diff options
Diffstat (limited to 'gcc/config/fx80/fx80.h')
| -rw-r--r-- | gcc/config/fx80/fx80.h | 1445 |
1 files changed, 0 insertions, 1445 deletions
diff --git a/gcc/config/fx80/fx80.h b/gcc/config/fx80/fx80.h deleted file mode 100644 index 003d6d4..0000000 --- a/gcc/config/fx80/fx80.h +++ /dev/null @@ -1,1445 +0,0 @@ -/* Definitions of target machine for GNU compiler. Alliant FX version. - Copyright (C) 1989, 1993, 1994, 1995, 1996, 1998, 1999, 2000 - Free Software Foundation, Inc. - Adapted from m68k.h by Paul Petersen (petersen@uicsrd.csrd.uiuc.edu) - and Joe Weening (weening@gang-of-four.stanford.edu). - -This file is part of GNU CC. - -GNU CC is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2, or (at your option) -any later version. - -GNU CC is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License -along with GNU CC; see the file COPYING. If not, write to -the Free Software Foundation, 59 Temple Place - Suite 330, -Boston, MA 02111-1307, USA. */ - - -/* This file is based on m68k.h, simplified by removing support for - the Sun FPA and other things not applicable to the Alliant. Some - remnants of these features remain. */ - -/* Names to predefine in the preprocessor for this target machine. */ - -#define CPP_PREDEFINES "-Dmc68000 -Dalliant -Dunix -Asystem(unix) -Acpu(m68k) -Amachine(m68k)" - -/* Print subsidiary information on the compiler version in use. */ - -#define TARGET_VERSION fprintf (stderr, " (Alliant)"); - -/* Run-time compilation parameters selecting different hardware - subsets. The Alliant IP is an mc68020. (Older mc68010-based IPs - are no longer supported.) The Alliant CE is 68020-compatible, and - also has floating point, vector and concurrency instructions. - - Although the IP doesn't have floating point, it emulates it in the - operating system. Using this generally is faster than running code - compiled with -msoft-float, because the soft-float code still uses - (simulated) FP registers and ends up emulating several fmove{s,d} - instructions per call. So I don't recommend using soft-float for - any Alliant code. -- JSW -*/ - -extern int target_flags; - -/* Macros used in the machine description to test the flags. */ - -/* Compile for a 68020 (not a 68000 or 68010). */ -#define TARGET_68020 (target_flags & 1) -/* Compile CE insns for floating point (not library calls). */ -#define TARGET_CE (target_flags & 2) -/* Compile using 68020 bitfield insns. */ -#define TARGET_BITFIELD (target_flags & 4) -/* Compile with 16-bit `int'. */ -#define TARGET_SHORT (target_flags & 040) - -/* Default 3 means compile 68020 and CE instructions. We don't use - bitfield instructions because there appears to be a bug in the - implementation of bfins on the CE. */ - -#define TARGET_DEFAULT 3 - -/* Define __HAVE_CE__ in preprocessor according to the -m flags. - This will control the use of inline FP insns in certain macros. - Also inform the program which CPU this is for. */ - -#if TARGET_DEFAULT & 02 - -/* -mce is the default */ -#define CPP_SPEC \ -"%{!msoft-float:-D__HAVE_CE__ }\ -%{m68000:-Dmc68010}%{mc68000:-Dmc68010}%{!mc68000:%{!m68000:-Dmc68020}}" - -#else - -/* -msoft-float is the default */ -#define CPP_SPEC \ -"%{mce:-D__HAVE_CE__ }\ -%{m68000:-Dmc68010}%{mc68000:-Dmc68010}%{!mc68000:%{!m68000:-Dmc68020}}" - -#endif - -/* Link with libg.a when debugging, for dbx's sake. */ - -#define LIB_SPEC "%{g:-lg} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} " - -/* Make the linker remove temporary labels, since the Alliant assembler - doesn't. */ - -#define LINK_SPEC "-X" - -/* Every structure or union's size must be a multiple of 2 bytes. */ - -#define STRUCTURE_SIZE_BOUNDARY 16 - -/* This is BSD, so it wants DBX format. */ - -#define DBX_DEBUGGING_INFO - -/* Macro to define tables used to set the flags. - This is a list in braces of pairs in braces, - each pair being { "NAME", VALUE } - where VALUE is the bits to set or minus the bits to clear. - An empty string NAME is used to identify the default VALUE. */ - -#define TARGET_SWITCHES \ - { { "68020", 5, N_("Generate code for a mc68020")}, \ - { "c68020", 5, N_("Generate code for a mc68020")}, \ - { "bitfield", 4, N_("Use bitfield instructions")}, \ - { "68000", -7, N_("Generate code for a mc68000")}, \ - { "c68000", -7, N_("Generate code for a mc68000")}, \ - { "soft-float", -2, N_("Generate software FP code")}, \ - { "nobitfield", -4, N_("Do not generate bitfield insns")}, \ - { "short", 040, N_("Use 16bit integers")}, \ - { "noshort", -040, N_("Use 32bit integers")}, \ - { "", TARGET_DEFAULT, NULL}} - -/* target machine storage layout */ - -/* Define this if most significant bit is lowest numbered - in instructions that operate on numbered bit-fields. - This is true for 68020 insns such as bfins and bfexts. - We make it true always by avoiding using the single-bit insns - except in special cases with constant bit numbers. */ -#define BITS_BIG_ENDIAN 1 - -/* Define this if most significant byte of a word is the lowest numbered. */ -/* That is true on the 68000. */ -#define BYTES_BIG_ENDIAN 1 - -/* Define this if most significant word of a multiword number is the lowest - numbered. */ -/* For 68000 we can decide arbitrarily - since there are no machine instructions for them. */ -#define WORDS_BIG_ENDIAN 0 - -/* number of bits in an addressable storage unit */ -#define BITS_PER_UNIT 8 - -/* Width in bits of a "word", which is the contents of a machine register. - Note that this is not necessarily the width of data type `int'; - if using 16-bit ints on a 68000, this would still be 32. - But on a machine with 16-bit registers, this would be 16. */ -#define BITS_PER_WORD 32 - -/* Width of a word, in units (bytes). */ -#define UNITS_PER_WORD 4 - -/* Width in bits of a pointer. - See also the macro `Pmode' defined below. */ -#define POINTER_SIZE 32 - -/* Allocation boundary (in *bits*) for storing arguments in argument list. */ -#define PARM_BOUNDARY (TARGET_SHORT ? 16 : 32) - -/* Boundary (in *bits*) on which stack pointer should be aligned. */ -#define STACK_BOUNDARY 16 - -/* Allocation boundary (in *bits*) for the code of a function. */ -#define FUNCTION_BOUNDARY 16 - -/* Alignment of field after `int : 0' in a structure. */ -#define EMPTY_FIELD_BOUNDARY 16 - -/* No data type wants to be aligned rounder than this. */ -#define BIGGEST_ALIGNMENT 16 - -/* Set this non-zero if move instructions will actually fail to work - when given unaligned data. */ -#define STRICT_ALIGNMENT 1 - -/* Define number of bits in most basic integer type. - (If undefined, default is BITS_PER_WORD). */ - -#define INT_TYPE_SIZE (TARGET_SHORT ? 