diff options
Diffstat (limited to 'gcc/alias.cc')
-rw-r--r-- | gcc/alias.cc | 3584 |
1 files changed, 3584 insertions, 0 deletions
diff --git a/gcc/alias.cc b/gcc/alias.cc new file mode 100644 index 0000000..3fd71cf --- /dev/null +++ b/gcc/alias.cc @@ -0,0 +1,3584 @@ +/* Alias analysis for GNU C + Copyright (C) 1997-2022 Free Software Foundation, Inc. + Contributed by John Carr (jfc@mit.edu). + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "backend.h" +#include "target.h" +#include "rtl.h" +#include "tree.h" +#include "gimple.h" +#include "df.h" +#include "memmodel.h" +#include "tm_p.h" +#include "gimple-ssa.h" +#include "emit-rtl.h" +#include "alias.h" +#include "fold-const.h" +#include "varasm.h" +#include "cselib.h" +#include "langhooks.h" +#include "cfganal.h" +#include "rtl-iter.h" +#include "cgraph.h" +#include "ipa-utils.h" + +/* The aliasing API provided here solves related but different problems: + + Say there exists (in c) + + struct X { + struct Y y1; + struct Z z2; + } x1, *px1, *px2; + + struct Y y2, *py; + struct Z z2, *pz; + + + py = &x1.y1; + px2 = &x1; + + Consider the four questions: + + Can a store to x1 interfere with px2->y1? + Can a store to x1 interfere with px2->z2? + Can a store to x1 change the value pointed to by with py? + Can a store to x1 change the value pointed to by with pz? + + The answer to these questions can be yes, yes, yes, and maybe. + + The first two questions can be answered with a simple examination + of the type system. If structure X contains a field of type Y then + a store through a pointer to an X can overwrite any field that is + contained (recursively) in an X (unless we know that px1 != px2). + + The last two questions can be solved in the same way as the first + two questions but this is too conservative. The observation is + that in some cases we can know which (if any) fields are addressed + and if those addresses are used in bad ways. This analysis may be + language specific. In C, arbitrary operations may be applied to + pointers. However, there is some indication that this may be too + conservative for some C++ types. + + The pass ipa-type-escape does this analysis for the types whose + instances do not escape across the compilation boundary. + + Historically in GCC, these two problems were combined and a single + data structure that was used to represent the solution to these + problems. We now have two similar but different data structures, + The data structure to solve the last two questions is similar to + the first, but does not contain the fields whose address are never + taken. For types that do escape the compilation unit, the data + structures will have identical information. +*/ + +/* The alias sets assigned to MEMs assist the back-end in determining + which MEMs can alias which other MEMs. In general, two MEMs in + different alias sets cannot alias each other, with one important + exception. Consider something like: + + struct S { int i; double d; }; + + a store to an `S' can alias something of either type `int' or type + `double'. (However, a store to an `int' cannot alias a `double' + and vice versa.) We indicate this via a tree structure that looks + like: + struct S + / \ + / \ + |/_ _\| + int double + + (The arrows are directed and point downwards.) + In this situation we say the alias set for `struct S' is the + `superset' and that those for `int' and `double' are `subsets'. + + To see whether two alias sets can point to the same memory, we must + see if either alias set is a subset of the other. We need not trace + past immediate descendants, however, since we propagate all + grandchildren up one level. + + Alias set zero is implicitly a superset of all other alias sets. + However, this is no actual entry for alias set zero. It is an + error to attempt to explicitly construct a subset of zero. */ + +struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {}; + +struct GTY(()) alias_set_entry { + /* The alias set number, as stored in MEM_ALIAS_SET. */ + alias_set_type alias_set; + + /* Nonzero if would have a child of zero: this effectively makes this + alias set the same as alias set zero. */ + bool has_zero_child; + /* Nonzero if alias set corresponds to pointer type itself (i.e. not to + aggregate contaiing pointer. + This is used for a special case where we need an universal pointer type + compatible with all other pointer types. */ + bool is_pointer; + /* Nonzero if is_pointer or if one of childs have has_pointer set. */ + bool has_pointer; + + /* The children of the alias set. These are not just the immediate + children, but, in fact, all descendants. So, if we have: + + struct T { struct S s; float f; } + + continuing our example above, the children here will be all of + `int', `double', `float', and `struct S'. */ + hash_map<alias_set_hash, int> *children; +}; + +static int rtx_equal_for_memref_p (const_rtx, const_rtx); +static void record_set (rtx, const_rtx, void *); +static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode, + machine_mode); +static rtx find_base_value (rtx); +static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx); +static alias_set_entry *get_alias_set_entry (alias_set_type); +static tree decl_for_component_ref (tree); +static int write_dependence_p (const_rtx, + const_rtx, machine_mode, rtx, + bool, bool, bool); +static int compare_base_symbol_refs (const_rtx, const_rtx, + HOST_WIDE_INT * = NULL); + +static void memory_modified_1 (rtx, const_rtx, void *); + +/* Query statistics for the different low-level disambiguators. + A high-level query may trigger multiple of them. */ + +static struct { + unsigned long long num_alias_zero; + unsigned long long num_same_alias_set; + unsigned long long num_same_objects; + unsigned long long num_volatile; + unsigned long long num_dag; + unsigned long long num_universal; + unsigned long long num_disambiguated; +} alias_stats; + + +/* Set up all info needed to perform alias analysis on memory references. */ + +/* Returns the size in bytes of the mode of X. */ +#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X))) + +/* Cap the number of passes we make over the insns propagating alias + information through set chains. + ??? 10 is a completely arbitrary choice. This should be based on the + maximum loop depth in the CFG, but we do not have this information + available (even if current_loops _is_ available). */ +#define MAX_ALIAS_LOOP_PASSES 10 + +/* reg_base_value[N] gives an address to which register N is related. + If all sets after the first add or subtract to the current value + or otherwise modify it so it does not point to a different top level + object, reg_base_value[N] is equal to the address part of the source + of the first set. + + A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS + expressions represent three types of base: + + 1. incoming arguments. There is just one ADDRESS to represent all + arguments, since we do not know at this level whether accesses + based on different arguments can alias. The ADDRESS has id 0. + + 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx + (if distinct from frame_pointer_rtx) and arg_pointer_rtx. + Each of these rtxes has a separate ADDRESS associated with it, + each with a negative id. + + GCC is (and is required to be) precise in which register it + chooses to access a particular region of stack. We can therefore + assume that accesses based on one of these rtxes do not alias + accesses based on another of these rtxes. + + 3. bases that are derived from malloc()ed memory (REG_NOALIAS). + Each such piece of memory has a separate ADDRESS associated + with it, each with an id greater than 0. + + Accesses based on one ADDRESS do not alias accesses based on other + ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not + alias globals either; the ADDRESSes have Pmode to indicate this. + The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to + indicate this. */ + +static GTY(()) vec<rtx, va_gc> *reg_base_value; +static rtx *new_reg_base_value; + +/* The single VOIDmode ADDRESS that represents all argument bases. + It has id 0. */ +static GTY(()) rtx arg_base_value; + +/* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */ +static int unique_id; + +/* We preserve the copy of old array around to avoid amount of garbage + produced. About 8% of garbage produced were attributed to this + array. */ +static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value; + +/* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special + registers. */ +#define UNIQUE_BASE_VALUE_SP -1 +#define UNIQUE_BASE_VALUE_ARGP -2 +#define UNIQUE_BASE_VALUE_FP -3 +#define UNIQUE_BASE_VALUE_HFP -4 + +#define static_reg_base_value \ + (this_target_rtl->x_static_reg_base_value) + +#define REG_BASE_VALUE(X) \ + (REGNO (X) < vec_safe_length (reg_base_value) \ + ? (*reg_base_value)[REGNO (X)] : 0) + +/* Vector indexed by N giving the initial (unchanging) value known for + pseudo-register N. This vector is initialized in init_alias_analysis, + and does not change until end_alias_analysis is called. */ +static GTY(()) vec<rtx, va_gc> *reg_known_value; + +/* Vector recording for each reg_known_value whether it is due to a + REG_EQUIV note. Future passes (viz., reload) may replace the + pseudo with the equivalent expression and so we account for the + dependences that would be introduced if that happens. + + The REG_EQUIV notes created in assign_parms may mention the arg + pointer, and there are explicit insns in the RTL that modify the + arg pointer. Thus we must ensure that such insns don't get + scheduled across each other because that would invalidate the + REG_EQUIV notes. One could argue that the REG_EQUIV notes are + wrong, but solving the problem in the scheduler will likely give + better code, so we do it here. */ +static sbitmap reg_known_equiv_p; + +/* True when scanning insns from the start of the rtl to the + NOTE_INSN_FUNCTION_BEG note. */ +static bool copying_arguments; + + +/* The splay-tree used to store the various alias set entries. */ +static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets; + +/* Build a decomposed reference object for querying the alias-oracle + from the MEM rtx and store it in *REF. + Returns false if MEM is not suitable for the alias-oracle. */ + +static bool +ao_ref_from_mem (ao_ref *ref, const_rtx mem) +{ + tree expr = MEM_EXPR (mem); + tree base; + + if (!expr) + return false; + + ao_ref_init (ref, expr); + + /* Get the base of the reference and see if we have to reject or + adjust it. */ + base = ao_ref_base (ref); + if (base == NULL_TREE) + return false; + + /* The tree oracle doesn't like bases that are neither decls + nor indirect references of SSA names. */ + if (!(DECL_P (base) + || (TREE_CODE (base) == MEM_REF + && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME) + || (TREE_CODE (base) == TARGET_MEM_REF + && TREE_CODE (TMR_BASE (base)) == SSA_NAME))) + return false; + + ref->ref_alias_set = MEM_ALIAS_SET (mem); + + /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR + is conservative, so trust it. */ + if (!MEM_OFFSET_KNOWN_P (mem) + || !MEM_SIZE_KNOWN_P (mem)) + return true; + + /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size + drop ref->ref. */ + if (maybe_lt (MEM_OFFSET (mem), 0) + || (ref->max_size_known_p () + && maybe_gt ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT, + ref->max_size))) + ref->ref = NULL_TREE; + + /* Refine size and offset we got from analyzing MEM_EXPR by using + MEM_SIZE and MEM_OFFSET. */ + + ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT; + ref->size = MEM_SIZE (mem) * BITS_PER_UNIT; + + /* The MEM may extend into adjacent fields, so adjust max_size if + necessary. */ + if (ref->max_size_known_p ()) + ref->max_size = upper_bound (ref->max_size, ref->size); + + /* If MEM_OFFSET and MEM_SIZE might get us outside of the base object of + the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */ + if (MEM_EXPR (mem) != get_spill_slot_decl (false) + && (maybe_lt (ref->offset, 0) + || (DECL_P (ref->base) + && (DECL_SIZE (ref->base) == NULL_TREE + || !poly_int_tree_p (DECL_SIZE (ref->base)) + || maybe_lt (wi::to_poly_offset (DECL_SIZE (ref->base)), + ref->offset + ref->size))))) + return false; + + return true; +} + +/* Query the alias-oracle on whether the two memory rtx X and MEM may + alias. If TBAA_P is set also apply TBAA. Returns true if the + two rtxen may alias, false otherwise. */ + +static bool +rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p) +{ + ao_ref ref1, ref2; + + if (!ao_ref_from_mem (&ref1, x) + || !ao_ref_from_mem (&ref2, mem)) + return true; + + return refs_may_alias_p_1 (&ref1, &ref2, + tbaa_p + && MEM_ALIAS_SET (x) != 0 + && MEM_ALIAS_SET (mem) != 0); +} + +/* Return true if the ref EARLIER behaves the same as LATER with respect + to TBAA for every memory reference that might follow LATER. */ + +bool +refs_same_for_tbaa_p (tree earlier, tree later) +{ + ao_ref earlier_ref, later_ref; + ao_ref_init (&earlier_ref, earlier); + ao_ref_init (&later_ref, later); + alias_set_type earlier_set = ao_ref_alias_set (&earlier_ref); + alias_set_type later_set = ao_ref_alias_set (&later_ref); + if (!