aboutsummaryrefslogtreecommitdiff
path: root/gcc/fortran/expr.cc
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/fortran/expr.cc')
-rw-r--r--gcc/fortran/expr.cc6507
1 files changed, 6507 insertions, 0 deletions
diff --git a/gcc/fortran/expr.cc b/gcc/fortran/expr.cc
new file mode 100644
index 0000000..20b88a8
--- /dev/null
+++ b/gcc/fortran/expr.cc
@@ -0,0 +1,6507 @@
+/* Routines for manipulation of expression nodes.
+ Copyright (C) 2000-2022 Free Software Foundation, Inc.
+ Contributed by Andy Vaught
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "options.h"
+#include "gfortran.h"
+#include "arith.h"
+#include "match.h"
+#include "target-memory.h" /* for gfc_convert_boz */
+#include "constructor.h"
+#include "tree.h"
+
+
+/* The following set of functions provide access to gfc_expr* of
+ various types - actual all but EXPR_FUNCTION and EXPR_VARIABLE.
+
+ There are two functions available elsewhere that provide
+ slightly different flavours of variables. Namely:
+ expr.c (gfc_get_variable_expr)
+ symbol.c (gfc_lval_expr_from_sym)
+ TODO: Merge these functions, if possible. */
+
+/* Get a new expression node. */
+
+gfc_expr *
+gfc_get_expr (void)
+{
+ gfc_expr *e;
+
+ e = XCNEW (gfc_expr);
+ gfc_clear_ts (&e->ts);
+ e->shape = NULL;
+ e->ref = NULL;
+ e->symtree = NULL;
+ return e;
+}
+
+
+/* Get a new expression node that is an array constructor
+ of given type and kind. */
+
+gfc_expr *
+gfc_get_array_expr (bt type, int kind, locus *where)
+{
+ gfc_expr *e;
+
+ e = gfc_get_expr ();
+ e->expr_type = EXPR_ARRAY;
+ e->value.constructor = NULL;
+ e->rank = 1;
+ e->shape = NULL;
+
+ e->ts.type = type;
+ e->ts.kind = kind;
+ if (where)
+ e->where = *where;
+
+ return e;
+}
+
+
+/* Get a new expression node that is the NULL expression. */
+
+gfc_expr *
+gfc_get_null_expr (locus *where)
+{
+ gfc_expr *e;
+
+ e = gfc_get_expr ();
+ e->expr_type = EXPR_NULL;
+ e->ts.type = BT_UNKNOWN;
+
+ if (where)
+ e->where = *where;
+
+ return e;
+}
+
+
+/* Get a new expression node that is an operator expression node. */
+
+gfc_expr *
+gfc_get_operator_expr (locus *where, gfc_intrinsic_op op,
+ gfc_expr *op1, gfc_expr *op2)
+{
+ gfc_expr *e;
+
+ e = gfc_get_expr ();
+ e->expr_type = EXPR_OP;
+ e->value.op.op = op;
+ e->value.op.op1 = op1;
+ e->value.op.op2 = op2;
+
+ if (where)
+ e->where = *where;
+
+ return e;
+}
+
+
+/* Get a new expression node that is an structure constructor
+ of given type and kind. */
+
+gfc_expr *
+gfc_get_structure_constructor_expr (bt type, int kind, locus *where)
+{
+ gfc_expr *e;
+
+ e = gfc_get_expr ();
+ e->expr_type = EXPR_STRUCTURE;
+ e->value.constructor = NULL;
+
+ e->ts.type = type;
+ e->ts.kind = kind;
+ if (where)
+ e->where = *where;
+
+ return e;
+}
+
+
+/* Get a new expression node that is an constant of given type and kind. */
+
+gfc_expr *
+gfc_get_constant_expr (bt type, int kind, locus *where)
+{
+ gfc_expr *e;
+
+ if (!where)
+ gfc_internal_error ("gfc_get_constant_expr(): locus %<where%> cannot be "
+ "NULL");
+
+ e = gfc_get_expr ();
+
+ e->expr_type = EXPR_CONSTANT;
+ e->ts.type = type;
+ e->ts.kind = kind;
+ e->where = *where;
+
+ switch (type)
+ {
+ case BT_INTEGER:
+ mpz_init (e->value.integer);
+ break;
+
+ case BT_REAL:
+ gfc_set_model_kind (kind);
+ mpfr_init (e->value.real);
+ break;
+
+ case BT_COMPLEX:
+ gfc_set_model_kind (kind);
+ mpc_init2 (e->value.complex, mpfr_get_default_prec());
+ break;
+
+ default:
+ break;
+ }
+
+ return e;
+}
+
+
+/* Get a new expression node that is an string constant.
+ If no string is passed, a string of len is allocated,
+ blanked and null-terminated. */
+
+gfc_expr *
+gfc_get_character_expr (int kind, locus *where, const char *src, gfc_charlen_t len)
+{
+ gfc_expr *e;
+ gfc_char_t *dest;
+
+ if (!src)
+ {
+ dest = gfc_get_wide_string (len + 1);
+ gfc_wide_memset (dest, ' ', len);
+ dest[len] = '\0';
+ }
+ else
+ dest = gfc_char_to_widechar (src);
+
+ e = gfc_get_constant_expr (BT_CHARACTER, kind,
+ where ? where : &gfc_current_locus);
+ e->value.character.string = dest;
+ e->value.character.length = len;
+
+ return e;
+}
+
+
+/* Get a new expression node that is an integer constant. */
+
+gfc_expr *
+gfc_get_int_expr (int kind, locus *where, HOST_WIDE_INT value)
+{
+ gfc_expr *p;
+ p = gfc_get_constant_expr (BT_INTEGER, kind,
+ where ? where : &gfc_current_locus);
+
+ const wide_int w = wi::shwi (value, kind * BITS_PER_UNIT);
+ wi::to_mpz (w, p->value.integer, SIGNED);
+
+ return p;
+}
+
+
+/* Get a new expression node that is a logical constant. */
+
+gfc_expr *
+gfc_get_logical_expr (int kind, locus *where, bool value)
+{
+ gfc_expr *p;
+ p = gfc_get_constant_expr (BT_LOGICAL, kind,
+ where ? where : &gfc_current_locus);
+
+ p->value.logical = value;
+
+ return p;
+}
+
+
+gfc_expr *
+gfc_get_iokind_expr (locus *where, io_kind k)
+{
+ gfc_expr *e;
+
+ /* Set the types to something compatible with iokind. This is needed to
+ get through gfc_free_expr later since iokind really has no Basic Type,
+ BT, of its own. */
+
+ e = gfc_get_expr ();
+ e->expr_type = EXPR_CONSTANT;
+ e->ts.type = BT_LOGICAL;
+ e->value.iokind = k;
+ e->where = *where;
+
+ return e;
+}
+
+
+/* Given an expression pointer, return a copy of the expression. This
+ subroutine is recursive. */
+
+gfc_expr *
+gfc_copy_expr (gfc_expr *p)
+{
+ gfc_expr *q;
+ gfc_char_t *s;
+ char *c;
+
+ if (p == NULL)
+ return NULL;
+
+ q = gfc_get_expr ();
+ *q = *p;
+
+ switch (q->expr_type)
+ {
+ case EXPR_SUBSTRING:
+ s = gfc_get_wide_string (p->value.character.length + 1);
+ q->value.character.string = s;
+ memcpy (s, p->value.character.string,
+ (p->value.character.length + 1) * sizeof (gfc_char_t));
+ break;
+
+ case EXPR_CONSTANT:
+ /* Copy target representation, if it exists. */
+ if (p->representation.string)
+ {
+ c = XCNEWVEC (char, p->representation.length + 1);
+ q->representation.string = c;
+ memcpy (c, p->representation.string, (p->representation.length + 1));
+ }
+
+ /* Copy the values of any pointer components of p->value. */
+ switch (q->ts.type)
+ {
+ case BT_INTEGER:
+ mpz_init_set (q->value.integer, p->value.integer);
+ break;
+
+ case BT_REAL:
+ gfc_set_model_kind (q->ts.kind);
+ mpfr_init (q->value.real);
+ mpfr_set (q->value.real, p->value.real, GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ gfc_set_model_kind (q->ts.kind);
+ mpc_init2 (q->value.complex, mpfr_get_default_prec());
+ mpc_set (q->value.complex, p->value.complex, GFC_MPC_RND_MODE);
+ break;
+
+ case BT_CHARACTER:
+ if (p->representation.string)
+ q->value.character.string
+ = gfc_char_to_widechar (q->representation.string);
+ else
+ {
+ s = gfc_get_wide_string (p->value.character.length + 1);
+ q->value.character.string = s;
+
+ /* This is the case for the C_NULL_CHAR named constant. */
+ if (p->value.character.length == 0
+ && (p->ts.is_c_interop || p->ts.is_iso_c))
+ {
+ *s = '\0';
+ /* Need to set the length to 1 to make sure the NUL
+ terminator is copied. */
+ q->value.character.length = 1;
+ }
+ else
+ memcpy (s, p->value.character.string,
+ (p->value.character.length + 1) * sizeof (gfc_char_t));
+ }
+ break;
+
+ case BT_HOLLERITH:
+ case BT_LOGICAL:
+ case_bt_struct:
+ case BT_CLASS:
+ case BT_ASSUMED:
+ break; /* Already done. */
+
+ case BT_BOZ:
+ q->boz.len = p->boz.len;
+ q->boz.rdx = p->boz.rdx;
+ q->boz.str = XCNEWVEC (char, q->boz.len + 1);
+ strncpy (q->boz.str, p->boz.str, p->boz.len);
+ break;
+
+ case BT_PROCEDURE:
+ case BT_VOID:
+ /* Should never be reached. */
+ case BT_UNKNOWN:
+ gfc_internal_error ("gfc_copy_expr(): Bad expr node");
+ /* Not reached. */
+ }
+
+ break;
+
+ case EXPR_OP:
+ switch (q->value.op.op)
+ {
+ case INTRINSIC_NOT:
+ case INTRINSIC_PARENTHESES:
+ case INTRINSIC_UPLUS:
+ case INTRINSIC_UMINUS:
+ q->value.op.op1 = gfc_copy_expr (p->value.op.op1);
+ break;
+
+ default: /* Binary operators. */
+ q->value.op.op1 = gfc_copy_expr (p->value.op.op1);
+ q->value.op.op2 = gfc_copy_expr (p->value.op.op2);
+ break;
+ }
+
+ break;
+
+ case EXPR_FUNCTION:
+ q->value.function.actual =
+ gfc_copy_actual_arglist (p->value.function.actual);
+ break;
+
+ case EXPR_COMPCALL:
+ case EXPR_PPC:
+ q->value.compcall.actual =
+ gfc_copy_actual_arglist (p->value.compcall.actual);
+ q->value.compcall.tbp = p->value.compcall.tbp;
+ break;
+
+ case EXPR_STRUCTURE:
+ case EXPR_ARRAY:
+ q->value.constructor = gfc_constructor_copy (p->value.constructor);
+ break;
+
+ case EXPR_VARIABLE:
+ case EXPR_NULL:
+ break;
+
+ case EXPR_UNKNOWN:
+ gcc_unreachable ();
+ }
+
+ q->shape = gfc_copy_shape (p->shape, p->rank);
+
+ q->ref = gfc_copy_ref (p->ref);
+
+ if (p->param_list)
+ q->param_list = gfc_copy_actual_arglist (p->param_list);
+
+ return q;
+}
+
+
+void
+gfc_clear_shape (mpz_t *shape, int rank)
+{
+ int i;
+
+ for (i = 0; i < rank; i++)
+ mpz_clear (shape[i]);
+}
+
+
+void
+gfc_free_shape (mpz_t **shape, int rank)
+{
+ if (*shape == NULL)
+ return;
+
+ gfc_clear_shape (*shape, rank);
+ free (*shape);
+ *shape = NULL;
+}
+
+
+/* Workhorse function for gfc_free_expr() that frees everything
+ beneath an expression node, but not the node itself. This is
+ useful when we want to simplify a node and replace it with
+ something else or the expression node belongs to another structure. */
+
+static void
+free_expr0 (gfc_expr *e)
+{
+ switch (e->expr_type)
+ {
+ case EXPR_CONSTANT:
+ /* Free any parts of the value that need freeing. */
+ switch (e->ts.type)
+ {
+ case BT_INTEGER:
+ mpz_clear (e->value.integer);
+ break;
+
+ case BT_REAL:
+ mpfr_clear (e->value.real);
+ break;
+
+ case BT_CHARACTER:
+ free (e->value.character.string);
+ break;
+
+ case BT_COMPLEX:
+ mpc_clear (e->value.complex);
+ break;
+
+ default:
+ break;
+ }
+
+ /* Free the representation. */
+ free (e->representation.string);
+
+ break;
+
+ case EXPR_OP:
+ if (e->value.op.op1 != NULL)
+ gfc_free_expr (e->value.op.op1);
+ if (e->value.op.op2 != NULL)
+ gfc_free_expr (e->value.op.op2);
+ break;
+
+ case EXPR_FUNCTION:
+ gfc_free_actual_arglist (e->value.function.actual);
+ break;
+
+ case EXPR_COMPCALL:
+ case EXPR_PPC:
+ gfc_free_actual_arglist (e->value.compcall.actual);
+ break;
+
+ case EXPR_VARIABLE:
+ break;
+
+ case EXPR_ARRAY:
+ case EXPR_STRUCTURE:
+ gfc_constructor_free (e->value.constructor);
+ break;
+
+ case EXPR_SUBSTRING:
+ free (e->value.character.string);
+ break;
+
+ case EXPR_NULL:
+ break;
+
+ default:
+ gfc_internal_error ("free_expr0(): Bad expr type");
+ }
+
+ /* Free a shape array. */
+ gfc_free_shape (&e->shape, e->rank);
+
+ gfc_free_ref_list (e->ref);
+
+ gfc_free_actual_arglist (e->param_list);
+
+ memset (e, '\0', sizeof (gfc_expr));
+}
+
+
+/* Free an expression node and everything beneath it. */
+
+void
+gfc_free_expr (gfc_expr *e)
+{
+ if (e == NULL)
+ return;
+ free_expr0 (e);
+ free (e);
+}
+
+
+/* Free an argument list and everything below it. */
+
+void
+gfc_free_actual_arglist (gfc_actual_arglist *a1)
+{
+ gfc_actual_arglist *a2;
+
+ while (a1)
+ {
+ a2 = a1->next;
+ if (a1->expr)
+ gfc_free_expr (a1->expr);
+ free (a1);
+ a1 = a2;
+ }
+}
+
+
+/* Copy an arglist structure and all of the arguments. */
+
+gfc_actual_arglist *
+gfc_copy_actual_arglist (gfc_actual_arglist *p)
+{
+ gfc_actual_arglist *head, *tail, *new_arg;
+
+ head = tail = NULL;
+
+ for (; p; p = p->next)
+ {
+ new_arg = gfc_get_actual_arglist ();
+ *new_arg = *p;
+
+ new_arg->expr = gfc_copy_expr (p->expr);
+ new_arg->next = NULL;
+
+ if (head == NULL)
+ head = new_arg;
+ else
+ tail->next = new_arg;
+
+ tail = new_arg;
+ }
+
+ return head;
+}
+
+
+/* Free a list of reference structures. */
+
+void
+gfc_free_ref_list (gfc_ref *p)
+{
+ gfc_ref *q;
+ int i;
+
+ for (; p; p = q)
+ {
+ q = p->next;
+
+ switch (p->type)
+ {
+ case REF_ARRAY:
+ for (i = 0; i < GFC_MAX_DIMENSIONS; i++)
+ {
+ gfc_free_expr (p->u.ar.start[i]);
+ gfc_free_expr (p->u.ar.end[i]);
+ gfc_free_expr (p->u.ar.stride[i]);
+ }
+
+ break;
+
+ case REF_SUBSTRING:
+ gfc_free_expr (p->u.ss.start);
+ gfc_free_expr (p->u.ss.end);
+ break;
+
+ case REF_COMPONENT:
+ case REF_INQUIRY:
+ break;
+ }
+
+ free (p);
+ }
+}
+
+
+/* Graft the *src expression onto the *dest subexpression. */
+
+void
+gfc_replace_expr (gfc_expr *dest, gfc_expr *src)
+{
+ free_expr0 (dest);
+ *dest = *src;
+ free (src);
+}
+
+
+/* Try to extract an integer constant from the passed expression node.
+ Return true if some error occurred, false on success. If REPORT_ERROR
+ is non-zero, emit error, for positive REPORT_ERROR using gfc_error,
+ for negative using gfc_error_now. */
+
+bool
+gfc_extract_int (gfc_expr *expr, int *result, int report_error)
+{
+ gfc_ref *ref;
+
+ /* A KIND component is a parameter too. The expression for it
+ is stored in the initializer and should be consistent with
+ the tests below. */
+ if (gfc_expr_attr(expr).pdt_kind)
+ {
+ for (ref = expr->ref; ref; ref = ref->next)
+ {
+ if (ref->u.c.component->attr.pdt_kind)
+ expr = ref->u.c.component->initializer;
+ }
+ }
+
+ if (expr->expr_type != EXPR_CONSTANT)
+ {
+ if (report_error > 0)
+ gfc_error ("Constant expression required at %C");
+ else if (report_error < 0)
+ gfc_error_now ("Constant expression required at %C");
+ return true;
+ }
+
+ if (expr->ts.type != BT_INTEGER)
+ {
+ if (report_error > 0)
+ gfc_error ("Integer expression required at %C");
+ else if (report_error < 0)
+ gfc_error_now ("Integer expression required at %C");
+ return true;
+ }
+
+ if ((mpz_cmp_si (expr->value.integer, INT_MAX) > 0)
+ || (mpz_cmp_si (expr->value.integer, INT_MIN) < 0))
+ {
+ if (report_error > 0)
+ gfc_error ("Integer value too large in expression at %C");
+ else if (report_error < 0)
+ gfc_error_now ("Integer value too large in expression at %C");
+ return true;
+ }
+
+ *result = (int) mpz_get_si (expr->value.integer);
+
+ return false;
+}
+
+
+/* Same as gfc_extract_int, but use a HWI. */
+
+bool
+gfc_extract_hwi (gfc_expr *expr, HOST_WIDE_INT *result, int report_error)
+{
+ gfc_ref *ref;
+
+ /* A KIND component is a parameter too. The expression for it is
+ stored in the initializer and should be consistent with the tests
+ below. */
+ if (gfc_expr_attr(expr).pdt_kind)
+ {
+ for (ref = expr->ref; ref; ref = ref->next)
+ {
+ if (ref->u.c.component->attr.pdt_kind)
+ expr = ref->u.c.component->initializer;
+ }
+ }
+
+ if (expr->expr_type != EXPR_CONSTANT)
+ {
+ if (report_error > 0)
+ gfc_error ("Constant expression required at %C");
+ else if (report_error < 0)
+ gfc_error_now ("Constant expression required at %C");
+ return true;
+ }
+
+ if (expr->ts.type != BT_INTEGER)
+ {
+ if (report_error > 0)
+ gfc_error ("Integer expression required at %C");
+ else if (report_error < 0)
+ gfc_error_now ("Integer expression required at %C");
+ return true;
+ }
+
+ /* Use long_long_integer_type_node to determine when to saturate. */
+ const wide_int val = wi::from_mpz (long_long_integer_type_node,
+ expr->value.integer, false);
+
+ if (!wi::fits_shwi_p (val))
+ {
+ if (report_error > 0)
+ gfc_error ("Integer value too large in expression at %C");
+ else if (report_error < 0)
+ gfc_error_now ("Integer value too large in expression at %C");
+ return true;
+ }
+
+ *result = val.to_shwi ();
+
+ return false;
+}
+
+
+/* Recursively copy a list of reference structures. */
+
+gfc_ref *
+gfc_copy_ref (gfc_ref *src)
+{
+ gfc_array_ref *ar;
+ gfc_ref *dest;
+
+ if (src == NULL)
+ return NULL;
+
+ dest = gfc_get_ref ();
+ dest->type = src->type;
+
+ switch (src->type)
+ {
+ case REF_ARRAY:
+ ar = gfc_copy_array_ref (&src->u.ar);
+ dest->u.ar = *ar;
+ free (ar);
+ break;
+
+ case REF_COMPONENT:
+ dest->u.c = src->u.c;
+ break;
+
+ case REF_INQUIRY:
+ dest->u.i = src->u.i;
+ break;
+
+ case REF_SUBSTRING:
+ dest->u.ss = src->u.ss;
+ dest->u.ss.start = gfc_copy_expr (src->u.ss.start);
+ dest->u.ss.end = gfc_copy_expr (src->u.ss.end);
+ break;
+ }
+
+ dest->next = gfc_copy_ref (src->next);
+
+ return dest;
+}
+
+
+/* Detect whether an expression has any vector index array references. */
+
+int
+gfc_has_vector_index (gfc_expr *e)
+{
+ gfc_ref *ref;
+ int i;
+ for (ref = e->ref; ref; ref = ref->next)
+ if (ref->type == REF_ARRAY)
+ for (i = 0; i < ref->u.ar.dimen; i++)
+ if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
+ return 1;
+ return 0;
+}
+
+
+/* Copy a shape array. */
+
+mpz_t *
+gfc_copy_shape (mpz_t *shape, int rank)
+{
+ mpz_t *new_shape;
+ int n;
+
+ if (shape == NULL)
+ return NULL;
+
+ new_shape = gfc_get_shape (rank);
+
+ for (n = 0; n < rank; n++)
+ mpz_init_set (new_shape[n], shape[n]);
+
+ return new_shape;
+}
+
+
+/* Copy a shape array excluding dimension N, where N is an integer
+ constant expression. Dimensions are numbered in Fortran style --
+ starting with ONE.
+
+ So, if the original shape array contains R elements
+ { s1 ... sN-1 sN sN+1 ... sR-1 sR}
+ the result contains R-1 elements:
+ { s1 ... sN-1 sN+1 ... sR-1}
+
+ If anything goes wrong -- N is not a constant, its value is out
+ of range -- or anything else, just returns NULL. */
+
+mpz_t *
+gfc_copy_shape_excluding (mpz_t *shape, int rank, gfc_expr *dim)
+{
+ mpz_t *new_shape, *s;
+ int i, n;
+
+ if (shape == NULL
+ || rank <= 1
+ || dim == NULL
+ || dim->expr_type != EXPR_CONSTANT
+ || dim->ts.type != BT_INTEGER)
+ return NULL;
+
+ n = mpz_get_si (dim->value.integer);
+ n--; /* Convert to zero based index. */
+ if (n < 0 || n >= rank)
+ return NULL;
+
+ s = new_shape = gfc_get_shape (rank - 1);
+
+ for (i = 0; i < rank; i++)
+ {
+ if (i == n)
+ continue;
+ mpz_init_set (*s, shape[i]);
+ s++;
+ }
+
+ return new_shape;
+}
+
+
+/* Return the maximum kind of two expressions. In general, higher
+ kind numbers mean more precision for numeric types. */
+
+int
+gfc_kind_max (gfc_expr *e1, gfc_expr *e2)
+{
+ return (e1->ts.kind > e2->ts.kind) ? e1->ts.kind : e2->ts.kind;
+}
+
+
+/* Returns nonzero if the type is numeric, zero otherwise. */
+
+static int
+numeric_type (bt type)
+{
+ return type == BT_COMPLEX || type == BT_REAL || type == BT_INTEGER;
+}
+
+
+/* Returns nonzero if the typespec is a numeric type, zero otherwise. */
+
+int
+gfc_numeric_ts (gfc_typespec *ts)
+{
+ return numeric_type (ts->type);
+}
+
+
+/* Return an expression node with an optional argument list attached.
+ A variable number of gfc_expr pointers are strung together in an
+ argument list with a NULL pointer terminating the list. */
+
+gfc_expr *
+gfc_build_conversion (gfc_expr *e)
+{
+ gfc_expr *p;
+
+ p = gfc_get_expr ();
+ p->expr_type = EXPR_FUNCTION;
+ p->symtree = NULL;
+ p->value.function.actual = gfc_get_actual_arglist ();
+ p->value.function.actual->expr = e;
+
+ return p;
+}
+
+
+/* Given an expression node with some sort of numeric binary
+ expression, insert type conversions required to make the operands
+ have the same type. Conversion warnings are disabled if wconversion
+ is set to 0.
