diff options
Diffstat (limited to 'gcc/fortran/interface.cc')
-rw-r--r-- | gcc/fortran/interface.cc | 5589 |
1 files changed, 5589 insertions, 0 deletions
diff --git a/gcc/fortran/interface.cc b/gcc/fortran/interface.cc new file mode 100644 index 0000000..0fd881d --- /dev/null +++ b/gcc/fortran/interface.cc @@ -0,0 +1,5589 @@ +/* Deal with interfaces. + Copyright (C) 2000-2022 Free Software Foundation, Inc. + Contributed by Andy Vaught + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + + +/* Deal with interfaces. An explicit interface is represented as a + singly linked list of formal argument structures attached to the + relevant symbols. For an implicit interface, the arguments don't + point to symbols. Explicit interfaces point to namespaces that + contain the symbols within that interface. + + Implicit interfaces are linked together in a singly linked list + along the next_if member of symbol nodes. Since a particular + symbol can only have a single explicit interface, the symbol cannot + be part of multiple lists and a single next-member suffices. + + This is not the case for general classes, though. An operator + definition is independent of just about all other uses and has it's + own head pointer. + + Nameless interfaces: + Nameless interfaces create symbols with explicit interfaces within + the current namespace. They are otherwise unlinked. + + Generic interfaces: + The generic name points to a linked list of symbols. Each symbol + has an explicit interface. Each explicit interface has its own + namespace containing the arguments. Module procedures are symbols in + which the interface is added later when the module procedure is parsed. + + User operators: + User-defined operators are stored in a their own set of symtrees + separate from regular symbols. The symtrees point to gfc_user_op + structures which in turn head up a list of relevant interfaces. + + Extended intrinsics and assignment: + The head of these interface lists are stored in the containing namespace. + + Implicit interfaces: + An implicit interface is represented as a singly linked list of + formal argument list structures that don't point to any symbol + nodes -- they just contain types. + + + When a subprogram is defined, the program unit's name points to an + interface as usual, but the link to the namespace is NULL and the + formal argument list points to symbols within the same namespace as + the program unit name. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "options.h" +#include "gfortran.h" +#include "match.h" +#include "arith.h" + +/* The current_interface structure holds information about the + interface currently being parsed. This structure is saved and + restored during recursive interfaces. */ + +gfc_interface_info current_interface; + + +/* Free a singly linked list of gfc_interface structures. */ + +void +gfc_free_interface (gfc_interface *intr) +{ + gfc_interface *next; + + for (; intr; intr = next) + { + next = intr->next; + free (intr); + } +} + + +/* Change the operators unary plus and minus into binary plus and + minus respectively, leaving the rest unchanged. */ + +static gfc_intrinsic_op +fold_unary_intrinsic (gfc_intrinsic_op op) +{ + switch (op) + { + case INTRINSIC_UPLUS: + op = INTRINSIC_PLUS; + break; + case INTRINSIC_UMINUS: + op = INTRINSIC_MINUS; + break; + default: + break; + } + + return op; +} + + +/* Return the operator depending on the DTIO moded string. Note that + these are not operators in the normal sense and so have been placed + beyond GFC_INTRINSIC_END in gfortran.h:enum gfc_intrinsic_op. */ + +static gfc_intrinsic_op +dtio_op (char* mode) +{ + if (strcmp (mode, "formatted") == 0) + return INTRINSIC_FORMATTED; + if (strcmp (mode, "unformatted") == 0) + return INTRINSIC_UNFORMATTED; + return INTRINSIC_NONE; +} + + +/* Match a generic specification. Depending on which type of + interface is found, the 'name' or 'op' pointers may be set. + This subroutine doesn't return MATCH_NO. */ + +match +gfc_match_generic_spec (interface_type *type, + char *name, + gfc_intrinsic_op *op) +{ + char buffer[GFC_MAX_SYMBOL_LEN + 1]; + match m; + gfc_intrinsic_op i; + + if (gfc_match (" assignment ( = )") == MATCH_YES) + { + *type = INTERFACE_INTRINSIC_OP; + *op = INTRINSIC_ASSIGN; + return MATCH_YES; + } + + if (gfc_match (" operator ( %o )", &i) == MATCH_YES) + { /* Operator i/f */ + *type = INTERFACE_INTRINSIC_OP; + *op = fold_unary_intrinsic (i); + return MATCH_YES; + } + + *op = INTRINSIC_NONE; + if (gfc_match (" operator ( ") == MATCH_YES) + { + m = gfc_match_defined_op_name (buffer, 1); + if (m == MATCH_NO) + goto syntax; + if (m != MATCH_YES) + return MATCH_ERROR; + + m = gfc_match_char (')'); + if (m == MATCH_NO) + goto syntax; + if (m != MATCH_YES) + return MATCH_ERROR; + + strcpy (name, buffer); + *type = INTERFACE_USER_OP; + return MATCH_YES; + } + + if (gfc_match (" read ( %n )", buffer) == MATCH_YES) + { + *op = dtio_op (buffer); + if (*op == INTRINSIC_FORMATTED) + { + strcpy (name, gfc_code2string (dtio_procs, DTIO_RF)); + *type = INTERFACE_DTIO; + } + if (*op == INTRINSIC_UNFORMATTED) + { + strcpy (name, gfc_code2string (dtio_procs, DTIO_RUF)); + *type = INTERFACE_DTIO; + } + if (*op != INTRINSIC_NONE) + return MATCH_YES; + } + + if (gfc_match (" write ( %n )", buffer) == MATCH_YES) + { + *op = dtio_op (buffer); + if (*op == INTRINSIC_FORMATTED) + { + strcpy (name, gfc_code2string (dtio_procs, DTIO_WF)); + *type = INTERFACE_DTIO; + } + if (*op == INTRINSIC_UNFORMATTED) + { + strcpy (name, gfc_code2string (dtio_procs, DTIO_WUF)); + *type = INTERFACE_DTIO; + } + if (*op != INTRINSIC_NONE) + return MATCH_YES; + } + + if (gfc_match_name (buffer) == MATCH_YES) + { + strcpy (name, buffer); + *type = INTERFACE_GENERIC; + return MATCH_YES; + } + + *type = INTERFACE_NAMELESS; + return MATCH_YES; + +syntax: + gfc_error ("Syntax error in generic specification at %C"); + return MATCH_ERROR; +} + + +/* Match one of the five F95 forms of an interface statement. The + matcher for the abstract interface follows. */ + +match +gfc_match_interface (void) +{ + char name[GFC_MAX_SYMBOL_LEN + 1]; + interface_type type; + gfc_symbol *sym; + gfc_intrinsic_op op; + match m; + + m = gfc_match_space (); + + if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR) + return MATCH_ERROR; + + /* If we're not looking at the end of the statement now, or if this + is not a nameless interface but we did not see a space, punt. */ + if (gfc_match_eos () != MATCH_YES + || (type != INTERFACE_NAMELESS && m != MATCH_YES)) + { + gfc_error ("Syntax error: Trailing garbage in INTERFACE statement " + "at %C"); + return MATCH_ERROR; + } + + current_interface.type = type; + + switch (type) + { + case INTERFACE_DTIO: + case INTERFACE_GENERIC: + if (gfc_get_symbol (name, NULL, &sym)) + return MATCH_ERROR; + + if (!sym->attr.generic + && !gfc_add_generic (&sym->attr, sym->name, NULL)) + return MATCH_ERROR; + + if (sym->attr.dummy) + { + gfc_error ("Dummy procedure %qs at %C cannot have a " + "generic interface", sym->name); + return MATCH_ERROR; + } + + current_interface.sym = gfc_new_block = sym; + break; + + case INTERFACE_USER_OP: + current_interface.uop = gfc_get_uop (name); + break; + + case INTERFACE_INTRINSIC_OP: + current_interface.op = op; + break; + + case INTERFACE_NAMELESS: + case INTERFACE_ABSTRACT: + break; + } + + return MATCH_YES; +} + + + +/* Match a F2003 abstract interface. */ + +match +gfc_match_abstract_interface (void) +{ + match m; + + if (!gfc_notify_std (GFC_STD_F2003, "ABSTRACT INTERFACE at %C")) + return MATCH_ERROR; + + m = gfc_match_eos (); + + if (m != MATCH_YES) + { + gfc_error ("Syntax error in ABSTRACT INTERFACE statement at %C"); + return MATCH_ERROR; + } + + current_interface.type = INTERFACE_ABSTRACT; + + return m; +} + + +/* Match the different sort of generic-specs that can be present after + the END INTERFACE itself. */ + +match +gfc_match_end_interface (void) +{ + char name[GFC_MAX_SYMBOL_LEN + 1]; + interface_type type; + gfc_intrinsic_op op; + match m; + + m = gfc_match_space (); + + if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR) + return MATCH_ERROR; + + /* If we're not looking at the end of the statement now, or if this + is not a nameless interface but we did not see a space, punt. */ + if (gfc_match_eos () != MATCH_YES + || (type != INTERFACE_NAMELESS && m != MATCH_YES)) + { + gfc_error ("Syntax error: Trailing garbage in END INTERFACE " + "statement at %C"); + return MATCH_ERROR; + } + + m = MATCH_YES; + + switch (current_interface.type) + { + case INTERFACE_NAMELESS: + case INTERFACE_ABSTRACT: + if (type != INTERFACE_NAMELESS) + { + gfc_error ("Expected a nameless interface at %C"); + m = MATCH_ERROR; + } + + break; + + case INTERFACE_INTRINSIC_OP: + if (type != current_interface.type || op != current_interface.op) + { + + if (current_interface.op == INTRINSIC_ASSIGN) + { + m = MATCH_ERROR; + gfc_error ("Expected %<END INTERFACE ASSIGNMENT (=)%> at %C"); + } + else + { + const char *s1, *s2; + s1 = gfc_op2string (current_interface.op); + s2 = gfc_op2string (op); + + /* The following if-statements are used to enforce C1202 + from F2003. */ + if ((strcmp(s1, "==") == 0 && strcmp (s2, ".eq.") == 0) + || (strcmp(s1, ".eq.") == 0 && strcmp (s2, "==") == 0)) + break; + if ((strcmp(s1, "/=") == 0 && strcmp (s2, ".ne.") == 0) + || (strcmp(s1, ".ne.") == 0 && strcmp (s2, "/=") == 0)) + break; + if ((strcmp(s1, "<=") == 0 && strcmp (s2, ".le.") == 0) + || (strcmp(s1, ".le.") == 0 && strcmp (s2, "<=") == 0)) + break; + if ((strcmp(s1, "<") == 0 && strcmp (s2, ".lt.") == 0) + || (strcmp(s1, ".lt.") == 0 && strcmp (s2, "<") == 0)) + break; + if ((strcmp(s1, ">=") == 0 && strcmp (s2, ".ge.") == 0) + || (strcmp(s1, ".ge.") == 0 && strcmp (s2, ">=") == 0)) + break; + if ((strcmp(s1, ">") == 0 && strcmp (s2, ".gt.") == 0) + || (strcmp(s1, ".gt.") == 0 && strcmp (s2, ">") == 0)) + break; + + m = MATCH_ERROR; + if (strcmp(s2, "none") == 0) + gfc_error ("Expecting %<END INTERFACE OPERATOR (%s)%> " + "at %C", s1); + else + gfc_error ("Expecting %<END INTERFACE OPERATOR (%s)%> at %C, " + "but got %qs", s1, s2); + } + + } + + break; + + case INTERFACE_USER_OP: + /* Comparing the symbol node names is OK because only use-associated + symbols can be renamed. */ + if (type != current_interface.type + || strcmp (current_interface.uop->name, name) != 0) + { + gfc_error ("Expecting %<END INTERFACE OPERATOR (.%s.)%> at %C", + current_interface.uop->name); + m = MATCH_ERROR; + } + + break; + + case INTERFACE_DTIO: + case INTERFACE_GENERIC: + if (type != current_interface.type + || strcmp (current_interface.sym->name, name) != 0) + { + gfc_error ("Expecting %<END INTERFACE %s%> at %C", + current_interface.sym->name); + m = MATCH_ERROR; + } + + break; + } + + return m; +} + + +/* Return whether the component was defined anonymously. */ + +static bool +is_anonymous_component (gfc_component *cmp) +{ + /* Only UNION and MAP components are anonymous. In the case of a MAP, + the derived type symbol is FL_STRUCT and the component name looks like mM*. + This is the only case in which the second character of a component name is + uppercase. */ + return cmp->ts.type == BT_UNION + || (cmp->ts.type == BT_DERIVED + && cmp->ts.u.derived->attr.flavor == FL_STRUCT + && cmp->name[0] && cmp->name[1] && ISUPPER (cmp->name[1])); +} + + +/* Return whether the derived type was defined anonymously. */ + +static bool +is_anonymous_dt (gfc_symbol *derived) +{ + /* UNION and MAP types are always anonymous. Otherwise, only nested STRUCTURE + types can be anonymous. For anonymous MAP/STRUCTURE, we have FL_STRUCT + and the type name looks like XX*. This is the only case in which the + second character of a type name is uppercase. */ + return derived->attr.flavor == FL_UNION + || (derived->attr.flavor == FL_STRUCT + && derived->name[0] && derived->name[1] && ISUPPER (derived->name[1])); +} + + +/* Compare components according to 4.4.2 of the Fortran standard. */ + +static bool +compare_components (gfc_component *cmp1, gfc_component *cmp2, + gfc_symbol *derived1, gfc_symbol *derived2) +{ + /* Compare names, but not for anonymous components such as UNION or MAP. */ + if (!is_anonymous_component (cmp1) && !is_anonymous_component (cmp2) + && strcmp (cmp1->name, cmp2->name) != 0) + return false; + + if (cmp1->attr.access != cmp2->attr.access) + return false; + + if (cmp1->attr.pointer != cmp2->attr.pointer) + return false; + + if (cmp1->attr.dimension != cmp2->attr.dimension) + return false; + + if (cmp1->attr.allocatable != cmp2->attr.allocatable) + return false; + + if (cmp1->attr.dimension && gfc_compare_array_spec (cmp1->as, cmp2->as) == 0) + return false; + + if (cmp1->ts.type == BT_CHARACTER && cmp2->ts.type == BT_CHARACTER) + { + gfc_charlen *l1 = cmp1->ts.u.cl; + gfc_charlen *l2 = cmp2->ts.u.cl; + if (l1 && l2 && l1->length && l2->length + && l1->length->expr_type == EXPR_CONSTANT + && l2->length->expr_type == EXPR_CONSTANT + && gfc_dep_compare_expr (l1->length, l2->length) != 0) + return false; + } + + /* Make sure that link lists do not put this function into an + endless recursive loop! */ + if (!(cmp1->ts.type == BT_DERIVED && derived1 == cmp1->ts.u.derived) + && !(cmp2->ts.type == BT_DERIVED && derived2 == cmp2->ts.u.derived) + && !gfc_compare_types (&cmp1->ts, &cmp2->ts)) + return false; + + else if ( (cmp1->ts.type == BT_DERIVED && derived1 == cmp1->ts.u.derived) + && !(cmp2->ts.type == BT_DERIVED && derived2 == cmp2->ts.u.derived)) + return false; + + else if (!(cmp1->ts.type == BT_DERIVED && derived1 == cmp1->ts.u.derived) + && (cmp2->ts.type == BT_DERIVED && derived2 == cmp2->ts.u.derived)) + return false; + + return true; +} + + +/* Compare two union types by comparing the components of their maps. + Because unions and maps are anonymous their types get special internal + names; therefore the usual derived type comparison will fail on them. + + Returns nonzero if equal, as with gfc_compare_derived_types. Also as with + gfc_compare_derived_types, 'equal' is closer to meaning 'duplicate + definitions' than 'equivalent structure'. */ + +static bool +compare_union_types (gfc_symbol *un1, gfc_symbol *un2) +{ + gfc_component *map1, *map2, *cmp1, *cmp2; + gfc_symbol *map1_t, *map2_t; + + if (un1->attr.flavor != FL_UNION || un2->attr.flavor != FL_UNION) + return false; + + if (un1->attr.zero_comp != un2->attr.zero_comp) + return false; + + if (un1->attr.zero_comp) + return true; + + map1 = un1->components; + map2 = un2->components; + + /* In terms of 'equality' here we are worried about types which are + declared the same in two places, not types that represent equivalent + structures. (This is common because of FORTRAN's weird scoping rules.) + Though two unions with their maps in different orders could be equivalent, + we will say they are not equal for the purposes of this test; therefore + we compare the maps sequentially. */ + for (;;) + { + map1_t = map1->ts.u.derived; + map2_t = map2->ts.u.derived; + + cmp1 = map1_t->components; + cmp2 = map2_t->components; + + /* Protect against null components. */ + if (map1_t->attr.zero_comp != map2_t->attr.zero_comp) + return false; + + if (map1_t->attr.zero_comp) + return true; + + for (;;) + { + /* No two fields will ever point to the same map type unless they are + the same component, because one map field is created with its type + declaration. Therefore don't worry about recursion here. */ + /* TODO: worry about recursion into parent types of the unions? */ + if (!compare_components (cmp1, cmp2, map1_t, map2_t)) + return false; + + cmp1 = cmp1->next; + cmp2 = cmp2->next; + + if (cmp1 == NULL && cmp2 == NULL) + break; + if (cmp1 == NULL || cmp2 == NULL) + return false; + } + + map1 = map1->next; + map2 = map2->next; + + if (map1 == NULL && map2 == NULL) + break; + if (map1 == NULL || map2 == NULL) + return false; + } + + return true; +} + + + +/* Compare two derived types using the criteria in 4.4.2 of the standard, + recursing through gfc_compare_types for the components. */ + +bool +gfc_compare_derived_types (gfc_symbol *derived1, gfc_symbol *derived2) +{ + gfc_component *cmp1, *cmp2; + + if (derived1 == derived2) + return true; + + if (!derived1 || !derived2) + gfc_internal_error ("gfc_compare_derived_types: invalid derived type"); + + /* Compare UNION types specially. */ + if (derived1->attr.flavor == FL_UNION || derived2->attr.flavor == FL_UNION) + return compare_union_types (derived1, derived2); + + /* Special case for comparing derived types across namespaces. If the + true names and module names are the same and the module name is + nonnull, then they are equal. */ + if (strcmp (derived1->name, derived2->name) == 0 + && derived1->module != NULL && derived2->module != NULL + && strcmp (derived1->module, derived2->module) == 0) + return true; + + /* Compare type via the rules of the standard. Both types must have + the SEQUENCE or BIND(C) attribute to be equal. STRUCTUREs are special + because they can be anonymous; therefore two structures with different + names may be equal. */ + + /* Compare names, but not for anonymous types such as UNION or MAP. */ + if (!is_anonymous_dt (derived1) && !is_anonymous_dt (derived2) + && strcmp (derived1->name, derived2->name) != 0) + return false; + + if (derived1->component_access == ACCESS_PRIVATE + || derived2->component_access == ACCESS_PRIVATE) + return false; + + if (!(derived1->attr.sequence && derived2->attr.sequence) + && !(derived1->attr.is_bind_c && derived2->attr.is_bind_c) + && !