(earlier_set == later_set + || alias_set_subset_of (later_set, earlier_set))) + return false; + alias_set_type later_base_set = ao_ref_base_alias_set (&later_ref); + alias_set_type earlier_base_set = ao_ref_base_alias_set (&earlier_ref); + return (earlier_base_set == later_base_set + || alias_set_subset_of (later_base_set, earlier_base_set)); +} + +/* Returns a pointer to the alias set entry for ALIAS_SET, if there is + such an entry, or NULL otherwise. */ + +static inline alias_set_entry * +get_alias_set_entry (alias_set_type alias_set) +{ + return (*alias_sets)[alias_set]; +} + +/* Returns nonzero if the alias sets for MEM1 and MEM2 are such that + the two MEMs cannot alias each other. */ + +static inline int +mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2) +{ + return (flag_strict_aliasing + && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), + MEM_ALIAS_SET (mem2))); +} + +/* Return true if the first alias set is a subset of the second. */ + +bool +alias_set_subset_of (alias_set_type set1, alias_set_type set2) +{ + alias_set_entry *ase2; + + /* Disable TBAA oracle with !flag_strict_aliasing. */ + if (!flag_strict_aliasing) + return true; + + /* Everything is a subset of the "aliases everything" set. */ + if (set2 == 0) + return true; + + /* Check if set1 is a subset of set2. */ + ase2 = get_alias_set_entry (set2); + if (ase2 != 0 + && (ase2->has_zero_child + || (ase2->children && ase2->children->get (set1)))) + return true; + + /* As a special case we consider alias set of "void *" to be both subset + and superset of every alias set of a pointer. This extra symmetry does + not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p + to return true on the following testcase: + + void *ptr; + char **ptr2=(char **)&ptr; + *ptr2 = ... + + Additionally if a set contains universal pointer, we consider every pointer + to be a subset of it, but we do not represent this explicitely - doing so + would require us to update transitive closure each time we introduce new + pointer type. This makes aliasing_component_refs_p to return true + on the following testcase: + + struct a {void *ptr;} + char **ptr = (char **)&a.ptr; + ptr = ... + + This makes void * truly universal pointer type. See pointer handling in + get_alias_set for more details. */ + if (ase2 && ase2->has_pointer) + { + alias_set_entry *ase1 = get_alias_set_entry (set1); + + if (ase1 && ase1->is_pointer) + { + alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node); + /* If one is ptr_type_node and other is pointer, then we consider + them subset of each other. */ + if (set1 == voidptr_set || set2 == voidptr_set) + return true; + /* If SET2 contains universal pointer's alias set, then we consdier + every (non-universal) pointer. */ + if (ase2->children && set1 != voidptr_set + && ase2->children->get (voidptr_set)) + return true; + } + } + return false; +} + +/* Return 1 if the two specified alias sets may conflict. */ + +int +alias_sets_conflict_p (alias_set_type set1, alias_set_type set2) +{ + alias_set_entry *ase1; + alias_set_entry *ase2; + + /* The easy case. */ + if (alias_sets_must_conflict_p (set1, set2)) + return 1; + + /* See if the first alias set is a subset of the second. */ + ase1 = get_alias_set_entry (set1); + if (ase1 != 0 + && ase1->children && ase1->children->get (set2)) + { + ++alias_stats.num_dag; + return 1; + } + + /* Now do the same, but with the alias sets reversed. */ + ase2 = get_alias_set_entry (set2); + if (ase2 != 0 + && ase2->children && ase2->children->get (set1)) + { + ++alias_stats.num_dag; + return 1; + } + + /* We want void * to be compatible with any other pointer without + really dropping it to alias set 0. Doing so would make it + compatible with all non-pointer types too. + + This is not strictly necessary by the C/C++ language + standards, but avoids common type punning mistakes. In + addition to that, we need the existence of such universal + pointer to implement Fortran's C_PTR type (which is defined as + type compatible with all C pointers). */ + if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer) + { + alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node); + + /* If one of the sets corresponds to universal pointer, + we consider it to conflict with anything that is + or contains pointer. */ + if (set1 == voidptr_set || set2 == voidptr_set) + { + ++alias_stats.num_universal; + return true; + } + /* If one of sets is (non-universal) pointer and the other + contains universal pointer, we also get conflict. */ + if (ase1->is_pointer && set2 != voidptr_set + && ase2->children && ase2->children->get (voidptr_set)) + { + ++alias_stats.num_universal; + return true; + } + if (ase2->is_pointer && set1 != voidptr_set + && ase1->children && ase1->children->get (voidptr_set)) + { + ++alias_stats.num_universal; + return true; + } + } + + ++alias_stats.num_disambiguated; + + /* The two alias sets are distinct and neither one is the + child of the other. Therefore, they cannot conflict. */ + return 0; +} + +/* Return 1 if the two specified alias sets will always conflict. */ + +int +alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2) +{ + /* Disable TBAA oracle with !flag_strict_aliasing. */ + if (!flag_strict_aliasing) + return 1; + if (set1 == 0 || set2 == 0) + { + ++alias_stats.num_alias_zero; + return 1; + } + if (set1 == set2) + { + ++alias_stats.num_same_alias_set; + return 1; + } + + return 0; +} + +/* Return 1 if any MEM object of type T1 will always conflict (using the + dependency routines in this file) with any MEM object of type T2. + This is used when allocating temporary storage. If T1 and/or T2 are + NULL_TREE, it means we know nothing about the storage. */ + +int +objects_must_conflict_p (tree t1, tree t2) +{ + alias_set_type set1, set2; + + /* If neither has a type specified, we don't know if they'll conflict + because we may be using them to store objects of various types, for + example the argument and local variables areas of inlined functions. */ + if (t1 == 0 && t2 == 0) + return 0; + + /* If they are the same type, they must conflict. */ + if (t1 == t2) + { + ++alias_stats.num_same_objects; + return 1; + } + /* Likewise if both are volatile. */ + if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)) + { + ++alias_stats.num_volatile; + return 1; + } + + set1 = t1 ? get_alias_set (t1) : 0; + set2 = t2 ? get_alias_set (t2) : 0; + + /* We can't use alias_sets_conflict_p because we must make sure + that every subtype of t1 will conflict with every subtype of + t2 for which a pair of subobjects of these respective subtypes + overlaps on the stack. */ + return alias_sets_must_conflict_p (set1, set2); +} + +/* Return true if T is an end of the access path which can be used + by type based alias oracle. */ + +bool +ends_tbaa_access_path_p (const_tree t) +{ + switch (TREE_CODE (t)) + { + case COMPONENT_REF: + if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1))) + return true; + /* Permit type-punning when accessing a union, provided the access + is directly through the union. For example, this code does not + permit taking the address of a union member and then storing + through it. Even the type-punning allowed here is a GCC + extension, albeit a common and useful one; the C standard says + that such accesses have implementation-defined behavior. */ + else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == UNION_TYPE) + return true; + break; + + case ARRAY_REF: + case ARRAY_RANGE_REF: + if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0)))) + return true; + break; + + case REALPART_EXPR: + case IMAGPART_EXPR: + break; + + case BIT_FIELD_REF: + case VIEW_CONVERT_EXPR: + /* Bitfields and casts are never addressable. */ + return true; + break; + + default: + gcc_unreachable (); + } + return false; +} + +/* Return the outermost parent of component present in the chain of + component references handled by get_inner_reference in T with the + following property: + - the component is non-addressable + or NULL_TREE if no such parent exists. In the former cases, the alias + set of this parent is the alias set that must be used for T itself. */ + +tree +component_uses_parent_alias_set_from (const_tree t) +{ + const_tree found = NULL_TREE; + + while (handled_component_p (t)) + { + if (ends_tbaa_access_path_p (t)) + found = t; + + t = TREE_OPERAND (t, 0); + } + + if (found) + return TREE_OPERAND (found, 0); + + return NULL_TREE; +} + + +/* Return whether the pointer-type T effective for aliasing may + access everything and thus the reference has to be assigned + alias-set zero. */ + +static bool +ref_all_alias_ptr_type_p (const_tree t) +{ + return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE + || TYPE_REF_CAN_ALIAS_ALL (t)); +} + +/* Return the alias set for the memory pointed to by T, which may be + either a type or an expression. Return -1 if there is nothing + special about dereferencing T. */ + +static alias_set_type +get_deref_alias_set_1 (tree t) +{ + /* All we care about is the type. */ + if (! TYPE_P (t)) + t = TREE_TYPE (t); + + /* If we have an INDIRECT_REF via a void pointer, we don't + know anything about what that might alias. Likewise if the + pointer is marked that way. */ + if (ref_all_alias_ptr_type_p (t)) + return 0; + + return -1; +} + +/* Return the alias set for the memory pointed to by T, which may be + either a type or an expression. */ + +alias_set_type +get_deref_alias_set (tree t) +{ + /* If we're not doing any alias analysis, just assume everything + aliases everything else. */ + if (!flag_strict_aliasing) + return 0; + + alias_set_type set = get_deref_alias_set_1 (t); + + /* Fall back to the alias-set of the pointed-to type. */ + if (set == -1) + { + if (! TYPE_P (t)) + t = TREE_TYPE (t); + set = get_alias_set (TREE_TYPE (t)); + } + + return set; +} + +/* Return the pointer-type relevant for TBAA purposes from the + memory reference tree *T or NULL_TREE in which case *T is + adjusted to point to the outermost component reference that + can be used for assigning an alias set. */ + +tree +reference_alias_ptr_type_1 (tree *t) +{ + tree inner; + + /* Get the base object of the reference. */ + inner = *t; + while (handled_component_p (inner)) + { + /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use + the type of any component references that wrap it to + determine the alias-set. */ + if (TREE_CODE (inner) == VIEW_CONVERT_EXPR) + *t = TREE_OPERAND (inner, 0); + inner = TREE_OPERAND (inner, 0); + } + + /* Handle pointer dereferences here, they can override the + alias-set. */ + if (INDIRECT_REF_P (inner) + && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0)))) + return TREE_TYPE (TREE_OPERAND (inner, 0)); + else if (TREE_CODE (inner) == TARGET_MEM_REF) + return TREE_TYPE (TMR_OFFSET (inner)); + else if (TREE_CODE (inner) == MEM_REF + && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1)))) + return TREE_TYPE (TREE_OPERAND (inner, 1)); + + /* If the innermost reference is a MEM_REF that has a + conversion embedded treat it like a VIEW_CONVERT_EXPR above, + using the memory access type for determining the alias-set. */ + if (TREE_CODE (inner) == MEM_REF + && (TYPE_MAIN_VARIANT (TREE_TYPE (inner)) + != TYPE_MAIN_VARIANT + (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1)))))) + return TREE_TYPE (TREE_OPERAND (inner, 1)); + + /* Otherwise, pick up the outermost object that we could have + a pointer to. */ + tree tem = component_uses_parent_alias_set_from (*t); + if (tem) + *t = tem; + + return NULL_TREE; +} + +/* Return the pointer-type relevant for TBAA purposes from the + gimple memory reference tree T. This is the type to be used for + the offset operand of MEM_REF or TARGET_MEM_REF replacements of T + and guarantees that get_alias_set will return the same alias + set for T and the replacement. */ + +tree +reference_alias_ptr_type (tree t) +{ + /* If the frontend assigns this alias-set zero, preserve that. */ + if (lang_hooks.get_alias_set (t) == 0) + return ptr_type_node; + + tree ptype = reference_alias_ptr_type_1 (&t); + /* If there is a given pointer type for aliasing purposes, return it. */ + if (ptype != NULL_TREE) + return ptype; + + /* Otherwise build one from the outermost component reference we + may use. */ + if (TREE_CODE (t) == MEM_REF + || TREE_CODE (t) == TARGET_MEM_REF) + return TREE_TYPE (TREE_OPERAND (t, 1)); + else + return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t))); +} + +/* Return whether the pointer-types T1 and T2 used to determine + two alias sets of two references will yield the same answer + from get_deref_alias_set. */ + +bool +alias_ptr_types_compatible_p (tree t1, tree t2) +{ + if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2)) + return true; + + if (ref_all_alias_ptr_type_p (t1) + || ref_all_alias_ptr_type_p (t2)) + return false; + + /* This function originally abstracts from simply comparing + get_deref_alias_set so that we are sure this still computes + the same result after LTO type merging is applied. + When in LTO type merging is done we can actually do this compare. + */ + if (in_lto_p) + return get_deref_alias_set (t1) == get_deref_alias_set (t2); + else + return (TYPE_MAIN_VARIANT (TREE_TYPE (t1)) + == TYPE_MAIN_VARIANT (TREE_TYPE (t2))); +} + +/* Create emptry alias set entry. */ + +alias_set_entry * +init_alias_set_entry (alias_set_type set) +{ + alias_set_entry *ase = ggc_alloc<alias_set_entry> (); + ase->alias_set = set; + ase->children = NULL; + ase->has_zero_child = false; + ase->is_pointer = false; + ase->has_pointer = false; + gcc_checking_assert (!get_alias_set_entry (set)); + (*alias_sets)[set] = ase; + return ase; +} + +/* Return the alias set for T, which may be either a type or an + expression. Call language-specific routine for help, if needed. */ + +alias_set_type +get_alias_set (tree t) +{ + alias_set_type set; + + /* We cannot give up with -fno-strict-aliasing because we need to build + proper type representations for possible functions which are built with + -fstrict-aliasing. */ + + /* return 0 if this or its type is an error. */ + if (t == error_mark_node + || (! TYPE_P (t) + && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node))) + return 0; + + /* We can be passed either an expression or a type. This and the + language-specific routine may make mutually-recursive calls to each other + to figure out what to do. At each juncture, we see if this is a tree + that the language may need to handle specially. First handle things that + aren't types. */ + if (! TYPE_P (t)) + { + /* Give the language a chance to do something with this tree + before we look at it. */ + STRIP_NOPS (t); + set = lang_hooks.get_alias_set (t); + if (set != -1) + return set; + + /* Get the alias pointer-type to use or the outermost object + that we could have a pointer to. */ + tree ptype = reference_alias_ptr_type_1 (&t); + if (ptype != NULL) + return get_deref_alias_set (ptype); + + /* If we've already determined the alias set for a decl, just return + it. This is necessary for C++ anonymous unions, whose component + variables don't look like union members (boo!). */ + if (VAR_P (t) + && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t))) + return MEM_ALIAS_SET (DECL_RTL (t)); + + /* Now all we care about is the type. */ + t = TREE_TYPE (t); + } + + /* Variant qualifiers don't affect the alias set, so get the main + variant. */ + t = TYPE_MAIN_VARIANT (t); + + if (AGGREGATE_TYPE_P (t) + && TYPE_TYPELESS_STORAGE (t)) + return 0; + + /* Always use the canonical type as well. If this is a type that + requires structural comparisons to identify compatible types + use alias set zero. */ + if (TYPE_STRUCTURAL_EQUALITY_P (t)) + { + /* Allow the language to specify another alias set for this + type. */ + set = lang_hooks.get_alias_set (t); + if (set != -1) + return set; + /* Handle structure type equality for pointer types, arrays and vectors. + This is easy to do, because the code below ignores canonical types on + these anyway. This is important for LTO, where TYPE_CANONICAL for + pointers cannot be meaningfully computed by the frontend. */ + if (canonical_type_used_p (t)) + { + /* In LTO we set canonical types for all types where it makes + sense to do so. Double check we did not miss some type. */ + gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t)); + return 0; + } + } + else + { + t = TYPE_CANONICAL (t); + gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t)); + } + + /* If this is a type with a known alias set, return it. */ + gcc_checking_assert (t == TYPE_MAIN_VARIANT (t)); + if (TYPE_ALIAS_SET_KNOWN_P (t)) + return TYPE_ALIAS_SET (t); + + /* We don't want to set TYPE_ALIAS_SET for incomplete types. */ + if (!COMPLETE_TYPE_P (t)) + { + /* For arrays with unknown size the conservative answer is the + alias set of the element type. */ + if (TREE_CODE (t) == ARRAY_TYPE) + return get_alias_set (TREE_TYPE (t)); + + /* But return zero as a conservative answer for incomplete types. */ + return 0; + } + + /* See if the language has special handling for this type. */ + set = lang_hooks.get_alias_set (t); + if (set != -1) + return set; + + /* There are no objects of FUNCTION_TYPE, so there's no point in + using up an alias set for them. (There are, of course, pointers + and references to functions, but that's different.) */ + else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE) + set = 0; + + /* Unless the language specifies otherwise, let vector types alias + their components. This avoids some nasty type punning issues in + normal usage. And indeed lets vectors be treated more like an + array slice. */ + else if (TREE_CODE (t) == VECTOR_TYPE) + set = get_alias_set (TREE_TYPE (t)); + + /* Unless the language specifies otherwise, treat array types the + same as their components. This avoids the asymmetry we get + through recording the components. Consider accessing a + character(kind=1) through a reference to a character(kind=1)[1:1]. + Or consider if we want to assign integer(kind=4)[0:D.1387] and + integer(kind=4)[4] the same alias set or not. + Just be pragmatic here and make sure the array and its element + type get the same alias set assigned. */ + else if (TREE_CODE (t) == ARRAY_TYPE + && (!TYPE_NONALIASED_COMPONENT (t) + || TYPE_STRUCTURAL_EQUALITY_P (t))) + set = get_alias_set (TREE_TYPE (t)); + + /* From the former common C and C++ langhook implementation: + + Unfortunately, there is no canonical form of a pointer type. + In particular, if we have `typedef int I', then `int *', and + `I *' are different types. So, we have to pick a canonical + representative. We do this below. + + Technically, this approach is actually more conservative that + it needs to be. In particular, `const int *' and `int *' + should be in different alias sets, according to the C and C++ + standard, since their types are not the same, and so, + technically, an `int **' and `const int **' cannot point at + the same thing. + + But, the standard is wrong. In particular, this code is + legal C++: + + int *ip; + int **ipp = &ip; + const int* const* cipp = ipp; + And, it doesn't make sense for that to be legal unless you + can dereference IPP and CIPP. So, we ignore cv-qualifiers on + the pointed-to types. This issue has been reported to the + C++ committee. + + For this reason go to canonical type of the unqalified pointer type. + Until GCC 6 this code set all pointers sets to have alias set of + ptr_type_node but that is a bad idea, because it prevents disabiguations + in between pointers. For Firefox this accounts about 20% of all + disambiguations in the program. */ + else if (POINTER_TYPE_P (t) && t != ptr_type_node) + { + tree p; + auto_vec <bool, 8> reference; + + /* Unnest all pointers and references. + We also want to make pointer to array/vector equivalent to pointer to + its element (see the reasoning above). Skip all those types, too. */ + for (p = t; POINTER_TYPE_P (p) + || (TREE_CODE (p) == ARRAY_TYPE + && (!TYPE_NONALIASED_COMPONENT (p) + || !COMPLETE_TYPE_P (p) + || TYPE_STRUCTURAL_EQUALITY_P (p))) + || TREE_CODE (p) == VECTOR_TYPE; + p = TREE_TYPE (p)) + { + /* Ada supports recursive pointers. Instead of doing recursion + check, just give up once the preallocated space of 8 elements + is up. In this case just punt to void * alias set. */ + if (reference.length () == 8) + { + p = ptr_type_node; + break; + } + if (TREE_CODE (p) == REFERENCE_TYPE) + /* In LTO we want languages that use references to be compatible + with languages that use pointers. */ + reference.safe_push (true && !in_lto_p); + if (TREE_CODE (p) == POINTER_TYPE) + reference.safe_push (false); + } + p = TYPE_MAIN_VARIANT (p); + + /* In LTO for C++ programs we can turn incomplete types to complete + using ODR name lookup. */ + if (in_lto_p && TYPE_STRUCTURAL_EQUALITY_P (p) && odr_type_p (p)) + { + p = prevailing_odr_type (p); + gcc_checking_assert (TYPE_MAIN_VARIANT (p) == p); + } + + /* Make void * compatible with char * and also void **. + Programs are commonly violating TBAA by this. + + We also make void * to conflict with every pointer + (see record_component_aliases) and thus it is safe it to use it for + pointers to types with TYPE_STRUCTURAL_EQUALITY_P. */ + if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p)) + set = get_alias_set (ptr_type_node); + else + { + /* Rebuild pointer type starting from canonical types using + unqualified pointers and references only. This way all such + pointers will have the same alias set and will conflict with + each other. + + Most of time we already have pointers or references of a given type. + If not we build new one just to be sure that if someone later + (probably only middle-end can, as we should assign all alias + classes only after finishing translation unit) builds the pointer + type, the canonical type will match. */ + p = TYPE_CANONICAL (p); + while (!reference.is_empty ()) + { + if (reference.pop ()) + p = build_reference_type (p); + else + p = build_pointer_type (p); + gcc_checking_assert (p == TYPE_MAIN_VARIANT (p)); + /* build_pointer_type should always return the canonical type. + For LTO TYPE_CANOINCAL may be NULL, because we do not compute + them. Be sure that frontends do not glob canonical types of + pointers in unexpected way and that p == TYPE_CANONICAL (p) + in all other cases. */ + gcc_checking_assert (!TYPE_CANONICAL (p) + || p == TYPE_CANONICAL (p)); + } + + /* Assign the alias set to both p and t. + We cannot call get_alias_set (p) here as that would trigger + infinite recursion when p == t. In other cases it would just + trigger unnecesary legwork of rebuilding the pointer again. */ + gcc_checking_assert (p == TYPE_MAIN_VARIANT (p)); + if (TYPE_ALIAS_SET_KNOWN_P (p)) + set = TYPE_ALIAS_SET (p); + else + { + set = new_alias_set (); + TYPE_ALIAS_SET (p) = set; + } + } + } + /* Alias set of ptr_type_node is special and serve as universal pointer which + is TBAA compatible with every other pointer type. Be sure we have the + alias set built even for LTO which otherwise keeps all TYPE_CANONICAL + of pointer types NULL. */ + else if (t == ptr_type_node) + set = new_alias_set (); + + /* Otherwise make a new alias set for this type. */ + else + { + /* Each canonical type gets its own alias set, so canonical types + shouldn't form a tree. It doesn't really matter for types + we handle specially above, so only check it where it possibly + would result in a bogus alias set. */ + gcc_checking_assert (TYPE_CANONICAL (t) == t); + + set = new_alias_set (); + } + + TYPE_ALIAS_SET (t) = set; + + /* If this is an aggregate type or a complex type, we must record any + component aliasing information. */ + if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE) + record_component_aliases (t); + + /* We treat pointer types specially in alias_set_subset_of. */ + if (POINTER_TYPE_P (t) && set) + { + alias_set_entry *ase = get_alias_set_entry (set); + if (!ase) + ase = init_alias_set_entry (set); + ase->is_pointer = true; + ase->has_pointer = true; + } + + return set; +} + +/* Return a brand-new alias set. */ + +alias_set_type +new_alias_set (void) +{ + if (alias_sets == 0) + vec_safe_push (alias_sets, (alias_set_entry *) NULL); + vec_safe_push (alias_sets, (alias_set_entry *) NULL); + return alias_sets->length () - 1; +} + +/* Indicate that things in SUBSET can alias things in SUPERSET, but that + not everything that aliases SUPERSET also aliases SUBSET. For example, + in C, a store to an `int' can alias a load of a structure containing an + `int', and vice versa. But it can't alias a load of a 'double' member + of the same structure. Here, the structure would be the SUPERSET and + `int' the SUBSET. This relationship is also described in the comment at + the beginning of this file. + + This function should be called only once per SUPERSET/SUBSET pair. + + It is illegal for SUPERSET to be zero; everything is implicitly a + subset of alias set zero. */ + +void +record_alias_subset (alias_set_type superset, alias_set_type subset) +{ + alias_set_entry *superset_entry; + alias_set_entry *subset_entry; + + /* It is possible in complex type situations for both sets to be the same, + in which case we can ignore this operation. */ + if (superset == subset) + return; + + gcc_assert (superset); + + superset_entry = get_alias_set_entry (superset); + if (superset_entry == 0) + { + /* Create an entry for the SUPERSET, so that we have a place to + attach the SUBSET. */ + superset_entry = init_alias_set_entry (superset); + } + + if (subset == 0) + superset_entry->has_zero_child = 1; + else + { + if (!superset_entry->children) + superset_entry->children + = hash_map<alias_set_hash, int>::create_ggc (64); + + /* Enter the SUBSET itself as a child of the SUPERSET. If it was + already there we're done. */ + if (superset_entry->children->put (subset, 0)) + return; + + subset_entry = get_alias_set_entry (subset); + /* If there is an entry for the subset, enter all of its children + (if they are not already present) as children of the SUPERSET. */ + if (subset_entry) + { + if (subset_entry->has_zero_child) + superset_entry->has_zero_child = true; + if (subset_entry->has_pointer) + superset_entry->has_pointer = true; + + if (subset_entry->children) + { + hash_map<alias_set_hash, int>::iterator iter + = subset_entry->children->begin (); + for (; iter != subset_entry->children->end (); ++iter) + superset_entry->children->put ((*iter).first, (*iter).second); + } + } + } +} + +/* Record that component types of TYPE, if any, are part of SUPERSET for + aliasing purposes. For record types, we only record component types + for fields that are not marked non-addressable. For array types, we + only record the component type if it is not marked non-aliased. */ + +void +record_component_aliases (tree type, alias_set_type superset) +{ + tree field; + + if (superset == 0) + return; + + switch (TREE_CODE (type)) + { + case RECORD_TYPE: + case UNION_TYPE: + case QUAL_UNION_TYPE: + { + /* LTO non-ODR type merging does not make any difference between + component pointer types. We may have + + struct foo {int *a;}; + + as TYPE_CANONICAL of + + struct bar {float *a;}; + + Because accesses to int * and float * do not alias, we would get + false negative when accessing the same memory location by + float ** and bar *. We thus record the