+
+ The exception is that the operands of an exponential don't have to
+ have the same type. If possible, the base is promoted to the type
+ of the exponent. For example, 1**2.3 becomes 1.0**2.3, but
+ 1.0**2 stays as it is. */
+
+void
+gfc_type_convert_binary (gfc_expr *e, int wconversion)
+{
+ gfc_expr *op1, *op2;
+
+ op1 = e->value.op.op1;
+ op2 = e->value.op.op2;
+
+ if (op1->ts.type == BT_UNKNOWN || op2->ts.type == BT_UNKNOWN)
+ {
+ gfc_clear_ts (&e->ts);
+ return;
+ }
+
+ /* Kind conversions of same type. */
+ if (op1->ts.type == op2->ts.type)
+ {
+ if (op1->ts.kind == op2->ts.kind)
+ {
+ /* No type conversions. */
+ e->ts = op1->ts;
+ goto done;
+ }
+
+ if (op1->ts.kind > op2->ts.kind)
+ gfc_convert_type_warn (op2, &op1->ts, 2, wconversion);
+ else
+ gfc_convert_type_warn (op1, &op2->ts, 2, wconversion);
+
+ e->ts = op1->ts;
+ goto done;
+ }
+
+ /* Integer combined with real or complex. */
+ if (op2->ts.type == BT_INTEGER)
+ {
+ e->ts = op1->ts;
+
+ /* Special case for ** operator. */
+ if (e->value.op.op == INTRINSIC_POWER)
+ goto done;
+
+ gfc_convert_type_warn (e->value.op.op2, &e->ts, 2, wconversion);
+ goto done;
+ }
+
+ if (op1->ts.type == BT_INTEGER)
+ {
+ e->ts = op2->ts;
+ gfc_convert_type_warn (e->value.op.op1, &e->ts, 2, wconversion);
+ goto done;
+ }
+
+ /* Real combined with complex. */
+ e->ts.type = BT_COMPLEX;
+ if (op1->ts.kind > op2->ts.kind)
+ e->ts.kind = op1->ts.kind;
+ else
+ e->ts.kind = op2->ts.kind;
+ if (op1->ts.type != BT_COMPLEX || op1->ts.kind != e->ts.kind)
+ gfc_convert_type_warn (e->value.op.op1, &e->ts, 2, wconversion);
+ if (op2->ts.type != BT_COMPLEX || op2->ts.kind != e->ts.kind)
+ gfc_convert_type_warn (e->value.op.op2, &e->ts, 2, wconversion);
+
+done:
+ return;
+}
+
+
+/* Standard intrinsics listed under F2018:10.1.12 (6), which are excluded in
+ constant expressions, except TRANSFER (c.f. item (8)), which would need
+ separate treatment. */
+
+static bool
+is_non_constant_intrinsic (gfc_expr *e)
+{
+ if (e->expr_type == EXPR_FUNCTION
+ && e->value.function.isym)
+ {
+ switch (e->value.function.isym->id)
+ {
+ case GFC_ISYM_COMMAND_ARGUMENT_COUNT:
+ case GFC_ISYM_GET_TEAM:
+ case GFC_ISYM_NULL:
+ case GFC_ISYM_NUM_IMAGES:
+ case GFC_ISYM_TEAM_NUMBER:
+ case GFC_ISYM_THIS_IMAGE:
+ return true;
+
+ default:
+ return false;
+ }
+ }
+ return false;
+}
+
+
+/* Determine if an expression is constant in the sense of F08:7.1.12.
+ * This function expects that the expression has already been simplified. */
+
+bool
+gfc_is_constant_expr (gfc_expr *e)
+{
+ gfc_constructor *c;
+ gfc_actual_arglist *arg;
+
+ if (e == NULL)
+ return true;
+
+ switch (e->expr_type)
+ {
+ case EXPR_OP:
+ return (gfc_is_constant_expr (e->value.op.op1)
+ && (e->value.op.op2 == NULL
+ || gfc_is_constant_expr (e->value.op.op2)));
+
+ case EXPR_VARIABLE:
+ /* The only context in which this can occur is in a parameterized
+ derived type declaration, so returning true is OK. */
+ if (e->symtree->n.sym->attr.pdt_len
+ || e->symtree->n.sym->attr.pdt_kind)
+ return true;
+ return false;
+
+ case EXPR_FUNCTION:
+ case EXPR_PPC:
+ case EXPR_COMPCALL:
+ gcc_assert (e->symtree || e->value.function.esym
+ || e->value.function.isym);
+
+ /* Check for intrinsics excluded in constant expressions. */
+ if (e->value.function.isym && is_non_constant_intrinsic (e))
+ return false;
+
+ /* Call to intrinsic with at least one argument. */
+ if (e->value.function.isym && e->value.function.actual)
+ {
+ for (arg = e->value.function.actual; arg; arg = arg->next)
+ if (!gfc_is_constant_expr (arg->expr))
+ return false;
+ }
+
+ if (e->value.function.isym
+ && (e->value.function.isym->elemental
+ || e->value.function.isym->pure
+ || e->value.function.isym->inquiry
+ || e->value.function.isym->transformational))
+ return true;
+
+ return false;
+
+ case EXPR_CONSTANT:
+ case EXPR_NULL:
+ return true;
+
+ case EXPR_SUBSTRING:
+ return e->ref == NULL || (gfc_is_constant_expr (e->ref->u.ss.start)
+ && gfc_is_constant_expr (e->ref->u.ss.end));
+
+ case EXPR_ARRAY:
+ case EXPR_STRUCTURE:
+ c = gfc_constructor_first (e->value.constructor);
+ if ((e->expr_type == EXPR_ARRAY) && c && c->iterator)
+ return gfc_constant_ac (e);
+
+ for (; c; c = gfc_constructor_next (c))
+ if (!gfc_is_constant_expr (c->expr))
+ return false;
+
+ return true;
+
+
+ default:
+ gfc_internal_error ("gfc_is_constant_expr(): Unknown expression type");
+ return false;
+ }
+}
+
+
+/* Is true if the expression or symbol is a passed CFI descriptor. */
+bool
+is_CFI_desc (gfc_symbol *sym, gfc_expr *e)
+{
+ if (sym == NULL
+ && e && e->expr_type == EXPR_VARIABLE)
+ sym = e->symtree->n.sym;
+
+ if (sym && sym->attr.dummy
+ && sym->ns->proc_name->attr.is_bind_c
+ && (sym->attr.pointer
+ || sym->attr.allocatable
+ || (sym->attr.dimension
+ && (sym->as->type == AS_ASSUMED_SHAPE
+ || sym->as->type == AS_ASSUMED_RANK))
+ || (sym->ts.type == BT_CHARACTER
+ && (!sym->ts.u.cl || !sym->ts.u.cl->length))))
+ return true;
+
+return false;
+}
+
+
+/* Is true if an array reference is followed by a component or substring
+ reference. */
+bool
+is_subref_array (gfc_expr * e)
+{
+ gfc_ref * ref;
+ bool seen_array;
+ gfc_symbol *sym;
+
+ if (e->expr_type != EXPR_VARIABLE)
+ return false;
+
+ sym = e->symtree->n.sym;
+
+ if (sym->attr.subref_array_pointer)
+ return true;
+
+ seen_array = false;
+
+ for (ref = e->ref; ref; ref = ref->next)
+ {
+ /* If we haven't seen the array reference and this is an intrinsic,
+ what follows cannot be a subreference array, unless there is a
+ substring reference. */
+ if (!seen_array && ref->type == REF_COMPONENT
+ && ref->u.c.component->ts.type != BT_CHARACTER
+ && ref->u.c.component->ts.type != BT_CLASS
+ && !gfc_bt_struct (ref->u.c.component->ts.type))
+ return false;
+
+ if (ref->type == REF_ARRAY
+ && ref->u.ar.type != AR_ELEMENT)
+ seen_array = true;
+
+ if (seen_array
+ && ref->type != REF_ARRAY)
+ return seen_array;
+ }
+
+ if (sym->ts.type == BT_CLASS
+ && sym->attr.dummy
+ && CLASS_DATA (sym)->attr.dimension
+ && CLASS_DATA (sym)->attr.class_pointer)
+ return true;
+
+ return false;
+}
+
+
+/* Try to collapse intrinsic expressions. */
+
+static bool
+simplify_intrinsic_op (gfc_expr *p, int type)
+{
+ gfc_intrinsic_op op;
+ gfc_expr *op1, *op2, *result;
+
+ if (p->value.op.op == INTRINSIC_USER)
+ return true;
+
+ op1 = p->value.op.op1;
+ op2 = p->value.op.op2;
+ op = p->value.op.op;
+
+ if (!gfc_simplify_expr (op1, type))
+ return false;
+ if (!gfc_simplify_expr (op2, type))
+ return false;
+
+ if (!gfc_is_constant_expr (op1)
+ || (op2 != NULL && !gfc_is_constant_expr (op2)))
+ return true;
+
+ /* Rip p apart. */
+ p->value.op.op1 = NULL;
+ p->value.op.op2 = NULL;
+
+ switch (op)
+ {
+ case INTRINSIC_PARENTHESES:
+ result = gfc_parentheses (op1);
+ break;
+
+ case INTRINSIC_UPLUS:
+ result = gfc_uplus (op1);
+ break;
+
+ case INTRINSIC_UMINUS:
+ result = gfc_uminus (op1);
+ break;
+
+ case INTRINSIC_PLUS:
+ result = gfc_add (op1, op2);
+ break;
+
+ case INTRINSIC_MINUS:
+ result = gfc_subtract (op1, op2);
+ break;
+
+ case INTRINSIC_TIMES:
+ result = gfc_multiply (op1, op2);
+ break;
+
+ case INTRINSIC_DIVIDE:
+ result = gfc_divide (op1, op2);
+ break;
+
+ case INTRINSIC_POWER:
+ result = gfc_power (op1, op2);
+ break;
+
+ case INTRINSIC_CONCAT:
+ result = gfc_concat (op1, op2);
+ break;
+
+ case INTRINSIC_EQ:
+ case INTRINSIC_EQ_OS:
+ result = gfc_eq (op1, op2, op);
+ break;
+
+ case INTRINSIC_NE:
+ case INTRINSIC_NE_OS:
+ result = gfc_ne (op1, op2, op);
+ break;
+
+ case INTRINSIC_GT:
+ case INTRINSIC_GT_OS:
+ result = gfc_gt (op1, op2, op);
+ break;
+
+ case INTRINSIC_GE:
+ case INTRINSIC_GE_OS:
+ result = gfc_ge (op1, op2, op);
+ break;
+
+ case INTRINSIC_LT:
+ case INTRINSIC_LT_OS:
+ result = gfc_lt (op1, op2, op);
+ break;
+
+ case INTRINSIC_LE:
+ case INTRINSIC_LE_OS:
+ result = gfc_le (op1, op2, op);
+ break;
+
+ case INTRINSIC_NOT:
+ result = gfc_not (op1);
+ break;
+
+ case INTRINSIC_AND:
+ result = gfc_and (op1, op2);
+ break;
+
+ case INTRINSIC_OR:
+ result = gfc_or (op1, op2);
+ break;
+
+ case INTRINSIC_EQV:
+ result = gfc_eqv (op1, op2);
+ break;
+
+ case INTRINSIC_NEQV:
+ result = gfc_neqv (op1, op2);
+ break;
+
+ default:
+ gfc_internal_error ("simplify_intrinsic_op(): Bad operator");
+ }
+
+ if (result == NULL)
+ {
+ gfc_free_expr (op1);
+ gfc_free_expr (op2);
+ return false;
+ }
+
+ result->rank = p->rank;
+ result->where = p->where;
+ gfc_replace_expr (p, result);
+
+ return true;
+}
+
+
+/* Subroutine to simplify constructor expressions. Mutually recursive
+ with gfc_simplify_expr(). */
+
+static bool
+simplify_constructor (gfc_constructor_base base, int type)
+{
+ gfc_constructor *c;
+ gfc_expr *p;
+
+ for (c = gfc_constructor_first (base); c; c = gfc_constructor_next (c))
+ {
+ if (c->iterator
+ && (!gfc_simplify_expr(c->iterator->start, type)
+ || !gfc_simplify_expr (c->iterator->end, type)
+ || !gfc_simplify_expr (c->iterator->step, type)))
+ return false;
+
+ if (c->expr)
+ {
+ /* Try and simplify a copy. Replace the original if successful
+ but keep going through the constructor at all costs. Not
+ doing so can make a dog's dinner of complicated things. */
+ p = gfc_copy_expr (c->expr);
+
+ if (!gfc_simplify_expr (p, type))
+ {
+ gfc_free_expr (p);
+ continue;
+ }
+
+ gfc_replace_expr (c->expr, p);
+ }
+ }
+
+ return true;
+}
+
+
+/* Pull a single array element out of an array constructor. */
+
+static bool
+find_array_element (gfc_constructor_base base, gfc_array_ref *ar,
+ gfc_constructor **rval)
+{
+ unsigned long nelemen;
+ int i;
+ mpz_t delta;
+ mpz_t offset;
+ mpz_t span;
+ mpz_t tmp;
+ gfc_constructor *cons;
+ gfc_expr *e;
+ bool t;
+
+ t = true;
+ e = NULL;
+
+ mpz_init_set_ui (offset, 0);
+ mpz_init (delta);
+ mpz_init (tmp);
+ mpz_init_set_ui (span, 1);
+ for (i = 0; i < ar->dimen; i++)
+ {
+ if (!gfc_reduce_init_expr (ar->as->lower[i])
+ || !gfc_reduce_init_expr (ar->as->upper[i])
+ || ar->as->upper[i]->expr_type != EXPR_CONSTANT
+ || ar->as->lower[i]->expr_type != EXPR_CONSTANT)
+ {
+ t = false;
+ cons = NULL;
+ goto depart;
+ }
+
+ e = ar->start[i];
+ if (e->expr_type != EXPR_CONSTANT)
+ {
+ cons = NULL;
+ goto depart;
+ }
+
+ /* Check the bounds. */
+ if ((ar->as->upper[i]
+ && mpz_cmp (e->value.integer,
+ ar->as->upper[i]->value.integer) > 0)
+ || (mpz_cmp (e->value.integer,
+ ar->as->lower[i]->value.integer) < 0))
+ {
+ gfc_error ("Index in dimension %d is out of bounds "
+ "at %L", i + 1, &ar->c_where[i]);
+ cons = NULL;
+ t = false;
+ goto depart;
+ }
+
+ mpz_sub (delta, e->value.integer, ar->as->lower[i]->value.integer);
+ mpz_mul (delta, delta, span);
+ mpz_add (offset, offset, delta);
+
+ mpz_set_ui (tmp, 1);
+ mpz_add (tmp, tmp, ar->as->upper[i]->value.integer);
+ mpz_sub (tmp, tmp, ar->as->lower[i]->value.integer);
+ mpz_mul (span, span, tmp);
+ }
+
+ for (cons = gfc_constructor_first (base), nelemen = mpz_get_ui (offset);
+ cons && nelemen > 0; cons = gfc_constructor_next (cons), nelemen--)
+ {
+ if (cons->iterator)
+ {
+ cons = NULL;
+ goto depart;
+ }
+ }
+
+depart:
+ mpz_clear (delta);
+ mpz_clear (offset);
+ mpz_clear (span);
+ mpz_clear (tmp);
+ *rval = cons;
+ return t;
+}
+
+
+/* Find a component of a structure constructor. */
+
+static gfc_constructor *
+find_component_ref (gfc_constructor_base base, gfc_ref *ref)
+{
+ gfc_component *pick = ref->u.c.component;
+ gfc_constructor *c = gfc_constructor_first (base);
+
+ gfc_symbol *dt = ref->u.c.sym;
+ int ext = dt->attr.extension;
+
+ /* For extended types, check if the desired component is in one of the
+ * parent types. */
+ while (ext > 0 && gfc_find_component (dt->components->ts.u.derived,
+ pick->name, true, true, NULL))
+ {
+ dt = dt->components->ts.u.derived;
+ c = gfc_constructor_first (c->expr->value.constructor);
+ ext--;
+ }
+
+ gfc_component *comp = dt->components;
+ while (comp != pick)
+ {
+ comp = comp->next;
+ c = gfc_constructor_next (c);
+ }
+
+ return c;
+}
+
+
+/* Replace an expression with the contents of a constructor, removing
+ the subobject reference in the process. */
+
+static void
+remove_subobject_ref (gfc_expr *p, gfc_constructor *cons)
+{
+ gfc_expr *e;
+
+ if (cons)
+ {
+ e = cons->expr;
+ cons->expr = NULL;
+ }
+ else
+ e = gfc_copy_expr (p);
+ e->ref = p->ref->next;
+ p->ref->next = NULL;
+ gfc_replace_expr (p, e);
+}
+
+
+/* Pull an array section out of an array constructor. */
+
+static bool
+find_array_section (gfc_expr *expr, gfc_ref *ref)
+{
+ int idx;
+ int rank;
+ int d;
+ int shape_i;
+ int limit;
+ long unsigned one = 1;
+ bool incr_ctr;
+ mpz_t start[GFC_MAX_DIMENSIONS];
+ mpz_t end[GFC_MAX_DIMENSIONS];
+ mpz_t stride[GFC_MAX_DIMENSIONS];
+ mpz_t delta[GFC_MAX_DIMENSIONS];
+ mpz_t ctr[GFC_MAX_DIMENSIONS];
+ mpz_t delta_mpz;
+ mpz_t tmp_mpz;
+ mpz_t nelts;
+ mpz_t ptr;
+ gfc_constructor_base base;
+ gfc_constructor *cons, *vecsub[GFC_MAX_DIMENSIONS];
+ gfc_expr *begin;
+ gfc_expr *finish;
+ gfc_expr *step;
+ gfc_expr *upper;
+ gfc_expr *lower;
+ bool t;
+
+ t = true;
+
+ base = expr->value.constructor;
+ expr->value.constructor = NULL;
+
+ rank = ref->u.ar.as->rank;
+
+ if (expr->shape == NULL)
+ expr->shape = gfc_get_shape (rank);
+
+ mpz_init_set_ui (delta_mpz, one);
+ mpz_init_set_ui (nelts, one);
+ mpz_init (tmp_mpz);
+
+ /* Do the initialization now, so that we can cleanup without
+ keeping track of where we were. */
+ for (d = 0; d < rank; d++)
+ {
+ mpz_init (delta[d]);
+ mpz_init (start[d]);
+ mpz_init (end[d]);
+ mpz_init (ctr[d]);
+ mpz_init (stride[d]);
+ vecsub[d] = NULL;
+ }
+
+ /* Build the counters to clock through the array reference. */
+ shape_i = 0;
+ for (d = 0; d < rank; d++)
+ {
+ /* Make this stretch of code easier on the eye! */
+ begin = ref->u.ar.start[d];
+ finish = ref->u.ar.end[d];
+ step = ref->u.ar.stride[d];
+ lower = ref->u.ar.as->lower[d];
+ upper = ref->u.ar.as->upper[d];
+
+ if (ref->u.ar.dimen_type[d] == DIMEN_VECTOR) /* Vector subscript. */
+ {
+ gfc_constructor *ci;
+ gcc_assert (begin);
+
+ if (begin->expr_type != EXPR_ARRAY || !gfc_is_constant_expr (begin))
+ {
+ t = false;
+ goto cleanup;
+ }
+
+ gcc_assert (begin->rank == 1);
+ /* Zero-sized arrays have no shape and no elements, stop early. */
+ if (!begin->shape)
+ {
+ mpz_init_set_ui (nelts, 0);
+ break;
+ }
+
+ vecsub[d] = gfc_constructor_first (begin->value.constructor);
+ mpz_set (ctr[d], vecsub[d]->expr->value.integer);
+ mpz_mul (nelts, nelts, begin->shape[0]);
+ mpz_set (expr->shape[shape_i++], begin->shape[0]);
+
+ /* Check bounds. */
+ for (ci = vecsub[d]; ci; ci = gfc_constructor_next (ci))
+ {
+ if (mpz_cmp (ci->expr->value.integer, upper->value.integer) > 0
+ || mpz_cmp (ci->expr->value.integer,
+ lower->value.integer) < 0)
+ {
+ gfc_error ("index in dimension %d is out of bounds "
+ "at %L", d + 1, &ref->u.ar.c_where[d]);
+ t = false;
+ goto cleanup;
+ }
+ }
+ }
+ else
+ {
+ if ((begin && begin->expr_type != EXPR_CONSTANT)
+ || (finish && finish->expr_type != EXPR_CONSTANT)
+ || (step && step->expr_type != EXPR_CONSTANT))
+ {
+ t = false;
+ goto cleanup;
+ }
+
+ /* Obtain the stride. */
+ if (step)
+ mpz_set (stride[d], step->value.integer);
+ else
+ mpz_set_ui (stride[d], one);
+
+ if (mpz_cmp_ui (stride[d], 0) == 0)
+ mpz_set_ui (stride[d], one);
+
+ /* Obtain the start value for the index. */
+ if (begin)
+ mpz_set (start[d], begin->value.integer);
+ else
+ mpz_set (start[d], lower->value.integer);
+
+ mpz_set (ctr[d], start[d]);
+
+ /* Obtain the end value for the index. */
+ if (finish)
+ mpz_set (end[d], finish->value.integer);
+ else
+ mpz_set (end[d], upper->value.integer);
+
+ /* Separate 'if' because elements sometimes arrive with
+ non-null end. */
+ if (ref->u.ar.dimen_type[d] == DIMEN_ELEMENT)
+ mpz_set (end [d], begin->value.integer);
+
+ /* Check the bounds. */
+ if (mpz_cmp (ctr[d], upper->value.integer) > 0
+ || mpz_cmp (end[d], upper->value.integer) > 0
+ || mpz_cmp (ctr[d], lower->value.integer) < 0
+ || mpz_cmp (end[d], lower->value.integer) < 0)
+ {
+ gfc_error ("index in dimension %d is out of bounds "
+ "at %L", d + 1, &ref->u.ar.c_where[d]);
+ t = false;
+ goto cleanup;
+ }
+
+ /* Calculate the number of elements and the shape. */
+ mpz_set (tmp_mpz, stride[d]);
+ mpz_add (tmp_mpz, end[d], tmp_mpz);
+ mpz_sub (tmp_mpz, tmp_mpz, ctr[d]);
+ mpz_div (tmp_mpz, tmp_mpz, stride[d]);
+ mpz_mul (nelts, nelts, tmp_mpz);
+
+ /* An element reference reduces the rank of the expression; don't
+ add anything to the shape array. */
+ if (ref->u.ar.dimen_type[d] != DIMEN_ELEMENT)
+ mpz_set (expr->shape[shape_i++], tmp_mpz);
+ }
+
+ /* Calculate the 'stride' (=delta) for conversion of the
+ counter values into the index along the constructor. */
+ mpz_set (delta[d], delta_mpz);
+ mpz_sub (tmp_mpz, upper->value.integer, lower->value.integer);
+ mpz_add_ui (tmp_mpz, tmp_mpz, one);
+ mpz_mul (delta_mpz, delta_mpz, tmp_mpz);
+ }
+
+ mpz_init (ptr);
+ cons = gfc_constructor_first (base);
+
+ /* Now clock through the array reference, calculating the index in
+ the source constructor and transferring the elements to the new
+ constructor. */
+ for (idx = 0; idx < (int) mpz_get_si (nelts); idx++)
+ {
+ mpz_init_set_ui (ptr, 0);
+
+ incr_ctr = true;
+ for (d = 0; d < rank; d++)
+ {
+ mpz_set (tmp_mpz, ctr[d]);
+ mpz_sub (tmp_mpz, tmp_mpz, ref->u.ar.as->lower[d]->value.integer);
+ mpz_mul (tmp_mpz, tmp_mpz, delta[d]);
+ mpz_add (ptr, ptr, tmp_mpz);
+
+ if (!incr_ctr) continue;
+
+ if (ref->u.ar.dimen_type[d] == DIMEN_VECTOR) /* Vector subscript. */
+ {
+ gcc_assert(vecsub[d]);
+
+ if (!gfc_constructor_next (vecsub[d]))
+ vecsub[d] = gfc_constructor_first (ref->u.ar.start[d]->value.constructor);
+ else
+ {
+ vecsub[d] = gfc_constructor_next (vecsub[d]);
+ incr_ctr = false;
+ }
+ mpz_set (ctr[d], vecsub[d]->expr->value.integer);
+ }
+ else
+ {
+ mpz_add (ctr[d], ctr[d], stride[d]);
+
+ if (mpz_cmp_ui (stride[d], 0) > 0
+ ? mpz_cmp (ctr[d], end[d]) > 0
+ : mpz_cmp (ctr[d], end[d]) < 0)
+ mpz_set (ctr[d], start[d]);
+ else
+ incr_ctr = false;
+ }
+ }
+
+ limit = mpz_get_ui (ptr);
+ if (limit >= flag_max_array_constructor)
+ {
+ gfc_error ("The number of elements in the array constructor "
+ "at %L requires an increase of the allowed %d "
+ "upper limit. See %<-fmax-array-constructor%> "
+ "option", &expr->where, flag_max_array_constructor);
+ return false;
+ }
+
+ cons = gfc_constructor_lookup (base, limit);
+ gcc_assert (cons);
+ gfc_constructor_append_expr (&expr->value.constructor,
+ gfc_copy_expr (cons->expr), NULL);
+ }
+
+ mpz_clear (ptr);
+
+cleanup:
+
+ mpz_clear (delta_mpz);
+ mpz_clear (tmp_mpz);
+ mpz_clear (nelts);
+ for (d = 0; d < rank; d++)
+ {
+ mpz_clear (delta[d]);
+ mpz_clear (start[d]);
+ mpz_clear (end[d]);
+ mpz_clear (ctr[d]);
+ mpz_clear (stride[d]);
+ }
+ gfc_constructor_free (base);
+ return t;
+}
+
+/* Pull a substring out of an expression. */
+
+static bool
+find_substring_ref (gfc_expr *p, gfc_expr **newp)
+{
+ gfc_charlen_t end;
+ gfc_charlen_t start;
+ gfc_charlen_t length;
+ gfc_char_t *chr;
+
+ if (p->ref->u.ss.start->expr_type != EXPR_CONSTANT
+ || p->ref->u.ss.end->expr_type != EXPR_CONSTANT)
+ return false;
+
+ *newp = gfc_copy_expr (p);
+ free ((*newp)->value.character.string);
+
+ end = (gfc_charlen_t) mpz_get_si (p->ref->u.ss.end->value.integer);
+ start = (gfc_charlen_t) mpz_get_si (p->ref->u.ss.start->value.integer);
+ if (end >= start)
+ length = end - start + 1;
+ else
+ length = 0;
+
+ chr = (*newp)->value.character.string = gfc_get_wide_string (length + 1);
+ (*newp)->value.character.length = length;
+ memcpy (chr, &p->value.character.string[start - 1],
+ length * sizeof (gfc_char_t));
+ chr[length] = '\0';
+ return true;
+}
+
+
+/* Pull an inquiry result out of an expression. */
+
+static bool
+find_inquiry_ref (gfc_expr *p, gfc_expr **newp)
+{
+ gfc_ref *ref;
