diff options
Diffstat (limited to 'gcc/fortran/arith.c')
-rw-r--r-- | gcc/fortran/arith.c | 2706 |
1 files changed, 0 insertions, 2706 deletions
diff --git a/gcc/fortran/arith.c b/gcc/fortran/arith.c deleted file mode 100644 index b3323ecf..0000000 --- a/gcc/fortran/arith.c +++ /dev/null @@ -1,2706 +0,0 @@ -/* Compiler arithmetic - Copyright (C) 2000-2022 Free Software Foundation, Inc. - Contributed by Andy Vaught - -This file is part of GCC. - -GCC is free software; you can redistribute it and/or modify it under -the terms of the GNU General Public License as published by the Free -Software Foundation; either version 3, or (at your option) any later -version. - -GCC is distributed in the hope that it will be useful, but WITHOUT ANY -WARRANTY; without even the implied warranty of MERCHANTABILITY or -FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -for more details. - -You should have received a copy of the GNU General Public License -along with GCC; see the file COPYING3. If not see -<http://www.gnu.org/licenses/>. */ - -/* Since target arithmetic must be done on the host, there has to - be some way of evaluating arithmetic expressions as the host - would evaluate them. We use the GNU MP library and the MPFR - library to do arithmetic, and this file provides the interface. */ - -#include "config.h" -#include "system.h" -#include "coretypes.h" -#include "options.h" -#include "gfortran.h" -#include "arith.h" -#include "target-memory.h" -#include "constructor.h" - -bool gfc_seen_div0; - -/* MPFR does not have a direct replacement for mpz_set_f() from GMP. - It's easily implemented with a few calls though. */ - -void -gfc_mpfr_to_mpz (mpz_t z, mpfr_t x, locus *where) -{ - mpfr_exp_t e; - - if (mpfr_inf_p (x) || mpfr_nan_p (x)) - { - gfc_error ("Conversion of an Infinity or Not-a-Number at %L " - "to INTEGER", where); - mpz_set_ui (z, 0); - return; - } - - e = mpfr_get_z_exp (z, x); - - if (e > 0) - mpz_mul_2exp (z, z, e); - else - mpz_tdiv_q_2exp (z, z, -e); -} - - -/* Set the model number precision by the requested KIND. */ - -void -gfc_set_model_kind (int kind) -{ - int index = gfc_validate_kind (BT_REAL, kind, false); - int base2prec; - - base2prec = gfc_real_kinds[index].digits; - if (gfc_real_kinds[index].radix != 2) - base2prec *= gfc_real_kinds[index].radix / 2; - mpfr_set_default_prec (base2prec); -} - - -/* Set the model number precision from mpfr_t x. */ - -void -gfc_set_model (mpfr_t x) -{ - mpfr_set_default_prec (mpfr_get_prec (x)); -} - - -/* Given an arithmetic error code, return a pointer to a string that - explains the error. */ - -static const char * -gfc_arith_error (arith code) -{ - const char *p; - - switch (code) - { - case ARITH_OK: - p = G_("Arithmetic OK at %L"); - break; - case ARITH_OVERFLOW: - p = G_("Arithmetic overflow at %L"); - break; - case ARITH_UNDERFLOW: - p = G_("Arithmetic underflow at %L"); - break; - case ARITH_NAN: - p = G_("Arithmetic NaN at %L"); - break; - case ARITH_DIV0: - p = G_("Division by zero at %L"); - break; - case ARITH_INCOMMENSURATE: - p = G_("Array operands are incommensurate at %L"); - break; - case ARITH_ASYMMETRIC: - p = G_("Integer outside symmetric range implied by Standard Fortran" - " at %L"); - break; - case ARITH_WRONGCONCAT: - p = G_("Illegal type in character concatenation at %L"); - break; - - default: - gfc_internal_error ("gfc_arith_error(): Bad error code"); - } - - return p; -} - - -/* Get things ready to do math. */ - -void -gfc_arith_init_1 (void) -{ - gfc_integer_info *int_info; - gfc_real_info *real_info; - mpfr_t a, b; - int i; - - mpfr_set_default_prec (128); - mpfr_init (a); - - /* Convert the minimum and maximum values for each kind into their - GNU MP representation. */ - for (int_info = gfc_integer_kinds; int_info->kind != 0; int_info++) - { - /* Huge */ - mpz_init (int_info->huge); - mpz_set_ui (int_info->huge, int_info->radix); - mpz_pow_ui (int_info->huge, int_info->huge, int_info->digits); - mpz_sub_ui (int_info->huge, int_info->huge, 1); - - /* These are the numbers that are actually representable by the - target. For bases other than two, this needs to be changed. */ - if (int_info->radix != 2) - gfc_internal_error ("Fix min_int calculation"); - - /* See PRs 13490 and 17912, related to integer ranges. - The pedantic_min_int exists for range checking when a program - is compiled with -pedantic, and reflects the belief that - Standard Fortran requires integers to be symmetrical, i.e. - every negative integer must have a representable positive - absolute value, and vice versa. */ - - mpz_init (int_info->pedantic_min_int); - mpz_neg (int_info->pedantic_min_int, int_info->huge); - - mpz_init (int_info->min_int); - mpz_sub_ui (int_info->min_int, int_info->pedantic_min_int, 1); - - /* Range */ - mpfr_set_z (a, int_info->huge, GFC_RND_MODE); - mpfr_log10 (a, a, GFC_RND_MODE); - mpfr_trunc (a, a); - int_info->range = (int) mpfr_get_si (a, GFC_RND_MODE); - } - - mpfr_clear (a); - - for (real_info = gfc_real_kinds; real_info->kind != 0; real_info++) - { - gfc_set_model_kind (real_info->kind); - - mpfr_init (a); - mpfr_init (b); - - /* huge(x) = (1 - b**(-p)) * b**(emax-1) * b */ - /* 1 - b**(-p) */ - mpfr_init (real_info->huge); - mpfr_set_ui (real_info->huge, 1, GFC_RND_MODE); - mpfr_set_ui (a, real_info->radix, GFC_RND_MODE); - mpfr_pow_si (a, a, -real_info->digits, GFC_RND_MODE); - mpfr_sub (real_info->huge, real_info->huge, a, GFC_RND_MODE); - - /* b**(emax-1) */ - mpfr_set_ui (a, real_info->radix, GFC_RND_MODE); - mpfr_pow_ui (a, a, real_info->max_exponent - 1, GFC_RND_MODE); - - /* (1 - b**(-p)) * b**(emax-1) */ - mpfr_mul (real_info->huge, real_info->huge, a, GFC_RND_MODE); - - /* (1 - b**(-p)) * b**(emax-1) * b */ - mpfr_mul_ui (real_info->huge, real_info->huge, real_info->radix, - GFC_RND_MODE); - - /* tiny(x) = b**(emin-1) */ - mpfr_init (real_info->tiny); - mpfr_set_ui (real_info->tiny, real_info->radix, GFC_RND_MODE); - mpfr_pow_si (real_info->tiny, real_info->tiny, - real_info->min_exponent - 1, GFC_RND_MODE); - - /* subnormal (x) = b**(emin - digit) */ - mpfr_init (real_info->subnormal); - mpfr_set_ui (real_info->subnormal, real_info->radix, GFC_RND_MODE); - mpfr_pow_si (real_info->subnormal, real_info->subnormal, - real_info->min_exponent - real_info->digits, GFC_RND_MODE); - - /* epsilon(x) = b**(1-p) */ - mpfr_init (real_info->epsilon); - mpfr_set_ui (real_info->epsilon, real_info->radix, GFC_RND_MODE); - mpfr_pow_si (real_info->epsilon, real_info->epsilon, - 1 - real_info->digits, GFC_RND_MODE); - - /* range(x) = int(min(log10(huge(x)), -log10(tiny)) */ - mpfr_log10 (a, real_info->huge, GFC_RND_MODE); - mpfr_log10 (b, real_info->tiny, GFC_RND_MODE); - mpfr_neg (b, b, GFC_RND_MODE); - - /* a = min(a, b) */ - mpfr_min (a, a, b, GFC_RND_MODE); - mpfr_trunc (a, a); - real_info->range = (int) mpfr_get_si (a, GFC_RND_MODE); - - /* precision(x) = int((p - 1) * log10(b)) + k */ - mpfr_set_ui (a, real_info->radix, GFC_RND_MODE); - mpfr_log10 (a, a, GFC_RND_MODE); - mpfr_mul_ui (a, a, real_info->digits - 1, GFC_RND_MODE); - mpfr_trunc (a, a); - real_info->precision = (int) mpfr_get_si (a, GFC_RND_MODE); - - /* If the radix is an integral power of 10, add one to the precision. */ - for (i = 10; i <= real_info->radix; i *= 10) - if (i == real_info->radix) - real_info->precision++; - - mpfr_clears (a, b, NULL); - } -} - - -/* Clean up, get rid of numeric constants. */ - -void -gfc_arith_done_1 (void) -{ - gfc_integer_info *ip; - gfc_real_info *rp; - - for (ip = gfc_integer_kinds; ip->kind; ip++) - { - mpz_clear (ip->min_int); - mpz_clear (ip->pedantic_min_int); - mpz_clear (ip->huge); - } - - for (rp = gfc_real_kinds; rp->kind; rp++) - mpfr_clears (rp->epsilon, rp->huge, rp->tiny, rp->subnormal, NULL); - - mpfr_free_cache (); -} - - -/* Given a wide character value and a character kind, determine whether - the character is representable for that kind. */ -bool -gfc_check_character_range (gfc_char_t c, int kind) -{ - /* As wide characters are stored as 32-bit values, they're all - representable in UCS=4. */ - if (kind == 4) - return true; - - if (kind == 1) - return c <= 255 ? true : false; - - gcc_unreachable (); -} - - -/* Given an integer and a kind, make sure that the integer lies within - the range of the kind. Returns ARITH_OK, ARITH_ASYMMETRIC or - ARITH_OVERFLOW. */ - -arith -gfc_check_integer_range (mpz_t p, int kind) -{ - arith result; - int i; - - i = gfc_validate_kind (BT_INTEGER, kind, false); - result = ARITH_OK; - - if (pedantic) - { - if (mpz_cmp (p, gfc_integer_kinds[i].pedantic_min_int) < 0) - result = ARITH_ASYMMETRIC; - } - - - if (flag_range_check == 0) - return result; - - if (mpz_cmp (p, gfc_integer_kinds[i].min_int) < 0 - || mpz_cmp (p, gfc_integer_kinds[i].huge) > 0) - result = ARITH_OVERFLOW; - - return result; -} - - -/* Given a real and a kind, make sure that the real lies within the - range of the kind. Returns ARITH_OK, ARITH_OVERFLOW or - ARITH_UNDERFLOW. */ - -static arith -gfc_check_real_range (mpfr_t p, int kind) -{ - arith retval; - mpfr_t q; - int i; - - i = gfc_validate_kind (BT_REAL, kind, false); - - gfc_set_model (p); - mpfr_init (q); - mpfr_abs (q, p, GFC_RND_MODE); - - retval = ARITH_OK; - - if (mpfr_inf_p (p)) - { - if (flag_range_check != 0) - retval = ARITH_OVERFLOW; - } - else if (mpfr_nan_p (p)) - { - if (flag_range_check != 0) - retval = ARITH_NAN; - } - else if (mpfr_sgn (q) == 0) - { - mpfr_clear (q); - return retval; - } - else if (mpfr_cmp (q, gfc_real_kinds[i].huge) > 0) - { - if (flag_range_check == 0) - mpfr_set_inf (p, mpfr_sgn (p)); - else - retval = ARITH_OVERFLOW; - } - else if (mpfr_cmp (q, gfc_real_kinds[i].subnormal) < 0) - { - if (flag_range_check == 0) - { - if (mpfr_sgn (p) < 0) - { - mpfr_set_ui (p, 0, GFC_RND_MODE); - mpfr_set_si (q, -1, GFC_RND_MODE); - mpfr_copysign (p, p, q, GFC_RND_MODE); - } - else - mpfr_set_ui (p, 0, GFC_RND_MODE); - } - else - retval = ARITH_UNDERFLOW; - } - else if (mpfr_cmp (q, gfc_real_kinds[i].tiny) < 0) - { - mpfr_exp_t emin, emax; - int en; - - /* Save current values of emin and emax. */ - emin = mpfr_get_emin (); - emax = mpfr_get_emax (); - - /* Set emin and emax for the current model number. */ - en = gfc_real_kinds[i].min_exponent - gfc_real_kinds[i].digits + 1; - mpfr_set_emin ((mpfr_exp_t) en); - mpfr_set_emax ((mpfr_exp_t) gfc_real_kinds[i].max_exponent); - mpfr_check_range (q, 0, GFC_RND_MODE); - mpfr_subnormalize (q, 0, GFC_RND_MODE); - - /* Reset emin and emax. */ - mpfr_set_emin (emin); - mpfr_set_emax (emax); - - /* Copy sign if needed. */ - if (mpfr_sgn (p) < 0) - mpfr_neg (p, q, MPFR_RNDN); - else - mpfr_set (p, q, MPFR_RNDN); - } - - mpfr_clear (q); - - return retval; -} - - -/* Low-level arithmetic functions. All of these subroutines assume - that all operands are of the same type and return an operand of the - same type. The other thing about these subroutines is that they - can fail in various ways -- overflow, underflow, division by zero, - zero raised to the zero, etc. */ - -static arith -gfc_arith_not (gfc_expr *op1, gfc_expr **resultp) -{ - gfc_expr *result; - - result = gfc_get_constant_expr (BT_LOGICAL, op1->ts.kind, &op1->where); - result->value.logical = !op1->value.logical; - *resultp = result; - - return ARITH_OK; -} - - -static arith -gfc_arith_and (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) -{ - gfc_expr *result; - - result = gfc_get_constant_expr (BT_LOGICAL, gfc_kind_max (op1, op2), - &op1->where); - result->value.logical = op1->value.logical && op2->value.logical; - *resultp = result; - - return ARITH_OK; -} - - -static arith -gfc_arith_or (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) -{ - gfc_expr *result; - - result = gfc_get_constant_expr (BT_LOGICAL, gfc_kind_max (op1, op2), - &op1->where); - result->value.logical = op1->value.logical || op2->value.logical; - *resultp = result; - - return ARITH_OK; -} - - -static arith -gfc_arith_eqv (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) -{ - gfc_expr *result; - - result = gfc_get_constant_expr (BT_LOGICAL, gfc_kind_max (op1, op2), - &op1->where); - result->value.logical = op1->value.logical == op2->value.logical; - *resultp = result; - - return ARITH_OK; -} - - -static arith -gfc_arith_neqv (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) -{ - gfc_expr *result; - - result = gfc_get_constant_expr (BT_LOGICAL, gfc_kind_max (op1, op2), - &op1->where); - result->value.logical = op1->value.logical != op2->value.logical; - *resultp = result; - - return ARITH_OK; -} - - -/* Make sure a constant numeric expression is within the range for - its type and kind. Note that there's also a gfc_check_range(), - but that one deals with the intrinsic RANGE function. */ - -arith -gfc_range_check (gfc_expr *e) -{ - arith rc; - arith rc2; - - switch (e->ts.type) - { - case BT_INTEGER: - rc = gfc_check_integer_range (e->value.integer, e->ts.kind); - break; - - case BT_REAL: - rc = gfc_check_real_range (e->value.real, e->ts.kind); - if (rc == ARITH_UNDERFLOW) - mpfr_set_ui (e->value.real, 0, GFC_RND_MODE); - if (rc == ARITH_OVERFLOW) - mpfr_set_inf (e->value.real, mpfr_sgn (e->value.real)); - if (rc == ARITH_NAN) - mpfr_set_nan (e->value.real); - break; - - case BT_COMPLEX: - rc = gfc_check_real_range (mpc_realref (e->value.complex), e->ts.kind); - if (rc == ARITH_UNDERFLOW) - mpfr_set_ui (mpc_realref (e->value.complex), 0, GFC_RND_MODE); - if (rc == ARITH_OVERFLOW) - mpfr_set_inf (mpc_realref (e->value.complex), - mpfr_sgn (mpc_realref (e->value.complex))); - if (rc == ARITH_NAN) - mpfr_set_nan (mpc_realref (e->value.complex)); - - rc2 = gfc_check_real_range (mpc_imagref (e->value.complex), e->ts.kind); - if (rc == ARITH_UNDERFLOW) - mpfr_set_ui (mpc_imagref (e->value.complex), 0, GFC_RND_MODE); - if (rc == ARITH_OVERFLOW) - mpfr_set_inf (mpc_imagref (e->value.complex), - mpfr_sgn (mpc_imagref (e->value.complex))); - if (rc == ARITH_NAN) - mpfr_set_nan (mpc_imagref (e->value.complex)); - - if (rc == ARITH_OK) - rc = rc2; - break; - - default: - gfc_internal_error ("gfc_range_check(): Bad type"); - } - - return rc; -} - - -/* Several of the following routines use the same set of statements to - check the validity of the result. Encapsulate the checking here. */ - -static arith -check_result (arith rc, gfc_expr *x, gfc_expr *r, gfc_expr **rp) -{ - arith val = rc; - - if (val == ARITH_UNDERFLOW) - { - if (warn_underflow) - gfc_warning (OPT_Wunderflow, gfc_arith_error (val), &x->where); - val = ARITH_OK; - } - - if (val == ARITH_ASYMMETRIC) - { - gfc_warning (0, gfc_arith_error (val), &x->where); - val = ARITH_OK; - } - - if (val == ARITH_OK || val == ARITH_OVERFLOW) - *rp = r; - else - gfc_free_expr (r); - - return val; -} - - -/* It may seem silly to have a subroutine that actually computes the - unary plus of a constant, but it prevents us from making exceptions - in the code elsewhere. Used for unary plus and parenthesized - expressions. */ - -static arith -gfc_arith_identity (gfc_expr *op1, gfc_expr **resultp) -{ - *resultp = gfc_copy_expr (op1); - return ARITH_OK; -} - - -static arith -gfc_arith_uminus (gfc_expr *op1, gfc_expr **resultp) -{ - gfc_expr *result; - arith rc; - - result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where); - - switch (op1->ts.type) - { - case BT_INTEGER: - mpz_neg (result->value.integer, op1->value.integer); - break; - - case BT_REAL: - mpfr_neg (result->value.real, op1->value.real, GFC_RND_MODE); - break; - - case BT_COMPLEX: - mpc_neg (result->value.complex, op1->value.complex, GFC_MPC_RND_MODE); - break; - - default: - gfc_internal_error ("gfc_arith_uminus(): Bad basic type"); - } - - rc = gfc_range_check (result); - - return check_result (rc, op1, result, resultp); -} - - -static arith -gfc_arith_plus (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) -{ - gfc_expr *result; - arith rc; - - result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where); - - switch (op1->ts.type) - { - case BT_INTEGER: - mpz_add (result->value.integer, op1->value.integer, op2->value.integer); - break; - - case BT_REAL: - mpfr_add (result->value.real, op1->value.real, op2->value.real, - GFC_RND_MODE); - break; - - case BT_COMPLEX: - mpc_add (result->value.complex, op1->value.complex, op2->value.complex, - GFC_MPC_RND_MODE); - break; - - default: - gfc_internal_error ("gfc_arith_plus(): Bad basic