canonical type as: + + struct {void *a;}; + + void * is special cased and works as a universal pointer type. + Accesses to it conflicts with accesses to any other pointer + type. */ + bool void_pointers = in_lto_p + && (!odr_type_p (type) + || !odr_based_tbaa_p (type)); + for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field)) + if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field)) + { + tree t = TREE_TYPE (field); + if (void_pointers) + { + /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their + element type and that type has to be normalized to void *, + too, in the case it is a pointer. */ + while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t)) + { + gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t)); + t = TREE_TYPE (t); + } + if (POINTER_TYPE_P (t)) + t = ptr_type_node; + else if (flag_checking) + gcc_checking_assert (get_alias_set (t) + == get_alias_set (TREE_TYPE (field))); + } + + alias_set_type set = get_alias_set (t); + record_alias_subset (superset, set); + /* If the field has alias-set zero make sure to still record + any componets of it. This makes sure that for + struct A { + struct B { + int i; + char c[4]; + } b; + }; + in C++ even though 'B' has alias-set zero because + TYPE_TYPELESS_STORAGE is set, 'A' has the alias-set of + 'int' as subset. */ + if (set == 0) + record_component_aliases (t, superset); + } + } + break; + + case COMPLEX_TYPE: + record_alias_subset (superset, get_alias_set (TREE_TYPE (type))); + break; + + /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their + element type. */ + + default: + break; + } +} + +/* Record that component types of TYPE, if any, are part of that type for + aliasing purposes. For record types, we only record component types + for fields that are not marked non-addressable. For array types, we + only record the component type if it is not marked non-aliased. */ + +void +record_component_aliases (tree type) +{ + alias_set_type superset = get_alias_set (type); + record_component_aliases (type, superset); +} + + +/* Allocate an alias set for use in storing and reading from the varargs + spill area. */ + +static GTY(()) alias_set_type varargs_set = -1; + +alias_set_type +get_varargs_alias_set (void) +{ +#if 1 + /* We now lower VA_ARG_EXPR, and there's currently no way to attach the + varargs alias set to an INDIRECT_REF (FIXME!), so we can't + consistently use the varargs alias set for loads from the varargs + area. So don't use it anywhere. */ + return 0; +#else + if (varargs_set == -1) + varargs_set = new_alias_set (); + + return varargs_set; +#endif +} + +/* Likewise, but used for the fixed portions of the frame, e.g., register + save areas. */ + +static GTY(()) alias_set_type frame_set = -1; + +alias_set_type +get_frame_alias_set (void) +{ + if (frame_set == -1) + frame_set = new_alias_set (); + + return frame_set; +} + +/* Create a new, unique base with id ID. */ + +static rtx +unique_base_value (HOST_WIDE_INT id) +{ + return gen_rtx_ADDRESS (Pmode, id); +} + +/* Return true if accesses based on any other base value cannot alias + those based on X. */ + +static bool +unique_base_value_p (rtx x) +{ + return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode; +} + +/* Return true if X is known to be a base value. */ + +static bool +known_base_value_p (rtx x) +{ + switch (GET_CODE (x)) + { + case LABEL_REF: + case SYMBOL_REF: + return true; + + case ADDRESS: + /* Arguments may or may not be bases; we don't know for sure. */ + return GET_MODE (x) != VOIDmode; + + default: + return false; + } +} + +/* Inside SRC, the source of a SET, find a base address. */ + +static rtx +find_base_value (rtx src) +{ + unsigned int regno; + scalar_int_mode int_mode; + +#if defined (FIND_BASE_TERM) + /* Try machine-dependent ways to find the base term. */ + src = FIND_BASE_TERM (src); +#endif + + switch (GET_CODE (src)) + { + case SYMBOL_REF: + case LABEL_REF: + return src; + + case REG: + regno = REGNO (src); + /* At the start of a function, argument registers have known base + values which may be lost later. Returning an ADDRESS + expression here allows optimization based on argument values + even when the argument registers are used for other purposes. */ + if (regno < FIRST_PSEUDO_REGISTER && copying_arguments) + return new_reg_base_value[regno]; + + /* If a pseudo has a known base value, return it. Do not do this + for non-fixed hard regs since it can result in a circular + dependency chain for registers which have values at function entry. + + The test above is not sufficient because the scheduler may move + a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */ + if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno]) + && regno < vec_safe_length (reg_base_value)) + { + /* If we're inside init_alias_analysis, use new_reg_base_value + to reduce the number of relaxation iterations. */ + if (new_reg_base_value && new_reg_base_value[regno] + && DF_REG_DEF_COUNT (regno) == 1) + return new_reg_base_value[regno]; + + if ((*reg_base_value)[regno]) + return (*reg_base_value)[regno]; + } + + return 0; + + case MEM: + /* Check for an argument passed in memory. Only record in the + copying-arguments block; it is too hard to track changes + otherwise. */ + if (copying_arguments + && (XEXP (src, 0) == arg_pointer_rtx + || (GET_CODE (XEXP (src, 0)) == PLUS + && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx))) + return arg_base_value; + return 0; + + case CONST: + src = XEXP (src, 0); + if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS) + break; + + /* fall through */ + + case PLUS: + case MINUS: + { + rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1); + + /* If either operand is a REG that is a known pointer, then it + is the base. */ + if (REG_P (src_0) && REG_POINTER (src_0)) + return find_base_value (src_0); + if (REG_P (src_1) && REG_POINTER (src_1)) + return find_base_value (src_1); + + /* If either operand is a REG, then see if we already have + a known value for it. */ + if (REG_P (src_0)) + { + temp = find_base_value (src_0); + if (temp != 0) + src_0 = temp; + } + + if (REG_P (src_1)) + { + temp = find_base_value (src_1); + if (temp!= 0) + src_1 = temp; + } + + /* If either base is named object or a special address + (like an argument or stack reference), then use it for the + base term. */ + if (src_0 != 0 && known_base_value_p (src_0)) + return src_0; + + if (src_1 != 0 && known_base_value_p (src_1)) + return src_1; + + /* Guess which operand is the base address: + If either operand is a symbol, then it is the base. If + either operand is a CONST_INT, then the other is the base. */ + if (CONST_INT_P (src_1) || CONSTANT_P (src_0)) + return find_base_value (src_0); + else if (CONST_INT_P (src_0) || CONSTANT_P (src_1)) + return find_base_value (src_1); + + return 0; + } + + case LO_SUM: + /* The standard form is (lo_sum reg sym) so look only at the + second operand. */ + return find_base_value (XEXP (src, 1)); + + case AND: + /* Look through aligning ANDs. And AND with zero or one with + the LSB set isn't one (see for example PR92462). */ + if (CONST_INT_P (XEXP (src, 1)) + && INTVAL (XEXP (src, 1)) != 0 + && (INTVAL (XEXP (src, 1)) & 1) == 0) + return find_base_value (XEXP (src, 0)); + return 0; + + case TRUNCATE: + /* As we do not know which address space the pointer is referring to, we can + handle this only if the target does not support different pointer or + address modes depending on the address space. */ + if (!target_default_pointer_address_modes_p ()) + break; + if (!is_a <scalar_int_mode> (GET_MODE (src), &int_mode) + || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode)) + break; + /* Fall through. */ + case HIGH: + case PRE_INC: + case PRE_DEC: + case POST_INC: + case POST_DEC: + case PRE_MODIFY: + case POST_MODIFY: + return find_base_value (XEXP (src, 0)); + + case ZERO_EXTEND: + case SIGN_EXTEND: /* used for NT/Alpha pointers */ + /* As we do not know which address space the pointer is referring to, we can + handle this only if the target does not support different pointer or + address modes depending on the address space. */ + if (!target_default_pointer_address_modes_p ()) + break; + + { + rtx temp = find_base_value (XEXP (src, 0)); + + if (temp != 0 && CONSTANT_P (temp)) + temp = convert_memory_address (Pmode, temp); + + return temp; + } + + default: + break; + } + + return 0; +} + +/* Called from init_alias_analysis indirectly through note_stores, + or directly if DEST is a register with a REG_NOALIAS note attached. + SET is null in the latter case. */ + +/* While scanning insns to find base values, reg_seen[N] is nonzero if + register N has been set in this function. */ +static sbitmap reg_seen; + +static void +record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED) +{ + unsigned regno; + rtx src; + int n; + + if (!REG_P (dest)) + return; + + regno = REGNO (dest); + + gcc_checking_assert (regno < reg_base_value->length ()); + + n = REG_NREGS (dest); + if (n != 1) + { + while (--n >= 0) + { + bitmap_set_bit (reg_seen, regno + n); + new_reg_base_value[regno + n] = 0; + } + return; + } + + if (set) + { + /* A CLOBBER wipes out any old value but does not prevent a previously + unset register from acquiring a base address (i.e. reg_seen is not + set). */ + if (GET_CODE (set) == CLOBBER) + { + new_reg_base_value[regno] = 0; + return; + } + + src = SET_SRC (set); + } + else + { + /* There's a REG_NOALIAS note against DEST. */ + if (bitmap_bit_p (reg_seen, regno)) + { + new_reg_base_value[regno] = 0; + return; + } + bitmap_set_bit (reg_seen, regno); + new_reg_base_value[regno] = unique_base_value (unique_id++); + return; + } + + /* If this is not the first set of REGNO, see whether the new value + is related to the old one. There are two cases of interest: + + (1) The register might be assigned an entirely new value + that has the same base term as the original set. + + (2) The set might be a simple self-modification that + cannot change REGNO's base value. + + If neither case holds, reject the original base value as invalid. + Note that the following situation is not detected: + + extern int x, y; int *p = &x; p += (&y-&x); + + ANSI C does not allow computing the difference of addresses + of distinct top level objects. */ + if (new_reg_base_value[regno] != 0 + && find_base_value (src) != new_reg_base_value[regno]) + switch (GET_CODE (src)) + { + case LO_SUM: + case MINUS: + if (XEXP (src, 0) != dest && XEXP (src, 1) != dest) + new_reg_base_value[regno] = 0; + break; + case PLUS: + /* If the value we add in the PLUS is also a valid base value, + this might be the actual base value, and the original value + an index. */ + { + rtx other = NULL_RTX; + + if (XEXP (src, 0) == dest) + other = XEXP (src, 1); + else if (XEXP (src, 1) == dest) + other = XEXP (src, 0); + + if (! other || find_base_value (other)) + new_reg_base_value[regno] = 0; + break; + } + case AND: + if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1))) + new_reg_base_value[regno] = 0; + break; + default: + new_reg_base_value[regno] = 0; + break; + } + /* If this is the first set of a register, record the value. */ + else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno]) + && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0) + new_reg_base_value[regno] = find_base_value (src); + + bitmap_set_bit (reg_seen, regno); +} + +/* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid + using hard registers with non-null REG_BASE_VALUE for renaming. */ +rtx +get_reg_base_value (unsigned int regno) +{ + return (*reg_base_value)[regno]; +} + +/* If a value is known for REGNO, return it. */ + +rtx +get_reg_known_value (unsigned int regno) +{ + if (regno >= FIRST_PSEUDO_REGISTER) + { + regno -= FIRST_PSEUDO_REGISTER; + if (regno < vec_safe_length (reg_known_value)) + return (*reg_known_value)[regno]; + } + return NULL; +} + +/* Set it. */ + +static void +set_reg_known_value (unsigned int regno, rtx val) +{ + if (regno >= FIRST_PSEUDO_REGISTER) + { + regno -= FIRST_PSEUDO_REGISTER; + if (regno < vec_safe_length (reg_known_value)) + (*reg_known_value)[regno] = val; + } +} + +/* Similarly for reg_known_equiv_p. */ + +bool +get_reg_known_equiv_p (unsigned int regno) +{ + if (regno >= FIRST_PSEUDO_REGISTER) + { + regno -= FIRST_PSEUDO_REGISTER; + if (regno < vec_safe_length (reg_known_value)) + return bitmap_bit_p (reg_known_equiv_p, regno); + } + return false; +} + +static void +set_reg_known_equiv_p (unsigned int regno, bool val) +{ + if (regno >= FIRST_PSEUDO_REGISTER) + { + regno -= FIRST_PSEUDO_REGISTER; + if (regno < vec_safe_length (reg_known_value)) + { + if (val) + bitmap_set_bit (reg_known_equiv_p, regno); + else + bitmap_clear_bit (reg_known_equiv_p, regno); + } + } +} + + +/* Returns a canonical version of X, from the point of view alias + analysis. (For example, if X is a MEM whose address is a register, + and the register has a known value (say a SYMBOL_REF), then a MEM + whose address is the SYMBOL_REF is returned.) */ + +rtx +canon_rtx (rtx x) +{ + /* Recursively look for equivalences. */ + if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER) + { + rtx t = get_reg_known_value (REGNO (x)); + if (t == x) + return x; + if (t) + return canon_rtx (t); + } + + if (GET_CODE (x) == PLUS) + { + rtx x0 = canon_rtx (XEXP (x, 0)); + rtx x1 = canon_rtx (XEXP (x, 1)); + + if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1)) + return simplify_gen_binary (PLUS, GET_MODE (x), x0, x1); + } + + /* This gives us much better