aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/utils.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/ada/utils.c')
-rw-r--r--gcc/ada/utils.c3350
1 files changed, 3350 insertions, 0 deletions
diff --git a/gcc/ada/utils.c b/gcc/ada/utils.c
new file mode 100644
index 0000000..b23bbe9
--- /dev/null
+++ b/gcc/ada/utils.c
@@ -0,0 +1,3350 @@
+/****************************************************************************
+ * *
+ * GNAT COMPILER COMPONENTS *
+ * *
+ * U T I L S *
+ * *
+ * C Implementation File *
+ * *
+ * $Revision: 1.4 $
+ * *
+ * Copyright (C) 1992-2001, Free Software Foundation, Inc. *
+ * *
+ * GNAT is free software; you can redistribute it and/or modify it under *
+ * terms of the GNU General Public License as published by the Free Soft- *
+ * ware Foundation; either version 2, or (at your option) any later ver- *
+ * sion. GNAT is distributed in the hope that it will be useful, but WITH- *
+ * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
+ * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
+ * for more details. You should have received a copy of the GNU General *
+ * Public License distributed with GNAT; see file COPYING. If not, write *
+ * to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, *
+ * MA 02111-1307, USA. *
+ * *
+ * GNAT was originally developed by the GNAT team at New York University. *
+ * It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). *
+ * *
+ ****************************************************************************/
+
+#include "config.h"
+#include "system.h"
+#include "tree.h"
+#include "flags.h"
+#include "defaults.h"
+#include "toplev.h"
+#include "output.h"
+#include "ggc.h"
+#include "convert.h"
+
+#include "ada.h"
+#include "types.h"
+#include "atree.h"
+#include "elists.h"
+#include "namet.h"
+#include "nlists.h"
+#include "stringt.h"
+#include "uintp.h"
+#include "fe.h"
+#include "sinfo.h"
+#include "einfo.h"
+#include "ada-tree.h"
+#include "gigi.h"
+
+#ifndef MAX_FIXED_MODE_SIZE
+#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
+#endif
+
+#ifndef MAX_BITS_PER_WORD
+#define MAX_BITS_PER_WORD BITS_PER_WORD
+#endif
+
+/* If nonzero, pretend we are allocating at global level. */
+int force_global;
+
+/* Global Variables for the various types we create. */
+tree gnat_std_decls[(int) ADT_LAST];
+
+/* Associates a GNAT tree node to a GCC tree node. It is used in
+ `save_gnu_tree', `get_gnu_tree' and `present_gnu_tree'. See documentation
+ of `save_gnu_tree' for more info. */
+static tree *associate_gnat_to_gnu;
+
+/* This listhead is used to record any global objects that need elaboration.
+ TREE_PURPOSE is the variable to be elaborated and TREE_VALUE is the
+ initial value to assign. */
+
+static tree pending_elaborations;
+
+/* This stack allows us to momentarily switch to generating elaboration
+ lists for an inner context. */
+
+static struct e_stack {struct e_stack *next; tree elab_list; } *elist_stack;
+
+/* This variable keeps a table for types for each precision so that we only
+ allocate each of them once. Signed and unsigned types are kept separate.
+
+ Note that these types are only used when fold-const requests something
+ special. Perhaps we should NOT share these types; we'll see how it
+ goes later. */
+static tree signed_and_unsigned_types[2 * MAX_BITS_PER_WORD + 1][2];
+
+/* Likewise for float types, but record these by mode. */
+static tree float_types[NUM_MACHINE_MODES];
+
+/* For each binding contour we allocate a binding_level structure which records
+ the entities defined or declared in that contour. Contours include:
+
+ the global one
+ one for each subprogram definition
+ one for each compound statement (declare block)
+
+ Binding contours are used to create GCC tree BLOCK nodes. */
+
+struct binding_level
+{
+ /* A chain of ..._DECL nodes for all variables, constants, functions,
+ parameters and type declarations. These ..._DECL nodes are chained
+ through the TREE_CHAIN field. Note that these ..._DECL nodes are stored
+ in the reverse of the order supplied to be compatible with the
+ back-end. */
+ tree names;
+ /* For each level (except the global one), a chain of BLOCK nodes for all
+ the levels that were entered and exited one level down from this one. */
+ tree blocks;
+ /* The BLOCK node for this level, if one has been preallocated.