+ gfc_ref *inquiry = NULL;
+ gfc_expr *tmp;
+
+ tmp = gfc_copy_expr (p);
+
+ if (tmp->ref && tmp->ref->type == REF_INQUIRY)
+ {
+ inquiry = tmp->ref;
+ tmp->ref = NULL;
+ }
+ else
+ {
+ for (ref = tmp->ref; ref; ref = ref->next)
+ if (ref->next && ref->next->type == REF_INQUIRY)
+ {
+ inquiry = ref->next;
+ ref->next = NULL;
+ }
+ }
+
+ if (!inquiry)
+ {
+ gfc_free_expr (tmp);
+ return false;
+ }
+
+ gfc_resolve_expr (tmp);
+
+ /* In principle there can be more than one inquiry reference. */
+ for (; inquiry; inquiry = inquiry->next)
+ {
+ switch (inquiry->u.i)
+ {
+ case INQUIRY_LEN:
+ if (tmp->ts.type != BT_CHARACTER)
+ goto cleanup;
+
+ if (!gfc_notify_std (GFC_STD_F2003, "LEN part_ref at %C"))
+ goto cleanup;
+
+ if (tmp->ts.u.cl->length
+ && tmp->ts.u.cl->length->expr_type == EXPR_CONSTANT)
+ *newp = gfc_copy_expr (tmp->ts.u.cl->length);
+ else if (tmp->expr_type == EXPR_CONSTANT)
+ *newp = gfc_get_int_expr (gfc_default_integer_kind,
+ NULL, tmp->value.character.length);
+ else
+ goto cleanup;
+
+ break;
+
+ case INQUIRY_KIND:
+ if (tmp->ts.type == BT_DERIVED || tmp->ts.type == BT_CLASS)
+ goto cleanup;
+
+ if (!gfc_notify_std (GFC_STD_F2003, "KIND part_ref at %C"))
+ goto cleanup;
+
+ *newp = gfc_get_int_expr (gfc_default_integer_kind,
+ NULL, tmp->ts.kind);
+ break;
+
+ case INQUIRY_RE:
+ if (tmp->ts.type != BT_COMPLEX || tmp->expr_type != EXPR_CONSTANT)
+ goto cleanup;
+
+ if (!gfc_notify_std (GFC_STD_F2008, "RE part_ref at %C"))
+ goto cleanup;
+
+ *newp = gfc_get_constant_expr (BT_REAL, tmp->ts.kind, &tmp->where);
+ mpfr_set ((*newp)->value.real,
+ mpc_realref (tmp->value.complex), GFC_RND_MODE);
+ break;
+
+ case INQUIRY_IM:
+ if (tmp->ts.type != BT_COMPLEX || tmp->expr_type != EXPR_CONSTANT)
+ goto cleanup;
+
+ if (!gfc_notify_std (GFC_STD_F2008, "IM part_ref at %C"))
+ goto cleanup;
+
+ *newp = gfc_get_constant_expr (BT_REAL, tmp->ts.kind, &tmp->where);
+ mpfr_set ((*newp)->value.real,
+ mpc_imagref (tmp->value.complex), GFC_RND_MODE);
+ break;
+ }
+ tmp = gfc_copy_expr (*newp);
+ }
+
+ if (!(*newp))
+ goto cleanup;
+ else if ((*newp)->expr_type != EXPR_CONSTANT)
+ {
+ gfc_free_expr (*newp);
+ goto cleanup;
+ }
+
+ gfc_free_expr (tmp);
+ return true;
+
+cleanup:
+ gfc_free_expr (tmp);
+ return false;
+}
+
+
+
+/* Simplify a subobject reference of a constructor. This occurs when
+ parameter variable values are substituted. */
+
+static bool
+simplify_const_ref (gfc_expr *p)
+{
+ gfc_constructor *cons, *c;
+ gfc_expr *newp = NULL;
+ gfc_ref *last_ref;
+
+ while (p->ref)
+ {
+ switch (p->ref->type)
+ {
+ case REF_ARRAY:
+ switch (p->ref->u.ar.type)
+ {
+ case AR_ELEMENT:
+ /* <type/kind spec>, parameter :: x(<int>) = scalar_expr
+ will generate this. */
+ if (p->expr_type != EXPR_ARRAY)
+ {
+ remove_subobject_ref (p, NULL);
+ break;
+ }
+ if (!find_array_element (p->value.constructor, &p->ref->u.ar, &cons))
+ return false;
+
+ if (!cons)
+ return true;
+
+ remove_subobject_ref (p, cons);
+ break;
+
+ case AR_SECTION:
+ if (!find_array_section (p, p->ref))
+ return false;
+ p->ref->u.ar.type = AR_FULL;
+
+ /* Fall through. */
+
+ case AR_FULL:
+ if (p->ref->next != NULL
+ && (p->ts.type == BT_CHARACTER || gfc_bt_struct (p->ts.type)))
+ {
+ for (c = gfc_constructor_first (p->value.constructor);
+ c; c = gfc_constructor_next (c))
+ {
+ c->expr->ref = gfc_copy_ref (p->ref->next);
+ if (!simplify_const_ref (c->expr))
+ return false;
+ }
+
+ if (gfc_bt_struct (p->ts.type)
+ && p->ref->next
+ && (c = gfc_constructor_first (p->value.constructor)))
+ {
+ /* There may have been component references. */
+ p->ts = c->expr->ts;
+ }
+
+ last_ref = p->ref;
+ for (; last_ref->next; last_ref = last_ref->next) {};
+
+ if (p->ts.type == BT_CHARACTER
+ && last_ref->type == REF_SUBSTRING)
+ {
+ /* If this is a CHARACTER array and we possibly took
+ a substring out of it, update the type-spec's
+ character length according to the first element
+ (as all should have the same length). */
+ gfc_charlen_t string_len;
+ if ((c = gfc_constructor_first (p->value.constructor)))
+ {
+ const gfc_expr* first = c->expr;
+ gcc_assert (first->expr_type == EXPR_CONSTANT);
+ gcc_assert (first->ts.type == BT_CHARACTER);
+ string_len = first->value.character.length;
+ }
+ else
+ string_len = 0;
+
+ if (!p->ts.u.cl)
+ {
+ if (p->symtree)
+ p->ts.u.cl = gfc_new_charlen (p->symtree->n.sym->ns,
+ NULL);
+ else
+ p->ts.u.cl = gfc_new_charlen (gfc_current_ns,
+ NULL);
+ }
+ else
+ gfc_free_expr (p->ts.u.cl->length);
+
+ p->ts.u.cl->length
+ = gfc_get_int_expr (gfc_charlen_int_kind,
+ NULL, string_len);
+ }
+ }
+ gfc_free_ref_list (p->ref);
+ p->ref = NULL;
+ break;
+
+ default:
+ return true;
+ }
+
+ break;
+
+ case REF_COMPONENT:
+ cons = find_component_ref (p->value.constructor, p->ref);
+ remove_subobject_ref (p, cons);
+ break;
+
+ case REF_INQUIRY:
+ if (!find_inquiry_ref (p, &newp))
+ return false;
+
+ gfc_replace_expr (p, newp);
+ gfc_free_ref_list (p->ref);
+ p->ref = NULL;
+ break;
+
+ case REF_SUBSTRING:
+ if (!find_substring_ref (p, &newp))
+ return false;
+
+ gfc_replace_expr (p, newp);
+ gfc_free_ref_list (p->ref);
+ p->ref = NULL;
+ break;
+ }
+ }
+
+ return true;
+}
+
+
+/* Simplify a chain of references. */
+
+static bool
+simplify_ref_chain (gfc_ref *ref, int type, gfc_expr **p)
+{
+ int n;
+ gfc_expr *newp;
+
+ for (; ref; ref = ref->next)
+ {
+ switch (ref->type)
+ {
+ case REF_ARRAY:
+ for (n = 0; n < ref->u.ar.dimen; n++)
+ {
+ if (!gfc_simplify_expr (ref->u.ar.start[n], type))
+ return false;
+ if (!gfc_simplify_expr (ref->u.ar.end[n], type))
+ return false;
+ if (!gfc_simplify_expr (ref->u.ar.stride[n], type))
+ return false;
+ }
+ break;
+
+ case REF_SUBSTRING:
+ if (!gfc_simplify_expr (ref->u.ss.start, type))
+ return false;
+ if (!gfc_simplify_expr (ref->u.ss.end, type))
+ return false;
+ break;
+
+ case REF_INQUIRY:
+ if (!find_inquiry_ref (*p, &newp))
+ return false;
+
+ gfc_replace_expr (*p, newp);
+ gfc_free_ref_list ((*p)->ref);
+ (*p)->ref = NULL;
+ return true;
+
+ default:
+ break;
+ }
+ }
+ return true;
+}
+
+
+/* Try to substitute the value of a parameter variable. */
+
+static bool
+simplify_parameter_variable (gfc_expr *p, int type)
+{
+ gfc_expr *e;
+ bool t;
+
+ /* Set rank and check array ref; as resolve_variable calls
+ gfc_simplify_expr, call gfc_resolve_ref + gfc_expression_rank instead. */
+ if (!gfc_resolve_ref (p))
+ {
+ gfc_error_check ();
+ return false;
+ }
+ gfc_expression_rank (p);
+
+ /* Is this an inquiry? */
+ bool inquiry = false;
+ gfc_ref* ref = p->ref;
+ while (ref)
+ {
+ if (ref->type == REF_INQUIRY)
+ break;
+ ref = ref->next;
+ }
+ if (ref && ref->type == REF_INQUIRY)
+ inquiry = ref->u.i == INQUIRY_LEN || ref->u.i == INQUIRY_KIND;
+
+ if (gfc_is_size_zero_array (p))
+ {
+ if (p->expr_type == EXPR_ARRAY)
+ return true;
+
+ e = gfc_get_expr ();
+ e->expr_type = EXPR_ARRAY;
+ e->ts = p->ts;
+ e->rank = p->rank;
+ e->value.constructor = NULL;
+ e->shape = gfc_copy_shape (p->shape, p->rank);
+ e->where = p->where;
+ /* If %kind and %len are not used then we're done, otherwise
+ drop through for simplification. */
+ if (!inquiry)
+ {
+ gfc_replace_expr (p, e);
+ return true;
+ }
+ }
+ else
+ {
+ e = gfc_copy_expr (p->symtree->n.sym->value);
+ if (e == NULL)
+ return false;
+
+ gfc_free_shape (&e->shape, e->rank);
+ e->shape = gfc_copy_shape (p->shape, p->rank);
+ e->rank = p->rank;
+
+ if (e->ts.type == BT_CHARACTER && p->ts.u.cl)
+ e->ts = p->ts;
+ }
+
+ if (e->ts.type == BT_CHARACTER && e->ts.u.cl == NULL)
+ e->ts.u.cl = gfc_new_charlen (gfc_current_ns, p->ts.u.cl);
+
+ /* Do not copy subobject refs for constant. */
+ if (e->expr_type != EXPR_CONSTANT && p->ref != NULL)
+ e->ref = gfc_copy_ref (p->ref);
+ t = gfc_simplify_expr (e, type);
+ e->where = p->where;
+
+ /* Only use the simplification if it eliminated all subobject references. */
+ if (t && !e->ref)
+ gfc_replace_expr (p, e);
+ else
+ gfc_free_expr (e);
+
+ return t;
+}
+
+
+static bool
+scalarize_intrinsic_call (gfc_expr *, bool init_flag);
+
+/* Given an expression, simplify it by collapsing constant
+ expressions. Most simplification takes place when the expression
+ tree is being constructed. If an intrinsic function is simplified
+ at some point, we get called again to collapse the result against
+ other constants.
+
+ We work by recursively simplifying expression nodes, simplifying
+ intrinsic functions where possible, which can lead to further
+ constant collapsing. If an operator has constant operand(s), we
+ rip the expression apart, and rebuild it, hoping that it becomes
+ something simpler.
+
+ The expression type is defined for:
+ 0 Basic expression parsing
+ 1 Simplifying array constructors -- will substitute
+ iterator values.
+ Returns false on error, true otherwise.
+ NOTE: Will return true even if the expression cannot be simplified. */
+
+bool
+gfc_simplify_expr (gfc_expr *p, int type)
+{
+ gfc_actual_arglist *ap;
+ gfc_intrinsic_sym* isym = NULL;
+
+
+ if (p == NULL)
+ return true;
+
+ switch (p->expr_type)
+ {
+ case EXPR_CONSTANT:
+ if (p->ref && p->ref->type == REF_INQUIRY)
+ simplify_ref_chain (p->ref, type, &p);
+ break;
+ case EXPR_NULL:
+ break;
+
+ case EXPR_FUNCTION:
+ // For array-bound functions, we don't need to optimize
+ // the 'array' argument. In particular, if the argument
+ // is a PARAMETER, simplifying might convert an EXPR_VARIABLE
+ // into an EXPR_ARRAY; the latter has lbound = 1, the former
+ // can have any lbound.
+ ap = p->value.function.actual;
+ if (p->value.function.isym &&
+ (p->value.function.isym->id == GFC_ISYM_LBOUND
+ || p->value.function.isym->id == GFC_ISYM_UBOUND
+ || p->value.function.isym->id == GFC_ISYM_LCOBOUND
+ || p->value.function.isym->id == GFC_ISYM_UCOBOUND
+ || p->value.function.isym->id == GFC_ISYM_SHAPE))
+ ap = ap->next;
+
+ for ( ; ap; ap = ap->next)
+ if (!gfc_simplify_expr (ap->expr, type))
+ return false;
+
+ if (p->value.function.isym != NULL
+ && gfc_intrinsic_func_interface (p, 1) == MATCH_ERROR)
+ return false;
+
+ if (p->symtree && (p->value.function.isym || p->ts.type == BT_UNKNOWN))
+ {
+ isym = gfc_find_function (p->symtree->n.sym->name);
+ if (isym && isym->elemental)
+ scalarize_intrinsic_call (p, false);
+ }
+
+ break;
+
+ case EXPR_SUBSTRING:
+ if (!simplify_ref_chain (p->ref, type, &p))
+ return false;
+
+ if (gfc_is_constant_expr (p))
+ {
+ gfc_char_t *s;
+ HOST_WIDE_INT start, end;
+
+ start = 0;
+ if (p->ref && p->ref->u.ss.start)
+ {
+ gfc_extract_hwi (p->ref->u.ss.start, &start);
+ start--; /* Convert from one-based to zero-based. */
+ }
+
+ end = p->value.character.length;
+ if (p->ref && p->ref->u.ss.end)
+ gfc_extract_hwi (p->ref->u.ss.end, &end);
+
+ if (end < start)
+ end = start;
+
+ s = gfc_get_wide_string (end - start + 2);
+ memcpy (s, p->value.character.string + start,
+ (end - start) * sizeof (gfc_char_t));
+ s[end - start + 1] = '\0'; /* TODO: C-style string. */
+ free (p->value.character.string);
+ p->value.character.string = s;
+ p->value.character.length = end - start;
+ p->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
+ p->ts.u.cl->length = gfc_get_int_expr (gfc_charlen_int_kind,
+ NULL,
+ p->value.character.length);
+ gfc_free_ref_list (p->ref);
+ p->ref = NULL;
+ p->expr_type = EXPR_CONSTANT;
+ }
+ break;
+
+ case EXPR_OP:
+ if (!simplify_intrinsic_op (p, type))
+ return false;
+ break;
+
+ case EXPR_VARIABLE:
+ /* Only substitute array parameter variables if we are in an
+ initialization expression, or we want a subsection. */
+ if (p->symtree->n.sym->attr.flavor == FL_PARAMETER
+ && (gfc_init_expr_flag || p->ref
+ || p->symtree->n.sym->value->expr_type != EXPR_ARRAY))
+ {
+ if (!simplify_parameter_variable (p, type))
+ return false;
+ break;
+ }
+
+ if (type == 1)
+ {
+ gfc_simplify_iterator_var (p);
+ }
+
+ /* Simplify subcomponent references. */
+ if (!simplify_ref_chain (p->ref, type, &p))
+ return false;
+
+ break;
+
+ case EXPR_STRUCTURE:
+ case EXPR_ARRAY:
+ if (!simplify_ref_chain (p->ref, type, &p))
+ return false;
+
+ /* If the following conditions hold, we found something like kind type
+ inquiry of the form a(2)%kind while simplify the ref chain. */
+ if (p->expr_type == EXPR_CONSTANT && !p->ref && !p->rank && !p->shape)
+ return true;
+
+ if (!simplify_constructor (p->value.constructor, type))
+ return false;
+
+ if (p->expr_type == EXPR_ARRAY && p->ref && p->ref->type == REF_ARRAY
+ && p->ref->u.ar.type == AR_FULL)
+ gfc_expand_constructor (p, false);
+
+ if (!simplify_const_ref (p))
+ return false;
+
+ break;
+
+ case EXPR_COMPCALL:
+ case EXPR_PPC:
+ break;
+
+ case EXPR_UNKNOWN:
+ gcc_unreachable ();
+ }
+
+ return true;
+}
+
+
+/* Try simplification of an expression via gfc_simplify_expr.
+ When an error occurs (arithmetic or otherwise), roll back. */
+
+bool
+gfc_try_simplify_expr (gfc_expr *e, int type)
+{
+ gfc_expr *n;
+ bool t, saved_div0;
+
+ if (e == NULL || e->expr_type == EXPR_CONSTANT)
+ return true;
+
+ saved_div0 = gfc_seen_div0;
+ gfc_seen_div0 = false;
+ n = gfc_copy_expr (e);
+ t = gfc_simplify_expr (n, type) && !gfc_seen_div0;
+ if (t)
+ gfc_replace_expr (e, n);
+ else
+ gfc_free_expr (n);
+ gfc_seen_div0 = saved_div0;
+ return t;
+}
+
+
+/* Returns the type of an expression with the exception that iterator
+ variables are automatically integers no matter what else they may
+ be declared as. */
+
+static bt
+et0 (gfc_expr *e)
+{
+ if (e->expr_type == EXPR_VARIABLE && gfc_check_iter_variable (e))
+ return BT_INTEGER;
+
+ return e->ts.type;
+}
+
+
+/* Scalarize an expression for an elemental intrinsic call. */
+
+static bool
+scalarize_intrinsic_call (gfc_expr *e, bool init_flag)
+{
+ gfc_actual_arglist *a, *b;
+ gfc_constructor_base ctor;
+ gfc_constructor *args[5] = {}; /* Avoid uninitialized warnings. */
+ gfc_constructor *ci, *new_ctor;
+ gfc_expr *expr, *old, *p;
+ int n, i, rank[5], array_arg;
+
+ if (e == NULL)
+ return false;
+
+ a = e->value.function.actual;
+ for (; a; a = a->next)
+ if (a->expr && !gfc_is_constant_expr (a->expr))
+ return false;
+
+ /* Find which, if any, arguments are arrays. Assume that the old
+ expression carries the type information and that the first arg
+ that is an array expression carries all the shape information.*/
+ n = array_arg = 0;
+ a = e->value.function.actual;
+ for (; a; a = a->next)
+ {
+ n++;
+ if (!a->expr || a->expr->expr_type != EXPR_ARRAY)
+ continue;
+ array_arg = n;
+ expr = gfc_copy_expr (a->expr);
+ break;
+ }
+
+ if (!array_arg)
+ return false;
+
+ old = gfc_copy_expr (e);
+
+ gfc_constructor_free (expr->value.constructor);
+ expr->value.constructor = NULL;
+ expr->ts = old->ts;
+ expr->where = old->where;
+ expr->expr_type = EXPR_ARRAY;
+
+ /* Copy the array argument constructors into an array, with nulls
+ for the scalars. */
+ n = 0;
+ a = old->value.function.actual;
+ for (; a; a = a->next)
+ {
+ /* Check that this is OK for an initialization expression. */
+ if (a->expr && init_flag && !gfc_check_init_expr (a->expr))
+ goto cleanup;
+
+ rank[n] = 0;
+ if (a->expr && a->expr->rank && a->expr->expr_type == EXPR_VARIABLE)
+ {
+ rank[n] = a->expr->rank;
+ ctor = a->expr->symtree->n.sym->value->value.constructor;
+ args[n] = gfc_constructor_first (ctor);
+ }
+ else if (a->expr && a->expr->expr_type == EXPR_ARRAY)
+ {
+ if (a->expr->rank)
+ rank[n] = a->expr->rank;
+ else
+ rank[n] = 1;
+ ctor = gfc_constructor_copy (a->expr->value.constructor);
+ args[n] = gfc_constructor_first (ctor);
+ }
+ else
+ args[n] = NULL;
+
+ n++;
+ }
+
+ /* Using the array argument as the master, step through the array
+ calling the function for each element and advancing the array
+ constructors together. */
+ for (ci = args[array_arg - 1]; ci; ci = gfc_constructor_next (ci))
+ {
+ new_ctor = gfc_constructor_append_expr (&expr->value.constructor,
+ gfc_copy_expr (old), NULL);
+
+ gfc_free_actual_arglist (new_ctor->expr->value.function.actual);
+ a = NULL;
+ b = old->value.function.actual;
+ for (i = 0; i < n; i++)
+ {
+ if (a == NULL)
+ new_ctor->expr->value.function.actual
+ = a = gfc_get_actual_arglist ();
+ else
+ {
+ a->next = gfc_get_actual_arglist ();
+ a = a->next;
+ }
+
+ if (args[i])
+ a->expr = gfc_copy_expr (args[i]->expr);
+ else
+ a->expr = gfc_copy_expr (b->expr);
+
+ b = b->next;
+ }
+
+ /* Simplify the function calls. If the simplification fails, the
+ error will be flagged up down-stream or the library will deal
+ with it. */
+ p = gfc_copy_expr (new_ctor->expr);
+
+ if (!gfc_simplify_expr (p, init_flag))
+ gfc_free_expr (p);
+ else
+ gfc_replace_expr (new_ctor->expr, p);
+
+ for (i = 0; i < n; i++)
+ if (args[i])
+ args[i] = gfc_constructor_next (args[i]);
+
+ for (i = 1; i < n; i++)
+ if (rank[i] && ((args[i] != NULL && args[array_arg - 1] == NULL)
+ || (args[i] == NULL && args[array_arg - 1] != NULL)))
+ goto compliance;
+ }
+
+ free_expr0 (e);
+ *e = *expr;
+ /* Free "expr" but not the pointers it contains. */
+ free (expr);
+ gfc_free_expr (old);
+ return true;
+
+compliance:
+ gfc_error_now ("elemental function arguments at %C are not compliant");
+
+cleanup:
+ gfc_free_expr (expr);
+ gfc_free_expr (old);
+ return false;
+}
+
+
+static bool
+check_intrinsic_op (gfc_expr *e, bool (*check_function) (gfc_expr *))
+{
+ gfc_expr *op1 = e->value.op.op1;
+ gfc_expr *op2 = e->value.op.op2;
+
+ if (!(*check_function)(op1))
+ return false;
+
+ switch (e->value.op.op)
+ {
+ case INTRINSIC_UPLUS:
+ case INTRINSIC_UMINUS:
+ if (!numeric_type (et0 (op1)))
+ goto not_numeric;
+ break;
+
+ case INTRINSIC_EQ:
+ case INTRINSIC_EQ_OS:
+ case INTRINSIC_NE:
+ case INTRINSIC_NE_OS:
+ case INTRINSIC_GT:
+ case INTRINSIC_GT_OS:
+ case INTRINSIC_GE:
+ case INTRINSIC_GE_OS:
+ case INTRINSIC_LT:
+ case INTRINSIC_LT_OS:
+ case INTRINSIC_LE:
+ case INTRINSIC_LE_OS:
+ if (!(*check_function)(op2))
+ return false;
+
+ if (!(et0 (op1) == BT_CHARACTER && et0 (op2) == BT_CHARACTER)
+ && !(numeric_type (et0 (op1)) && numeric_type (et0 (op2))))
+ {
+ gfc_error ("Numeric or CHARACTER operands are required in "
+ "expression at %L", &e->where);
+ return false;
+ }
+ break;
+
+ case INTRINSIC_PLUS:
+ case INTRINSIC_MINUS:
+ case INTRINSIC_TIMES:
+ case INTRINSIC_DIVIDE:
+ case INTRINSIC_POWER:
+ if (!(*check_function)(op2))
+ return false;
+
+ if (!numeric_type (et0 (op1)) || !numeric_type (et0 (op2)))
+ goto not_numeric;
+
+ break;
+
+ case INTRINSIC_CONCAT:
+ if (!(*check_function)(op2))
+ return false;
+
+ if (et0 (op1) != BT_CHARACTER || et0 (op2) != BT_CHARACTER)
+ {
+ gfc_error ("Concatenation operator in expression at %L "
+ "must have two CHARACTER operands", &op1->where);
+ return false;
+ }
+
+ if (op1->ts.kind != op2->ts.kind)
+ {
+ gfc_error ("Concat operator at %L must concatenate strings of the "
+ "same kind", &e->where);
+ return false;
+ }
+
+ break;
+
+ case INTRINSIC_NOT:
+ if (et0 (op1) != BT_LOGICAL)
+ {
+ gfc_error (".NOT. operator in expression at %L must have a LOGICAL "
+ "operand", &op1->where);
+ return false;
+ }
+
+ break;
+
+ case INTRINSIC_AND:
+ case INTRINSIC_OR:
+ case INTRINSIC_EQV:
+ case INTRINSIC_NEQV:
+ if (!(*check_function)(op2))
+ return false;
+
+ if (et0 (op1) != BT_LOGICAL || et0 (op2) != BT_LOGICAL)
+ {
+ gfc_error ("LOGICAL operands are required in expression at %L",
+ &e->where);
+ return false;
+ }
+
+ break;
+
+ case INTRINSIC_PARENTHESES:
+ break;
+
+ default:
+ gfc_error ("Only intrinsic operators can be used in expression at %L",
+ &e->where);
+ return false;
+ }
+
+ return true;
+
+not_numeric:
+ gfc_error ("Numeric operands are required in expression at %L", &e->where);
+
+ return false;
+}
+
+/* F2003, 7.1.7 (3): In init expression, allocatable components
+ must not be data-initialized. */
+static bool
+check_alloc_comp_init (gfc_expr *e)
+{
+ gfc_component *comp;
+ gfc_constructor *ctor;
+
+ gcc_assert (e->expr_type == EXPR_STRUCTURE);