type"); - } - - rc = gfc_range_check (result); - - return check_result (rc, op1, result, resultp); -} - - -static arith -gfc_arith_minus (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) -{ - gfc_expr *result; - arith rc; - - result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where); - - switch (op1->ts.type) - { - case BT_INTEGER: - mpz_sub (result->value.integer, op1->value.integer, op2->value.integer); - break; - - case BT_REAL: - mpfr_sub (result->value.real, op1->value.real, op2->value.real, - GFC_RND_MODE); - break; - - case BT_COMPLEX: - mpc_sub (result->value.complex, op1->value.complex, - op2->value.complex, GFC_MPC_RND_MODE); - break; - - default: - gfc_internal_error ("gfc_arith_minus(): Bad basic type"); - } - - rc = gfc_range_check (result); - - return check_result (rc, op1, result, resultp); -} - - -static arith -gfc_arith_times (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) -{ - gfc_expr *result; - arith rc; - - result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where); - - switch (op1->ts.type) - { - case BT_INTEGER: - mpz_mul (result->value.integer, op1->value.integer, op2->value.integer); - break; - - case BT_REAL: - mpfr_mul (result->value.real, op1->value.real, op2->value.real, - GFC_RND_MODE); - break; - - case BT_COMPLEX: - gfc_set_model (mpc_realref (op1->value.complex)); - mpc_mul (result->value.complex, op1->value.complex, op2->value.complex, - GFC_MPC_RND_MODE); - break; - - default: - gfc_internal_error ("gfc_arith_times(): Bad basic type"); - } - - rc = gfc_range_check (result); - - return check_result (rc, op1, result, resultp); -} - - -static arith -gfc_arith_divide (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) -{ - gfc_expr *result; - arith rc; - - rc = ARITH_OK; - - result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where); - - switch (op1->ts.type) - { - case BT_INTEGER: - if (mpz_sgn (op2->value.integer) == 0) - { - rc = ARITH_DIV0; - break; - } - - if (warn_integer_division) - { - mpz_t r; - mpz_init (r); - mpz_tdiv_qr (result->value.integer, r, op1->value.integer, - op2->value.integer); - - if (mpz_cmp_si (r, 0) != 0) - { - char *p; - p = mpz_get_str (NULL, 10, result->value.integer); - gfc_warning_now (OPT_Winteger_division, "Integer division " - "truncated to constant %qs at %L", p, - &op1->where); - free (p); - } - mpz_clear (r); - } - else - mpz_tdiv_q (result->value.integer, op1->value.integer, - op2->value.integer); - - break; - - case BT_REAL: - if (mpfr_sgn (op2->value.real) == 0 && flag_range_check == 1) - { - rc = ARITH_DIV0; - break; - } - - mpfr_div (result->value.real, op1->value.real, op2->value.real, - GFC_RND_MODE); - break; - - case BT_COMPLEX: - if (mpc_cmp_si_si (op2->value.complex, 0, 0) == 0 - && flag_range_check == 1) - { - rc = ARITH_DIV0; - break; - } - - gfc_set_model (mpc_realref (op1->value.complex)); - if (mpc_cmp_si_si (op2->value.complex, 0, 0) == 0) - { - /* In Fortran, return (NaN + NaN I) for any zero divisor. See - PR 40318. */ - mpfr_set_nan (mpc_realref (result->value.complex)); - mpfr_set_nan (mpc_imagref (result->value.complex)); - } - else - mpc_div (result->value.complex, op1->value.complex, op2->value.complex, - GFC_MPC_RND_MODE); - break; - - default: - gfc_internal_error ("gfc_arith_divide(): Bad basic type"); - } - - if (rc == ARITH_OK) - rc = gfc_range_check (result); - - return check_result (rc, op1, result, resultp); -} - -/* Raise a number to a power. */ - -static arith -arith_power (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) -{ - int power_sign; - gfc_expr *result; - arith rc; - - rc = ARITH_OK; - result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where); - - switch (op2->ts.type) - { - case BT_INTEGER: - power_sign = mpz_sgn (op2->value.integer); - - if (power_sign == 0) - { - /* Handle something to the zeroth power. Since we're dealing - with integral exponents, there is no ambiguity in the - limiting procedure used to determine the value of 0**0. */ - switch (op1->ts.type) - { - case BT_INTEGER: - mpz_set_ui (result->value.integer, 1); - break; - - case BT_REAL: - mpfr_set_ui (result->value.real, 1, GFC_RND_MODE); - break; - - case BT_COMPLEX: - mpc_set_ui (result->value.complex, 1, GFC_MPC_RND_MODE); - break; - - default: - gfc_internal_error ("arith_power(): Bad base"); - } - } - else - { - switch (op1->ts.type) - { - case BT_INTEGER: - { - /* First, we simplify the cases of op1 == 1, 0 or -1. */ - if (mpz_cmp_si (op1->value.integer, 1) == 0) - { - /* 1**op2 == 1 */ - mpz_set_si (result->value.integer, 1); - } - else if (mpz_cmp_si (op1->value.integer, 0) == 0) - { - /* 0**op2 == 0, if op2 > 0 - 0**op2 overflow, if op2 < 0 ; in that case, we - set the result to 0 and return ARITH_DIV0. */ - mpz_set_si (result->value.integer, 0); - if (mpz_cmp_si (op2->value.integer, 0) < 0) - rc = ARITH_DIV0; - } - else if (mpz_cmp_si (op1->value.integer, -1) == 0) - { - /* (-1)**op2 == (-1)**(mod(op2,2)) */ - unsigned int odd = mpz_fdiv_ui (op2->value.integer, 2); - if (odd) - mpz_set_si (result->value.integer, -1); - else - mpz_set_si (result->value.integer, 1); - } - /* Then, we take care of op2 < 0. */ - else if (mpz_cmp_si (op2->value.integer, 0) < 0) - { - /* if op2 < 0, op1**op2 == 0 because abs(op1) > 1. */ - mpz_set_si (result->value.integer, 0); - if (warn_integer_division) - gfc_warning_now (OPT_Winteger_division, "Negative " - "exponent of integer has zero " - "result at %L", &result->where); - } - else - { - /* We have abs(op1) > 1 and op2 > 1. - If op2 > bit_size(op1), we'll have an out-of-range - result. */ - int k, power; - - k = gfc_validate_kind (BT_INTEGER, op1->ts.kind, false); - power = gfc_integer_kinds[k].bit_size; - if (mpz_cmp_si (op2->value.integer, power) < 0) - { - gfc_extract_int (op2, &power); - mpz_pow_ui (result->value.integer, op1->value.integer, - power); - rc = gfc_range_check (result); - if (rc == ARITH_OVERFLOW) - gfc_error_now ("Result of exponentiation at %L " - "exceeds the range of %s", &op1->where, - gfc_typename (&(op1->ts))); - } - else - { - /* Provide a nonsense value to propagate up. */ - mpz_set (result->value.integer, - gfc_integer_kinds[k].huge); - mpz_add_ui (result->value.integer, - result->value.integer, 1); - rc = ARITH_OVERFLOW; - } - } - } - break; - - case BT_REAL: - mpfr_pow_z (result->value.real, op1->value.real, - op2->value.integer, GFC_RND_MODE); - break; - - case BT_COMPLEX: - mpc_pow_z (result->value.complex, op1->value.complex, - op2->value.integer, GFC_MPC_RND_MODE); - break; - - default: - break; - } - } - break; - - case BT_REAL: - - if (gfc_init_expr_flag) - { - if (!gfc_notify_std (GFC_STD_F2003, "Noninteger " - "exponent in an initialization " - "expression at %L", &op2->where)) - { - gfc_free_expr (result); - return ARITH_PROHIBIT; - } - } - - if (mpfr_cmp_si (op1->value.real, 0) < 0) - { - gfc_error ("Raising a negative REAL at %L to " - "a REAL power is prohibited", &op1->where); - gfc_free_expr (result); - return ARITH_PROHIBIT; - } - - mpfr_pow (result->value.real, op1->value.real, op2->value.real, - GFC_RND_MODE); - break; - - case BT_COMPLEX: - { - if (gfc_init_expr_flag) - { - if (!gfc_notify_std (GFC_STD_F2003, "Noninteger " - "exponent in an initialization " - "expression at %L", &op2->where)) - { - gfc_free_expr (result); - return ARITH_PROHIBIT; - } - } - - mpc_pow (result->value.complex, op1->value.complex, - op2->value.complex, GFC_MPC_RND_MODE); - } - break; - default: - gfc_internal_error ("arith_power(): unknown type"); - } - - if (rc == ARITH_OK) - rc = gfc_range_check (result); - - return check_result (rc, op1, result, resultp); -} - - -/* Concatenate two string constants. */ - -static arith -gfc_arith_concat (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) -{ - gfc_expr *result; - size_t len; - - /* By cleverly playing around with constructors, it is possible - to get mismaching types here. */ - if (op1->ts.type != BT_CHARACTER || op2->ts.type != BT_CHARACTER - || op1->ts.kind != op2->ts.kind) - return ARITH_WRONGCONCAT; - - result = gfc_get_constant_expr (BT_CHARACTER, op1->ts.kind, - &op1->where); - - len = op1->value.character.length + op2->value.character.length; - - result->value.character.string = gfc_get_wide_string (len + 1); - result->value.character.length = len; - - memcpy (result->value.character.string, op1->value.character.string, - op1->value.character.length * sizeof (gfc_char_t)); - - memcpy (&result->value.character.string[op1->value.character.length], - op2->value.character.string, - op2->value.character.length * sizeof (gfc_char_t)); - - result->value.character.string[len] = '\0'; - - *resultp = result; - - return ARITH_OK; -} - -/* Comparison between real values; returns 0 if (op1 .op. op2) is true. - This function mimics mpfr_cmp but takes NaN into account. */ - -static int -compare_real (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op) -{ - int rc; - switch (op) - { - case INTRINSIC_EQ: - rc = mpfr_equal_p (op1->value.real, op2->value.real) ? 