alias analysis when called from + the loop optimizer. Note we want to leave the original + MEM alone, but need to return the canonicalized MEM with + all the flags with their original values. */ + else if (MEM_P (x)) + x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0))); + + return x; +} + +/* Return 1 if X and Y are identical-looking rtx's. + Expect that X and Y has been already canonicalized. + + We use the data in reg_known_value above to see if two registers with + different numbers are, in fact, equivalent. */ + +static int +rtx_equal_for_memref_p (const_rtx x, const_rtx y) +{ + int i; + int j; + enum rtx_code code; + const char *fmt; + + if (x == 0 && y == 0) + return 1; + if (x == 0 || y == 0) + return 0; + + if (x == y) + return 1; + + code = GET_CODE (x); + /* Rtx's of different codes cannot be equal. */ + if (code != GET_CODE (y)) + return 0; + + /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. + (REG:SI x) and (REG:HI x) are NOT equivalent. */ + + if (GET_MODE (x) != GET_MODE (y)) + return 0; + + /* Some RTL can be compared without a recursive examination. */ + switch (code) + { + case REG: + return REGNO (x) == REGNO (y); + + case LABEL_REF: + return label_ref_label (x) == label_ref_label (y); + + case SYMBOL_REF: + { + HOST_WIDE_INT distance = 0; + return (compare_base_symbol_refs (x, y, &distance) == 1 + && distance == 0); + } + + case ENTRY_VALUE: + /* This is magic, don't go through canonicalization et al. */ + return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y)); + + case VALUE: + CASE_CONST_UNIQUE: + /* Pointer equality guarantees equality for these nodes. */ + return 0; + + default: + break; + } + + /* canon_rtx knows how to handle plus. No need to canonicalize. */ + if (code == PLUS) + return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0)) + && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1))) + || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1)) + && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0)))); + /* For commutative operations, the RTX match if the operand match in any + order. Also handle the simple binary and unary cases without a loop. */ + if (COMMUTATIVE_P (x)) + { + rtx xop0 = canon_rtx (XEXP (x, 0)); + rtx yop0 = canon_rtx (XEXP (y, 0)); + rtx yop1 = canon_rtx (XEXP (y, 1)); + + return ((rtx_equal_for_memref_p (xop0, yop0) + && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1)) + || (rtx_equal_for_memref_p (xop0, yop1) + && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0))); + } + else if (NON_COMMUTATIVE_P (x)) + { + return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)), + canon_rtx (XEXP (y, 0))) + && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), + canon_rtx (XEXP (y, 1)))); + } + else if (UNARY_P (x)) + return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)), + canon_rtx (XEXP (y, 0))); + + /* Compare the elements. If any pair of corresponding elements + fail to match, return 0 for the whole things. + + Limit cases to types which actually appear in addresses. */ + + fmt = GET_RTX_FORMAT (code); + for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) + { + switch (fmt[i]) + { + case 'i': + if (XINT (x, i) != XINT (y, i)) + return 0; + break; + + case 'p': + if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y))) + return 0; + break; + + case 'E': + /* Two vectors must have the same length. */ + if (XVECLEN (x, i) != XVECLEN (y, i)) + return 0; + + /* And the corresponding elements must match. */ + for (j = 0; j < XVECLEN (x, i); j++) + if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)), + canon_rtx (XVECEXP (y, i, j))) == 0) + return 0; + break; + + case 'e': + if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)), + canon_rtx (XEXP (y, i))) == 0) + return 0; + break; + + /* This can happen for asm operands. */ + case 's': + if (strcmp (XSTR (x, i), XSTR (y, i))) + return 0; + break; + + /* This can happen for an asm which clobbers memory. */ + case '0': + break; + + /* It is believed that rtx's at this level will never + contain anything but integers and other rtx's, + except for within LABEL_REFs and SYMBOL_REFs. */ + default: + gcc_unreachable (); + } + } + return 1; +} + +static rtx +find_base_term (rtx x, vec<std::pair<cselib_val *, + struct elt_loc_list *> > &visited_vals) +{ + cselib_val *val; + struct elt_loc_list *l, *f; + rtx ret; + scalar_int_mode int_mode; + +#if defined (FIND_BASE_TERM) + /* Try machine-dependent ways to find the base term. */ + x = FIND_BASE_TERM (x); +#endif + + switch (GET_CODE (x)) + { + case REG: + return REG_BASE_VALUE (x); + + case TRUNCATE: + /* As we do not know which address space the pointer is referring to, we can + handle this only if the target does not support different pointer or + address modes depending on the address space. */ + if (!target_default_pointer_address_modes_p ()) + return 0; + if (!is_a <scalar_int_mode> (GET_MODE (x), &int_mode) + || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode)) + return 0; + /* Fall through. */ + case HIGH: + case PRE_INC: + case PRE_DEC: + case POST_INC: + case POST_DEC: + case PRE_MODIFY: + case POST_MODIFY: + return find_base_term (XEXP (x, 0), visited_vals); + + case ZERO_EXTEND: + case SIGN_EXTEND: /* Used for Alpha/NT pointers */ + /* As we do not know which address space the pointer is referring to, we can + handle this only if the target does not support different pointer or + address modes depending on the address space. */ + if (!target_default_pointer_address_modes_p ()) + return 0; + + { + rtx temp = find_base_term (XEXP (x, 0), visited_vals); + + if (temp != 0 && CONSTANT_P (temp)) + temp = convert_memory_address (Pmode, temp); + + return temp; + } + + case VALUE: + val = CSELIB_VAL_PTR (x); + ret = NULL_RTX; + + if (!val) + return ret; + + if (cselib_sp_based_value_p (val)) + return static_reg_base_value[STACK_POINTER_REGNUM]; + + if (visited_vals.length () > (unsigned) param_max_find_base_term_values) + return ret; + + f = val->locs; + /* Reset val->locs to avoid infinite recursion. */ + if (f) + visited_vals.safe_push (std::make_pair (val, f)); + val->locs = NULL; + + for (l = f; l; l = l->next) + if (GET_CODE (l->loc) == VALUE + && CSELIB_VAL_PTR (l->loc)->locs + && !CSELIB_VAL_PTR (l->loc)->locs->next + && CSELIB_VAL_PTR (l->loc)->locs->loc == x) + continue; + else if ((ret = find_base_term (l->loc, visited_vals)) != 0) + break; + + return ret; + + case LO_SUM: + /* The standard form is (lo_sum reg sym) so look only at the + second operand. */ + return find_base_term (XEXP (x, 1), visited_vals); + + case CONST: + x = XEXP (x, 0); + if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS) + return 0; + /* Fall through. */ + case PLUS: + case MINUS: + { + rtx tmp1 = XEXP (x, 0); + rtx tmp2 = XEXP (x, 1); + + /* This is a little bit tricky since we have to determine which of + the two operands represents the real base address. Otherwise this + routine may return the index register instead of the base register. + + That may cause us to believe no aliasing was possible, when in + fact aliasing is possible. + + We use a few simple tests to guess the base register. Additional + tests can certainly be added. For example, if one of the operands + is a shift or multiply, then it must be the index register and the + other operand is the base register. */ + + if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2)) + return find_base_term (tmp2, visited_vals); + + /* If either operand is known to be a pointer, then prefer it + to determine the base term. */ + if (REG_P (tmp1) && REG_POINTER (tmp1)) + ; + else if (REG_P (tmp2) && REG_POINTER (tmp2)) + std::swap (tmp1, tmp2); + /* If second argument is constant which has base term, prefer it + over variable tmp1. See PR64025. */ + else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2)) + std::swap (tmp1, tmp2); + + /* Go ahead and find the base term for both operands. If either base + term is from a pointer or is a named object or a special address + (like an argument or stack reference), then use it for the + base term. */ + rtx base = find_base_term (tmp1, visited_vals); + if (base != NULL_RTX + && ((REG_P (tmp1) && REG_POINTER (tmp1)) + || known_base_value_p (base))) + return base; + base = find_base_term (tmp2, visited_vals); + if (base != NULL_RTX + && ((REG_P (tmp2) && REG_POINTER (tmp2)) + || known_base_value_p (base))) + return base; + + /* We could not determine which of the two operands was the + base register and which was the index. So we can determine + nothing from the base alias check. */ + return 0; + } + + case AND: + /* Look through aligning ANDs. And AND with zero or one with + the LSB set isn't one (see for example PR92462). */ + if (CONST_INT_P (XEXP (x, 1)) + && INTVAL (XEXP (x, 1)) != 0 + && (INTVAL (XEXP (x, 1)) & 1) == 0) + return find_base_term (XEXP (x, 0), visited_vals); + return 0; + + case SYMBOL_REF: + case LABEL_REF: + return x; + + default: + return 0; + } +} + +/* Wrapper around the worker above which removes locs from visited VALUEs + to avoid visiting them multiple times. We unwind that changes here. */ + +static rtx +find_base_term (rtx x) +{ + auto_vec<std::pair<cselib_val *, struct elt_loc_list *>, 32> visited_vals; + rtx res = find_base_term (x, visited_vals); + for (unsigned i = 0; i < visited_vals.length (); ++i) + visited_vals[i].first->locs = visited_vals[i].second; + return res; +} + +/* Return true if accesses to address X may alias accesses based + on the stack pointer. */ + +bool +may_be_sp_based_p (rtx x) +{ + rtx base = find_base_term (x); + return !base || base == static_reg_base_value[STACK_POINTER_REGNUM]; +} + +/* BASE1 and BASE2 are decls. Return 1 if they refer to same object, 0 + if they refer to different objects and -1 if we cannot decide. */ + +int +compare_base_decls (tree base1, tree base2) +{ + int ret; + gcc_checking_assert (DECL_P (base1) && DECL_P (base2)); + if (base1 == base2) + return 1; + + /* If we have two register decls with register specification we + cannot decide unless their assembler names are the same. */ + if (VAR_P (base1) + && VAR_P (base2) + && DECL_HARD_REGISTER (base1) + && DECL_HARD_REGISTER (base2) + && DECL_ASSEMBLER_NAME_SET_P (base1) + && DECL_ASSEMBLER_NAME_SET_P (base2)) + { + if (DECL_ASSEMBLER_NAME_RAW (base1) == DECL_ASSEMBLER_NAME_RAW (base2)) + return 1; + return -1; + } + + /* Declarations of non-automatic variables may have aliases. All other + decls are unique. */ + if (!decl_in_symtab_p (base1) + || !decl_in_symtab_p (base2)) + return 0; + + /* Don't cause symbols to be inserted by the act of checking. */ + symtab_node *node1 = symtab_node::get (base1); + if (!node1) + return 0; + symtab_node *node2 = symtab_node::get (base2); + if (!node2) + return 0; + + ret = node1->equal_address_to (node2, true); + return ret; +} + +/* Compare SYMBOL_REFs X_BASE and Y_BASE. + + - Return 1 if Y_BASE - X_BASE is constant, adding that constant + to *DISTANCE if DISTANCE is nonnull. + + - Return 0 if no accesses based on X_BASE can alias Y_BASE. + + - Return -1 if one of the two results applies, but we can't tell + which at compile time. Update DISTANCE in the same way as + for a return value of 1, for the case in which that holds. */ + +static int +compare_base_symbol_refs (const_rtx x_base, const_rtx y_base, + HOST_WIDE_INT *distance) +{ + tree x_decl = SYMBOL_REF_DECL (x_base); + tree y_decl = SYMBOL_REF_DECL (y_base); + bool binds_def = true; + + if (XSTR (x_base, 0) == XSTR (y_base, 0)) + return 1; + if (x_decl && y_decl) + return compare_base_decls (x_decl, y_decl); + if (x_decl || y_decl) + { + if (!x_decl) + { + std::swap (x_decl, y_decl); + std::swap (x_base, y_base); + } + /* We handle specially only section anchors. Other symbols are + either equal (via aliasing) or refer to different objects. */ + if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base)) + return -1; + /* Anchors contains static VAR_DECLs and CONST_DECLs. We are safe + to ignore CONST_DECLs because they are readonly. */ + if (!VAR_P (x_decl) + || (!TREE_STATIC (x_decl) && !TREE_PUBLIC (x_decl))) + return 0; + + symtab_node *x_node = symtab_node::get_create (x_decl) + ->ultimate_alias_target (); + /* External variable cannot be in section anchor. */ + if (!x_node->definition) + return 0; + x_base = XEXP (DECL_RTL (x_node->decl), 0); + /* If not in anchor, we can disambiguate. */ + if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base)) + return 0; + + /* We have an alias of anchored variable. If it can be interposed; + we must assume it may or may not alias its anchor. */ + binds_def = decl_binds_to_current_def_p (x_decl); + } + /* If we have variable in section anchor, we can compare by offset. */ + if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base) + && SYMBOL_REF_HAS_BLOCK_INFO_P (y_base)) + { + if (SYMBOL_REF_BLOCK (x_base) != SYMBOL_REF_BLOCK (y_base)) + return 0; + if (distance) + *distance += (SYMBOL_REF_BLOCK_OFFSET (y_base) + - SYMBOL_REF_BLOCK_OFFSET (x_base)); + return binds_def ? 