(derived1->attr.pdt_type && derived2->attr.pdt_type)) + return false; + + /* Protect against null components. */ + if (derived1->attr.zero_comp != derived2->attr.zero_comp) + return false; + + if (derived1->attr.zero_comp) + return true; + + cmp1 = derived1->components; + cmp2 = derived2->components; + + /* Since subtypes of SEQUENCE types must be SEQUENCE types as well, a + simple test can speed things up. Otherwise, lots of things have to + match. */ + for (;;) + { + if (!compare_components (cmp1, cmp2, derived1, derived2)) + return false; + + cmp1 = cmp1->next; + cmp2 = cmp2->next; + + if (cmp1 == NULL && cmp2 == NULL) + break; + if (cmp1 == NULL || cmp2 == NULL) + return false; + } + + return true; +} + + +/* Compare two typespecs, recursively if necessary. */ + +bool +gfc_compare_types (gfc_typespec *ts1, gfc_typespec *ts2) +{ + /* See if one of the typespecs is a BT_VOID, which is what is being used + to allow the funcs like c_f_pointer to accept any pointer type. + TODO: Possibly should narrow this to just the one typespec coming in + that is for the formal arg, but oh well. */ + if (ts1->type == BT_VOID || ts2->type == BT_VOID) + return true; + + /* Special case for our C interop types. FIXME: There should be a + better way of doing this. When ISO C binding is cleared up, + this can probably be removed. See PR 57048. */ + + if (((ts1->type == BT_INTEGER && ts2->type == BT_DERIVED) + || (ts1->type == BT_DERIVED && ts2->type == BT_INTEGER)) + && ts1->u.derived && ts2->u.derived + && ts1->u.derived == ts2->u.derived) + return true; + + /* The _data component is not always present, therefore check for its + presence before assuming, that its derived->attr is available. + When the _data component is not present, then nevertheless the + unlimited_polymorphic flag may be set in the derived type's attr. */ + if (ts1->type == BT_CLASS && ts1->u.derived->components + && ((ts1->u.derived->attr.is_class + && ts1->u.derived->components->ts.u.derived->attr + .unlimited_polymorphic) + || ts1->u.derived->attr.unlimited_polymorphic)) + return true; + + /* F2003: C717 */ + if (ts2->type == BT_CLASS && ts1->type == BT_DERIVED + && ts2->u.derived->components + && ((ts2->u.derived->attr.is_class + && ts2->u.derived->components->ts.u.derived->attr + .unlimited_polymorphic) + || ts2->u.derived->attr.unlimited_polymorphic) + && (ts1->u.derived->attr.sequence || ts1->u.derived->attr.is_bind_c)) + return true; + + if (ts1->type != ts2->type + && ((ts1->type != BT_DERIVED && ts1->type != BT_CLASS) + || (ts2->type != BT_DERIVED && ts2->type != BT_CLASS))) + return false; + + if (ts1->type == BT_UNION) + return compare_union_types (ts1->u.derived, ts2->u.derived); + + if (ts1->type != BT_DERIVED && ts1->type != BT_CLASS) + return (ts1->kind == ts2->kind); + + /* Compare derived types. */ + return gfc_type_compatible (ts1, ts2); +} + + +static bool +compare_type (gfc_symbol *s1, gfc_symbol *s2) +{ + if (s2->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK)) + return true; + + return gfc_compare_types (&s1->ts, &s2->ts) || s2->ts.type == BT_ASSUMED; +} + + +static bool +compare_type_characteristics (gfc_symbol *s1, gfc_symbol *s2) +{ + /* TYPE and CLASS of the same declared type are type compatible, + but have different characteristics. */ + if ((s1->ts.type == BT_CLASS && s2->ts.type == BT_DERIVED) + || (s1->ts.type == BT_DERIVED && s2->ts.type == BT_CLASS)) + return false; + + return compare_type (s1, s2); +} + + +static bool +compare_rank (gfc_symbol *s1, gfc_symbol *s2) +{ + gfc_array_spec *as1, *as2; + int r1, r2; + + if (s2->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK)) + return true; + + as1 = (s1->ts.type == BT_CLASS + && !s1->ts.u.derived->attr.unlimited_polymorphic) + ? CLASS_DATA (s1)->as : s1->as; + as2 = (s2->ts.type == BT_CLASS + && !s2->ts.u.derived->attr.unlimited_polymorphic) + ? CLASS_DATA (s2)->as : s2->as; + + r1 = as1 ? as1->rank : 0; + r2 = as2 ? as2->rank : 0; + + if (r1 != r2 && (!as2 || as2->type != AS_ASSUMED_RANK)) + return false; /* Ranks differ. */ + + return true; +} + + +/* Given two symbols that are formal arguments, compare their ranks + and types. Returns true if they have the same rank and type, + false otherwise. */ + +static bool +compare_type_rank (gfc_symbol *s1, gfc_symbol *s2) +{ + return compare_type (s1, s2) && compare_rank (s1, s2); +} + + +/* Given two symbols that are formal arguments, compare their types + and rank and their formal interfaces if they are both dummy + procedures. Returns true if the same, false if different. */ + +static bool +compare_type_rank_if (gfc_symbol *s1, gfc_symbol *s2) +{ + if (s1 == NULL || s2 == NULL) + return (s1 == s2); + + if (s1 == s2) + return true; + + if (s1->attr.flavor != FL_PROCEDURE && s2->attr.flavor != FL_PROCEDURE) + return compare_type_rank (s1, s2); + + if (s1->attr.flavor != FL_PROCEDURE || s2->attr.flavor != FL_PROCEDURE) + return false; + + /* At this point, both symbols are procedures. It can happen that + external procedures are compared, where one is identified by usage + to be a function or subroutine but the other is not. Check TKR + nonetheless for these cases. */ + if (s1->attr.function == 0 && s1->attr.subroutine == 0) + return s1->attr.external ? compare_type_rank (s1, s2) : false; + + if (s2->attr.function == 0 && s2->attr.subroutine == 0) + return s2->attr.external ? compare_type_rank (s1, s2) : false; + + /* Now the type of procedure has been identified. */ + if (s1->attr.function != s2->attr.function + || s1->attr.subroutine != s2->attr.subroutine) + return false; + + if (s1->attr.function && !compare_type_rank (s1, s2)) + return false; + + /* Originally, gfortran recursed here to check the interfaces of passed + procedures. This is explicitly not required by the standard. */ + return true; +} + + +/* Given a formal argument list and a keyword name, search the list + for that keyword. Returns the correct symbol node if found, NULL + if not found. */ + +static gfc_symbol * +find_keyword_arg (const char *name, gfc_formal_arglist *f) +{ + for (; f; f = f->next) + if (strcmp (f->sym->name, name) == 0) + return f->sym; + + return NULL; +} + + +/******** Interface checking subroutines **********/ + + +/* Given an operator interface and the operator, make sure that all + interfaces for that operator are legal. */ + +bool +gfc_check_operator_interface (gfc_symbol *sym, gfc_intrinsic_op op, + locus opwhere) +{ + gfc_formal_arglist *formal; + sym_intent i1, i2; + bt t1, t2; + int args, r1, r2, k1, k2; + + gcc_assert (sym); + + args = 0; + t1 = t2 = BT_UNKNOWN; + i1 = i2 = INTENT_UNKNOWN; + r1 = r2 = -1; + k1 = k2 = -1; + + for (formal = gfc_sym_get_dummy_args (sym); formal; formal = formal->next) + { + gfc_symbol *fsym = formal->sym; + if (fsym == NULL) + { + gfc_error ("Alternate return cannot appear in operator " + "interface at %L", &sym->declared_at); + return false; + } + if (args == 0) + { + t1 = fsym->ts.type; + i1 = fsym->attr.intent; + r1 = (fsym->as != NULL) ? fsym->as->rank : 0; + k1 = fsym->ts.kind; + } + if (args == 1) + { + t2 = fsym->ts.type; + i2 = fsym->attr.intent; + r2 = (fsym->as != NULL) ? fsym->as->rank : 0; + k2 = fsym->ts.kind; + } + args++; + } + + /* Only +, - and .not. can be unary operators. + .not. cannot be a binary operator. */ + if (args == 0 || args > 2 || (args == 1 && op != INTRINSIC_PLUS + && op != INTRINSIC_MINUS + && op != INTRINSIC_NOT) + || (args == 2 && op == INTRINSIC_NOT)) + { + if (op == INTRINSIC_ASSIGN) + gfc_error ("Assignment operator interface at %L must have " + "two arguments", &sym->declared_at); + else + gfc_error ("Operator interface at %L has the wrong number of arguments", + &sym->declared_at); + return false; + } + + /* Check that intrinsics are mapped to functions, except + INTRINSIC_ASSIGN which should map to a subroutine. */ + if (op == INTRINSIC_ASSIGN) + { + gfc_formal_arglist *dummy_args; + + if (!sym->attr.subroutine) + { + gfc_error ("Assignment operator interface at %L must be " + "a SUBROUTINE", &sym->declared_at); + return false; + } + + /* Allowed are (per F2003, 12.3.2.1.2 Defined assignments): + - First argument an array with different rank than second, + - First argument is a scalar and second an array, + - Types and kinds do not conform, or + - First argument is of derived type. */ + dummy_args = gfc_sym_get_dummy_args (sym); + if (dummy_args->sym->ts.type != BT_DERIVED + && dummy_args->sym->ts.type != BT_CLASS + && (r2 == 0 || r1 == r2) + && (dummy_args->sym->ts.type == dummy_args->next->sym->ts.type + || (gfc_numeric_ts (&dummy_args->sym->ts) + && gfc_numeric_ts (&dummy_args->next->sym->ts)))) + { + gfc_error ("Assignment operator interface at %L must not redefine " + "an INTRINSIC type assignment", &sym->declared_at); + return false; + } + } + else + { + if (!sym->attr.function) + { + gfc_error ("Intrinsic operator interface at %L must be a FUNCTION", + &sym->declared_at); + return false; + } + } + + /* Check intents on operator interfaces. */ + if (op == INTRINSIC_ASSIGN) + { + if (i1 != INTENT_OUT && i1 != INTENT_INOUT) + { + gfc_error ("First argument of defined assignment at %L must be " + "INTENT(OUT) or INTENT(INOUT)", &sym->declared_at); + return false; + } + + if (i2 != INTENT_IN) + { + gfc_error ("Second argument of defined assignment at %L must be " + "INTENT(IN)", &sym->declared_at); + return false; + } + } + else + { + if (i1 != INTENT_IN) + { + gfc_error ("First argument of operator interface at %L must be " + "INTENT(IN)", &sym->declared_at); + return false; + } + + if (args == 2 && i2 != INTENT_IN) + { + gfc_error ("Second argument of operator interface at %L must be " + "INTENT(IN)", &sym->declared_at); + return false; + } + } + + /* From now on, all we have to do is check that the operator definition + doesn't conflict with an intrinsic operator. The rules for this + game are defined in 7.1.2 and 7.1.3 of both F95 and F2003 standards, + as well as 12.3.2.1.1 of Fortran 2003: + + "If the operator is an intrinsic-operator (R310), the number of + function arguments shall be consistent with the intrinsic uses of + that operator, and the types, kind type parameters, or ranks of the + dummy arguments shall differ from those required for the intrinsic + operation (7.1.2)." */ + +#define IS_NUMERIC_TYPE(t) \ + ((t) == BT_INTEGER || (t) == BT_REAL || (t) == BT_COMPLEX) + + /* Unary ops are easy, do them first. */ + if (op == INTRINSIC_NOT) + { + if (t1 == BT_LOGICAL) + goto bad_repl; + else + return true; + } + + if (args == 1 && (op == INTRINSIC_PLUS || op == INTRINSIC_MINUS)) + { + if (IS_NUMERIC_TYPE (t1)) + goto bad_repl; + else + return true; + } + + /* Character intrinsic operators have same character kind, thus + operator definitions with operands of different character kinds + are always safe. */ + if (t1 == BT_CHARACTER && t2 == BT_CHARACTER && k1 != k2) + return true; + + /* Intrinsic operators always perform on arguments of same rank, + so different ranks is also always safe. (rank == 0) is an exception + to that, because all intrinsic operators are elemental. */ + if (r1 != r2 && r1 != 0 && r2 != 0) + return true; + + switch (op) + { + case INTRINSIC_EQ: + case INTRINSIC_EQ_OS: + case INTRINSIC_NE: + case INTRINSIC_NE_OS: + if (t1 == BT_CHARACTER && t2 == BT_CHARACTER) + goto bad_repl; + /* Fall through. */ + + case INTRINSIC_PLUS: + case INTRINSIC_MINUS: + case INTRINSIC_TIMES: + case INTRINSIC_DIVIDE: + case INTRINSIC_POWER: + if (IS_NUMERIC_TYPE (t1) && IS_NUMERIC_TYPE (t2)) + goto bad_repl; + break; + + case INTRINSIC_GT: + case INTRINSIC_GT_OS: + case INTRINSIC_GE: + case INTRINSIC_GE_OS: + case INTRINSIC_LT: + case INTRINSIC_LT_OS: + case INTRINSIC_LE: + case INTRINSIC_LE_OS: + if (t1 == BT_CHARACTER && t2 == BT_CHARACTER) + goto bad_repl; + if ((t1 == BT_INTEGER || t1 == BT_REAL) + && (t2 == BT_INTEGER || t2 == BT_REAL)) + goto bad_repl; + break; + + case INTRINSIC_CONCAT: + if (t1 == BT_CHARACTER && t2 == BT_CHARACTER) + goto bad_repl; + break; + + case INTRINSIC_AND: + case INTRINSIC_OR: + case INTRINSIC_EQV: + case INTRINSIC_NEQV: + if (t1 == BT_LOGICAL && t2 == BT_LOGICAL) + goto bad_repl; + break; + + default: + break; + } + + return true; + +#undef IS_NUMERIC_TYPE + +bad_repl: + gfc_error ("Operator interface at %L conflicts with intrinsic interface", + &opwhere); + return false; +} + + +/* Given a pair of formal argument lists, we see if the two lists can + be distinguished by counting the number of nonoptional arguments of + a given type/rank in f1 and seeing if there are less then that + number of those arguments in f2 (including optional arguments). + Since this test is asymmetric, it has to be called twice to make it + symmetric. Returns nonzero if the argument lists are incompatible + by this test. This subroutine implements rule 1 of section F03:16.2.3. + 'p1' and 'p2' are the PASS arguments of both procedures (if applicable). */ + +static bool +count_types_test (gfc_formal_arglist *f1, gfc_formal_arglist *f2, + const char *p1, const char *p2) +{ + int ac1, ac2, i, j, k, n1; + gfc_formal_arglist *f; + + typedef struct + { + int flag; + gfc_symbol *sym; + } + arginfo; + + arginfo *arg; + + n1 = 0; + + for (f = f1; f; f = f->next) + n1++; + + /* Build an array of integers that gives the same integer to + arguments of the same type/rank. */ + arg = XCNEWVEC (arginfo, n1); + + f = f1; + for (i = 0; i < n1; i++, f = f->next) + { + arg[i].flag = -1; + arg[i].sym = f->sym; + } + + k = 0; + + for (i = 0; i < n1; i++) + { + if (arg[i].flag != -1) + continue; + + if (arg[i].sym && (arg[i].sym->attr.optional + || (p1 && strcmp (arg[i].sym->name, p1) == 0))) + continue; /* Skip OPTIONAL and PASS arguments. */ + + arg[i].flag = k; + + /* Find other non-optional, non-pass arguments of the same type/rank. */ + for (j = i + 1; j < n1; j++) + if ((arg[j].sym == NULL + || !(arg[j].sym->attr.optional + || (p1 && strcmp (arg[j].sym->name, p1) == 0))) + && (compare_type_rank_if (arg[i].sym, arg[j].sym) + || compare_type_rank_if (arg[j].sym, arg[i].sym))) + arg[j].flag = k; + + k++; + } + + /* Now loop over each distinct type found in f1. */ + k = 0; + bool rc = false; + + for (i = 0; i < n1; i++) + { + if (arg[i].flag != k) + continue; + + ac1 = 1; + for (j = i + 1; j < n1; j++) + if (arg[j].flag == k) + ac1++; + + /* Count the number of non-pass arguments in f2 with that type, + including those that are optional. */ + ac2 = 0; + + for (f = f2; f; f = f->next) + if ((!p2 || strcmp (f->sym->name, p2) != 0) + && (compare_type_rank_if (arg[i].sym, f->sym) + || compare_type_rank_if (f->sym, arg[i].sym))) + ac2++; + + if (ac1 > ac2) + { + rc = true; + break; + } + + k++; + } + + free (arg); + + return rc; +} + + +/* Returns true if two dummy arguments are distinguishable due to their POINTER + and ALLOCATABLE attributes according to F2018 section 15.4.3.4.5 (3). + The function is asymmetric wrt to the arguments s1 and s2 and should always + be called twice (with flipped arguments in the second call). */ + +static bool +compare_ptr_alloc(gfc_symbol *s1, gfc_symbol *s2) +{ + /* Is s1 allocatable? */ + const bool a1 = s1->ts.type == BT_CLASS ? + CLASS_DATA(s1)->attr.allocatable : s1->attr.allocatable; + /* Is s2 a pointer? */ + const bool p2 = s2->ts.type == BT_CLASS ? + CLASS_DATA(s2)->attr.class_pointer : s2->attr.pointer; + return a1 && p2 && (s2->attr.intent != INTENT_IN); +} + + +/* Perform the correspondence test in rule (3) of F08:C1215. + Returns zero if no argument is found that satisfies this rule, + nonzero otherwise. 'p1' and 'p2' are the PASS arguments of both procedures + (if applicable). + + This test is also not symmetric in f1 and f2 and must be called + twice. This test finds problems caused by sorting the actual + argument list with keywords. For example: + + INTERFACE FOO + SUBROUTINE F1(A, B) + INTEGER :: A ; REAL :: B + END SUBROUTINE F1 + + SUBROUTINE F2(B, A) + INTEGER :: A ; REAL :: B + END SUBROUTINE F1 + END INTERFACE FOO + + At this point, 'CALL FOO(A=1, B=1.0)' is ambiguous. */ + +static bool +generic_correspondence (gfc_formal_arglist *f1, gfc_formal_arglist *f2, + const char *p1, const char *p2) +{ + gfc_formal_arglist *f2_save, *g; + gfc_symbol *sym; + + f2_save = f2; + + while (f1) + { + if (!f1->sym || f1->sym->attr.optional) + goto next; + + if (p1 && strcmp (f1->sym->name, p1) == 0) + f1 = f1->next; + if (f2 && p2 && strcmp (f2->sym->name, p2) == 0) + f2 = f2->next; + + if (f2 != NULL && (compare_type_rank (f1->sym, f2->sym) + || compare_type_rank (f2->sym, f1->sym)) + && !((gfc_option.allow_std & GFC_STD_F2008) + && (compare_ptr_alloc(f1->sym, f2->sym) + || compare_ptr_alloc(f2->sym, f1->sym)))) + goto next; + + /* Now search for a disambiguating keyword argument starting at + the current non-match. */ + for (g = f1; g; g = g->next) + { + if (g->sym->attr.optional || (p1 && strcmp (g->sym->name, p1) == 0)) + continue; + + sym = find_keyword_arg (g->sym->name, f2_save); + if (sym == NULL || !compare_type_rank (g->sym, sym) + || ((gfc_option.allow_std & GFC_STD_F2008) + && (compare_ptr_alloc(sym, g->sym) + || compare_ptr_alloc(g->sym, sym)))) + return true; + } + + next: + if (f1 != NULL) + f1 = f1->next; + if (f2 != NULL) + f2 = f2->next; + } + + return false; +} + + +static int +symbol_rank (gfc_symbol *sym) +{ + gfc_array_spec *as = NULL; + + if (sym->ts.type == BT_CLASS && CLASS_DATA (sym)) + as = CLASS_DATA (sym)->as; + else + as = sym->as; + + return as ? as->rank : 0; +} + + +/* Check if the characteristics of two dummy arguments match, + cf. F08:12.3.2. */ + +bool +gfc_check_dummy_characteristics (gfc_symbol *s1, gfc_symbol *s2, + bool type_must_agree, char *errmsg, + int err_len) +{ + if (s1 == NULL || s2 == NULL) + return s1 == s2 ? true : false; + + /* Check type and rank. */ + if (type_must_agree) + { + if (!compare_type_characteristics (s1, s2) + || !compare_type_characteristics (s2, s1)) + { + snprintf (errmsg, err_len, "Type mismatch in argument '%s' (%s/%s)", + s1->name, gfc_dummy_typename (&s1->ts), + gfc_dummy_typename (&s2->ts)); + return false; + } + if (!compare_rank (s1, s2)) + { + snprintf (errmsg, err_len, "Rank mismatch in argument '%s' (%i/%i)", + s1->name, symbol_rank (s1), symbol_rank (s2)); + return false; + } + } + + /* Check INTENT. */ + if (s1->attr.intent != s2->attr.intent && !s1->attr.artificial + && !s2->attr.artificial) + { + snprintf (errmsg, err_len, "INTENT mismatch in argument '%s'", + s1->name); + return false; + } + + /* Check OPTIONAL attribute. */ + if (s1->attr.optional != s2->attr.optional) + { + snprintf (errmsg, err_len, "OPTIONAL mismatch in argument '%s'", + s1->name); + return false; + } + + /* Check ALLOCATABLE attribute. */ + if (s1->attr.allocatable != s2->attr.allocatable) + { + snprintf (errmsg, err_len, "ALLOCATABLE mismatch in argument '%s'", + s1->name); + return false; + } + + /* Check POINTER attribute. */ + if (s1->attr.pointer != s2->attr.pointer) + { + snprintf (errmsg, err_len, "POINTER mismatch in argument '%s'", + s1->name); + return false; + } + + /* Check TARGET attribute. */ + if (s1->attr.target != s2->attr.target) + { + snprintf (errmsg, err_len, "TARGET mismatch in argument '%s'", + s1->name); + return false; + } + + /* Check ASYNCHRONOUS attribute. */ + if (s1->attr.asynchronous != s2->attr.asynchronous) + { + snprintf (errmsg, err_len, "ASYNCHRONOUS mismatch in argument '%s'", + s1->name); + return false; + } + + /* Check CONTIGUOUS attribute. */ + if (s1->attr.contiguous != s2->attr.contiguous) + { + snprintf (errmsg, err_len, "CONTIGUOUS mismatch in argument '%s'", + s1->name); + return false; + } + + /* Check VALUE attribute. */ + if (s1->attr.value != s2->attr.value) + { + snprintf (errmsg, err_len, "VALUE mismatch in argument '%s'", + s1->name); + return false; + } + + /* Check