stride, gfc_index_one_node); + gfc_add_modify (&block, offset, gfc_index_zero_node); + + /* Loop body. */ + gfc_start_scalarized_body (&loop, &body); + + dim = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, + loop.loopvar[0], loop.from[0]); + + /* Set bounds and stride. */ + gfc_conv_descriptor_lbound_set (&body, desc, dim, gfc_index_one_node); + gfc_conv_descriptor_stride_set (&body, desc, dim, stride); + + gfc_conv_expr (&shapese, arg->next->next->expr); + gfc_add_block_to_block (&body, &shapese.pre); + gfc_conv_descriptor_ubound_set (&body, desc, dim, shapese.expr); + gfc_add_block_to_block (&body, &shapese.post); + + /* Calculate offset. */ + gfc_add_modify (&body, offset, + fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, offset, stride)); + /* Update stride. */ + gfc_add_modify (&body, stride, + fold_build2_loc (input_location, MULT_EXPR, + gfc_array_index_type, stride, + fold_convert (gfc_array_index_type, + shapese.expr))); + /* Finish scalarization loop. */ + gfc_trans_scalarizing_loops (&loop, &body); + gfc_add_block_to_block (&block, &loop.pre); + gfc_add_block_to_block (&block, &loop.post); + gfc_add_block_to_block (&block, &fptrse.post); + gfc_cleanup_loop (&loop); + + gfc_add_modify (&block, offset, + fold_build1_loc (input_location, NEGATE_EXPR, + gfc_array_index_type, offset)); + gfc_conv_descriptor_offset_set (&block, desc, offset); + + gfc_add_expr_to_block (&se.pre, gfc_finish_block (&block)); + gfc_add_block_to_block (&se.pre, &se.post); + return gfc_finish_block (&se.pre); +} + + +/* Save and restore floating-point state. */ + +tree +gfc_save_fp_state (stmtblock_t *block) +{ + tree type, fpstate, tmp; + + type = build_array_type (char_type_node, + build_range_type (size_type_node, size_zero_node, + size_int (GFC_FPE_STATE_BUFFER_SIZE))); + fpstate = gfc_create_var (type, "fpstate"); + fpstate = gfc_build_addr_expr (pvoid_type_node, fpstate); + + tmp = build_call_expr_loc (input_location, gfor_fndecl_ieee_procedure_entry, + 1, fpstate); + gfc_add_expr_to_block (block, tmp); + + return fpstate; +} + + +void +gfc_restore_fp_state (stmtblock_t *block, tree fpstate) +{ + tree tmp; + + tmp = build_call_expr_loc (input_location, gfor_fndecl_ieee_procedure_exit, + 1, fpstate); + gfc_add_expr_to_block (block, tmp); +} + + +/* Generate code for arguments of IEEE functions. */ + +static void +conv_ieee_function_args (gfc_se *se, gfc_expr *expr, tree *argarray, + int nargs) +{ + gfc_actual_arglist *actual; + gfc_expr *e; + gfc_se argse; + int arg; + + actual = expr->value.function.actual; + for (arg = 0; arg < nargs; arg++, actual = actual->next) + { + gcc_assert (actual); + e = actual->expr; + + gfc_init_se (&argse, se); + gfc_conv_expr_val (&argse, e); + + gfc_add_block_to_block (&se->pre, &argse.pre); + gfc_add_block_to_block (&se->post, &argse.post); + argarray[arg] = argse.expr; + } +} + + +/* Generate code for intrinsics IEEE_IS_NAN, IEEE_IS_FINITE, + and IEEE_UNORDERED, which translate directly to GCC type-generic + built-ins. */ + +static void +conv_intrinsic_ieee_builtin (gfc_se * se, gfc_expr * expr, + enum built_in_function code, int nargs) +{ + tree args[2]; + gcc_assert ((unsigned) nargs <= sizeof(args)/sizeof(args[0])); + + conv_ieee_function_args (se, expr, args, nargs); + se->expr = build_call_expr_loc_array (input_location, + builtin_decl_explicit (code), + nargs, args); + STRIP_TYPE_NOPS (se->expr); + se->expr = fold_convert (gfc_typenode_for_spec (&expr->ts), se->expr); +} + + +/* Generate code for IEEE_IS_NORMAL intrinsic: + IEEE_IS_NORMAL(x) --> (__builtin_isnormal(x) || x == 0) */ + +static void +conv_intrinsic_ieee_is_normal (gfc_se * se, gfc_expr * expr) +{ + tree arg, isnormal, iszero; + + /* Convert arg, evaluate it only once. */ + conv_ieee_function_args (se, expr, &arg, 1); + arg = gfc_evaluate_now (arg, &se->pre); + + isnormal = build_call_expr_loc (input_location, + builtin_decl_explicit (BUILT_IN_ISNORMAL), + 1, arg); + iszero = fold_build2_loc (input_location, EQ_EXPR, logical_type_node, arg, + build_real_from_int_cst (TREE_TYPE (arg), + integer_zero_node)); + se->expr = fold_build2_loc (input_location, TRUTH_OR_EXPR, + logical_type_node, isnormal, iszero); + se->expr = fold_convert (gfc_typenode_for_spec (&expr->ts), se->expr); +} + + +/* Generate code for IEEE_IS_NEGATIVE intrinsic: + IEEE_IS_NEGATIVE(x) --> (__builtin_signbit(x) && !__builtin_isnan(x)) */ + +static void +conv_intrinsic_ieee_is_negative (gfc_se * se, gfc_expr * expr) +{ + tree arg, signbit, isnan; + + /* Convert arg, evaluate it only once. */ + conv_ieee_function_args (se, expr, &arg, 1); + arg = gfc_evaluate_now (arg, &se->pre); + + isnan = build_call_expr_loc (input_location, + builtin_decl_explicit (BUILT_IN_ISNAN), + 1, arg); + STRIP_TYPE_NOPS (isnan); + + signbit = build_call_expr_loc (input_location, + builtin_decl_explicit (BUILT_IN_SIGNBIT), + 1, arg); + signbit = fold_build2_loc (input_location, NE_EXPR, logical_type_node, + signbit, integer_zero_node); + + se->expr = fold_build2_loc (input_location, TRUTH_AND_EXPR, + logical_type_node, signbit, + fold_build1_loc (input_location, TRUTH_NOT_EXPR, + TREE_TYPE(isnan), isnan)); + + se->expr = fold_convert (gfc_typenode_for_spec (&expr->ts), se->expr); +} + + +/* Generate code for IEEE_LOGB and IEEE_RINT. */ + +static void +conv_intrinsic_ieee_logb_rint (gfc_se * se, gfc_expr * expr, + enum built_in_function code) +{ + tree arg, decl, call, fpstate; + int argprec; + + conv_ieee_function_args (se, expr, &arg, 1); + argprec = TYPE_PRECISION (TREE_TYPE (arg)); + decl = builtin_decl_for_precision (code, argprec); + + /* Save floating-point state. */ + fpstate = gfc_save_fp_state (&se->pre); + + /* Make the function call. */ + call = build_call_expr_loc (input_location, decl, 1, arg); + se->expr = fold_convert (gfc_typenode_for_spec (&expr->ts), call); + + /* Restore floating-point state. */ + gfc_restore_fp_state (&se->post, fpstate); +} + + +/* Generate code for IEEE_REM. */ + +static void +conv_intrinsic_ieee_rem (gfc_se * se, gfc_expr * expr) +{ + tree args[2], decl, call, fpstate; + int argprec; + + conv_ieee_function_args (se, expr, args, 2); + + /* If arguments have unequal size, convert them to the larger. */ + if (TYPE_PRECISION (TREE_TYPE (args[0])) + > TYPE_PRECISION (TREE_TYPE (args[1]))) + args[1] = fold_convert (TREE_TYPE (args[0]), args[1]); + else if (TYPE_PRECISION (TREE_TYPE (args[1])) + > TYPE_PRECISION (TREE_TYPE (args[0]))) + args[0] = fold_convert (TREE_TYPE (args[1]), args[0]); + + argprec = TYPE_PRECISION (TREE_TYPE (args[0])); + decl = builtin_decl_for_precision (BUILT_IN_REMAINDER, argprec); + + /* Save floating-point state. */ + fpstate = gfc_save_fp_state (&se->pre); + + /* Make the function call. */ + call = build_call_expr_loc_array (input_location, decl, 2, args); + se->expr = fold_convert (TREE_TYPE (args[0]), call); + + /* Restore floating-point state. */ + gfc_restore_fp_state (&se->post, fpstate); +} + + +/* Generate code for IEEE_NEXT_AFTER. */ + +static void +conv_intrinsic_ieee_next_after (gfc_se * se, gfc_expr * expr) +{ + tree args[2], decl, call, fpstate; + int argprec; + + conv_ieee_function_args (se, expr, args, 2); + + /* Result has the characteristics of first argument. */ + args[1] = fold_convert (TREE_TYPE (args[0]), args[1]); + argprec = TYPE_PRECISION (TREE_TYPE (args[0])); + decl = builtin_decl_for_precision (BUILT_IN_NEXTAFTER, argprec); + + /* Save floating-point state. */ + fpstate = gfc_save_fp_state (&se->pre); + + /* Make the function call. */ + call = build_call_expr_loc_array (input_location, decl, 2, args); + se->expr = fold_convert (TREE_TYPE (args[0]), call); + + /* Restore floating-point state. */ + gfc_restore_fp_state (&se->post, fpstate); +} + + +/* Generate code for IEEE_SCALB. */ + +static void +conv_intrinsic_ieee_scalb (gfc_se * se, gfc_expr * expr) +{ + tree args[2], decl, call, huge, type; + int argprec, n; + + conv_ieee_function_args (se, expr, args, 2); + + /* Result has the characteristics of first argument. */ + argprec = TYPE_PRECISION (TREE_TYPE (args[0])); + decl = builtin_decl_for_precision (BUILT_IN_SCALBN, argprec); + + if (TYPE_PRECISION (TREE_TYPE (args[1])) > TYPE_PRECISION (integer_type_node)) + { + /* We need to fold the integer into the range of a C int. */ + args[1] = gfc_evaluate_now (args[1], &se->pre); + type = TREE_TYPE (args[1]); + + n = gfc_validate_kind (BT_INTEGER, gfc_c_int_kind, false); + huge = gfc_conv_mpz_to_tree (gfc_integer_kinds[n].huge, + gfc_c_int_kind); + huge = fold_convert (type, huge); + args[1] = fold_build2_loc (input_location, MIN_EXPR, type, args[1], + huge); + args[1] = fold_build2_loc (input_location, MAX_EXPR, type, args[1], + fold_build1_loc (input_location, NEGATE_EXPR, + type, huge)); + } + + args[1] = fold_convert (integer_type_node, args[1]); + + /* Make the function call. */ + call = build_call_expr_loc_array (input_location, decl, 2, args); + se->expr = fold_convert (TREE_TYPE (args[0]), call); +} + + +/* Generate code for IEEE_COPY_SIGN. */ + +static void +conv_intrinsic_ieee_copy_sign (gfc_se * se, gfc_expr * expr) +{ + tree args[2], decl, sign; + int argprec; + + conv_ieee_function_args (se, expr, args, 2); + + /* Get the sign of the second argument. */ + sign = build_call_expr_loc (input_location, + builtin_decl_explicit (BUILT_IN_SIGNBIT), + 1, args[1]); + sign = fold_build2_loc (input_location, NE_EXPR, logical_type_node, + sign, integer_zero_node); + + /* Create a value of one, with the right sign. */ + sign = fold_build3_loc (input_location, COND_EXPR, integer_type_node, + sign, + fold_build1_loc (input_location, NEGATE_EXPR, + integer_type_node, + integer_one_node), + integer_one_node); + args[1] = fold_convert (TREE_TYPE (args[0]), sign); + + argprec = TYPE_PRECISION (TREE_TYPE (args[0])); + decl = builtin_decl_for_precision (BUILT_IN_COPYSIGN, argprec); + + se->expr = build_call_expr_loc_array (input_location, decl, 2, args); +} + + +/* Generate code for an intrinsic function from the IEEE_ARITHMETIC + module. */ + +bool +gfc_conv_ieee_arithmetic_function (gfc_se * se, gfc_expr * expr) +{ + const char *name = expr->value.function.name; + + if (startswith (name, "_gfortran_ieee_is_nan")) + conv_intrinsic_ieee_builtin (se, expr, BUILT_IN_ISNAN, 1); + else if (startswith (name, "_gfortran_ieee_is_finite")) + conv_intrinsic_ieee_builtin (se, expr, BUILT_IN_ISFINITE, 1); + else if (startswith (name, "_gfortran_ieee_unordered")) + conv_intrinsic_ieee_builtin (se, expr, BUILT_IN_ISUNORDERED, 2); + else if (startswith (name, "_gfortran_ieee_is_normal")) + conv_intrinsic_ieee_is_normal (se, expr); + else if (startswith (name, "_gfortran_ieee_is_negative")) + conv_intrinsic_ieee_is_negative (se, expr); + else if (startswith (name, "_gfortran_ieee_copy_sign")) + conv_intrinsic_ieee_copy_sign (se, expr); + else if (startswith (name, "_gfortran_ieee_scalb")) + conv_intrinsic_ieee_scalb (se, expr); + else if (startswith (name, "_gfortran_ieee_next_after")) + conv_intrinsic_ieee_next_after (se, expr); + else if (startswith (name, "_gfortran_ieee_rem")) + conv_intrinsic_ieee_rem (se, expr); + else if (startswith (name, "_gfortran_ieee_logb")) + conv_intrinsic_ieee_logb_rint (se, expr, BUILT_IN_LOGB); + else if (startswith (name, "_gfortran_ieee_rint")) + conv_intrinsic_ieee_logb_rint (se, expr, BUILT_IN_RINT); + else + /* It is not among the functions we translate directly. We return + false, so a library function call is emitted. */ + return false; + + return true; +} + + +/* Generate a direct call to malloc() for the MALLOC intrinsic. */ + +static void +gfc_conv_intrinsic_malloc (gfc_se * se, gfc_expr * expr) +{ + tree arg, res, restype; + + gfc_conv_intrinsic_function_args (se, expr, &arg, 1); + arg = fold_convert (size_type_node, arg); + res = build_call_expr_loc (input_location, + builtin_decl_explicit (BUILT_IN_MALLOC), 1, arg); + restype = gfc_typenode_for_spec (&expr->ts); + se->expr = fold_convert (restype, res); +} + + +/* Generate code for an intrinsic function. Some map directly to library + calls, others get special handling. In some cases the name of the function + used depends on the type specifiers. */ + +void +gfc_conv_intrinsic_function (gfc_se * se, gfc_expr * expr) +{ + const char *name; + int lib, kind; + tree fndecl; + + name = &expr->value.function.name[2]; + + if (expr->rank > 0) + { + lib = gfc_is_intrinsic_libcall (expr); + if (lib != 0) + { + if (lib == 1) + se->ignore_optional = 1; + + switch (expr->value.function.isym->id) + { + case GFC_ISYM_EOSHIFT: + case GFC_ISYM_PACK: + case GFC_ISYM_RESHAPE: + /* For all of those the first argument specifies the type and the + third is optional. */ + conv_generic_with_optional_char_arg (se, expr, 1, 3); + break; + + case GFC_ISYM_FINDLOC: + gfc_conv_intrinsic_findloc (se, expr); + break; + + case GFC_ISYM_MINLOC: + gfc_conv_intrinsic_minmaxloc (se, expr, LT_EXPR); + break; + + case GFC_ISYM_MAXLOC: + gfc_conv_intrinsic_minmaxloc (se, expr, GT_EXPR); + break; + + default: + gfc_conv_intrinsic_funcall (se, expr); + break; + } + + return; + } + } + + switch (expr->value.function.isym->id) + { + case GFC_ISYM_NONE: + gcc_unreachable (); + + case GFC_ISYM_REPEAT: + gfc_conv_intrinsic_repeat (se, expr); + break; + + case GFC_ISYM_TRIM: + gfc_conv_intrinsic_trim (se, expr); + break; + + case GFC_ISYM_SC_KIND: + gfc_conv_intrinsic_sc_kind (se, expr); + break; + + case GFC_ISYM_SI_KIND: + gfc_conv_intrinsic_si_kind (se, expr); + break; + + case GFC_ISYM_SR_KIND: + gfc_conv_intrinsic_sr_kind (se, expr); + break; + + case GFC_ISYM_EXPONENT: + gfc_conv_intrinsic_exponent (se, expr); + break; + + case GFC_ISYM_SCAN: + kind = expr->value.function.actual->expr->ts.kind; + if (kind == 1) + fndecl = gfor_fndecl_string_scan; + else if (kind == 4) + fndecl = gfor_fndecl_string_scan_char4; + else + gcc_unreachable (); + + gfc_conv_intrinsic_index_scan_verify (se, expr, fndecl); + break; + + case GFC_ISYM_VERIFY: + kind = expr->value.function.actual->expr->ts.kind; + if (kind == 1) + fndecl = gfor_fndecl_string_verify; + else if (kind == 4) + fndecl = gfor_fndecl_string_verify_char4; + else + gcc_unreachable (); + + gfc_conv_intrinsic_index_scan_verify (se, expr, fndecl); + break; + + case GFC_ISYM_ALLOCATED: + gfc_conv_allocated (se, expr); + break; + + case GFC_ISYM_ASSOCIATED: + gfc_conv_associated(se, expr); + break; + + case GFC_ISYM_SAME_TYPE_AS: + gfc_conv_same_type_as (se, expr); + break; + + case GFC_ISYM_ABS: + gfc_conv_intrinsic_abs (se, expr); + break; + + case GFC_ISYM_ADJUSTL: + if (expr->ts.kind == 1) + fndecl = gfor_fndecl_adjustl; + else if (expr->ts.kind == 4) + fndecl = gfor_fndecl_adjustl_char4; + else + gcc_unreachable (); + + gfc_conv_intrinsic_adjust (se, expr, fndecl); + break; + + case GFC_ISYM_ADJUSTR: + if (expr->ts.kind == 1) + fndecl = gfor_fndecl_adjustr; + else if (expr->ts.kind == 4) + fndecl = gfor_fndecl_adjustr_char4; + else + gcc_unreachable (); + + gfc_conv_intrinsic_adjust (se, expr, fndecl); + break; + + case GFC_ISYM_AIMAG: + gfc_conv_intrinsic_imagpart (se, expr); + break; + + case GFC_ISYM_AINT: + gfc_conv_intrinsic_aint (se, expr, RND_TRUNC); + break; + + case GFC_ISYM_ALL: + gfc_conv_intrinsic_anyall (se, expr, EQ_EXPR); + break; + + case GFC_ISYM_ANINT: + gfc_conv_intrinsic_aint (se, expr, RND_ROUND); + break; + + case GFC_ISYM_AND: + gfc_conv_intrinsic_bitop (se, expr, BIT_AND_EXPR); + break; + + case GFC_ISYM_ANY: + gfc_conv_intrinsic_anyall (se, expr, NE_EXPR); + break; + + case GFC_ISYM_ACOSD: + case GFC_ISYM_ASIND: + case GFC_ISYM_ATAND: + gfc_conv_intrinsic_atrigd (se, expr, expr->value.function.isym->id); + break; + + case GFC_ISYM_COTAN: + gfc_conv_intrinsic_cotan (se, expr); + break; + + case GFC_ISYM_COTAND: + gfc_conv_intrinsic_cotand (se, expr); + break; + + case GFC_ISYM_ATAN2D: + gfc_conv_intrinsic_atan2d (se, expr); + break; + + case GFC_ISYM_BTEST: + gfc_conv_intrinsic_btest (se, expr); + break; + + case GFC_ISYM_BGE: + gfc_conv_intrinsic_bitcomp (se, expr, GE_EXPR); + break; + + case GFC_ISYM_BGT: + gfc_conv_intrinsic_bitcomp (se, expr, GT_EXPR); + break; + + case GFC_ISYM_BLE: + gfc_conv_intrinsic_bitcomp (se, expr, LE_EXPR); + break; + + case GFC_ISYM_BLT: + gfc_conv_intrinsic_bitcomp (se, expr, LT_EXPR); + break; + + case GFC_ISYM_C_ASSOCIATED: + case GFC_ISYM_C_FUNLOC: + case GFC_ISYM_C_LOC: + conv_isocbinding_function (se, expr); + break; + + case GFC_ISYM_ACHAR: + case GFC_ISYM_CHAR: + gfc_conv_intrinsic_char (se, expr); + break; + + case GFC_ISYM_CONVERSION: + case GFC_ISYM_DBLE: + case GFC_ISYM_DFLOAT: + case GFC_ISYM_FLOAT: + case GFC_ISYM_LOGICAL: + case GFC_ISYM_REAL: + case GFC_ISYM_REALPART: + case GFC_ISYM_SNGL: + gfc_conv_intrinsic_conversion (se, expr); + break; + + /* Integer conversions are handled separately to make sure we get the + correct rounding mode. */ + case GFC_ISYM_INT: + case GFC_ISYM_INT2: + case GFC_ISYM_INT8: + case GFC_ISYM_LONG: + gfc_conv_intrinsic_int (se, expr, RND_TRUNC); + break; + + case GFC_ISYM_NINT: + gfc_conv_intrinsic_int (se, expr, RND_ROUND); + break; + + case GFC_ISYM_CEILING: + gfc_conv_intrinsic_int (se, expr, RND_CEIL); + break; + + case GFC_ISYM_FLOOR: + gfc_conv_intrinsic_int (se, expr, RND_FLOOR); + break; + + case GFC_ISYM_MOD: + gfc_conv_intrinsic_mod (se, expr, 0); + break; + + case GFC_ISYM_MODULO: + gfc_conv_intrinsic_mod (se, expr, 1); + break; + + case GFC_ISYM_CAF_GET: + gfc_conv_intrinsic_caf_get (se, expr, NULL_TREE, NULL_TREE, NULL_TREE, + false, NULL); + break; + + case GFC_ISYM_CMPLX: + gfc_conv_intrinsic_cmplx (se, expr, name[5] == '1'); + break; + + case GFC_ISYM_COMMAND_ARGUMENT_COUNT: + gfc_conv_intrinsic_iargc (se, expr); + break; + + case GFC_ISYM_COMPLEX: + gfc_conv_intrinsic_cmplx (se, expr, 1); + break; + + case GFC_ISYM_CONJG: + gfc_conv_intrinsic_conjg (se, expr); + break; + + case GFC_ISYM_COUNT: + gfc_conv_intrinsic_count (se, expr); + break; + + case GFC_ISYM_CTIME: + gfc_conv_intrinsic_ctime (se, expr); + break; + + case GFC_ISYM_DIM: + gfc_conv_intrinsic_dim (se, expr); + break; + + case GFC_ISYM_DOT_PRODUCT: + gfc_conv_intrinsic_dot_product (se, expr); + break; + + case GFC_ISYM_DPROD: + gfc_conv_intrinsic_dprod (se, expr); + break; + + case GFC_ISYM_DSHIFTL: + gfc_conv_intrinsic_dshift (se, expr, true); + break; + + case GFC_ISYM_DSHIFTR: + gfc_conv_intrinsic_dshift (se, expr, false); + break; + + case GFC_ISYM_FDATE: + gfc_conv_intrinsic_fdate (se, expr); + break; + + case GFC_ISYM_FRACTION: + gfc_conv_intrinsic_fraction (se, expr); + break; + + case GFC_ISYM_IALL: + gfc_conv_intrinsic_arith (se, expr, BIT_AND_EXPR, false); + break; + + case GFC_ISYM_IAND: + gfc_conv_intrinsic_bitop (se, expr, BIT_AND_EXPR); + break; + + case GFC_ISYM_IANY: + gfc_conv_intrinsic_arith (se, expr, BIT_IOR_EXPR, false); + break; + + case GFC_ISYM_IBCLR: + gfc_conv_intrinsic_singlebitop (se, expr, 0); + break; + + case GFC_ISYM_IBITS: + gfc_conv_intrinsic_ibits (se, expr); + break; + + case GFC_ISYM_IBSET: + gfc_conv_intrinsic_singlebitop (se, expr, 1); + break; + + case GFC_ISYM_IACHAR: + case GFC_ISYM_ICHAR: + /* We assume ASCII character sequence. */ + gfc_conv_intrinsic_ichar (se, expr); + break; + + case GFC_ISYM_IARGC: + gfc_conv_intrinsic_iargc (se, expr); + break; + + case GFC_ISYM_IEOR: + gfc_conv_intrinsic_bitop (se, expr, BIT_XOR_EXPR); + break; + + case GFC_ISYM_INDEX: + kind = expr->value.function.actual->expr->ts.kind; + if (kind == 1) + fndecl = gfor_fndecl_string_index; + else if (kind == 4) + fndecl = gfor_fndecl_string_index_char4; + else + gcc_unreachable (); + + gfc_conv_intrinsic_index_scan_verify (se, expr, fndecl); + break; + + case GFC_ISYM_IOR: + gfc_conv_intrinsic_bitop (se, expr, BIT_IOR_EXPR); + break; + + case GFC_ISYM_IPARITY: + gfc_conv_intrinsic_arith (se, expr, BIT_XOR_EXPR, false); + break; + + case GFC_ISYM_IS_IOSTAT_END: + gfc_conv_has_intvalue (se, expr, LIBERROR_END); + break; + + case GFC_ISYM_IS_IOSTAT_EOR: + gfc_conv_has_intvalue (se, expr, LIBERROR_EOR); + break; + + case GFC_ISYM_IS_CONTIGUOUS: + gfc_conv_intrinsic_is_contiguous (se, expr); + break; + + case GFC_ISYM_ISNAN: + gfc_conv_intrinsic_isnan (se, expr); + break; + + case GFC_ISYM_KILL: + conv_intrinsic_kill (se, expr); + break; + + case GFC_ISYM_LSHIFT: + gfc_conv_intrinsic_shift (se, expr, false, false); + break; + + case GFC_ISYM_RSHIFT: + gfc_conv_intrinsic_shift (se, expr, true, true); + break; + + case GFC_ISYM_SHIFTA: + gfc_conv_intrinsic_shift (se, expr, true, true); + break; + + case GFC_ISYM_SHIFTL: + gfc_conv_intrinsic_shift (se, expr, false, false); + break; + + case GFC_ISYM_SHIFTR: + gfc_conv_intrinsic_shift (se, expr, true, false); + break; + + case GFC_ISYM_ISHFT: + gfc_conv_intrinsic_ishft (se, expr); + break; + + case GFC_ISYM_ISHFTC: + gfc_conv_intrinsic_ishftc (se, expr); + break; + + case GFC_ISYM_LEADZ: + gfc_conv_intrinsic_leadz (se, expr); + break; + + case GFC_ISYM_TRAILZ: + gfc_conv_intrinsic_trailz (se, expr); + break; + + case GFC_ISYM_POPCNT: + gfc_conv_intrinsic_popcnt_poppar (se, expr, 0); + break; + + case GFC_ISYM_POPPAR: + gfc_conv_intrinsic_popcnt_poppar (se, expr, 1); + break; + + case GFC_ISYM_LBOUND: + gfc_conv_intrinsic_bound (se, expr, GFC_ISYM_LBOUND); + break; + + case GFC_ISYM_LCOBOUND: + conv_intrinsic_cobound (se, expr); + break; + + case GFC_ISYM_TRANSPOSE: + /* The scalarizer has already been set up for reversed dimension access + order ; now we just get the argument value normally. */ + gfc_conv_expr (se, expr->value.function.actual->expr); + break; + + case GFC_ISYM_LEN: + gfc_conv_intrinsic_len (se, expr); + break; + + case GFC_ISYM_LEN_TRIM: + gfc_conv_intrinsic_len_trim (se, expr); + break; + + case GFC_ISYM_LGE: + gfc_conv_intrinsic_strcmp (se, expr, GE_EXPR); + break; + + case GFC_ISYM_LGT: + gfc_conv_intrinsic_strcmp (se, expr, GT_EXPR); + break; + + case GFC_ISYM_LLE: + gfc_conv_intrinsic_strcmp (se, expr, LE_EXPR); + break; + + case GFC_ISYM_LLT: + gfc_conv_intrinsic_strcmp (se, expr, LT_EXPR); + break; + + case GFC_ISYM_MALLOC: + gfc_conv_intrinsic_malloc (se, expr); + break; + + case GFC_ISYM_MASKL: + gfc_conv_intrinsic_mask (se, expr, 1); + break; + + case GFC_ISYM_MASKR: + gfc_conv_intrinsic_mask (se, expr, 0); + break; + + case GFC_ISYM_MAX: + if (expr->ts.type == BT_CHARACTER) + gfc_conv_intrinsic_minmax_char (se, expr, 1); + else + gfc_conv_intrinsic_minmax (se, expr, GT_EXPR); + break; + + case GFC_ISYM_MAXLOC: + gfc_conv_intrinsic_minmaxloc (se, expr, GT_EXPR); + break; + + case GFC_ISYM_FINDLOC: + gfc_conv_intrinsic_findloc (se, expr); + break; + + case GFC_ISYM_MAXVAL: + gfc_conv_intrinsic_minmaxval (se, expr, GT_EXPR); + break; + + case GFC_ISYM_MERGE: + gfc_conv_intrinsic_merge (se, expr); + break; + + case GFC_ISYM_MERGE_BITS: + gfc_conv_intrinsic_merge_bits (se, expr); + break; + + case GFC_ISYM_MIN: + if (expr->ts.type == BT_CHARACTER) + gfc_conv_intrinsic_minmax_char (se, expr, -1); + else + gfc_conv_intrinsic_minmax (se, expr, LT_EXPR); + break; + + case GFC_ISYM_MINLOC: + gfc_conv_intrinsic_minmaxloc (se, expr, LT_EXPR); + break; + + case GFC_ISYM_MINVAL: + gfc_conv_intrinsic_minmaxval (se, expr, LT_EXPR); + break; + + case GFC_ISYM_NEAREST: + gfc_conv_intrinsic_nearest (se, expr); + break; + + case GFC_ISYM_NORM2: + gfc_conv_intrinsic_arith (se, expr, PLUS_EXPR, true); + break; + + case GFC_ISYM_NOT: + gfc_conv_intrinsic_not (se, expr); + break; + + case GFC_ISYM_OR: + gfc_conv_intrinsic_bitop (se, expr, BIT_IOR_EXPR); + break; + + case GFC_ISYM_PARITY: + gfc_conv_intrinsic_arith (se, expr, NE_EXPR, false); + break; + + case GFC_ISYM_PRESENT: + gfc_conv_intrinsic_present (se, expr); + break; + + case GFC_ISYM_PRODUCT: + gfc_conv_intrinsic_arith (se, expr, MULT_EXPR, false); + break; + + case GFC_ISYM_RANK: + gfc_conv_intrinsic_rank (se, expr); + break; + + case GFC_ISYM_RRSPACING: + gfc_conv_intrinsic_rrspacing (se, expr); + break; + + case GFC_ISYM_SET_EXPONENT: + gfc_conv_intrinsic_set_exponent (se, expr); + break; + + case GFC_ISYM_SCALE: + gfc_conv_intrinsic_scale (se, expr); + break; + + case GFC_ISYM_SHAPE: + gfc_conv_intrinsic_bound (se, expr, GFC_ISYM_SHAPE); + break; + + case GFC_ISYM_SIGN: + gfc_conv_intrinsic_sign (se, expr); + break; + + case GFC_ISYM_SIZE: + gfc_conv_intrinsic_size (se, expr); + break; + + case GFC_ISYM_SIZEOF: + case GFC_ISYM_C_SIZEOF: + gfc_conv_intrinsic_sizeof (se, expr); + break; + + case GFC_ISYM_STORAGE_SIZE: + gfc_conv_intrinsic_storage_size (se, expr); + break; + + case GFC_ISYM_SPACING: + gfc_conv_intrinsic_spacing (se, expr); + break; + + case GFC_ISYM_STRIDE: + conv_intrinsic_stride (se, expr); + break; + + case GFC_ISYM_SUM: + gfc_conv_intrinsic_arith (se, expr, PLUS_EXPR, false); + break; + + case GFC_ISYM_TEAM_NUMBER: + conv_intrinsic_team_number (se, expr); + break; + + case GFC_ISYM_TRANSFER: + if (se->ss && se->ss->info->useflags) + /* Access the previously obtained result. */ + gfc_conv_tmp_array_ref (se); + else + gfc_conv_intrinsic_transfer (se, expr); + break; + + case GFC_ISYM_TTYNAM: + gfc_conv_intrinsic_ttynam (se, expr); + break; + + case GFC_ISYM_UBOUND: + gfc_conv_intrinsic_bound (se, expr, GFC_ISYM_UBOUND); + break; + + case GFC_ISYM_UCOBOUND: + conv_intrinsic_cobound (se, expr); + break; + + case GFC_ISYM_XOR: + gfc_conv_intrinsic_bitop (se, expr, BIT_XOR_EXPR); + break; + + case GFC_ISYM_LOC: + gfc_conv_intrinsic_loc (se, expr); + break; + + case GFC_ISYM_THIS_IMAGE: + /* For num_images() == 1, handle as LCOBOUND. */ + if (expr->value.function.actual->expr + && flag_coarray == GFC_FCOARRAY_SINGLE) + conv_intrinsic_cobound (se, expr); + else + trans_this_image (se, expr); + break; + + case GFC_ISYM_IMAGE_INDEX: + trans_image_index (se, expr); + break; + + case GFC_ISYM_IMAGE_STATUS: + conv_intrinsic_image_status (se, expr); + break; + + case GFC_ISYM_NUM_IMAGES: + trans_num_images (se, expr); + break; + + case GFC_ISYM_ACCESS: + case GFC_ISYM_CHDIR: + case GFC_ISYM_CHMOD: + case GFC_ISYM_DTIME: + case GFC_ISYM_ETIME: + case GFC_ISYM_EXTENDS_TYPE_OF: + case GFC_ISYM_FGET: + case GFC_ISYM_FGETC: + case GFC_ISYM_FNUM: + case GFC_ISYM_FPUT: + case GFC_ISYM_FPUTC: + case GFC_ISYM_FSTAT: + case GFC_ISYM_FTELL: + case GFC_ISYM_GETCWD: + case GFC_ISYM_GETGID: + case GFC_ISYM_GETPID: + case GFC_ISYM_GETUID: + case GFC_ISYM_HOSTNM: + case GFC_ISYM_IERRNO: + case GFC_ISYM_IRAND: + case GFC_ISYM_ISATTY: + case GFC_ISYM_JN2: + case GFC_ISYM_LINK: + case GFC_ISYM_LSTAT: + case GFC_ISYM_MATMUL: + case GFC_ISYM_MCLOCK: + case GFC_ISYM_MCLOCK8: + case GFC_ISYM_RAND: + case GFC_ISYM_RENAME: + case GFC_ISYM_SECOND: + case GFC_ISYM_SECNDS: + case GFC_ISYM_SIGNAL: + case GFC_ISYM_STAT: + case GFC_ISYM_SYMLNK: + case GFC_ISYM_SYSTEM: + case GFC_ISYM_TIME: + case GFC_ISYM_TIME8: + case GFC_ISYM_UMASK: + case GFC_ISYM_UNLINK: + case GFC_ISYM_YN2: + gfc_conv_intrinsic_funcall (se, expr); + break; + + case GFC_ISYM_EOSHIFT: + case GFC_ISYM_PACK: + case GFC_ISYM_RESHAPE: + /* For those, expr->rank should always be >0 and thus the if above the + switch should have matched. */ + gcc_unreachable (); + break; + + default: + gfc_conv_intrinsic_lib_function (se, expr); + break; + } +} + + +static gfc_ss * +walk_inline_intrinsic_transpose (gfc_ss *ss, gfc_expr *expr) +{ + gfc_ss *arg_ss, *tmp_ss; + gfc_actual_arglist *arg; + + arg = expr->value.function.actual; + + gcc_assert (arg->expr); + + arg_ss = gfc_walk_subexpr (gfc_ss_terminator, arg->expr); + gcc_assert (arg_ss != gfc_ss_terminator); + + for (tmp_ss = arg_ss; ; tmp_ss = tmp_ss->next) + { + if (tmp_ss->info->type != GFC_SS_SCALAR + && tmp_ss->info->type != GFC_SS_REFERENCE) + { + gcc_assert (tmp_ss->dimen == 2); + + /* We just invert dimensions. */ + std::swap (tmp_ss->dim[0], tmp_ss->dim[1]); + } + + /* Stop when tmp_ss points to the last valid element of the chain... */ + if (tmp_ss->next == gfc_ss_terminator) + break; + } + + /* ... so that we can attach the rest of the chain to it. */ + tmp_ss->next = ss; + + return arg_ss; +} + + +/* Move the given dimension of the given gfc_ss list to a nested gfc_ss list. + This has the side effect of reversing the nested