+ If 0, the BLOCK is allocated (if needed) when the level is popped. */
+ tree this_block;
+ /* The binding level containing this one (the enclosing binding level). */
+ struct binding_level *level_chain;
+};
+
+/* The binding level currently in effect. */
+static struct binding_level *current_binding_level = NULL;
+
+/* A chain of binding_level structures awaiting reuse. */
+static struct binding_level *free_binding_level = NULL;
+
+/* The outermost binding level. This binding level is created when the
+ compiler is started and it will exist through the entire compilation. */
+static struct binding_level *global_binding_level;
+
+/* Binding level structures are initialized by copying this one. */
+static struct binding_level clear_binding_level = {NULL, NULL, NULL, NULL};
+
+
+static tree merge_sizes PARAMS ((tree, tree, tree, int, int));
+static tree compute_related_constant PARAMS ((tree, tree));
+static tree split_plus PARAMS ((tree, tree *));
+static int value_zerop PARAMS ((tree));
+static tree float_type_for_size PARAMS ((int, enum machine_mode));
+static tree convert_to_fat_pointer PARAMS ((tree, tree));
+static tree convert_to_thin_pointer PARAMS ((tree, tree));
+static tree make_descriptor_field PARAMS ((const char *,tree, tree,
+ tree));
+static void mark_binding_level PARAMS((PTR));
+static void mark_e_stack PARAMS((PTR));
+
+/* Initialize the association of GNAT nodes to GCC trees. */
+
+void
+init_gnat_to_gnu ()
+{
+ Node_Id gnat_node;
+
+ associate_gnat_to_gnu = (tree *) xmalloc (max_gnat_nodes * sizeof (tree));
+ ggc_add_tree_root (associate_gnat_to_gnu, max_gnat_nodes);
+
+ for (gnat_node = 0; gnat_node < max_gnat_nodes; gnat_node++)
+ associate_gnat_to_gnu [gnat_node] = NULL_TREE;
+
+ associate_gnat_to_gnu -= First_Node_Id;
+
+ pending_elaborations = build_tree_list (NULL_TREE, NULL_TREE);
+ ggc_add_tree_root (&pending_elaborations, 1);
+ ggc_add_root ((PTR) &elist_stack, 1, sizeof (struct e_stack), mark_e_stack);
+ ggc_add_tree_root (&signed_and_unsigned_types[0][0],
+ (sizeof signed_and_unsigned_types
+ / sizeof signed_and_unsigned_types[0][0]));
+ ggc_add_tree_root (float_types, sizeof float_types / sizeof float_types[0]);
+
+ ggc_add_root (&current_binding_level, 1, sizeof current_binding_level,
+ mark_binding_level);
+}
+
+/* GNAT_ENTITY is a GNAT tree node for an entity. GNU_DECL is the GCC tree
+ which is to be associated with GNAT_ENTITY. Such GCC tree node is always
+ a ..._DECL node. If NO_CHECK is nonzero, the latter check is suppressed.
+
+ If GNU_DECL is zero, a previous association is to be reset. */
+
+void
+save_gnu_tree (gnat_entity, gnu_decl, no_check)
+ Entity_Id gnat_entity;
+ tree gnu_decl;
+ int no_check;
+{
+ if (gnu_decl
+ && (associate_gnat_to_gnu [gnat_entity]
+ || (! no_check && ! DECL_P (gnu_decl))))
+ gigi_abort (401);
+
+ associate_gnat_to_gnu [gnat_entity] = gnu_decl;
+}
+
+/* GNAT_ENTITY is a GNAT tree node for a defining identifier.
+ Return the ..._DECL node that was associated with it. If there is no tree
+ node associated with GNAT_ENTITY, abort.