1 : -1; + } + /* Either the symbols are equal (via aliasing) or they refer to + different objects. */ + return -1; +} + +/* Return 0 if the addresses X and Y are known to point to different + objects, 1 if they might be pointers to the same object. */ + +static int +base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base, + machine_mode x_mode, machine_mode y_mode) +{ + /* If the address itself has no known base see if a known equivalent + value has one. If either address still has no known base, nothing + is known about aliasing. */ + if (x_base == 0) + { + rtx x_c; + + if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x) + return 1; + + x_base = find_base_term (x_c); + if (x_base == 0) + return 1; + } + + if (y_base == 0) + { + rtx y_c; + if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y) + return 1; + + y_base = find_base_term (y_c); + if (y_base == 0) + return 1; + } + + /* If the base addresses are equal nothing is known about aliasing. */ + if (rtx_equal_p (x_base, y_base)) + return 1; + + /* The base addresses are different expressions. If they are not accessed + via AND, there is no conflict. We can bring knowledge of object + alignment into play here. For example, on alpha, "char a, b;" can + alias one another, though "char a; long b;" cannot. AND addresses may + implicitly alias surrounding objects; i.e. unaligned access in DImode + via AND address can alias all surrounding object types except those + with aligment 8 or higher. */ + if (GET_CODE (x) == AND && GET_CODE (y) == AND) + return 1; + if (GET_CODE (x) == AND + && (!CONST_INT_P (XEXP (x, 1)) + || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1)))) + return 1; + if (GET_CODE (y) == AND + && (!CONST_INT_P (XEXP (y, 1)) + || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1)))) + return 1; + + /* Differing symbols not accessed via AND never alias. */ + if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF) + return compare_base_symbol_refs (x_base, y_base) != 0; + + if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS) + return 0; + + if (unique_base_value_p (x_base) || unique_base_value_p (y_base)) + return 0; + + return 1; +} + +/* Return TRUE if EXPR refers to a VALUE whose uid is greater than + (or equal to) that of V. */ + +static bool +refs_newer_value_p (const_rtx expr, rtx v) +{ + int minuid = CSELIB_VAL_PTR (v)->uid; + subrtx_iterator::array_type array; + FOR_EACH_SUBRTX (iter, array, expr, NONCONST) + if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid) + return true; + return false; +} + +/* Convert the address X into something we can use. This is done by returning + it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE + we call cselib to get a more useful rtx. */ + +rtx +get_addr (rtx x) +{ + cselib_val *v; + struct elt_loc_list *l; + + if (GET_CODE (x) != VALUE) + { + if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS) + && GET_CODE (XEXP (x, 0)) == VALUE + && CONST_SCALAR_INT_P (XEXP (x, 1))) + { + rtx op0 = get_addr (XEXP (x, 0)); + if (op0 != XEXP (x, 0)) + { + poly_int64 c; + if (GET_CODE (x) == PLUS + && poly_int_rtx_p (XEXP (x, 1), &c)) + return plus_constant (GET_MODE (x), op0, c); + return simplify_gen_binary (GET_CODE (x), GET_MODE (x), + op0, XEXP (x, 1)); + } + } + return x; + } + v = CSELIB_VAL_PTR (x); + if (v) + { + bool have_equivs = cselib_have_permanent_equivalences (); + if (have_equivs) + v = canonical_cselib_val (v); + for (l = v->locs; l; l = l->next) + if (CONSTANT_P (l->loc)) + return l->loc; + for (l = v->locs; l; l = l->next) + if (!REG_P (l->loc) && !MEM_P (l->loc) + /* Avoid infinite recursion when potentially dealing with + var-tracking artificial equivalences, by skipping the + equivalences themselves, and not choosing expressions + that refer to newer VALUEs. */ + && (!have_equivs + || (GET_CODE (l->loc) != VALUE + && !refs_newer_value_p (l->loc, x)))) + return l->loc; + if (have_equivs) + { + for (l = v->locs; l; l = l->next) + if (REG_P (l->loc) + || (GET_CODE (l->loc) != VALUE + && !refs_newer_value_p (l->loc, x))) + return l->loc; + /* Return the canonical value. */ + return v->val_rtx; + } + if (v->locs) + return v->locs->loc; + } + return x; +} + +/* Return the address of the (N_REFS + 1)th memory reference to ADDR + where SIZE is the size in bytes of the memory reference. If ADDR + is not modified by the memory reference then ADDR is returned. */ + +static rtx +addr_side_effect_eval (rtx addr, poly_int64 size, int n_refs) +{ + poly_int64 offset = 0; + + switch (GET_CODE (addr)) + { + case PRE_INC: + offset = (n_refs + 1) * size; + break; + case PRE_DEC: + offset = -(n_refs + 1) * size; + break; + case POST_INC: + offset = n_refs * size; + break; + case POST_DEC: + offset = -n_refs * size; + break; + + default: + return addr; + } + + addr = plus_constant (GET_MODE (addr), XEXP (addr, 0), offset); + addr = canon_rtx (addr); + + return addr; +} + +/* Return TRUE if an object X sized at XSIZE bytes and another object + Y sized at YSIZE bytes, starting C bytes after X, may overlap. If + any of the sizes is zero, assume an overlap, otherwise use the + absolute value of the sizes as the actual sizes. */ + +static inline bool +offset_overlap_p (poly_int64 c, poly_int64 xsize, poly_int64 ysize) +{ + if (known_eq (xsize, 0) || known_eq (ysize, 0)) + return true; + + if (maybe_ge (c, 0)) + return maybe_gt (maybe_lt (xsize, 0) ? -xsize : xsize, c); + else + return maybe_gt (maybe_lt (ysize, 0) ? -ysize : ysize, -c); +} + +/* Return one if X and Y (memory addresses) reference the + same location in memory or if the references overlap. + Return zero if they do not overlap, else return + minus one in which case they still might reference the same location. + + C is an offset accumulator. When + C is nonzero, we are testing aliases between X and Y + C. + XSIZE is the size in bytes of the X reference, + similarly YSIZE is the size in bytes for Y. + Expect that canon_rtx has been already called for X and Y. + + If XSIZE or YSIZE is zero, we do not know the amount of memory being + referenced (the reference was BLKmode), so make the most pessimistic + assumptions. + + If XSIZE or YSIZE is negative, we may access memory outside the object + being referenced as a side effect. This can happen when using AND to + align memory references, as is done on the Alpha. + + Nice to notice that varying addresses cannot conflict with fp if no + local variables had their addresses taken, but that's too hard now. + + ??? Contrary to the tree alias oracle this does not return + one for X + non-constant and Y + non-constant when X and Y are equal. + If that is fixed the TBAA hack for union type-punning can be removed. */ + +static int +memrefs_conflict_p (poly_int64 xsize, rtx x, poly_int64 ysize, rtx y, + poly_int64 c) +{ + if (GET_CODE (x) == VALUE) + { + if (REG_P (y)) + { + struct elt_loc_list *l = NULL; + if (CSELIB_VAL_PTR (x)) + for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs; + l; l = l->next) + if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y)) + break; + if (l) + x = y; + else + x = get_addr (x); + } + /* Don't call get_addr if y is the same VALUE. */ + else if (x != y) + x = get_addr (x); + } + if (GET_CODE (y) == VALUE) + { + if (REG_P (x)) + { + struct elt_loc_list *l = NULL; + if (CSELIB_VAL_PTR (y)) + for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs; + l; l = l->next) + if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x)) + break; + if (l) + y = x; + else + y = get_addr (y); + } + /* Don't call get_addr if x is the same VALUE. */ + else if (y != x) + y = get_addr (y); + } + if (GET_CODE (x) == HIGH) + x = XEXP (x, 0); + else if (GET_CODE (x) == LO_SUM) + x = XEXP (x, 1); + else + x = addr_side_effect_eval (x, maybe_lt (xsize, 0) ? -xsize : xsize, 0); + if (GET_CODE (y) == HIGH) + y = XEXP (y, 0); + else if (GET_CODE (y) == LO_SUM) + y = XEXP (y, 1); + else + y = addr_side_effect_eval (y, maybe_lt (ysize, 0) ? -ysize : ysize, 0); + + if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF) + { + HOST_WIDE_INT distance = 0; + int cmp = compare_base_symbol_refs (x, y, &distance); + + /* If both decls are the same, decide by offsets. */ + if (cmp == 1) + return offset_overlap_p (c + distance, xsize, ysize); + /* Assume a potential overlap for symbolic addresses that went + through alignment adjustments (i.e., that have negative + sizes), because we can't know how far they are from each + other. */ + if (maybe_lt (xsize, 0) || maybe_lt (ysize, 0)) + return -1; + /* If decls are different or we know by offsets that there is no overlap, + we win. */ + if (!cmp || !offset_overlap_p (c + distance, xsize, ysize)) + return 0; + /* Decls may or may not be different and offsets overlap....*/ + return -1; + } + else if (rtx_equal_for_memref_p (x, y)) + { + return offset_overlap_p (c, xsize, ysize); + } + + /* This code used to check for conflicts involving stack references and + globals but the base address alias code now handles these cases. */ + + if (GET_CODE (x) == PLUS) + { + /* The fact that X is canonicalized means that this + PLUS rtx is canonicalized. */ + rtx x0 = XEXP (x, 0); + rtx x1 = XEXP (x, 1); + + /* However, VALUEs might end up in different positions even in + canonical PLUSes. Comparing their addresses is enough. */ + if (x0 == y) + return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c); + else if (x1 == y) + return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c); + + poly_int64 cx1, cy1; + if (GET_CODE (y) == PLUS) + { + /* The fact that Y is canonicalized means that this + PLUS rtx is canonicalized. */ + rtx y0 = XEXP (y, 0); + rtx y1 = XEXP (y, 1); + + if (x0 == y1) + return memrefs_conflict_p (xsize, x1, ysize, y0, c); + if (x1 == y0) + return memrefs_conflict_p (xsize, x0, ysize, y1, c); + + if (rtx_equal_for_memref_p (x1, y1)) + return memrefs_conflict_p (xsize, x0, ysize, y0, c); + if (rtx_equal_for_memref_p (x0, y0)) + return memrefs_conflict_p (xsize, x1, ysize, y1, c); + if (poly_int_rtx_p (x1, &cx1)) + { + if (poly_int_rtx_p (y1, &cy1)) + return memrefs_conflict_p (xsize, x0, ysize, y0, + c - cx1 + cy1); + else + return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1); + } + else if (poly_int_rtx_p (y1, &cy1)) + return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1); + + return -1; + } + else if (poly_int_rtx_p (x1, &cx1)) + return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1); + } + else if (GET_CODE (y) == PLUS) + { + /* The fact that Y is canonicalized means that this + PLUS rtx is canonicalized. */ + rtx y0 = XEXP (y, 0); + rtx y1 = XEXP (y, 1); + + if (x == y0) + return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c); + if (x == y1) + return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c); + + poly_int64 cy1; + if (poly_int_rtx_p (y1, &cy1)) + return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1); + else + return -1; + } + + if (GET_CODE (x) == GET_CODE (y)) + switch (GET_CODE (x)) + { + case MULT: + { + /* Handle cases where we expect the second operands to be the + same, and check only whether the first operand would conflict + or not. */ + rtx x0, y0; + rtx x1 = canon_rtx (XEXP (x, 1)); + rtx y1 = canon_rtx (XEXP (y, 1)); + if (! rtx_equal_for_memref_p (x1, y1)) + return -1; + x0 = canon_rtx (XEXP (x, 0)); + y0 = canon_rtx (XEXP (y, 0)); + if (rtx_equal_for_memref_p (x0, y0)) + return offset_overlap_p (c, xsize, ysize); + + /* Can't properly adjust our sizes. */ + poly_int64 c1; + if (!poly_int_rtx_p (x1, &c1) + || !can_div_trunc_p (xsize, c1, &xsize) + || !can_div_trunc_p (ysize, c1, &ysize) + || !can_div_trunc_p (c, c1, &c)) + return -1; + return memrefs_conflict_p (xsize, x0, ysize, y0, c); + } + + default: + break; + } + + /* Deal with alignment ANDs by adjusting offset and size so as to + cover the maximum range, without taking any previously known + alignment into account. Make a size negative after such an + adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we + assume a potential overlap, because they may end up in contiguous + memory locations and the stricter-alignment access may span over + part of both. */ + if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))) + { + HOST_WIDE_INT sc = INTVAL (XEXP (x, 1)); + unsigned HOST_WIDE_INT uc = sc; + if (sc < 0 && pow2_or_zerop (-uc)) + { + if (maybe_gt (xsize, 0)) + xsize = -xsize; + if (maybe_ne (xsize, 0)) + xsize += sc + 1; + c -= sc + 1; + return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), + ysize, y, c); + } + } + if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1))) + { + HOST_WIDE_INT sc = INTVAL (XEXP (y, 1)); + unsigned HOST_WIDE_INT uc = sc; + if (sc < 0 && pow2_or_zerop (-uc)) + { + if (maybe_gt (ysize, 0)) + ysize = -ysize; + if (maybe_ne (ysize, 0)) + ysize += sc + 1; + c += sc + 1; + return memrefs_conflict_p (xsize, x, + ysize, canon_rtx (XEXP (y, 0)), c); + } + } + + if (CONSTANT_P (x)) + { + poly_int64 cx, cy; + if (poly_int_rtx_p (x, &cx) && poly_int_rtx_p (y, &cy)) + { + c += cy - cx; + return offset_overlap_p (c, xsize, ysize); + } + + if (GET_CODE (x) == CONST) + { + if (GET_CODE (y) == CONST) + return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), + ysize, canon_rtx (XEXP (y, 0)), c); + else + return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), + ysize, y, c); + } + if (GET_CODE (y) == CONST) + return memrefs_conflict_p (xsize, x, ysize, + canon_rtx (XEXP (y, 0)), c); + + /* Assume a potential overlap for symbolic addresses that went + through alignment adjustments (i.e., that have negative + sizes), because we can't know how far they are from each + other. */ + if (CONSTANT_P (y)) + return (maybe_lt (xsize, 0) + || maybe_lt (ysize, 0) + || offset_overlap_p (c, xsize, ysize)); + + return -1; + } + + return -1; +} + +/* Functions to compute memory dependencies. + + Since we process the insns in execution order, we can build tables + to keep track of what registers are fixed (and not aliased), what registers + are varying in known ways, and what registers are varying in unknown + ways. + + If both memory references are volatile, then there must always be a + dependence between the two references, since their order cannot be + changed. A volatile and non-volatile reference can be interchanged + though. + + We also must allow AND addresses, because they may generate accesses + outside the object being referenced. This is used to generate aligned + addresses from unaligned addresses, for instance, the alpha + storeqi_unaligned pattern. */ + +/* Read dependence: X is read after read in MEM takes place. There can + only be a dependence here if both reads are volatile, or if either is + an explicit barrier. */ + +int +read_dependence (const_rtx mem, const_rtx x) +{ + if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem)) + return true; + if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER + || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER) + return true; + return false; +} + +/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */ + +static tree +decl_for_component_ref (tree x) +{ + do + { + x = TREE_OPERAND (x, 0); + } + while (x && TREE_CODE (x) == COMPONENT_REF); + + return x && DECL_P (x) ? x : NULL_TREE; +} + +/* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate + for the offset of the field reference. *KNOWN_P says whether the + offset is known. */ + +static void +adjust_offset_for_component_ref (tree x, bool *known_p, + poly_int64 *offset) +{ + if (!