16 : 32) - -/* Define these to avoid dependence on meaning of `int'. */ - -#define WCHAR_TYPE "long int" -#define WCHAR_TYPE_SIZE 32 - -/* Standard register usage. */ - -/* Number of actual hardware registers. - The hardware registers are assigned numbers for the compiler - from 0 to just below FIRST_PSEUDO_REGISTER. - All registers that the compiler knows about must be given numbers, - even those that are not normally considered general registers. - For the Alliant, we give the data registers numbers 0-7, - the address registers numbers 010-017, - and the floating point registers numbers 020-027. */ -#define FIRST_PSEUDO_REGISTER 24 - -/* 1 for registers that have pervasive standard uses - and are not available for the register allocator. - On the Alliant, these are a0 (argument pointer), - a6 (frame pointer) and a7 (stack pointer). */ -#define FIXED_REGISTERS \ - {0, 0, 0, 0, 0, 0, 0, 0, \ - 1, 0, 0, 0, 0, 0, 1, 1, \ - 0, 0, 0, 0, 0, 0, 0, 0 } - -/* 1 for registers not available across function calls. - These must include the FIXED_REGISTERS and also any - registers that can be used without being saved. - The latter must include the registers where values are returned - and the register where structure-value addresses are passed. - Aside from that, you can include as many other registers as you like. - The Alliant calling sequence allows a function to use any register, - so we include them all here. */ - -#define CALL_USED_REGISTERS \ - {1, 1, 1, 1, 1, 1, 1, 1, \ - 1, 1, 1, 1, 1, 1, 1, 1, \ - 1, 1, 1, 1, 1, 1, 1, 1 } - -/* Return number of consecutive hard regs needed starting at reg REGNO - to hold something of mode MODE. - This is ordinarily the length in words of a value of mode MODE - but can be less for certain modes in special long registers. - - On the Alliant, ordinary registers hold 32 bits worth; - for the FP registers, a single register is always enough for - any floating-point value. */ -#define HARD_REGNO_NREGS(REGNO, MODE) \ - ((REGNO) >= 16 ? GET_MODE_NUNITS (MODE) \ - : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) - -/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. - On the Alliant, the cpu registers can hold any mode but the FP registers - can hold only floating point. */ -#define HARD_REGNO_MODE_OK(REGNO, MODE) \ - ((REGNO) < 16 || GET_MODE_CLASS (MODE) == MODE_FLOAT \ - || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) - -/* Value is 1 if it is a good idea to tie two pseudo registers - when one has mode MODE1 and one has mode MODE2. - If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, - for any hard reg, then this must be 0 for correct output. */ -#define MODES_TIEABLE_P(MODE1, MODE2) \ - (((MODE1) == SFmode || (MODE1) == DFmode \ - || (MODE1) == SCmode || (MODE1) == DCmode) \ - == ((MODE2) == SFmode || (MODE2) == DFmode \ - || (MODE2) == SCmode || (MODE2) == DCmode)) - -/* Specify the registers used for certain standard purposes. - The values of these macros are register numbers. */ - -/* m68000 pc isn't overloaded on a register. */ -/* #define PC_REGNUM */ - -/* Register to use for pushing function arguments. */ -#define STACK_POINTER_REGNUM 15 - -/* Base register for access to local variables of the function. */ -#define FRAME_POINTER_REGNUM 14 - -/* Value should be nonzero if functions must have frame pointers. - Zero means the frame pointer need not be set up (and parms - may be accessed via the stack pointer) in functions that seem suitable. - This is computed in `reload', in reload1.c. */ -/* Set for now on Alliant until we find a way to make this work with - their calling sequence. */ -#define FRAME_POINTER_REQUIRED 1 - -/* Base register for access to arguments of the function. */ -#define ARG_POINTER_REGNUM 8 - -/* Register in which static-chain is passed to a function. */ -#define STATIC_CHAIN_REGNUM 10 - -/* Register in which address to store a structure value - is passed to a function. */ -#define STRUCT_VALUE_REGNUM 9 - -/* Define the classes of registers for register constraints in the - machine description. Also define ranges of constants. - - One of the classes must always be named ALL_REGS and include all hard regs. - If there is more than one class, another class must be named NO_REGS - and contain no registers. - - The name GENERAL_REGS must be the name of a class (or an alias for - another name such as ALL_REGS). This is the class of registers - that is allowed by "g" or "r" in a register constraint. - Also, registers outside this class are allocated only when - instructions express preferences for them. - - The classes must be numbered in nondecreasing order; that is, - a larger-numbered class must never be contained completely - in a smaller-numbered class. - - For any two classes, it is very desirable that there be another - class that represents their union. */ - -/* The Alliant has three kinds of registers, so eight classes would be - a complete set. One of them is not needed. */ - -enum reg_class { NO_REGS, FP_REGS, DATA_REGS, DATA_OR_FP_REGS, - ADDR_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES }; - -#define N_REG_CLASSES (int) LIM_REG_CLASSES - -/* Give names of register classes as strings for dump file. */ - -#define REG_CLASS_NAMES \ - { "NO_REGS", "FP_REGS", "DATA_REGS", "DATA_OR_FP_REGS", \ - "ADDR_REGS", "GENERAL_REGS", "ALL_REGS" } - -/* Define which registers fit in which classes. - This is an initializer for a vector of HARD_REG_SET - of length N_REG_CLASSES. */ - -#define REG_CLASS_CONTENTS \ -{ \ - 0, /* NO_REGS */ \ - 0x00ff0000, /* FP_REGS */ \ - 0x000000ff, /* DATA_REGS */ \ - 0x00ff00ff, /* DATA_OR_FP_REGS */ \ - 0x0000ff00, /* ADDR_REGS */ \ - 0x0000ffff, /* GENERAL_REGS */ \ - 0x00ffffff /* ALL_REGS */ \ -} - -/* The same information, inverted: - Return the class number of the smallest class containing - reg number REGNO. This could be a conditional expression - or could index an array. */ - -extern enum reg_class regno_reg_class[]; -#define REGNO_REG_CLASS(REGNO) (regno_reg_class[(REGNO)>>3]) - -/* The class value for index registers, and the one for base regs. */ - -#define INDEX_REG_CLASS GENERAL_REGS -#define BASE_REG_CLASS ADDR_REGS - -/* Get reg_class from a letter such as appears in the machine description. */ - -#define REG_CLASS_FROM_LETTER(C) \ - ((C) == 'a' ? ADDR_REGS : \ - ((C) == 'd' ? DATA_REGS : \ - ((C) == 'f' ? FP_REGS : \ - NO_REGS))) - -/* The letters I, J, K, L and M in a register constraint string - can be used to stand for particular ranges of immediate operands. - This macro defines what the ranges are. - C is the letter, and VALUE is a constant value. - Return 1 if VALUE is in the range specified by C. - - For the 68000, `I' is used for