+
+ In some cases, such as delayed elaboration or expressions that need to
+ be elaborated only once, GNAT_ENTITY is really not an entity. */
+
+tree
+get_gnu_tree (gnat_entity)
+ Entity_Id gnat_entity;
+{
+ if (! associate_gnat_to_gnu [gnat_entity])
+ gigi_abort (402);
+
+ return associate_gnat_to_gnu [gnat_entity];
+}
+
+/* Return nonzero if a GCC tree has been associated with GNAT_ENTITY. */
+
+int
+present_gnu_tree (gnat_entity)
+ Entity_Id gnat_entity;
+{
+ return (associate_gnat_to_gnu [gnat_entity] != NULL_TREE);
+}
+
+
+/* Return non-zero if we are currently in the global binding level. */
+
+int
+global_bindings_p ()
+{
+ return (force_global != 0 || current_binding_level == global_binding_level
+ ? -1 : 0);
+}
+
+/* Return the list of declarations in the current level. Note that this list
+ is in reverse order (it has to be so for back-end compatibility). */
+
+tree
+getdecls ()
+{
+ return current_binding_level->names;
+}
+
+/* Nonzero if the current level needs to have a BLOCK made. */
+
+int
+kept_level_p ()
+{
+ return (current_binding_level->names != 0);
+}
+
+/* Enter a new binding level. The input parameter is ignored, but has to be
+ specified for back-end compatibility. */
+
+void
+pushlevel (ignore)
+ int ignore ATTRIBUTE_UNUSED;
+{
+ struct binding_level *newlevel = NULL;
+
+ /* Reuse a struct for this binding level, if there is one. */
+ if (free_binding_level)
+ {
+ newlevel = free_binding_level;
+ free_binding_level = free_binding_level->level_chain;
+ }
+ else
+ newlevel
+ = (struct binding_level *) xmalloc (sizeof (struct binding_level));
+
+ *newlevel = clear_binding_level;
+
+ /* Add this level to the front of the chain (stack) of levels that are
+ active. */
+ newlevel->level_chain = current_binding_level;
+ current_binding_level = newlevel;
+}
+
+/* Exit a binding level.
+ Pop the level off, and restore the state of the identifier-decl mappings
+ that were in effect when this level was entered.
+
+ If KEEP is nonzero, this level had explicit declarations, so
+ and create a "block" (a BLOCK node) for the level
+ to record its declarations and subblocks for symbol table output.
+
+ If FUNCTIONBODY is nonzero, this level is the body of a function,
+ so create a block as if KEEP were set and also clear out all
+ label names.
+
+ If REVERSE is nonzero, reverse the order of decls before putting
+ them into the BLOCK. */
+
+tree
+poplevel (keep, reverse, functionbody)
+ int keep;
+ int reverse;
+ int functionbody;
+{
+ /* Points to a GCC BLOCK tree node. This is the BLOCK node construted for the
+ binding level that we are about to exit and which is returned by this
+ routine. */
+ tree block = NULL_TREE;
+ tree decl_chain;
+ tree decl_node;
+ tree subblock_chain = current_binding_level->blocks;
+ tree subblock_node;
+ int block_previously_created;
+
+ /* Reverse the list of XXXX_DECL nodes if desired. Note that the ..._DECL
+ nodes chained through the `names' field of current_binding_level are in
+ reverse order except for PARM_DECL node, which are explicitely stored in
+ the right order. */
+ current_binding_level->names
+ = decl_chain = (reverse) ? nreverse (current_binding_level->names)
+ : current_binding_level->names;
+
+ /* Output any nested inline functions within this block which must be
+ compiled because their address is needed. */
+ for (decl_node = decl_chain; decl_node; decl_node = TREE_CHAIN (decl_node))
+ if (TREE_CODE (decl_node) == FUNCTION_DECL
+ && ! TREE_ASM_WRITTEN (decl_node) && TREE_ADDRESSABLE (decl_node)
+ && DECL_INITIAL (decl_node) != 0)
+ {
+ push_function_context ();
+ output_inline_function (decl_node);
+ pop_function_context ();
+ }
+
+ block = 0;
+ block_previously_created = (current_binding_level->this_block != 0);
+ if (block_previously_created)
+ block = current_binding_level->this_block;
+ else if (keep || functionbody)
+ block = make_node (BLOCK);
+ if (block != 0)
+ {