*known_p) + return; + do + { + tree xoffset = component_ref_field_offset (x); + tree field = TREE_OPERAND (x, 1); + if (!poly_int_tree_p (xoffset)) + { + *known_p = false; + return; + } + + poly_offset_int woffset + = (wi::to_poly_offset (xoffset) + + (wi::to_offset (DECL_FIELD_BIT_OFFSET (field)) + >> LOG2_BITS_PER_UNIT) + + *offset); + if (!woffset.to_shwi (offset)) + { + *known_p = false; + return; + } + + x = TREE_OPERAND (x, 0); + } + while (x && TREE_CODE (x) == COMPONENT_REF); +} + +/* Return nonzero if we can determine the exprs corresponding to memrefs + X and Y and they do not overlap. + If LOOP_VARIANT is set, skip offset-based disambiguation */ + +int +nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant) +{ + tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y); + rtx rtlx, rtly; + rtx basex, basey; + bool moffsetx_known_p, moffsety_known_p; + poly_int64 moffsetx = 0, moffsety = 0; + poly_int64 offsetx = 0, offsety = 0, sizex, sizey; + + /* Unless both have exprs, we can't tell anything. */ + if (exprx == 0 || expry == 0) + return 0; + + /* For spill-slot accesses make sure we have valid offsets. */ + if ((exprx == get_spill_slot_decl (false) + && ! MEM_OFFSET_KNOWN_P (x)) + || (expry == get_spill_slot_decl (false) + && ! MEM_OFFSET_KNOWN_P (y))) + return 0; + + /* If the field reference test failed, look at the DECLs involved. */ + moffsetx_known_p = MEM_OFFSET_KNOWN_P (x); + if (moffsetx_known_p) + moffsetx = MEM_OFFSET (x); + if (TREE_CODE (exprx) == COMPONENT_REF) + { + tree t = decl_for_component_ref (exprx); + if (! t) + return 0; + adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx); + exprx = t; + } + + moffsety_known_p = MEM_OFFSET_KNOWN_P (y); + if (moffsety_known_p) + moffsety = MEM_OFFSET (y); + if (TREE_CODE (expry) == COMPONENT_REF) + { + tree t = decl_for_component_ref (expry); + if (! t) + return 0; + adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety); + expry = t; + } + + if (! DECL_P (exprx) || ! DECL_P (expry)) + return 0; + + /* If we refer to different gimple registers, or one gimple register + and one non-gimple-register, we know they can't overlap. First, + gimple registers don't have their addresses taken. Now, there + could be more than one stack slot for (different versions of) the + same gimple register, but we can presumably tell they don't + overlap based on offsets from stack base addresses elsewhere. + It's important that we don't proceed to DECL_RTL, because gimple + registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be + able to do anything about them since no SSA information will have + remained to guide it. */ + if (is_gimple_reg (exprx) || is_gimple_reg (expry)) + return exprx != expry + || (moffsetx_known_p && moffsety_known_p + && MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y) + && !offset_overlap_p (moffsety - moffsetx, + MEM_SIZE (x), MEM_SIZE (y))); + + /* With invalid code we can end up storing into the constant pool. + Bail out to avoid ICEing when creating RTL for this. + See gfortran.dg/lto/20091028-2_0.f90. */ + if (TREE_CODE (exprx) == CONST_DECL + || TREE_CODE (expry) == CONST_DECL) + return 1; + + /* If one decl is known to be a function or label in a function and + the other is some kind of data, they can't overlap. */ + if ((TREE_CODE (exprx) == FUNCTION_DECL + || TREE_CODE (exprx) == LABEL_DECL) + != (TREE_CODE (expry) == FUNCTION_DECL + || TREE_CODE (expry) == LABEL_DECL)) + return 1; + + /* If either of the decls doesn't have DECL_RTL set (e.g. marked as + living in multiple places), we can't tell anything. Exception + are FUNCTION_DECLs for which we can create DECL_RTL on demand. */ + if ((!DECL_RTL_SET_P (exprx) && TREE_CODE (exprx) != FUNCTION_DECL) + || (!DECL_RTL_SET_P (expry) && TREE_CODE (expry) != FUNCTION_DECL)) + return 0; + + rtlx = DECL_RTL (exprx); + rtly = DECL_RTL (expry); + + /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they + can't overlap unless they are the same because we never reuse that part + of the stack frame used for locals for spilled pseudos. */ + if ((!MEM_P (rtlx) || !MEM_P (rtly)) + && ! rtx_equal_p (rtlx, rtly)) + return 1; + + /* If we have MEMs referring to different address spaces (which can + potentially overlap), we cannot easily tell from the addresses + whether the references overlap. */ + if (MEM_P (rtlx) && MEM_P (rtly) + && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly)) + return 0; + + /* Get the base and offsets of both decls. If either is a register, we + know both are and are the same, so use that as the base. The only + we can avoid overlap is if we can deduce that they are nonoverlapping + pieces of that decl, which is very rare. */ + basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx; + basex = strip_offset_and_add (basex, &offsetx); + + basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly; + basey = strip_offset_and_add (basey, &offsety); + + /* If the bases are different, we know they do not overlap if both + are constants or if one is a constant and the other a pointer into the + stack frame. Otherwise a different base means we can't tell if they + overlap or not. */ + if (compare_base_decls (exprx, expry) == 0) + return ((CONSTANT_P (basex) && CONSTANT_P (basey)) + || (CONSTANT_P (basex) && REG_P (basey) + && REGNO_PTR_FRAME_P (REGNO (basey))) + || (CONSTANT_P (basey) && REG_P (basex) + && REGNO_PTR_FRAME_P (REGNO (basex)))); + + /* Offset based disambiguation not appropriate for loop invariant */ + if (loop_invariant) + return 0; + + /* Offset based disambiguation is OK even if we do not know that the + declarations are necessarily different + (i.e. compare_base_decls (exprx, expry) == -1) */ + + sizex = (!MEM_P (rtlx) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtlx))) + : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx) + : -1); + sizey = (!MEM_P (rtly) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtly))) + : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly) + : -1); + + /* If we have an offset for either memref, it can update the values computed + above. */ + if (moffsetx_known_p) + offsetx += moffsetx, sizex -= moffsetx; + if (moffsety_known_p) + offsety += moffsety, sizey -= moffsety; + + /* If a memref has both a size and an offset, we can use the smaller size. + We can't do this if the offset isn't known because we must view this + memref as being anywhere inside the DECL's MEM. */ + if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p) + sizex = MEM_SIZE (x); + if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p) + sizey = MEM_SIZE (y); + + return !ranges_maybe_overlap_p (offsetx, sizex, offsety, sizey); +} + +/* Helper for true_dependence and canon_true_dependence. + Checks for true dependence: X is read after store in MEM takes place. + + If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be + NULL_RTX, and the canonical addresses of MEM and X are both computed + here. If MEM_CANONICALIZED, then MEM must be already canonicalized. + + If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0). + + Returns 1 if there is a true dependence, 0 otherwise. */ + +static int +true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr, + const_rtx x, rtx x_addr, bool mem_canonicalized) +{ + rtx true_mem_addr; + rtx base; + int ret; + + gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX) + : (mem_addr == NULL_RTX && x_addr == NULL_RTX)); + + if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem)) + return 1; + + /* (mem:BLK (scratch)) is a special mechanism to conflict with everything. + This is used in epilogue deallocation functions, and in cselib. */ + if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH) + return 1; + if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH) + return 1; + if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER + || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER) + return 1; + + if (! x_addr) + x_addr = XEXP (x, 0); + x_addr = get_addr (x_addr); + + if (! mem_addr) + { + mem_addr = XEXP (mem, 0); + if (mem_mode == VOIDmode) + mem_mode = GET_MODE (mem); + } + true_mem_addr = get_addr (mem_addr); + + /* Read-only memory is by definition never modified, and therefore can't + conflict with anything. However, don't assume anything when AND + addresses are involved and leave to the code below to determine + dependence. We don't expect to find read-only set on MEM, but + stupid user tricks can produce them, so don't die. */ + if (MEM_READONLY_P (x) + && GET_CODE (x_addr) != AND + && GET_CODE (true_mem_addr) != AND) + return 0; + + /* If we have MEMs referring to different address spaces (which can + potentially overlap), we cannot easily tell from the addresses + whether the references overlap. */ + if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x)) + return 1; + + base = find_base_term (x_addr); + if (base && (GET_CODE (base) == LABEL_REF + || (GET_CODE (base) == SYMBOL_REF + && CONSTANT_POOL_ADDRESS_P (base)))) + return 0; + + rtx mem_base = find_base_term (true_mem_addr); + if (! base_alias_check (x_addr, base, true_mem_addr, mem_base, + GET_MODE (x), mem_mode)) + return 0; + + x_addr = canon_rtx (x_addr); + if (!mem_canonicalized) + mem_addr = canon_rtx (true_mem_addr); + + if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr, + SIZE_FOR_MODE (x), x_addr, 0)) != -1) + return ret; + + if (mems_in_disjoint_alias_sets_p (x, mem)) + return 0; + + if (nonoverlapping_memrefs_p (mem, x, false)) + return 0; + + return rtx_refs_may_alias_p (x, mem, true); +} + +/* True dependence: X is read after store in MEM takes place. */ + +int +true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x) +{ + return true_dependence_1 (mem, mem_mode, NULL_RTX, + x, NULL_RTX, /*mem_canonicalized=*/false); +} + +/* Canonical true dependence: X is read after store in MEM takes place. + Variant of true_dependence which assumes MEM has already been + canonicalized (hence we no longer do that here). + The mem_addr argument has been added, since true_dependence_1 computed + this value prior to canonicalizing. */ + +int +canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr, + const_rtx x, rtx x_addr) +{ + return true_dependence_1 (mem, mem_mode, mem_addr, + x, x_addr, /*mem_canonicalized=*/true); +} + +/* Returns nonzero if a write to X might alias a previous read from + (or, if WRITEP is true, a write to) MEM. + If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X, + and X_MODE the mode for that access. + If MEM_CANONICALIZED is true, MEM is canonicalized. */ + +static int +write_dependence_p (const_rtx mem, + const_rtx x, machine_mode x_mode, rtx x_addr, + bool mem_canonicalized, bool x_canonicalized, bool writep) +{ + rtx mem_addr; + rtx true_mem_addr, true_x_addr; + rtx base; + int ret; + + gcc_checking_assert (x_canonicalized + ? (x_addr != NULL_RTX + && (x_mode != VOIDmode || GET_MODE (x) == VOIDmode)) + : (x_addr == NULL_RTX && x_mode == VOIDmode)); + + if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem)) + return 1; + + /* (mem:BLK (scratch)) is a special mechanism to conflict with everything. + This is used in epilogue deallocation functions. */ + if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH) + return 1; + if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH) + return 1; + if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER + || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER) + return 1; + + if (!x_addr) + x_addr = XEXP (x, 0); + true_x_addr = get_addr (x_addr); + + mem_addr = XEXP (mem, 0); + true_mem_addr = get_addr (mem_addr); + + /* A read from read-only memory can't conflict with read-write memory. + Don't assume anything when AND addresses are involved and leave to + the code below to determine dependence. */ + if (!writep + && MEM_READONLY_P (mem) + && GET_CODE (true_x_addr) != AND + && GET_CODE (true_mem_addr) != AND) + return 0; + + /* If we have MEMs referring to different address spaces (which can + potentially overlap), we cannot easily