0 : 1; - break; - case INTRINSIC_GT: - rc = mpfr_greater_p (op1->value.real, op2->value.real) ? 1 : -1; - break; - case INTRINSIC_GE: - rc = mpfr_greaterequal_p (op1->value.real, op2->value.real) ? 1 : -1; - break; - case INTRINSIC_LT: - rc = mpfr_less_p (op1->value.real, op2->value.real) ? -1 : 1; - break; - case INTRINSIC_LE: - rc = mpfr_lessequal_p (op1->value.real, op2->value.real) ? -1 : 1; - break; - default: - gfc_internal_error ("compare_real(): Bad operator"); - } - - return rc; -} - -/* Comparison operators. Assumes that the two expression nodes - contain two constants of the same type. The op argument is - needed to handle NaN correctly. */ - -int -gfc_compare_expr (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op) -{ - int rc; - - switch (op1->ts.type) - { - case BT_INTEGER: - rc = mpz_cmp (op1->value.integer, op2->value.integer); - break; - - case BT_REAL: - rc = compare_real (op1, op2, op); - break; - - case BT_CHARACTER: - rc = gfc_compare_string (op1, op2); - break; - - case BT_LOGICAL: - rc = ((!op1->value.logical && op2->value.logical) - || (op1->value.logical && !op2->value.logical)); - break; - - default: - gfc_internal_error ("gfc_compare_expr(): Bad basic type"); - } - - return rc; -} - - -/* Compare a pair of complex numbers. Naturally, this is only for - equality and inequality. */ - -static int -compare_complex (gfc_expr *op1, gfc_expr *op2) -{ - return mpc_cmp (op1->value.complex, op2->value.complex) == 0; -} - - -/* Given two constant strings and the inverse collating sequence, compare the - strings. We return -1 for a < b, 0 for a == b and 1 for a > b. - We use the processor's default collating sequence. */ - -int -gfc_compare_string (gfc_expr *a, gfc_expr *b) -{ - size_t len, alen, blen, i; - gfc_char_t ac, bc; - - alen = a->value.character.length; - blen = b->value.character.length; - - len = MAX(alen, blen); - - for (i = 0; i < len; i++) - { - ac = ((i < alen) ? a->value.character.string[i] : ' '); - bc = ((i < blen) ? b->value.character.string[i] : ' '); - - if (ac < bc) - return -1; - if (ac > bc) - return 1; - } - - /* Strings are equal */ - return 0; -} - - -int -gfc_compare_with_Cstring (gfc_expr *a, const char *b, bool case_sensitive) -{ - size_t len, alen, blen, i; - gfc_char_t ac, bc; - - alen = a->value.character.length; - blen = strlen (b); - - len = MAX(alen, blen); - - for (i = 0; i < len; i++) - { - ac = ((i < alen) ? a->value.character.string[i] : ' '); - bc = ((i < blen) ? b[i] : ' '); - - if (!case_sensitive) - { - ac = TOLOWER (ac); - bc = TOLOWER (bc); - } - - if (ac < bc) - return -1; - if (ac > bc) - return 1; - } - - /* Strings are equal */ - return 0; -} - - -/* Specific comparison subroutines. */ - -static arith -gfc_arith_eq (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) -{ - gfc_expr *result; - - result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind, - &op1->where); - result->value.logical = (op1->ts.type == BT_COMPLEX) - ? compare_complex (op1, op2) - : (gfc_compare_expr (op1, op2, INTRINSIC_EQ) == 0); - - *resultp = result; - return ARITH_OK; -} - - -static arith -gfc_arith_ne (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) -{ - gfc_expr *result; - - result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind, - &op1->where); - result->value.logical = (op1->ts.type == BT_COMPLEX) - ? !compare_complex (op1, op2) - : (gfc_compare_expr (op1, op2, INTRINSIC_EQ) != 0); - - *resultp = result; - return ARITH_OK; -} - - -static arith -gfc_arith_gt (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) -{ - gfc_expr *result; - - result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind, - &op1->where); - result->value.logical = (gfc_compare_expr (op1, op2, INTRINSIC_GT) > 0); - *resultp = result; - - return ARITH_OK; -} - - -static arith -gfc_arith_ge (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) -{ - gfc_expr *result; - - result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind, - &op1->where); - result->value.logical = (gfc_compare_expr (op1, op2, INTRINSIC_GE) >= 0); - *resultp = result; - - return ARITH_OK; -} - - -static arith -gfc_arith_lt (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) -{ - gfc_expr *result; - - result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind, - &op1->where); - result->value.logical = (gfc_compare_expr (op1, op2, INTRINSIC_LT) < 0); - *resultp = result; - - return ARITH_OK; -} - - -static arith -gfc_arith_le (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) -{ - gfc_expr *result; - - result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind, - &op1->where); - result->value.logical = (gfc_compare_expr (op1, op2, INTRINSIC_LE) <= 0); - *resultp = result; - - return ARITH_OK; -} - - -static arith -reduce_unary (arith (*eval) (gfc_expr *, gfc_expr **), gfc_expr *op, - gfc_expr **result) -{ - gfc_constructor_base head; - gfc_constructor *c; - gfc_expr *r; - arith rc; - - if (op->expr_type == EXPR_CONSTANT) - return eval (op, result); - - rc = ARITH_OK; - head = gfc_constructor_copy (op->value.constructor); - for (c = gfc_constructor_first (head); c; c = gfc_constructor_next (c)) - { - rc = reduce_unary (eval, c->expr, &r); - - if (rc != ARITH_OK) - break; - - gfc_replace_expr (c->expr, r); - } - - if (rc != ARITH_OK) - gfc_constructor_free (head); - else - { - gfc_constructor *c = gfc_constructor_first (head); - r = gfc_get_array_expr (c->expr->ts.type, c->expr->ts.kind, - &op->where); - r->shape = gfc_copy_shape (op->shape, op->rank); - r->rank = op->rank; - r->value.constructor = head; - *result = r; - } - - return rc; -} - - -static arith -reduce_binary_ac (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **), - gfc_expr *op1, gfc_expr *op2, gfc_expr **result) -{ - gfc_constructor_base head; - gfc_constructor *c; - gfc_expr *r; - arith rc = ARITH_OK; - - head = gfc_constructor_copy (op1->value.constructor); - for (c = gfc_constructor_first (head); c; c = gfc_constructor_next (c)) - { - if (c->expr->expr_type == EXPR_CONSTANT) - rc = eval (c->expr, op2, &r); - else - rc = reduce_binary_ac (eval, c->expr, op2, &r); - - if (rc != ARITH_OK) - break; - - gfc_replace_expr (c->expr, r); - } - - if (rc != ARITH_OK) - gfc_constructor_free (head); - else - { - gfc_constructor *c = gfc_constructor_first (head); - r = gfc_get_array_expr (c->expr->ts.type, c->expr->ts.kind, - &op1->where); - r->shape = gfc_copy_shape (op1->shape, op1->rank); - r->rank = op1->rank; - r->value.constructor = head; - *result = r; - } - - return rc; -} - - -static arith -reduce_binary_ca (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **), - gfc_expr *op1, gfc_expr *op2, gfc_expr **result) -{ - gfc_constructor_base head; - gfc_constructor *c; - gfc_expr *r; - arith rc = ARITH_OK; - - head = gfc_constructor_copy (op2->value.constructor); - for (c = gfc_constructor_first (head); c; c = gfc_constructor_next (c)) - { - if (c->expr->expr_type == EXPR_CONSTANT) - rc = eval (op1, c->expr, &r); - else - rc = reduce_binary_ca (eval, op1, c->expr, &r); - - if (rc != ARITH_OK) - break; - - gfc_replace_expr (c->expr, r); - } - - if (rc != ARITH_OK) - gfc_constructor_free (head); - else - { - gfc_constructor *c = gfc_constructor_first (head); - r = gfc_get_array_expr (c->expr->ts.type, c->expr->ts.kind, - &op2->where); - r->shape = gfc_copy_shape (op2->shape, op2->rank); - r->rank = op2->rank; - r->value.constructor = head; - *result = r; - } - - return rc; -} - - -/* We need a forward declaration of reduce_binary. */ -static arith reduce_binary (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **), - gfc_expr *op1, gfc_expr *op2, gfc_expr **result); - - -static arith -reduce_binary_aa (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **), - gfc_expr *op1, gfc_expr *op2, gfc_expr **result) -{ - gfc_constructor_base head; - gfc_constructor *c, *d; - gfc_expr *r; - arith rc = ARITH_OK; - - if (!gfc_check_conformance (op1, op2, _("elemental binary operation"))) - return ARITH_INCOMMENSURATE; - - head = gfc_constructor_copy (op1->value.constructor); - for (c = gfc_constructor_first (head), - d = gfc_constructor_first (op2->value.constructor); - c && d; - c = gfc_constructor_next (c), d = gfc_constructor_next (d)) - { - rc = reduce_binary (eval, c->expr, d->expr, &r); - if (rc != ARITH_OK) - break; - - gfc_replace_expr (c->expr, r); - } - - if (c || d) - rc = ARITH_INCOMMENSURATE; - - if (rc != ARITH_OK) - gfc_constructor_free (head); - else - { - gfc_constructor *c = gfc_constructor_first (head); - r = gfc_get_array_expr (c->expr->ts.type, c->expr->ts.kind, - &op1->where); - r->shape = gfc_copy_shape (op1->shape, op1->rank); - r->rank = op1->rank; - r->value.constructor = head; - *result = r; - } - - return rc; -} - - -static arith -reduce_binary (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **), - gfc_expr *op1, gfc_expr *op2, gfc_expr **result) -{ - if (op1->expr_type == EXPR_CONSTANT && op2->expr_type == EXPR_CONSTANT) - return eval (op1, op2, result); - - if (op1->expr_type == EXPR_CONSTANT && op2->expr_type == EXPR_ARRAY) - return reduce_binary_ca (eval, op1, op2, result); - - if (op1->expr_type == EXPR_ARRAY && op2->expr_type == EXPR_CONSTANT) - return reduce_binary_ac (eval, op1, op2, result); - - return reduce_binary_aa (eval, op1, op2, result); -} - - -typedef union -{ - arith (*f2)(gfc_expr *, gfc_expr **); - arith (*f3)(gfc_expr *, gfc_expr *, gfc_expr **); -} -eval_f; - -/* High level arithmetic subroutines. These subroutines go into - eval_intrinsic(), which can do one of several things to its - operands. If the operands are incompatible with the intrinsic - operation, we return a node pointing to the operands and hope that - an operator interface is found during resolution. - - If the operands are compatible and are constants, then we try doing - the arithmetic. We also handle the cases where either or both - operands are array constructors. */ - -static gfc_expr * -eval_intrinsic (gfc_intrinsic_op op, - eval_f eval, gfc_expr *op1, gfc_expr *op2) -{ - gfc_expr temp, *result; - int unary; - arith rc; - - gfc_clear_ts (&temp.ts); - - switch (op) - { - /* Logical unary */ - case INTRINSIC_NOT: - if (op1->ts.type != BT_LOGICAL) - goto runtime; - - temp.ts.type = BT_LOGICAL; - temp.ts.kind = gfc_default_logical_kind; - unary = 1; - break; - - /* Logical binary operators */ - case INTRINSIC_OR: - case INTRINSIC_AND: - case INTRINSIC_NEQV: - case INTRINSIC_EQV: - if (op1->ts.type != BT_LOGICAL || op2->ts.type != BT_LOGICAL) - goto runtime; - - temp.ts.type = BT_LOGICAL; - temp.ts.kind = gfc_default_logical_kind; - unary = 0; - break; - - /* Numeric unary */ - case INTRINSIC_UPLUS: - case INTRINSIC_UMINUS: - if (!gfc_numeric_ts (&op1->ts)) - goto runtime; - - temp.ts = op1->ts; - unary = 1; - break; - - case INTRINSIC_PARENTHESES: - temp.ts = op1->ts; - unary = 1; - break; - - /* Additional restrictions for ordering relations. */ - case INTRINSIC_GE: - case INTRINSIC_GE_OS: - case INTRINSIC_LT: - case INTRINSIC_LT_OS: - case INTRINSIC_LE: - case INTRINSIC_LE_OS: - case INTRINSIC_GT: - case INTRINSIC_GT_OS: - if (op1->ts.type == BT_COMPLEX || op2->ts.type == BT_COMPLEX) - { - temp.ts.type = BT_LOGICAL; - temp.ts.kind = gfc_default_logical_kind; - goto runtime; - } - - /* Fall through */ - case INTRINSIC_EQ: - case INTRINSIC_EQ_OS: - case INTRINSIC_NE: - case INTRINSIC_NE_OS: - if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER) - { - unary = 0; - temp.ts.type = BT_LOGICAL; - temp.ts.kind = gfc_default_logical_kind; - - /* If kind mismatch, exit and we'll error out later. */ - if (op1->ts.kind != op2->ts.kind) - goto runtime; - - break; - } - - gcc_fallthrough (); - /* Numeric binary */ - case INTRINSIC_PLUS: - case INTRINSIC_MINUS: - case INTRINSIC_TIMES: - case INTRINSIC_DIVIDE: - case INTRINSIC_POWER: - if (!gfc_numeric_ts (&op1->ts) || !gfc_numeric_ts (&op2->ts)) - goto runtime; - - /* Insert any necessary type conversions to make the operands - compatible. */ - - temp.expr_type = EXPR_OP; - gfc_clear_ts (&temp.ts); - temp.value.op.op = op; - - temp.value.op.op1 = op1; - temp.value.op.op2 = op2; - - gfc_type_convert_binary (&temp, warn_conversion || warn_conversion_extra); - - if (op == INTRINSIC_EQ || op == INTRINSIC_NE - || op == INTRINSIC_GE || op == INTRINSIC_GT - || op == INTRINSIC_LE || op == INTRINSIC_LT - || op == INTRINSIC_EQ_OS || op == INTRINSIC_NE_OS - || op == INTRINSIC_GE_OS || op == INTRINSIC_GT_OS - || op == INTRINSIC_LE_OS || op == INTRINSIC_LT_OS) - { - temp.ts.type = BT_LOGICAL; - temp.ts.kind = gfc_default_logical_kind; - } - - unary = 0; - break; - - /* Character binary */ - case INTRINSIC_CONCAT: - if (op1->ts.type != BT_CHARACTER || op2->ts.type != BT_CHARACTER - || op1->ts.kind != op2->ts.kind) - goto runtime; - - temp.ts.type = BT_CHARACTER; - temp.ts.kind = op1->ts.kind; - unary = 0; - break; - - case INTRINSIC_USER: - goto runtime; - - default: - gfc_internal_error ("eval_intrinsic(): Bad operator"); - } - - if (op1->expr_type != EXPR_CONSTANT - && (op1->expr_type != EXPR_ARRAY - || !gfc_is_constant_expr (op1) || !gfc_expanded_ac (op1))) - goto runtime; - - if (op2 != NULL - && op2->expr_type != EXPR_CONSTANT - && (op2->expr_type != EXPR_ARRAY - || !gfc_is_constant_expr (op2) || !gfc_expanded_ac (op2))) - goto runtime; - - if (unary) - rc = reduce_unary (eval.f2, op1, &result); - else - rc = reduce_binary (eval.f3, op1, op2, &result); - - - /* Something went wrong. */ - if (op == INTRINSIC_POWER && rc == ARITH_PROHIBIT) - return NULL; - - if (rc != ARITH_OK) - { - gfc_error (gfc_arith_error (rc), &op1->where); - if (rc == ARITH_OVERFLOW) - goto done; - - if (rc == ARITH_DIV0 && op2->ts.type == BT_INTEGER) - gfc_seen_div0 = true; - - return NULL; - } - -done: - - gfc_free_expr (op1); - gfc_free_expr (op2); - return result; - -runtime: - /* Create a run-time expression. */ - result = gfc_get_operator_expr (&op1->where, op, op1, op2); - result->ts = temp.ts; - - return result; -} - - -/* Modify type of expression for zero size array. */ - -static gfc_expr * -eval_type_intrinsic0 (gfc_intrinsic_op iop, gfc_expr *op) -{ - if (op == NULL) - gfc_internal_error ("eval_type_intrinsic0(): op NULL"); - - switch (iop) - { - case INTRINSIC_GE: - case INTRINSIC_GE_OS: - case INTRINSIC_LT: - case INTRINSIC_LT_OS: - case INTRINSIC_LE: - case INTRINSIC_LE_OS: - case INTRINSIC_GT: - case INTRINSIC_GT_OS: - case INTRINSIC_EQ: - case INTRINSIC_EQ_OS: - case INTRINSIC_NE: - case INTRINSIC_NE_OS: - op->ts.type = BT_LOGICAL; - op->ts.kind = gfc_default_logical_kind; - break; - - default: - break; - } - - return op; -} - - -/* Return nonzero if the expression is a zero size array. */ - -static int -gfc_zero_size_array (gfc_expr *e) -{ - if (e->expr_type != EXPR_ARRAY) - return 0; - - return e->value.constructor == NULL; -} - - -/* Reduce a binary expression where at least one of the operands - involves a zero-length array. Returns NULL if neither of the - operands is a zero-length array. */ - -static gfc_expr * -reduce_binary0 (gfc_expr *op1, gfc_expr *op2) -{ - if (gfc_zero_size_array (op1)) - { - gfc_free_expr (op2); - return op1; - } - - if (gfc_zero_size_array (op2)) - { - gfc_free_expr (op1); - return op2; - } - - return NULL; -} - - -static gfc_expr * -eval_intrinsic_f2 (gfc_intrinsic_op op, - arith (*eval) (gfc_expr *, gfc_expr **), - gfc_expr *op1, gfc_expr *op2) -{ - gfc_expr *result; - eval_f f; - - if (op2 == NULL) - { - if (gfc_zero_size_array (op1)) - return eval_type_intrinsic0 (op, op1); - } - else - { - result = reduce_binary0 (op1, op2); - if (result != NULL) - return eval_type_intrinsic0 (op, result); - } - - f.f2 = eval; - return eval_intrinsic (op, f, op1, op2); -} - - -static gfc_expr * -eval_intrinsic_f3 (gfc_intrinsic_op op, - arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **), - gfc_expr *op1, gfc_expr *op2) -{ - gfc_expr *result; - eval_f f; - - if (!op1 && !op2) - return NULL; - - result = reduce_binary0 (op1, op2); - if (result != NULL) - return eval_type_intrinsic0(op, result); - - f.f3 = eval; - return eval_intrinsic (op, f, op1, op2); -} - - -gfc_expr * -gfc_parentheses (gfc_expr *op) -{ - if (gfc_is_constant_expr (op)) - return op; - - return eval_intrinsic_f2 (INTRINSIC_PARENTHESES, gfc_arith_identity, - op, NULL); -} - -gfc_expr * -gfc_uplus (gfc_expr *op) -{ - return eval_intrinsic_f2 (INTRINSIC_UPLUS, gfc_arith_identity, op, NULL); -} - - -gfc_expr * -gfc_uminus (gfc_expr *op) -{ - return eval_intrinsic_f2 (INTRINSIC_UMINUS, gfc_arith_uminus, op, NULL); -} - - -gfc_expr * -gfc_add (gfc_expr *op1, gfc_expr *op2) -{ - return eval_intrinsic_f3 (INTRINSIC_PLUS, gfc_arith_plus, op1, op2); -} - - -gfc_expr * -gfc_subtract (gfc_expr *op1, gfc_expr *op2) -{ - return eval_intrinsic_f3 (INTRINSIC_MINUS, gfc_arith_minus, op1, op2); -} - - -gfc_expr * -gfc_multiply (gfc_expr *op1, gfc_expr *op2) -{ - return eval_intrinsic_f3 (INTRINSIC_TIMES, gfc_arith_times, op1, op2); -} - - -gfc_expr * -gfc_divide (gfc_expr *op1, gfc_expr *op2) -{ - return eval_intrinsic_f3 (INTRINSIC_DIVIDE, gfc_arith_divide, op1, op2); -} - - -gfc_expr * -gfc_power (gfc_expr *op1, gfc_expr *op2) -{ - return eval_intrinsic_f3 (INTRINSIC_POWER, arith_power, op1, op2); -} - - -gfc_expr * -gfc_concat (gfc_expr *op1, gfc_expr *op2) -{ - return eval_intrinsic_f3 (INTRINSIC_CONCAT, gfc_arith_concat, op1, op2); -} - - -gfc_expr * -gfc_and (gfc_expr *op1, gfc_expr *op2) -{ - return eval_intrinsic_f3 (INTRINSIC_AND, gfc_arith_and, op1, op2); -} - - -gfc_expr * -gfc_or (gfc_expr *op1, gfc_expr *op2) -{ - return eval_intrinsic_f3 (INTRINSIC_OR, gfc_arith_or, op1, op2); -} - - -gfc_expr * -gfc_not (gfc_expr *op1) -{ - return eval_intrinsic_f2 (INTRINSIC_NOT, gfc_arith_not, op1, NULL); -} - - -gfc_expr * -gfc_eqv (gfc_expr *op1, gfc_expr *op2) -{ - return eval_intrinsic_f3 (INTRINSIC_EQV, gfc_arith_eqv, op1, op2); -} - - -gfc_expr * -gfc_neqv (gfc_expr *op1, gfc_expr *op2) -{ - return eval_intrinsic_f3 (INTRINSIC_NEQV, gfc_arith_neqv, op1, op2); -} - - -gfc_expr * -gfc_eq (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op) -{ - return eval_intrinsic_f3 (op, gfc_arith_eq, op1, op2); -} - - -gfc_expr * -gfc_ne (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op) -{ - return eval_intrinsic_f3 (op, gfc_arith_ne, op1, op2); -} - - -gfc_expr * -gfc_gt (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op) -{ - return eval_intrinsic_f3 (op, gfc_arith_gt, op1, op2); -} - - -gfc_expr * -gfc_ge (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op) -{ - return eval_intrinsic_f3 (op, gfc_arith_ge, op1, op2); -} - - -gfc_expr * -gfc_lt (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op) -{ - return eval_intrinsic_f3 (op, gfc_arith_lt, op1, op2); -} - - -gfc_expr * -gfc_le (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op) -{ - return eval_intrinsic_f3 (op, gfc_arith_le, op1, op2); -} - - -/******* Simplification of intrinsic functions with constant arguments *****/ - - -/* Deal with an arithmetic error. */ - -static void -arith_error (arith rc, gfc_typespec *from, gfc_typespec *to, locus *where) -{ - switch (rc) - { - case ARITH_OK: - gfc_error ("Arithmetic OK converting %s to %s at %L", - gfc_typename (from), gfc_typename (to), where); - break; - case ARITH_OVERFLOW: - gfc_error ("Arithmetic overflow converting %s to %s at %L. This check " - "can be disabled with the option %<-fno-range-check%>", - gfc_typename (from), gfc_typename (to), where); - break; - case ARITH_UNDERFLOW: - gfc_error ("Arithmetic underflow converting %s to %s at %L. This check " - "can be disabled with the option %<-fno-range-check%>", - gfc_typename (from), gfc_typename (to), where); - break; - case ARITH_NAN: - gfc_error ("Arithmetic NaN converting %s to %s at %L. This check " - "can be disabled with the option %<-fno-range-check%>", - gfc_typename (from), gfc_typename (to), where); - break; - case ARITH_DIV0: - gfc_error ("Division by zero converting %s to %s at %L", - gfc_typename (from), gfc_typename (to), where); - break; - case ARITH_INCOMMENSURATE: - gfc_error ("Array operands are incommensurate converting %s to %s at %L", - gfc_typename (from), gfc_typename (to), where); - break; - case ARITH_ASYMMETRIC: - gfc_error ("Integer outside symmetric range implied by Standard Fortran" - " converting %s to %s at %L", - gfc_typename (from), gfc_typename (to), where); - break; - default: - gfc_internal_error ("gfc_arith_error(): Bad error code"); - } - - /* TODO: Do something about the error, i.e., throw exception, return - NaN, etc. */ -} - -/* Returns true if significant bits were lost when converting real - constant r from from_kind to to_kind. */ - -static bool -wprecision_real_real (mpfr_t r, int from_kind, int to_kind) -{ - mpfr_t rv, diff; - bool ret; - - gfc_set_model_kind (to_kind); - mpfr_init (rv); - gfc_set_model_kind (from_kind); - mpfr_init (diff); - - mpfr_set (rv, r, GFC_RND_MODE); - mpfr_sub (diff, rv, r, GFC_RND_MODE); - - ret = ! mpfr_zero_p (diff); - mpfr_clear (rv); - mpfr_clear (diff); - return ret; -} - -/* Return true if conversion from an integer to a real loses precision. */ - -static bool -wprecision_int_real (mpz_t n, mpfr_t r) -{ - bool ret; - mpz_t i; - mpz_init (i); - mpfr_get_z (i, r, GFC_RND_MODE); - mpz_sub (i, i, n); - ret = mpz_cmp_si (i, 0) != 0; - mpz_clear (i); - return ret; -} - -/* Convert integers to integers. */ - -gfc_expr * -gfc_int2int (gfc_expr *src, int kind) -{ - gfc_expr *result; - arith rc; - - result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where); - - mpz_set (result->value.integer, src->value.integer); - - if ((rc = gfc_check_integer_range (result->value.integer, kind)) != ARITH_OK) - { - if (rc == ARITH_ASYMMETRIC) - { - gfc_warning (0, gfc_arith_error (rc), &src->where); - } - else - { - arith_error (rc, &src->ts, &result->ts, &src->where); - gfc_free_expr (result); - return NULL; - } - } - - /* If we do not trap numeric overflow, we need to convert the number to - signed, throwing away high-order bits if necessary. */ - if (flag_range_check == 0) - { - int k; - - k = gfc_validate_kind (BT_INTEGER, kind, false); - gfc_convert_mpz_to_signed (result->value.integer, - gfc_integer_kinds[k].bit_size); - - if (warn_conversion && !src->do_not_warn && kind < src->ts.kind) - gfc_warning_now (OPT_Wconversion, "Conversion from %qs to %qs at %L", - gfc_typename (&src->ts), gfc_typename (&result->ts), - &src->where); - } - return result; -} - - -/* Convert integers to reals. */ - -gfc_expr * -gfc_int2real (gfc_expr *src, int kind) -{ - gfc_expr *result; - arith rc; - - result = gfc_get_constant_expr (BT_REAL, kind, &src->where); - - mpfr_set_z (result->value.real, src->value.integer, GFC_RND_MODE); - - if ((rc = gfc_check_real_range (result->value.real, kind)) != ARITH_OK) - { - arith_error (rc, &src->ts, &result->ts, &src->where); - gfc_free_expr (result); - return NULL; - } - - if (warn_conversion - && wprecision_int_real (src->value.integer, result->value.real)) - gfc_warning (OPT_Wconversion, "Change of value in conversion " - "from %qs to %qs at %L", - gfc_typename (&src->ts), - gfc_typename (&result->ts), - &src->where); - - return result; -} - - -/* Convert default integer to default complex. */ - -gfc_expr * -gfc_int2complex (gfc_expr *src, int kind) -{ - gfc_expr *result; - arith rc; - - result = gfc_get_constant_expr (BT_COMPLEX, kind, &src->where); - - mpc_set_z (result->value.complex, src->value.integer, GFC_MPC_RND_MODE); - - if ((rc = gfc_check_real_range (mpc_realref (result->value.complex), kind)) - != ARITH_OK) - { - arith_error (rc, &src->ts, &result->ts, &src->where); - gfc_free_expr (result); - return NULL; - } - - if (warn_conversion - && wprecision_int_real (src->value.integer, - mpc_realref (result->value.complex))) - gfc_warning_now (OPT_Wconversion, "Change of value in conversion " - "from %qs to %qs at %L", - gfc_typename (&src->ts), - gfc_typename (&result->ts), - &src->where); - - return result; -} - - -/* Convert default real to default integer. */ - -gfc_expr * -gfc_real2int (gfc_expr *src, int kind) -{ - gfc_expr *result; - arith rc; - bool did_warn = false; - - result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where); - - gfc_mpfr_to_mpz (result->value.integer, src->value.real, &src->where); - - if ((rc = gfc_check_integer_range (result->value.integer, kind)) != ARITH_OK) - { - arith_error (rc, &src->ts, &result->ts, &src->where); - gfc_free_expr (result); - return NULL; - } - - /* If there was a fractional part, warn about this. */ - - if (warn_conversion) - { - mpfr_t f; - mpfr_init (f); - mpfr_frac (f, src->value.real, GFC_RND_MODE); - if (mpfr_cmp_si (f, 0) != 0) - { - gfc_warning_now (OPT_Wconversion, "Change of value in conversion " - "from %qs to %qs at %L", gfc_typename (&src->ts), - gfc_typename (&result->ts), &src->where); - did_warn = true; - } - } - if (!did_warn && warn_conversion_extra) - { - gfc_warning_now (OPT_Wconversion_extra, "Conversion from %qs to %qs " - "at %L", gfc_typename (&src->ts), - gfc_typename (&result->ts), &src->where); - } - - return result; -} - - -/* Convert real to real. */ - -gfc_expr * -gfc_real2real (gfc_expr *src, int kind) -{ - gfc_expr *result; - arith rc; - bool did_warn = false; - - result = gfc_get_constant_expr (BT_REAL, kind, &src->where); - - mpfr_set (result->value.real, src->value.real, GFC_RND_MODE); - - rc = gfc_check_real_range (result->value.real, kind); - - if (rc == ARITH_UNDERFLOW) - { - if (warn_underflow) - gfc_warning (OPT_Woverflow, gfc_arith_error (rc), &src->where); - mpfr_set_ui (result->value.real, 0, GFC_RND_MODE); - } - else if (rc != ARITH_OK) - { - arith_error (rc, &src->ts, &result->ts, &src->where); - gfc_free_expr (result); - return NULL; - } - - /* As a special bonus, don't warn about REAL values which are not changed by - the conversion if -Wconversion is specified and -Wconversion-extra is - not. */ - - if ((warn_conversion || warn_conversion_extra) && src->ts.kind > kind) - { - int w = warn_conversion ? OPT_Wconversion : OPT_Wconversion_extra; - - /* Calculate the difference between the constant and the rounded - value and check it against zero. */ - - if (wprecision_real_real (src->value.real, src->ts.kind, kind)) - { - gfc_warning_now (w, "Change of value in conversion from " - "%qs to %qs at %L", - gfc_typename (&src->ts), gfc_typename (&result->ts), - &src->where); - /* Make sure the conversion warning is not emitted again. */ - did_warn = true; - } - } - - if (!did_warn && warn_conversion_extra) - gfc_warning_now (OPT_Wconversion_extra, "Conversion from %qs to %qs " - "at %L", gfc_typename(&src->ts), - gfc_typename(&result->ts), &src->where); - - return result; -} - - -/* Convert real to complex. */ - -gfc_expr * -gfc_real2complex (gfc_expr *src, int kind) -{ - gfc_expr *result; - arith rc; - bool did_warn = false; - - result = gfc_get_constant_expr (BT_COMPLEX, kind, &src->where); - - mpc_set_fr (result->value.complex, src->value.real, GFC_MPC_RND_MODE); - - rc = gfc_check_real_range (mpc_realref (result->value.complex), kind); - - if (rc == ARITH_UNDERFLOW) - { - if (warn_underflow) - gfc_warning (OPT_Woverflow, gfc_arith_error (rc), &src->where); - mpfr_set_ui (mpc_realref (result->value.complex), 0, GFC_RND_MODE); - } - else if (rc != ARITH_OK) - { - arith_error (rc, &src->ts, &result->ts, &src->where); - gfc_free_expr (result); - return NULL; - } - - if ((warn_conversion || warn_conversion_extra) && src->ts.kind > kind) - { - int w = warn_conversion ? OPT_Wconversion : OPT_Wconversion_extra; - - if (wprecision_real_real (src->value.real, src->ts.kind, kind)) - { - gfc_warning_now (w, "Change of value in conversion from " - "%qs to %qs at %L", - gfc_typename (&src->ts), gfc_typename (&result->ts), - &src->where); - /* Make sure the conversion warning is not emitted again. */ - did_warn = true; - } - } - - if (!did_warn && warn_conversion_extra) - gfc_warning_now (OPT_Wconversion_extra, "Conversion from %qs to %qs " - "at %L", gfc_typename(&src->ts), - gfc_typename(&result->ts), &src->where); - - return result; -} - - -/* Convert complex to integer. */ - -gfc_expr * -gfc_complex2int (gfc_expr *src, int kind) -{ - gfc_expr *result; - arith rc; - bool did_warn = false; - - result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where); - - gfc_mpfr_to_mpz (result->value.integer, mpc_realref (src->value.complex), - &src->where); - - if ((rc = gfc_check_integer_range (result->value.integer, kind)) != ARITH_OK) - { - arith_error (rc, &src->ts, &result->ts, &src->where); - gfc_free_expr (result); - return NULL; - } - - if (warn_conversion || warn_conversion_extra) - { - int w = warn_conversion ? OPT_Wconversion : OPT_Wconversion_extra; - - /* See if we discarded an imaginary part. */ - if (mpfr_cmp_si (mpc_imagref (src->value.complex), 0) != 0) - { - gfc_warning_now (w, "Non-zero imaginary part discarded " - "in conversion from %qs to %qs at %L", - gfc_typename(&src->ts), gfc_typename (&result->ts), - &src->where); - did_warn = true; - } - - else { - mpfr_t f; - - mpfr_init (f); - mpfr_frac (f, src->value.real, GFC_RND_MODE); - if (mpfr_cmp_si (f, 0) != 0) - { - gfc_warning_now (w, "Change of value in conversion from " - "%qs to %qs at %L", gfc_typename (&src->ts), - gfc_typename (&result->ts), &src->where); - did_warn = true; - } - mpfr_clear (f); - } - - if (!did_warn && warn_conversion_extra) - { - gfc_warning_now (OPT_Wconversion_extra, "Conversion from %qs to %qs " - "at %L", gfc_typename (&src->ts), - gfc_typename (&result->ts), &src->where); - } - } - - return result; -} - - -/* Convert complex to real. */ - -gfc_expr * -gfc_complex2real (gfc_expr *src, int kind) -{ - gfc_expr *result; - arith rc; - bool did_warn = false; - - result = gfc_get_constant_expr (BT_REAL, kind, &src->where); - - mpc_real (result->value.real, src->value.complex, GFC_RND_MODE); - - rc = gfc_check_real_range (result->value.real, kind); - - if (rc == ARITH_UNDERFLOW) - { - if (warn_underflow) - gfc_warning (OPT_Woverflow, gfc_arith_error (rc), &src->where); - mpfr_set_ui (result->value.real, 0, GFC_RND_MODE); - } - if (rc != ARITH_OK) - { - arith_error (rc, &src->ts, &result->ts, &src->where); - gfc_free_expr (result); - return NULL; - } - - if (warn_conversion || warn_conversion_extra) - { - int w = warn_conversion ? OPT_Wconversion : OPT_Wconversion_extra; - - /* See if we discarded an imaginary part. */ - if (mpfr_cmp_si (mpc_imagref (src->value.complex), 0) != 0) - { - gfc_warning (w, "Non-zero imaginary part discarded " - "in conversion from %qs to %qs at %L", - gfc_typename(&src->ts), gfc_typename (&result->ts), - &src->where); - did_warn = true; - } - - /* Calculate the difference between the real constant and the rounded - value and check it against zero. */ - - if (kind > src->ts.kind - && wprecision_real_real (mpc_realref (src->value.complex), - src->ts.kind, kind)) - { - gfc_warning_now (w, "Change of value in conversion from " - "%qs to %qs at %L", - gfc_typename (&src->ts), gfc_typename (&result->ts), - &src->where); - /* Make sure the conversion warning is not emitted again. */ - did_warn = true; - } - } - - if (!did_warn && warn_conversion_extra) - gfc_warning_now (OPT_Wconversion, "Conversion from %qs to %qs at %L", - gfc_typename(&src->ts), gfc_typename (&result->ts), - &src->where); - - return result; -} - - -/* Convert complex to complex. */ - -gfc_expr * -gfc_complex2complex (gfc_expr *src, int kind) -{ - gfc_expr *result; - arith rc; - bool did_warn = false; - - result = gfc_get_constant_expr (BT_COMPLEX, kind, &src->where); - - mpc_set (result->value.complex, src->value.complex, GFC_MPC_RND_MODE); - - rc = gfc_check_real_range (mpc_realref (result->value.complex), kind); - - if (rc == ARITH_UNDERFLOW) - { - if (warn_underflow) - gfc_warning (OPT_Woverflow, gfc_arith_error (rc), &src->where); - mpfr_set_ui (mpc_realref (result->value.complex), 0, GFC_RND_MODE); - } - else if (rc != ARITH_OK) - { - arith_error (rc, &src->ts, &result->ts, &src->where); - gfc_free_expr (result); - return NULL; - } - - rc = gfc_check_real_range (mpc_imagref (result->value.complex), kind); - - if (rc == ARITH_UNDERFLOW) - { - if (warn_underflow) - gfc_warning (OPT_Woverflow, gfc_arith_error (rc), &src->where); - mpfr_set_ui (mpc_imagref (result->value.complex), 0, GFC_RND_MODE); - } - else if (rc != ARITH_OK) - { - arith_error (rc, &src->ts, &result->ts, &src->where); - gfc_free_expr (result); - return NULL; - } - - if ((warn_conversion || warn_conversion_extra) && src->ts.kind > kind - && (wprecision_real_real (mpc_realref (src->value.complex), - src->ts.kind, kind) - || wprecision_real_real (mpc_imagref (src->value.complex), - src->ts.kind, kind))) - { - int w = warn_conversion ? OPT_Wconversion : OPT_Wconversion_extra; - - gfc_warning_now (w, "Change of value in conversion from " - "%qs to %qs at %L", - gfc_typename (&src->ts), gfc_typename (&result->ts), - &src->where); - did_warn = true; - } - - if (!did_warn && warn_conversion_extra && src->ts.kind != kind) - gfc_warning_now (OPT_Wconversion_extra, "Conversion from %qs to %qs " - "at %L", gfc_typename(&src->ts), - gfc_typename (&result->ts), &src->where); - - return result; -} - - -/* Logical kind conversion. */ - -gfc_expr * -gfc_log2log (gfc_expr *src, int kind) -{ - gfc_expr *result; - - result = gfc_get_constant_expr (BT_LOGICAL, kind, &src->where); - result->value.logical = src->value.logical; - - return result; -} - - -/* Convert logical to integer. */ - -gfc_expr * -gfc_log2int (gfc_expr *src, int kind) -{ - gfc_expr *result; - - result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where); - mpz_set_si (result->value.integer, src->value.logical); - - return result; -} - - -/* Convert integer to logical. */ - -gfc_expr * -gfc_int2log (gfc_expr *src, int kind) -{ - gfc_expr *result; - - result = gfc_get_constant_expr (BT_LOGICAL, kind, &src->where); - result->value.logical = (mpz_cmp_si (src->value.integer, 0) != 0); - - return result; -} - -/* Convert character to character. We only use wide strings internally, - so we only set the kind. */ - -gfc_expr * -gfc_character2character (gfc_expr *src, int kind) -{ - gfc_expr *result; - result = gfc_copy_expr (src); - result->ts.kind = kind; - - return result; -} - -/* Helper function to set the representation in a Hollerith conversion. - This assumes that the ts.type and ts.kind of the result have already - been set. */ - -static void -hollerith2representation (gfc_expr *result, gfc_expr *src) -{ - size_t src_len, result_len; - - src_len = src->representation.length - src->ts.u.pad; - gfc_target_expr_size (result, &result_len); - - if (src_len > result_len) - { - gfc_warning (OPT_Wcharacter_truncation, "The Hollerith constant at %L " - "is truncated in conversion to %qs", &src->where, - gfc_typename(&result->ts)); - } - - result->representation.string = XCNEWVEC (char, result_len + 1); - memcpy (result->representation.string, src->representation.string, - MIN (result_len, src_len)); - - if (src_len < result_len) - memset (&result->representation.string[src_len], ' ', result_len - src_len); - - result->representation.string[result_len] = '\0'; /* For debugger */ - result->representation.length = result_len; -} - - -/* Helper function to set the representation in a character conversion. - This assumes that the ts.type and ts.kind of the result have already - been set. */ - -static void -character2representation (gfc_expr *result, gfc_expr *src) -{ - size_t src_len, result_len, i; - src_len = src->value.character.length; - gfc_target_expr_size (result, &result_len); - - if (src_len > result_len) - gfc_warning (OPT_Wcharacter_truncation, "The character constant at %L is " - "truncated in conversion to %s", &src->where, - gfc_typename(&result->ts)); - - result->representation.string = XCNEWVEC (char, result_len + 1); - - for (i = 0; i < MIN (result_len, src_len); i++) - result->representation.string[i] = (char) src->value.character.string[i]; - - if (src_len < result_len) - memset (&result->representation.string[src_len], ' ', - result_len - src_len); - - result->representation.string[result_len] = '\0'; /* For debugger. */ - result->representation.length = result_len; -} - -/* Convert Hollerith to integer. The constant will be padded or truncated. */ - -gfc_expr * -gfc_hollerith2int (gfc_expr *src, int kind) -{ - gfc_expr *result; - result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where); - - hollerith2representation (result, src); - gfc_interpret_integer (kind, (unsigned char *) result->representation.string, - result->representation.length, result->value.integer); - - return result; -} - -/* Convert character to integer. The constant will be padded or truncated. */ - -gfc_expr * -gfc_character2int (gfc_expr *src, int kind) -{ - gfc_expr *result; - result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where); - - character2representation (result, src); - gfc_interpret_integer (kind, (unsigned char *) result->representation.string, - result->representation.length, result->value.integer); - return result; -} - -/* Convert Hollerith to real. The constant will be padded or truncated. */ - -gfc_expr * -gfc_hollerith2real (gfc_expr *src, int kind) -{ - gfc_expr *result; - result = gfc_get_constant_expr (BT_REAL, kind, &src->where); - - hollerith2representation (result, src); - gfc_interpret_float (kind, (unsigned char *) result->representation.string, - result->representation.length, result->value.real); - - return result; -} - -/* Convert character to real. The constant will be padded or truncated. */ - -gfc_expr * -gfc_character2real (gfc_expr *src, int kind) -{ - gfc_expr *result; - result = gfc_get_constant_expr (BT_REAL, kind, &src->where); - - character2representation (result, src); - gfc_interpret_float (kind, (unsigned char *) result->representation.string, - result->representation.length, result->value.real); - - return result; -} - - -/* Convert Hollerith to complex. The constant will be padded or truncated. */ - -gfc_expr * -gfc_hollerith2complex (gfc_expr *src, int kind) -{ - gfc_expr *result; - result = gfc_get_constant_expr (BT_COMPLEX, kind, &src->where); - - hollerith2representation (result, src); - gfc_interpret_complex (kind, (unsigned char *) result->representation.string, - result->representation.length, result->value.complex); - - return result; -} - -/* Convert character to complex. The constant will be padded or truncated. */ - -gfc_expr * -gfc_character2complex (gfc_expr *src, int kind) -{ - gfc_expr *result; - result = gfc_get_constant_expr (BT_COMPLEX, kind, &src->where); - - character2representation (result, src); - gfc_interpret_complex (kind, (unsigned char *) result->representation.string, - result->representation.length, result->value.complex); - - return result; -} - - -/* Convert Hollerith to character. */ - -gfc_expr * -gfc_hollerith2character (gfc_expr *src, int kind) -{ - gfc_expr *result; - - result = gfc_copy_expr (src); - result->ts.type = BT_CHARACTER; - result->ts.kind = kind; - result->ts.u.pad = 0; - - result->value.character.length = result->representation.length; - result->value.character.string - = gfc_char_to_widechar (result->representation.string); - - return result; -} - - -/* Convert Hollerith to logical. The constant will be padded or truncated. */ - -gfc_expr * -gfc_hollerith2logical (gfc_expr *src, int kind) -{ - gfc_expr *result; - result = gfc_get_constant_expr (BT_LOGICAL, kind, &src->where); - - hollerith2representation (result, src); - gfc_interpret_logical (kind, (unsigned char *) result->representation.string, - result->representation.length, &result->value.logical); - - return result; -} - -/* Convert character to logical. The constant will be padded or truncated. */ - -gfc_expr * -gfc_character2logical (gfc_expr *src, int kind) -{ - gfc_expr *result; - result = gfc_get_constant_expr (BT_LOGICAL, kind, &src->where); - - character2representation (result, src); - gfc_interpret_logical (kind, (unsigned char *) result->representation.string, - result->representation.length, &result->value.logical); - - return result; -} |