+ gcc_assert (e->ts.type == BT_DERIVED || e->ts.type == BT_CLASS);
+
+ for (comp = e->ts.u.derived->components,
+ ctor = gfc_constructor_first (e->value.constructor);
+ comp; comp = comp->next, ctor = gfc_constructor_next (ctor))
+ {
+ if (comp->attr.allocatable && ctor->expr
+ && ctor->expr->expr_type != EXPR_NULL)
+ {
+ gfc_error ("Invalid initialization expression for ALLOCATABLE "
+ "component %qs in structure constructor at %L",
+ comp->name, &ctor->expr->where);
+ return false;
+ }
+ }
+
+ return true;
+}
+
+static match
+check_init_expr_arguments (gfc_expr *e)
+{
+ gfc_actual_arglist *ap;
+
+ for (ap = e->value.function.actual; ap; ap = ap->next)
+ if (!gfc_check_init_expr (ap->expr))
+ return MATCH_ERROR;
+
+ return MATCH_YES;
+}
+
+static bool check_restricted (gfc_expr *);
+
+/* F95, 7.1.6.1, Initialization expressions, (7)
+ F2003, 7.1.7 Initialization expression, (8)
+ F2008, 7.1.12 Constant expression, (4) */
+
+static match
+check_inquiry (gfc_expr *e, int not_restricted)
+{
+ const char *name;
+ const char *const *functions;
+
+ static const char *const inquiry_func_f95[] = {
+ "lbound", "shape", "size", "ubound",
+ "bit_size", "len", "kind",
+ "digits", "epsilon", "huge", "maxexponent", "minexponent",
+ "precision", "radix", "range", "tiny",
+ NULL
+ };
+
+ static const char *const inquiry_func_f2003[] = {
+ "lbound", "shape", "size", "ubound",
+ "bit_size", "len", "kind",
+ "digits", "epsilon", "huge", "maxexponent", "minexponent",
+ "precision", "radix", "range", "tiny",
+ "new_line", NULL
+ };
+
+ /* std=f2008+ or -std=gnu */
+ static const char *const inquiry_func_gnu[] = {
+ "lbound", "shape", "size", "ubound",
+ "bit_size", "len", "kind",
+ "digits", "epsilon", "huge", "maxexponent", "minexponent",
+ "precision", "radix", "range", "tiny",
+ "new_line", "storage_size", NULL
+ };
+
+ int i = 0;
+ gfc_actual_arglist *ap;
+ gfc_symbol *sym;
+ gfc_symbol *asym;
+
+ if (!e->value.function.isym
+ || !e->value.function.isym->inquiry)
+ return MATCH_NO;
+
+ /* An undeclared parameter will get us here (PR25018). */
+ if (e->symtree == NULL)
+ return MATCH_NO;
+
+ sym = e->symtree->n.sym;
+
+ if (sym->from_intmod)
+ {
+ if (sym->from_intmod == INTMOD_ISO_FORTRAN_ENV
+ && sym->intmod_sym_id != ISOFORTRAN_COMPILER_OPTIONS
+ && sym->intmod_sym_id != ISOFORTRAN_COMPILER_VERSION)
+ return MATCH_NO;
+
+ if (sym->from_intmod == INTMOD_ISO_C_BINDING
+ && sym->intmod_sym_id != ISOCBINDING_C_SIZEOF)
+ return MATCH_NO;
+ }
+ else
+ {
+ name = sym->name;
+
+ functions = inquiry_func_gnu;
+ if (gfc_option.warn_std & GFC_STD_F2003)
+ functions = inquiry_func_f2003;
+ if (gfc_option.warn_std & GFC_STD_F95)
+ functions = inquiry_func_f95;
+
+ for (i = 0; functions[i]; i++)
+ if (strcmp (functions[i], name) == 0)
+ break;
+
+ if (functions[i] == NULL)
+ return MATCH_ERROR;
+ }
+
+ /* At this point we have an inquiry function with a variable argument. The
+ type of the variable might be undefined, but we need it now, because the
+ arguments of these functions are not allowed to be undefined. */
+
+ for (ap = e->value.function.actual; ap; ap = ap->next)
+ {
+ if (!ap->expr)
+ continue;
+
+ asym = ap->expr->symtree ? ap->expr->symtree->n.sym : NULL;
+
+ if (ap->expr->ts.type == BT_UNKNOWN)
+ {
+ if (asym && asym->ts.type == BT_UNKNOWN
+ && !gfc_set_default_type (asym, 0, gfc_current_ns))
+ return MATCH_NO;
+
+ ap->expr->ts = asym->ts;
+ }
+
+ if (asym && asym->assoc && asym->assoc->target
+ && asym->assoc->target->expr_type == EXPR_CONSTANT)
+ {
+ gfc_free_expr (ap->expr);
+ ap->expr = gfc_copy_expr (asym->assoc->target);
+ }
+
+ /* Assumed character length will not reduce to a constant expression
+ with LEN, as required by the standard. */
+ if (i == 5 && not_restricted && asym
+ && asym->ts.type == BT_CHARACTER
+ && ((asym->ts.u.cl && asym->ts.u.cl->length == NULL)
+ || asym->ts.deferred))
+ {
+ gfc_error ("Assumed or deferred character length variable %qs "
+ "in constant expression at %L",
+ asym->name, &ap->expr->where);
+ return MATCH_ERROR;
+ }
+ else if (not_restricted && !gfc_check_init_expr (ap->expr))
+ return MATCH_ERROR;
+
+ if (not_restricted == 0
+ && ap->expr->expr_type != EXPR_VARIABLE
+ && !check_restricted (ap->expr))
+ return MATCH_ERROR;
+
+ if (not_restricted == 0
+ && ap->expr->expr_type == EXPR_VARIABLE
+ && asym->attr.dummy && asym->attr.optional)
+ return MATCH_NO;
+ }
+
+ return MATCH_YES;
+}
+
+
+/* F95, 7.1.6.1, Initialization expressions, (5)
+ F2003, 7.1.7 Initialization expression, (5) */
+
+static match
+check_transformational (gfc_expr *e)
+{
+ static const char * const trans_func_f95[] = {
+ "repeat", "reshape", "selected_int_kind",
+ "selected_real_kind", "transfer", "trim", NULL
+ };
+
+ static const char * const trans_func_f2003[] = {
+ "all", "any", "count", "dot_product", "matmul", "null", "pack",
+ "product", "repeat", "reshape", "selected_char_kind", "selected_int_kind",
+ "selected_real_kind", "spread", "sum", "transfer", "transpose",
+ "trim", "unpack", NULL
+ };
+
+ static const char * const trans_func_f2008[] = {
+ "all", "any", "count", "dot_product", "matmul", "null", "pack",
+ "product", "repeat", "reshape", "selected_char_kind", "selected_int_kind",
+ "selected_real_kind", "spread", "sum", "transfer", "transpose",
+ "trim", "unpack", "findloc", NULL
+ };
+
+ int i;
+ const char *name;
+ const char *const *functions;
+
+ if (!e->value.function.isym
+ || !e->value.function.isym->transformational)
+ return MATCH_NO;
+
+ name = e->symtree->n.sym->name;
+
+ if (gfc_option.allow_std & GFC_STD_F2008)
+ functions = trans_func_f2008;
+ else if (gfc_option.allow_std & GFC_STD_F2003)
+ functions = trans_func_f2003;
+ else
+ functions = trans_func_f95;
+
+ /* NULL() is dealt with below. */
+ if (strcmp ("null", name) == 0)
+ return MATCH_NO;
+
+ for (i = 0; functions[i]; i++)
+ if (strcmp (functions[i], name) == 0)
+ break;
+
+ if (functions[i] == NULL)
+ {
+ gfc_error ("transformational intrinsic %qs at %L is not permitted "
+ "in an initialization expression", name, &e->where);
+ return MATCH_ERROR;
+ }
+
+ return check_init_expr_arguments (e);
+}
+
+
+/* F95, 7.1.6.1, Initialization expressions, (6)
+ F2003, 7.1.7 Initialization expression, (6) */
+
+static match
+check_null (gfc_expr *e)
+{
+ if (strcmp ("null", e->symtree->n.sym->name) != 0)
+ return MATCH_NO;
+
+ return check_init_expr_arguments (e);
+}
+
+
+static match
+check_elemental (gfc_expr *e)
+{
+ if (!e->value.function.isym
+ || !e->value.function.isym->elemental)
+ return MATCH_NO;
+
+ if (e->ts.type != BT_INTEGER
+ && e->ts.type != BT_CHARACTER
+ && !gfc_notify_std (GFC_STD_F2003, "Evaluation of nonstandard "
+ "initialization expression at %L", &e->where))
+ return MATCH_ERROR;
+
+ return check_init_expr_arguments (e);
+}
+
+
+static match
+check_conversion (gfc_expr *e)
+{
+ if (!e->value.function.isym
+ || !e->value.function.isym->conversion)
+ return MATCH_NO;
+
+ return check_init_expr_arguments (e);
+}
+
+
+/* Verify that an expression is an initialization expression. A side
+ effect is that the expression tree is reduced to a single constant
+ node if all goes well. This would normally happen when the
+ expression is constructed but function references are assumed to be
+ intrinsics in the context of initialization expressions. If
+ false is returned an error message has been generated. */
+
+bool
+gfc_check_init_expr (gfc_expr *e)
+{
+ match m;
+ bool t;
+
+ if (e == NULL)
+ return true;
+
+ switch (e->expr_type)
+ {
+ case EXPR_OP:
+ t = check_intrinsic_op (e, gfc_check_init_expr);
+ if (t)
+ t = gfc_simplify_expr (e, 0);
+
+ break;
+
+ case EXPR_FUNCTION:
+ t = false;
+
+ {
+ bool conversion;
+ gfc_intrinsic_sym* isym = NULL;
+ gfc_symbol* sym = e->symtree->n.sym;
+
+ /* Simplify here the intrinsics from the IEEE_ARITHMETIC and
+ IEEE_EXCEPTIONS modules. */
+ int mod = sym->from_intmod;
+ if (mod == INTMOD_NONE && sym->generic)
+ mod = sym->generic->sym->from_intmod;
+ if (mod == INTMOD_IEEE_ARITHMETIC || mod == INTMOD_IEEE_EXCEPTIONS)
+ {
+ gfc_expr *new_expr = gfc_simplify_ieee_functions (e);
+ if (new_expr)
+ {
+ gfc_replace_expr (e, new_expr);
+ t = true;
+ break;
+ }
+ }
+
+ /* If a conversion function, e.g., __convert_i8_i4, was inserted
+ into an array constructor, we need to skip the error check here.
+ Conversion errors are caught below in scalarize_intrinsic_call. */
+ conversion = e->value.function.isym
+ && (e->value.function.isym->conversion == 1);
+
+ if (!conversion && (!gfc_is_intrinsic (sym, 0, e->where)
+ || (m = gfc_intrinsic_func_interface (e, 0)) == MATCH_NO))
+ {
+ gfc_error ("Function %qs in initialization expression at %L "
+ "must be an intrinsic function",
+ e->symtree->n.sym->name, &e->where);
+ break;
+ }
+
+ if ((m = check_conversion (e)) == MATCH_NO
+ && (m = check_inquiry (e, 1)) == MATCH_NO
+ && (m = check_null (e)) == MATCH_NO
+ && (m = check_transformational (e)) == MATCH_NO
+ && (m = check_elemental (e)) == MATCH_NO)
+ {
+ gfc_error ("Intrinsic function %qs at %L is not permitted "
+ "in an initialization expression",
+ e->symtree->n.sym->name, &e->where);
+ m = MATCH_ERROR;
+ }
+
+ if (m == MATCH_ERROR)
+ return false;
+
+ /* Try to scalarize an elemental intrinsic function that has an
+ array argument. */
+ isym = gfc_find_function (e->symtree->n.sym->name);
+ if (isym && isym->elemental
+ && (t = scalarize_intrinsic_call (e, true)))
+ break;
+ }
+
+ if (m == MATCH_YES)
+ t = gfc_simplify_expr (e, 0);
+
+ break;
+
+ case EXPR_VARIABLE:
+ t = true;
+
+ /* This occurs when parsing pdt templates. */
+ if (gfc_expr_attr (e).pdt_kind)
+ break;
+
+ if (gfc_check_iter_variable (e))
+ break;
+
+ if (e->symtree->n.sym->attr.flavor == FL_PARAMETER)
+ {
+ /* A PARAMETER shall not be used to define itself, i.e.
+ REAL, PARAMETER :: x = transfer(0, x)
+ is invalid. */
+ if (!e->symtree->n.sym->value)
+ {
+ gfc_error ("PARAMETER %qs is used at %L before its definition "
+ "is complete", e->symtree->n.sym->name, &e->where);
+ t = false;
+ }
+ else
+ t = simplify_parameter_variable (e, 0);
+
+ break;
+ }
+
+ if (gfc_in_match_data ())
+ break;
+
+ t = false;
+
+ if (e->symtree->n.sym->as)
+ {
+ switch (e->symtree->n.sym->as->type)
+ {
+ case AS_ASSUMED_SIZE:
+ gfc_error ("Assumed size array %qs at %L is not permitted "
+ "in an initialization expression",
+ e->symtree->n.sym->name, &e->where);
+ break;
+
+ case AS_ASSUMED_SHAPE:
+ gfc_error ("Assumed shape array %qs at %L is not permitted "
+ "in an initialization expression",
+ e->symtree->n.sym->name, &e->where);
+ break;
+
+ case AS_DEFERRED:
+ if (!e->symtree->n.sym->attr.allocatable
+ && !e->symtree->n.sym->attr.pointer
+ && e->symtree->n.sym->attr.dummy)
+ gfc_error ("Assumed-shape array %qs at %L is not permitted "
+ "in an initialization expression",
+ e->symtree->n.sym->name, &e->where);
+ else
+ gfc_error ("Deferred array %qs at %L is not permitted "
+ "in an initialization expression",
+ e->symtree->n.sym->name, &e->where);
+ break;
+
+ case AS_EXPLICIT:
+ gfc_error ("Array %qs at %L is a variable, which does "
+ "not reduce to a constant expression",
+ e->symtree->n.sym->name, &e->where);
+ break;
+
+ case AS_ASSUMED_RANK:
+ gfc_error ("Assumed-rank array %qs at %L is not permitted "
+ "in an initialization expression",
+ e->symtree->n.sym->name, &e->where);
+ break;
+
+ default:
+ gcc_unreachable();
+ }
+ }
+ else
+ gfc_error ("Parameter %qs at %L has not been declared or is "
+ "a variable, which does not reduce to a constant "
+ "expression", e->symtree->name, &e->where);
+
+ break;
+
+ case EXPR_CONSTANT:
+ case EXPR_NULL:
+ t = true;
+ break;
+
+ case EXPR_SUBSTRING:
+ if (e->ref)
+ {
+ t = gfc_check_init_expr (e->ref->u.ss.start);
+ if (!t)
+ break;
+
+ t = gfc_check_init_expr (e->ref->u.ss.end);
+ if (t)
+ t = gfc_simplify_expr (e, 0);
+ }
+ else
+ t = false;
+ break;
+
+ case EXPR_STRUCTURE:
+ t = e->ts.is_iso_c ? true : false;
+ if (t)
+ break;
+
+ t = check_alloc_comp_init (e);
+ if (!t)
+ break;
+
+ t = gfc_check_constructor (e, gfc_check_init_expr);
+ if (!t)
+ break;
+
+ break;
+
+ case EXPR_ARRAY:
+ t = gfc_check_constructor (e, gfc_check_init_expr);
+ if (!t)
+ break;
+
+ t = gfc_expand_constructor (e, true);
+ if (!t)
+ break;
+
+ t = gfc_check_constructor_type (e);
+ break;
+
+ default:
+ gfc_internal_error ("check_init_expr(): Unknown expression type");
+ }
+
+ return t;
+}
+
+/* Reduces a general expression to an initialization expression (a constant).
+ This used to be part of gfc_match_init_expr.
+ Note that this function doesn't free the given expression on false. */
+
+bool
+gfc_reduce_init_expr (gfc_expr *expr)
+{
+ bool t;
+
+ gfc_init_expr_flag = true;
+ t = gfc_resolve_expr (expr);
+ if (t)
+ t = gfc_check_init_expr (expr);
+ gfc_init_expr_flag = false;
+
+ if (!t || !expr)
+ return false;
+
+ if (expr->expr_type == EXPR_ARRAY)
+ {
+ if (!gfc_check_constructor_type (expr))
+ return false;
+ if (!gfc_expand_constructor (expr, true))
+ return false;
+ }
+
+ return true;
+}
+
+
+/* Match an initialization expression. We work by first matching an
+ expression, then reducing it to a constant. */
+
+match
+gfc_match_init_expr (gfc_expr **result)
+{
+ gfc_expr *expr;
+ match m;
+ bool t;
+
+ expr = NULL;
+
+ gfc_init_expr_flag = true;
+
+ m = gfc_match_expr (&expr);
+ if (m != MATCH_YES)
+ {
+ gfc_init_expr_flag = false;
+ return m;
+ }
+
+ if (gfc_derived_parameter_expr (expr))
+ {
+ *result = expr;
+ gfc_init_expr_flag = false;
+ return m;
+ }
+
+ t = gfc_reduce_init_expr (expr);
+ if (!t)
+ {
+ gfc_free_expr (expr);
+ gfc_init_expr_flag = false;
+ return MATCH_ERROR;
+ }
+
+ *result = expr;
+ gfc_init_expr_flag = false;
+
+ return MATCH_YES;
+}
+
+
+/* Given an actual argument list, test to see that each argument is a
+ restricted expression and optionally if the expression type is
+ integer or character. */
+
+static bool
+restricted_args (gfc_actual_arglist *a)
+{
+ for (; a; a = a->next)
+ {
+ if (!check_restricted (a->expr))
+ return false;
+ }
+
+ return true;
+}
+
+
+/************* Restricted/specification expressions *************/
+
+
+/* Make sure a non-intrinsic function is a specification function,
+ * see F08:7.1.11.5. */
+
+static bool
+external_spec_function (gfc_expr *e)
+{
+ gfc_symbol *f;
+
+ f = e->value.function.esym;
+
+ /* IEEE functions allowed are "a reference to a transformational function
+ from the intrinsic module IEEE_ARITHMETIC or IEEE_EXCEPTIONS", and
+ "inquiry function from the intrinsic modules IEEE_ARITHMETIC and
+ IEEE_EXCEPTIONS". */
+ if (f->from_intmod == INTMOD_IEEE_ARITHMETIC
+ || f->from_intmod == INTMOD_IEEE_EXCEPTIONS)
+ {
+ if (!strcmp (f->name, "ieee_selected_real_kind")
+ || !strcmp (f->name, "ieee_support_rounding")
+ || !strcmp (f->name, "ieee_support_flag")
+ || !strcmp (f->name, "ieee_support_halting")
+ || !strcmp (f->name, "ieee_support_datatype")
+ || !strcmp (f->name, "ieee_support_denormal")
+ || !strcmp (f->name, "ieee_support_subnormal")
+ || !strcmp (f->name, "ieee_support_divide")
+ || !strcmp (f->name, "ieee_support_inf")
+ || !strcmp (f->name, "ieee_support_io")
+ || !strcmp (f->name, "ieee_support_nan")
+ || !strcmp (f->name, "ieee_support_sqrt")
+ || !strcmp (f->name, "ieee_support_standard")
+ || !strcmp (f->name, "ieee_support_underflow_control"))
+ goto function_allowed;
+ }
+
+ if (f->attr.proc == PROC_ST_FUNCTION)
+ {
+ gfc_error ("Specification function %qs at %L cannot be a statement "
+ "function", f->name, &e->where);
+ return false;
+ }
+
+ if (f->attr.proc == PROC_INTERNAL)
+ {
+ gfc_error ("Specification function %qs at %L cannot be an internal "
+ "function", f->name, &e->where);
+ return false;
+ }
+
+ if (!f->attr.pure && !f->attr.elemental)
+ {
+ gfc_error ("Specification function %qs at %L must be PURE", f->name,
+ &e->where);
+ return false;
+ }
+
+ /* F08:7.1.11.6. */
+ if (f->attr.recursive
+ && !gfc_notify_std (GFC_STD_F2003,
+ "Specification function %qs "
+ "at %L cannot be RECURSIVE", f->name, &e->where))
+ return false;
+
+function_allowed:
+ return restricted_args (e->value.function.actual);
+}
+
+
+/* Check to see that a function reference to an intrinsic is a
+ restricted expression. */
+
+static bool
+restricted_intrinsic (gfc_expr *e)
+{
+ /* TODO: Check constraints on inquiry functions. 7.1.6.2 (7). */
+ if (check_inquiry (e, 0) == MATCH_YES)
+ return true;
+
+ return restricted_args (e->value.function.actual);
+}
+
+
+/* Check the expressions of an actual arglist. Used by check_restricted. */
+
+static bool
+check_arglist (gfc_actual_arglist* arg, bool (*checker) (gfc_expr*))
+{
+ for (; arg; arg = arg->next)
+ if (!checker (arg->expr))
+ return false;
+
+ return true;
+}
+
+
+/* Check the subscription expressions of a reference chain with a checking
+ function; used by check_restricted. */
+
+static bool
+check_references (gfc_ref* ref, bool (*checker) (gfc_expr*))
+{
+ int dim;
+
+ if (!ref)
+ return true;
+
+ switch (ref->type)
+ {
+ case REF_ARRAY:
+ for (dim = 0; dim < ref->u.ar.dimen; ++dim)
+ {
+ if (!checker (ref->u.ar.start[dim]))
+ return false;
+ if (!checker (ref->u.ar.end[dim]))
+ return false;
+ if (!checker (ref->u.ar.stride[dim]))
+ return false;
+ }
+ break;
+
+ case REF_COMPONENT:
+ /* Nothing needed, just proceed to next reference. */
+ break;
+
+ case REF_SUBSTRING:
+ if (!checker (ref->u.ss.start))
+ return false;
+ if (!checker (ref->u.ss.end))
+ return false;
+ break;
+
+ default:
+ gcc_unreachable ();
+ break;
+ }
+
+ return check_references (ref->next, checker);
+}
+
+/* Return true if ns is a parent of the current ns. */
+
+static bool
+is_parent_of_current_ns (gfc_namespace *ns)
+{
+ gfc_namespace *p;
+ for (p = gfc_current_ns->parent; p; p = p->parent)
+ if (ns == p)
+ return true;
+
+ return false;
+}
+
+/* Verify that an expression is a restricted expression. Like its
+ cousin check_init_expr(), an error message is generated if we
+ return false. */
+
+static bool
+check_restricted (gfc_expr *e)
+{
+ gfc_symbol* sym;
+ bool t;
+
+ if (e == NULL)
+ return true;
+
+ switch (e->expr_type)
+ {
+ case EXPR_OP:
+ t = check_intrinsic_op (e, check_restricted);
+ if (t)
+ t = gfc_simplify_expr (e, 0);
+
+ break;
+
+ case EXPR_FUNCTION:
+ if (e->value.function.esym)
+ {
+ t = check_arglist (e->value.function.actual, &check_restricted);
+ if (t)
+ t = external_spec_function (e);
+ }
+ else
+ {
+ if (e->value.function.isym && e->value.function.isym->inquiry)
+ t = true;
+ else
+ t = check_arglist (e->value.function.actual, &check_restricted);
+
+ if (t)
+ t = restricted_intrinsic (e);
+ }
+ break;
+
+ case EXPR_VARIABLE:
+ sym = e->symtree->n.sym;
+ t = false;
+
+ /* If a dummy argument appears in a context that is valid for a
+ restricted expression in an elemental procedure, it will have
+ already been simplified away once we get here. Therefore we
+ don't need to jump through hoops to distinguish valid from
+ invalid cases. Allowed in F2008 and F2018. */
+ if (gfc_notification_std (GFC_STD_F2008)
+ && sym->attr.dummy && sym->ns == gfc_current_ns
+ && sym->ns->proc_name && sym->ns->proc_name->attr.elemental)
+ {
+ gfc_error_now ("Dummy argument %qs not "
+ "allowed in expression at %L",
+ sym->name, &e->where);
+ break;
+ }
+
+ if (sym->attr.optional)
+ {
+ gfc_error ("Dummy argument %qs at %L cannot be OPTIONAL",
+ sym->name, &e->where);
+ break;
+ }
+
+ if (sym->attr.intent == INTENT_OUT)
+ {
+ gfc_error ("Dummy argument %qs at %L cannot be INTENT(OUT)",
+ sym->name, &e->where);
+ break;
+ }
+
+ /* Check reference chain if any. */
+ if (!check_references (e->ref, &check_restricted))
+ break;
+
+ /* gfc_is_formal_arg broadcasts that a formal argument list is being
+ processed in resolve.c(resolve_formal_arglist). This is done so
+ that host associated dummy array indices are accepted (PR23446).