list, so there is no + need to call gfc_reverse_ss on it (the given list is assumed not to be + reversed yet). */ + +static gfc_ss * +nest_loop_dimension (gfc_ss *ss, int dim) +{ + int ss_dim, i; + gfc_ss *new_ss, *prev_ss = gfc_ss_terminator; + gfc_loopinfo *new_loop; + + gcc_assert (ss != gfc_ss_terminator); + + for (; ss != gfc_ss_terminator; ss = ss->next) + { + new_ss = gfc_get_ss (); + new_ss->next = prev_ss; + new_ss->parent = ss; + new_ss->info = ss->info; + new_ss->info->refcount++; + if (ss->dimen != 0) + { + gcc_assert (ss->info->type != GFC_SS_SCALAR + && ss->info->type != GFC_SS_REFERENCE); + + new_ss->dimen = 1; + new_ss->dim[0] = ss->dim[dim]; + + gcc_assert (dim < ss->dimen); + + ss_dim = --ss->dimen; + for (i = dim; i < ss_dim; i++) + ss->dim[i] = ss->dim[i + 1]; + + ss->dim[ss_dim] = 0; + } + prev_ss = new_ss; + + if (ss->nested_ss) + { + ss->nested_ss->parent = new_ss; + new_ss->nested_ss = ss->nested_ss; + } + ss->nested_ss = new_ss; + } + + new_loop = gfc_get_loopinfo (); + gfc_init_loopinfo (new_loop); + + gcc_assert (prev_ss != NULL); + gcc_assert (prev_ss != gfc_ss_terminator); + gfc_add_ss_to_loop (new_loop, prev_ss); + return new_ss->parent; +} + + +/* Create the gfc_ss list for the SUM/PRODUCT arguments when the function + is to be inlined. */ + +static gfc_ss * +walk_inline_intrinsic_arith (gfc_ss *ss, gfc_expr *expr) +{ + gfc_ss *tmp_ss, *tail, *array_ss; + gfc_actual_arglist *arg1, *arg2, *arg3; + int sum_dim; + bool scalar_mask = false; + + /* The rank of the result will be determined later. */ + arg1 = expr->value.function.actual; + arg2 = arg1->next; + arg3 = arg2->next; + gcc_assert (arg3 != NULL); + + if (expr->rank == 0) + return ss; + + tmp_ss = gfc_ss_terminator; + + if (arg3->expr) + { + gfc_ss *mask_ss; + + mask_ss = gfc_walk_subexpr (tmp_ss, arg3->expr); + if (mask_ss == tmp_ss) + scalar_mask = 1; + + tmp_ss = mask_ss; + } + + array_ss = gfc_walk_subexpr (tmp_ss, arg1->expr); + gcc_assert (array_ss != tmp_ss); + + /* Odd thing: If the mask is scalar, it is used by the frontend after + the array (to make an if around the nested loop). Thus it shall + be after array_ss once the gfc_ss list is reversed. */ + if (scalar_mask) + tmp_ss = gfc_get_scalar_ss (array_ss, arg3->expr); + else + tmp_ss = array_ss; + + /* "Hide" the dimension on which we will sum in the first arg's scalarization + chain. */ + sum_dim = mpz_get_si (arg2->expr->value.integer) - 1; + tail = nest_loop_dimension (tmp_ss, sum_dim); + tail->next = ss; + + return tmp_ss; +} + + +static gfc_ss * +walk_inline_intrinsic_function (gfc_ss * ss, gfc_expr * expr) +{ + + switch (expr->value.function.isym->id) + { + case GFC_ISYM_PRODUCT: + case GFC_ISYM_SUM: + return walk_inline_intrinsic_arith (ss, expr); + + case GFC_ISYM_TRANSPOSE: + return walk_inline_intrinsic_transpose (ss, expr); + + default: + gcc_unreachable (); + } + gcc_unreachable (); +} + + +/* This generates code to execute before entering the scalarization loop. + Currently does nothing. */ + +void +gfc_add_intrinsic_ss_code (gfc_loopinfo * loop ATTRIBUTE_UNUSED, gfc_ss * ss) +{ + switch (ss->info->expr->value.function.isym->id) + { + case GFC_ISYM_UBOUND: + case GFC_ISYM_LBOUND: + case GFC_ISYM_UCOBOUND: + case GFC_ISYM_LCOBOUND: + case GFC_ISYM_THIS_IMAGE: + case GFC_ISYM_SHAPE: + break; + + default: + gcc_unreachable (); + } +} + + +/* The LBOUND, LCOBOUND, UBOUND, UCOBOUND, and SHAPE intrinsics with + one parameter are expanded into code inside the scalarization loop. */ + +static gfc_ss * +gfc_walk_intrinsic_bound (gfc_ss * ss, gfc_expr * expr) +{ + if (expr->value.function.actual->expr->ts.type == BT_CLASS) + gfc_add_class_array_ref (expr->value.function.actual->expr); + + /* The two argument version returns a scalar. */ + if (expr->value.function.isym->id != GFC_ISYM_SHAPE + && expr->value.function.actual->next->expr) + return ss; + + return gfc_get_array_ss (ss, expr, 1, GFC_SS_INTRINSIC); +} + + +/* Walk an intrinsic array libcall. */ + +static gfc_ss * +gfc_walk_intrinsic_libfunc (gfc_ss * ss, gfc_expr * expr) +{ + gcc_assert (expr->rank > 0); + return gfc_get_array_ss (ss, expr, expr->rank, GFC_SS_FUNCTION); +} + + +/* Return whether the function call expression EXPR will be expanded + inline by gfc_conv_intrinsic_function. */ + +bool +gfc_inline_intrinsic_function_p (gfc_expr *expr) +{ + gfc_actual_arglist *args, *dim_arg, *mask_arg; + gfc_expr *maskexpr; + + if (!expr->value.function.isym) + return false; + + switch (expr->value.function.isym->id) + { + case GFC_ISYM_PRODUCT: + case GFC_ISYM_SUM: + /* Disable inline expansion if code size matters. */ + if (optimize_size) + return false; + + args = expr->value.function.actual; + dim_arg = args->next; + + /* We need to be able to subset the SUM argument at compile-time. */ + if (dim_arg->expr && dim_arg->expr->expr_type != EXPR_CONSTANT) + return false; + + /* FIXME: If MASK is optional for a more than two-dimensional + argument, the scalarizer gets confused if the mask is + absent. See PR 82995. For now, fall back to the library + function. */ + + mask_arg = dim_arg->next; + maskexpr = mask_arg->expr; + + if (expr->rank > 0 && maskexpr && maskexpr->expr_type == EXPR_VARIABLE + && maskexpr->symtree->n.sym->attr.dummy + && maskexpr->symtree->n.sym->attr.optional) + return false; + + return true; + + case GFC_ISYM_TRANSPOSE: + return true; + + default: + return false; + } +} + + +/* Returns nonzero if the specified intrinsic function call maps directly to + an external library call. Should only be used for functions that return + arrays. */ + +int +gfc_is_intrinsic_libcall (gfc_expr * expr) +{ + gcc_assert (expr->expr_type == EXPR_FUNCTION && expr->value.function.isym); + gcc_assert (expr->rank > 0); + + if (gfc_inline_intrinsic_function_p (expr)) + return 0; + + switch (expr->value.function.isym->id) + { + case GFC_ISYM_ALL: + case GFC_ISYM_ANY: + case GFC_ISYM_COUNT: + case GFC_ISYM_FINDLOC: + case GFC_ISYM_JN2: + case GFC_ISYM_IANY: + case GFC_ISYM_IALL: + case GFC_ISYM_IPARITY: + case GFC_ISYM_MATMUL: + case GFC_ISYM_MAXLOC: + case GFC_ISYM_MAXVAL: + case GFC_ISYM_MINLOC: + case GFC_ISYM_MINVAL: + case GFC_ISYM_NORM2: + case GFC_ISYM_PARITY: + case GFC_ISYM_PRODUCT: + case GFC_ISYM_SUM: + case GFC_ISYM_SPREAD: + case GFC_ISYM_YN2: + /* Ignore absent optional parameters. */ + return 1; + + case GFC_ISYM_CSHIFT: + case GFC_ISYM_EOSHIFT: + case GFC_ISYM_GET_TEAM: + case GFC_ISYM_FAILED_IMAGES: + case GFC_ISYM_STOPPED_IMAGES: + case GFC_ISYM_PACK: + case GFC_ISYM_RESHAPE: + case GFC_ISYM_UNPACK: + /* Pass absent optional parameters. */ + return 2; + + default: + return 0; + } +} + +/* Walk an intrinsic function. */ +gfc_ss * +gfc_walk_intrinsic_function (gfc_ss * ss, gfc_expr * expr, + gfc_intrinsic_sym * isym) +{ + gcc_assert (isym); + + if (isym->elemental) + return gfc_walk_elemental_function_args (ss, expr->value.function.actual, + expr->value.function.isym, + GFC_SS_SCALAR); + + if (expr->rank == 0) + return ss; + + if (gfc_inline_intrinsic_function_p (expr)) + return walk_inline_intrinsic_function (ss, expr); + + if (gfc_is_intrinsic_libcall (expr)) + return gfc_walk_intrinsic_libfunc (ss, expr); + + /* Special cases. */ + switch (isym->id) + { + case GFC_ISYM_LBOUND: + case GFC_ISYM_LCOBOUND: + case GFC_ISYM_UBOUND: + case GFC_ISYM_UCOBOUND: + case GFC_ISYM_THIS_IMAGE: + case GFC_ISYM_SHAPE: + return gfc_walk_intrinsic_bound (ss, expr); + + case GFC_ISYM_TRANSFER: + case GFC_ISYM_CAF_GET: + return gfc_walk_intrinsic_libfunc (ss, expr); + + default: + /* This probably meant someone forgot to add an intrinsic to the above + list(s) when they implemented it, or something's gone horribly + wrong. */ + gcc_unreachable (); + } +} + +static tree +conv_co_collective (gfc_code *code) +{ + gfc_se argse; + stmtblock_t block, post_block; + tree fndecl, array = NULL_TREE, strlen, image_index, stat, errmsg, errmsg_len; + gfc_expr *image_idx_expr, *stat_expr, *errmsg_expr, *opr_expr; + + gfc_start_block (&block); + gfc_init_block (&post_block); + + if (code->resolved_isym->id == GFC_ISYM_CO_REDUCE) + { + opr_expr = code->ext.actual->next->expr; + image_idx_expr = code->ext.actual->next->next->expr; + stat_expr = code->ext.actual->next->next->next->expr; + errmsg_expr = code->ext.actual->next->next->next->next->expr; + } + else + { + opr_expr = NULL; + image_idx_expr = code->ext.actual->next->expr; + stat_expr = code->ext.actual->next->next->expr; + errmsg_expr = code->ext.actual->next->next->next->expr; + } + + /* stat. */ + if (stat_expr) + { + gfc_init_se (&argse, NULL); + gfc_conv_expr (&argse, stat_expr); + gfc_add_block_to_block (&block, &argse.pre); + gfc_add_block_to_block (&post_block, &argse.post); + stat = argse.expr; + if (flag_coarray != GFC_FCOARRAY_SINGLE) + stat = gfc_build_addr_expr (NULL_TREE, stat); + } + else if (flag_coarray == GFC_FCOARRAY_SINGLE) + stat = NULL_TREE; + else + stat = null_pointer_node; + + /* Early exit for GFC_FCOARRAY_SINGLE. */ + if (flag_coarray == GFC_FCOARRAY_SINGLE) + { + if (stat != NULL_TREE) + { + /* For optional stats, check the pointer is valid before zero'ing. */ + if (gfc_expr_attr (stat_expr).optional) + { + tree tmp; + stmtblock_t ass_block; + gfc_start_block (&ass_block); + gfc_add_modify (&ass_block, stat, + fold_convert (TREE_TYPE (stat), + integer_zero_node)); + tmp = fold_build2 (NE_EXPR, logical_type_node, + gfc_build_addr_expr (NULL_TREE, stat), + null_pointer_node); + tmp = fold_build3 (COND_EXPR, void_type_node, tmp, + gfc_finish_block (&ass_block), + build_empty_stmt (input_location)); + gfc_add_expr_to_block (&block, tmp); + } + else + gfc_add_modify (&block, stat, + fold_convert (TREE_TYPE (stat), integer_zero_node)); + } + return gfc_finish_block (&block); + } + + /* Handle the array. */ + gfc_init_se (&argse, NULL); + if (code->ext.actual->expr->rank == 0) + { + symbol_attribute attr; + gfc_clear_attr (&attr); + gfc_init_se (&argse, NULL); + gfc_conv_expr (&argse, code->ext.actual->expr); + gfc_add_block_to_block (&block, &argse.pre); + gfc_add_block_to_block (&post_block, &argse.post); + array = gfc_conv_scalar_to_descriptor (&argse, argse.expr, attr); + array = gfc_build_addr_expr (NULL_TREE, array); + } + else + { + argse.want_pointer = 1; + gfc_conv_expr_descriptor (&argse, code->ext.actual->expr); + array = argse.expr; + } + + gfc_add_block_to_block (&block, &argse.pre); + gfc_add_block_to_block (&post_block, &argse.post); + + if (code->ext.actual->expr->ts.type == BT_CHARACTER) + strlen = argse.string_length; + else + strlen = integer_zero_node; + + /* image_index. */ + if (image_idx_expr) + { + gfc_init_se (&argse, NULL); + gfc_conv_expr (&argse, image_idx_expr); + gfc_add_block_to_block (&block, &argse.pre); + gfc_add_block_to_block (&post_block, &argse.post); + image_index = fold_convert (integer_type_node, argse.expr); + } + else + image_index = integer_zero_node; + + /* errmsg. */ + if (errmsg_expr) + { + gfc_init_se (&argse, NULL); + gfc_conv_expr (&argse, errmsg_expr); + gfc_add_block_to_block (&block, &argse.pre); + gfc_add_block_to_block (&post_block, &argse.post); + errmsg = argse.expr; + errmsg_len = fold_convert (size_type_node, argse.string_length); + } + else + { + errmsg = null_pointer_node; + errmsg_len = build_zero_cst (size_type_node); + } + + /* Generate the function call. */ + switch (code->resolved_isym->id) + { + case GFC_ISYM_CO_BROADCAST: + fndecl = gfor_fndecl_co_broadcast; + break; + case GFC_ISYM_CO_MAX: + fndecl = gfor_fndecl_co_max; + break; + case GFC_ISYM_CO_MIN: + fndecl = gfor_fndecl_co_min; + break; + case GFC_ISYM_CO_REDUCE: + fndecl = gfor_fndecl_co_reduce; + break; + case GFC_ISYM_CO_SUM: + fndecl = gfor_fndecl_co_sum; + break; + default: + gcc_unreachable (); + } + + gfc_symbol *derived = code->ext.actual->expr->ts.type == BT_DERIVED + ? code->ext.actual->expr->ts.u.derived : NULL; + + if (derived && derived->attr.alloc_comp + && code->resolved_isym->id == GFC_ISYM_CO_BROADCAST) + /* The derived type has the attribute 'alloc_comp'. */ + { + tree tmp = gfc_bcast_alloc_comp (derived, code->ext.actual->expr, + code->ext.actual->expr->rank, + image_index, stat, errmsg, errmsg_len); + gfc_add_expr_to_block (&block, tmp); + } + else + { + if (code->resolved_isym->id == GFC_ISYM_CO_SUM + || code->resolved_isym->id == GFC_ISYM_CO_BROADCAST) + fndecl = build_call_expr_loc (input_location, fndecl, 5, array, + image_index, stat, errmsg, errmsg_len); + else if (code->resolved_isym->id != GFC_ISYM_CO_REDUCE) + fndecl = build_call_expr_loc (input_location, fndecl, 6, array, + image_index, stat, errmsg, + strlen, errmsg_len); + else + { + tree opr, opr_flags; + + // FIXME: Handle TS29113's bind(C) strings with descriptor. + int opr_flag_int; + if (gfc_is_proc_ptr_comp (opr_expr)) + { + gfc_symbol *sym = gfc_get_proc_ptr_comp (opr_expr)->ts.interface; + opr_flag_int = sym->attr.dimension + || (sym->ts.type == BT_CHARACTER + && !sym->attr.is_bind_c) + ? GFC_CAF_BYREF : 0; + opr_flag_int |= opr_expr->ts.type == BT_CHARACTER + && !sym->attr.is_bind_c + ? GFC_CAF_HIDDENLEN : 0; + opr_flag_int |= sym->formal->sym->attr.value + ? GFC_CAF_ARG_VALUE : 0; + } + else + { + opr_flag_int = gfc_return_by_reference (opr_expr->symtree->n.sym) + ? GFC_CAF_BYREF : 0; + opr_flag_int |= opr_expr->ts.type == BT_CHARACTER + && !opr_expr->symtree->n.sym->attr.is_bind_c + ? GFC_CAF_HIDDENLEN : 0; + opr_flag_int |= opr_expr->symtree->n.sym->formal->sym->attr.value + ? GFC_CAF_ARG_VALUE : 0; + } + opr_flags = build_int_cst (integer_type_node, opr_flag_int); + gfc_conv_expr (&argse, opr_expr); + opr = argse.expr; + fndecl = build_call_expr_loc (input_location, fndecl, 8, array, opr, + opr_flags, image_index, stat, errmsg, + strlen, errmsg_len); + } + } + + gfc_add_expr_to_block (&block, fndecl); + gfc_add_block_to_block (&block, &post_block); + + return gfc_finish_block (&block); +} + + +static tree +conv_intrinsic_atomic_op (gfc_code *code) +{ + gfc_se argse; + tree tmp, atom, value, old = NULL_TREE, stat = NULL_TREE; + stmtblock_t block, post_block; + gfc_expr *atom_expr = code->ext.actual->expr; + gfc_expr *stat_expr; + built_in_function fn; + + if (atom_expr->expr_type == EXPR_FUNCTION + && atom_expr->value.function.isym + && atom_expr->value.function.isym->id == GFC_ISYM_CAF_GET) + atom_expr = atom_expr->value.function.actual->expr; + + gfc_start_block (&block); + gfc_init_block (&post_block); + + gfc_init_se (&argse, NULL); + argse.want_pointer = 1; + gfc_conv_expr (&argse, atom_expr); + gfc_add_block_to_block (&block, &argse.pre); + gfc_add_block_to_block (&post_block, &argse.post); + atom = argse.expr; + + gfc_init_se (&argse, NULL); + if (flag_coarray == GFC_FCOARRAY_LIB + && code->ext.actual->next->expr->ts.kind == atom_expr->ts.kind) + argse.want_pointer = 1; + gfc_conv_expr (&argse, code->ext.actual->next->expr); + gfc_add_block_to_block (&block, &argse.pre); + gfc_add_block_to_block (&post_block, &argse.post); + value = argse.expr; + + switch (code->resolved_isym->id) + { + case GFC_ISYM_ATOMIC_ADD: + case GFC_ISYM_ATOMIC_AND: + case GFC_ISYM_ATOMIC_DEF: + case GFC_ISYM_ATOMIC_OR: + case GFC_ISYM_ATOMIC_XOR: + stat_expr = code->ext.actual->next->next->expr; + if (flag_coarray == GFC_FCOARRAY_LIB) + old = null_pointer_node; + break; + default: + gfc_init_se (&argse, NULL); + if (flag_coarray == GFC_FCOARRAY_LIB) + argse.want_pointer = 1; + gfc_conv_expr (&argse, code->ext.actual->next->next->expr); + gfc_add_block_to_block (&block, &argse.pre); + gfc_add_block_to_block (&post_block, &argse.post); + old = argse.expr; + stat_expr = code->ext.actual->next->next->next->expr; + } + + /* STAT= */ + if (stat_expr != NULL) + { + gcc_assert (stat_expr->expr_type == EXPR_VARIABLE); + gfc_init_se (&argse, NULL); + if (flag_coarray == GFC_FCOARRAY_LIB) + argse.want_pointer = 1; + gfc_conv_expr_val (&argse, stat_expr); + gfc_add_block_to_block (&block, &argse.pre); + gfc_add_block_to_block (&post_block, &argse.post); + stat = argse.expr; + } + else if (flag_coarray == GFC_FCOARRAY_LIB) + stat = null_pointer_node; + + if (flag_coarray == GFC_FCOARRAY_LIB) + { + tree image_index, caf_decl, offset, token; + int op; + + switch (code->resolved_isym->id) + { + case GFC_ISYM_ATOMIC_ADD: + case GFC_ISYM_ATOMIC_FETCH_ADD: + op = (int) GFC_CAF_ATOMIC_ADD; + break; + case GFC_ISYM_ATOMIC_AND: + case GFC_ISYM_ATOMIC_FETCH_AND: + op = (int) GFC_CAF_ATOMIC_AND; + break; + case GFC_ISYM_ATOMIC_OR: + case GFC_ISYM_ATOMIC_FETCH_OR: + op = (int) GFC_CAF_ATOMIC_OR; + break; + case GFC_ISYM_ATOMIC_XOR: + case GFC_ISYM_ATOMIC_FETCH_XOR: + op = (int) GFC_CAF_ATOMIC_XOR; + break; + case GFC_ISYM_ATOMIC_DEF: + op = 0; /* Unused. */ + break; + default: + gcc_unreachable (); + } + + caf_decl = gfc_get_tree_for_caf_expr (atom_expr); + if (TREE_CODE (TREE_TYPE (caf_decl)) == REFERENCE_TYPE) + caf_decl = build_fold_indirect_ref_loc (input_location, caf_decl); + + if (gfc_is_coindexed (atom_expr)) + image_index = gfc_caf_get_image_index (&block, atom_expr, caf_decl); + else + image_index = integer_zero_node; + + if (!POINTER_TYPE_P (TREE_TYPE (value))) + { + tmp = gfc_create_var (TREE_TYPE (TREE_TYPE (atom)), "value"); + gfc_add_modify (&block, tmp, fold_convert (TREE_TYPE (tmp), value)); + value = gfc_build_addr_expr (NULL_TREE, tmp); + } + + gfc_init_se (&argse, NULL); + gfc_get_caf_token_offset (&argse, &token, &offset, caf_decl, atom, + atom_expr); + + gfc_add_block_to_block (&block, &argse.pre); + if (code->resolved_isym->id == GFC_ISYM_ATOMIC_DEF) + tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_atomic_def, 7, + token, offset, image_index, value, stat, + build_int_cst (integer_type_node, + (int) atom_expr->ts.type), + build_int_cst (integer_type_node, + (int) atom_expr->ts.kind)); + else + tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_atomic_op, 9, + build_int_cst (integer_type_node, op), + token, offset, image_index, value, old, stat, + build_int_cst (integer_type_node, + (int) atom_expr->ts.type), + build_int_cst (integer_type_node, + (int) atom_expr->ts.kind)); + + gfc_add_expr_to_block (&block, tmp); + gfc_add_block_to_block (&block, &argse.post); + gfc_add_block_to_block (&block, &post_block); + return gfc_finish_block (&block); + } + + + switch (code->resolved_isym->id) + { + case GFC_ISYM_ATOMIC_ADD: + case GFC_ISYM_ATOMIC_FETCH_ADD: + fn = BUILT_IN_ATOMIC_FETCH_ADD_N; + break; + case GFC_ISYM_ATOMIC_AND: + case GFC_ISYM_ATOMIC_FETCH_AND: + fn = BUILT_IN_ATOMIC_FETCH_AND_N; + break; + case GFC_ISYM_ATOMIC_DEF: + fn = BUILT_IN_ATOMIC_STORE_N; + break; + case GFC_ISYM_ATOMIC_OR: + case GFC_ISYM_ATOMIC_FETCH_OR: + fn = BUILT_IN_ATOMIC_FETCH_OR_N; + break; + case GFC_ISYM_ATOMIC_XOR: + case GFC_ISYM_ATOMIC_FETCH_XOR: + fn = BUILT_IN_ATOMIC_FETCH_XOR_N; + break; + default: + gcc_unreachable (); + } + + tmp = TREE_TYPE (TREE_TYPE (atom)); + fn = (built_in_function) ((int) fn + + exact_log2 (tree_to_uhwi (TYPE_SIZE_UNIT (tmp))) + + 1); + tree itype = TREE_TYPE (TREE_TYPE (atom)); + tmp = builtin_decl_explicit (fn); + + switch (code->resolved_isym->id) + { + case GFC_ISYM_ATOMIC_ADD: + case GFC_ISYM_ATOMIC_AND: + case GFC_ISYM_ATOMIC_DEF: + case GFC_ISYM_ATOMIC_OR: + case GFC_ISYM_ATOMIC_XOR: + tmp = build_call_expr_loc (input_location, tmp, 3, atom, + fold_convert (itype, value), + build_int_cst (NULL, MEMMODEL_RELAXED)); + gfc_add_expr_to_block (&block, tmp); + break; + default: + tmp = build_call_expr_loc (input_location, tmp, 3, atom, + fold_convert (itype, value), + build_int_cst (NULL, MEMMODEL_RELAXED)); + gfc_add_modify (&block, old, fold_convert (TREE_TYPE (old), tmp)); + break; + } + + if (stat != NULL_TREE) + gfc_add_modify (&block, stat, build_int_cst (TREE_TYPE (stat), 0)); + gfc_add_block_to_block (&block, &post_block); + return gfc_finish_block (&block); +} + + +static tree +conv_intrinsic_atomic_ref (gfc_code *code) +{ + gfc_se argse; + tree tmp, atom, value, stat = NULL_TREE; + stmtblock_t block, post_block; + built_in_function fn; + gfc_expr *atom_expr = code->ext.actual->next->expr; + + if (atom_expr->expr_type == EXPR_FUNCTION + && atom_expr->value.function.isym + && atom_expr->value.function.isym->id == GFC_ISYM_CAF_GET) + atom_expr = atom_expr->value.function.actual->expr; + + gfc_start_block (&block); + gfc_init_block (&post_block); + gfc_init_se (&argse, NULL); + argse.want_pointer = 1; + gfc_conv_expr (&argse, atom_expr); + gfc_add_block_to_block (&block, &argse.pre); + gfc_add_block_to_block (&post_block, &argse.post); + atom = argse.expr; + + gfc_init_se (&argse, NULL); + if (flag_coarray == GFC_FCOARRAY_LIB + && code->ext.actual->expr->ts.kind == atom_expr->ts.kind) + argse.want_pointer = 1; + gfc_conv_expr (&argse, code->ext.actual->expr); + gfc_add_block_to_block (&block, &argse.pre); + gfc_add_block_to_block (&post_block, &argse.post); + value = argse.expr; + + /* STAT= */ + if (code->ext.actual->next->next->expr != NULL) + { + gcc_assert (code->ext.actual->next->next->expr->expr_type + == EXPR_VARIABLE); + gfc_init_se (&argse, NULL); + if (flag_coarray == GFC_FCOARRAY_LIB) + argse.want_pointer = 1; + gfc_conv_expr_val (&argse, code->ext.actual->next->next->expr); + gfc_add_block_to_block (&block, &argse.pre); + gfc_add_block_to_block (&post_block, &argse.post); + stat = argse.expr; + } + else if (flag_coarray == GFC_FCOARRAY_LIB) + stat = null_pointer_node; + + if (flag_coarray == GFC_FCOARRAY_LIB) + { + tree image_index, caf_decl, offset, token; + tree orig_value = NULL_TREE, vardecl = NULL_TREE; + + caf_decl = gfc_get_tree_for_caf_expr (atom_expr); + if (TREE_CODE (TREE_TYPE (caf_decl)) == REFERENCE_TYPE) + caf_decl = build_fold_indirect_ref_loc (input_location, caf_decl); + + if (gfc_is_coindexed (atom_expr)) + image_index = gfc_caf_get_image_index (&block, atom_expr, caf_decl); + else + image_index = integer_zero_node; + + gfc_init_se (&argse, NULL); + gfc_get_caf_token_offset (&argse, &token, &offset, caf_decl, atom, + atom_expr); + gfc_add_block_to_block (&block, &argse.pre); + + /* Different type, need type conversion. */ + if (!POINTER_TYPE_P (TREE_TYPE (value))) + { + vardecl = gfc_create_var (TREE_TYPE (TREE_TYPE (atom)), "value"); + orig_value = value; + value = gfc_build_addr_expr (NULL_TREE, vardecl); + } + + tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_atomic_ref, 7, + token, offset, image_index, value, stat, + build_int_cst (integer_type_node, + (int) atom_expr->ts.type), + build_int_cst (integer_type_node, + (int) atom_expr->ts.kind)); + gfc_add_expr_to_block (&block, tmp); + if (vardecl != NULL_TREE) + gfc_add_modify (&block, orig_value, + fold_convert (TREE_TYPE (orig_value), vardecl)); + gfc_add_block_to_block (&block, &argse.post); + gfc_add_block_to_block (&block, &post_block); + return gfc_finish_block (&block); + } + + tmp = TREE_TYPE (TREE_TYPE (atom)); + fn = (built_in_function) ((int) BUILT_IN_ATOMIC_LOAD_N + + exact_log2 (tree_to_uhwi (TYPE_SIZE_UNIT (tmp))) + + 1); + tmp = builtin_decl_explicit (fn); + tmp = build_call_expr_loc (input_location, tmp, 2, atom, + build_int_cst (integer_type_node, + MEMMODEL_RELAXED)); + gfc_add_modify (&block, value, fold_convert (TREE_TYPE (value), tmp)); + + if (stat != NULL_TREE) + gfc_add_modify (&block, stat, build_int_cst (TREE_TYPE (stat), 0)); + gfc_add_block_to_block (&block, &post_block); + return gfc_finish_block (&block); +} + + +static tree +conv_intrinsic_atomic_cas (gfc_code *code) +{ + gfc_se argse; + tree tmp, atom, old, new_val, comp, stat = NULL_TREE; + stmtblock_t block, post_block; + built_in_function fn; + gfc_expr *atom_expr = code->ext.actual->expr; + + if (atom_expr->expr_type == EXPR_FUNCTION + && atom_expr->value.function.isym + && atom_expr->value.function.isym->id == GFC_ISYM_CAF_GET) + atom_expr = atom_expr->value.function.actual->expr; + + gfc_init_block (&block); + gfc_init_block (&post_block); + gfc_init_se (&argse, NULL); + argse.want_pointer = 1; + gfc_conv_expr (&argse, atom_expr); + atom = argse.expr; + + gfc_init_se (&argse, NULL); + if (flag_coarray == GFC_FCOARRAY_LIB) + argse.want_pointer = 1; + gfc_conv_expr (&argse, code->ext.actual->next->expr); + gfc_add_block_to_block (&block, &argse.pre); + gfc_add_block_to_block (&post_block, &argse.post); + old = argse.expr; + + gfc_init_se (&argse, NULL); + if (flag_coarray == GFC_FCOARRAY_LIB) + argse.want_pointer = 1; + gfc_conv_expr (&argse, code->ext.actual->next->next->expr); + gfc_add_block_to_block (&block, &argse.pre); + gfc_add_block_to_block (&post_block, &argse.post); + comp = argse.expr; + + gfc_init_se (&argse, NULL); + if (flag_coarray == GFC_FCOARRAY_LIB + && code->ext.actual->next->next->next->expr->ts.kind + == atom_expr->ts.kind) + argse.want_pointer = 1; + gfc_conv_expr (&argse, code->ext.actual->next->next->next->expr); + gfc_add_block_to_block (&block, &argse.pre); + gfc_add_block_to_block (&post_block, &argse.post); + new_val = argse.expr; + + /* STAT= */ + if (code->ext.actual->next->next->next->next->expr != NULL) + { + gcc_assert (code->ext.actual->next->next->next->next->expr->expr_type + == EXPR_VARIABLE); + gfc_init_se (&argse, NULL); + if (flag_coarray == GFC_FCOARRAY_LIB) + argse.want_pointer = 1; + gfc_conv_expr_val (&argse, + code->ext.actual->next->next->next->next->expr); + gfc_add_block_to_block (&block, &argse.pre); + gfc_add_block_to_block (&post_block, &argse.post); + stat = argse.expr; + } + else if (flag_coarray == GFC_FCOARRAY_LIB) + stat = null_pointer_node; + + if (flag_coarray == GFC_FCOARRAY_LIB) + { + tree image_index, caf_decl, offset, token; + + caf_decl = gfc_get_tree_for_caf_expr (atom_expr); + if (TREE_CODE (TREE_TYPE (caf_decl)) == REFERENCE_TYPE) + caf_decl = build_fold_indirect_ref_loc (input_location, caf_decl); + + if (gfc_is_coindexed (atom_expr)) + image_index = gfc_caf_get_image_index (&block, atom_expr, caf_decl); + else + image_index = integer_zero_node; + + if (TREE_TYPE (TREE_TYPE (new_val)) != TREE_TYPE (TREE_TYPE (old))) + { + tmp = gfc_create_var (TREE_TYPE (TREE_TYPE (old)), "new"); + gfc_add_modify (&block, tmp, fold_convert (TREE_TYPE (tmp), new_val)); + new_val = gfc_build_addr_expr (NULL_TREE, tmp); + } + + /* Convert a constant to a pointer. */ + if (!POINTER_TYPE_P (TREE_TYPE (comp))) + { + tmp = gfc_create_var (TREE_TYPE (TREE_TYPE (old)), "comp"); + gfc_add_modify (&block, tmp, fold_convert (TREE_TYPE (tmp), comp)); + comp = gfc_build_addr_expr (NULL_TREE, tmp); + } + + gfc_init_se (&argse, NULL); + gfc_get_caf_token_offset (&argse, &token, &offset, caf_decl, atom, + atom_expr); + gfc_add_block_to_block (&block, &argse.pre); + + tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_atomic_cas, 9, + token, offset, image_index, old, comp, new_val, + stat, build_int_cst (integer_type_node, + (int) atom_expr->ts.type), + build_int_cst (integer_type_node, + (int) atom_expr->ts.kind)); + gfc_add_expr_to_block (&block, tmp); + gfc_add_block_to_block (&block, &argse.post); + gfc_add_block_to_block (&block, &post_block); + return gfc_finish_block (&block); + } + + tmp = TREE_TYPE (TREE_TYPE (atom)); + fn = (built_in_function) ((int) BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N + + exact_log2 (tree_to_uhwi (TYPE_SIZE_UNIT (tmp))) + + 1); + tmp = builtin_decl_explicit (fn); + + gfc_add_modify (&block, old, comp); + tmp = build_call_expr_loc (input_location, tmp, 6, atom, + gfc_build_addr_expr (NULL, old), + fold_convert (TREE_TYPE (old), new_val), + boolean_false_node, + build_int_cst (NULL, MEMMODEL_RELAXED), + build_int_cst (NULL, MEMMODEL_RELAXED)); + gfc_add_expr_to_block (&block, tmp); + + if (stat != NULL_TREE) + gfc_add_modify (&block, stat, build_int_cst (TREE_TYPE (stat), 0)); + gfc_add_block_to_block (&block, &post_block); + return gfc_finish_block (&block); +} + +static tree +conv_intrinsic_event_query (gfc_code *code) +{ + gfc_se se, argse; + tree stat = NULL_TREE, stat2 = NULL_TREE; + tree count = NULL_TREE, count2 = NULL_TREE; + + gfc_expr *event_expr = code->ext.actual->expr; + + if (code->ext.actual->next->next->expr) + { + gcc_assert (code->ext.actual->next->next->expr->expr_type + == EXPR_VARIABLE); + gfc_init_se (&argse, NULL); + gfc_conv_expr_val (&argse, code->ext.actual->next->next->expr); + stat = argse.expr; + } + else if (flag_coarray == GFC_FCOARRAY_LIB) + stat = null_pointer_node; + + if (code->ext.actual->next->expr) + { + gcc_assert (code->ext.actual->next->expr->expr_type == EXPR_VARIABLE); + gfc_init_se (&argse, NULL); + gfc_conv_expr_val (&argse, code->ext.actual->next->expr); + count = argse.expr; + } + + gfc_start_block (&se.pre); + if (flag_coarray == GFC_FCOARRAY_LIB) + { + tree tmp, token, image_index; + tree index = build_zero_cst (gfc_array_index_type); + + if (event_expr->expr_type == EXPR_FUNCTION + && event_expr->value.function.isym + && event_expr->value.function.isym->id == GFC_ISYM_CAF_GET) + event_expr = event_expr->value.function.actual->expr; + + tree caf_decl = gfc_get_tree_for_caf_expr (event_expr); + + if (event_expr->symtree->n.sym->ts.type != BT_DERIVED + || event_expr->symtree->n.sym->ts.u.derived->from_intmod + != INTMOD_ISO_FORTRAN_ENV + || event_expr->symtree->n.sym->ts.u.derived->intmod_sym_id + != ISOFORTRAN_EVENT_TYPE) + { + gfc_error ("Sorry, the event component of derived type at %L is not " + "yet supported", &event_expr->where); + return NULL_TREE; + } + + if (gfc_is_coindexed (event_expr)) + { + gfc_error ("The event variable at %L shall not be coindexed", + &event_expr->where); + return NULL_TREE; + } + + image_index = integer_zero_node; + + gfc_get_caf_token_offset (&se, &token, NULL, caf_decl, NULL_TREE, + event_expr); + + /* For arrays, obtain the array index. */ + if (gfc_expr_attr (event_expr).dimension) + { + tree desc, tmp, extent, lbound, ubound; + gfc_array_ref *ar, ar2; + int i; + + /* TODO: Extend this, once DT components are supported. */ + ar = &event_expr->ref->u.ar; + ar2 = *ar; + memset (ar, '\0', sizeof (*ar)); + ar->as = ar2.as; + ar->type = AR_FULL; + + gfc_init_se (&argse, NULL); + argse.descriptor_only = 1; + gfc_conv_expr_descriptor (&argse, event_expr); + gfc_add_block_to_block (&se.pre, &argse.pre); + desc = argse.expr; + *ar = ar2; + + extent = build_one_cst (gfc_array_index_type); + for (i = 0; i < ar->dimen; i++) + { + gfc_init_se (&argse, NULL); + gfc_conv_expr_type (&argse, ar->start[i], gfc_array_index_type); + gfc_add_block_to_block (&argse.pre, &argse.pre); + lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[i]); + tmp = fold_build2_loc (input_location, MINUS_EXPR, + TREE_TYPE (lbound), argse.expr, lbound); + tmp = fold_build2_loc (input_location, MULT_EXPR, + TREE_TYPE (tmp), extent, tmp); + index = fold_build2_loc (input_location, PLUS_EXPR, + TREE_TYPE (tmp), index, tmp); + if (i < ar->dimen - 1) + { + ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[i]); + tmp = gfc_conv_array_extent_dim (lbound, ubound, NULL); + extent = fold_build2_loc (input_location, MULT_EXPR, + TREE_TYPE (tmp), extent, tmp); + } + } + } + + if (count != null_pointer_node && TREE_TYPE (count) != integer_type_node) + { + count2 = count; + count = gfc_create_var (integer_type_node, "count"); + } + + if (stat != null_pointer_node && TREE_TYPE (stat) != integer_type_node) + { + stat2 = stat; + stat = gfc_create_var (integer_type_node, "stat"); + } + + index = fold_convert (size_type_node, index); + tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_event_query, 5, + token, index, image_index, count + ? gfc_build_addr_expr (NULL, count) : count, + stat != null_pointer_node + ? gfc_build_addr_expr (NULL, stat) : stat); + gfc_add_expr_to_block (&se.pre, tmp); + + if (count2 != NULL_TREE) + gfc_add_modify (&se.pre, count2, + fold_convert (TREE_TYPE (count2), count)); + + if (stat2 != NULL_TREE) + gfc_add_modify (&se.pre, stat2, + fold_convert (TREE_TYPE (stat2), stat)); + + return gfc_finish_block (&se.pre); + } + + gfc_init_se (&argse, NULL); + gfc_conv_expr_val (&argse, code->ext.actual->expr); + gfc_add_modify (&se.pre, count, fold_convert (TREE_TYPE (count), argse.expr)); + + if (stat != NULL_TREE) + gfc_add_modify (&se.pre, stat, build_int_cst (TREE_TYPE (stat), 0)); + + return gfc_finish_block (&se.pre); +} + + +/* This is a peculiar case because of the need to do dependency checking. + It is called via trans-stmt.c(gfc_trans_call), where it is picked out as + a special case and this function called instead of + gfc_conv_procedure_call. */ +void +gfc_conv_intrinsic_mvbits (gfc_se *se, gfc_actual_arglist *actual_args, + gfc_loopinfo *loop) +{ + gfc_actual_arglist *actual; + gfc_se argse[5]; + gfc_expr *arg[5]; + gfc_ss *lss; + int n; + + tree from, frompos, len, to, topos; + tree lenmask, oldbits, newbits, bitsize; + tree type, utype, above, mask1, mask2; + + if (loop) + lss = loop->ss; + else + lss = gfc_ss_terminator; + + actual = actual_args; + for (n = 0; n < 5; n++, actual = actual->next) + { + arg[n] = actual->expr; + gfc_init_se (&argse[n], NULL); + + if (lss != gfc_ss_terminator) + { + gfc_copy_loopinfo_to_se (&argse[n], loop); + /* Find the ss for the expression if it is there. */ + argse[n].ss = lss; + gfc_mark_ss_chain_used (lss, 1); + } + + gfc_conv_expr (&argse[n], arg[n]); + + if (loop) + lss = argse[n].ss; + } + + from = argse[0].expr; + frompos = argse[1].expr; + len = argse[2].expr; + to = argse[3].expr; + topos = argse[4].expr; + + /* The type of the result (TO). */ + type = TREE_TYPE (to); + bitsize = build_int_cst (integer_type_node, TYPE_PRECISION (type)); + + /* Optionally generate code for runtime argument check. */ + if (gfc_option.rtcheck & GFC_RTCHECK_BITS) + { + tree nbits, below, ccond; + tree fp = fold_convert (long_integer_type_node, frompos); + tree ln = fold_convert (long_integer_type_node, len); + tree tp = fold_convert (long_integer_type_node, topos); + below = fold_build2_loc (input_location, LT_EXPR, + logical_type_node, frompos, + build_int_cst (TREE_TYPE (frompos), 0)); + above = fold_build2_loc (input_location, GT_EXPR, + logical_type_node, frompos, + fold_convert (TREE_TYPE (frompos), bitsize)); + ccond = fold_build2_loc (input_location, TRUTH_ORIF_EXPR, + logical_type_node, below, above); + gfc_trans_runtime_check (true, false, ccond, &argse[1].pre, + &arg[1]->where, + "FROMPOS argument (%ld) out of range 0:%d " + "in intrinsic MVBITS", fp, bitsize); + below = fold_build2_loc (input_location, LT_EXPR, + logical_type_node, len, + build_int_cst (TREE_TYPE (len), 0)); + above = fold_build2_loc (input_location, GT_EXPR, + logical_type_node, len, + fold_convert (TREE_TYPE (len), bitsize)); + ccond = fold_build2_loc (input_location, TRUTH_ORIF_EXPR, + logical_type_node, below, above); + gfc_trans_runtime_check (true, false, ccond, &argse[2].pre, + &arg[2]->where, + "LEN argument (%ld) out of range 0:%d " + "in intrinsic MVBITS", ln, bitsize); + below = fold_build2_loc (input_location, LT_EXPR, + logical_type_node, topos, + build_int_cst (TREE_TYPE (topos), 0)); + above = fold_build2_loc (input_location, GT_EXPR, + logical_type_node, topos, + fold_convert (TREE_TYPE (topos), bitsize)); + ccond = fold_build2_loc (input_location, TRUTH_ORIF_EXPR, + logical_type_node, below, above); + gfc_trans_runtime_check (true, false, ccond, &argse[4].pre, + &arg[4]->where, + "TOPOS argument (%ld) out of range 0:%d " + "in intrinsic MVBITS", tp, bitsize); + + /* The tests above ensure that FROMPOS, LEN and TOPOS fit into short + integers. Additions below cannot overflow. */ + nbits = fold_convert (long_integer_type_node, bitsize); + above = fold_build2_loc (input_location, PLUS_EXPR, + long_integer_type_node, fp, ln); + ccond = fold_build2_loc (input_location, GT_EXPR, + logical_type_node, above, nbits); + gfc_trans_runtime_check (true, false, ccond, &argse[1].pre, + &arg[1]->where, + "FROMPOS(%ld)+LEN(%ld)>BIT_SIZE(%d) " + "in intrinsic MVBITS", fp, ln, bitsize); + above = fold_build2_loc (input_location, PLUS_EXPR, + long_integer_type_node, tp, ln); + ccond = fold_build2_loc (input_location, GT_EXPR, + logical_type_node, above, nbits); + gfc_trans_runtime_check (true, false, ccond, &argse[4].pre, + &arg[4]->where, + "TOPOS(%ld)+LEN(%ld)>BIT_SIZE(%d) " + "in intrinsic MVBITS", tp, ln, bitsize); + } + + for (n = 0; n < 5; n++) + { + gfc_add_block_to_block (&se->pre, &argse[n].pre); + gfc_add_block_to_block (&se->post, &argse[n].post); + } + + /* lenmask = (LEN >= bit_size (TYPE)) ? ~(TYPE)0 : ((TYPE)1 << LEN) - 1 */ + above = fold_build2_loc (input_location, GE_EXPR, logical_type_node, + len, fold_convert (TREE_TYPE (len), bitsize)); + mask1 = build_int_cst (type, -1); + mask2 = fold_build2_loc (input_location, LSHIFT_EXPR, type, + build_int_cst (type, 1), len); + mask2 = fold_build2_loc (input_location, MINUS_EXPR, type, + mask2, build_int_cst (type, 1)); + lenmask = fold_build3_loc (input_location, COND_EXPR, type, + above, mask1, mask2); + + /* newbits = (((UTYPE)(FROM) >> FROMPOS) & lenmask) << TOPOS. + * For valid frompos+len <= bit_size(FROM) the conversion to unsigned is + * not strictly necessary; artificial bits from rshift will be masked. */ + utype = unsigned_type_for (type); + newbits = fold_build2_loc (input_location, RSHIFT_EXPR, utype, + fold_convert (utype, from), frompos); + newbits = fold_build2_loc (input_location, BIT_AND_EXPR, type, + fold_convert (type, newbits), lenmask); + newbits = fold_build2_loc (input_location, LSHIFT_EXPR, type, + newbits, topos); + + /* oldbits = TO & (~(lenmask << TOPOS)). */ + oldbits = fold_build2_loc (input_location, LSHIFT_EXPR, type, + lenmask, topos); + oldbits = fold_build1_loc (input_location, BIT_NOT_EXPR, type, oldbits); + oldbits = fold_build2_loc (input_location, BIT_AND_EXPR, type, oldbits, to); + + /* TO = newbits | oldbits. */ + se->expr = fold_build2_loc (input_location, BIT_IOR_EXPR, type, + oldbits, newbits); + + /* Return the assignment. */ + se->expr = fold_build2_loc (input_location, MODIFY_EXPR, + void_type_node, to, se->expr); +} + + +static tree +conv_intrinsic_move_alloc (gfc_code *code) +{ + stmtblock_t block; + gfc_expr *from_expr, *to_expr; + gfc_expr *to_expr2, *from_expr2 = NULL; + gfc_se from_se, to_se; + tree tmp; + bool coarray; + + gfc_start_block (&block); + + from_expr = code->ext.actual->expr; + to_expr = code->ext.actual->next->expr; + + gfc_init_se (&from_se, NULL); + gfc_init_se (&to_se, NULL); + + gcc_assert (from_expr->ts.type != BT_CLASS + || to_expr->ts.type == BT_CLASS); + coarray = gfc_get_corank (from_expr) != 0; + + if (from_expr->rank == 0 && !coarray) + { + if (from_expr->ts.type != BT_CLASS) + from_expr2 = from_expr; + else + { + from_expr2 = gfc_copy_expr (from_expr); + gfc_add_data_component (from_expr2); + } + + if (to_expr->ts.type != BT_CLASS) + to_expr2 = to_expr; + else + { + to_expr2 = gfc_copy_expr (to_expr); + gfc_add_data_component (to_expr2); + } + + from_se.want_pointer = 1; + to_se.want_pointer = 1; + gfc_conv_expr (&from_se, from_expr2); + gfc_conv_expr (&to_se, to_expr2); + gfc_add_block_to_block (&block, &from_se.pre); + gfc_add_block_to_block (&block, &to_se.pre); + + /* Deallocate "to". */ + tmp = gfc_deallocate_scalar_with_status (to_se.expr, NULL_TREE, NULL_TREE, + true, to_expr, to_expr->ts); + gfc_add_expr_to_block (&block, tmp); + + /* Assign (_data) pointers. */ + gfc_add_modify_loc (input_location, &block, to_se.expr, + fold_convert (TREE_TYPE (to_se.expr), from_se.expr)); + + /* Set "from" to NULL. */ + gfc_add_modify_loc (input_location, &block, from_se.expr, + fold_convert (TREE_TYPE (from_se.expr), null_pointer_node)); + + gfc_add_block_to_block (&block, &from_se.post); + gfc_add_block_to_block (&block, &to_se.post); + + /* Set _vptr. */ + if (to_expr->ts.type == BT_CLASS) + { + gfc_symbol *vtab; + + gfc_free_expr (to_expr2); + gfc_init_se (&to_se, NULL); + to_se.want_pointer = 1; + gfc_add_vptr_component (to_expr); + gfc_conv_expr (&to_se, to_expr); + + if (from_expr->ts.type == BT_CLASS) + { + if (UNLIMITED_POLY (from_expr)) + vtab = NULL; + else + { + vtab = gfc_find_derived_vtab (from_expr->ts.u.derived); + gcc_assert (vtab); + } + + gfc_free_expr (from_expr2); + gfc_init_se (&from_se, NULL); + from_se.want_pointer = 1; + gfc_add_vptr_component (from_expr); + gfc_conv_expr (&from_se, from_expr); + gfc_add_modify_loc (input_location, &block, to_se.expr, + fold_convert (TREE_TYPE (to_se.expr), + from_se.expr)); + + /* Reset _vptr component to declared type. */ + if (vtab == NULL) + /* Unlimited polymorphic. */ + gfc_add_modify_loc (input_location, &block, from_se.expr, + fold_convert (TREE_TYPE (from_se.expr), + null_pointer_node)); + else + { + tmp = gfc_build_addr_expr (NULL_TREE, gfc_get_symbol_decl (vtab)); + gfc_add_modify_loc (input_location, &block, from_se.expr, + fold_convert (TREE_TYPE (from_se.expr), tmp)); + } + } + else + { + vtab = gfc_find_vtab (&from_expr->ts); + gcc_assert (vtab); + tmp = gfc_build_addr_expr (NULL_TREE, gfc_get_symbol_decl (vtab)); + gfc_add_modify_loc (input_location, &block, to_se.expr, + fold_convert (TREE_TYPE (to_se.expr), tmp)); + } + } + + if (to_expr->ts.type == BT_CHARACTER && to_expr->ts.deferred) + { + gfc_add_modify_loc (input_location, &block, to_se.string_length, + fold_convert (TREE_TYPE (to_se.string_length), + from_se.string_length)); + if (from_expr->ts.deferred) + gfc_add_modify_loc (input_location, &block, from_se.string_length, + build_int_cst (TREE_TYPE (from_se.string_length), 0)); + } + + return gfc_finish_block (&block); + } + + /* Update _vptr component. */ + if (to_expr->ts.type == BT_CLASS) + { + gfc_symbol *vtab; + + to_se.want_pointer = 1; + to_expr2 = gfc_copy_expr (to_expr); + gfc_add_vptr_component (to_expr2); + gfc_conv_expr (&to_se, to_expr2); + + if (from_expr->ts.type == BT_CLASS) + { + if (UNLIMITED_POLY (from_expr)) + vtab = NULL; + else + { + vtab = gfc_find_derived_vtab (from_expr->ts.u.derived); + gcc_assert (vtab); + } + + from_se.want_pointer = 1; + from_expr2 = gfc_copy_expr (from_expr); + gfc_add_vptr_component (from_expr2); + gfc_conv_expr (&from_se, from_expr2); + gfc_add_modify_loc (input_location, &block, to_se.expr, + fold_convert (TREE_TYPE (to_se.expr), + from_se.expr)); + + /* Reset _vptr component to declared type. */ + if (vtab == NULL) + /* Unlimited polymorphic. */ + gfc_add_modify_loc (input_location, &block, from_se.expr, + fold_convert (TREE_TYPE (from_se.expr), + null_pointer_node)); + else + { + tmp = gfc_build_addr_expr (NULL_TREE, gfc_get_symbol_decl (vtab)); + gfc_add_modify_loc (input_location, &block, from_se.expr, + fold_convert (TREE_TYPE (from_se.expr), tmp)); + } + } + else + { + vtab = gfc_find_vtab (&from_expr->ts); + gcc_assert (vtab); + tmp = gfc_build_addr_expr (NULL_TREE, gfc_get_symbol_decl (vtab)); + gfc_add_modify_loc (input_location, &block, to_se.expr, + fold_convert (TREE_TYPE (to_se.expr), tmp)); + } + + gfc_free_expr (to_expr2); + gfc_init_se (&to_se, NULL); + + if (from_expr->ts.type == BT_CLASS) + { + gfc_free_expr (from_expr2); + gfc_init_se (&from_se, NULL); + } + } + + + /* Deallocate "to". */ + if (from_expr->rank == 0) + { + to_se.want_coarray = 1; + from_se.want_coarray = 1; + } + gfc_conv_expr_descriptor (&to_se, to_expr); + gfc_conv_expr_descriptor (&from_se, from_expr); + + /* For coarrays, call SYNC ALL if TO is already deallocated as MOVE_ALLOC + is an image control "statement", cf. IR F08/0040 in 12-006A. */ + if (coarray && flag_coarray == GFC_FCOARRAY_LIB) + { + tree cond; + + tmp = gfc_deallocate_with_status (to_se.expr, NULL_TREE, NULL_TREE, + NULL_TREE, NULL_TREE, true, to_expr, + GFC_CAF_COARRAY_DEALLOCATE_ONLY); + gfc_add_expr_to_block (&block, tmp); + + tmp = gfc_conv_descriptor_data_get (to_se.expr); + cond = fold_build2_loc (input_location, EQ_EXPR, + logical_type_node, tmp, + fold_convert (TREE_TYPE (tmp), + null_pointer_node)); + tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_sync_all, + 3, null_pointer_node, null_pointer_node, + build_int_cst (integer_type_node, 0)); + + tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, cond, + tmp, build_empty_stmt (input_location)); + gfc_add_expr_to_block (&block, tmp); + } + else + { + if (to_expr->ts.type == BT_DERIVED + && to_expr->ts.u.derived->attr.alloc_comp) + { + tmp = gfc_deallocate_alloc_comp (to_expr->ts.u.derived, + to_se.expr, to_expr->rank); + gfc_add_expr_to_block (&block, tmp); + } + + tmp = gfc_conv_descriptor_data_get (to_se.expr); + tmp = gfc_deallocate_with_status (tmp, NULL_TREE, NULL_TREE, NULL_TREE, + NULL_TREE, true, to_expr, + GFC_CAF_COARRAY_NOCOARRAY); + gfc_add_expr_to_block (&block, tmp); + } + + /* Move the pointer and update the array descriptor data. */ + gfc_add_modify_loc (input_location, &block, to_se.expr, from_se.expr); + + /* Set "from" to NULL. */ + tmp = gfc_conv_descriptor_data_get (from_se.expr); + gfc_add_modify_loc (input_location, &block, tmp, + fold_convert (TREE_TYPE (tmp), null_pointer_node)); + + + if (to_expr->ts.type == BT_CHARACTER && to_expr->ts.deferred) + { + gfc_add_modify_loc (input_location, &block, to_se.string_length, + fold_convert (TREE_TYPE (to_se.string_length), + from_se.string_length)); + if (from_expr->ts.deferred) + gfc_add_modify_loc (input_location, &block, from_se.string_length, + build_int_cst (TREE_TYPE (from_se.string_length), 0)); + } + + return gfc_finish_block (&block); +} + + +tree +gfc_conv_intrinsic_subroutine (gfc_code *code) +{ + tree res; + + gcc_assert (code->resolved_isym); + + switch (code->resolved_isym->id) + { + case GFC_ISYM_MOVE_ALLOC: + res = conv_intrinsic_move_alloc (code); + break; + + case GFC_ISYM_ATOMIC_CAS: + res = conv_intrinsic_atomic_cas (code); + break; + + case GFC_ISYM_ATOMIC_ADD: + case GFC_ISYM_ATOMIC_AND: + case GFC_ISYM_ATOMIC_DEF: + case GFC_ISYM_ATOMIC_OR: + case GFC_ISYM_ATOMIC_XOR: + case GFC_ISYM_ATOMIC_FETCH_ADD: + case GFC_ISYM_ATOMIC_FETCH_AND: + case GFC_ISYM_ATOMIC_FETCH_OR: + case GFC_ISYM_ATOMIC_FETCH_XOR: + res = conv_intrinsic_atomic_op (code); + break; + + case GFC_ISYM_ATOMIC_REF: + res = conv_intrinsic_atomic_ref (code); + break; + + case GFC_ISYM_EVENT_QUERY: + res = conv_intrinsic_event_query (code); + break; + + case GFC_ISYM_C_F_POINTER: + case GFC_ISYM_C_F_PROCPOINTER: + res = conv_isocbinding_subroutine (code); + break; + + case GFC_ISYM_CAF_SEND: + res = conv_caf_send (code); + break; + + case GFC_ISYM_CO_BROADCAST: + case GFC_ISYM_CO_MIN: + case GFC_ISYM_CO_MAX: + case GFC_ISYM_CO_REDUCE: + case GFC_ISYM_CO_SUM: + res = conv_co_collective (code); + break; + + case GFC_ISYM_FREE: + res = conv_intrinsic_free (code); + break; + + case GFC_ISYM_RANDOM_INIT: + res = conv_intrinsic_random_init (code); + break; + + case GFC_ISYM_KILL: + res = conv_intrinsic_kill_sub (code); + break; + + case GFC_ISYM_MVBITS: + res = NULL_TREE; + break; + + case GFC_ISYM_SYSTEM_CLOCK: + res = conv_intrinsic_system_clock (code); + break; + + default: + res = NULL_TREE; + break; + } + + return res; +} + +#include "gt-fortran-trans-intrinsic.h" |