VOLATILE attribute. */ + if (s1->attr.volatile_ != s2->attr.volatile_) + { + snprintf (errmsg, err_len, "VOLATILE mismatch in argument '%s'", + s1->name); + return false; + } + + /* Check interface of dummy procedures. */ + if (s1->attr.flavor == FL_PROCEDURE) + { + char err[200]; + if (!gfc_compare_interfaces (s1, s2, s2->name, 0, 1, err, sizeof(err), + NULL, NULL)) + { + snprintf (errmsg, err_len, "Interface mismatch in dummy procedure " + "'%s': %s", s1->name, err); + return false; + } + } + + /* Check string length. */ + if (s1->ts.type == BT_CHARACTER + && s1->ts.u.cl && s1->ts.u.cl->length + && s2->ts.u.cl && s2->ts.u.cl->length) + { + int compval = gfc_dep_compare_expr (s1->ts.u.cl->length, + s2->ts.u.cl->length); + switch (compval) + { + case -1: + case 1: + case -3: + snprintf (errmsg, err_len, "Character length mismatch " + "in argument '%s'", s1->name); + return false; + + case -2: + /* FIXME: Implement a warning for this case. + gfc_warning (0, "Possible character length mismatch in argument %qs", + s1->name);*/ + break; + + case 0: + break; + + default: + gfc_internal_error ("check_dummy_characteristics: Unexpected result " + "%i of gfc_dep_compare_expr", compval); + break; + } + } + + /* Check array shape. */ + if (s1->as && s2->as) + { + int i, compval; + gfc_expr *shape1, *shape2; + + /* Sometimes the ambiguity between deferred shape and assumed shape + does not get resolved in module procedures, where the only explicit + declaration of the dummy is in the interface. */ + if (s1->ns->proc_name && s1->ns->proc_name->attr.module_procedure + && s1->as->type == AS_ASSUMED_SHAPE + && s2->as->type == AS_DEFERRED) + { + s2->as->type = AS_ASSUMED_SHAPE; + for (i = 0; i < s2->as->rank; i++) + if (s1->as->lower[i] != NULL) + s2->as->lower[i] = gfc_copy_expr (s1->as->lower[i]); + } + + if (s1->as->type != s2->as->type) + { + snprintf (errmsg, err_len, "Shape mismatch in argument '%s'", + s1->name); + return false; + } + + if (s1->as->corank != s2->as->corank) + { + snprintf (errmsg, err_len, "Corank mismatch in argument '%s' (%i/%i)", + s1->name, s1->as->corank, s2->as->corank); + return false; + } + + if (s1->as->type == AS_EXPLICIT) + for (i = 0; i < s1->as->rank + MAX (0, s1->as->corank-1); i++) + { + shape1 = gfc_subtract (gfc_copy_expr (s1->as->upper[i]), + gfc_copy_expr (s1->as->lower[i])); + shape2 = gfc_subtract (gfc_copy_expr (s2->as->upper[i]), + gfc_copy_expr (s2->as->lower[i])); + compval = gfc_dep_compare_expr (shape1, shape2); + gfc_free_expr (shape1); + gfc_free_expr (shape2); + switch (compval) + { + case -1: + case 1: + case -3: + if (i < s1->as->rank) + snprintf (errmsg, err_len, "Shape mismatch in dimension %i of" + " argument '%s'", i + 1, s1->name); + else + snprintf (errmsg, err_len, "Shape mismatch in codimension %i " + "of argument '%s'", i - s1->as->rank + 1, s1->name); + return false; + + case -2: + /* FIXME: Implement a warning for this case. + gfc_warning (0, "Possible shape mismatch in argument %qs", + s1->name);*/ + break; + + case 0: + break; + + default: + gfc_internal_error ("check_dummy_characteristics: Unexpected " + "result %i of gfc_dep_compare_expr", + compval); + break; + } + } + } + + return true; +} + + +/* Check if the characteristics of two function results match, + cf. F08:12.3.3. */ + +bool +gfc_check_result_characteristics (gfc_symbol *s1, gfc_symbol *s2, + char *errmsg, int err_len) +{ + gfc_symbol *r1, *r2; + + if (s1->ts.interface && s1->ts.interface->result) + r1 = s1->ts.interface->result; + else + r1 = s1->result ? s1->result : s1; + + if (s2->ts.interface && s2->ts.interface->result) + r2 = s2->ts.interface->result; + else + r2 = s2->result ? s2->result : s2; + + if (r1->ts.type == BT_UNKNOWN) + return true; + + /* Check type and rank. */ + if (!compare_type_characteristics (r1, r2)) + { + snprintf (errmsg, err_len, "Type mismatch in function result (%s/%s)", + gfc_typename (&r1->ts), gfc_typename (&r2->ts)); + return false; + } + if (!compare_rank (r1, r2)) + { + snprintf (errmsg, err_len, "Rank mismatch in function result (%i/%i)", + symbol_rank (r1), symbol_rank (r2)); + return false; + } + + /* Check ALLOCATABLE attribute. */ + if (r1->attr.allocatable != r2->attr.allocatable) + { + snprintf (errmsg, err_len, "ALLOCATABLE attribute mismatch in " + "function result"); + return false; + } + + /* Check POINTER attribute. */ + if (r1->attr.pointer != r2->attr.pointer) + { + snprintf (errmsg, err_len, "POINTER attribute mismatch in " + "function result"); + return false; + } + + /* Check CONTIGUOUS attribute. */ + if (r1->attr.contiguous != r2->attr.contiguous) + { + snprintf (errmsg, err_len, "CONTIGUOUS attribute mismatch in " + "function result"); + return false; + } + + /* Check PROCEDURE POINTER attribute. */ + if (r1 != s1 && r1->attr.proc_pointer != r2->attr.proc_pointer) + { + snprintf (errmsg, err_len, "PROCEDURE POINTER mismatch in " + "function result"); + return false; + } + + /* Check string length. */ + if (r1->ts.type == BT_CHARACTER && r1->ts.u.cl && r2->ts.u.cl) + { + if (r1->ts.deferred != r2->ts.deferred) + { + snprintf (errmsg, err_len, "Character length mismatch " + "in function result"); + return false; + } + + if (r1->ts.u.cl->length && r2->ts.u.cl->length) + { + int compval = gfc_dep_compare_expr (r1->ts.u.cl->length, + r2->ts.u.cl->length); + switch (compval) + { + case -1: + case 1: + case -3: + snprintf (errmsg, err_len, "Character length mismatch " + "in function result"); + return false; + + case -2: + /* FIXME: Implement a warning for this case. + snprintf (errmsg, err_len, "Possible character length mismatch " + "in function result");*/ + break; + + case 0: + break; + + default: + gfc_internal_error ("check_result_characteristics (1): Unexpected " + "result %i of gfc_dep_compare_expr", compval); + break; + } + } + } + + /* Check array shape. */ + if (!r1->attr.allocatable && !r1->attr.pointer && r1->as && r2->as) + { + int i, compval; + gfc_expr *shape1, *shape2; + + if (r1->as->type != r2->as->type) + { + snprintf (errmsg, err_len, "Shape mismatch in function result"); + return false; + } + + if (r1->as->type == AS_EXPLICIT) + for (i = 0; i < r1->as->rank + r1->as->corank; i++) + { + shape1 = gfc_subtract (gfc_copy_expr (r1->as->upper[i]), + gfc_copy_expr (r1->as->lower[i])); + shape2 = gfc_subtract (gfc_copy_expr (r2->as->upper[i]), + gfc_copy_expr (r2->as->lower[i])); + compval = gfc_dep_compare_expr (shape1, shape2); + gfc_free_expr (shape1); + gfc_free_expr (shape2); + switch (compval) + { + case -1: + case 1: + case -3: + snprintf (errmsg, err_len, "Shape mismatch in dimension %i of " + "function result", i + 1); + return false; + + case -2: + /* FIXME: Implement a warning for this case. + gfc_warning (0, "Possible shape mismatch in return value");*/ + break; + + case 0: + break; + + default: + gfc_internal_error ("check_result_characteristics (2): " + "Unexpected result %i of " + "gfc_dep_compare_expr", compval); + break; + } + } + } + + return true; +} + + +/* 'Compare' two formal interfaces associated with a pair of symbols. + We return true if there exists an actual argument list that + would be ambiguous between the two interfaces, zero otherwise. + 'strict_flag' specifies whether all the characteristics are + required to match, which is not the case for ambiguity checks. + 'p1' and 'p2' are the PASS arguments of both procedures (if applicable). */ + +bool +gfc_compare_interfaces (gfc_symbol *s1, gfc_symbol *s2, const char *name2, + int generic_flag, int strict_flag, + char *errmsg, int err_len, + const char *p1, const char *p2, + bool *bad_result_characteristics) +{ + gfc_formal_arglist *f1, *f2; + + gcc_assert (name2 != NULL); + + if (bad_result_characteristics) + *bad_result_characteristics = false; + + if (s1->attr.function && (s2->attr.subroutine + || (!s2->attr.function && s2->ts.type == BT_UNKNOWN + && gfc_get_default_type (name2, s2->ns)->type == BT_UNKNOWN))) + { + if (errmsg != NULL) + snprintf (errmsg, err_len, "'%s' is not a function", name2); + return false; + } + + if (s1->attr.subroutine && s2->attr.function) + { + if (errmsg != NULL) + snprintf (errmsg, err_len, "'%s' is not a subroutine", name2); + return false; + } + + /* Do strict checks on all characteristics + (for dummy procedures and procedure pointer assignments). */ + if (!generic_flag && strict_flag) + { + if (s1->attr.function && s2->attr.function) + { + /* If both are functions, check result characteristics. */ + if (!gfc_check_result_characteristics (s1, s2, errmsg, err_len) + || !gfc_check_result_characteristics (s2, s1, errmsg, err_len)) + { + if (bad_result_characteristics) + *bad_result_characteristics = true; + return false; + } + } + + if (s1->attr.pure && !s2->attr.pure) + { + snprintf (errmsg, err_len, "Mismatch in PURE attribute"); + return false; + } + if (s1->attr.elemental && !s2->attr.elemental) + { + snprintf (errmsg, err_len, "Mismatch in ELEMENTAL attribute"); + return false; + } + } + + if (s1->attr.if_source == IFSRC_UNKNOWN + || s2->attr.if_source == IFSRC_UNKNOWN) + return true; + + f1 = gfc_sym_get_dummy_args (s1); + f2 = gfc_sym_get_dummy_args (s2); + + /* Special case: No arguments. */ + if (f1 == NULL && f2 == NULL) + return true; + + if (generic_flag) + { + if (count_types_test (f1, f2, p1, p2) + || count_types_test (f2, f1, p2, p1)) + return false; + + /* Special case: alternate returns. If both f1->sym and f2->sym are + NULL, then the leading formal arguments are alternate returns. + The previous conditional should catch argument lists with + different number of argument. */ + if (f1 && f1->sym == NULL && f2 && f2->sym == NULL) + return true; + + if (generic_correspondence (f1, f2, p1, p2) + || generic_correspondence (f2, f1, p2, p1)) + return false; + } + else + /* Perform the abbreviated correspondence test for operators (the + arguments cannot be optional and are always ordered correctly). + This is also done when comparing interfaces for dummy procedures and in + procedure pointer assignments. */ + + for (; f1 || f2; f1 = f1->next, f2 = f2->next) + { + /* Check existence. */ + if (f1 == NULL || f2 == NULL) + { + if (errmsg != NULL) + snprintf (errmsg, err_len, "'%s' has the wrong number of " + "arguments", name2); + return false; + } + + if (strict_flag) + { + /* Check all characteristics. */ + if (!gfc_check_dummy_characteristics (f1->sym, f2->sym, true, + errmsg, err_len)) + return false; + } + else + { + /* Operators: Only check type and rank of arguments. */ + if (!compare_type (f2->sym, f1->sym)) + { + if (errmsg != NULL) + snprintf (errmsg, err_len, "Type mismatch in argument '%s' " + "(%s/%s)", f1->sym->name, + gfc_typename (&f1->sym->ts), + gfc_typename (&f2->sym->ts)); + return false; + } + if (!compare_rank (f2->sym, f1->sym)) + { + if (errmsg != NULL) + snprintf (errmsg, err_len, "Rank mismatch in argument " + "'%s' (%i/%i)", f1->sym->name, + symbol_rank (f1->sym), symbol_rank (f2->sym)); + return false; + } + if ((gfc_option.allow_std & GFC_STD_F2008) + && (compare_ptr_alloc(f1->sym, f2->sym) + || compare_ptr_alloc(f2->sym, f1->sym))) + { + if (errmsg != NULL) + snprintf (errmsg, err_len, "Mismatching POINTER/ALLOCATABLE " + "attribute in argument '%s' ", f1->sym->name); + return false; + } + } + } + + return true; +} + + +/* Given a pointer to an interface pointer, remove duplicate + interfaces and make sure that all symbols are either functions + or subroutines, and all of the same kind. Returns true if + something goes wrong. */ + +static bool +check_interface0 (gfc_interface *p, const char *interface_name) +{ + gfc_interface *psave, *q, *qlast; + + psave = p; + for (; p; p = p->next) + { + /* Make sure all symbols in the interface have been defined as + functions or subroutines. */ + if (((!p->sym->attr.function && !p->sym->attr.subroutine) + || !p->sym->attr.if_source) + && !gfc_fl_struct (p->sym->attr.flavor)) + { + const char *guessed + = gfc_lookup_function_fuzzy (p->sym->name, p->sym->ns->sym_root); + + if (p->sym->attr.external) + if (guessed) + gfc_error ("Procedure %qs in %s at %L has no explicit interface" + "; did you mean %qs?", + p->sym->name, interface_name, &p->sym->declared_at, + guessed); + else + gfc_error ("Procedure %qs in %s at %L has no explicit interface", + p->sym->name, interface_name, &p->sym->declared_at); + else + if (guessed) + gfc_error ("Procedure %qs in %s at %L is neither function nor " + "subroutine; did you mean %qs?", p->sym->name, + interface_name, &p->sym->declared_at, guessed); + else + gfc_error ("Procedure %qs in %s at %L is neither function nor " + "subroutine", p->sym->name, interface_name, + &p->sym->declared_at); + return true; + } + + /* Verify that procedures are either all SUBROUTINEs or all FUNCTIONs. */ + if ((psave->sym->attr.function && !p->sym->attr.function + && !gfc_fl_struct (p->sym->attr.flavor)) + || (psave->sym->attr.subroutine && !p->sym->attr.subroutine)) + { + if (!gfc_fl_struct (p->sym->attr.flavor)) + gfc_error ("In %s at %L procedures must be either all SUBROUTINEs" + " or all FUNCTIONs", interface_name, + &p->sym->declared_at); + else if (p->sym->attr.flavor == FL_DERIVED) + gfc_error ("In %s at %L procedures must be all FUNCTIONs as the " + "generic name is also the name of a derived type", + interface_name, &p->sym->declared_at); + return true; + } + + /* F2003, C1207. F2008, C1207. */ + if (p->sym->attr.proc == PROC_INTERNAL + && !gfc_notify_std (GFC_STD_F2008, "Internal procedure " + "%qs in %s at %L", p->sym->name, + interface_name, &p->sym->declared_at)) + return true; + } + p = psave; + + /* Remove duplicate interfaces in this interface list. */ + for (; p; p = p->next) + { + qlast = p; + + for (q = p->next; q;) + { + if (p->sym != q->sym) + { + qlast = q; + q = q->next; + } + else + { + /* Duplicate interface. */ + qlast->next = q->next; + free (q); + q = qlast->next; + } + } + } + + return false; +} + + +/* Check lists of interfaces to make sure that no two interfaces are + ambiguous. Duplicate interfaces (from the same symbol) are OK here. */ + +static bool +check_interface1 (gfc_interface *p, gfc_interface *q0, + int generic_flag, const char *interface_name, + bool referenced) +{ + gfc_interface *q; + for (; p; p = p->next) + for (q = q0; q; q = q->next) + { + if (p->sym == q->sym) + continue; /* Duplicates OK here. */ + + if (p->sym->name == q->sym->name && p->sym->module == q->sym->module) + continue; + + if (!gfc_fl_struct (p->sym->attr.flavor) + && !gfc_fl_struct (q->sym->attr.flavor) + && gfc_compare_interfaces (p->sym, q->sym, q->sym->name, + generic_flag, 0, NULL, 0, NULL, NULL)) + { + if (referenced) + gfc_error ("Ambiguous interfaces in %s for %qs at %L " + "and %qs at %L", interface_name, + q->sym->name, &q->sym->declared_at, + p->sym->name, &p->sym->declared_at); + else if (!p->sym->attr.use_assoc && q->sym->attr.use_assoc) + gfc_warning (0, "Ambiguous interfaces in %s for %qs at %L " + "and %qs at %L", interface_name, + q->sym->name, &q->sym->declared_at, + p->sym->name, &p->sym->declared_at); + else + gfc_warning (0, "Although not referenced, %qs has ambiguous " + "interfaces at %L", interface_name, &p->where); + return true; + } + } + return false; +} + + +/* Check the generic and operator interfaces of symbols to make sure + that none of the interfaces conflict. The check has to be done + after all of the symbols are actually loaded. */ + +static void +check_sym_interfaces (gfc_symbol *sym) +{ + /* Provide sufficient space to hold "generic interface 'symbol.symbol'". */ + char interface_name[2*GFC_MAX_SYMBOL_LEN+2 + sizeof("generic interface ''")]; + gfc_interface *p; + + if (sym->ns != gfc_current_ns) + return; + + if (sym->generic != NULL) + { + size_t len = strlen (sym->name) + sizeof("generic interface ''"); + gcc_assert (len < sizeof (interface_name)); + sprintf (interface_name, "generic interface '%s'", sym->name); + if (check_interface0 (sym->generic, interface_name)) + return; + + for (p = sym->generic; p; p = p->next) + { + if (p->sym->attr.mod_proc + && !p->sym->attr.module_procedure + && (p->sym->attr.if_source != IFSRC_DECL + || p->sym->attr.procedure)) + { + gfc_error ("%qs at %L is not a module procedure", + p->sym->name, &p->where); + return; + } + } + + /* Originally, this test was applied to host interfaces too; + this is incorrect since host associated symbols, from any + source, cannot be ambiguous with local symbols. */ + check_interface1 (sym->generic, sym->generic, 1, interface_name, + sym->attr.referenced || !sym->attr.use_assoc); + } +} + + +static void +check_uop_interfaces (gfc_user_op *uop) +{ + char interface_name[GFC_MAX_SYMBOL_LEN + sizeof("operator interface ''")]; + gfc_user_op *uop2; + gfc_namespace *ns; + + sprintf (interface_name, "operator interface '%s'", uop->name); + if (check_interface0 (uop->op, interface_name)) + return; + + for (ns = gfc_current_ns; ns; ns = ns->parent) + { + uop2 = gfc_find_uop (uop->name, ns); + if (uop2 == NULL) + continue; + + check_interface1 (uop->op, uop2->op, 0, + interface_name, true); + } +} + +/* Given an intrinsic op, return an equivalent op if one exists, + or INTRINSIC_NONE otherwise. */ + +gfc_intrinsic_op +gfc_equivalent_op (gfc_intrinsic_op op) +{ + switch(op) + { + case INTRINSIC_EQ: + return INTRINSIC_EQ_OS; + + case INTRINSIC_EQ_OS: + return INTRINSIC_EQ; + + case INTRINSIC_NE: + return INTRINSIC_NE_OS; + + case INTRINSIC_NE_OS: + return INTRINSIC_NE; + + case INTRINSIC_GT: + return INTRINSIC_GT_OS; + + case INTRINSIC_GT_OS: + return INTRINSIC_GT; + + case INTRINSIC_GE: + return INTRINSIC_GE_OS; + + case INTRINSIC_GE_OS: + return INTRINSIC_GE; + + case INTRINSIC_LT: + return INTRINSIC_LT_OS; + + case INTRINSIC_LT_OS: + return INTRINSIC_LT; + + case INTRINSIC_LE: + return INTRINSIC_LE_OS; + + case INTRINSIC_LE_OS: + return INTRINSIC_LE; + + default: + return INTRINSIC_NONE; + } +} + +/* For the namespace, check generic, user operator and intrinsic + operator interfaces for consistency and to remove duplicate + interfaces. We traverse the whole namespace, counting on the fact + that most symbols will not have generic or operator interfaces. */ + +void +gfc_check_interfaces (gfc_namespace *ns) +{ + gfc_namespace *old_ns, *ns2; + char interface_name[GFC_MAX_SYMBOL_LEN + sizeof("intrinsic '' operator")]; + int i; + + old_ns = gfc_current_ns; + gfc_current_ns = ns; + + gfc_traverse_ns (ns, check_sym_interfaces); + + gfc_traverse_user_op (ns, check_uop_interfaces); + + for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++) + { + if (i == INTRINSIC_USER) + continue; + + if (i == INTRINSIC_ASSIGN) + strcpy (interface_name, "intrinsic assignment operator"); + else + sprintf (interface_name, "intrinsic '%s' operator", + gfc_op2string ((gfc_intrinsic_op) i)); + + if (check_interface0 (ns->op[i], interface_name)) + continue; + + if (ns->op[i]) + gfc_check_operator_interface (ns->op[i]->sym, (gfc_intrinsic_op) i, + ns->op[i]->where); + + for (ns2 = ns; ns2; ns2 = ns2->parent) + { + gfc_intrinsic_op other_op; + + if (check_interface1 (ns->op[i], ns2->op[i], 0, + interface_name, true)) + goto done; + + /* i should be gfc_intrinsic_op, but has to be int with this cast + here for stupid C++ compatibility rules. */ + other_op = gfc_equivalent_op ((gfc_intrinsic_op) i); + if (other_op != INTRINSIC_NONE + && check_interface1 (ns->op[i], ns2->op[other_op], + 0, interface_name, true)) + goto done; + } + } + +done: + gfc_current_ns = old_ns; +} + + +/* Given a symbol of a formal argument list and an expression, if the + formal argument is allocatable, check that the actual argument is + allocatable. Returns true if compatible, zero if not compatible. */ + +static bool +compare_allocatable (gfc_symbol *formal, gfc_expr *actual) +{ + if (formal->attr.allocatable + || (formal->ts.type == BT_CLASS && CLASS_DATA (formal)->attr.allocatable)) + { + symbol_attribute attr = gfc_expr_attr (actual); + if (actual->ts.type == BT_CLASS && !attr.class_ok) + return true; + else if (!attr.allocatable) + return false; + } + + return true; +} + + +/* Given a symbol of a formal argument list and an expression, if the + formal argument is a pointer, see if the actual argument is a + pointer. Returns nonzero if compatible, zero if not compatible. */ + +static int +compare_pointer (gfc_symbol *formal, gfc_expr *actual) +{ + symbol_attribute attr; + + if (formal->attr.pointer + || (formal->ts.type == BT_CLASS && CLASS_DATA (formal) + && CLASS_DATA (formal)->attr.class_pointer)) + { + attr = gfc_expr_attr (actual); + + /* Fortran 2008 allows non-pointer actual arguments. */ + if (!attr.pointer && attr.target && formal->attr.intent == INTENT_IN) + return 2; + + if (!attr.pointer) + return 0; + } + + return 1; +} + + +/* Emit clear error messages for rank mismatch. */ + +static void +argument_rank_mismatch (const char *name, locus *where, + int rank1, int rank2, locus *where_formal) +{ + + /* TS 29113, C407b. */ + if (where_formal == NULL) + { + if (rank2 == -1) + gfc_error ("The assumed-rank array at %L requires that the dummy " + "argument %qs has assumed-rank", where, name); + else if (rank1 == 0) + gfc_error_opt (0, "Rank mismatch in argument %qs " + "at %L (scalar and rank-%d)", name, where, rank2); + else if (rank2 == 0) + gfc_error_opt (0, "Rank mismatch in argument %qs " + "at %L (rank-%d and scalar)", name, where, rank1); + else + gfc_error_opt (0, "Rank mismatch in argument %qs " + "at %L (rank-%d and rank-%d)", name, where, rank1, + rank2); + } + else + { + if (rank2 == -1) + /* This is an assumed rank-actual passed to a function without + an explicit interface, which is already diagnosed in + gfc_procedure_use. */ + return; + if (rank1 == 0) + gfc_error_opt (0, "Rank mismatch between actual argument at %L " + "and actual argument at %L (scalar and rank-%d)", + where, where_formal, rank2); + else if (rank2 == 0) + gfc_error_opt (0, "Rank mismatch between actual argument at %L " + "and actual argument at %L (rank-%d and scalar)", + where, where_formal, rank1); + else + gfc_error_opt (0, "Rank mismatch between actual argument at %L " + "and actual argument at %L (rank-%d and rank-%d)", where, + where_formal, rank1, rank2); + } +} + + +/* Under certain conditions, a scalar actual argument can be passed + to an array dummy argument - see F2018, 15.5.2.4, paragraph 14. + This function returns true for these conditions so that an error + or warning for this can be suppressed later. Always return false + for expressions with rank > 0. */ + +bool +maybe_dummy_array_arg (gfc_expr *e) +{ + gfc_symbol *s; + gfc_ref *ref; + bool array_pointer = false; + bool assumed_shape = false; + bool scalar_ref = true; + + if (e->rank > 0) + return false; + + if (e->ts.type == BT_CHARACTER && e->ts.kind == 1) + return true; + + /* If this comes from a constructor, it has been an array element + originally. */ + + if (e->expr_type == EXPR_CONSTANT) + return e->from_constructor; + + if (e->expr_type != EXPR_VARIABLE) + return false; + + s = e->symtree->n.sym; + + if (s->attr.dimension) + { + scalar_ref = false; + array_pointer = s->attr.pointer; + } + + if (s->as && s->as->type == AS_ASSUMED_SHAPE) + assumed_shape = true; + + for (ref=e->ref; ref; ref=ref->next) + { + if (ref->type == REF_COMPONENT) + { + symbol_attribute *attr; + attr = &ref->u.c.component->attr; + if (attr->dimension) + { + array_pointer = attr->pointer; + assumed_shape = false; + scalar_ref = false; + } + else + scalar_ref = true; + } + } + + return !(scalar_ref || array_pointer || assumed_shape); +} + +/* Given a symbol of a formal argument list and an expression, see if + the two are compatible as arguments. Returns true if + compatible, false if not compatible. */ + +static bool +compare_parameter (gfc_symbol *formal, gfc_expr *actual, + int ranks_must_agree, int is_elemental, locus *where) +{ + gfc_ref *ref; + bool rank_check, is_pointer; + char err[200]; + gfc_component *ppc; + bool codimension = false; + + /* If the formal arg has type BT_VOID, it's to one of the iso_c_binding + procs c_f_pointer or c_f_procpointer, and we need to accept most + pointers the user could give us. This should allow that. */ + if (formal->ts.type == BT_VOID) + return true; + + if (formal->ts.type == BT_DERIVED + && formal->ts.u.derived && formal->ts.u.derived->ts.is_iso_c + && actual->ts.type == BT_DERIVED + && actual->ts.u.derived && actual->ts.u.derived->ts.is_iso_c) + return true; + + if (formal->ts.type == BT_CLASS && actual->ts.type == BT_DERIVED) + /* Make sure the vtab symbol is present when + the module variables are generated. */ + gfc_find_derived_vtab (actual->ts.u.derived); + + if (actual->ts.type == BT_PROCEDURE) + { + gfc_symbol *act_sym = actual->symtree->n.sym; + + if (formal->attr.flavor != FL_PROCEDURE) + { + if (where) + gfc_error ("Invalid procedure argument at %L", &actual->where); + return false; + } + + if (!gfc_compare_interfaces (formal, act_sym, act_sym->name, 0, 1, err, + sizeof(err), NULL, NULL)) + { + if (where) + gfc_error_opt (0, "Interface mismatch in dummy procedure %qs at %L:" + " %s", formal->name, &actual->where, err); + return false; + } + + if (formal->attr.function && !act_sym->attr.function) + { + gfc_add_function (&act_sym->attr, act_sym->name, + &act_sym->declared_at); + if (act_sym->ts.type == BT_UNKNOWN + && !gfc_set_default_type (act_sym, 1, act_sym->ns)) + return false; + } + else if (formal->attr.subroutine && !act_sym->attr.subroutine) + gfc_add_subroutine (&act_sym->attr, act_sym->name, + &act_sym->declared_at); + + return true; + } + + ppc = gfc_get_proc_ptr_comp (actual); + if (ppc && ppc->ts.interface) + { + if (!gfc_compare_interfaces (formal, ppc->ts.interface, ppc->name, 0, 1, + err, sizeof(err), NULL, NULL)) + { + if (where) + gfc_error_opt (0, "Interface mismatch in dummy procedure %qs at %L:" + " %s", formal->name, &actual->where, err); + return false; + } + } + + /* F2008, C1241. */ + if (formal->attr.pointer && formal->attr.contiguous + && !gfc_is_simply_contiguous (actual, true, false)) + { + if (where) + gfc_error ("Actual argument to contiguous pointer dummy %qs at %L " + "must be simply contiguous", formal->name, &actual->where); + return false; + } + + symbol_attribute actual_attr = gfc_expr_attr (actual); + if (actual->ts.type == BT_CLASS && !actual_attr.class_ok) + return true; + + if ((actual->expr_type != EXPR_NULL || actual->ts.type != BT_UNKNOWN) + && actual->ts.type != BT_HOLLERITH + && formal->ts.type != BT_ASSUMED + && !(formal->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK)) + && !gfc_compare_types (&formal->ts, &actual->ts) + && !(formal->ts.type == BT_DERIVED && actual->ts.type == BT_CLASS + && gfc_compare_derived_types (formal->ts.u.derived, + CLASS_DATA (actual)->ts.u.derived))) + { + if (where) + { + if (formal->attr.artificial) + { + if (!flag_allow_argument_mismatch || !formal->error) + gfc_error_opt (0, "Type mismatch between actual argument at %L " + "and actual argument at %L (%s/%s).", + &actual->where, + &formal->declared_at, + gfc_typename (actual), + gfc_dummy_typename (&formal->ts)); + + formal->error = 1; + } + else + gfc_error_opt (0, "Type mismatch in argument %qs at %L; passed %s " + "to %s", formal->name, where, gfc_typename (actual), + gfc_dummy_typename (&formal->ts)); + } + return false; + } + + if (actual->ts.type == BT_ASSUMED && formal->ts.type != BT_ASSUMED) + { + if (where) + gfc_error ("Assumed-type actual argument at %L requires that dummy " + "argument %qs is of assumed type", &actual->where, + formal->name); + return false; + } + + /* TS29113 C407c; F2018 C711. */ + if (actual->ts.type == BT_ASSUMED + && symbol_rank (formal) == -1 + && actual->rank != -1 + && !(actual->symtree->n.sym->as + && actual->symtree->n.sym->as->type == AS_ASSUMED_SHAPE)) + { + if (where) + gfc_error ("Assumed-type actual argument at %L corresponding to " + "assumed-rank dummy argument %qs must be " + "assumed-shape or assumed-rank", + &actual->where, formal->name); + return false; + } + + /* F2008, 12.5.2.5; IR F08/0073. */ + if (formal->ts.type == BT_CLASS && formal->attr.class_ok + && actual->expr_type != EXPR_NULL + && ((CLASS_DATA (formal)->attr.class_pointer + && formal->attr.intent != INTENT_IN) + || CLASS_DATA (formal)->attr.allocatable)) + { + if (actual->ts.type != BT_CLASS) + { + if (where) + gfc_error ("Actual argument to %qs at %L must be polymorphic", + formal->name, &actual->where); + return false; + } + + if ((!UNLIMITED_POLY (formal) || !UNLIMITED_POLY(actual)) + && !gfc_compare_derived_types (CLASS_DATA (actual)->ts.u.derived, + CLASS_DATA (formal)->ts.u.derived)) + { + if (where) + gfc_error ("Actual argument to %qs at %L must have the same " + "declared type", formal->name, &actual->where); + return false; + } + } + + /* F08: 12.5.2.5 Allocatable and pointer dummy variables. However, this + is necessary also for F03, so retain error for both. + NOTE: Other type/kind errors pre-empt this error. Since they are F03 + compatible, no attempt has been made to channel to this one. */ + if (UNLIMITED_POLY (formal) && !UNLIMITED_POLY (actual) + && (CLASS_DATA (formal)->attr.allocatable + ||CLASS_DATA (formal)->attr.class_pointer)) + { + if (where) + gfc_error ("Actual argument to %qs at %L must be unlimited " + "polymorphic since the formal argument is a " + "pointer or allocatable unlimited polymorphic " + "entity [F2008: 12.5.2.5]", formal->name, + &actual->where); + return false; + } + + if (formal->ts.type == BT_CLASS && formal->attr.class_ok) + codimension = CLASS_DATA (formal)->attr.codimension; + else + codimension = formal->attr.codimension; + + if (codimension && !gfc_is_coarray (actual)) + { + if (where) + gfc_error ("Actual argument to %qs at %L must be a coarray", + formal->name, &actual->where); + return false; + } + + if (codimension && formal->attr.allocatable) + { + gfc_ref *last = NULL; + + for (ref = actual->ref; ref; ref = ref->next) + if (ref->type == REF_COMPONENT) + last = ref; + + /* F2008, 12.5.2.6. */ + if ((last && last->u.c.component->as->corank != formal->as->corank) + || (!last + && actual->symtree->n.sym->as->corank != formal->as->corank)) + { + if (where) + gfc_error ("Corank mismatch in argument %qs at %L (%d and %d)", + formal->name, &actual->where, formal->as->corank, + last ? last->u.c.component->as->corank + : actual->symtree->n.sym->as->corank); + return false; + } + } + + if (codimension) + { + /* F2008, 12.5.2.8 + Corrig 2 (IR F08/0048). */ + /* F2018, 12.5.2.8. */ + if (formal->attr.dimension + && (formal->attr.contiguous || formal->as->type != AS_ASSUMED_SHAPE) + && actual_attr.dimension + && !gfc_is_simply_contiguous (actual, true, true)) + { + if (where) + gfc_error ("Actual argument to %qs at %L must be simply " + "contiguous or an element of such an array", + formal->name, &actual->where); + return false; + } + + /* F2008, C1303 and C1304. */ + if (formal->attr.intent != INTENT_INOUT + && (((formal->ts.type == BT_DERIVED || formal->ts.type == BT_CLASS) + && formal->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV + && formal->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE) + || formal->attr.lock_comp)) + + { + if (where) + gfc_error ("Actual argument to non-INTENT(INOUT) dummy %qs at %L, " + "which is LOCK_TYPE or has a LOCK_TYPE component", + formal->name, &actual->where); + return false; + } + + /* TS18508, C702/C703. */ + if (formal->attr.intent != INTENT_INOUT + && (((formal->ts.type == BT_DERIVED || formal->ts.type == BT_CLASS) + && formal->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV + && formal->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE) + || formal->attr.event_comp)) + + { + if (where) + gfc_error ("Actual argument to non-INTENT(INOUT) dummy %qs at %L, " + "which is EVENT_TYPE or has a EVENT_TYPE component", + formal->name, &actual->where); + return false; + } + } + + /* F2008, C1239/C1240. */ + if (actual->expr_type == EXPR_VARIABLE + && (actual->symtree->n.sym->attr.asynchronous + || actual->symtree->n.sym->attr.volatile_) + && (formal->attr.asynchronous || formal->attr.volatile_) + && actual->rank && formal->as + && !gfc_is_simply_contiguous (actual, true, false) + && ((formal->as->type != AS_ASSUMED_SHAPE + && formal->as->type != AS_ASSUMED_RANK && !formal->attr.pointer) + || formal->attr.contiguous)) + { + if (where) + gfc_error ("Dummy argument %qs has to be a pointer, assumed-shape or " + "assumed-rank array without CONTIGUOUS attribute - as actual" + " argument at %L is not simply contiguous and both are " + "ASYNCHRONOUS or VOLATILE", formal->name, &actual->where); + return false; + } + + if (formal->attr.allocatable && !codimension + && actual_attr.codimension) + { + if (formal->attr.intent == INTENT_OUT) + { + if (where) + gfc_error ("Passing coarray at %L to allocatable, noncoarray, " + "INTENT(OUT) dummy argument %qs", &actual->where, + formal->name); + return false; + } + else if (warn_surprising && where && formal->attr.intent != INTENT_IN) + gfc_warning (OPT_Wsurprising, + "Passing coarray at %L to allocatable, noncoarray dummy " + "argument %qs, which is invalid if the allocation status" + " is modified", &actual->where, formal->name); + } + + /* If the rank is the same or the formal argument has assumed-rank. */ + if (symbol_rank (formal) == actual->rank || symbol_rank (formal) == -1) + return true; + + rank_check = where != NULL && !is_elemental && formal->as + && (formal->as->type == AS_ASSUMED_SHAPE + || formal->as->type == AS_DEFERRED) + && actual->expr_type != EXPR_NULL; + + /* Skip rank checks for NO_ARG_CHECK. */ + if (formal->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK)) + return true; + + /* Scalar & coindexed, see: F2008, Section 12.5.2.4. */ + if (rank_check || ranks_must_agree + || (formal->attr.pointer && actual->expr_type != EXPR_NULL) + || (actual->rank != 0 && !(is_elemental || formal->attr.dimension)) + || (actual->rank == 0 + && ((formal->ts.type == BT_CLASS + && CLASS_DATA (formal)->as->type == AS_ASSUMED_SHAPE) + || (formal->ts.type != BT_CLASS + && formal->as->type == AS_ASSUMED_SHAPE)) + && actual->expr_type != EXPR_NULL) + || (actual->rank == 0 && formal->attr.dimension + && gfc_is_coindexed (actual)) + /* Assumed-rank actual argument; F2018 C838. */ + || actual->rank == -1) + { + if (where + && (!formal->attr.artificial || (!formal->maybe_array + && !maybe_dummy_array_arg (actual)))) + { + locus *where_formal; + if (formal->attr.artificial) + where_formal = &formal->declared_at; + else + where_formal = NULL; + + argument_rank_mismatch (formal->name, &actual->where, + symbol_rank (formal), actual->rank, + where_formal); + } + return false; + } + else if (actual->rank != 0 && (is_elemental || formal->attr.dimension)) + return true; + + /* At this point, we are considering a scalar passed to an array. This + is valid (cf. F95 12.4.1.1, F2003 12.4.1.2, and F2008 12.5.2.4), + - if the actual argument is (a substring of) an element of a + non-assumed-shape/non-pointer/non-polymorphic array; or + - (F2003) if the actual argument is of type character of default/c_char + kind. */ + + is_pointer = actual->expr_type == EXPR_VARIABLE + ? actual->symtree->n.sym->attr.pointer : false; + + for (ref = actual->ref; ref; ref = ref->next) + { + if (ref->type == REF_COMPONENT) + is_pointer = ref->u.c.component->attr.pointer; + else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT + && ref->u.ar.dimen > 0 + && (!ref->next + || (ref->next->type == REF_SUBSTRING && !ref->next->next))) + break; + } + + if (actual->ts.type == BT_CLASS && actual->expr_type != EXPR_NULL) + { + if (where) + gfc_error ("Polymorphic scalar passed to array dummy argument %qs " + "at %L", formal->name, &actual->where); + return false; + } + + if (actual->expr_type != EXPR_NULL && ref && actual->ts.type != BT_CHARACTER + && (is_pointer || ref->u.ar.as->type == AS_ASSUMED_SHAPE)) + { + if (where) + { + if (formal->attr.artificial) + gfc_error ("Element of assumed-shape or pointer array " + "as actual argument at %L cannot correspond to " + "actual argument at %L", + &actual->where, &formal->declared_at); + else + gfc_error ("Element of assumed-shape or pointer " + "array passed to array dummy argument %qs at %L", + formal->name, &actual->where); + } + return false; + } + + if (actual->ts.type == BT_CHARACTER && actual->expr_type != EXPR_NULL + && (!ref || is_pointer || ref->u.ar.as->type == AS_ASSUMED_SHAPE)) + { + if (formal->ts.kind != 1 && (gfc_option.allow_std & GFC_STD_GNU) == 0) + { + if (where) + gfc_error ("Extension: Scalar non-default-kind, non-C_CHAR-kind " + "CHARACTER actual argument with array dummy argument " + "%qs at %L", formal->name, &actual->where); + return false; + } + + if (where && (gfc_option.allow_std & GFC_STD_F2003) == 0) + { + gfc_error ("Fortran 2003: Scalar CHARACTER actual argument with " + "array dummy argument %qs at %L", + formal->name, &actual->where); + return false; + } + else + return ((gfc_option.allow_std & GFC_STD_F2003) != 0); + } + + if (ref == NULL && actual->expr_type != EXPR_NULL) + { + if (where + && (!formal->attr.artificial || (!formal->maybe_array + && !maybe_dummy_array_arg (actual)))) + { + locus *where_formal; + if (formal->attr.artificial) + where_formal = &formal->declared_at; + else + where_formal = NULL; + + argument_rank_mismatch (formal->name, &actual->where, + symbol_rank (formal), actual->rank, + where_formal); + } + return false; + } + + return true; +} + + +/* Returns the storage size of a symbol (formal argument) or + zero if it cannot be determined. */ + +static unsigned long +get_sym_storage_size (gfc_symbol *sym) +{ + int i; + unsigned long strlen, elements; + + if (sym->ts.type == BT_CHARACTER) + { + if (sym->ts.u.cl && sym->ts.u.cl->length + && sym->ts.u.cl->length->expr_type == EXPR_CONSTANT) + strlen = mpz_get_ui (sym->ts.u.cl->length->value.integer); + else + return 0; + } + else + strlen = 1; + + if (symbol_rank (sym) == 0) + return strlen; + + elements = 1; + if (sym->as->type != AS_EXPLICIT) + return 0; + for (i = 0; i < sym->as->rank; i++) + { + if (sym->as->upper[i]->expr_type != EXPR_CONSTANT + || sym->as->lower[i]->expr_type != EXPR_CONSTANT) + return 0; + + elements *= mpz_get_si (sym->as->upper[i]->value.integer) + - mpz_get_si (sym->as->lower[i]->value.integer) + 1L; + } + + return strlen*elements; +} + + +/* Returns the storage size of an expression (actual argument) or + zero if it cannot be determined. For an array element, it returns + the remaining size as the element sequence consists of all storage + units of the actual argument up to the end of the array. */ + +static unsigned long +get_expr_storage_size (gfc_expr *e) +{ + int i; + long int strlen, elements; + long int substrlen = 0; + bool is_str_storage = false; + gfc_ref *ref; + + if (e == NULL) + return 0; + + if (e->ts.type == BT_CHARACTER) + { + if (e->ts.u.cl && e->ts.u.cl->length + && e->ts.u.cl->length->expr_type == EXPR_CONSTANT) + strlen = mpz_get_si (e->ts.u.cl->length->value.integer); + else if (e->expr_type == EXPR_CONSTANT + && (e->ts.u.cl == NULL || e->ts.u.cl->length == NULL)) + strlen = e->value.character.length; + else + return 0; + } + else + strlen = 1; /* Length per element. */ + + if (e->rank == 0 && !e->ref) + return strlen; + + elements = 1; + if (!e->ref) + { + if (!e->shape) + return 0; + for (i = 0; i < e->rank; i++) + elements *= mpz_get_si (e->shape[i]); + return elements*strlen; + } + + for (ref = e->ref; ref; ref = ref->next) + { + if (ref->type == REF_SUBSTRING && ref->u.ss.start + && ref->u.ss.start->expr_type == EXPR_CONSTANT) + { + if (is_str_storage) + { + /* The string length is the substring length. + Set now to full string length. */ + if (!ref->u.ss.length || !ref->u.ss.length->length + || ref->u.ss.length->length->expr_type != EXPR_CONSTANT) + return 0; + + strlen = mpz_get_ui (ref->u.ss.length->length->value.integer); + } + substrlen = strlen - mpz_get_ui (ref->u.ss.start->value.integer) + 1; + continue; + } + + if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION) + for (i = 0; i < ref->u.ar.dimen; i++) + { + long int start, end, stride; + stride = 1; + + if (ref->u.ar.stride[i]) + { + if (ref->u.ar.stride[i]->expr_type == EXPR_CONSTANT) + stride = mpz_get_si (ref->u.ar.stride[i]->value.integer); + else + return 0; + } + + if (ref->u.ar.start[i]) + { + if (ref->u.ar.start[i]->expr_type == EXPR_CONSTANT) + start = mpz_get_si (ref->u.ar.start[i]->value.integer); + else + return 0; + } + else if (ref->u.ar.as->lower[i] + && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT) + start = mpz_get_si (ref->u.ar.as->lower[i]->value.integer); + else + return 0; + + if (ref->u.ar.end[i]) + { + if (ref->u.ar.end[i]->expr_type == EXPR_CONSTANT) + end = mpz_get_si (ref->u.ar.end[i]->value.integer); + else + return 0; + } + else if (ref->u.ar.as->upper[i] + && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT) + end = mpz_get_si (ref->u.ar.as->upper[i]->value.integer); + else + return 0; + + elements *= (end - start)/stride + 1L; + } + else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_FULL) + for (i = 0; i < ref->u.ar.as->rank; i++) + { + if (ref->u.ar.as->lower[i] && ref->u.ar.as->upper[i] + && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT + && ref->u.ar.as->lower[i]->ts.type == BT_INTEGER + && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT + && ref->u.ar.as->upper[i]->ts.type == BT_INTEGER) + elements *= mpz_get_si (ref->u.ar.as->upper[i]->value.integer) + - mpz_get_si (ref->u.ar.as->lower[i]->value.integer) + + 1L; + else + return 0; + } + else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT + && e->expr_type == EXPR_VARIABLE) + { + if (ref->u.ar.as->type == AS_ASSUMED_SHAPE + || e->symtree->n.sym->attr.pointer) + { + elements = 1; + continue; + } + + /* Determine the number of remaining elements in the element + sequence for array element designators. */ + is_str_storage = true; + for (i = ref->u.ar.dimen - 1; i >= 0; i--) + { + if (ref->u.ar.start[i] == NULL + || ref->u.ar.start[i]->expr_type != EXPR_CONSTANT + || ref->u.ar.as->upper[i] == NULL + || ref->u.ar.as->lower[i] == NULL + || ref->u.ar.as->upper[i]->expr_type != EXPR_CONSTANT + || ref->u.ar.as->lower[i]->expr_type != EXPR_CONSTANT) + return 0; + + elements + = elements + * (mpz_get_si (ref->u.ar.as->upper[i]->value.integer) + - mpz_get_si (ref->u.ar.as->lower[i]->value.integer) + + 1L) + - (mpz_get_si (ref->u.ar.start[i]->value.integer) + - mpz_get_si (ref->u.ar.as->lower[i]->value.integer)); + } + } + else if (ref->type == REF_COMPONENT && ref->u.c.component->attr.function + && ref->u.c.component->attr.proc_pointer + && ref->u.c.component->attr.dimension) + { + /* Array-valued procedure-pointer components. */ + gfc_array_spec *as = ref->u.c.component->as; + for (i = 0; i < as->rank; i++) + { + if (!as->upper[i] || !as->lower[i] + || as->upper[i]->expr_type != EXPR_CONSTANT + || as->lower[i]->expr_type != EXPR_CONSTANT) + return 0; + + elements = elements + * (mpz_get_si (as->upper[i]->value.integer) + - mpz_get_si (as->lower[i]->value.integer) + 1L); + } + } + } + + if (substrlen) + return (is_str_storage) ? substrlen + (elements-1)*strlen + : elements*strlen; + else + return elements*strlen; +} + + +/* Given an expression, check whether it is an array section + which has a vector subscript. */ + +bool +gfc_has_vector_subscript (gfc_expr *e) +{ + int i; + gfc_ref *ref; + + if (e == NULL || e->rank == 0 || e->expr_type != EXPR_VARIABLE) + return false; + + for (ref = e->ref; ref; ref = ref->next) + if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION) + for (i = 0; i < ref->u.ar.dimen; i++) + if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR) + return true; + + return false; +} + + +static bool +is_procptr_result (gfc_expr *expr) +{ + gfc_component *c = gfc_get_proc_ptr_comp (expr); + if (c) + return (c->ts.interface && (c->ts.interface->attr.proc_pointer == 1)); + else + return ((expr->symtree->n.sym->result != expr->symtree->n.sym) + && (expr->symtree->n.sym->result->attr.proc_pointer == 1)); +} + + +/* Recursively append candidate argument ARG to CANDIDATES. Store the + number of total candidates in CANDIDATES_LEN. */ + +static void +lookup_arg_fuzzy_find_candidates (gfc_formal_arglist *arg, + char **&candidates, + size_t &candidates_len) +{ + for (gfc_formal_arglist *p = arg; p && p->sym; p = p->next) + vec_push (candidates, candidates_len, p->sym->name); +} + + +/* Lookup argument ARG fuzzily, taking names in ARGUMENTS into account. */ + +static const char* +lookup_arg_fuzzy (const char *arg, gfc_formal_arglist *arguments) +{ + char **candidates = NULL; + size_t candidates_len = 0; + lookup_arg_fuzzy_find_candidates (arguments, candidates, candidates_len); + return gfc_closest_fuzzy_match (arg, candidates); +} + + +static gfc_dummy_arg * +get_nonintrinsic_dummy_arg (gfc_formal_arglist *formal) +{ + gfc_dummy_arg * const dummy_arg = gfc_get_dummy_arg (); + + dummy_arg->intrinsicness = GFC_NON_INTRINSIC_DUMMY_ARG; + dummy_arg->u.non_intrinsic = formal; + + return dummy_arg; +} + + +/* Given formal and actual argument lists, see if they are compatible. + If they are compatible, the actual argument list is sorted to + correspond with the formal list, and elements for missing optional + arguments are inserted. If WHERE pointer is nonnull, then we issue + errors when things don't match instead of just returning the status + code. */ + +bool +gfc_compare_actual_formal (gfc_actual_arglist **ap, gfc_formal_arglist *formal, + int ranks_must_agree, int is_elemental, + bool in_statement_function, locus *where) +{ + gfc_actual_arglist **new_arg, *a, *actual; + gfc_formal_arglist *f; + int i, n, na; + unsigned long actual_size, formal_size; + bool full_array = false; + gfc_array_ref *actual_arr_ref; + gfc_array_spec *fas, *aas; + bool pointer_dummy, pointer_arg, allocatable_arg; + + bool ok = true; + + actual = *ap; + + if (actual == NULL && formal == NULL) + return true; + + n = 0; + for (f = formal; f; f = f->next) + n++; + + new_arg = XALLOCAVEC (gfc_actual_arglist *, n); + + for (i = 0; i < n; i++) + new_arg[i] = NULL; + + na = 0; + f = formal; + i = 0; + + for (a = actual; a; a = a->next, f = f->next) + { + if (a->name != NULL && in_statement_function) + { + gfc_error ("Keyword argument %qs at %L is invalid in " + "a statement function", a->name, &a->expr->where); + return false; + } + + /* Look for keywords but ignore g77 extensions like %VAL. */ + if (a->name != NULL && a->name[0] != '%') + { + i = 0; + for (f = formal; f; f = f->next, i++) + { + if (f->sym == NULL) + continue; + if (strcmp (f->sym->name, a->name) == 0) + break; + } + + if (f == NULL) + { + if (where) + { + const char *guessed = lookup_arg_fuzzy (a->name, formal); + if (guessed) + gfc_error ("Keyword argument %qs at %L is not in " + "the procedure; did you mean %qs?", + a->name, &a->expr->where, guessed); + else + gfc_error ("Keyword argument %qs at %L is not in " + "the procedure", a->name, &a->expr->where); + } + return false; + } + + if (new_arg[i] != NULL) + { + if (where) + gfc_error ("Keyword argument %qs at %L is already associated " + "with another actual argument", a->name, + &a->expr->where); + return false; + } + } + + if (f == NULL) + { + if (where) + gfc_error ("More actual than formal arguments in procedure " + "call at %L", where); + return false; + } + + if (f->sym == NULL && a->expr == NULL) + goto match; + + if (f->sym == NULL) + { + /* These errors have to be issued, otherwise an ICE can occur. + See PR 78865. */ + if (where) + gfc_error_now ("Missing alternate return specifier in subroutine " + "call at %L", where); + return false; + } + else + a->associated_dummy = get_nonintrinsic_dummy_arg (f); + + if (a->expr == NULL) + { + if (f->sym->attr.optional) + continue; + else + { + if (where) + gfc_error_now ("Unexpected alternate return specifier in " + "subroutine call at %L", where); + return false; + } + } + + /* Make sure that intrinsic vtables exist for calls to unlimited + polymorphic formal arguments. */ + if (UNLIMITED_POLY (f->sym) + && a->expr->ts.type != BT_DERIVED + && a->expr->ts.type != BT_CLASS + && a->expr->ts.type != BT_ASSUMED) + gfc_find_vtab (&a->expr->ts); + + if (a->expr->expr_type == EXPR_NULL + && ((f->sym->ts.type != BT_CLASS && !f->sym->attr.pointer + && (f->sym->attr.allocatable || !f->sym->attr.optional + || (gfc_option.allow_std & GFC_STD_F2008) == 0)) + || (f->sym->ts.type == BT_CLASS + && !CLASS_DATA (f->sym)->attr.class_pointer + && (CLASS_DATA (f->sym)->attr.allocatable + || !f->sym->attr.optional + || (gfc_option.allow_std & GFC_STD_F2008) == 0)))) + { + if (where + && (!f->sym->attr.optional + || (f->sym->ts.type != BT_CLASS && f->sym->attr.allocatable) + || (f->sym->ts.type == BT_CLASS + && CLASS_DATA (f->sym)->attr.allocatable))) + gfc_error ("Unexpected NULL() intrinsic at %L to dummy %qs", + where, f->sym->name); + else if (where) + gfc_error ("Fortran 2008: Null pointer at %L to non-pointer " + "dummy %qs", where, f->sym->name); + ok = false; + goto match; + } + + if (!compare_parameter (f->sym, a->expr, ranks_must_agree, + is_elemental, where)) + { + ok = false; + goto match; + } + + /* TS 29113, 6.3p2; F2018 15.5.2.4. */ + if (f->sym->ts.type == BT_ASSUMED + && (a->expr->ts.type == BT_DERIVED + || (a->expr->ts.type == BT_CLASS && CLASS_DATA (a->expr)))) + { + gfc_symbol *derived = (a->expr->ts.type == BT_DERIVED + ? a->expr->ts.u.derived + : CLASS_DATA (a->expr)->ts.u.derived); + gfc_namespace *f2k_derived = derived->f2k_derived; + if (derived->attr.pdt_type + || (f2k_derived + && (f2k_derived->finalizers || f2k_derived->tb_sym_root))) + { + gfc_error ("Actual argument at %L to assumed-type dummy " + "has type parameters or is of " + "derived type with type-bound or FINAL procedures", + &a->expr->where); + ok = false; + goto match; + } + } + + /* Special case for character arguments. For allocatable, pointer + and assumed-shape dummies, the string length needs to match + exactly. */ + if (a->expr->ts.type == BT_CHARACTER + && a->expr->ts.u.cl && a->expr->ts.u.cl->length + && a->expr->ts.u.cl->length->expr_type == EXPR_CONSTANT + && f->sym->ts.type == BT_CHARACTER && f->sym->ts.u.cl + && f->sym->ts.u.cl->length + && f->sym->ts.u.cl->length->expr_type == EXPR_CONSTANT + && (f->sym->attr.pointer || f->sym->attr.allocatable + || (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE)) + && (mpz_cmp (a->expr->ts.u.cl->length->value.integer, + f->sym->ts.u.cl->length->value.integer) != 0)) + { + if (where && (f->sym->attr.pointer || f->sym->attr.allocatable)) + gfc_warning (0, "Character length mismatch (%ld/%ld) between actual " + "argument and pointer or allocatable dummy argument " + "%qs at %L", + mpz_get_si (a->expr->ts.u.cl->length->value.integer), + mpz_get_si (f->sym->ts.u.cl->length->value.integer), + f->sym->name, &a->expr->where); + else if (where) + gfc_warning (0, "Character length mismatch (%ld/%ld) between actual " + "argument and assumed-shape dummy argument %qs " + "at %L", + mpz_get_si (a->expr->ts.u.cl->length->value.integer), + mpz_get_si (f->sym->ts.u.cl->length->value.integer), + f->sym->name, &a->expr->where); + ok = false; + goto match; + } + + if ((f->sym->attr.pointer || f->sym->attr.allocatable) + && f->sym->ts.deferred != a->expr->ts.deferred + && a->expr->ts.type == BT_CHARACTER) + { + if (where) + gfc_error ("Actual argument at %L to allocatable or " + "pointer dummy argument %qs must have a deferred " + "length type parameter if and only if the dummy has one", + &a->expr->where, f->sym->name); + ok = false; + goto match; + } + + if (f->sym->ts.type == BT_CLASS) + goto skip_size_check; + + actual_size = get_expr_storage_size (a->expr); + formal_size = get_sym_storage_size (f->sym); + if (actual_size != 0 && actual_size < formal_size + && a->expr->ts.type != BT_PROCEDURE + && f->sym->attr.flavor != FL_PROCEDURE) + { + if (a->expr->ts.type == BT_CHARACTER && !f->sym->as && where) + { + gfc_warning (0, "Character length of actual argument shorter " + "than of dummy argument %qs (%lu/%lu) at %L", + f->sym->name, actual_size, formal_size, + &a->expr->where); + goto skip_size_check; + } + else if (where) + { + /* Emit a warning for -std=legacy and an error otherwise. */ + if (gfc_option.warn_std == 0) + gfc_warning (0, "Actual argument contains too few " + "elements for dummy argument %qs (%lu/%lu) " + "at %L", f->sym->name, actual_size, + formal_size, &a->expr->where); + else + gfc_error_now ("Actual argument contains too few " + "elements for dummy argument %qs (%lu/%lu) " + "at %L", f->sym->name, actual_size, + formal_size, &a->expr->where); + } + ok = false; + goto match; + } + + skip_size_check: + + /* Satisfy F03:12.4.1.3 by ensuring that a procedure pointer actual + argument is provided for a procedure pointer formal argument. */ + if (f->sym->attr.proc_pointer + && !((a->expr->expr_type == EXPR_VARIABLE + && (a->expr->symtree->n.sym->attr.proc_pointer + || gfc_is_proc_ptr_comp (a->expr))) + || (a->expr->expr_type == EXPR_FUNCTION + && is_procptr_result (a->expr)))) + { + if (where) + gfc_error ("Expected a procedure pointer for argument %qs at %L", + f->sym->name, &a->expr->where); + ok = false; + goto match; + } + + /* Satisfy F03:12.4.1.3 by ensuring that a procedure actual argument is + provided for a procedure formal argument. */ + if (f->sym->attr.flavor == FL_PROCEDURE + && !((a->expr->expr_type == EXPR_VARIABLE + && (a->expr->symtree->n.sym->attr.flavor == FL_PROCEDURE + || a->expr->symtree->n.sym->attr.proc_pointer + || gfc_is_proc_ptr_comp (a->expr))) + || (a->expr->expr_type == EXPR_FUNCTION + && is_procptr_result (a->expr)))) + { + if (where) + gfc_error ("Expected a procedure for argument %qs at %L", + f->sym->name, &a->expr->where); + ok = false; + goto match; + } + + /* Class array variables and expressions store array info in a + different place from non-class objects; consolidate the logic + to access it here instead of repeating it below. Note that + pointer_arg and allocatable_arg are not fully general and are + only used in a specific situation below with an assumed-rank + argument. */ + if (f->sym->ts.type == BT_CLASS && CLASS_DATA (f->sym)) + { + gfc_component *classdata = CLASS_DATA (f->sym); + fas = classdata->as; + pointer_dummy = classdata->attr.class_pointer; + } + else + { + fas = f->sym->as; + pointer_dummy = f->sym->attr.pointer; + } + + if (a->expr->expr_type != EXPR_VARIABLE) + { + aas = NULL; + pointer_arg = false; + allocatable_arg = false; + } + else if (a->expr->ts.type == BT_CLASS + && a->expr->symtree->n.sym + && CLASS_DATA (a->expr->symtree->n.sym)) + { + gfc_component *classdata = CLASS_DATA (a->expr->symtree->n.sym); + aas = classdata->as; + pointer_arg = classdata->attr.class_pointer; + allocatable_arg = classdata->attr.allocatable; + } + else + { + aas = a->expr->symtree->n.sym->as; + pointer_arg = a->expr->symtree->n.sym->attr.pointer; + allocatable_arg = a->expr->symtree->n.sym->attr.allocatable; + } + + /* F2018:9.5.2(2) permits assumed-size whole array expressions as + actual arguments only if the shape is not required; thus it + cannot be passed to an assumed-shape array dummy. + F2018:15.5.2.