+ This mechanism also does the same for the specification expressions
+ of array-valued functions. */
+ if (e->error
+ || sym->attr.in_common
+ || sym->attr.use_assoc
+ || sym->attr.dummy
+ || sym->attr.implied_index
+ || sym->attr.flavor == FL_PARAMETER
+ || is_parent_of_current_ns (sym->ns)
+ || (sym->ns->proc_name != NULL
+ && sym->ns->proc_name->attr.flavor == FL_MODULE)
+ || (gfc_is_formal_arg () && (sym->ns == gfc_current_ns)))
+ {
+ t = true;
+ break;
+ }
+
+ gfc_error ("Variable %qs cannot appear in the expression at %L",
+ sym->name, &e->where);
+ /* Prevent a repetition of the error. */
+ e->error = 1;
+ break;
+
+ case EXPR_NULL:
+ case EXPR_CONSTANT:
+ t = true;
+ break;
+
+ case EXPR_SUBSTRING:
+ t = gfc_specification_expr (e->ref->u.ss.start);
+ if (!t)
+ break;
+
+ t = gfc_specification_expr (e->ref->u.ss.end);
+ if (t)
+ t = gfc_simplify_expr (e, 0);
+
+ break;
+
+ case EXPR_STRUCTURE:
+ t = gfc_check_constructor (e, check_restricted);
+ break;
+
+ case EXPR_ARRAY:
+ t = gfc_check_constructor (e, check_restricted);
+ break;
+
+ default:
+ gfc_internal_error ("check_restricted(): Unknown expression type");
+ }
+
+ return t;
+}
+
+
+/* Check to see that an expression is a specification expression. If
+ we return false, an error has been generated. */
+
+bool
+gfc_specification_expr (gfc_expr *e)
+{
+ gfc_component *comp;
+
+ if (e == NULL)
+ return true;
+
+ if (e->ts.type != BT_INTEGER)
+ {
+ gfc_error ("Expression at %L must be of INTEGER type, found %s",
+ &e->where, gfc_basic_typename (e->ts.type));
+ return false;
+ }
+
+ comp = gfc_get_proc_ptr_comp (e);
+ if (e->expr_type == EXPR_FUNCTION
+ && !e->value.function.isym
+ && !e->value.function.esym
+ && !gfc_pure (e->symtree->n.sym)
+ && (!comp || !comp->attr.pure))
+ {
+ gfc_error ("Function %qs at %L must be PURE",
+ e->symtree->n.sym->name, &e->where);
+ /* Prevent repeat error messages. */
+ e->symtree->n.sym->attr.pure = 1;
+ return false;
+ }
+
+ if (e->rank != 0)
+ {
+ gfc_error ("Expression at %L must be scalar", &e->where);
+ return false;
+ }
+
+ if (!gfc_simplify_expr (e, 0))
+ return false;
+
+ return check_restricted (e);
+}
+
+
+/************** Expression conformance checks. *************/
+
+/* Given two expressions, make sure that the arrays are conformable. */
+
+bool
+gfc_check_conformance (gfc_expr *op1, gfc_expr *op2, const char *optype_msgid, ...)
+{
+ int op1_flag, op2_flag, d;
+ mpz_t op1_size, op2_size;
+ bool t;
+
+ va_list argp;
+ char buffer[240];
+
+ if (op1->rank == 0 || op2->rank == 0)
+ return true;
+
+ va_start (argp, optype_msgid);
+ d = vsnprintf (buffer, sizeof (buffer), optype_msgid, argp);
+ va_end (argp);
+ if (d < 1 || d >= (int) sizeof (buffer)) /* Reject truncation. */
+ gfc_internal_error ("optype_msgid overflow: %d", d);
+
+ if (op1->rank != op2->rank)
+ {
+ gfc_error ("Incompatible ranks in %s (%d and %d) at %L", _(buffer),
+ op1->rank, op2->rank, &op1->where);
+ return false;
+ }
+
+ t = true;
+
+ for (d = 0; d < op1->rank; d++)
+ {
+ op1_flag = gfc_array_dimen_size(op1, d, &op1_size);
+ op2_flag = gfc_array_dimen_size(op2, d, &op2_size);
+
+ if (op1_flag && op2_flag && mpz_cmp (op1_size, op2_size) != 0)
+ {
+ gfc_error ("Different shape for %s at %L on dimension %d "
+ "(%d and %d)", _(buffer), &op1->where, d + 1,
+ (int) mpz_get_si (op1_size),
+ (int) mpz_get_si (op2_size));
+
+ t = false;
+ }
+
+ if (op1_flag)
+ mpz_clear (op1_size);
+ if (op2_flag)
+ mpz_clear (op2_size);
+
+ if (!t)
+ return false;
+ }
+
+ return true;
+}
+
+
+/* Given an assignable expression and an arbitrary expression, make
+ sure that the assignment can take place. Only add a call to the intrinsic
+ conversion routines, when allow_convert is set. When this assign is a
+ coarray call, then the convert is done by the coarray routine implictly and
+ adding the intrinsic conversion would do harm in most cases. */
+
+bool
+gfc_check_assign (gfc_expr *lvalue, gfc_expr *rvalue, int conform,
+ bool allow_convert)
+{
+ gfc_symbol *sym;
+ gfc_ref *ref;
+ int has_pointer;
+
+ sym = lvalue->symtree->n.sym;
+
+ /* See if this is the component or subcomponent of a pointer and guard
+ against assignment to LEN or KIND part-refs. */
+ has_pointer = sym->attr.pointer;
+ for (ref = lvalue->ref; ref; ref = ref->next)
+ {
+ if (!has_pointer && ref->type == REF_COMPONENT
+ && ref->u.c.component->attr.pointer)
+ has_pointer = 1;
+ else if (ref->type == REF_INQUIRY
+ && (ref->u.i == INQUIRY_LEN || ref->u.i == INQUIRY_KIND))
+ {
+ gfc_error ("Assignment to a LEN or KIND part_ref at %L is not "
+ "allowed", &lvalue->where);
+ return false;
+ }
+ }
+
+ /* 12.5.2.2, Note 12.26: The result variable is very similar to any other
+ variable local to a function subprogram. Its existence begins when
+ execution of the function is initiated and ends when execution of the
+ function is terminated...
+ Therefore, the left hand side is no longer a variable, when it is: */
+ if (sym->attr.flavor == FL_PROCEDURE && sym->attr.proc != PROC_ST_FUNCTION
+ && !sym->attr.external)
+ {
+ bool bad_proc;
+ bad_proc = false;
+
+ /* (i) Use associated; */
+ if (sym->attr.use_assoc)
+ bad_proc = true;
+
+ /* (ii) The assignment is in the main program; or */
+ if (gfc_current_ns->proc_name
+ && gfc_current_ns->proc_name->attr.is_main_program)
+ bad_proc = true;
+
+ /* (iii) A module or internal procedure... */
+ if (gfc_current_ns->proc_name
+ && (gfc_current_ns->proc_name->attr.proc == PROC_INTERNAL
+ || gfc_current_ns->proc_name->attr.proc == PROC_MODULE)
+ && gfc_current_ns->parent
+ && (!(gfc_current_ns->parent->proc_name->attr.function
+ || gfc_current_ns->parent->proc_name->attr.subroutine)
+ || gfc_current_ns->parent->proc_name->attr.is_main_program))
+ {
+ /* ... that is not a function... */
+ if (gfc_current_ns->proc_name
+ && !gfc_current_ns->proc_name->attr.function)
+ bad_proc = true;
+
+ /* ... or is not an entry and has a different name. */
+ if (!sym->attr.entry && sym->name != gfc_current_ns->proc_name->name)
+ bad_proc = true;
+ }
+
+ /* (iv) Host associated and not the function symbol or the
+ parent result. This picks up sibling references, which
+ cannot be entries. */
+ if (!sym->attr.entry
+ && sym->ns == gfc_current_ns->parent
+ && sym != gfc_current_ns->proc_name
+ && sym != gfc_current_ns->parent->proc_name->result)
+ bad_proc = true;
+
+ if (bad_proc)
+ {
+ gfc_error ("%qs at %L is not a VALUE", sym->name, &lvalue->where);
+ return false;
+ }
+ }
+ else
+ {
+ /* Reject assigning to an external symbol. For initializers, this
+ was already done before, in resolve_fl_procedure. */
+ if (sym->attr.flavor == FL_PROCEDURE && sym->attr.external
+ && sym->attr.proc != PROC_MODULE && !rvalue->error)
+ {
+ gfc_error ("Illegal assignment to external procedure at %L",
+ &lvalue->where);
+ return false;
+ }
+ }
+
+ if (rvalue->rank != 0 && lvalue->rank != rvalue->rank)
+ {
+ gfc_error ("Incompatible ranks %d and %d in assignment at %L",
+ lvalue->rank, rvalue->rank, &lvalue->where);
+ return false;
+ }
+
+ if (lvalue->ts.type == BT_UNKNOWN)
+ {
+ gfc_error ("Variable type is UNKNOWN in assignment at %L",
+ &lvalue->where);
+ return false;
+ }
+
+ if (rvalue->expr_type == EXPR_NULL)
+ {
+ if (has_pointer && (ref == NULL || ref->next == NULL)
+ && lvalue->symtree->n.sym->attr.data)
+ return true;
+ else
+ {
+ gfc_error ("NULL appears on right-hand side in assignment at %L",
+ &rvalue->where);
+ return false;
+ }
+ }
+
+ /* This is possibly a typo: x = f() instead of x => f(). */
+ if (warn_surprising
+ && rvalue->expr_type == EXPR_FUNCTION && gfc_expr_attr (rvalue).pointer)
+ gfc_warning (OPT_Wsurprising,
+ "POINTER-valued function appears on right-hand side of "
+ "assignment at %L", &rvalue->where);
+
+ /* Check size of array assignments. */
+ if (lvalue->rank != 0 && rvalue->rank != 0
+ && !gfc_check_conformance (lvalue, rvalue, _("array assignment")))
+ return false;
+
+ /* Handle the case of a BOZ literal on the RHS. */
+ if (rvalue->ts.type == BT_BOZ)
+ {
+ if (lvalue->symtree->n.sym->attr.data)
+ {
+ if (lvalue->ts.type == BT_INTEGER
+ && gfc_boz2int (rvalue, lvalue->ts.kind))
+ return true;
+
+ if (lvalue->ts.type == BT_REAL
+ && gfc_boz2real (rvalue, lvalue->ts.kind))
+ {
+ if (gfc_invalid_boz ("BOZ literal constant near %L cannot "
+ "be assigned to a REAL variable",
+ &rvalue->where))
+ return false;
+ return true;
+ }
+ }
+
+ if (!lvalue->symtree->n.sym->attr.data
+ && gfc_invalid_boz ("BOZ literal constant at %L is neither a "
+ "data-stmt-constant nor an actual argument to "
+ "INT, REAL, DBLE, or CMPLX intrinsic function",
+ &rvalue->where))
+ return false;
+
+ if (lvalue->ts.type == BT_INTEGER
+ && gfc_boz2int (rvalue, lvalue->ts.kind))
+ return true;
+
+ if (lvalue->ts.type == BT_REAL
+ && gfc_boz2real (rvalue, lvalue->ts.kind))
+ return true;
+
+ gfc_error ("BOZ literal constant near %L cannot be assigned to a "
+ "%qs variable", &rvalue->where, gfc_typename (lvalue));
+ return false;
+ }
+
+ if (gfc_expr_attr (lvalue).pdt_kind || gfc_expr_attr (lvalue).pdt_len)
+ {
+ gfc_error ("The assignment to a KIND or LEN component of a "
+ "parameterized type at %L is not allowed",
+ &lvalue->where);
+ return false;
+ }
+
+ if (gfc_compare_types (&lvalue->ts, &rvalue->ts))
+ return true;
+
+ /* Only DATA Statements come here. */
+ if (!conform)
+ {
+ locus *where;
+
+ /* Numeric can be converted to any other numeric. And Hollerith can be
+ converted to any other type. */
+ if ((gfc_numeric_ts (&lvalue->ts) && gfc_numeric_ts (&rvalue->ts))
+ || rvalue->ts.type == BT_HOLLERITH)
+ return true;
+
+ if (flag_dec_char_conversions && (gfc_numeric_ts (&lvalue->ts)
+ || lvalue->ts.type == BT_LOGICAL)
+ && rvalue->ts.type == BT_CHARACTER
+ && rvalue->ts.kind == gfc_default_character_kind)
+ return true;
+
+ if (lvalue->ts.type == BT_LOGICAL && rvalue->ts.type == BT_LOGICAL)
+ return true;
+
+ where = lvalue->where.lb ? &lvalue->where : &rvalue->where;
+ gfc_error ("Incompatible types in DATA statement at %L; attempted "
+ "conversion of %s to %s", where,
+ gfc_typename (rvalue), gfc_typename (lvalue));
+
+ return false;
+ }
+
+ /* Assignment is the only case where character variables of different
+ kind values can be converted into one another. */
+ if (lvalue->ts.type == BT_CHARACTER && rvalue->ts.type == BT_CHARACTER)
+ {
+ if (lvalue->ts.kind != rvalue->ts.kind && allow_convert)
+ return gfc_convert_chartype (rvalue, &lvalue->ts);
+ else
+ return true;
+ }
+
+ if (!allow_convert)
+ return true;
+
+ return gfc_convert_type (rvalue, &lvalue->ts, 1);
+}
+
+
+/* Check that a pointer assignment is OK. We first check lvalue, and
+ we only check rvalue if it's not an assignment to NULL() or a
+ NULLIFY statement. */
+
+bool
+gfc_check_pointer_assign (gfc_expr *lvalue, gfc_expr *rvalue,
+ bool suppress_type_test, bool is_init_expr)
+{
+ symbol_attribute attr, lhs_attr;
+ gfc_ref *ref;
+ bool is_pure, is_implicit_pure, rank_remap;
+ int proc_pointer;
+ bool same_rank;
+
+ if (!lvalue->symtree)
+ return false;
+
+ lhs_attr = gfc_expr_attr (lvalue);
+ if (lvalue->ts.type == BT_UNKNOWN && !lhs_attr.proc_pointer)
+ {
+ gfc_error ("Pointer assignment target is not a POINTER at %L",
+ &lvalue->where);
+ return false;
+ }
+
+ if (lhs_attr.flavor == FL_PROCEDURE && lhs_attr.use_assoc
+ && !lhs_attr.proc_pointer)
+ {
+ gfc_error ("%qs in the pointer assignment at %L cannot be an "
+ "l-value since it is a procedure",
+ lvalue->symtree->n.sym->name, &lvalue->where);
+ return false;
+ }
+
+ proc_pointer = lvalue->symtree->n.sym->attr.proc_pointer;
+
+ rank_remap = false;
+ same_rank = lvalue->rank == rvalue->rank;
+ for (ref = lvalue->ref; ref; ref = ref->next)
+ {
+ if (ref->type == REF_COMPONENT)
+ proc_pointer = ref->u.c.component->attr.proc_pointer;
+
+ if (ref->type == REF_ARRAY && ref->next == NULL)
+ {
+ int dim;
+
+ if (ref->u.ar.type == AR_FULL)
+ break;
+
+ if (ref->u.ar.type != AR_SECTION)
+ {
+ gfc_error ("Expected bounds specification for %qs at %L",
+ lvalue->symtree->n.sym->name, &lvalue->where);
+ return false;
+ }
+
+ if (!gfc_notify_std (GFC_STD_F2003, "Bounds specification "
+ "for %qs in pointer assignment at %L",
+ lvalue->symtree->n.sym->name, &lvalue->where))
+ return false;
+
+ /* Fortran standard (e.g. F2018, 10.2.2 Pointer assignment):
+ *
+ * (C1017) If bounds-spec-list is specified, the number of
+ * bounds-specs shall equal the rank of data-pointer-object.
+ *
+ * If bounds-spec-list appears, it specifies the lower bounds.
+ *
+ * (C1018) If bounds-remapping-list is specified, the number of
+ * bounds-remappings shall equal the rank of data-pointer-object.
+ *
+ * If bounds-remapping-list appears, it specifies the upper and
+ * lower bounds of each dimension of the pointer; the pointer target
+ * shall be simply contiguous or of rank one.
+ *
+ * (C1019) If bounds-remapping-list is not specified, the ranks of
+ * data-pointer-object and data-target shall be the same.
+ *
+ * Thus when bounds are given, all lbounds are necessary and either
+ * all or none of the upper bounds; no strides are allowed. If the
+ * upper bounds are present, we may do rank remapping. */
+ for (dim = 0; dim < ref->u.ar.dimen; ++dim)
+ {
+ if (ref->u.ar.stride[dim])
+ {
+ gfc_error ("Stride must not be present at %L",
+ &lvalue->where);
+ return false;
+ }
+ if (!same_rank && (!ref->u.ar.start[dim] ||!ref->u.ar.end[dim]))
+ {
+ gfc_error ("Rank remapping requires a "
+ "list of %<lower-bound : upper-bound%> "
+ "specifications at %L", &lvalue->where);
+ return false;
+ }
+ if (!ref->u.ar.start[dim]
+ || ref->u.ar.dimen_type[dim] != DIMEN_RANGE)
+ {
+ gfc_error ("Expected list of %<lower-bound :%> or "
+ "list of %<lower-bound : upper-bound%> "
+ "specifications at %L", &lvalue->where);
+ return false;
+ }
+
+ if (dim == 0)
+ rank_remap = (ref->u.ar.end[dim] != NULL);
+ else
+ {
+ if ((rank_remap && !ref->u.ar.end[dim]))
+ {
+ gfc_error ("Rank remapping requires a "
+ "list of %<lower-bound : upper-bound%> "
+ "specifications at %L", &lvalue->where);
+ return false;
+ }
+ if (!rank_remap && ref->u.ar.end[dim])
+ {
+ gfc_error ("Expected list of %<lower-bound :%> or "
+ "list of %<lower-bound : upper-bound%> "
+ "specifications at %L", &lvalue->where);
+ return false;
+ }
+ }
+ }
+ }
+ }
+
+ is_pure = gfc_pure (NULL);
+ is_implicit_pure = gfc_implicit_pure (NULL);
+
+ /* If rvalue is a NULL() or NULLIFY, we're done. Otherwise the type,
+ kind, etc for lvalue and rvalue must match, and rvalue must be a
+ pure variable if we're in a pure function. */
+ if (rvalue->expr_type == EXPR_NULL && rvalue->ts.type == BT_UNKNOWN)
+ return true;
+
+ /* F2008, C723 (pointer) and C726 (proc-pointer); for PURE also C1283. */
+ if (lvalue->expr_type == EXPR_VARIABLE
+ && gfc_is_coindexed (lvalue))
+ {
+ gfc_ref *ref;
+ for (ref = lvalue->ref; ref; ref = ref->next)
+ if (ref->type == REF_ARRAY && ref->u.ar.codimen)
+ {
+ gfc_error ("Pointer object at %L shall not have a coindex",
+ &lvalue->where);
+ return false;
+ }
+ }
+
+ /* Checks on rvalue for procedure pointer assignments. */
+ if (proc_pointer)
+ {
+ char err[200];
+ gfc_symbol *s1,*s2;
+ gfc_component *comp1, *comp2;
+ const char *name;
+
+ attr = gfc_expr_attr (rvalue);
+ if (!((rvalue->expr_type == EXPR_NULL)
+ || (rvalue->expr_type == EXPR_FUNCTION && attr.proc_pointer)
+ || (rvalue->expr_type == EXPR_VARIABLE && attr.proc_pointer)
+ || (rvalue->expr_type == EXPR_VARIABLE
+ && attr.flavor == FL_PROCEDURE)))
+ {
+ gfc_error ("Invalid procedure pointer assignment at %L",
+ &rvalue->where);
+ return false;
+ }
+
+ if (rvalue->expr_type == EXPR_VARIABLE && !attr.proc_pointer)
+ {
+ /* Check for intrinsics. */
+ gfc_symbol *sym = rvalue->symtree->n.sym;
+ if (!sym->attr.intrinsic
+ && (gfc_is_intrinsic (sym, 0, sym->declared_at)
+ || gfc_is_intrinsic (sym, 1, sym->declared_at)))
+ {
+ sym->attr.intrinsic = 1;
+ gfc_resolve_intrinsic (sym, &rvalue->where);
+ attr = gfc_expr_attr (rvalue);
+ }
+ /* Check for result of embracing function. */
+ if (sym->attr.function && sym->result == sym)
+ {
+ gfc_namespace *ns;
+
+ for (ns = gfc_current_ns; ns; ns = ns->parent)
+ if (sym == ns->proc_name)
+ {
+ gfc_error ("Function result %qs is invalid as proc-target "
+ "in procedure pointer assignment at %L",
+ sym->name, &rvalue->where);
+ return false;
+ }
+ }
+ }
+ if (attr.abstract)
+ {
+ gfc_error ("Abstract interface %qs is invalid "
+ "in procedure pointer assignment at %L",
+ rvalue->symtree->name, &rvalue->where);
+ return false;
+ }
+ /* Check for F08:C729. */
+ if (attr.flavor == FL_PROCEDURE)
+ {
+ if (attr.proc == PROC_ST_FUNCTION)
+ {
+ gfc_error ("Statement function %qs is invalid "
+ "in procedure pointer assignment at %L",
+ rvalue->symtree->name, &rvalue->where);
+ return false;
+ }
+ if (attr.proc == PROC_INTERNAL &&
+ !gfc_notify_std(GFC_STD_F2008, "Internal procedure %qs "
+ "is invalid in procedure pointer assignment "
+ "at %L", rvalue->symtree->name, &rvalue->where))
+ return false;
+ if (attr.intrinsic && gfc_intrinsic_actual_ok (rvalue->symtree->name,
+ attr.subroutine) == 0)
+ {
+ gfc_error ("Intrinsic %qs at %L is invalid in procedure pointer "
+ "assignment", rvalue->symtree->name, &rvalue->where);
+ return false;
+ }
+ }
+ /* Check for F08:C730. */
+ if (attr.elemental && !attr.intrinsic)
+ {
+ gfc_error ("Nonintrinsic elemental procedure %qs is invalid "
+ "in procedure pointer assignment at %L",
+ rvalue->symtree->name, &rvalue->where);
+ return false;
+ }
+
+ /* Ensure that the calling convention is the same. As other attributes
+ such as DLLEXPORT may differ, one explicitly only tests for the
+ calling conventions. */
+ if (rvalue->expr_type == EXPR_VARIABLE
+ && lvalue->symtree->n.sym->attr.ext_attr
+ != rvalue->symtree->n.sym->attr.ext_attr)
+ {
+ symbol_attribute calls;
+
+ calls.ext_attr = 0;
+ gfc_add_ext_attribute (&calls, EXT_ATTR_CDECL, NULL);
+ gfc_add_ext_attribute (&calls, EXT_ATTR_STDCALL, NULL);
+ gfc_add_ext_attribute (&calls, EXT_ATTR_FASTCALL, NULL);
+
+ if ((calls.ext_attr & lvalue->symtree->n.sym->attr.ext_attr)
+ != (calls.ext_attr & rvalue->symtree->n.sym->attr.ext_attr))
+ {
+ gfc_error ("Mismatch in the procedure pointer assignment "
+ "at %L: mismatch in the calling convention",
+ &rvalue->where);
+ return false;
+ }
+ }
+
+ comp1 = gfc_get_proc_ptr_comp (lvalue);
+ if (comp1)
+ s1 = comp1->ts.interface;
+ else
+ {
+ s1 = lvalue->symtree->n.sym;
+ if (s1->ts.interface)
+ s1 = s1->ts.interface;
+ }
+
+ comp2 = gfc_get_proc_ptr_comp (rvalue);
+ if (comp2)
+ {
+ if (rvalue->expr_type == EXPR_FUNCTION)
+ {
+ s2 = comp2->ts.interface->result;
+ name = s2->name;
+ }
+ else
+ {
+ s2 = comp2->ts.interface;
+ name = comp2->name;
+ }
+ }
+ else if (rvalue->expr_type == EXPR_FUNCTION)
+ {
+ if (rvalue->value.function.esym)
+ s2 = rvalue->value.function.esym->result;
+ else
+ s2 = rvalue->symtree->n.sym->result;
+
+ name = s2->name;
+ }
+ else
+ {
+ s2 = rvalue->symtree->n.sym;
+ name = s2->name;
+ }
+
+ if (s2 && s2->attr.proc_pointer && s2->ts.interface)
+ s2 = s2->ts.interface;
+
+ /* Special check for the case of absent interface on the lvalue.