the range 1 to 8 - allowed as immediate shift counts and in addq. - `J' is used for the range of signed numbers that fit in 16 bits. - `K' is for numbers that moveq can't handle. - `L' is for range -8 to -1, range of values that can be added with subq. */ - -#define CONST_OK_FOR_LETTER_P(VALUE, C) \ - ((C) == 'I' ? (VALUE) > 0 && (VALUE) <= 8 : \ - (C) == 'J' ? (VALUE) >= -0x8000 && (VALUE) <= 0x7FFF : \ - (C) == 'K' ? (VALUE) < -0x80 || (VALUE) >= 0x80 : \ - (C) == 'L' ? (VALUE) < 0 && (VALUE) >= -8 : 0) - -#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0 - -/* Given an rtx X being reloaded into a reg required to be - in class CLASS, return the class of reg to actually use. - In general this is just CLASS; but on some machines - in some cases it is preferable to use a more restrictive class. - On the 68000 series, use a data reg if possible when the - value is a constant in the range where moveq could be used - and we ensure that QImodes are reloaded into data regs. */ - -#define PREFERRED_RELOAD_CLASS(X,CLASS) \ - ((GET_CODE (X) == CONST_INT \ - && (unsigned) (INTVAL (X) + 0x80) < 0x100 \ - && (CLASS) != ADDR_REGS) \ - ? DATA_REGS \ - : GET_MODE (X) == QImode \ - ? DATA_REGS \ - : (CLASS)) - -/* Return the maximum number of consecutive registers - needed to represent mode MODE in a register of class CLASS. */ -/* On the 68000, this is the size of MODE in words, - except in the FP regs, where a single reg is always enough. */ -#define CLASS_MAX_NREGS(CLASS, MODE) \ - ((CLASS) == FP_REGS ? 1 \ - : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) - -/* Moves between fp regs and other regs are two insns. */ -#define REGISTER_MOVE_COST(CLASS1, CLASS2) \ - ((((CLASS1) == FP_REGS && (CLASS2) != FP_REGS) \ - || ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS)) \ - ? 4 : 2) - -/* Stack layout; function entry, exit and calling. */ - -/* Define this if pushing a word on the stack - makes the stack pointer a smaller address. */ -#define STACK_GROWS_DOWNWARD - -/* Define this if the nominal address of the stack frame - is at the high-address end of the local variables; - that is, each additional local variable allocated - goes at a more negative offset in the frame. */ -#define FRAME_GROWS_DOWNWARD - -/* The Alliant uses -fcaller-saves by default. */ -#define DEFAULT_CALLER_SAVES - -/* Offset within stack frame to start allocating local variables at. - If FRAME_GROWS_DOWNWARD, this is the offset to the END of the - first local allocated. Otherwise, it is the offset to the BEGINNING - of the first local allocated. */ -#define STARTING_FRAME_OFFSET -4 - -/* If we generate an insn to push BYTES bytes, - this says how many the stack pointer really advances by. - On the 68000, sp@- in a byte insn really pushes a word. */ -#define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1) - -/* Offset of first parameter from the argument pointer register value. */ -#define FIRST_PARM_OFFSET(FNDECL) 0 - -/* Value is the number of bytes of arguments automatically - popped when returning from a subroutine call. - FUNDECL is the declaration node of the function (as a tree), - FUNTYPE is the data type of the function (as a tree), - or for a library call it is an identifier node for the subroutine name. - SIZE is the number of bytes of arguments passed on the stack. - - On the Alliant we define this as SIZE and make the calling sequence - (in alliant.md) pop the args. This wouldn't be necessary if we - could add to the pending stack adjustment the size of the argument - descriptors that are pushed after the arguments. */ - -#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) (SIZE) - -/* Define how to find the value returned by a function. - VALTYPE is the data type of the value (as a tree). - If the precise function being called is known, FUNC is its FUNCTION_DECL; - otherwise, FUNC is 0. */ - -/* On the Alliant the return value is in FP0 if real, else D0. */ - -#define FUNCTION_VALUE(VALTYPE, FUNC) \ - (TREE_CODE (VALTYPE) == REAL_TYPE \ - ? gen_rtx_REG (TYPE_MODE (VALTYPE), 16) \ - : gen_rtx_REG (TYPE_MODE (VALTYPE), 0)) - -/* Define how to find the value returned by a library function - assuming the value has mode MODE. */ - -/* On the Alliant the return value is in FP0 if real, else D0. The - Alliant library functions for floating-point emulation return their - values both in FP0 and in D0/D1. But since not all libgcc functions - return the results of these directly, we cannot assume that D0/D1 - contain the values we expect on return from a libgcc function. */ - -#define LIBCALL_VALUE(MODE) \ - (((MODE) == DFmode || (MODE) == SFmode) \ - ? gen_rtx_REG (MODE, 16) \ - : gen_rtx_REG (MODE, 0)) - -/* 1 if N is a possible register number for a function value. - On the Alliant, D0 and FP0 are the only registers thus used. - (No need to mention D1 when used as a pair with D0.) */ - -#define FUNCTION_VALUE_REGNO_P(N) (((N) & ~16) == 0) - -/* Define this if PCC uses the nonreentrant convention for returning - structure and union values. */ - -#define PCC_STATIC_STRUCT_RETURN - -/* 1 if N is a possible register number for function argument passing. - On the Alliant, no registers are used in this way. */ - -#define FUNCTION_ARG_REGNO_P(N) 0 - -/* Define a data type for recording info about an argument list - during the scan of that argument list. This data type should - hold all necessary information about the function itself - and about the args processed so far, enough to enable macros - such as FUNCTION_ARG to determine where the next arg should go. - - On the Alliant, this is a single integer, which is a number of bytes - of arguments scanned so far. */ - -#define CUMULATIVE_ARGS int - -/* Initialize a variable CUM of type CUMULATIVE_ARGS - for a call to a function whose data type is FNTYPE. - For a library call, FNTYPE is 0. - - On the Alliant, the offset starts at 0. */ - -#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \ - ((CUM) = 0) - -/* Update the data in CUM to advance over an argument - of mode MODE and data type TYPE. - (TYPE is null for libcalls where that information may not be available.) */ - -#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ - ((CUM) += ((MODE) != BLKmode \ - ? (GET_MODE_SIZE (MODE) + 3) & ~3 \ - : (int_size_in_bytes (TYPE) + 3) & ~3)) - -/* Define where to put the arguments to a function. - Value is zero to push the argument on the stack, - or a hard register in which to store the argument. - - MODE is the argument's machine mode. - TYPE is the data type of the argument (as a tree). - This is null for libcalls where that information may - not be available. - CUM is a variable of type