tell from the addresses + whether the references overlap. */ + if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x)) + return 1; + + base = find_base_term (true_mem_addr); + if (! writep + && base + && (GET_CODE (base) == LABEL_REF + || (GET_CODE (base) == SYMBOL_REF + && CONSTANT_POOL_ADDRESS_P (base)))) + return 0; + + rtx x_base = find_base_term (true_x_addr); + if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base, + GET_MODE (x), GET_MODE (mem))) + return 0; + + if (!x_canonicalized) + { + x_addr = canon_rtx (true_x_addr); + x_mode = GET_MODE (x); + } + if (!mem_canonicalized) + mem_addr = canon_rtx (true_mem_addr); + + if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr, + GET_MODE_SIZE (x_mode), x_addr, 0)) != -1) + return ret; + + if (nonoverlapping_memrefs_p (x, mem, false)) + return 0; + + return rtx_refs_may_alias_p (x, mem, false); +} + +/* Anti dependence: X is written after read in MEM takes place. */ + +int +anti_dependence (const_rtx mem, const_rtx x) +{ + return write_dependence_p (mem, x, VOIDmode, NULL_RTX, + /*mem_canonicalized=*/false, + /*x_canonicalized*/false, /*writep=*/false); +} + +/* Likewise, but we already have a canonicalized MEM, and X_ADDR for X. + Also, consider X in X_MODE (which might be from an enclosing + STRICT_LOW_PART / ZERO_EXTRACT). + If MEM_CANONICALIZED is true, MEM is canonicalized. */ + +int +canon_anti_dependence (const_rtx mem, bool mem_canonicalized, + const_rtx x, machine_mode x_mode, rtx x_addr) +{ + return write_dependence_p (mem, x, x_mode, x_addr, + mem_canonicalized, /*x_canonicalized=*/true, + /*writep=*/false); +} + +/* Output dependence: X is written after store in MEM takes place. */ + +int +output_dependence (const_rtx mem, const_rtx x) +{ + return write_dependence_p (mem, x, VOIDmode, NULL_RTX, + /*mem_canonicalized=*/false, + /*x_canonicalized*/false, /*writep=*/true); +} + +/* Likewise, but we already have a canonicalized MEM, and X_ADDR for X. + Also, consider X in X_MODE (which might be from an enclosing + STRICT_LOW_PART / ZERO_EXTRACT). + If MEM_CANONICALIZED is true, MEM is canonicalized. */ + +int +canon_output_dependence (const_rtx mem, bool mem_canonicalized, + const_rtx x, machine_mode x_mode, rtx x_addr) +{ + return write_dependence_p (mem, x, x_mode, x_addr, + mem_canonicalized, /*x_canonicalized=*/true, + /*writep=*/true); +} + + + +/* Check whether X may be aliased with MEM. Don't do offset-based + memory disambiguation & TBAA. */ +int +may_alias_p (const_rtx mem, const_rtx x) +{ + rtx x_addr, mem_addr; + + if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem)) + return 1; + + /* (mem:BLK (scratch)) is a special mechanism to conflict with everything. + This is used in epilogue deallocation functions. */ + if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH) + return 1; + if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH) + return 1; + if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER + || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER) + return 1; + + x_addr = XEXP (x, 0); + x_addr = get_addr (x_addr); + + mem_addr = XEXP (mem, 0); + mem_addr = get_addr (mem_addr); + + /* Read-only memory is by definition never modified, and therefore can't + conflict with anything. However, don't assume anything when AND + addresses are involved and leave to the code below to determine + dependence. We don't expect to find read-only set on MEM, but + stupid user tricks can produce them, so don't die. */ + if (MEM_READONLY_P (x) + && GET_CODE (x_addr) != AND + && GET_CODE (mem_addr) != AND) + return 0; + + /* If we have MEMs referring to different address spaces (which can + potentially overlap), we cannot easily tell from the addresses + whether the references overlap. */ + if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x)) + return 1; + + rtx x_base = find_base_term (x_addr); + rtx mem_base = find_base_term (mem_addr); + if (! base_alias_check (x_addr, x_base, mem_addr, mem_base, + GET_MODE (x), GET_MODE (mem_addr))) + return 0; + + if (nonoverlapping_memrefs_p (mem, x, true)) + return 0; + + /* TBAA not valid for loop_invarint */ + return rtx_refs_may_alias_p (x, mem, false); +} + +void +init_alias_target (void) +{ + int i; + + if (!arg_base_value) + arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0); + + memset (static_reg_base_value, 0, sizeof static_reg_base_value); + + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + /* Check whether this register can hold an incoming pointer + argument. FUNCTION_ARG_REGNO_P tests outgoing register + numbers, so translate if necessary due to register windows. */ + if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i)) + && targetm.hard_regno_mode_ok (i, Pmode)) + static_reg_base_value[i] = arg_base_value; + + /* RTL code is required to be consistent about whether it uses the + stack pointer, the frame pointer or the argument pointer to + access a given area of the frame. We can therefore use the + base address to distinguish between the different areas. */ + static_reg_base_value[STACK_POINTER_REGNUM] + = unique_base_value (UNIQUE_BASE_VALUE_SP); + static_reg_base_value[ARG_POINTER_REGNUM] + = unique_base_value (UNIQUE_BASE_VALUE_ARGP); + static_reg_base_value[FRAME_POINTER_REGNUM] + = unique_base_value (UNIQUE_BASE_VALUE_FP); + + /* The above rules extend post-reload, with eliminations applying + consistently to each of the three pointers. Cope with cases in + which the frame pointer is eliminated to the hard frame pointer + rather than the stack pointer. */ + if (!HARD_FRAME_POINTER_IS_FRAME_POINTER) + static_reg_base_value[HARD_FRAME_POINTER_REGNUM] + = unique_base_value (UNIQUE_BASE_VALUE_HFP); +} + +/* Set MEMORY_MODIFIED when X modifies DATA (that is assumed + to be memory reference. */ +static bool memory_modified; +static void +memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data) +{ + if (MEM_P (x)) + { + if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data)) + memory_modified = true; + } +} + + +/* Return true when INSN possibly modify memory contents of MEM + (i.e. address can be modified). */ +bool +memory_modified_in_insn_p (const_rtx mem, const_rtx insn) +{ + if (!INSN_P (insn)) + return false; + /* Conservatively assume all non-readonly MEMs might be modified in + calls. */ + if (CALL_P (insn)) + return true; + memory_modified = false; + note_stores (as_a<const rtx_insn *> (insn), memory_modified_1, + CONST_CAST_RTX(mem)); + return memory_modified; +} + +/* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE + array. */ + +void +init_alias_analysis (void) +{ + unsigned int maxreg = max_reg_num (); + int changed, pass; + int i; + unsigned int ui; + rtx_insn *insn; + rtx val; + int rpo_cnt; + int *rpo; + + timevar_push (TV_ALIAS_ANALYSIS); + + vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER, + true); + reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER); + bitmap_clear (reg_known_equiv_p); + + /* If we have memory allocated from the previous run, use it. */ + if (old_reg_base_value) + reg_base_value = old_reg_base_value; + + if (reg_base_value) + reg_base_value->truncate (0); + + vec_safe_grow_cleared (reg_base_value, maxreg, true); + + new_reg_base_value = XNEWVEC (rtx, maxreg); + reg_seen = sbitmap_alloc (maxreg); + + /* The basic idea is that each pass through this loop will use the + "constant" information from the previous pass to propagate alias + information through another level of assignments. + + The propagation is done on the CFG in reverse post-order, to propagate + things forward as far as possible in each iteration. + + This could get expensive if the assignment chains are long. Maybe + we should throttle the number of iterations, possibly based on + the optimization level or flag_expensive_optimizations. + + We could propagate more information in the first pass by making use + of DF_REG_DEF_COUNT to determine immediately that the alias information + for a pseudo is "constant". + + A program with an uninitialized variable can cause an infinite loop + here. Instead of doing a full dataflow analysis to detect such problems + we just cap the number of iterations for the loop. + + The state of the arrays for the set chain in question does not matter + since the program has undefined behavior. */ + + rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun)); + rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false); + + pass = 0; + do + { + /* Assume nothing will change this iteration of the loop. */ + changed = 0; + + /* We want to assign the same IDs each iteration of this loop, so + start counting from one each iteration of the loop. */ + unique_id = 1; + + /* We're at the start of the function each iteration through the + loop, so we're copying arguments. */ + copying_arguments = true; + + /* Wipe the potential alias information clean for this pass. */ + memset (new_reg_base_value, 0, maxreg * sizeof (rtx)); + + /* Wipe the reg_seen array clean. */ + bitmap_clear (reg_seen); + + /* Initialize the alias information for this pass. */ + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + if (static_reg_base_value[i] + /* Don't treat the hard frame pointer as special if we + eliminated the frame pointer to the stack pointer instead. */ + && !(i == HARD_FRAME_POINTER_REGNUM + && reload_completed + && !frame_pointer_needed + && targetm.can_eliminate (FRAME_POINTER_REGNUM, + STACK_POINTER_REGNUM))) + { + new_reg_base_value[i] = static_reg_base_value[i]; + bitmap_set_bit (reg_seen, i); + } + + /* Walk the insns adding values to the new_reg_base_value array. */ + for (i = 0; i < rpo_cnt; i++) + { + basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]); + FOR_BB_INSNS (bb, insn) + { + if (NONDEBUG_INSN_P (insn)) + { + rtx note, set; + + /* If this insn has a noalias note, process it, Otherwise, + scan for sets. A simple set will have no side effects + which could change the base value of any other register. */ + + if (GET_CODE (PATTERN (insn)) == SET + && REG_NOTES (insn) != 0 + && find_reg_note (insn, REG_NOALIAS, NULL_RTX)) + record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL); + else + note_stores (insn, record_set, NULL); + + set = single_set (insn); + + if (set != 0 + && REG_P (SET_DEST (set)) + && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER) + { + unsigned int regno = REGNO (SET_DEST (set)); + rtx src = SET_SRC (set); + rtx t; + + note = find_reg_equal_equiv_note (insn); + if (note && REG_NOTE_KIND (note) == REG_EQUAL + && DF_REG_DEF_COUNT (regno) != 1) + note = NULL_RTX; + + poly_int64 offset; + if (note != NULL_RTX + && GET_CODE (XEXP (note, 0)) != EXPR_LIST + && ! rtx_varies_p (XEXP (note, 0), 1) + && ! reg_overlap_mentioned_p (SET_DEST (set), + XEXP (note, 0))) + { + set_reg_known_value (regno, XEXP (note, 0)); + set_reg_known_equiv_p (regno, + REG_NOTE_KIND (note) == REG_EQUIV); + } + else if (DF_REG_DEF_COUNT (regno) == 1 + && GET_CODE (src) == PLUS + && REG_P (XEXP (src, 0)) + && (t = get_reg_known_value (REGNO (XEXP (src, 0)))) + && poly_int_rtx_p (XEXP (src, 1), &offset)) + { + t = plus_constant (GET_MODE (src), t, offset); + set_reg_known_value (regno, t); + set_reg_known_equiv_p (regno, false); + } + else if (DF_REG_DEF_COUNT (regno) == 1 + && ! rtx_varies_p (src, 1)) + { + set_reg_known_value (regno, src); + set_reg_known_equiv_p (regno, false); + } + } + } + else if (NOTE_P (insn) + && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG) + copying_arguments = false; + } + } + + /* Now propagate values from new_reg_base_value to reg_base_value. */ + gcc_assert (maxreg == (unsigned int) max_reg_num ()); + + for (ui = 0; ui < maxreg; ui++) + { + if (new_reg_base_value[ui] + && new_reg_base_value[ui] != (*reg_base_value)[ui] + && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui])) + { + (*reg_base_value)[ui] = new_reg_base_value[ui]; + changed = 1; + } + } + } + while (changed && ++pass < MAX_ALIAS_LOOP_PASSES); + XDELETEVEC (rpo); + + /* Fill in the remaining entries. */ + FOR_EACH_VEC_ELT (*reg_known_value, i, val) + { + int regno = i + FIRST_PSEUDO_REGISTER; + if (! val) + set_reg_known_value (regno, regno_reg_rtx[regno]); + } + + /* Clean up. */ + free (new_reg_base_value); + new_reg_base_value = 0; + sbitmap_free (reg_seen); + reg_seen = 0; + timevar_pop (TV_ALIAS_ANALYSIS); +} + +/* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2). + Special API for var-tracking pass purposes. */ + +void +vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2) +{ + (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2); +} + +void +end_alias_analysis (void) +{ + old_reg_base_value = reg_base_value; + vec_free (reg_known_value); + sbitmap_free (reg_known_equiv_p); +} + +void +dump_alias_stats_in_alias_c (FILE *s) +{ + fprintf (s, " TBAA oracle: %llu disambiguations %llu queries\n" + " %llu are in alias set 0\n" + " %llu queries asked about the same object\n" + " %llu queries asked about the same alias set\n" + " %llu access volatile\n" + " %llu are dependent in the DAG\n" + " %llu are aritificially in conflict with void *\n", + alias_stats.num_disambiguated, + alias_stats.num_alias_zero + alias_stats.num_same_alias_set + + alias_stats.num_same_objects + alias_stats.num_volatile + + alias_stats.num_dag + alias_stats.num_disambiguated + + alias_stats.num_universal, + alias_stats.num_alias_zero, alias_stats.num_same_alias_set, + alias_stats.num_same_objects, alias_stats.num_volatile, + alias_stats.num_dag, alias_stats.num_universal); +} +#include "gt-alias.h" |