diff options
Diffstat (limited to 'gcc/expr.c')
-rw-r--r-- | gcc/expr.c | 34 |
1 files changed, 1 insertions, 33 deletions
@@ -11859,38 +11859,6 @@ string_constant (tree arg, tree *ptr_offset, tree *mem_size, tree *decl) return init; } -/* Compute the modular multiplicative inverse of A modulo M - using extended Euclid's algorithm. Assumes A and M are coprime. */ -static wide_int -mod_inv (const wide_int &a, const wide_int &b) -{ - /* Verify the assumption. */ - gcc_checking_assert (wi::eq_p (wi::gcd (a, b), 1)); - - unsigned int p = a.get_precision () + 1; - gcc_checking_assert (b.get_precision () + 1 == p); - wide_int c = wide_int::from (a, p, UNSIGNED); - wide_int d = wide_int::from (b, p, UNSIGNED); - wide_int x0 = wide_int::from (0, p, UNSIGNED); - wide_int x1 = wide_int::from (1, p, UNSIGNED); - - if (wi::eq_p (b, 1)) - return wide_int::from (1, p, UNSIGNED); - - while (wi::gt_p (c, 1, UNSIGNED)) - { - wide_int t = d; - wide_int q = wi::divmod_trunc (c, d, UNSIGNED, &d); - c = t; - wide_int s = x0; - x0 = wi::sub (x1, wi::mul (q, x0)); - x1 = s; - } - if (wi::lt_p (x1, 0, SIGNED)) - x1 += d; - return x1; -} - /* Optimize x % C1 == C2 for signed modulo if C1 is a power of two and C2 is non-zero and C3 ((1<<(prec-1)) | (C1 - 1)): for C2 > 0 to x & C3 == C2 @@ -12101,7 +12069,7 @@ maybe_optimize_mod_cmp (enum tree_code code, tree *arg0, tree *arg1) w = wi::lrshift (w, shift); wide_int a = wide_int::from (w, prec + 1, UNSIGNED); wide_int b = wi::shifted_mask (prec, 1, false, prec + 1); - wide_int m = wide_int::from (mod_inv (a, b), prec, UNSIGNED); + wide_int m = wide_int::from (wi::mod_inv (a, b), prec, UNSIGNED); tree c3 = wide_int_to_tree (type, m); tree c5 = NULL_TREE; wide_int d, e; |