(2) permits passing a nonpointer actual to an + intent(in) pointer dummy argument and this is accepted by + the compare_pointer check below, but this also requires shape + information. + There's more discussion of this in PR94110. */ + if (fas + && (fas->type == AS_ASSUMED_SHAPE + || fas->type == AS_DEFERRED + || (fas->type == AS_ASSUMED_RANK && pointer_dummy)) + && aas + && aas->type == AS_ASSUMED_SIZE + && (a->expr->ref == NULL + || (a->expr->ref->type == REF_ARRAY + && a->expr->ref->u.ar.type == AR_FULL))) + { + if (where) + gfc_error ("Actual argument for %qs cannot be an assumed-size" + " array at %L", f->sym->name, where); + ok = false; + goto match; + } + + /* Diagnose F2018 C839 (TS29113 C535c). Here the problem is + passing an assumed-size array to an INTENT(OUT) assumed-rank + dummy when it doesn't have the size information needed to run + initializers and finalizers. */ + if (f->sym->attr.intent == INTENT_OUT + && fas + && fas->type == AS_ASSUMED_RANK + && aas + && ((aas->type == AS_ASSUMED_SIZE + && (a->expr->ref == NULL + || (a->expr->ref->type == REF_ARRAY + && a->expr->ref->u.ar.type == AR_FULL))) + || (aas->type == AS_ASSUMED_RANK + && !pointer_arg + && !allocatable_arg)) + && (a->expr->ts.type == BT_CLASS + || (a->expr->ts.type == BT_DERIVED + && (gfc_is_finalizable (a->expr->ts.u.derived, NULL) + || gfc_has_ultimate_allocatable (a->expr) + || gfc_has_default_initializer + (a->expr->ts.u.derived))))) + { + if (where) + gfc_error ("Actual argument to assumed-rank INTENT(OUT) " + "dummy %qs at %L cannot be of unknown size", + f->sym->name, where); + ok = false; + goto match; + } + + if (a->expr->expr_type != EXPR_NULL + && compare_pointer (f->sym, a->expr) == 0) + { + if (where) + gfc_error ("Actual argument for %qs must be a pointer at %L", + f->sym->name, &a->expr->where); + ok = false; + goto match; + } + + if (a->expr->expr_type != EXPR_NULL + && (gfc_option.allow_std & GFC_STD_F2008) == 0 + && compare_pointer (f->sym, a->expr) == 2) + { + if (where) + gfc_error ("Fortran 2008: Non-pointer actual argument at %L to " + "pointer dummy %qs", &a->expr->where,f->sym->name); + ok = false; + goto match; + } + + + /* Fortran 2008, C1242. */ + if (f->sym->attr.pointer && gfc_is_coindexed (a->expr)) + { + if (where) + gfc_error ("Coindexed actual argument at %L to pointer " + "dummy %qs", + &a->expr->where, f->sym->name); + ok = false; + goto match; + } + + /* Fortran 2008, 12.5.2.5 (no constraint). */ + if (a->expr->expr_type == EXPR_VARIABLE + && f->sym->attr.intent != INTENT_IN + && f->sym->attr.allocatable + && gfc_is_coindexed (a->expr)) + { + if (where) + gfc_error ("Coindexed actual argument at %L to allocatable " + "dummy %qs requires INTENT(IN)", + &a->expr->where, f->sym->name); + ok = false; + goto match; + } + + /* Fortran 2008, C1237. */ + if (a->expr->expr_type == EXPR_VARIABLE + && (f->sym->attr.asynchronous || f->sym->attr.volatile_) + && gfc_is_coindexed (a->expr) + && (a->expr->symtree->n.sym->attr.volatile_ + || a->expr->symtree->n.sym->attr.asynchronous)) + { + if (where) + gfc_error ("Coindexed ASYNCHRONOUS or VOLATILE actual argument at " + "%L requires that dummy %qs has neither " + "ASYNCHRONOUS nor VOLATILE", &a->expr->where, + f->sym->name); + ok = false; + goto match; + } + + /* Fortran 2008, 12.5.2.4 (no constraint). */ + if (a->expr->expr_type == EXPR_VARIABLE + && f->sym->attr.intent != INTENT_IN && !f->sym->attr.value + && gfc_is_coindexed (a->expr) + && gfc_has_ultimate_allocatable (a->expr)) + { + if (where) + gfc_error ("Coindexed actual argument at %L with allocatable " + "ultimate component to dummy %qs requires either VALUE " + "or INTENT(IN)", &a->expr->where, f->sym->name); + ok = false; + goto match; + } + + if (f->sym->ts.type == BT_CLASS + && CLASS_DATA (f->sym)->attr.allocatable + && gfc_is_class_array_ref (a->expr, &full_array) + && !full_array) + { + if (where) + gfc_error ("Actual CLASS array argument for %qs must be a full " + "array at %L", f->sym->name, &a->expr->where); + ok = false; + goto match; + } + + + if (a->expr->expr_type != EXPR_NULL + && !compare_allocatable (f->sym, a->expr)) + { + if (where) + gfc_error ("Actual argument for %qs must be ALLOCATABLE at %L", + f->sym->name, &a->expr->where); + ok = false; + goto match; + } + + /* Check intent = OUT/INOUT for definable actual argument. */ + if (!in_statement_function + && (f->sym->attr.intent == INTENT_OUT + || f->sym->attr.intent == INTENT_INOUT)) + { + const char* context = (where + ? _("actual argument to INTENT = OUT/INOUT") + : NULL); + + if (((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok + && CLASS_DATA (f->sym)->attr.class_pointer) + || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer)) + && !gfc_check_vardef_context (a->expr, true, false, false, context)) + { + ok = false; + goto match; + } + if (!gfc_check_vardef_context (a->expr, false, false, false, context)) + { + ok = false; + goto match; + } + } + + if ((f->sym->attr.intent == INTENT_OUT + || f->sym->attr.intent == INTENT_INOUT + || f->sym->attr.volatile_ + || f->sym->attr.asynchronous) + && gfc_has_vector_subscript (a->expr)) + { + if (where) + gfc_error ("Array-section actual argument with vector " + "subscripts at %L is incompatible with INTENT(OUT), " + "INTENT(INOUT), VOLATILE or ASYNCHRONOUS attribute " + "of the dummy argument %qs", + &a->expr->where, f->sym->name); + ok = false; + goto match; + } + + /* C1232 (R1221) For an actual argument which is an array section or + an assumed-shape array, the dummy argument shall be an assumed- + shape array, if the dummy argument has the VOLATILE attribute. */ + + if (f->sym->attr.volatile_ + && a->expr->expr_type == EXPR_VARIABLE + && a->expr->symtree->n.sym->as + && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SHAPE + && !(fas && fas->type == AS_ASSUMED_SHAPE)) + { + if (where) + gfc_error ("Assumed-shape actual argument at %L is " + "incompatible with the non-assumed-shape " + "dummy argument %qs due to VOLATILE attribute", + &a->expr->where,f->sym->name); + ok = false; + goto match; + } + + /* Find the last array_ref. */ + actual_arr_ref = NULL; + if (a->expr->ref) + actual_arr_ref = gfc_find_array_ref (a->expr, true); + + if (f->sym->attr.volatile_ + && actual_arr_ref && actual_arr_ref->type == AR_SECTION + && !(fas && fas->type == AS_ASSUMED_SHAPE)) + { + if (where) + gfc_error ("Array-section actual argument at %L is " + "incompatible with the non-assumed-shape " + "dummy argument %qs due to VOLATILE attribute", + &a->expr->where, f->sym->name); + ok = false; + goto match; + } + + /* C1233 (R1221) For an actual argument which is a pointer array, the + dummy argument shall be an assumed-shape or pointer array, if the + dummy argument has the VOLATILE attribute. */ + + if (f->sym->attr.volatile_ + && a->expr->expr_type == EXPR_VARIABLE + && a->expr->symtree->n.sym->attr.pointer + && a->expr->symtree->n.sym->as + && !(fas + && (fas->type == AS_ASSUMED_SHAPE + || f->sym->attr.pointer))) + { + if (where) + gfc_error ("Pointer-array actual argument at %L requires " + "an assumed-shape or pointer-array dummy " + "argument %qs due to VOLATILE attribute", + &a->expr->where,f->sym->name); + ok = false; + goto match; + } + + match: + if (a == actual) + na = i; + + new_arg[i++] = a; + } + + /* Give up now if we saw any bad argument. */ + if (!ok) + return false; + + /* Make sure missing actual arguments are optional. */ + i = 0; + for (f = formal; f; f = f->next, i++) + { + if (new_arg[i] != NULL) + continue; + if (f->sym == NULL) + { + if (where) + gfc_error ("Missing alternate return spec in subroutine call " + "at %L", where); + return false; + } + /* For CLASS, the optional attribute might be set at either location. */ + if (((f->sym->ts.type != BT_CLASS || !CLASS_DATA (f->sym)->attr.optional) + && !f->sym->attr.optional) + || (in_statement_function + && (f->sym->attr.optional + || (f->sym->ts.type == BT_CLASS + && CLASS_DATA (f->sym)->attr.optional)))) + { + if (where) + gfc_error ("Missing actual argument for argument %qs at %L", + f->sym->name, where); + return false; + } + } + + /* We should have handled the cases where the formal arglist is null + already. */ + gcc_assert (n > 0); + + /* The argument lists are compatible. We now relink a new actual + argument list with null arguments in the right places. The head + of the list remains the head. */ + for (f = formal, i = 0; f; f = f->next, i++) + if (new_arg[i] == NULL) + { + new_arg[i] = gfc_get_actual_arglist (); + new_arg[i]->associated_dummy = get_nonintrinsic_dummy_arg (f); + } + + if (na != 0) + { + std::swap (*new_arg[0], *actual); + std::swap (new_arg[0], new_arg[na]); + } + + for (i = 0; i < n - 1; i++) + new_arg[i]->next = new_arg[i + 1]; + + new_arg[i]->next = NULL; + + if (*ap == NULL && n > 0) + *ap = new_arg[0]; + + return true; +} + + +typedef struct +{ + gfc_formal_arglist *f; + gfc_actual_arglist *a; +} +argpair; + +/* qsort comparison function for argument pairs, with the following + order: + - p->a->expr == NULL + - p->a->expr->expr_type != EXPR_VARIABLE + - by gfc_symbol pointer value (larger first). */ + +static int +pair_cmp (const void *p1, const void *p2) +{ + const gfc_actual_arglist *a1, *a2; + + /* *p1 and *p2 are elements of the to-be-sorted array. */ + a1 = ((const argpair *) p1)->a; + a2 = ((const argpair *) p2)->a; + if (!a1->expr) + { + if (!a2->expr) + return 0; + return -1; + } + if (!a2->expr) + return 1; + if (a1->expr->expr_type != EXPR_VARIABLE) + { + if (a2->expr->expr_type != EXPR_VARIABLE) + return 0; + return -1; + } + if (a2->expr->expr_type != EXPR_VARIABLE) + return 1; + if (a1->expr->symtree->n.sym > a2->expr->symtree->n.sym) + return -1; + return a1->expr->symtree->n.sym < a2->expr->symtree->n.sym; +} + + +/* Given two expressions from some actual arguments, test whether they + refer to the same expression. The analysis is conservative. + Returning false will produce no warning. */ + +static bool +compare_actual_expr (gfc_expr *e1, gfc_expr *e2) +{ + const gfc_ref *r1, *r2; + + if (!e1 || !e2 + || e1->expr_type != EXPR_VARIABLE + || e2->expr_type != EXPR_VARIABLE + || e1->symtree->n.sym != e2->symtree->n.sym) + return false; + + /* TODO: improve comparison, see expr.c:show_ref(). */ + for (r1 = e1->ref, r2 = e2->ref; r1 && r2; r1 = r1->next, r2 = r2->next) + { + if (r1->type != r2->type) + return false; + switch (r1->type) + { + case REF_ARRAY: + if (r1->u.ar.type != r2->u.ar.type) + return false; + /* TODO: At the moment, consider only full arrays; + we could do better. */ + if (r1->u.ar.type != AR_FULL || r2->u.ar.type != AR_FULL) + return false; + break; + + case REF_COMPONENT: + if (r1->u.c.component != r2->u.c.component) + return false; + break; + + case REF_SUBSTRING: + return false; + + case REF_INQUIRY: + if (e1->symtree->n.sym->ts.type == BT_COMPLEX + && e1->ts.type == BT_REAL && e2->ts.type == BT_REAL + && r1->u.i != r2->u.i) + return false; + break; + + default: + gfc_internal_error ("compare_actual_expr(): Bad component code"); + } + } + if (!r1 && !r2) + return true; + return false; +} + + +/* Given formal and actual argument lists that correspond to one + another, check that identical actual arguments aren't not + associated with some incompatible INTENTs. */ + +static bool +check_some_aliasing (gfc_formal_arglist *f, gfc_actual_arglist *a) +{ + sym_intent f1_intent, f2_intent; + gfc_formal_arglist *f1; + gfc_actual_arglist *a1; + size_t n, i, j; + argpair *p; + bool t = true; + + n = 0; + for (f1 = f, a1 = a;; f1 = f1->next, a1 = a1->next) + { + if (f1 == NULL && a1 == NULL) + break; + if (f1 == NULL || a1 == NULL) + gfc_internal_error ("check_some_aliasing(): List mismatch"); + n++; + } + if (n == 0) + return t; + p = XALLOCAVEC (argpair, n); + + for (i = 0, f1 = f, a1 = a; i < n; i++, f1 = f1->next, a1 = a1->next) + { + p[i].f = f1; + p[i].a = a1; + } + + qsort (p, n, sizeof (argpair), pair_cmp); + + for (i = 0; i < n; i++) + { + if (!p[i].a->expr + || p[i].a->expr->expr_type != EXPR_VARIABLE + || p[i].a->expr->ts.type == BT_PROCEDURE) + continue; + f1_intent = p[i].f->sym->attr.intent; + for (j = i + 1; j < n; j++) + { + /* Expected order after the sort. */ + if (!p[j].a->expr || p[j].a->expr->expr_type != EXPR_VARIABLE) + gfc_internal_error ("check_some_aliasing(): corrupted data"); + + /* Are the expression the same? */ + if (!compare_actual_expr (p[i].a->expr, p[j].a->expr)) + break; + f2_intent = p[j].f->sym->attr.intent; + if ((f1_intent == INTENT_IN && f2_intent == INTENT_OUT) + || (f1_intent == INTENT_OUT && f2_intent == INTENT_IN) + || (f1_intent == INTENT_OUT && f2_intent == INTENT_OUT)) + { + gfc_warning (0, "Same actual argument associated with INTENT(%s) " + "argument %qs and INTENT(%s) argument %qs at %L", + gfc_intent_string (f1_intent), p[i].f->sym->name, + gfc_intent_string (f2_intent), p[j].f->sym->name, + &p[i].a->expr->where); + t = false; + } + } + } + + return t; +} + + +/* Given formal and actual argument lists that correspond to one + another, check that they are compatible in the sense that intents + are not mismatched. */ + +static bool +check_intents (gfc_formal_arglist *f, gfc_actual_arglist *a) +{ + sym_intent f_intent; + + for (;; f = f->next, a = a->next) + { + gfc_expr *expr; + + if (f == NULL && a == NULL) + break; + if (f == NULL || a == NULL) + gfc_internal_error ("check_intents(): List mismatch"); + + if (a->expr && a->expr->expr_type == EXPR_FUNCTION + && a->expr->value.function.isym + && a->expr->value.function.isym->id == GFC_ISYM_CAF_GET) + expr = a->expr->value.function.actual->expr; + else + expr = a->expr; + + if (expr == NULL || expr->expr_type != EXPR_VARIABLE) + continue; + + f_intent = f->sym->attr.intent; + + if (gfc_pure (NULL) && gfc_impure_variable (expr->symtree->n.sym)) + { + if ((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok + && CLASS_DATA (f->sym)->attr.class_pointer) + || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer)) + { + gfc_error ("Procedure argument at %L is local to a PURE " + "procedure and has the POINTER attribute", + &expr->where); + return false; + } + } + + /* Fortran 2008, C1283. */ + if (gfc_pure (NULL) && gfc_is_coindexed (expr)) + { + if (f_intent == INTENT_INOUT || f_intent == INTENT_OUT) + { + gfc_error ("Coindexed actual argument at %L in PURE procedure " + "is passed to an INTENT(%s) argument", + &expr->where, gfc_intent_string (f_intent)); + return false; + } + + if ((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok + && CLASS_DATA (f->sym)->attr.class_pointer) + || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer)) + { + gfc_error ("Coindexed actual argument at %L in PURE procedure " + "is passed to a POINTER dummy argument", + &expr->where); + return false; + } + } + + /* F2008, Section 12.5.2.4. */ + if (expr->ts.type == BT_CLASS && f->sym->ts.type == BT_CLASS + && gfc_is_coindexed (expr)) + { + gfc_error ("Coindexed polymorphic actual argument at %L is passed " + "polymorphic dummy argument %qs", + &expr->where, f->sym->name); + return false; + } + } + + return true; +} + + +/* Check how a procedure is used against its interface. If all goes + well, the actual argument list will also end up being properly + sorted. */ + +bool +gfc_procedure_use (gfc_symbol *sym, gfc_actual_arglist **ap, locus *where) +{ + gfc_actual_arglist *a; + gfc_formal_arglist *dummy_args; + bool implicit = false; + + /* Warn about calls with an implicit interface. Special case + for calling a ISO_C_BINDING because c_loc and c_funloc + are pseudo-unknown. Additionally, warn about procedures not + explicitly declared at all if requested. */ + if (sym->attr.if_source == IFSRC_UNKNOWN && !sym->attr.is_iso_c) + { + bool has_implicit_none_export = false; + implicit = true; + if (sym->attr.proc == PROC_UNKNOWN) + for (gfc_namespace *ns = sym->ns; ns; ns = ns->parent) + if (ns->has_implicit_none_export) + { + has_implicit_none_export = true; + break; + } + if (has_implicit_none_export) + { + const char *guessed + = gfc_lookup_function_fuzzy (sym->name, sym->ns->sym_root); + if (guessed) + gfc_error ("Procedure %qs called at %L is not explicitly declared" + "; did you mean %qs?", + sym->name, where, guessed); + else + gfc_error ("Procedure %qs called at %L is not explicitly declared", + sym->name, where); + return false; + } + if (warn_implicit_interface) + gfc_warning (OPT_Wimplicit_interface, + "Procedure %qs called with an implicit interface at %L", + sym->name, where); + else if (warn_implicit_procedure && sym->attr.proc == PROC_UNKNOWN) + gfc_warning (OPT_Wimplicit_procedure, + "Procedure %qs called at %L is not explicitly declared", + sym->name, where); + gfc_find_proc_namespace (sym->ns)->implicit_interface_calls = 1; + } + + if (sym->attr.if_source == IFSRC_UNKNOWN) + { + if (sym->attr.pointer) + { + gfc_error ("The pointer object %qs at %L must have an explicit " + "function interface or be declared as array", + sym->name, where); + return false; + } + + if (sym->attr.allocatable && !sym->attr.external) + { + gfc_error ("The allocatable object %qs at %L must have an explicit " + "function interface or be declared as array", + sym->name, where); + return false; + } + + if (sym->attr.allocatable) + { + gfc_error ("Allocatable function %qs at %L must have an explicit " + "function interface", sym->name, where); + return false; + } + + for (a = *ap; a; a = a->next) + { + if (a->expr && a->expr->error) + return false; + + /* F2018, 15.4.2.2 Explicit interface is required for a + polymorphic dummy argument, so there is no way to + legally have a class appear in an argument with an + implicit interface. */ + + if (implicit && a->expr && a->expr->ts.type == BT_CLASS) + { + gfc_error ("Explicit interface required for polymorphic " + "argument at %L",&a->expr->where); + a->expr->error = 1; + break; + } + + /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */ + if (a->name != NULL && a->name[0] != '%') + { + gfc_error ("Keyword argument requires explicit interface " + "for procedure %qs at %L", sym->name, &a->expr->where); + break; + } + + /* TS 29113, 6.2. */ + if (a->expr && a->expr->ts.type == BT_ASSUMED + && sym->intmod_sym_id != ISOCBINDING_LOC) + { + gfc_error ("Assumed-type argument %s at %L requires an explicit " + "interface", a->expr->symtree->n.sym->name, + &a->expr->where); + a->expr->error = 1; + break; + } + + /* F2008, C1303 and C1304. */ + if (a->expr + && (a->expr->ts.type == BT_DERIVED || a->expr->ts.type == BT_CLASS) + && a->expr->ts.u.derived + && ((a->expr->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV + && a->expr->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE) + || gfc_expr_attr (a->expr).lock_comp)) + { + gfc_error ("Actual argument of LOCK_TYPE or with LOCK_TYPE " + "component at %L requires an explicit interface for " + "procedure %qs", &a->expr->where, sym->name); + a->expr->error = 1; + break; + } + + if (a->expr + && (a->expr->ts.type == BT_DERIVED || a->expr->ts.type == BT_CLASS) + && a->expr->ts.u.derived + && ((a->expr->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV + && a->expr->ts.u.derived->intmod_sym_id + == ISOFORTRAN_EVENT_TYPE) + || gfc_expr_attr (a->expr).event_comp)) + { + gfc_error ("Actual argument of EVENT_TYPE or with EVENT_TYPE " + "component at %L requires an explicit interface for " + "procedure %qs", &a->expr->where, sym->name); + a->expr->error = 1; + break; + } + + if (a->expr && a->expr->expr_type == EXPR_NULL + && a->expr->ts.type == BT_UNKNOWN) + { + gfc_error ("MOLD argument