+ * All other interface checks are done below. */
+ if (!s1 && comp1 && comp1->attr.subroutine && s2 && s2->attr.function)
+ {
+ gfc_error ("Interface mismatch in procedure pointer assignment "
+ "at %L: %qs is not a subroutine", &rvalue->where, name);
+ return false;
+ }
+
+ /* F08:7.2.2.4 (4) */
+ if (s2 && gfc_explicit_interface_required (s2, err, sizeof(err)))
+ {
+ if (comp1 && !s1)
+ {
+ gfc_error ("Explicit interface required for component %qs at %L: %s",
+ comp1->name, &lvalue->where, err);
+ return false;
+ }
+ else if (s1->attr.if_source == IFSRC_UNKNOWN)
+ {
+ gfc_error ("Explicit interface required for %qs at %L: %s",
+ s1->name, &lvalue->where, err);
+ return false;
+ }
+ }
+ if (s1 && gfc_explicit_interface_required (s1, err, sizeof(err)))
+ {
+ if (comp2 && !s2)
+ {
+ gfc_error ("Explicit interface required for component %qs at %L: %s",
+ comp2->name, &rvalue->where, err);
+ return false;
+ }
+ else if (s2->attr.if_source == IFSRC_UNKNOWN)
+ {
+ gfc_error ("Explicit interface required for %qs at %L: %s",
+ s2->name, &rvalue->where, err);
+ return false;
+ }
+ }
+
+ if (s1 == s2 || !s1 || !s2)
+ return true;
+
+ if (!gfc_compare_interfaces (s1, s2, name, 0, 1,
+ err, sizeof(err), NULL, NULL))
+ {
+ gfc_error ("Interface mismatch in procedure pointer assignment "
+ "at %L: %s", &rvalue->where, err);
+ return false;
+ }
+
+ /* Check F2008Cor2, C729. */
+ if (!s2->attr.intrinsic && s2->attr.if_source == IFSRC_UNKNOWN
+ && !s2->attr.external && !s2->attr.subroutine && !s2->attr.function)
+ {
+ gfc_error ("Procedure pointer target %qs at %L must be either an "
+ "intrinsic, host or use associated, referenced or have "
+ "the EXTERNAL attribute", s2->name, &rvalue->where);
+ return false;
+ }
+
+ return true;
+ }
+ else
+ {
+ /* A non-proc pointer cannot point to a constant. */
+ if (rvalue->expr_type == EXPR_CONSTANT)
+ {
+ gfc_error_now ("Pointer assignment target cannot be a constant at %L",
+ &rvalue->where);
+ return false;
+ }
+ }
+
+ if (!gfc_compare_types (&lvalue->ts, &rvalue->ts))
+ {
+ /* Check for F03:C717. */
+ if (UNLIMITED_POLY (rvalue)
+ && !(UNLIMITED_POLY (lvalue)
+ || (lvalue->ts.type == BT_DERIVED
+ && (lvalue->ts.u.derived->attr.is_bind_c
+ || lvalue->ts.u.derived->attr.sequence))))
+ gfc_error ("Data-pointer-object at %L must be unlimited "
+ "polymorphic, or of a type with the BIND or SEQUENCE "
+ "attribute, to be compatible with an unlimited "
+ "polymorphic target", &lvalue->where);
+ else if (!suppress_type_test)
+ gfc_error ("Different types in pointer assignment at %L; "
+ "attempted assignment of %s to %s", &lvalue->where,
+ gfc_typename (rvalue), gfc_typename (lvalue));
+ return false;
+ }
+
+ if (lvalue->ts.type != BT_CLASS && lvalue->ts.kind != rvalue->ts.kind)
+ {
+ gfc_error ("Different kind type parameters in pointer "
+ "assignment at %L", &lvalue->where);
+ return false;
+ }
+
+ if (lvalue->rank != rvalue->rank && !rank_remap)
+ {
+ gfc_error ("Different ranks in pointer assignment at %L", &lvalue->where);
+ return false;
+ }
+
+ /* Make sure the vtab is present. */
+ if (lvalue->ts.type == BT_CLASS && !UNLIMITED_POLY (rvalue))
+ gfc_find_vtab (&rvalue->ts);
+
+ /* Check rank remapping. */
+ if (rank_remap)
+ {
+ mpz_t lsize, rsize;
+
+ /* If this can be determined, check that the target must be at least as
+ large as the pointer assigned to it is. */
+ if (gfc_array_size (lvalue, &lsize)
+ && gfc_array_size (rvalue, &rsize)
+ && mpz_cmp (rsize, lsize) < 0)
+ {
+ gfc_error ("Rank remapping target is smaller than size of the"
+ " pointer (%ld < %ld) at %L",
+ mpz_get_si (rsize), mpz_get_si (lsize),
+ &lvalue->where);
+ return false;
+ }
+
+ /* The target must be either rank one or it must be simply contiguous
+ and F2008 must be allowed. */
+ if (rvalue->rank != 1)
+ {
+ if (!gfc_is_simply_contiguous (rvalue, true, false))
+ {
+ gfc_error ("Rank remapping target must be rank 1 or"
+ " simply contiguous at %L", &rvalue->where);
+ return false;
+ }
+ if (!gfc_notify_std (GFC_STD_F2008, "Rank remapping target is not "
+ "rank 1 at %L", &rvalue->where))
+ return false;
+ }
+ }
+
+ /* Now punt if we are dealing with a NULLIFY(X) or X = NULL(X). */
+ if (rvalue->expr_type == EXPR_NULL)
+ return true;
+
+ if (rvalue->expr_type == EXPR_VARIABLE && is_subref_array (rvalue))
+ lvalue->symtree->n.sym->attr.subref_array_pointer = 1;
+
+ attr = gfc_expr_attr (rvalue);
+
+ if (rvalue->expr_type == EXPR_FUNCTION && !attr.pointer)
+ {
+ /* F2008, C725. For PURE also C1283. Sometimes rvalue is a function call
+ to caf_get. Map this to the same error message as below when it is
+ still a variable expression. */
+ if (rvalue->value.function.isym
+ && rvalue->value.function.isym->id == GFC_ISYM_CAF_GET)
+ /* The test above might need to be extend when F08, Note 5.4 has to be
+ interpreted in the way that target and pointer with the same coindex
+ are allowed. */
+ gfc_error ("Data target at %L shall not have a coindex",
+ &rvalue->where);
+ else
+ gfc_error ("Target expression in pointer assignment "
+ "at %L must deliver a pointer result",
+ &rvalue->where);
+ return false;
+ }
+
+ if (is_init_expr)
+ {
+ gfc_symbol *sym;
+ bool target;
+ gfc_ref *ref;
+
+ if (gfc_is_size_zero_array (rvalue))
+ {
+ gfc_error ("Zero-sized array detected at %L where an entity with "
+ "the TARGET attribute is expected", &rvalue->where);
+ return false;
+ }
+ else if (!rvalue->symtree)
+ {
+ gfc_error ("Pointer assignment target in initialization expression "
+ "does not have the TARGET attribute at %L",
+ &rvalue->where);
+ return false;
+ }
+
+ sym = rvalue->symtree->n.sym;
+
+ if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
+ target = CLASS_DATA (sym)->attr.target;
+ else
+ target = sym->attr.target;
+
+ if (!target && !proc_pointer)
+ {
+ gfc_error ("Pointer assignment target in initialization expression "
+ "does not have the TARGET attribute at %L",
+ &rvalue->where);
+ return false;
+ }
+
+ for (ref = rvalue->ref; ref; ref = ref->next)
+ {
+ switch (ref->type)
+ {
+ case REF_ARRAY:
+ for (int n = 0; n < ref->u.ar.dimen; n++)
+ if (!gfc_is_constant_expr (ref->u.ar.start[n])
+ || !gfc_is_constant_expr (ref->u.ar.end[n])
+ || !gfc_is_constant_expr (ref->u.ar.stride[n]))
+ {
+ gfc_error ("Every subscript of target specification "
+ "at %L must be a constant expression",
+ &ref->u.ar.where);
+ return false;
+ }
+ break;
+
+ case REF_SUBSTRING:
+ if (!gfc_is_constant_expr (ref->u.ss.start)
+ || !gfc_is_constant_expr (ref->u.ss.end))
+ {
+ gfc_error ("Substring starting and ending points of target "
+ "specification at %L must be constant expressions",
+ &ref->u.ss.start->where);
+ return false;
+ }
+ break;
+
+ default:
+ break;
+ }
+ }
+ }
+ else
+ {
+ if (!attr.target && !attr.pointer)
+ {
+ gfc_error ("Pointer assignment target is neither TARGET "
+ "nor POINTER at %L", &rvalue->where);
+ return false;
+ }
+ }
+
+ if (lvalue->ts.type == BT_CHARACTER)
+ {
+ bool t = gfc_check_same_strlen (lvalue, rvalue, "pointer assignment");
+ if (!t)
+ return false;
+ }
+
+ if (is_pure && gfc_impure_variable (rvalue->symtree->n.sym))
+ {
+ gfc_error ("Bad target in pointer assignment in PURE "
+ "procedure at %L", &rvalue->where);
+ }
+
+ if (is_implicit_pure && gfc_impure_variable (rvalue->symtree->n.sym))
+ gfc_unset_implicit_pure (gfc_current_ns->proc_name);
+
+ if (gfc_has_vector_index (rvalue))
+ {
+ gfc_error ("Pointer assignment with vector subscript "
+ "on rhs at %L", &rvalue->where);
+ return false;
+ }
+
+ if (attr.is_protected && attr.use_assoc
+ && !(attr.pointer || attr.proc_pointer))
+ {
+ gfc_error ("Pointer assignment target has PROTECTED "
+ "attribute at %L", &rvalue->where);
+ return false;
+ }
+
+ /* F2008, C725. For PURE also C1283. */
+ if (rvalue->expr_type == EXPR_VARIABLE
+ && gfc_is_coindexed (rvalue))
+ {
+ gfc_ref *ref;
+ for (ref = rvalue->ref; ref; ref = ref->next)
+ if (ref->type == REF_ARRAY && ref->u.ar.codimen)
+ {
+ gfc_error ("Data target at %L shall not have a coindex",
+ &rvalue->where);
+ return false;
+ }
+ }
+
+ /* Warn for assignments of contiguous pointers to targets which is not
+ contiguous. Be lenient in the definition of what counts as
+ contiguous. */
+
+ if (lhs_attr.contiguous
+ && lhs_attr.dimension > 0)
+ {
+ if (gfc_is_not_contiguous (rvalue))
+ {
+ gfc_error ("Assignment to contiguous pointer from "
+ "non-contiguous target at %L", &rvalue->where);
+ return false;
+ }
+ if (!gfc_is_simply_contiguous (rvalue, false, true))
+ gfc_warning (OPT_Wextra, "Assignment to contiguous pointer from "
+ "non-contiguous target at %L", &rvalue->where);
+ }
+
+ /* Warn if it is the LHS pointer may lives longer than the RHS target. */
+ if (warn_target_lifetime
+ && rvalue->expr_type == EXPR_VARIABLE
+ && !rvalue->symtree->n.sym->attr.save
+ && !rvalue->symtree->n.sym->attr.pointer && !attr.pointer
+ && !rvalue->symtree->n.sym->attr.host_assoc
+ && !rvalue->symtree->n.sym->attr.in_common
+ && !rvalue->symtree->n.sym->attr.use_assoc
+ && !rvalue->symtree->n.sym->attr.dummy)
+ {
+ bool warn;
+ gfc_namespace *ns;
+
+ warn = lvalue->symtree->n.sym->attr.dummy
+ || lvalue->symtree->n.sym->attr.result
+ || lvalue->symtree->n.sym->attr.function
+ || (lvalue->symtree->n.sym->attr.host_assoc
+ && lvalue->symtree->n.sym->ns
+ != rvalue->symtree->n.sym->ns)
+ || lvalue->symtree->n.sym->attr.use_assoc
+ || lvalue->symtree->n.sym->attr.in_common;
+
+ if (rvalue->symtree->n.sym->ns->proc_name
+ && rvalue->symtree->n.sym->ns->proc_name->attr.flavor != FL_PROCEDURE
+ && rvalue->symtree->n.sym->ns->proc_name->attr.flavor != FL_PROGRAM)
+ for (ns = rvalue->symtree->n.sym->ns;
+ ns && ns->proc_name && ns->proc_name->attr.flavor != FL_PROCEDURE;
+ ns = ns->parent)
+ if (ns->parent == lvalue->symtree->n.sym->ns)
+ {
+ warn = true;
+ break;
+ }
+
+ if (warn)
+ gfc_warning (OPT_Wtarget_lifetime,
+ "Pointer at %L in pointer assignment might outlive the "
+ "pointer target", &lvalue->where);
+ }
+
+ return true;
+}
+
+
+/* Relative of gfc_check_assign() except that the lvalue is a single
+ symbol. Used for initialization assignments. */
+
+bool
+gfc_check_assign_symbol (gfc_symbol *sym, gfc_component *comp, gfc_expr *rvalue)
+{
+ gfc_expr lvalue;
+ bool r;
+ bool pointer, proc_pointer;
+
+ memset (&lvalue, '\0', sizeof (gfc_expr));
+
+ lvalue.expr_type = EXPR_VARIABLE;
+ lvalue.ts = sym->ts;
+ if (sym->as)
+ lvalue.rank = sym->as->rank;
+ lvalue.symtree = XCNEW (gfc_symtree);
+ lvalue.symtree->n.sym = sym;
+ lvalue.where = sym->declared_at;
+
+ if (comp)
+ {
+ lvalue.ref = gfc_get_ref ();
+ lvalue.ref->type = REF_COMPONENT;
+ lvalue.ref->u.c.component = comp;
+ lvalue.ref->u.c.sym = sym;
+ lvalue.ts = comp->ts;
+ lvalue.rank = comp->as ? comp->as->rank : 0;
+ lvalue.where = comp->loc;
+ pointer = comp->ts.type == BT_CLASS && CLASS_DATA (comp)
+ ? CLASS_DATA (comp)->attr.class_pointer : comp->attr.pointer;
+ proc_pointer = comp->attr.proc_pointer;
+ }
+ else
+ {
+ pointer = sym->ts.type == BT_CLASS && CLASS_DATA (sym)
+ ? CLASS_DATA (sym)->attr.class_pointer : sym->attr.pointer;
+ proc_pointer = sym->attr.proc_pointer;
+ }
+
+ if (pointer || proc_pointer)
+ r = gfc_check_pointer_assign (&lvalue, rvalue, false, true);
+ else
+ {
+ /* If a conversion function, e.g., __convert_i8_i4, was inserted
+ into an array constructor, we should check if it can be reduced
+ as an initialization expression. */
+ if (rvalue->expr_type == EXPR_FUNCTION
+ && rvalue->value.function.isym
+ && (rvalue->value.function.isym->conversion == 1))
+ gfc_check_init_expr (rvalue);
+
+ r = gfc_check_assign (&lvalue, rvalue, 1);
+ }
+
+ free (lvalue.symtree);
+ free (lvalue.ref);
+
+ if (!r)
+ return r;
+
+ if (pointer && rvalue->expr_type != EXPR_NULL && !proc_pointer)
+ {
+ /* F08:C461. Additional checks for pointer initialization. */
+ symbol_attribute attr;
+ attr = gfc_expr_attr (rvalue);
+ if (attr.allocatable)
+ {
+ gfc_error ("Pointer initialization target at %L "
+ "must not be ALLOCATABLE", &rvalue->where);
+ return false;
+ }
+ if (!attr.target || attr.pointer)
+ {
+ gfc_error ("Pointer initialization target at %L "
+ "must have the TARGET attribute", &rvalue->where);
+ return false;
+ }
+
+ if (!attr.save && rvalue->expr_type == EXPR_VARIABLE
+ && rvalue->symtree->n.sym->ns->proc_name
+ && rvalue->symtree->n.sym->ns->proc_name->attr.is_main_program)
+ {
+ rvalue->symtree->n.sym->ns->proc_name->attr.save = SAVE_IMPLICIT;
+ attr.save = SAVE_IMPLICIT;
+ }
+
+ if (!attr.save)
+ {
+ gfc_error ("Pointer initialization target at %L "
+ "must have the SAVE attribute", &rvalue->where);
+ return false;
+ }
+ }
+
+ if (proc_pointer && rvalue->expr_type != EXPR_NULL)
+ {
+ /* F08:C1220. Additional checks for procedure pointer initialization. */
+ symbol_attribute attr = gfc_expr_attr (rvalue);
+ if (attr.proc_pointer)
+ {
+ gfc_error ("Procedure pointer initialization target at %L "
+ "may not be a procedure pointer", &rvalue->where);
+ return false;
+ }
+ if (attr.proc == PROC_INTERNAL)
+ {
+ gfc_error ("Internal procedure %qs is invalid in "
+ "procedure pointer initialization at %L",
+ rvalue->symtree->name, &rvalue->where);
+ return false;
+ }
+ if (attr.dummy)
+ {
+ gfc_error ("Dummy procedure %qs is invalid in "
+ "procedure pointer initialization at %L",
+ rvalue->symtree->name, &rvalue->where);
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/* Build an initializer for a local integer, real, complex, logical, or
+ character variable, based on the command line flags finit-local-zero,
+ finit-integer=, finit-real=, finit-logical=, and finit-character=.
+ With force, an initializer is ALWAYS generated. */
+
+static gfc_expr *
+gfc_build_init_expr (gfc_typespec *ts, locus *where, bool force)
+{
+ gfc_expr *init_expr;
+
+ /* Try to build an initializer expression. */
+ init_expr = gfc_get_constant_expr (ts->type, ts->kind, where);
+
+ /* If we want to force generation, make sure we default to zero. */
+ gfc_init_local_real init_real = flag_init_real;
+ int init_logical = gfc_option.flag_init_logical;
+ if (force)
+ {
+ if (init_real == GFC_INIT_REAL_OFF)
+ init_real = GFC_INIT_REAL_ZERO;
+ if (init_logical == GFC_INIT_LOGICAL_OFF)
+ init_logical = GFC_INIT_LOGICAL_FALSE;
+ }
+
+ /* We will only initialize integers, reals, complex, logicals, and
+ characters, and only if the corresponding command-line flags
+ were set. Otherwise, we free init_expr and return null. */
+ switch (ts->type)
+ {
+ case BT_INTEGER:
+ if (force || gfc_option.flag_init_integer != GFC_INIT_INTEGER_OFF)
+ mpz_set_si (init_expr->value.integer,
+ gfc_option.flag_init_integer_value);
+ else
+ {
+ gfc_free_expr (init_expr);
+ init_expr = NULL;
+ }
+ break;
+
+ case BT_REAL:
+ switch (init_real)
+ {
+ case GFC_INIT_REAL_SNAN:
+ init_expr->is_snan = 1;
+ /* Fall through. */
+ case GFC_INIT_REAL_NAN:
+ mpfr_set_nan (init_expr->value.real);
+ break;
+
+ case GFC_INIT_REAL_INF:
+ mpfr_set_inf (init_expr->value.real, 1);
+ break;
+
+ case GFC_INIT_REAL_NEG_INF:
+ mpfr_set_inf (init_expr->value.real, -1);
+ break;
+
+ case GFC_INIT_REAL_ZERO:
+ mpfr_set_ui (init_expr->value.real, 0.0, GFC_RND_MODE);
+ break;
+
+ default:
+ gfc_free_expr (init_expr);
+ init_expr = NULL;
+ break;
+ }
+ break;
+
+ case BT_COMPLEX:
+ switch (init_real)
+ {
+ case GFC_INIT_REAL_SNAN:
+ init_expr->is_snan = 1;
+ /* Fall through. */
+ case GFC_INIT_REAL_NAN:
+ mpfr_set_nan (mpc_realref (init_expr->value.complex));
+ mpfr_set_nan (mpc_imagref (init_expr->value.complex));
+ break;
+
+ case GFC_INIT_REAL_INF:
+ mpfr_set_inf (mpc_realref (init_expr->value.complex), 1);
+ mpfr_set_inf (mpc_imagref (init_expr->value.complex), 1);
+ break;
+
+ case GFC_INIT_REAL_NEG_INF:
+ mpfr_set_inf (mpc_realref (init_expr->value.complex), -1);
+ mpfr_set_inf (mpc_imagref (init_expr->value.complex), -1);
+ break;
+
+ case GFC_INIT_REAL_ZERO:
+ mpc_set_ui (init_expr->value.complex, 0, GFC_MPC_RND_MODE);
+ break;
+
+ default:
+ gfc_free_expr (init_expr);
+ init_expr = NULL;
+ break;
+ }
+ break;
+
+ case BT_LOGICAL:
+ if (init_logical == GFC_INIT_LOGICAL_FALSE)
+ init_expr->value.logical = 0;
+ else if (init_logical == GFC_INIT_LOGICAL_TRUE)
+ init_expr->value.logical = 1;
+ else
+ {
+ gfc_free_expr (init_expr);
+ init_expr = NULL;
+ }
+ break;
+
+ case BT_CHARACTER:
+ /* For characters, the length must be constant in order to
+ create a default initializer. */
+ if ((force || gfc_option.flag_init_character == GFC_INIT_CHARACTER_ON)
+ && ts->u.cl->length
+ && ts->u.cl->length->expr_type == EXPR_CONSTANT)
+ {
+ HOST_WIDE_INT char_len = gfc_mpz_get_hwi (ts->u.cl->length->value.integer);
+ init_expr->value.character.length = char_len;
+ init_expr->value.character.string = gfc_get_wide_string (char_len+1);
+ for (size_t i = 0; i < (size_t) char_len; i++)
+ init_expr->value.character.string[i]
+ = (unsigned char) gfc_option.flag_init_character_value;
+ }
+ else
+ {
+ gfc_free_expr (init_expr);
+ init_expr = NULL;
+ }
+ if (!init_expr
+ && (force || gfc_option.flag_init_character == GFC_INIT_CHARACTER_ON)
+ && ts->u.cl->length && flag_max_stack_var_size != 0)
+ {
+ gfc_actual_arglist *arg;
+ init_expr = gfc_get_expr ();
+ init_expr->where = *where;
+ init_expr->ts = *ts;
+ init_expr->expr_type = EXPR_FUNCTION;
+ init_expr->value.function.isym =
+ gfc_intrinsic_function_by_id (GFC_ISYM_REPEAT);
+ init_expr->value.function.name = "repeat";
+ arg = gfc_get_actual_arglist ();
+ arg->expr = gfc_get_character_expr (ts->kind, where, NULL, 1);
+ arg->expr->value.character.string[0] =
+ gfc_option.flag_init_character_value;
+ arg->next = gfc_get_actual_arglist ();
+ arg->next->expr = gfc_copy_expr (ts->u.cl->length);
+ init_expr->value.function.actual = arg;
+ }
+ break;
+
+ default:
+ gfc_free_expr (init_expr);
+ init_expr = NULL;
+ }
+
+ return init_expr;
+}
+
+/* Invoke gfc_build_init_expr to create an initializer expression, but do not
+ * require that an expression be built. */
+
+gfc_expr *
+gfc_build_default_init_expr (gfc_typespec *ts, locus *where)
+{
+ return gfc_build_init_expr (ts, where, false);
+}
+
+/* Apply an initialization expression to a typespec. Can be used for symbols or
+ components. Similar to add_init_expr_to_sym in decl.c; could probably be
+ combined with some effort. */
+
+void
+gfc_apply_init (gfc_typespec *ts, symbol_attribute *attr, gfc_expr *init)
+{
+ if (ts->type == BT_CHARACTER && !attr->pointer && init
+ && ts->u.cl
+ && ts->u.cl->length
+ && ts->u.cl->length->expr_type == EXPR_CONSTANT
+ && ts->u.cl->length->ts.type == BT_INTEGER)
+ {
+ HOST_WIDE_INT len = gfc_mpz_get_hwi (ts->u.cl->length->value.integer);
+
+ if (init->expr_type == EXPR_CONSTANT)
+ gfc_set_constant_character_len (len, init, -1);
+ else if (init
+ && init->ts.type == BT_CHARACTER
+ && init->ts.u.cl && init->ts.u.cl->length
+ && mpz_cmp (ts->u.cl->length->value.integer,
+ init->ts.u.cl->length->value.integer))
+ {
+ gfc_constructor *ctor;
+ ctor = gfc_constructor_first (init->value.constructor);
+
+ if (ctor)
+ {
+ bool has_ts = (init->ts.u.cl
+ && init->ts.u.cl->length_from_typespec);
+
+ /* Remember the length of the first element for checking
+ that all elements *in the constructor* have the same
+ length. This need not be the length of the LHS! */
+ gcc_assert (ctor->expr->expr_type == EXPR_CONSTANT);
+ gcc_assert (ctor->expr->ts.type == BT_CHARACTER);
+ gfc_charlen_t first_len = ctor->expr->value.character.length;
+
+ for ( ; ctor; ctor = gfc_constructor_next (ctor))
+ if (ctor->expr->expr_type == EXPR_CONSTANT)
+ {
+ gfc_set_constant_character_len (len, ctor->expr,
+ has_ts ? -1 : first_len);
+ if (!ctor->expr->ts.u.cl)
+ ctor->expr->ts.u.cl
+ = gfc_new_charlen (gfc_current_ns, ts->u.cl);
+ else
+ ctor->expr->ts.u.cl->length
+ = gfc_copy_expr (ts->u.cl->length);
+ }
+ }
+ }
+ }
+}
+
+
+/* Check whether an expression is a structure constructor and whether it has
+ other values than NULL. */
+
+static bool
+is_non_empty_structure_constructor (gfc_expr * e)
+{
+ if (e->expr_type != EXPR_STRUCTURE)
+ return false;
+
+ gfc_constructor *cons = gfc_constructor_first (e->value.constructor);
+ while (cons)
+ {
+ if (!cons->expr || cons->expr->expr_type != EXPR_NULL)
+ return true;
+ cons = gfc_constructor_next (cons);
+ }
+ return false;
+}
+
+
+/* Check for default initializer; sym->value is not enough
+ as it is also set for EXPR_NULL of allocatables. */
+
+bool
+gfc_has_default_initializer (gfc_symbol *der)
+{
+ gfc_component *c;
+
+ gcc_assert (gfc_fl_struct (der->attr.flavor));
+ for (c = der->components; c; c = c->next)
+ if (gfc_bt_struct (c->ts.type))
+ {
+ if (!c->attr.pointer && !c->attr.proc_pointer
+ && !(c->attr.allocatable && der == c->ts.u.derived)
+ && ((c->initializer
+ && is_non_empty_structure_constructor (c->initializer))
+ || gfc_has_default_initializer (c->ts.u.derived)))
+ return true;
+ if (c->attr.pointer && c->initializer)
+ return true;
+ }
+ else
+ {
+ if (c->initializer)
+ return true;
+ }
+
+ return false;
+}
+
+
+/*
+ Generate an initializer expression which initializes the entirety of a union.