CUMULATIVE_ARGS which gives info about - the preceding args and about the function being called. - NAMED is nonzero if this argument is a named parameter - (otherwise it is an extra parameter matching an ellipsis). */ - -/* On the Alliant all args are pushed. */ - -#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0 - -/* For an arg passed partly in registers and partly in memory, - this is the number of registers used. - For args passed entirely in registers or entirely in memory, zero. */ - -#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0 - -/* This macro generates the assembly code for function entry. - FILE is a stdio stream to output the code to. - SIZE is an int: how many units of temporary storage to allocate. - Refer to the array `regs_ever_live' to determine which registers - to save; `regs_ever_live[I]' is nonzero if register number I - is ever used in the function. This macro is responsible for - knowing which registers should not be saved even if used. - The Alliant uses caller-saves, so this macro is very simple. */ - -#define FUNCTION_PROLOGUE(FILE, SIZE) \ -{ int fsize = ((SIZE) - STARTING_FRAME_OFFSET + 3) & -4; \ - if (frame_pointer_needed) \ - { \ - if (fsize < 0x8000) \ - fprintf(FILE,"\tlinkw a6,#%d\n", -fsize); \ - else if (TARGET_68020) \ - fprintf(FILE,"\tlinkl a6,#%d\n", -fsize); \ - else \ - fprintf(FILE,"\tlinkw a6,#0\n\tsubl #%d,sp\n", fsize); \ - fprintf(FILE, "\tmovl a0,a6@(-4)\n" ); }} - -/* Output assembler code to FILE to increment profiler label # LABELNO - for profiling a function entry. */ - -#define FUNCTION_PROFILER(FILE, LABELNO) \ - fprintf (FILE, "\tjbsr __mcount_\n") - -/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, - the stack pointer does not matter. The value is tested only in - functions that have frame pointers. - No definition is equivalent to always zero. */ - -#define EXIT_IGNORE_STACK 1 - -/* This macro generates the assembly code for function exit, - on machines that need it. If FUNCTION_EPILOGUE is not defined - then individual return instructions are generated for each - return statement. Args are same as for FUNCTION_PROLOGUE. - - The function epilogue should not depend on the current stack pointer! - It should use the frame pointer only. This is mandatory because - of alloca; we also take advantage of it to omit stack adjustments - before returning. */ - -#define FUNCTION_EPILOGUE(FILE, SIZE) \ -{ if (frame_pointer_needed) \ - fprintf (FILE, "\tunlk a6\n"); \ - fprintf (FILE, "\trts\n"); } - -/* Store in the variable DEPTH the initial difference between the - frame pointer reg contents and the stack pointer reg contents, - as of the start of the function body. This depends on the layout - of the fixed parts of the stack frame and on how registers are saved. */ - -#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \ -{ \ - int regno; \ - int offset = -4; \ - for (regno = 16; regno < FIRST_PSEUDO_REGISTER; regno++) \ - if (regs_ever_live[regno] && ! call_used_regs[regno]) \ - offset += 12; \ - for (regno = 0; regno < 16; regno++) \ - if (regs_ever_live[regno] && ! call_used_regs[regno]) \ - offset += 4; \ - (DEPTH) = offset - ((get_frame_size () + 3) & -4); \ -} - -/* Addressing modes, and classification of registers for them. */ - -#define HAVE_POST_INCREMENT 1 -/* #define HAVE_POST_DECREMENT 0 */ - -#define HAVE_PRE_DECREMENT 1 -/* #define HAVE_PRE_INCREMENT 0 */ - -/* Macros to check register numbers against specific register classes. */ - -/* These assume that REGNO is a hard or pseudo reg number. - They give nonzero only if REGNO is a hard reg of the suitable class - or a pseudo reg currently allocated to a suitable hard reg. - Since they use reg_renumber, they are safe only once reg_renumber - has been allocated, which happens in local-alloc.c. */ - -#define REGNO_OK_FOR_INDEX_P(REGNO) \ -((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16) -#define REGNO_OK_FOR_BASE_P(REGNO) \ -(((REGNO) ^ 010) < 8 || (unsigned) (reg_renumber[REGNO] ^ 010) < 8) -#define REGNO_OK_FOR_DATA_P(REGNO) \ -((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8) -#define REGNO_OK_FOR_FP_P(REGNO) \ -(((REGNO) ^ 020) < 8 || (unsigned) (reg_renumber[REGNO] ^ 020) < 8) - -/* Now macros that check whether X is a register and also, - strictly, whether it is in a specified class. - - These macros are specific to the 68000, and may be used only - in code for printing assembler insns and in conditions for - define_optimization. */ - -/* 1 if X is a data register. */ - -#define DATA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_DATA_P (REGNO (X))) - -/* 1 if X is an fp register. */ - -#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X))) - -/* 1 if X is an address register */ - -#define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X))) - -/* Maximum number of registers that can appear in a valid memory address. */ - -#define MAX_REGS_PER_ADDRESS 2 - -/* Recognize any constant value that is a valid address. */ - -#define CONSTANT_ADDRESS_P(X) \ - (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \ - || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \ - || GET_CODE (X) == HIGH) - -/* Nonzero if the constant value X is a legitimate general operand. - It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ - -/* Alliant FP instructions don't take immediate operands, so this - forces them into memory. */ -#define LEGITIMATE_CONSTANT_P(X) (GET_CODE (X) != CONST_DOUBLE) - -/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx - and check its validity for a certain class. - We have two alternate definitions for each of them. - The usual definition accepts all pseudo regs; the other rejects - them unless they have been allocated suitable hard regs. - The symbol REG_OK_STRICT causes the latter definition to be used. - - Most source files want to accept pseudo regs in the hope that - they will get allocated to the class that the insn wants them to be in. - Source files for reload pass need to be strict. - After reload, it makes no difference, since pseudo regs have - been eliminated by then. */ - -#ifndef REG_OK_STRICT - -/* Nonzero if X is a hard reg that can be used as an index - or if it is a pseudo reg. */ -#define REG_OK_FOR_INDEX_P(X) ((REGNO (X) ^ 020) >= 8) -/* Nonzero if X is a hard reg that can be used as a base reg - or if it is a pseudo reg. */ -#define REG_OK_FOR_BASE_P(X) ((REGNO (X) & ~027) != 0) - -#else - -/* Nonzero if X is a hard reg that can be used as an index. */ -#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) -/* Nonzero if X is a hard reg that can be used as a base reg. */ -#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) - -#endif - -/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression - that is a valid memory address for an instruction. - The MODE argument is the machine mode for the MEM expression - that wants to use this address. - - The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */ - -#define INDIRECTABLE_1_ADDRESS_P(X) \ - (CONSTANT_ADDRESS_P (X) \ - || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \ - || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \ - && REG_P (XEXP (X, 0)) \ - && REG_OK_FOR_BASE_P (XEXP (X, 0))) \ - || (GET_CODE (X) == PLUS \ - && REG_P (XEXP (X, 0)) && REG_OK_FOR_BASE_P (XEXP (X, 0)) \ - && GET_CODE (XEXP (X, 1)) == CONST_INT \ - && ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000)) - -#define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \ -{ if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; } - -#define GO_IF_INDEXABLE_BASE(X, ADDR) \ -{ if (GET_CODE (X) == LABEL_REF) goto ADDR; \ - if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) goto ADDR; } - -#define GO_IF_INDEXING(X, ADDR) \ -{ if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0))) \ - { GO_IF_INDEXABLE_BASE (XEXP (X, 1), ADDR); } \ - if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1))) \ - { GO_IF_INDEXABLE_BASE (XEXP (X, 0), ADDR); } } - -#define GO_IF_INDEXED_ADDRESS(X, ADDR) \ -{ GO_IF_INDEXING (X, ADDR); \ - if (GET_CODE (X) == PLUS) \ - { if (GET_CODE (XEXP (X, 1)) == CONST_INT \ - && (unsigned) INTVAL (XEXP (X, 1)) + 0x80 < 0x100) \ - { rtx go_temp = XEXP (X, 0); GO_IF_INDEXING (go_temp, ADDR); } \ - if (GET_CODE (XEXP (X, 0)) == CONST_INT \ - && (unsigned) INTVAL (XEXP (X, 0)) + 0x80 < 0x100) \ - { rtx go_temp = XEXP (X, 1); GO_IF_INDEXING (go_temp, ADDR); } } } - -#define LEGITIMATE_INDEX_REG_P(X) \ - ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \ - || (GET_CODE (X) == SIGN_EXTEND \ - && GET_CODE (XEXP (X, 0)) == REG \ - && GET_MODE (XEXP (X, 0)) == HImode \ - && REG_OK_FOR_INDEX_P (XEXP (X, 0)))) - -#define LEGITIMATE_INDEX_P(X) \ - (LEGITIMATE_INDEX_REG_P (X) \ - || (TARGET_68020 && GET_CODE (X) == MULT \ - && LEGITIMATE_INDEX_REG_P (XEXP (X, 0)) \ - && GET_CODE (XEXP (X, 1)) == CONST_INT \ - && (INTVAL (XEXP (X, 1)) == 2 \ - || INTVAL (XEXP (X, 1)) == 4 \ - || INTVAL (XEXP (X, 1)) == 8))) - -#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ -{ GO_IF_NONINDEXED_ADDRESS (X, ADDR); \ - GO_IF_INDEXED_ADDRESS (X, ADDR); } - -/* Try machine-dependent ways of modifying an illegitimate address - to be legitimate. If we find one, return the new, valid address. - This macro is used in only one place: `memory_address' in explow.c. - - OLDX is the address as it was before break_out_memory_refs was called. - In some cases it is useful to look at this to decide what needs to be done. - - MODE and WIN are passed so that this macro can use - GO_IF_LEGITIMATE_ADDRESS. - - It is always safe for this macro to do nothing. It exists to recognize - opportunities to optimize the output. - - For the 68000, we handle X+REG by loading X into a register R and - using R+REG. R will go in an address reg and indexing will be used. - However, if REG is a broken-out memory address or multiplication, - nothing needs to be done because REG can certainly go in an address reg. */ - -#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \ -{ register int ch = (X) != (OLDX); \ - if (GET_CODE (X) == PLUS) \ - { if (GET_CODE (XEXP (X, 0)) == MULT) \ - ch = 1, XEXP (X, 0) = force_operand (XEXP (X, 0), 0); \ - if (GET_CODE (XEXP (X, 1)) == MULT) \ - ch = 1, XEXP (X, 1) = force_operand (XEXP (X, 1), 0); \ - if (ch && GET_CODE (XEXP (X, 1)) == REG \ - && GET_CODE (XEXP (X, 0)) == REG) \ - goto WIN; \ - if (ch) { GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); } \ - if (GET_CODE (XEXP (X, 0)) == REG \ - || (GET_CODE (XEXP (X, 0)) == SIGN_EXTEND \ - && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \ - && GET_MODE (XEXP (XEXP (X, 0), 0)) == HImode)) \ - { register rtx temp = gen_reg_rtx (Pmode); \ - register rtx val = force_operand (XEXP (X, 1), 0); \ - emit_move_insn (temp, val); \ - XEXP (X, 1) = temp; \ - goto WIN; } \ - else if (GET_CODE (XEXP (X, 1)) == REG \ - || (GET_CODE (XEXP (X, 1)) == SIGN_EXTEND \ - && GET_CODE (XEXP (XEXP (X, 1), 0)) == REG \ - && GET_MODE (XEXP (XEXP (X, 1), 0)) == HImode)) \ - { register rtx temp = gen_reg_rtx (Pmode); \ - register rtx val = force_operand (XEXP (X, 0), 0); \ - emit_move_insn (temp, val); \ - XEXP (X, 0) = temp; \ - goto WIN; }}} - -/* Go to LABEL if ADDR (a legitimate address expression) - has an effect that depends on the machine mode it is used for. - On the 68000, only predecrement and postincrement address depend thus - (the amount of decrement or increment being the length of the operand). */ - -#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \ - if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) goto LABEL - -/* Specify the machine mode that this machine uses - for the index in the tablejump instruction. */ -#define CASE_VECTOR_MODE HImode - -/* Define as C expression which evaluates to nonzero if the tablejump - instruction expects the table to contain offsets from the address of the - table. - Do not define this if the table should contain absolute addresses. */ -#define CASE_VECTOR_PC_RELATIVE 1 - -/* Specify the tree operation to be used to convert reals to integers. */ -#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR - -/* This is the kind of divide that is easiest to do in the general case. */ -#define EASY_DIV_EXPR TRUNC_DIV_EXPR - -/* Define this as 1 if `char' should by default be signed; else as 0. */ -#define DEFAULT_SIGNED_CHAR 1 - -/* Max number of bytes we can move from memory to memory - in one reasonably fast instruction. */ -#define MOVE_MAX 4 - -/* Define this if zero-extension is slow (more than one real instruction). */ -#define SLOW_ZERO_EXTEND - -/* Nonzero if access to memory by bytes is slow and undesirable. */ -#define SLOW_BYTE_ACCESS 0 - -/* Define this to be nonzero if shift instructions ignore all but the low-order - few bits. */ -#define SHIFT_COUNT_TRUNCATED 1 - -/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits - is done just by pretending it is already truncated. */ -#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 - -/* We assume that the store-condition-codes instructions store 0 for false - and some other value for true. This is the value stored for true. */ - -#define STORE_FLAG_VALUE (-1) - -/* When a prototype says `char' or `short', really pass an `int'. */ -#define PROMOTE_PROTOTYPES 1 - -/* Specify the machine mode that pointers have. - After generation of rtl, the