to NULL required at %L", + &a->expr->where); + a->expr->error = 1; + return false; + } + + /* TS 29113, C407b. */ + if (a->expr && a->expr->expr_type == EXPR_VARIABLE + && symbol_rank (a->expr->symtree->n.sym) == -1) + { + gfc_error ("Assumed-rank argument requires an explicit interface " + "at %L", &a->expr->where); + a->expr->error = 1; + return false; + } + } + + return true; + } + + dummy_args = gfc_sym_get_dummy_args (sym); + + /* For a statement function, check that types and type parameters of actual + arguments and dummy arguments match. */ + if (!gfc_compare_actual_formal (ap, dummy_args, 0, sym->attr.elemental, + sym->attr.proc == PROC_ST_FUNCTION, where)) + return false; + + if (!check_intents (dummy_args, *ap)) + return false; + + if (warn_aliasing) + check_some_aliasing (dummy_args, *ap); + + return true; +} + + +/* Check how a procedure pointer component is used against its interface. + If all goes well, the actual argument list will also end up being properly + sorted. Completely analogous to gfc_procedure_use. */ + +void +gfc_ppc_use (gfc_component *comp, gfc_actual_arglist **ap, locus *where) +{ + /* Warn about calls with an implicit interface. Special case + for calling a ISO_C_BINDING because c_loc and c_funloc + are pseudo-unknown. */ + if (warn_implicit_interface + && comp->attr.if_source == IFSRC_UNKNOWN + && !comp->attr.is_iso_c) + gfc_warning (OPT_Wimplicit_interface, + "Procedure pointer component %qs called with an implicit " + "interface at %L", comp->name, where); + + if (comp->attr.if_source == IFSRC_UNKNOWN) + { + gfc_actual_arglist *a; + for (a = *ap; a; a = a->next) + { + /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */ + if (a->name != NULL && a->name[0] != '%') + { + gfc_error ("Keyword argument requires explicit interface " + "for procedure pointer component %qs at %L", + comp->name, &a->expr->where); + break; + } + } + + return; + } + + if (!gfc_compare_actual_formal (ap, comp->ts.interface->formal, 0, + comp->attr.elemental, false, where)) + return; + + check_intents (comp->ts.interface->formal, *ap); + if (warn_aliasing) + check_some_aliasing (comp->ts.interface->formal, *ap); +} + + +/* Try if an actual argument list matches the formal list of a symbol, + respecting the symbol's attributes like ELEMENTAL. This is used for + GENERIC resolution. */ + +bool +gfc_arglist_matches_symbol (gfc_actual_arglist** args, gfc_symbol* sym) +{ + gfc_formal_arglist *dummy_args; + bool r; + + if (sym->attr.flavor != FL_PROCEDURE) + return false; + + dummy_args = gfc_sym_get_dummy_args (sym); + + r = !sym->attr.elemental; + if (gfc_compare_actual_formal (args, dummy_args, r, !r, false, NULL)) + { + check_intents (dummy_args, *args); + if (warn_aliasing) + check_some_aliasing (dummy_args, *args); + return true; + } + + return false; +} + + +/* Given an interface pointer and an actual argument list, search for + a formal argument list that matches the actual. If found, returns + a pointer to the symbol of the correct interface. Returns NULL if + not found. */ + +gfc_symbol * +gfc_search_interface (gfc_interface *intr, int sub_flag, + gfc_actual_arglist **ap) +{ + gfc_symbol *elem_sym = NULL; + gfc_symbol *null_sym = NULL; + locus null_expr_loc; + gfc_actual_arglist *a; + bool has_null_arg = false; + + for (a = *ap; a; a = a->next) + if (a->expr && a->expr->expr_type == EXPR_NULL + && a->expr->ts.type == BT_UNKNOWN) + { + has_null_arg = true; + null_expr_loc = a->expr->where; + break; + } + + for (; intr; intr = intr->next) + { + if (gfc_fl_struct (intr->sym->attr.flavor)) + continue; + if (sub_flag && intr->sym->attr.function) + continue; + if (!sub_flag && intr->sym->attr.subroutine) + continue; + + if (gfc_arglist_matches_symbol (ap, intr->sym)) + { + if (has_null_arg && null_sym) + { + gfc_error ("MOLD= required in NULL() argument at %L: Ambiguity " + "between specific functions %s and %s", + &null_expr_loc, null_sym->name, intr->sym->name); + return NULL; + } + else if (has_null_arg) + { + null_sym = intr->sym; + continue; + } + + /* Satisfy 12.4.4.1 such that an elemental match has lower + weight than a non-elemental match. */ + if (intr->sym->attr.elemental) + { + elem_sym = intr->sym; + continue; + } + return intr->sym; + } + } + + if (null_sym) + return null_sym; + + return elem_sym ? elem_sym : NULL; +} + + +/* Do a brute force recursive search for a symbol. */ + +static gfc_symtree * +find_symtree0 (gfc_symtree *root, gfc_symbol *sym) +{ + gfc_symtree * st; + + if (root->n.sym == sym) + return root; + + st = NULL; + if (root->left) + st = find_symtree0 (root->left, sym); + if (root->right && ! st) + st = find_symtree0 (root->right, sym); + return st; +} + + +/* Find a symtree for a symbol. */ + +gfc_symtree * +gfc_find_sym_in_symtree (gfc_symbol *sym) +{ + gfc_symtree *st; + gfc_namespace *ns; + + /* First try to find it by name. */ + gfc_find_sym_tree (sym->name, gfc_current_ns, 1, &st); + if (st && st->n.sym == sym) + return st; + + /* If it's been renamed, resort to a brute-force search. */ + /* TODO: avoid having to do this search. If the symbol doesn't exist + in the symtree for the current namespace, it should probably be added. */ + for (ns = gfc_current_ns; ns; ns = ns->parent) + { + st = find_symtree0 (ns->sym_root, sym); + if (st) + return st; + } + gfc_internal_error ("Unable to find symbol %qs", sym->name); + /* Not reached. */ +} + + +/* See if the arglist to an operator-call contains a derived-type argument + with a matching type-bound operator. If so, return the matching specific + procedure defined as operator-target as well as the base-object to use + (which is the found derived-type argument with operator). The generic + name, if any, is transmitted to the final expression via 'gname'. */ + +static gfc_typebound_proc* +matching_typebound_op (gfc_expr** tb_base, + gfc_actual_arglist* args, + gfc_intrinsic_op op, const char* uop, + const char ** gname) +{ + gfc_actual_arglist* base; + + for (base = args; base; base = base->next) + if (base->expr->ts.type == BT_DERIVED || base->expr->ts.type == BT_CLASS) + { + gfc_typebound_proc* tb; + gfc_symbol* derived; + bool result; + + while (base->expr->expr_type == EXPR_OP + && base->expr->value.op.op == INTRINSIC_PARENTHESES) + base->expr = base->expr->value.op.op1; + + if (base->expr->ts.type == BT_CLASS) + { + if (!base->expr->ts.u.derived || CLASS_DATA (base->expr) == NULL + || !gfc_expr_attr (base->expr).class_ok) + continue; + derived = CLASS_DATA (base->expr)->ts.u.derived; + } + else + derived = base->expr->ts.u.derived; + + if (op == INTRINSIC_USER) + { + gfc_symtree* tb_uop; + + gcc_assert (uop); + tb_uop = gfc_find_typebound_user_op (derived, &result, uop, + false, NULL); + + if (tb_uop) + tb = tb_uop->n.tb; + else + tb = NULL; + } + else + tb = gfc_find_typebound_intrinsic_op (derived, &result, op, + false, NULL); + + /* This means we hit a PRIVATE operator which is use-associated and + should thus not be seen. */ + if (!result) + tb = NULL; + + /* Look through the super-type hierarchy for a matching specific + binding. */ + for (; tb; tb = tb->overridden) + { + gfc_tbp_generic* g; + + gcc_assert (tb->is_generic); + for (g = tb->u.generic; g; g = g->next) + { + gfc_symbol* target; + gfc_actual_arglist* argcopy; + bool matches; + + gcc_assert (g->specific); + if (g->specific->error) + continue; + + target = g->specific->u.specific->n.sym; + + /* Check if this arglist matches the formal. */ + argcopy = gfc_copy_actual_arglist (args); + matches = gfc_arglist_matches_symbol (&argcopy, target); + gfc_free_actual_arglist (argcopy); + + /* Return if we found a match. */ + if (matches) + { + *tb_base = base->expr; + *gname = g->specific_st->name; + return g->specific; + } + } + } + } + + return NULL; +} + + +/* For the 'actual arglist' of an operator call and a specific typebound + procedure that has been found the target of a type-bound operator, build the + appropriate EXPR_COMPCALL and resolve it. We take this indirection over + type-bound procedures rather than resolving type-bound operators 'directly' + so that we can reuse the existing logic. */ + +static void +build_compcall_for_operator (gfc_expr* e, gfc_actual_arglist* actual, + gfc_expr* base, gfc_typebound_proc* target, + const char *gname) +{ + e->expr_type = EXPR_COMPCALL; + e->value.compcall.tbp = target; + e->value.compcall.name = gname ? gname : "$op"; + e->value.compcall.actual = actual; + e->value.compcall.base_object = base; + e->value.compcall.ignore_pass = 1; + e->value.compcall.assign = 0; + if (e->ts.type == BT_UNKNOWN + && target->function) + { + if (target->is_generic) + e->ts = target->u.generic->specific->u.specific->n.sym->ts; + else + e->ts = target->u.specific->n.sym->ts; + } +} + + +/* This subroutine is called when an expression is being resolved. + The expression node in question is either a user defined operator + or an intrinsic operator with arguments that aren't compatible + with the operator. This subroutine builds an actual argument list + corresponding to the operands, then searches for a compatible + interface. If one is found, the expression node is replaced with + the appropriate function call. We use the 'match' enum to specify + whether a replacement has been made or not, or if an error occurred. */ + +match +gfc_extend_expr (gfc_expr *e) +{ + gfc_actual_arglist *actual; + gfc_symbol *sym; + gfc_namespace *ns; + gfc_user_op *uop; + gfc_intrinsic_op i; + const char *gname; + gfc_typebound_proc* tbo; + gfc_expr* tb_base; + + sym = NULL; + + actual = gfc_get_actual_arglist (); + actual->expr = e->value.op.op1; + + gname = NULL; + + if (e->value.op.op2 != NULL) + { + actual->next = gfc_get_actual_arglist (); + actual->next->expr = e->value.op.op2; + } + + i = fold_unary_intrinsic (e->value.op.op); + + /* See if we find a matching type-bound operator. */ + if (i == INTRINSIC_USER) + tbo = matching_typebound_op (&tb_base, actual, + i, e->value.op.uop->name, &gname); + else + switch (i) + { +#define CHECK_OS_COMPARISON(comp) \ + case INTRINSIC_##comp: \ + case INTRINSIC_##comp##_OS: \ + tbo = matching_typebound_op (&tb_base, actual, \ + INTRINSIC_##comp, NULL, &gname); \ + if (!tbo) \ + tbo = matching_typebound_op (&tb_base, actual, \ + INTRINSIC_##comp##_OS, NULL, &gname); \ + break; + CHECK_OS_COMPARISON(EQ) + CHECK_OS_COMPARISON(NE) + CHECK_OS_COMPARISON(GT) + CHECK_OS_COMPARISON(GE) + CHECK_OS_COMPARISON(LT) + CHECK_OS_COMPARISON(LE) +#undef CHECK_OS_COMPARISON + + default: + tbo = matching_typebound_op (&tb_base, actual, i, NULL, &gname); + break; + } + + /* If there is a matching typebound-operator, replace the expression with + a call to it and succeed. */ + if (tbo) + { + gcc_assert (tb_base); + build_compcall_for_operator (e, actual, tb_base, tbo, gname); + + if (!gfc_resolve_expr (e)) + return MATCH_ERROR; + else + return MATCH_YES; + } + + if (i == INTRINSIC_USER) + { + for (ns = gfc_current_ns; ns; ns = ns->parent) + { + uop = gfc_find_uop (e->value.op.uop->name, ns); + if (uop == NULL) + continue; + + sym = gfc_search_interface (uop->op, 0, &actual); + if (sym != NULL) + break; + } + } + else + { + for (ns = gfc_current_ns; ns; ns = ns->parent) + { + /* Due to the distinction between '==' and '.eq.' and friends, one has + to check if either is defined. */ + switch (i) + { +#define CHECK_OS_COMPARISON(comp) \ + case INTRINSIC_##comp: \ + case INTRINSIC_##comp##_OS: \ + sym = gfc_search_interface (ns->op[INTRINSIC_##comp], 0, &actual); \ + if (!sym) \ + sym = gfc_search_interface (ns->op[INTRINSIC_##comp##_OS], 0, &actual); \ + break; + CHECK_OS_COMPARISON(EQ) + CHECK_OS_COMPARISON(NE) + CHECK_OS_COMPARISON(GT) + CHECK_OS_COMPARISON(GE) + CHECK_OS_COMPARISON(LT) + CHECK_OS_COMPARISON(LE) +#undef CHECK_OS_COMPARISON + + default: + sym = gfc_search_interface (ns->op[i], 0, &actual); + } + + if (sym != NULL) + break; + } + } + + /* TODO: Do an ambiguity-check and error if multiple matching interfaces are + found rather than just taking the first one and not checking further. */ + + if (sym == NULL) + { + /* Don't use gfc_free_actual_arglist(). */ + free (actual->next); + free (actual); + return MATCH_NO; + } + + /* Change the expression node to a function call. */ + e->expr_type = EXPR_FUNCTION; + e->symtree = gfc_find_sym_in_symtree (sym); + e->value.function.actual = actual; + e->value.function.esym = NULL; + e->value.function.isym = NULL; + e->value.function.name = NULL; + e->user_operator = 1; + + if (!gfc_resolve_expr (e)) + return MATCH_ERROR; + + return MATCH_YES; +} + + +/* Tries to replace an assignment code node with a subroutine call to the + subroutine associated with the assignment operator. Return true if the node + was replaced. On false, no error is generated. */ + +bool +gfc_extend_assign (gfc_code *c, gfc_namespace *ns) +{ + gfc_actual_arglist *actual; + gfc_expr *lhs, *rhs, *tb_base; + gfc_symbol *sym = NULL; + const char *gname = NULL; + gfc_typebound_proc* tbo; + + lhs = c->expr1; + rhs = c->expr2; + + /* Don't allow an intrinsic assignment with a BOZ rhs to be replaced. */ + if (c->op == EXEC_ASSIGN + && c->expr1->expr_type == EXPR_VARIABLE + && c->expr2->expr_type == EXPR_CONSTANT && c->expr2->ts.type == BT_BOZ) + return false; + + /* Don't allow an intrinsic assignment to be replaced. */ + if (lhs->ts.type != BT_DERIVED && lhs->ts.type != BT_CLASS + && (rhs->rank == 0 || rhs->rank == lhs->rank) + && (lhs->ts.type == rhs->ts.type + || (gfc_numeric_ts (&lhs->ts) && gfc_numeric_ts (&rhs->ts)))) + return false; + + actual = gfc_get_actual_arglist (); + actual->expr = lhs; + + actual->next = gfc_get_actual_arglist (); + actual->next->expr = rhs; + + /* TODO: Ambiguity-check, see above for gfc_extend_expr. */ + + /* See if we find a matching type-bound assignment. */ + tbo = matching_typebound_op (&tb_base, actual, INTRINSIC_ASSIGN, + NULL, &gname); + + if (tbo) + { + /* Success: Replace the expression with a type-bound call. */ + gcc_assert (tb_base); + c->expr1 = gfc_get_expr (); + build_compcall_for_operator (c->expr1, actual, tb_base, tbo, gname); + c->expr1->value.compcall.assign = 1; + c->expr1->where = c->loc; + c->expr2 = NULL; + c->op = EXEC_COMPCALL; + return true; + } + + /* See if we find an 'ordinary' (non-typebound) assignment procedure. */ + for (; ns; ns = ns->parent) + { + sym = gfc_search_interface (ns->op[INTRINSIC_ASSIGN], 1, &actual); + if (sym != NULL) + break; + } + + if (sym) + { + /* Success: Replace the assignment with the call. */ + c->op = EXEC_ASSIGN_CALL; + c->symtree = gfc_find_sym_in_symtree (sym); + c->expr1 = NULL; + c->expr2 = NULL; + c->ext.actual = actual; + return true; + } + + /* Failure: No assignment procedure found. */ + free (actual->next); + free (actual); + return false; +} + + +/* Make sure that the interface just parsed is not already present in + the given interface list. Ambiguity isn't checked yet since module + procedures can be present without interfaces. */ + +bool +gfc_check_new_interface (gfc_interface *base, gfc_symbol *new_sym, locus loc) +{ + gfc_interface *ip; + + for (ip = base; ip; ip = ip->next) + { + if (ip->sym == new_sym) + { + gfc_error ("Entity %qs at %L is already present in the interface", + new_sym->name, &loc); + return false; + } + } + + return true; +} + + +/* Add a symbol to the current interface. */ + +bool +gfc_add_interface (gfc_symbol *new_sym) +{ + gfc_interface **head, *intr; + gfc_namespace *ns; + gfc_symbol *sym; + + switch (current_interface.type) + { + case INTERFACE_NAMELESS: + case INTERFACE_ABSTRACT: + return true; + + case INTERFACE_INTRINSIC_OP: + for (ns = current_interface.ns; ns; ns = ns->parent) + switch (current_interface.op) + { + case INTRINSIC_EQ: + case INTRINSIC_EQ_OS: + if (!gfc_check_new_interface (ns->op[INTRINSIC_EQ], new_sym, + gfc_current_locus) + || !gfc_check_new_interface (ns->op[INTRINSIC_EQ_OS], + new_sym, gfc_current_locus)) + return false; + break; + + case INTRINSIC_NE: + case INTRINSIC_NE_OS: + if (!gfc_check_new_interface (ns->op[INTRINSIC_NE], new_sym, + gfc_current_locus) + || !gfc_check_new_interface (ns->op[INTRINSIC_NE_OS], + new_sym, gfc_current_locus)) + return false; + break; + + case INTRINSIC_GT: + case INTRINSIC_GT_OS: + if (!gfc_check_new_interface (ns->op[INTRINSIC_GT], + new_sym, gfc_current_locus) + || !gfc_check_new_interface (ns->op[INTRINSIC_GT_OS], + new_sym, gfc_current_locus)) + return false; + break; + + case INTRINSIC_GE: + case INTRINSIC_GE_OS: + if (!gfc_check_new_interface (ns->op[INTRINSIC_GE], + new_sym, gfc_current_locus) + || !gfc_check_new_interface (ns->op[INTRINSIC_GE_OS], + new_sym, gfc_current_locus)) + return false; + break; + + case INTRINSIC_LT: + case INTRINSIC_LT_OS: + if (!gfc_check_new_interface (ns->op[INTRINSIC_LT], + new_sym, gfc_current_locus) + || !gfc_check_new_interface (ns->op[INTRINSIC_LT_OS], + new_sym, gfc_current_locus)) + return false; + break; + + case INTRINSIC_LE: + case INTRINSIC_LE_OS: + if (!gfc_check_new_interface (ns->op[INTRINSIC_LE], + new_sym, gfc_current_locus) + || !gfc_check_new_interface (ns->op[INTRINSIC_LE_OS], + new_sym, gfc_current_locus)) + return false; + break; + + default: + if (!gfc_check_new_interface (ns->op[current_interface.op], + new_sym, gfc_current_locus)) + return false; + } + + head = ¤t_interface.ns->op[current_interface.op]; + break; + + case INTERFACE_GENERIC: + case INTERFACE_DTIO: + for (ns = current_interface.ns; ns; ns = ns->parent) + { + gfc_find_symbol (current_interface.sym->name, ns, 0, &sym); + if (sym == NULL) + continue; + + if (!gfc_check_new_interface (sym->generic, + new_sym, gfc_current_locus)) + return false; + } + + head = ¤t_interface.sym->generic; + break; + + case INTERFACE_USER_OP: + if (!gfc_check_new_interface (current_interface.uop->op, + new_sym, gfc_current_locus)) + return false; + + head = ¤t_interface.uop->op; + break; + + default: + gfc_internal_error ("gfc_add_interface(): Bad interface type"); + } + + intr = gfc_get_interface (); + intr->sym = new_sym; + intr->where = gfc_current_locus; + + intr->next = *head; + *head = intr; + + return true; +} + + +gfc_interface * +gfc_current_interface_head (void) +{ + switch (current_interface.type) + { + case INTERFACE_INTRINSIC_OP: + return current_interface.ns->op[current_interface.op]; + + case INTERFACE_GENERIC: + case INTERFACE_DTIO: + return current_interface.sym->generic; + + case INTERFACE_USER_OP: + return current_interface.uop->op; + + default: + gcc_unreachable (); + } +} + + +void +gfc_set_current_interface_head (gfc_interface *i) +{ + switch (current_interface.type) + { + case INTERFACE_INTRINSIC_OP: + current_interface.ns->op[current_interface.op] = i; + break; + + case