+ A normal structure constructor is insufficient without undue effort, because
+ components of maps may be oddly aligned/overlapped. (For example if a
+ character is initialized from one map overtop a real from the other, only one
+ byte of the real is actually initialized.) Unfortunately we don't know the
+ size of the union right now, so we can't generate a proper initializer, but
+ we use a NULL expr as a placeholder and do the right thing later in
+ gfc_trans_subcomponent_assign.
+ */
+static gfc_expr *
+generate_union_initializer (gfc_component *un)
+{
+ if (un == NULL || un->ts.type != BT_UNION)
+ return NULL;
+
+ gfc_expr *placeholder = gfc_get_null_expr (&un->loc);
+ placeholder->ts = un->ts;
+ return placeholder;
+}
+
+
+/* Get the user-specified initializer for a union, if any. This means the user
+ has said to initialize component(s) of a map. For simplicity's sake we
+ only allow the user to initialize the first map. We don't have to worry
+ about overlapping initializers as they are released early in resolution (see
+ resolve_fl_struct). */
+
+static gfc_expr *
+get_union_initializer (gfc_symbol *union_type, gfc_component **map_p)
+{
+ gfc_component *map;
+ gfc_expr *init=NULL;
+
+ if (!union_type || union_type->attr.flavor != FL_UNION)
+ return NULL;
+
+ for (map = union_type->components; map; map = map->next)
+ {
+ if (gfc_has_default_initializer (map->ts.u.derived))
+ {
+ init = gfc_default_initializer (&map->ts);
+ if (map_p)
+ *map_p = map;
+ break;
+ }
+ }
+
+ if (map_p && !init)
+ *map_p = NULL;
+
+ return init;
+}
+
+static bool
+class_allocatable (gfc_component *comp)
+{
+ return comp->ts.type == BT_CLASS && CLASS_DATA (comp)
+ && CLASS_DATA (comp)->attr.allocatable;
+}
+
+static bool
+class_pointer (gfc_component *comp)
+{
+ return comp->ts.type == BT_CLASS && CLASS_DATA (comp)
+ && CLASS_DATA (comp)->attr.pointer;
+}
+
+static bool
+comp_allocatable (gfc_component *comp)
+{
+ return comp->attr.allocatable || class_allocatable (comp);
+}
+
+static bool
+comp_pointer (gfc_component *comp)
+{
+ return comp->attr.pointer
+ || comp->attr.proc_pointer
+ || comp->attr.class_pointer
+ || class_pointer (comp);
+}
+
+/* Fetch or generate an initializer for the given component.
+ Only generate an initializer if generate is true. */
+
+static gfc_expr *
+component_initializer (gfc_component *c, bool generate)
+{
+ gfc_expr *init = NULL;
+
+ /* Allocatable components always get EXPR_NULL.
+ Pointer components are only initialized when generating, and only if they
+ do not already have an initializer. */
+ if (comp_allocatable (c) || (generate && comp_pointer (c) && !c->initializer))
+ {
+ init = gfc_get_null_expr (&c->loc);
+ init->ts = c->ts;
+ return init;
+ }
+
+ /* See if we can find the initializer immediately. */
+ if (c->initializer || !generate)
+ return c->initializer;
+
+ /* Recursively handle derived type components. */
+ else if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
+ init = gfc_generate_initializer (&c->ts, true);
+
+ else if (c->ts.type == BT_UNION && c->ts.u.derived->components)
+ {
+ gfc_component *map = NULL;
+ gfc_constructor *ctor;
+ gfc_expr *user_init;
+
+ /* If we don't have a user initializer and we aren't generating one, this
+ union has no initializer. */
+ user_init = get_union_initializer (c->ts.u.derived, &map);
+ if (!user_init && !generate)
+ return NULL;
+
+ /* Otherwise use a structure constructor. */
+ init = gfc_get_structure_constructor_expr (c->ts.type, c->ts.kind,
+ &c->loc);
+ init->ts = c->ts;
+
+ /* If we are to generate an initializer for the union, add a constructor
+ which initializes the whole union first. */
+ if (generate)
+ {
+ ctor = gfc_constructor_get ();
+ ctor->expr = generate_union_initializer (c);
+ gfc_constructor_append (&init->value.constructor, ctor);
+ }
+
+ /* If we found an initializer in one of our maps, apply it. Note this
+ is applied _after_ the entire-union initializer above if any. */
+ if (user_init)
+ {
+ ctor = gfc_constructor_get ();
+ ctor->expr = user_init;
+ ctor->n.component = map;
+ gfc_constructor_append (&init->value.constructor, ctor);
+ }
+ }
+
+ /* Treat simple components like locals. */
+ else
+ {
+ /* We MUST give an initializer, so force generation. */
+ init = gfc_build_init_expr (&c->ts, &c->loc, true);
+ gfc_apply_init (&c->ts, &c->attr, init);
+ }
+
+ return init;
+}
+
+
+/* Get an expression for a default initializer of a derived type. */
+
+gfc_expr *
+gfc_default_initializer (gfc_typespec *ts)
+{
+ return gfc_generate_initializer (ts, false);
+}
+
+/* Generate an initializer expression for an iso_c_binding type
+ such as c_[fun]ptr. The appropriate initializer is c_null_[fun]ptr. */
+
+static gfc_expr *
+generate_isocbinding_initializer (gfc_symbol *derived)
+{
+ /* The initializers have already been built into the c_null_[fun]ptr symbols
+ from gen_special_c_interop_ptr. */
+ gfc_symtree *npsym = NULL;
+ if (0 == strcmp (derived->name, "c_ptr"))
+ gfc_find_sym_tree ("c_null_ptr", gfc_current_ns, true, &npsym);
+ else if (0 == strcmp (derived->name, "c_funptr"))
+ gfc_find_sym_tree ("c_null_funptr", gfc_current_ns, true, &npsym);
+ else
+ gfc_internal_error ("generate_isocbinding_initializer(): bad iso_c_binding"
+ " type, expected %<c_ptr%> or %<c_funptr%>");
+ if (npsym)
+ {
+ gfc_expr *init = gfc_copy_expr (npsym->n.sym->value);
+ init->symtree = npsym;
+ init->ts.is_iso_c = true;
+ return init;
+ }
+
+ return NULL;
+}
+
+/* Get or generate an expression for a default initializer of a derived type.
+ If -finit-derived is specified, generate default initialization expressions
+ for components that lack them when generate is set. */
+
+gfc_expr *
+gfc_generate_initializer (gfc_typespec *ts, bool generate)
+{
+ gfc_expr *init, *tmp;
+ gfc_component *comp;
+
+ generate = flag_init_derived && generate;
+
+ if (ts->u.derived->ts.is_iso_c && generate)
+ return generate_isocbinding_initializer (ts->u.derived);
+
+ /* See if we have a default initializer in this, but not in nested
+ types (otherwise we could use gfc_has_default_initializer()).
+ We don't need to check if we are going to generate them. */
+ comp = ts->u.derived->components;
+ if (!generate)
+ {
+ for (; comp; comp = comp->next)
+ if (comp->initializer || comp_allocatable (comp))
+ break;
+ }
+
+ if (!comp)
+ return NULL;
+
+ init = gfc_get_structure_constructor_expr (ts->type, ts->kind,
+ &ts->u.derived->declared_at);
+ init->ts = *ts;
+
+ for (comp = ts->u.derived->components; comp; comp = comp->next)
+ {
+ gfc_constructor *ctor = gfc_constructor_get();
+
+ /* Fetch or generate an initializer for the component. */
+ tmp = component_initializer (comp, generate);
+ if (tmp)
+ {
+ /* Save the component ref for STRUCTUREs and UNIONs. */
+ if (ts->u.derived->attr.flavor == FL_STRUCT
+ || ts->u.derived->attr.flavor == FL_UNION)
+ ctor->n.component = comp;
+
+ /* If the initializer was not generated, we need a copy. */
+ ctor->expr = comp->initializer ? gfc_copy_expr (tmp) : tmp;
+ if ((comp->ts.type != tmp->ts.type || comp->ts.kind != tmp->ts.kind)
+ && !comp->attr.pointer && !comp->attr.proc_pointer)
+ {
+ bool val;
+ val = gfc_convert_type_warn (ctor->expr, &comp->ts, 1, false);
+ if (val == false)
+ return NULL;
+ }
+ }
+
+ gfc_constructor_append (&init->value.constructor, ctor);
+ }
+
+ return init;
+}
+
+
+/* Given a symbol, create an expression node with that symbol as a
+ variable. If the symbol is array valued, setup a reference of the
+ whole array. */
+
+gfc_expr *
+gfc_get_variable_expr (gfc_symtree *var)
+{
+ gfc_expr *e;
+
+ e = gfc_get_expr ();
+ e->expr_type = EXPR_VARIABLE;
+ e->symtree = var;
+ e->ts = var->n.sym->ts;
+
+ if (var->n.sym->attr.flavor != FL_PROCEDURE
+ && ((var->n.sym->as != NULL && var->n.sym->ts.type != BT_CLASS)
+ || (var->n.sym->ts.type == BT_CLASS && var->n.sym->ts.u.derived
+ && CLASS_DATA (var->n.sym)
+ && CLASS_DATA (var->n.sym)->as)))
+ {
+ e->rank = var->n.sym->ts.type == BT_CLASS
+ ? CLASS_DATA (var->n.sym)->as->rank : var->n.sym->as->rank;
+ e->ref = gfc_get_ref ();
+ e->ref->type = REF_ARRAY;
+ e->ref->u.ar.type = AR_FULL;
+ e->ref->u.ar.as = gfc_copy_array_spec (var->n.sym->ts.type == BT_CLASS
+ ? CLASS_DATA (var->n.sym)->as
+ : var->n.sym->as);
+ }
+
+ return e;
+}
+
+
+/* Adds a full array reference to an expression, as needed. */
+
+void
+gfc_add_full_array_ref (gfc_expr *e, gfc_array_spec *as)
+{
+ gfc_ref *ref;
+ for (ref = e->ref; ref; ref = ref->next)
+ if (!ref->next)
+ break;
+ if (ref)
+ {
+ ref->next = gfc_get_ref ();
+ ref = ref->next;
+ }
+ else
+ {
+ e->ref = gfc_get_ref ();
+ ref = e->ref;
+ }
+ ref->type = REF_ARRAY;
+ ref->u.ar.type = AR_FULL;
+ ref->u.ar.dimen = e->rank;
+ ref->u.ar.where = e->where;
+ ref->u.ar.as = as;
+}
+
+
+gfc_expr *
+gfc_lval_expr_from_sym (gfc_symbol *sym)
+{
+ gfc_expr *lval;
+ gfc_array_spec *as;
+ lval = gfc_get_expr ();
+ lval->expr_type = EXPR_VARIABLE;
+ lval->where = sym->declared_at;
+ lval->ts = sym->ts;
+ lval->symtree = gfc_find_symtree (sym->ns->sym_root, sym->name);
+
+ /* It will always be a full array. */
+ as = IS_CLASS_ARRAY (sym) ? CLASS_DATA (sym)->as : sym->as;
+ lval->rank = as ? as->rank : 0;
+ if (lval->rank)
+ gfc_add_full_array_ref (lval, as);
+ return lval;
+}
+
+
+/* Returns the array_spec of a full array expression. A NULL is
+ returned otherwise. */
+gfc_array_spec *
+gfc_get_full_arrayspec_from_expr (gfc_expr *expr)
+{
+ gfc_array_spec *as;
+ gfc_ref *ref;
+
+ if (expr->rank == 0)
+ return NULL;
+
+ /* Follow any component references. */
+ if (expr->expr_type == EXPR_VARIABLE
+ || expr->expr_type == EXPR_CONSTANT)
+ {
+ if (expr->symtree)
+ as = expr->symtree->n.sym->as;
+ else
+ as = NULL;
+
+ for (ref = expr->ref; ref; ref = ref->next)
+ {
+ switch (ref->type)
+ {
+ case REF_COMPONENT:
+ as = ref->u.c.component->as;
+ continue;
+
+ case REF_SUBSTRING:
+ case REF_INQUIRY:
+ continue;
+
+ case REF_ARRAY:
+ {
+ switch (ref->u.ar.type)
+ {
+ case AR_ELEMENT:
+ case AR_SECTION:
+ case AR_UNKNOWN:
+ as = NULL;
+ continue;
+
+ case AR_FULL:
+ break;
+ }
+ break;
+ }
+ }
+ }
+ }
+ else
+ as = NULL;
+
+ return as;
+}
+
+
+/* General expression traversal function. */
+
+bool
+gfc_traverse_expr (gfc_expr *expr, gfc_symbol *sym,
+ bool (*func)(gfc_expr *, gfc_symbol *, int*),
+ int f)
+{
+ gfc_array_ref ar;
+ gfc_ref *ref;
+ gfc_actual_arglist *args;
+ gfc_constructor *c;
+ int i;
+
+ if (!expr)
+ return false;
+
+ if ((*func) (expr, sym, &f))
+ return true;
+
+ if (expr->ts.type == BT_CHARACTER
+ && expr->ts.u.cl
+ && expr->ts.u.cl->length
+ && expr->ts.u.cl->length->expr_type != EXPR_CONSTANT
+ && gfc_traverse_expr (expr->ts.u.cl->length, sym, func, f))
+ return true;
+
+ switch (expr->expr_type)
+ {
+ case EXPR_PPC:
+ case EXPR_COMPCALL:
+ case EXPR_FUNCTION:
+ for (args = expr->value.function.actual; args; args = args->next)
+ {
+ if (gfc_traverse_expr (args->expr, sym, func, f))
+ return true;
+ }
+ break;
+
+ case EXPR_VARIABLE:
+ case EXPR_CONSTANT:
+ case EXPR_NULL:
+ case EXPR_SUBSTRING:
+ break;
+
+ case EXPR_STRUCTURE:
+ case EXPR_ARRAY:
+ for (c = gfc_constructor_first (expr->value.constructor);
+ c; c = gfc_constructor_next (c))
+ {
+ if (gfc_traverse_expr (c->expr, sym, func, f))
+ return true;
+ if (c->iterator)
+ {
+ if (gfc_traverse_expr (c->iterator->var, sym, func, f))
+ return true;
+ if (gfc_traverse_expr (c->iterator->start, sym, func, f))
+ return true;
+ if (gfc_traverse_expr (c->iterator->end, sym, func, f))
+ return true;
+ if (gfc_traverse_expr (c->iterator->step, sym, func, f))
+ return true;
+ }
+ }
+ break;
+
+ case EXPR_OP:
+ if (gfc_traverse_expr (expr->value.op.op1, sym, func, f))
+ return true;
+ if (gfc_traverse_expr (expr->value.op.op2, sym, func, f))
+ return true;
+ break;
+
+ default:
+ gcc_unreachable ();
+ break;
+ }
+
+ ref = expr->ref;
+ while (ref != NULL)
+ {
+ switch (ref->type)
+ {
+ case REF_ARRAY:
+ ar = ref->u.ar;
+ for (i = 0; i < GFC_MAX_DIMENSIONS; i++)
+ {
+ if (gfc_traverse_expr (ar.start[i], sym, func, f))
+ return true;
+ if (gfc_traverse_expr (ar.end[i], sym, func, f))
+ return true;
+ if (gfc_traverse_expr (ar.stride[i], sym, func, f))
+ return true;
+ }
+ break;
+
+ case REF_SUBSTRING:
+ if (gfc_traverse_expr (ref->u.ss.start, sym, func, f))
+ return true;
+ if (gfc_traverse_expr (ref->u.ss.end, sym, func, f))
+ return true;
+ break;
+
+ case REF_COMPONENT:
+ if (ref->u.c.component->ts.type == BT_CHARACTER
+ && ref->u.c.component->ts.u.cl
+ && ref->u.c.component->ts.u.cl->length
+ && ref->u.c.component->ts.u.cl->length->expr_type
+ != EXPR_CONSTANT
+ && gfc_traverse_expr (ref->u.c.component->ts.u.cl->length,
+ sym, func, f))
+ return true;
+
+ if (ref->u.c.component->as)
+ for (i = 0; i < ref->u.c.component->as->rank
+ + ref->u.c.component->as->corank; i++)
+ {
+ if (gfc_traverse_expr (ref->u.c.component->as->lower[i],
+ sym, func, f))
+ return true;
+ if (gfc_traverse_expr (ref->u.c.component->as->upper[i],
+ sym, func, f))
+ return true;
+ }
+ break;
+
+ case REF_INQUIRY:
+ return true;
+
+ default:
+ gcc_unreachable ();
+ }
+ ref = ref->next;
+ }
+ return false;
+}
+
+/* Traverse expr, marking all EXPR_VARIABLE symbols referenced. */
+
+static bool
+expr_set_symbols_referenced (gfc_expr *expr,
+ gfc_symbol *sym ATTRIBUTE_UNUSED,
+ int *f ATTRIBUTE_UNUSED)
+{
+ if (expr->expr_type != EXPR_VARIABLE)
+ return false;
+ gfc_set_sym_referenced (expr->symtree->n.sym);
+ return false;
+}
+
+void
+gfc_expr_set_symbols_referenced (gfc_expr *expr)
+{
+ gfc_traverse_expr (expr, NULL, expr_set_symbols_referenced, 0);
+}
+
+
+/* Determine if an expression is a procedure pointer component and return
+ the component in that case. Otherwise return NULL. */
+
+gfc_component *
+gfc_get_proc_ptr_comp (gfc_expr *expr)
+{
+ gfc_ref *ref;
+
+ if (!expr || !expr->ref)
+ return NULL;
+
+ ref = expr->ref;
+ while (ref->next)
+ ref = ref->next;
+
+ if (ref->type == REF_COMPONENT
+ && ref->u.c.component->attr.proc_pointer)
+ return ref->u.c.component;
+
+ return NULL;
+}
+
+
+/* Determine if an expression is a procedure pointer component. */
+
+bool
+gfc_is_proc_ptr_comp (gfc_expr *expr)
+{
+ return (gfc_get_proc_ptr_comp (expr) != NULL);
+}
+
+
+/* Determine if an expression is a function with an allocatable class scalar
+ result. */
+bool
+gfc_is_alloc_class_scalar_function (gfc_expr *expr)
+{
+ if (expr->expr_type == EXPR_FUNCTION
+ && expr->value.function.esym
+ && expr->value.function.esym->result
+ && expr->value.function.esym->result->ts.type == BT_CLASS
+ && !CLASS_DATA (expr->value.function.esym->result)->attr.dimension
+ && CLASS_DATA (expr->value.function.esym->result)->attr.allocatable)
+ return true;
+
+ return false;
+}
+
+
+/* Determine if an expression is a function with an allocatable class array
+ result. */
+bool
+gfc_is_class_array_function (gfc_expr *expr)
+{
+ if (expr->expr_type == EXPR_FUNCTION
+ && expr->value.function.esym
+ && expr->value.function.esym->result
+ && expr->value.function.esym->result->ts.type == BT_CLASS
+ && CLASS_DATA (expr->value.function.esym->result)->attr.dimension
+ && (CLASS_DATA (expr->value.function.esym->result)->attr.allocatable
+ || CLASS_DATA (expr->value.function.esym->result)->attr.pointer))
+ return true;
+
+ return false;
+}
+
+
+/* Walk an expression tree and check each variable encountered for being typed.
+ If strict is not set, a top-level variable is tolerated untyped in -std=gnu
+ mode as is a basic arithmetic expression using those; this is for things in
+ legacy-code like:
+
+ INTEGER :: arr(n), n
+ INTEGER :: arr(n + 1), n
+
+ The namespace is needed for IMPLICIT typing. */
+
+static gfc_namespace* check_typed_ns;
+
+static bool
+expr_check_typed_help (gfc_expr* e, gfc_symbol* sym ATTRIBUTE_UNUSED,
+ int* f ATTRIBUTE_UNUSED)
+{
+ bool t;
+
+ if (e->expr_type != EXPR_VARIABLE)
+ return false;
+
+ gcc_assert (e->symtree);
+ t = gfc_check_symbol_typed (e->symtree->n.sym, check_typed_ns,
+ true, e->where);
+
+ return (!t);
+}
+
+bool
+gfc_expr_check_typed (gfc_expr* e, gfc_namespace* ns, bool strict)
+{
+ bool error_found;
+
+ /* If this is a top-level variable or EXPR_OP, do the check with strict given
+ to us. */
+ if (!strict)
+ {
+ if (e->expr_type == EXPR_VARIABLE && !e->ref)
+ return gfc_check_symbol_typed (e->symtree->n.sym, ns, strict, e->where);
+
+ if (e->expr_type == EXPR_OP)
+ {
+ bool t = true;
+
+ gcc_assert (e->value.op.op1);
+ t = gfc_expr_check_typed (e->value.op.op1, ns, strict);
+
+ if (t && e->value.op.op2)
+ t = gfc_expr_check_typed (e->value.op.op2, ns, strict);
+
+ return t;
+ }
+ }
+
+ /* Otherwise, walk the expression and do it strictly. */
+ check_typed_ns = ns;
+ error_found = gfc_traverse_expr (e, NULL, &expr_check_typed_help, 0);
+
+ return error_found ? false : true;
+}
+
+
+/* This function returns true if it contains any references to PDT KIND
+ or LEN parameters. */
+
+static bool
+derived_parameter_expr (gfc_expr* e, gfc_symbol* sym ATTRIBUTE_UNUSED,
+ int* f ATTRIBUTE_UNUSED)
+{
+ if (e->expr_type != EXPR_VARIABLE)
+ return false;
+
+ gcc_assert (e->symtree);
+ if (e->symtree->n.sym->attr.pdt_kind
+ || e->symtree->n.sym->attr.pdt_len)
+ return true;
+
+ return false;
+}
+
+
+bool
+gfc_derived_parameter_expr (gfc_expr *e)
+{
+ return gfc_traverse_expr (e, NULL, &derived_parameter_expr, 0);
+}
+
+
+/* This function returns the overall type of a type parameter spec list.
+ If all the specs are explicit, SPEC_EXPLICIT is returned. If any of the
+ parameters are assumed/deferred then SPEC_ASSUMED/DEFERRED is returned
+ unless derived is not NULL. In this latter case, all the LEN parameters
+ must be either assumed or deferred for the return argument to be set to
+ anything other than SPEC_EXPLICIT. */
+
+gfc_param_spec_type
+gfc_spec_list_type (gfc_actual_arglist *param_list, gfc_symbol *derived)
+{
+ gfc_param_spec_type res = SPEC_EXPLICIT;
+ gfc_component *c;
+ bool seen_assumed = false;
+ bool seen_deferred = false;
+
+ if (derived == NULL)
+ {
+ for (; param_list; param_list = param_list->next)
+ if (param_list->spec_type == SPEC_ASSUMED
+ || param_list->spec_type == SPEC_DEFERRED)
+ return param_list->spec_type;
+ }
+ else
+ {
+ for (; param_list; param_list = param_list->next)
+ {
+ c = gfc_find_component (derived, param_list->name,
+ true, true, NULL);
+ gcc_assert (c != NULL);
+ if (c->attr.pdt_kind)
+ continue;
+ else if (param_list->spec_type == SPEC_EXPLICIT)
+ return SPEC_EXPLICIT;
+ seen_assumed = param_list->spec_type == SPEC_ASSUMED;
+ seen_deferred = param_list->spec_type == SPEC_DEFERRED;
+ if (seen_assumed && seen_deferred)
+ return SPEC_EXPLICIT;
+ }
+ res = seen_assumed ? SPEC_ASSUMED : SPEC_DEFERRED;
+ }
+ return res;
+}
+
+
+bool
+gfc_ref_this_image (gfc_ref *ref)
+{
+ int n;
+
+ gcc_assert (ref->type == REF_ARRAY && ref->u.ar.codimen > 0);
+
+ for (n = ref->u.ar.dimen; n < ref->u.ar.dimen + ref->u.ar.codimen; n++)
+ if (ref->u.ar.dimen_type[n] != DIMEN_THIS_IMAGE)
+ return false;
+
+ return true;
+}
+
+gfc_expr *
+gfc_find_team_co (gfc_expr *e)
+{
+ gfc_ref *ref;
+
+ for (ref = e->ref; ref; ref = ref->next)
+ if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
+ return ref->u.ar.team;
+
+ if (e->value.function.actual->expr)
+ for (ref = e->value.function.actual->expr->ref; ref;
+ ref = ref->next)
+ if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
+ return ref->u.ar.team;
+
+ return NULL;
+}
+
+gfc_expr *
+gfc_find_stat_co (gfc_expr *e)
+{
+ gfc_ref *ref;
+
+ for (ref = e->ref; ref; ref = ref->next)
+ if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
+ return ref->u.ar.stat;
+
+ if (e->value.function.actual->expr)
+ for (ref = e->value.function.actual->expr->ref; ref;
+ ref = ref->next)
+ if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
+ return ref->u.ar.stat;
+
+ return NULL;
+}
+
+bool
+gfc_is_coindexed (gfc_expr *e)
+{
+ gfc_ref *ref;
+
+ for (ref = e->ref; ref; ref = ref->next)
+ if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
+ return !gfc_ref_this_image (ref);
+
+ return false;
+}
+
+
+/* Coarrays are variables with a corank but not being coindexed. However, also
+ the following is a coarray: A subobject of a coarray is a coarray if it does
+ not have any cosubscripts, vector subscripts, allocatable component
+ selection, or pointer component selection. (F2008, 2.4.7) */
+
+bool
+gfc_is_coarray (gfc_expr *e)
+{
+ gfc_ref *ref;
+ gfc_symbol *sym;
+ gfc_component *comp;
+ bool coindexed;
+ bool coarray;
+ int i;
+
+ if (e->expr_type != EXPR_VARIABLE)
+ return false;
+
+ coindexed = false;
+ sym = e->symtree->n.sym;
+
+ if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
+ coarray = CLASS_DATA (sym)->attr.codimension;
+ else
+ coarray = sym->attr.codimension;
+
+ for (ref = e->ref; ref; ref = ref->next)
+ switch (ref->type)
+ {
+ case REF_COMPONENT:
+ comp = ref->u.c.component;
+ if (comp->ts.type == BT_CLASS && comp->attr.class_ok
+ && (CLASS_DATA (comp)->attr.class_pointer
+ || CLASS_DATA (comp)->attr.allocatable))
+ {
+ coindexed = false;
+ coarray = CLASS_DATA (comp)->attr.codimension;
+ }
+ else if (comp->attr.pointer || comp->attr.allocatable)
+ {
+ coindexed = false;
+ coarray = comp->attr.codimension;
+ }
+ break;
+
+ case REF_ARRAY:
+ if (!coarray)
+ break;
+
+ if (ref->u.ar.codimen > 0 && !gfc_ref_this_image (ref))
+ {
+ coindexed = true;
+ break;
+ }
+
+ for (i = 0; i < ref->u.ar.dimen; i++)
+ if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
+ {
+ coarray = false;
+ break;
+ }
+ break;
+
+ case REF_SUBSTRING:
+ case REF_INQUIRY:
+ break;
+ }
+
+ return coarray && !coindexed;
+}
+
+
+int
+gfc_get_corank (gfc_expr *e)
+{
+ int corank;
+ gfc_ref *ref;
+
+ if (!gfc_is_coarray (e))
+ return 0;
+
+ if (e->ts.type == BT_CLASS && e->ts.u.derived->components)
+ corank = e->ts.u.derived->components->as
+ ? e->ts.u.derived->components->as->corank : 0;
+ else
+ corank = e->symtree->n.sym->as ? e->symtree->n.sym->as->corank : 0;
+
+ for (ref = e->ref; ref; ref = ref->next)
+ {
+ if (ref->type == REF_ARRAY)
+ corank = ref->u.ar.as->corank;
+ gcc_assert (ref->type != REF_SUBSTRING);
+ }
+
+ return corank;
+}
+
+
+/* Check whether the expression has an ultimate allocatable component.