+ BLOCK_VARS (block) = keep ? decl_chain : 0;
+ BLOCK_SUBBLOCKS (block) = subblock_chain;
+ }
+
+ /* Record the BLOCK node just built as the subblock its enclosing scope. */
+ for (subblock_node = subblock_chain; subblock_node;
+ subblock_node = TREE_CHAIN (subblock_node))
+ BLOCK_SUPERCONTEXT (subblock_node) = block;
+
+ /* Clear out the meanings of the local variables of this level. */
+
+ for (subblock_node = decl_chain; subblock_node;
+ subblock_node = TREE_CHAIN (subblock_node))
+ if (DECL_NAME (subblock_node) != 0)
+ /* If the identifier was used or addressed via a local extern decl,
+ don't forget that fact. */
+ if (DECL_EXTERNAL (subblock_node))
+ {
+ if (TREE_USED (subblock_node))
+ TREE_USED (DECL_NAME (subblock_node)) = 1;
+ if (TREE_ADDRESSABLE (subblock_node))
+ TREE_ADDRESSABLE (DECL_ASSEMBLER_NAME (subblock_node)) = 1;
+ }
+
+ {
+ /* Pop the current level, and free the structure for reuse. */
+ struct binding_level *level = current_binding_level;
+ current_binding_level = current_binding_level->level_chain;
+ level->level_chain = free_binding_level;
+ free_binding_level = level;
+ }
+
+ if (functionbody)
+ {
+ /* This is the top level block of a function. The ..._DECL chain stored
+ in BLOCK_VARS are the function's parameters (PARM_DECL nodes). Don't
+ leave them in the BLOCK because they are found in the FUNCTION_DECL
+ instead. */
+ DECL_INITIAL (current_function_decl) = block;
+ BLOCK_VARS (block) = 0;
+ }
+ else if (block)
+ {
+ if (!block_previously_created)
+ current_binding_level->blocks
+ = chainon (current_binding_level->blocks, block);
+ }
+
+ /* If we did not make a block for the level just exited, any blocks made for
+ inner levels (since they cannot be recorded as subblocks in that level)
+ must be carried forward so they will later become subblocks of something
+ else. */
+ else if (subblock_chain)
+ current_binding_level->blocks
+ = chainon (current_binding_level->blocks, subblock_chain);
+ if (block)
+ TREE_USED (block) = 1;
+
+ return block;
+}
+
+/* Insert BLOCK at the end of the list of subblocks of the
+ current binding level. This is used when a BIND_EXPR is expanded,
+ to handle the BLOCK node inside the BIND_EXPR. */
+
+void
+insert_block (block)
+ tree block;
+{
+ TREE_USED (block) = 1;
+ current_binding_level->blocks
+ = chainon (current_binding_level->blocks, block);
+}
+
+/* Set the BLOCK node for the innermost scope
+ (the one we are currently in). */
+
+void
+set_block (block)
+ tree block;
+{
+ current_binding_level->this_block = block;
+ current_binding_level->names = chainon (current_binding_level->names,
+ BLOCK_VARS (block));
+ current_binding_level->blocks = chainon (current_binding_level->blocks,
+ BLOCK_SUBBLOCKS (block));
+}
+
+/* Records a ..._DECL node DECL as belonging to the current lexical scope.
+ Returns the ..._DECL node. */
+
+tree
+pushdecl (decl)
+ tree decl;
+{
+ struct binding_level *b;
+
+ /* If at top level, there is no context. But PARM_DECLs always go in the
+ level of its function. */
+ if (global_bindings_p () && TREE_CODE (decl) != PARM_DECL)
+ {
+ b = global_binding_level;
+ DECL_CONTEXT (decl) = 0;
+ }
+ else
+ {
+ b = current_binding_level;
+ DECL_CONTEXT (decl) = current_function_decl;
+ }
+
+ /* Put the declaration on the list. The list of declarations is in reverse
+ order. The list will be reversed later if necessary. This needs to be
+ this way for compatibility with the back-end.
+
+ Don't put TYPE_DECLs for UNCONSTRAINED_ARRAY_TYPE into the list. They
+ will cause trouble with the debugger and aren't needed anyway. */
+ if (TREE_CODE (decl) != TYPE_DECL
+ || TREE_CODE (TREE_TYPE (decl)) != UNCONSTRAINED_ARRAY_TYPE)
+ {
+ TREE_CHAIN (decl) = b->names;
+ b->names = decl;
+ }
+
+ /* For the declaration of a type, set its name if it either is not already
+ set, was set to an IDENTIFIER_NODE, indicating an internal name,
+ or if the previous type name was not derived from a source name.