compiler makes no further distinction - between pointers and any other objects of this machine mode. */ -#define Pmode SImode - -/* A function address in a call instruction - is a byte address (for indexing purposes) - so give the MEM rtx a byte's mode. */ -#define FUNCTION_MODE QImode - -/* Compute the cost of computing a constant rtl expression RTX - whose rtx-code is CODE. The body of this macro is a portion - of a switch statement. If the code is computed here, - return it with a return statement. Otherwise, break from the switch. */ - -#define CONST_COSTS(RTX,CODE,OUTER_CODE) \ - case CONST_INT: \ - /* Constant zero is super cheap due to clr instruction. */ \ - if (RTX == const0_rtx) return 0; \ - if ((unsigned) INTVAL (RTX) < 077) return 1; \ - case CONST: \ - case LABEL_REF: \ - case SYMBOL_REF: \ - return 3; \ - case CONST_DOUBLE: \ - return 5; - -/* Check a `double' value for validity for a particular machine mode. - This is defined to avoid crashes outputting certain constants. */ - -#define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \ - if (OVERFLOW) \ - (D) = 3.4028234663852890e+38; \ - else if ((MODE) == SFmode) \ - { \ - if ((d) > 3.4028234663852890e+38) \ - (OVERFLOW) = 1, (D) = 3.4028234663852890e+38; \ - else if ((D) < -3.4028234663852890e+38) \ - (OVERFLOW) = 1, (D) = -3.4028234663852890e+38; \ - else if (((D) > 0) && ((D) < 1.1754943508222873e-38)) \ - (OVERFLOW) = 1, (D) = 0.0; \ - else if (((d) < 0) && ((d) > -1.1754943508222873e-38)) \ - (OVERFLOW) = 1, (D) = 0.0; \ - } - -/* Tell final.c how to eliminate redundant test instructions. */ - -/* Here we define machine-dependent flags and fields in cc_status - (see `conditions.h'). */ - -/* On the Alliant, floating-point instructions do not modify the - ordinary CC register. Only fcmp and ftest instructions modify the - floating-point CC register. We should actually keep track of what - both kinds of CC registers contain, but for now we only consider - the most recent instruction that has set either register. */ - -/* Set if the cc value came from a floating point test, so a floating - point conditional branch must be output. */ -#define CC_IN_FP 04000 - -/* Store in cc_status the expressions - that the condition codes will describe - after execution of an instruction whose pattern is EXP. - Do not alter them if the instruction would not alter the cc's. */ - -/* On the 68000, all the insns to store in an address register - fail to set the cc's. However, in some cases these instructions - can make it possibly invalid to use the saved cc's. In those - cases we clear out some or all of the saved cc's so they won't be used. */ - -#define NOTICE_UPDATE_CC(EXP, INSN) \ -{ \ - if (GET_CODE (EXP) == SET) \ - { if (ADDRESS_REG_P (SET_DEST (EXP)) || FP_REG_P (SET_DEST (EXP))) \ - { if (cc_status.value1 \ - && reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value1)) \ - cc_status.value1 = 0; \ - if (cc_status.value2 \ - && reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value2)) \ - cc_status.value2 = 0; } \ - else if (GET_CODE (SET_SRC (EXP)) == MOD \ - || GET_CODE (SET_SRC (EXP)) == UMOD \ - || (GET_CODE (SET_SRC (EXP)) == TRUNCATE \ - && (GET_CODE (XEXP (SET_SRC (EXP))) == MOD \ - || GET_CODE (XEXP (SET_SRC (EXP))) == UMOD))) \ - /* The swap insn produces cc's that don't correspond to the \ - result. */ \ - CC_STATUS_INIT; \ - else if (SET_DEST (EXP) != cc0_rtx \ - && (FP_REG_P (SET_SRC (EXP)) \ - || GET_CODE (SET_SRC (EXP)) == FIX \ - || GET_CODE (SET_SRC (EXP)) == FLOAT_TRUNCATE \ - || GET_CODE (SET_SRC (EXP)) == FLOAT_EXTEND)) \ - { CC_STATUS_INIT; } \ - /* A pair of move insns doesn't produce a useful overall cc. */ \ - else if (!FP_REG_P (SET_DEST (EXP)) \ - && !FP_REG_P (SET_SRC (EXP)) \ - && GET_MODE_SIZE (GET_MODE (SET_SRC (EXP))) > 4 \ - && (GET_CODE (SET_SRC (EXP)) == REG \ - || GET_CODE (SET_SRC (EXP)) == MEM \ - || GET_CODE (SET_SRC (EXP)) == CONST_DOUBLE))\ - { CC_STATUS_INIT; } \ - else if (GET_CODE (SET_SRC (EXP)) == CALL) \ - { CC_STATUS_INIT; } \ - else if (XEXP (EXP, 0) != pc_rtx) \ - { cc_status.flags = 0; \ - cc_status.value1 = XEXP (EXP, 0); \ - cc_status.value2 = XEXP (EXP, 1); } } \ - else if (GET_CODE (EXP) == PARALLEL \ - && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \ - { \ - if (ADDRESS_REG_P (XEXP (XVECEXP (EXP, 0, 0), 0))) \ - CC_STATUS_INIT; \ - else if (XEXP (XVECEXP (EXP, 0, 0), 0) != pc_rtx) \ - { cc_status.flags = 0; \ - cc_status.value1 = XEXP (XVECEXP (EXP, 0, 0), 0); \ - cc_status.value2 = XEXP (XVECEXP (EXP, 0, 0), 1); } } \ - else CC_STATUS_INIT; \ - if (cc_status.value2 != 0 \ - && ADDRESS_REG_P (cc_status.value2) \ - && GET_MODE (cc_status.value2) == QImode) \ - CC_STATUS_INIT; \ - if (cc_status.value2 != 0) \ - switch (GET_CODE (cc_status.value2)) \ - { case PLUS: case MINUS: case MULT: \ - case DIV: case UDIV: case MOD: case UMOD: case NEG: \ - case ASHIFT: case ASHIFTRT: case LSHIFTRT: \ - case ROTATE: case ROTATERT: \ - if (GET_MODE (cc_status.value2) != VOIDmode) \ - cc_status.flags |= CC_NO_OVERFLOW; \ - break; \ - case ZERO_EXTEND: \ - /* (SET r1 (ZERO_EXTEND r2)) on this machine - ends with a move insn moving r2 in r2's mode. - Thus, the cc's are set for r2. - This can set N bit spuriously. */ \ - cc_status.flags |= CC_NOT_NEGATIVE; } \ - if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \ - && cc_status.value2 \ - && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \ - cc_status.value2 = 0; \ - if ((cc_status.value1 && FP_REG_P (cc_status.value1)) \ - || (cc_status.value2 && FP_REG_P (cc_status.value2))) \ - cc_status.flags = CC_IN_FP; } - -#define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \ -{ if (cc_prev_status.flags & CC_IN_FP) \ - return FLOAT; \ - if (cc_prev_status.flags & CC_NO_OVERFLOW) \ - return NO_OV; \ - return NORMAL; } - -/* Control the assembler format that we output. */ - -/* Output at beginning of assembler file. */ - -#define ASM_FILE_START(FILE) \ - fprintf (FILE, "#NO_APP\n"); - -/* Output to assembler file text saying following lines - may contain character constants, extra white space, comments, etc. */ - -#define ASM_APP_ON "#APP\n" - -/* Output to assembler file text saying following lines - no longer contain unusual constructs. */ - -#define ASM_APP_OFF "#NO_APP\n" - -/* Output before read-only data. */ - -#define TEXT_SECTION_ASM_OP "\t.text" - -/* Output before writable data. */ - -#define DATA_SECTION_ASM_OP "\t.data" - -/* How to refer to registers in assembler output. - This sequence is indexed by compiler's hard-register-number (see above). */ - -#define REGISTER_NAMES \ -{"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \ - "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \ - "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7" } - -/* How to renumber registers for dbx and gdb. - On the Sun-3, the floating point registers have numbers - 18 to 25, not 16 to 23 as they do in the compiler. */ -/* (On the Alliant, dbx isn't working yet at all. */ - -#define DBX_REGISTER_NUMBER(REGNO) ((REGNO) < 16 ? (REGNO) : (REGNO) + 2) - -/* This is how to output the definition of a user-level label named NAME, - such as the label on a static function or variable NAME. */ - -#define ASM_OUTPUT_LABEL(FILE,NAME) \ - do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0) - -/* This is how to output a command to make the user-level label named NAME - defined for reference from other files. */ - -#define ASM_GLOBALIZE_LABEL(FILE,NAME) \ - do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0) - -/* The prefix to add to user-visible assembler symbols. */ - -#define USER_LABEL_PREFIX "_" - -/* This is how to output an internal numbered label where - PREFIX is the class of label and NUM is the number within the class. */ - -#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \ - fprintf (FILE, "%s%d:\n", PREFIX, NUM) - -/* This is how to store into the string LABEL - the symbol_ref name of an internal numbered label where - PREFIX is the class of label and NUM is the number within the class. - This is suitable for output with `assemble_name'. */ - -#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \ - sprintf (LABEL, "*%s%d", PREFIX, NUM) - -/* This is how to output an assembler line defining a `double' constant. */ - -#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \ -do { union { double d; long v[2];} tem; \ - tem.d = (VALUE); \ - fprintf (FILE, "\t.long 0x%x,0x%x\n", tem.v[0], tem.v[1]); \ - } while (0) - -/* This is how to output an assembler line defining a `float' constant. */ - -#define ASM_OUTPUT_FLOAT(FILE,VALUE) \ -do { union { float f; long l;} tem; \ - tem.f = (VALUE); \ - fprintf (FILE, "\t.long 0x%x\n", tem.l); \ - } while (0) - -/* This is how to output an assembler line defining an `int' constant. */ - -#define ASM_OUTPUT_INT(FILE,VALUE) \ -( fprintf (FILE, "\t.long "), \ - output_addr_const (FILE, (VALUE)), \ - fprintf (FILE, "\n")) - -/* Likewise for `char' and `short' constants. */ - -#define ASM_OUTPUT_SHORT(FILE,VALUE) \ -( fprintf (FILE, "\t.word "), \ - output_addr_const (FILE, (VALUE)), \ - fprintf (FILE, "\n")) - -#define ASM_OUTPUT_CHAR(FILE,VALUE) \ -( fprintf (FILE, "\t.byte "), \ - output_addr_const (FILE, (VALUE)), \ - fprintf (FILE, "\n")) - -#define ASM_OUTPUT_ASCII(FILE,PTR,SIZE) \ -do { int i; const unsigned char *pp = (const unsigned char *) (PTR); \ - fprintf((FILE), "\t.byte %d", (unsigned int)*pp++); \ - for (i = 1; i < (SIZE); ++i, ++pp) { \ - if ((i % 8) == 0) \ - fprintf((FILE), "\n\t.byte %d", (unsigned int) *pp); \ - else \ - fprintf((FILE), ",%d", (unsigned int) *pp); } \ - fprintf ((FILE), "\n"); } while (0) - -/* This is how to output an assembler line for a numeric constant byte. */ - -#define ASM_OUTPUT_BYTE(FILE,VALUE) \ - fprintf (FILE, "\t.byte 0x%x\n", (VALUE)) - -/* This is how to output an insn to push a register on the stack. - It need not be very fast code. */ - -#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \ - fprintf (FILE, "\tmovl %s,sp@-\n", reg_names[REGNO]) - -/* This is how to output an insn to pop a register from the stack. - It need not be very fast code. */ - -#define ASM_OUTPUT_REG_POP(FILE,REGNO) \ - fprintf (FILE, "\tmovl sp@+,%s\n", reg_names[REGNO]) - -/* This is how to output an element of a case-vector that is absolute. - (The 68000 does not use such vectors, - but we must define this macro anyway.) */ - -#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ - fprintf (FILE, "\t.long L%d\n", VALUE) - -/* This is how to output an element of a case-vector that is relative. */ - -#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ - fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL) - -/* This is how to output an assembler line - that says to advance the location counter - to a multiple of 2**LOG bytes. */ - -#define ASM_OUTPUT_ALIGN(FILE,LOG) \ - if ((LOG) == 1) \ - fprintf (FILE, "\t.even\n"); \ - else if ((LOG) != 0) \ - fprintf (FILE, "\t.align %dn", (LOG)); - -#define ASM_OUTPUT_SKIP(FILE,SIZE) \ - fprintf (FILE, "\t. = . + %u\n", (SIZE)) - -/* This says how to output an assembler line - to define a global common symbol. */ - -#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \ -( fputs ("\t.comm ", (FILE)), \ - assemble_name ((FILE), (NAME)), \ - fprintf ((FILE), ",%u\n", (ROUNDED))) - -/* This says how to output an assembler line - to define a local common symbol. */ - -#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \ -( fputs ("\t.lcomm ", (FILE)), \ - assemble_name ((FILE), (NAME)), \ - fprintf ((FILE), ",%u\n", (ROUNDED))) - -/* Store in OUTPUT a string (made with alloca) containing - an assembler-name for a local static variable named NAME. - LABELNO is an integer which is different for each call. */ - -#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ -( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \ - sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO))) - -/* Define the parentheses used to group arithmetic operations - in assembler code. */ - -#define ASM_OPEN_PAREN "(" -#define ASM_CLOSE_PAREN ")" - -/* Define results of standard character escape sequences. */ -#define TARGET_BELL 007 -#define TARGET_BS 010 -#define TARGET_TAB 011 -#define TARGET_NEWLINE 012 -#define TARGET_VT 013 -#define TARGET_FF 014 -#define TARGET_CR 015 - -/* Print operand X (an rtx) in assembler syntax to file FILE. - CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. - For `%' followed by punctuation, CODE is the punctuation and X is null. - - On the Alliant, we use several CODE characters: - '.' for dot needed in Motorola-style opcode names. - '-' for an operand pushing on the stack: - sp@-, -(sp) or -(%sp) depending on the style of syntax. - '+' for an operand pushing on the stack: - sp@+, (sp)+ or (%sp)+ depending on the style of syntax. - '@' for a reference to the top word on the stack: - sp@, (sp) or (%sp) depending on the style of syntax. - '#' for an immediate operand prefix (# in MIT and Motorola syntax - but & in SGS syntax). - '!' for the cc register (used in an `and to cc' insn). - - 'b' for byte insn (no effect, on the Sun; this is for the ISI). - 'd' to force memory addressing to be absolute, not relative. - 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex) - 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex), - or print pair of registers as rx:ry. */ - -#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \ - ((CODE) == '.' || (CODE) == '#' || (CODE) == '-' \ - || (CODE) == '+' || (CODE) == '@' || (CODE) == '!') - -#define PRINT_OPERAND(FILE, X, CODE) \ -{ int i; \ - if (CODE == '.') ; \ - else if (CODE == '#') fprintf (FILE, "#"); \ - else if (CODE == '-') fprintf (FILE, "sp@-"); \ - else if (CODE == '+') fprintf (FILE, "sp@+"); \ - else if (CODE == '@') fprintf (FILE, "sp@"); \ - else if (CODE == '!') fprintf (FILE, "cc"); \ - else if ((X) == 0 ) ; \ - else if (GET_CODE (X) == REG) \ - { if (REGNO (X) < 16 && (CODE == 'y' || CODE == 'x') && GET_MODE (X) == DFmode) \ - fprintf (FILE, "%s,%s", reg_names[REGNO (X)], reg_names[REGNO (X)+1]); \ - else \ - fprintf (FILE, "%s", reg_names[REGNO (X)]); \ - } \ - else if (GET_CODE (X) == MEM) \ - { \ - output_address (XEXP (X, 0)); \ - if (CODE == 'd' && ! TARGET_68020 \ - && CONSTANT_ADDRESS_P (XEXP (X, 0)) \ - && !