+ Being itself allocatable does not count. */
+bool
+gfc_has_ultimate_allocatable (gfc_expr *e)
+{
+ gfc_ref *ref, *last = NULL;
+
+ if (e->expr_type != EXPR_VARIABLE)
+ return false;
+
+ for (ref = e->ref; ref; ref = ref->next)
+ if (ref->type == REF_COMPONENT)
+ last = ref;
+
+ if (last && last->u.c.component->ts.type == BT_CLASS)
+ return CLASS_DATA (last->u.c.component)->attr.alloc_comp;
+ else if (last && last->u.c.component->ts.type == BT_DERIVED)
+ return last->u.c.component->ts.u.derived->attr.alloc_comp;
+ else if (last)
+ return false;
+
+ if (e->ts.type == BT_CLASS)
+ return CLASS_DATA (e)->attr.alloc_comp;
+ else if (e->ts.type == BT_DERIVED)
+ return e->ts.u.derived->attr.alloc_comp;
+ else
+ return false;
+}
+
+
+/* Check whether the expression has an pointer component.
+ Being itself a pointer does not count. */
+bool
+gfc_has_ultimate_pointer (gfc_expr *e)
+{
+ gfc_ref *ref, *last = NULL;
+
+ if (e->expr_type != EXPR_VARIABLE)
+ return false;
+
+ for (ref = e->ref; ref; ref = ref->next)
+ if (ref->type == REF_COMPONENT)
+ last = ref;
+
+ if (last && last->u.c.component->ts.type == BT_CLASS)
+ return CLASS_DATA (last->u.c.component)->attr.pointer_comp;
+ else if (last && last->u.c.component->ts.type == BT_DERIVED)
+ return last->u.c.component->ts.u.derived->attr.pointer_comp;
+ else if (last)
+ return false;
+
+ if (e->ts.type == BT_CLASS)
+ return CLASS_DATA (e)->attr.pointer_comp;
+ else if (e->ts.type == BT_DERIVED)
+ return e->ts.u.derived->attr.pointer_comp;
+ else
+ return false;
+}
+
+
+/* Check whether an expression is "simply contiguous", cf. F2008, 6.5.4.
+ Note: A scalar is not regarded as "simply contiguous" by the standard.
+ if bool is not strict, some further checks are done - for instance,
+ a "(::1)" is accepted. */
+
+bool
+gfc_is_simply_contiguous (gfc_expr *expr, bool strict, bool permit_element)
+{
+ bool colon;
+ int i;
+ gfc_array_ref *ar = NULL;
+ gfc_ref *ref, *part_ref = NULL;
+ gfc_symbol *sym;
+
+ if (expr->expr_type == EXPR_ARRAY)
+ return true;
+
+ if (expr->expr_type == EXPR_FUNCTION)
+ {
+ if (expr->value.function.isym)
+ /* TRANSPOSE is the only intrinsic that may return a
+ non-contiguous array. It's treated as a special case in
+ gfc_conv_expr_descriptor too. */
+ return (expr->value.function.isym->id != GFC_ISYM_TRANSPOSE);
+ else if (expr->value.function.esym)
+ /* Only a pointer to an array without the contiguous attribute
+ can be non-contiguous as a result value. */
+ return (expr->value.function.esym->result->attr.contiguous
+ || !expr->value.function.esym->result->attr.pointer);
+ else
+ {
+ /* Type-bound procedures. */
+ gfc_symbol *s = expr->symtree->n.sym;
+ if (s->ts.type != BT_CLASS && s->ts.type != BT_DERIVED)
+ return false;
+
+ gfc_ref *rc = NULL;
+ for (gfc_ref *r = expr->ref; r; r = r->next)
+ if (r->type == REF_COMPONENT)
+ rc = r;
+
+ if (rc == NULL || rc->u.c.component == NULL
+ || rc->u.c.component->ts.interface == NULL)
+ return false;
+
+ return rc->u.c.component->ts.interface->attr.contiguous;
+ }
+ }
+ else if (expr->expr_type != EXPR_VARIABLE)
+ return false;
+
+ if (!permit_element && expr->rank == 0)
+ return false;
+
+ for (ref = expr->ref; ref; ref = ref->next)
+ {
+ if (ar)
+ return false; /* Array shall be last part-ref. */
+
+ if (ref->type == REF_COMPONENT)
+ part_ref = ref;
+ else if (ref->type == REF_SUBSTRING)
+ return false;
+ else if (ref->type == REF_INQUIRY)
+ return false;
+ else if (ref->u.ar.type != AR_ELEMENT)
+ ar = &ref->u.ar;
+ }
+
+ sym = expr->symtree->n.sym;
+ if (expr->ts.type != BT_CLASS
+ && ((part_ref
+ && !part_ref->u.c.component->attr.contiguous
+ && part_ref->u.c.component->attr.pointer)
+ || (!part_ref
+ && !sym->attr.contiguous
+ && (sym->attr.pointer
+ || (sym->as && sym->as->type == AS_ASSUMED_RANK)
+ || (sym->as && sym->as->type == AS_ASSUMED_SHAPE)))))
+ return false;
+
+ if (!ar || ar->type == AR_FULL)
+ return true;
+
+ gcc_assert (ar->type == AR_SECTION);
+
+ /* Check for simply contiguous array */
+ colon = true;
+ for (i = 0; i < ar->dimen; i++)
+ {
+ if (ar->dimen_type[i] == DIMEN_VECTOR)
+ return false;
+
+ if (ar->dimen_type[i] == DIMEN_ELEMENT)
+ {
+ colon = false;
+ continue;
+ }
+
+ gcc_assert (ar->dimen_type[i] == DIMEN_RANGE);
+
+
+ /* If the previous section was not contiguous, that's an error,
+ unless we have effective only one element and checking is not
+ strict. */
+ if (!colon && (strict || !ar->start[i] || !ar->end[i]
+ || ar->start[i]->expr_type != EXPR_CONSTANT
+ || ar->end[i]->expr_type != EXPR_CONSTANT
+ || mpz_cmp (ar->start[i]->value.integer,
+ ar->end[i]->value.integer) != 0))
+ return false;
+
+ /* Following the standard, "(::1)" or - if known at compile time -
+ "(lbound:ubound)" are not simply contiguous; if strict
+ is false, they are regarded as simply contiguous. */
+ if (ar->stride[i] && (strict || ar->stride[i]->expr_type != EXPR_CONSTANT
+ || ar->stride[i]->ts.type != BT_INTEGER
+ || mpz_cmp_si (ar->stride[i]->value.integer, 1) != 0))
+ return false;
+
+ if (ar->start[i]
+ && (strict || ar->start[i]->expr_type != EXPR_CONSTANT
+ || !ar->as->lower[i]
+ || ar->as->lower[i]->expr_type != EXPR_CONSTANT
+ || mpz_cmp (ar->start[i]->value.integer,
+ ar->as->lower[i]->value.integer) != 0))
+ colon = false;
+
+ if (ar->end[i]
+ && (strict || ar->end[i]->expr_type != EXPR_CONSTANT
+ || !ar->as->upper[i]
+ || ar->as->upper[i]->expr_type != EXPR_CONSTANT
+ || mpz_cmp (ar->end[i]->value.integer,
+ ar->as->upper[i]->value.integer) != 0))
+ colon = false;
+ }
+
+ return true;
+}
+
+/* Return true if the expression is guaranteed to be non-contiguous,
+ false if we cannot prove anything. It is probably best to call
+ this after gfc_is_simply_contiguous. If neither of them returns
+ true, we cannot say (at compile-time). */
+
+bool
+gfc_is_not_contiguous (gfc_expr *array)
+{
+ int i;
+ gfc_array_ref *ar = NULL;
+ gfc_ref *ref;
+ bool previous_incomplete;
+
+ for (ref = array->ref; ref; ref = ref->next)
+ {
+ /* Array-ref shall be last ref. */
+
+ if (ar && ar->type != AR_ELEMENT)
+ return true;
+
+ if (ref->type == REF_ARRAY)
+ ar = &ref->u.ar;
+ }
+
+ if (ar == NULL || ar->type != AR_SECTION)
+ return false;
+
+ previous_incomplete = false;
+
+ /* Check if we can prove that the array is not contiguous. */
+
+ for (i = 0; i < ar->dimen; i++)
+ {
+ mpz_t arr_size, ref_size;
+
+ if (gfc_ref_dimen_size (ar, i, &ref_size, NULL))
+ {
+ if (gfc_dep_difference (ar->as->upper[i], ar->as->lower[i], &arr_size))
+ {
+ /* a(2:4,2:) is known to be non-contiguous, but
+ a(2:4,i:i) can be contiguous. */
+ mpz_add_ui (arr_size, arr_size, 1L);
+ if (previous_incomplete && mpz_cmp_si (ref_size, 1) != 0)
+ {
+ mpz_clear (arr_size);
+ mpz_clear (ref_size);
+ return true;
+ }
+ else if (mpz_cmp (arr_size, ref_size) != 0)
+ previous_incomplete = true;
+
+ mpz_clear (arr_size);
+ }
+
+ /* Check for a(::2), i.e. where the stride is not unity.
+ This is only done if there is more than one element in
+ the reference along this dimension. */
+
+ if (mpz_cmp_ui (ref_size, 1) > 0 && ar->type == AR_SECTION
+ && ar->dimen_type[i] == DIMEN_RANGE
+ && ar->stride[i] && ar->stride[i]->expr_type == EXPR_CONSTANT
+ && mpz_cmp_si (ar->stride[i]->value.integer, 1) != 0)
+ {
+ mpz_clear (ref_size);
+ return true;
+ }
+
+ mpz_clear (ref_size);
+ }
+ }
+ /* We didn't find anything definitive. */
+ return false;
+}
+
+/* Build call to an intrinsic procedure. The number of arguments has to be
+ passed (rather than ending the list with a NULL value) because we may
+ want to add arguments but with a NULL-expression. */
+
+gfc_expr*
+gfc_build_intrinsic_call (gfc_namespace *ns, gfc_isym_id id, const char* name,
+ locus where, unsigned numarg, ...)
+{
+ gfc_expr* result;
+ gfc_actual_arglist* atail;
+ gfc_intrinsic_sym* isym;
+ va_list ap;
+ unsigned i;
+ const char *mangled_name = gfc_get_string (GFC_PREFIX ("%s"), name);
+
+ isym = gfc_intrinsic_function_by_id (id);
+ gcc_assert (isym);
+
+ result = gfc_get_expr ();
+ result->expr_type = EXPR_FUNCTION;
+ result->ts = isym->ts;
+ result->where = where;
+ result->value.function.name = mangled_name;
+ result->value.function.isym = isym;
+
+ gfc_get_sym_tree (mangled_name, ns, &result->symtree, false);
+ gfc_commit_symbol (result->symtree->n.sym);
+ gcc_assert (result->symtree
+ && (result->symtree->n.sym->attr.flavor == FL_PROCEDURE
+ || result->symtree->n.sym->attr.flavor == FL_UNKNOWN));
+ result->symtree->n.sym->intmod_sym_id = id;
+ result->symtree->n.sym->attr.flavor = FL_PROCEDURE;
+ result->symtree->n.sym->attr.intrinsic = 1;
+ result->symtree->n.sym->attr.artificial = 1;
+
+ va_start (ap, numarg);
+ atail = NULL;
+ for (i = 0; i < numarg; ++i)
+ {
+ if (atail)
+ {
+ atail->next = gfc_get_actual_arglist ();
+ atail = atail->next;
+ }
+ else
+ atail = result->value.function.actual = gfc_get_actual_arglist ();
+
+ atail->expr = va_arg (ap, gfc_expr*);
+ }
+ va_end (ap);
+
+ return result;
+}
+
+
+/* Check if an expression may appear in a variable definition context
+ (F2008, 16.6.7) or pointer association context (F2008, 16.6.8).
+ This is called from the various places when resolving
+ the pieces that make up such a context.
+ If own_scope is true (applies to, e.g., ac-implied-do/data-implied-do
+ variables), some checks are not performed.
+
+ Optionally, a possible error message can be suppressed if context is NULL
+ and just the return status (true / false) be requested. */
+
+bool
+gfc_check_vardef_context (gfc_expr* e, bool pointer, bool alloc_obj,
+ bool own_scope, const char* context)
+{
+ gfc_symbol* sym = NULL;
+ bool is_pointer;
+ bool check_intentin;
+ bool ptr_component;
+ symbol_attribute attr;
+ gfc_ref* ref;
+ int i;
+
+ if (e->expr_type == EXPR_VARIABLE)
+ {
+ gcc_assert (e->symtree);
+ sym = e->symtree->n.sym;
+ }
+ else if (e->expr_type == EXPR_FUNCTION)
+ {
+ gcc_assert (e->symtree);
+ sym = e->value.function.esym ? e->value.function.esym : e->symtree->n.sym;
+ }
+
+ attr = gfc_expr_attr (e);
+ if (!pointer && e->expr_type == EXPR_FUNCTION && attr.pointer)
+ {
+ if (!(gfc_option.allow_std & GFC_STD_F2008))
+ {
+ if (context)
+ gfc_error ("Fortran 2008: Pointer functions in variable definition"
+ " context (%s) at %L", context, &e->where);
+ return false;
+ }
+ }
+ else if (e->expr_type != EXPR_VARIABLE)
+ {
+ if (context)
+ gfc_error ("Non-variable expression in variable definition context (%s)"
+ " at %L", context, &e->where);
+ return false;
+ }
+
+ if (!pointer && sym->attr.flavor == FL_PARAMETER)
+ {
+ if (context)
+ gfc_error ("Named constant %qs in variable definition context (%s)"
+ " at %L", sym->name, context, &e->where);
+ return false;
+ }
+ if (!pointer && sym->attr.flavor != FL_VARIABLE
+ && !(sym->attr.flavor == FL_PROCEDURE && sym == sym->result)
+ && !(sym->attr.flavor == FL_PROCEDURE && sym->attr.proc_pointer)
+ && !(sym->attr.flavor == FL_PROCEDURE
+ && sym->attr.function && sym->attr.pointer))
+ {
+ if (context)
+ gfc_error ("%qs in variable definition context (%s) at %L is not"
+ " a variable", sym->name, context, &e->where);
+ return false;
+ }
+
+ /* Find out whether the expr is a pointer; this also means following
+ component references to the last one. */
+ is_pointer = (attr.pointer || attr.proc_pointer);
+ if (pointer && !is_pointer)
+ {
+ if (context)
+ gfc_error ("Non-POINTER in pointer association context (%s)"
+ " at %L", context, &e->where);
+ return false;
+ }
+
+ if (e->ts.type == BT_DERIVED
+ && e->ts.u.derived == NULL)
+ {
+ if (context)
+ gfc_error ("Type inaccessible in variable definition context (%s) "
+ "at %L", context, &e->where);
+ return false;
+ }
+
+ /* F2008, C1303. */
+ if (!alloc_obj
+ && (attr.lock_comp
+ || (e->ts.type == BT_DERIVED
+ && e->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
+ && e->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)))
+ {
+ if (context)
+ gfc_error ("LOCK_TYPE in variable definition context (%s) at %L",
+ context, &e->where);
+ return false;
+ }
+
+ /* TS18508, C702/C203. */
+ if (!alloc_obj
+ && (attr.lock_comp
+ || (e->ts.type == BT_DERIVED
+ && e->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
+ && e->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE)))
+ {
+ if (context)
+ gfc_error ("LOCK_EVENT in variable definition context (%s) at %L",
+ context, &e->where);
+ return false;
+ }
+
+ /* INTENT(IN) dummy argument. Check this, unless the object itself is the
+ component of sub-component of a pointer; we need to distinguish
+ assignment to a pointer component from pointer-assignment to a pointer
+ component. Note that (normal) assignment to procedure pointers is not
+ possible. */
+ check_intentin = !own_scope;
+ ptr_component = (sym->ts.type == BT_CLASS && sym->ts.u.derived
+ && CLASS_DATA (sym))
+ ? CLASS_DATA (sym)->attr.class_pointer : sym->attr.pointer;
+ for (ref = e->ref; ref && check_intentin; ref = ref->next)
+ {
+ if (ptr_component && ref->type == REF_COMPONENT)
+ check_intentin = false;
+ if (ref->type == REF_COMPONENT)
+ {
+ gfc_component *comp = ref->u.c.component;
+ ptr_component = (comp->ts.type == BT_CLASS && comp->attr.class_ok)
+ ? CLASS_DATA (comp)->attr.class_pointer
+ : comp->attr.pointer;
+ if (ptr_component && !pointer)
+ check_intentin = false;
+ }
+ if (ref->type == REF_INQUIRY
+ && (ref->u.i == INQUIRY_KIND || ref->u.i == INQUIRY_LEN))
+ {
+ if (context)
+ gfc_error ("%qs parameter inquiry for %qs in "
+ "variable definition context (%s) at %L",
+ ref->u.i == INQUIRY_KIND ? "KIND" : "LEN",
+ sym->name, context, &e->where);
+ return false;
+ }
+ }
+
+ if (check_intentin
+ && (sym->attr.intent == INTENT_IN
+ || (sym->attr.select_type_temporary && sym->assoc
+ && sym->assoc->target && sym->assoc->target->symtree
+ && sym->assoc->target->symtree->n.sym->attr.intent == INTENT_IN)))
+ {
+ if (pointer && is_pointer)
+ {
+ if (context)
+ gfc_error ("Dummy argument %qs with INTENT(IN) in pointer"
+ " association context (%s) at %L",
+ sym->name, context, &e->where);
+ return false;
+ }
+ if (!pointer && !is_pointer && !sym->attr.pointer)
+ {
+ const char *name = sym->attr.select_type_temporary
+ ? sym->assoc->target->symtree->name : sym->name;
+ if (context)
+ gfc_error ("Dummy argument %qs with INTENT(IN) in variable"
+ " definition context (%s) at %L",
+ name, context, &e->where);
+ return false;
+ }
+ }
+
+ /* PROTECTED and use-associated. */
+ if (sym->attr.is_protected && sym->attr.use_assoc && check_intentin)
+ {
+ if (pointer && is_pointer)
+ {
+ if (context)
+ gfc_error ("Variable %qs is PROTECTED and cannot appear in a"
+ " pointer association context (%s) at %L",
+ sym->name, context, &e->where);
+ return false;
+ }
+ if (!pointer && !is_pointer)
+ {
+ if (context)
+ gfc_error ("Variable %qs is PROTECTED and cannot appear in a"
+ " variable definition context (%s) at %L",
+ sym->name, context, &e->where);
+ return false;
+ }
+ }
+
+ /* Variable not assignable from a PURE procedure but appears in
+ variable definition context. */
+ own_scope = own_scope
+ || (sym->attr.result && sym->ns->proc_name
+ && sym == sym->ns->proc_name->result);
+ if (!pointer && !own_scope && gfc_pure (NULL) && gfc_impure_variable (sym))
+ {
+ if (context)
+ gfc_error ("Variable %qs cannot appear in a variable definition"
+ " context (%s) at %L in PURE procedure",
+ sym->name, context, &e->where);
+ return false;
+ }
+
+ if (!pointer && context && gfc_implicit_pure (NULL)
+ && gfc_impure_variable (sym))
+ {
+ gfc_namespace *ns;
+ gfc_symbol *sym;
+
+ for (ns = gfc_current_ns; ns; ns = ns->parent)
+ {
+ sym = ns->proc_name;
+ if (sym == NULL)
+ break;
+ if (sym->attr.flavor == FL_PROCEDURE)
+ {
+ sym->attr.implicit_pure = 0;
+ break;
+ }
+ }
+ }
+ /* Check variable definition context for associate-names. */
+ if (!pointer && sym->assoc && !sym->attr.select_rank_temporary)
+ {
+ const char* name;
+ gfc_association_list* assoc;
+
+ gcc_assert (sym->assoc->target);
+
+ /* If this is a SELECT TYPE temporary (the association is used internally
+ for SELECT TYPE), silently go over to the target. */
+ if (sym->attr.select_type_temporary)
+ {
+ gfc_expr* t = sym->assoc->target;
+
+ gcc_assert (t->expr_type == EXPR_VARIABLE);
+ name = t->symtree->name;
+
+ if (t->symtree->n.sym->assoc)
+ assoc = t->symtree->n.sym->assoc;
+ else
+ assoc = sym->assoc;
+ }
+ else
+ {
+ name = sym->name;
+ assoc = sym->assoc;
+ }
+ gcc_assert (name && assoc);
+
+ /* Is association to a valid variable? */
+ if (!assoc->variable)
+ {
+ if (context)
+ {
+ if (assoc->target->expr_type == EXPR_VARIABLE)
+ gfc_error ("%qs at %L associated to vector-indexed target"
+ " cannot be used in a variable definition"
+ " context (%s)",
+ name, &e->where, context);
+ else
+ gfc_error ("%qs at %L associated to expression"
+ " cannot be used in a variable definition"
+ " context (%s)",
+ name, &e->where, context);
+ }
+ return false;
+ }
+
+ /* Target must be allowed to appear in a variable definition context. */
+ if (!gfc_check_vardef_context (assoc->target, pointer, false, false, NULL))
+ {
+ if (context)
+ gfc_error ("Associate-name %qs cannot appear in a variable"
+ " definition context (%s) at %L because its target"
+ " at %L cannot, either",
+ name, context, &e->where,
+ &assoc->target->where);
+ return false;
+ }
+ }
+
+ /* Check for same value in vector expression subscript. */
+
+ if (e->rank > 0)
+ for (ref = e->ref; ref != NULL; ref = ref->next)
+ if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
+ for (i = 0; i < GFC_MAX_DIMENSIONS
+ && ref->u.ar.dimen_type[i] != 0; i++)
+ if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
+ {
+ gfc_expr *arr = ref->u.ar.start[i];
+ if (arr->expr_type == EXPR_ARRAY)
+ {
+ gfc_constructor *c, *n;
+ gfc_expr *ec, *en;
+
+ for (c = gfc_constructor_first (arr->value.constructor);
+ c != NULL; c = gfc_constructor_next (c))
+ {
+ if (c == NULL || c->iterator != NULL)
+ continue;
+
+ ec = c->expr;
+
+ for (n = gfc_constructor_next (c); n != NULL;
+ n = gfc_constructor_next (n))
+ {
+ if (n->iterator != NULL)
+ continue;
+
+ en = n->expr;
+ if (gfc_dep_compare_expr (ec, en) == 0)
+ {
+ if (context)
+ gfc_error_now ("Elements with the same value "
+ "at %L and %L in vector "
+ "subscript in a variable "
+ "definition context (%s)",
+ &(ec->where), &(en->where),
+ context);
+ return false;
+ }
+ }
+ }
+ }
+ }
+
+ return true;
+}