INTERFACE_GENERIC: + case INTERFACE_DTIO: + current_interface.sym->generic = i; + break; + + case INTERFACE_USER_OP: + current_interface.uop->op = i; + break; + + default: + gcc_unreachable (); + } +} + + +/* Gets rid of a formal argument list. We do not free symbols. + Symbols are freed when a namespace is freed. */ + +void +gfc_free_formal_arglist (gfc_formal_arglist *p) +{ + gfc_formal_arglist *q; + + for (; p; p = q) + { + q = p->next; + free (p); + } +} + + +/* Check that it is ok for the type-bound procedure 'proc' to override the + procedure 'old', cf. F08:4.5.7.3. */ + +bool +gfc_check_typebound_override (gfc_symtree* proc, gfc_symtree* old) +{ + locus where; + gfc_symbol *proc_target, *old_target; + unsigned proc_pass_arg, old_pass_arg, argpos; + gfc_formal_arglist *proc_formal, *old_formal; + bool check_type; + char err[200]; + + /* This procedure should only be called for non-GENERIC proc. */ + gcc_assert (!proc->n.tb->is_generic); + + /* If the overwritten procedure is GENERIC, this is an error. */ + if (old->n.tb->is_generic) + { + gfc_error ("Cannot overwrite GENERIC %qs at %L", + old->name, &proc->n.tb->where); + return false; + } + + where = proc->n.tb->where; + proc_target = proc->n.tb->u.specific->n.sym; + old_target = old->n.tb->u.specific->n.sym; + + /* Check that overridden binding is not NON_OVERRIDABLE. */ + if (old->n.tb->non_overridable) + { + gfc_error ("%qs at %L overrides a procedure binding declared" + " NON_OVERRIDABLE", proc->name, &where); + return false; + } + + /* It's an error to override a non-DEFERRED procedure with a DEFERRED one. */ + if (!old->n.tb->deferred && proc->n.tb->deferred) + { + gfc_error ("%qs at %L must not be DEFERRED as it overrides a" + " non-DEFERRED binding", proc->name, &where); + return false; + } + + /* If the overridden binding is PURE, the overriding must be, too. */ + if (old_target->attr.pure && !proc_target->attr.pure) + { + gfc_error ("%qs at %L overrides a PURE procedure and must also be PURE", + proc->name, &where); + return false; + } + + /* If the overridden binding is ELEMENTAL, the overriding must be, too. If it + is not, the overriding must not be either. */ + if (old_target->attr.elemental && !proc_target->attr.elemental) + { + gfc_error ("%qs at %L overrides an ELEMENTAL procedure and must also be" + " ELEMENTAL", proc->name, &where); + return false; + } + if (!old_target->attr.elemental && proc_target->attr.elemental) + { + gfc_error ("%qs at %L overrides a non-ELEMENTAL procedure and must not" + " be ELEMENTAL, either", proc->name, &where); + return false; + } + + /* If the overridden binding is a SUBROUTINE, the overriding must also be a + SUBROUTINE. */ + if (old_target->attr.subroutine && !proc_target->attr.subroutine) + { + gfc_error ("%qs at %L overrides a SUBROUTINE and must also be a" + " SUBROUTINE", proc->name, &where); + return false; + } + + /* If the overridden binding is a FUNCTION, the overriding must also be a + FUNCTION and have the same characteristics. */ + if (old_target->attr.function) + { + if (!proc_target->attr.function) + { + gfc_error ("%qs at %L overrides a FUNCTION and must also be a" + " FUNCTION", proc->name, &where); + return false; + } + + if (!gfc_check_result_characteristics (proc_target, old_target, + err, sizeof(err))) + { + gfc_error ("Result mismatch for the overriding procedure " + "%qs at %L: %s", proc->name, &where, err); + return false; + } + } + + /* If the overridden binding is PUBLIC, the overriding one must not be + PRIVATE. */ + if (old->n.tb->access == ACCESS_PUBLIC + && proc->n.tb->access == ACCESS_PRIVATE) + { + gfc_error ("%qs at %L overrides a PUBLIC procedure and must not be" + " PRIVATE", proc->name, &where); + return false; + } + + /* Compare the formal argument lists of both procedures. This is also abused + to find the position of the passed-object dummy arguments of both + bindings as at least the overridden one might not yet be resolved and we + need those positions in the check below. */ + proc_pass_arg = old_pass_arg = 0; + if (!proc->n.tb->nopass && !proc->n.tb->pass_arg) + proc_pass_arg = 1; + if (!old->n.tb->nopass && !old->n.tb->pass_arg) + old_pass_arg = 1; + argpos = 1; + proc_formal = gfc_sym_get_dummy_args (proc_target); + old_formal = gfc_sym_get_dummy_args (old_target); + for ( ; proc_formal && old_formal; + proc_formal = proc_formal->next, old_formal = old_formal->next) + { + if (proc->n.tb->pass_arg + && !strcmp (proc->n.tb->pass_arg, proc_formal->sym->name)) + proc_pass_arg = argpos; + if (old->n.tb->pass_arg + && !strcmp (old->n.tb->pass_arg, old_formal->sym->name)) + old_pass_arg = argpos; + + /* Check that the names correspond. */ + if (strcmp (proc_formal->sym->name, old_formal->sym->name)) + { + gfc_error ("Dummy argument %qs of %qs at %L should be named %qs as" + " to match the corresponding argument of the overridden" + " procedure", proc_formal->sym->name, proc->name, &where, + old_formal->sym->name); + return false; + } + + check_type = proc_pass_arg != argpos && old_pass_arg != argpos; + if (!gfc_check_dummy_characteristics (proc_formal->sym, old_formal->sym, + check_type, err, sizeof(err))) + { + gfc_error_opt (0, "Argument mismatch for the overriding procedure " + "%qs at %L: %s", proc->name, &where, err); + return false; + } + + ++argpos; + } + if (proc_formal || old_formal) + { + gfc_error ("%qs at %L must have the same number of formal arguments as" + " the overridden procedure", proc->name, &where); + return false; + } + + /* If the overridden binding is NOPASS, the overriding one must also be + NOPASS. */ + if (old->n.tb->nopass && !proc->n.tb->nopass) + { + gfc_error ("%qs at %L overrides a NOPASS binding and must also be" + " NOPASS", proc->name, &where); + return false; + } + + /* If the overridden binding is PASS(x), the overriding one must also be + PASS and the passed-object dummy arguments must correspond. */ + if (!old->n.tb->nopass) + { + if (proc->n.tb->nopass) + { + gfc_error ("%qs at %L overrides a binding with PASS and must also be" + " PASS", proc->name, &where); + return false; + } + + if (proc_pass_arg != old_pass_arg) + { + gfc_error ("Passed-object dummy argument of %qs at %L must be at" + " the same position as the passed-object dummy argument of" + " the overridden procedure", proc->name, &where); + return false; + } + } + + return true; +} + + +/* The following three functions check that the formal arguments + of user defined derived type IO procedures are compliant with + the requirements of the standard, see F03:9.5.3.7.2 (F08:9.6.4.8.3). */ + +static void +check_dtio_arg_TKR_intent (gfc_symbol *fsym, bool typebound, bt type, + int kind, int rank, sym_intent intent) +{ + if (fsym->ts.type != type) + { + gfc_error ("DTIO dummy argument at %L must be of type %s", + &fsym->declared_at, gfc_basic_typename (type)); + return; + } + + if (fsym->ts.type != BT_CLASS && fsym->ts.type != BT_DERIVED + && fsym->ts.kind != kind) + gfc_error ("DTIO dummy argument at %L must be of KIND = %d", + &fsym->declared_at, kind); + + if (!typebound + && rank == 0 + && (((type == BT_CLASS) && CLASS_DATA (fsym)->attr.dimension) + || ((type != BT_CLASS) && fsym->attr.dimension))) + gfc_error ("DTIO dummy argument at %L must be a scalar", + &fsym->declared_at); + else if (rank == 1 + && (fsym->as == NULL || fsym->as->type != AS_ASSUMED_SHAPE)) + gfc_error ("DTIO dummy argument at %L must be an " + "ASSUMED SHAPE ARRAY", &fsym->declared_at); + + if (type == BT_CHARACTER && fsym->ts.u.cl->length != NULL) + gfc_error ("DTIO character argument at %L must have assumed length", + &fsym->declared_at); + + if (fsym->attr.intent != intent) + gfc_error ("DTIO dummy argument at %L must have INTENT %s", + &fsym->declared_at, gfc_code2string (intents, (int)intent)); + return; +} + + +static void +check_dtio_interface1 (gfc_symbol *derived, gfc_symtree *tb_io_st, + bool typebound, bool formatted, int code) +{ + gfc_symbol *dtio_sub, *generic_proc, *fsym; + gfc_typebound_proc *tb_io_proc, *specific_proc; + gfc_interface *intr; + gfc_formal_arglist *formal; + int arg_num; + + bool read = ((dtio_codes)code == DTIO_RF) + || ((dtio_codes)code == DTIO_RUF); + bt type; + sym_intent intent; + int kind; + + dtio_sub = NULL; + if (typebound) + { + /* Typebound DTIO binding. */ + tb_io_proc = tb_io_st->n.tb; + if (tb_io_proc == NULL) + return; + + gcc_assert (tb_io_proc->is_generic); + + specific_proc = tb_io_proc->u.generic->specific; + if (specific_proc == NULL || specific_proc->is_generic) + return; + + dtio_sub = specific_proc->u.specific->n.sym; + } + else + { + generic_proc = tb_io_st->n.sym; + if (generic_proc == NULL || generic_proc->generic == NULL) + return; + + for (intr = tb_io_st->n.sym->generic; intr; intr = intr->next) + { + if (intr->sym && intr->sym->formal && intr->sym->formal->sym + && ((intr->sym->formal->sym->ts.type == BT_CLASS + && CLASS_DATA (intr->sym->formal->sym)->ts.u.derived + == derived) + || (intr->sym->formal->sym->ts.type == BT_DERIVED + && intr->sym->formal->sym->ts.u.derived == derived))) + { + dtio_sub = intr->sym; + break; + } + else if (intr->sym && intr->sym->formal && !intr->sym->formal->sym) + { + gfc_error ("Alternate return at %L is not permitted in a DTIO " + "procedure", &intr->sym->declared_at); + return; + } + } + + if (dtio_sub == NULL) + return; + } + + gcc_assert (dtio_sub); + if (!dtio_sub->attr.subroutine) + gfc_error ("DTIO procedure %qs at %L must be a subroutine", + dtio_sub->name, &dtio_sub->declared_at); + + if (!dtio_sub->resolve_symbol_called) + gfc_resolve_formal_arglist (dtio_sub); + + arg_num = 0; + for (formal = dtio_sub->formal; formal; formal = formal->next) + arg_num++; + + if (arg_num < (formatted ? 6 : 4)) + { + gfc_error ("Too few dummy arguments in DTIO procedure %qs at %L", + dtio_sub->name, &dtio_sub->declared_at); + return; + } + + if (arg_num > (formatted ? 6 : 4)) + { + gfc_error ("Too many dummy arguments in DTIO procedure %qs at %L", + dtio_sub->name, &dtio_sub->declared_at); + return; + } + + /* Now go through the formal arglist. */ + arg_num = 1; + for (formal = dtio_sub->formal; formal; formal = formal->next, arg_num++) + { + if (!formatted && arg_num == 3) + arg_num = 5; + fsym = formal->sym; + + if (fsym == NULL) + { + gfc_error ("Alternate return at %L is not permitted in a DTIO " + "procedure", &dtio_sub->declared_at); + return; + } + + switch (arg_num) + { + case(1): /* DTV */ + type = derived->attr.sequence || derived->attr.is_bind_c ? + BT_DERIVED : BT_CLASS; + kind = 0; + intent = read ? INTENT_INOUT : INTENT_IN; + check_dtio_arg_TKR_intent (fsym, typebound, type, kind, + 0, intent); + break; + + case(2): /* UNIT */ + type = BT_INTEGER; + kind = gfc_default_integer_kind; + intent = INTENT_IN; + check_dtio_arg_TKR_intent (fsym, typebound, type, kind, + 0, intent); + break; + case(3): /* IOTYPE */ + type = BT_CHARACTER; + kind = gfc_default_character_kind; + intent = INTENT_IN; + check_dtio_arg_TKR_intent (fsym, typebound, type, kind, + 0, intent); + break; + case(4): /* VLIST */ + type = BT_INTEGER; + kind = gfc_default_integer_kind; + intent = INTENT_IN; + check_dtio_arg_TKR_intent (fsym, typebound, type, kind, + 1, intent); + break; + case(5): /* IOSTAT */ + type = BT_INTEGER; + kind = gfc_default_integer_kind; + intent = INTENT_OUT; + check_dtio_arg_TKR_intent (fsym, typebound, type, kind, + 0, intent); + break; + case(6): /* IOMSG */ + type = BT_CHARACTER; + kind = gfc_default_character_kind; + intent = INTENT_INOUT; + check_dtio_arg_TKR_intent (fsym, typebound, type, kind, + 0, intent); + break; + default: + gcc_unreachable (); + } + } + derived->attr.has_dtio_procs = 1; + return; +} + +void +gfc_check_dtio_interfaces (gfc_symbol *derived) +{ + gfc_symtree *tb_io_st; + bool t = false; + int code; + bool formatted; + + if (derived->attr.is_class == 1 || derived->attr.vtype == 1) + return; + + /* Check typebound DTIO bindings. */ + for (code = 0; code < 4; code++) + { + formatted = ((dtio_codes)code == DTIO_RF) + || ((dtio_codes)code == DTIO_WF); + + tb_io_st = gfc_find_typebound_proc (derived, &t, + gfc_code2string (dtio_procs, code), + true, &derived->declared_at); + if (tb_io_st != NULL) + check_dtio_interface1 (derived, tb_io_st, true, formatted, code); + } + + /* Check generic DTIO interfaces. */ + for (code = 0; code < 4; code++) + { + formatted = ((dtio_codes)code == DTIO_RF) + || ((dtio_codes)code == DTIO_WF); + + tb_io_st = gfc_find_symtree (derived->ns->sym_root, + gfc_code2string (dtio_procs, code)); + if (tb_io_st != NULL) + check_dtio_interface1 (derived, tb_io_st, false, formatted, code); + } +} + + +gfc_symtree* +gfc_find_typebound_dtio_proc (gfc_symbol *derived, bool write, bool formatted) +{ + gfc_symtree *tb_io_st = NULL; + bool t = false; + + if (!derived || !derived->resolve_symbol_called + || derived->attr.flavor != FL_DERIVED) + return NULL; + + /* Try to find a typebound DTIO binding. */ + if (formatted == true) + { + if (write == true) + tb_io_st = gfc_find_typebound_proc (derived, &t, + gfc_code2string (dtio_procs, + DTIO_WF), + true, + &derived->declared_at); + else + tb_io_st = gfc_find_typebound_proc (derived, &t, + gfc_code2string (dtio_procs, + DTIO_RF), + true, + &derived->declared_at); + } + else + { + if (write == true) + tb_io_st = gfc_find_typebound_proc (derived, &t, + gfc_code2string (dtio_procs, + DTIO_WUF), + true, + &derived->declared_at); + else + tb_io_st = gfc_find_typebound_proc (derived, &t, + gfc_code2string (dtio_procs, + DTIO_RUF), + true, + &derived->declared_at); + } + return tb_io_st; +} + + +gfc_symbol * +gfc_find_specific_dtio_proc (gfc_symbol *derived, bool write, bool formatted) +{ + gfc_symtree *tb_io_st = NULL; + gfc_symbol *dtio_sub = NULL; + gfc_symbol *extended; + gfc_typebound_proc *tb_io_proc, *specific_proc; + + tb_io_st = gfc_find_typebound_dtio_proc (derived, write, formatted); + + if (tb_io_st != NULL) + { + const char *genname; + gfc_symtree *st; + + tb_io_proc = tb_io_st->n.tb; + gcc_assert (tb_io_proc != NULL); + gcc_assert (tb_io_proc->is_generic); + gcc_assert (tb_io_proc->u.generic->next == NULL); + + specific_proc = tb_io_proc->u.generic->specific; + gcc_assert (!specific_proc->is_generic); + + /* Go back and make sure that we have the right specific procedure. + Here we most likely have a procedure from the parent type, which + can be overridden in extensions. */ + genname = tb_io_proc->u.generic->specific_st->name; + st = gfc_find_typebound_proc (derived, NULL, genname, + true, &tb_io_proc->where); + if (st) + dtio_sub = st->n.tb->u.specific->n.sym; + else + dtio_sub = specific_proc->u.specific->n.sym; + + goto finish; + } + + /* If there is not a typebound binding, look for a generic + DTIO interface. */ + for (extended = derived; extended; + extended = gfc_get_derived_super_type (extended)) + { + if (extended == NULL || extended->ns == NULL + || extended->attr.flavor == FL_UNKNOWN) + return NULL; + + if (formatted == true) + { + if (write == true) + tb_io_st = gfc_find_symtree (extended->ns->sym_root, + gfc_code2string (dtio_procs, + DTIO_WF)); + else + tb_io_st = gfc_find_symtree (extended->ns->sym_root, + gfc_code2string (dtio_procs, + DTIO_RF)); + } + else + { + if (write == true) + tb_io_st = gfc_find_symtree (extended->ns->sym_root, + gfc_code2string (dtio_procs, + DTIO_WUF)); + else + tb_io_st = gfc_find_symtree (extended->ns->sym_root, + gfc_code2string (dtio_procs, + DTIO_RUF)); + } + + if (tb_io_st != NULL + && tb_io_st->n.sym + && tb_io_st->n.sym->generic) + { + for (gfc_interface *intr = tb_io_st->n.sym->generic; + intr && intr->sym; intr = intr->next) + { + if (intr->sym->formal) + { + gfc_symbol *fsym = intr->sym->formal->sym; + if ((fsym->ts.type == BT_CLASS + && CLASS_DATA (fsym)->ts.u.derived == extended) + || (fsym->ts.type == BT_DERIVED + && fsym->ts.u.derived == extended)) + { + dtio_sub = intr->sym; + break; + } + } + } + } + } + +finish: + if (dtio_sub + && dtio_sub->formal->sym->ts.type == BT_CLASS + && derived != CLASS_DATA (dtio_sub->formal->sym)->ts.u.derived) + gfc_find_derived_vtab (derived); + + return dtio_sub; +} + +/* Helper function - if we do not find an interface for a procedure, + construct it from the actual arglist. Luckily, this can only + happen for call by reference, so the information we actually need + to provide (and which would be impossible to guess from the call + itself) is not actually needed. */ + +void +gfc_get_formal_from_actual_arglist (gfc_symbol *sym, + gfc_actual_arglist *actual_args) +{ + gfc_actual_arglist *a; + gfc_formal_arglist **f; + gfc_symbol *s; + char name[GFC_MAX_SYMBOL_LEN + 1]; + static int var_num; + + f = &sym->formal; + for (a = actual_args; a != NULL; a = a->next) + { + (*f) = gfc_get_formal_arglist (); + if (a->expr) + { + snprintf (name, GFC_MAX_SYMBOL_LEN, "_formal_%d", var_num ++); + gfc_get_symbol (name, gfc_current_ns, &s); + if (a->expr->ts.type == BT_PROCEDURE) + { + s->attr.flavor = FL_PROCEDURE; + } + else + { + s->ts = a->expr->ts; + + if (s->ts.type == BT_CHARACTER) + s->ts.u.cl = gfc_get_charlen (); + + s->ts.deferred = 0; + s->ts.is_iso_c = 0; + s->ts.is_c_interop = 0; + s->attr.flavor = FL_VARIABLE; + if (a->expr->rank > 0) + { + s->attr.dimension = 1; + s->as = gfc_get_array_spec (); + s->as->rank = 1; + s->as->lower[0] = gfc_get_int_expr (gfc_index_integer_kind, + &a->expr->where, 1); + s->as->upper[0] = NULL; + s->as->type = AS_ASSUMED_SIZE; + } + else + s->maybe_array = maybe_dummy_array_arg (a->expr); + } + s->attr.dummy = 1; + s->attr.artificial = 1; + s->declared_at = a->expr->where; + s->attr.intent = INTENT_UNKNOWN; + (*f)->sym = s; + } + else /* If a->expr is NULL, this is an alternate rerturn. */ + (*f)->sym = NULL; + + f = &((*f)->next); + } +} + + +const char * +gfc_dummy_arg_get_name (gfc_dummy_arg & dummy_arg) +{ + switch (dummy_arg.intrinsicness) + { + case GFC_INTRINSIC_DUMMY_ARG: + return dummy_arg.u.intrinsic->name; + + case GFC_NON_INTRINSIC_DUMMY_ARG: + return dummy_arg.u.non_intrinsic->sym->name; + + default: + gcc_unreachable (); + } +} + + +const gfc_typespec & +gfc_dummy_arg_get_typespec (gfc_dummy_arg & dummy_arg) +{ + switch (dummy_arg.intrinsicness) + { + case GFC_INTRINSIC_DUMMY_ARG: + return dummy_arg.u.intrinsic->ts; + + case GFC_NON_INTRINSIC_DUMMY_ARG: + return dummy_arg.u.non_intrinsic->sym->ts; + + default: + gcc_unreachable (); + } +} + + +bool +gfc_dummy_arg_is_optional (gfc_dummy_arg & dummy_arg) +{ + switch (dummy_arg.intrinsicness) + { + case GFC_INTRINSIC_DUMMY_ARG: + return dummy_arg.u.intrinsic->optional; + + case GFC_NON_INTRINSIC_DUMMY_ARG: + return dummy_arg.u.non_intrinsic->sym->attr.optional; + + default: + gcc_unreachable (); + } +} |