(GET_CODE (XEXP (X, 0)) == CONST_INT \ - && INTVAL (XEXP (X, 0)) < 0x8000 \ - && INTVAL (XEXP (X, 0)) >= -0x8000)) \ - fprintf (FILE, ":l"); \ - } \ - else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode) \ - { union { double d; int i[2]; } u; \ - union { float f; int i; } u1; \ - u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \ - u1.f = u.d; \ - if (CODE == 'f') \ - fprintf (FILE, "#0r%.9g", u1.f); \ - else \ - fprintf (FILE, "#0x%x", u1.i); } \ - else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode) \ - { union { double d; int i[2]; } u; \ - u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \ - fprintf (FILE, "#0r%.20g", u.d); } \ - else { putc ('#', FILE); output_addr_const (FILE, X); }} - -/* Note that this contains a kludge that knows that the only reason - we have an address (plus (label_ref...) (reg...)) - is in the insn before a tablejump, and we know that m68k.md - generates a label LInnn: on such an insn. */ -#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \ -{ register rtx reg1, reg2, breg, ireg; \ - register rtx addr = ADDR; \ - static char *sz = ".BW.L...D"; \ - rtx offset; \ - switch (GET_CODE (addr)) \ - { \ - case REG: \ - fprintf (FILE, "%s@", reg_names[REGNO (addr)]); \ - break; \ - case PRE_DEC: \ - fprintf (FILE, "%s@-", reg_names[REGNO (XEXP (addr, 0))]); \ - break; \ - case POST_INC: \ - fprintf (FILE, "%s@+", reg_names[REGNO (XEXP (addr, 0))]); \ - break; \ - case PLUS: \ - reg1 = 0; reg2 = 0; \ - ireg = 0; breg = 0; \ - offset = 0; \ - if (CONSTANT_ADDRESS_P (XEXP (addr, 0))) \ - { \ - offset = XEXP (addr, 0); \ - addr = XEXP (addr, 1); \ - } \ - else if (CONSTANT_ADDRESS_P (XEXP (addr, 1))) \ - { \ - offset = XEXP (addr, 1); \ - addr = XEXP (addr, 0); \ - } \ - if (GET_CODE (addr) != PLUS) ; \ - else if (GET_CODE (XEXP (addr, 0)) == SIGN_EXTEND) \ - { \ - reg1 = XEXP (addr, 0); \ - addr = XEXP (addr, 1); \ - } \ - else if (GET_CODE (XEXP (addr, 1)) == SIGN_EXTEND) \ - { \ - reg1 = XEXP (addr, 1); \ - addr = XEXP (addr, 0); \ - } \ - else if (GET_CODE (XEXP (addr, 0)) == MULT) \ - { \ - reg1 = XEXP (addr, 0); \ - addr = XEXP (addr, 1); \ - } \ - else if (GET_CODE (XEXP (addr, 1)) == MULT) \ - { \ - reg1 = XEXP (addr, 1); \ - addr = XEXP (addr, 0); \ - } \ - else if (GET_CODE (XEXP (addr, 0)) == REG) \ - { \ - reg1 = XEXP (addr, 0); \ - addr = XEXP (addr, 1); \ - } \ - else if (GET_CODE (XEXP (addr, 1)) == REG) \ - { \ - reg1 = XEXP (addr, 1); \ - addr = XEXP (addr, 0); \ - } \ - if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT \ - || GET_CODE (addr) == SIGN_EXTEND) \ - { if (reg1 == 0) reg1 = addr; else reg2 = addr; addr = 0; } \ -/* for OLD_INDEXING \ - else if (GET_CODE (addr) == PLUS) \ - { \ - if (GET_CODE (XEXP (addr, 0)) == REG) \ - { \ - reg2 = XEXP (addr, 0); \ - addr = XEXP (addr, 1); \ - } \ - else if (GET_CODE (XEXP (addr, 1)) == REG) \ - { \ - reg2 = XEXP (addr, 1); \ - addr = XEXP (addr, 0); \ - } \ - } \ - */ \ - if (offset != 0) { if (addr != 0) abort (); addr = offset; } \ - if ((reg1 && (GET_CODE (reg1) == SIGN_EXTEND \ - || GET_CODE (reg1) == MULT)) \ - || (reg2 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg2)))) \ - { breg = reg2; ireg = reg1; } \ - else if (reg1 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg1))) \ - { breg = reg1; ireg = reg2; } \ - if (ireg != 0 && breg == 0 && GET_CODE (addr) == LABEL_REF) \ - { int scale = 1; \ - if (GET_CODE (ireg) == MULT) \ - { scale = INTVAL (XEXP (ireg, 1)); \ - ireg = XEXP (ireg, 0); } \ - if (GET_CODE (ireg) == SIGN_EXTEND) \ - fprintf (FILE, "pc@(L%d-LI%d-2:B)[%s:W", \ - CODE_LABEL_NUMBER (XEXP (addr, 0)), \ - CODE_LABEL_NUMBER (XEXP (addr, 0)), \ - reg_names[REGNO (XEXP (ireg, 0))]); \ - else \ - fprintf (FILE, "pc@(L%d-LI%d-2:B)[%s:L", \ - CODE_LABEL_NUMBER (XEXP (addr, 0)), \ - CODE_LABEL_NUMBER (XEXP (addr, 0)), \ - reg_names[REGNO (ireg)]); \ - fprintf (FILE, ":%c", sz[scale]); \ - putc (']', FILE); \ - break; } \ - if (breg != 0 && ireg == 0 && GET_CODE (addr) == LABEL_REF) \ - { fprintf (FILE, "pc@(L%d-LI%d-2:B)[%s:L:B]", \ - CODE_LABEL_NUMBER (XEXP (addr, 0)), \ - CODE_LABEL_NUMBER (XEXP (addr, 0)), \ - reg_names[REGNO (breg)]); \ - break; } \ - if (ireg != 0 || breg != 0) \ - { int scale = 1; \ - if (breg == 0) \ - abort (); \ - if (addr && GET_CODE (addr) == LABEL_REF) abort (); \ - fprintf (FILE, "%s@", reg_names[REGNO (breg)]); \ - if (addr != 0) { \ - putc( '(', FILE ); \ - output_addr_const (FILE, addr); \ - if (ireg != 0) { \ - if (GET_CODE(addr) == CONST_INT) { \ - int size_of = 1, val = INTVAL(addr); \ - if (val < -0x8000 || val >= 0x8000) \ - size_of = 4; \ - else if (val < -0x80 || val >= 0x80) \ - size_of = 2; \ - fprintf(FILE, ":%c", sz[size_of]); \ - } \ - else \ - fprintf(FILE, ":L"); } \ - putc( ')', FILE ); } \ - if (ireg != 0) { \ - putc ('[', FILE); \ - if (ireg != 0 && GET_CODE (ireg) == MULT) \ - { scale = INTVAL (XEXP (ireg, 1)); \ - ireg = XEXP (ireg, 0); } \ - if (ireg != 0 && GET_CODE (ireg) == SIGN_EXTEND) \ - fprintf (FILE, "%s:W", reg_names[REGNO (XEXP (ireg, 0))]); \ - else if (ireg != 0) \ - fprintf (FILE, "%s:L", reg_names[REGNO (ireg)]); \ - fprintf (FILE, ":%c", sz[scale]); \ - putc (']', FILE); \ - } \ - break; \ - } \ - else if (reg1 != 0 && GET_CODE (addr) == LABEL_REF) \ - { fprintf (FILE, "pc@(L%d-LI%d-2:B)[%s:L:B]", \ - CODE_LABEL_NUMBER (XEXP (addr, 0)), \ - CODE_LABEL_NUMBER (XEXP (addr, 0)), \ - reg_names[REGNO (reg1)]); \ - break; } \ - default: \ - if (GET_CODE (addr) == CONST_INT \ - && INTVAL (addr) < 0x8000 \ - && INTVAL (addr) >= -0x8000) \ - fprintf (FILE, "%d:W", INTVAL (addr)); \ - else \ - output_addr_const (FILE, addr); \ - }} - -/* -Local variables: -version-control: t -End: -*/ - |