+ We'd rather have the type named with a real name and all the pointer
+ types to the same object have the same POINTER_TYPE node. Code in this
+ function in c-decl.c makes a copy of the type node here, but that may
+ cause us trouble with incomplete types, so let's not try it (at least
+ for now). */
+
+ if (TREE_CODE (decl) == TYPE_DECL
+ && DECL_NAME (decl) != 0
+ && (TYPE_NAME (TREE_TYPE (decl)) == 0
+ || TREE_CODE (TYPE_NAME (TREE_TYPE (decl))) == IDENTIFIER_NODE
+ || (TREE_CODE (TYPE_NAME (TREE_TYPE (decl))) == TYPE_DECL
+ && DECL_ARTIFICIAL (TYPE_NAME (TREE_TYPE (decl)))
+ && ! DECL_ARTIFICIAL (decl))))
+ TYPE_NAME (TREE_TYPE (decl)) = decl;
+
+ return decl;
+}
+
+/* Do little here. Set up the standard declarations later after the
+ front end has been run. */
+
+void
+init_decl_processing ()
+{
+ /* The structure `tree_identifier' is the GCC tree data structure that holds
+ IDENTIFIER_NODE nodes. We need to call `set_identifier_size' to tell GCC
+ that we have not added any language specific fields to IDENTIFIER_NODE
+ nodes. */
+ set_identifier_size (sizeof (struct tree_identifier));
+
+ lineno = 0;
+
+ /* incomplete_decl_finalize_hook is defined in toplev.c. It needs to be set
+ by each front end to the appropriate routine that handles incomplete
+ VAR_DECL nodes. This routine will be invoked by compile_file when a
+ VAR_DECL node of DECL_SIZE zero is encountered. */
+ incomplete_decl_finalize_hook = finish_incomplete_decl;
+
+ /* Make the binding_level structure for global names. */
+ current_function_decl = 0;
+ current_binding_level = 0;
+ free_binding_level = 0;
+ pushlevel (0);
+ global_binding_level = current_binding_level;
+
+ build_common_tree_nodes (0);
+
+ /* In Ada, we use a signed type for SIZETYPE. Use the signed type
+ corresponding to the size of ptr_mode. Make this here since we need
+ this before we can expand the GNAT types. */
+ set_sizetype (type_for_size (GET_MODE_BITSIZE (ptr_mode), 0));
+ build_common_tree_nodes_2 (0);
+
+ pushdecl (build_decl (TYPE_DECL, get_identifier (SIZE_TYPE), sizetype));
+
+ /* We need to make the integer type before doing anything else.
+ We stitch this in to the appropriate GNAT type later. */
+ pushdecl (build_decl (TYPE_DECL, get_identifier ("integer"),
+ integer_type_node));
+ pushdecl (build_decl (TYPE_DECL, get_identifier ("unsigned char"),
+ char_type_node));
+
+ ptr_void_type_node = build_pointer_type (void_type_node);
+
+}
+
+/* Create the predefined scalar types such as `integer_type_node' needed
+ in the gcc back-end and initialize the global binding level. */
+
+void
+init_gigi_decls (long_long_float_type, exception_type)
+ tree long_long_float_type, exception_type;
+{
+ tree endlink;
+
+ /* Set the types that GCC and Gigi use from the front end. We would like
+ to do this for char_type_node, but it needs to correspond to the C
+ char type. */
+ if (TREE_CODE (TREE_TYPE (long_long_float_type)) == INTEGER_TYPE)
+ {
+ /* In this case, the builtin floating point types are VAX float,
+ so make up a type for use. */
+ longest_float_type_node = make_node (REAL_TYPE);
+ TYPE_PRECISION (longest_float_type_node) = LONG_DOUBLE_TYPE_SIZE;
+ layout_type (longest_float_type_node);
+ pushdecl (build_decl (TYPE_DECL, get_identifier ("longest float type"),
+ longest_float_type_node));
+ }
+ else
+ longest_float_type_node = TREE_TYPE (long_long_float_type);
+
+ except_type_node = TREE_TYPE (exception_type);
+
+ unsigned_type_node = type_for_size (INT_TYPE_SIZE, 1);
+ pushdecl (build_decl (TYPE_DECL, get_identifier ("unsigned int"),
+ unsigned_type_node));
+
+ void_type_decl_node
+ = pushdecl (build_decl (TYPE_DECL, get_identifier ("void"),
+ void_type_node));
+
+ void_ftype = build_function_type (void_type_node, NULL_TREE);
+ ptr_void_ftype = build_pointer_type (void_ftype);
+
+ /* Now declare runtime functions. */
+ endlink = tree_cons (NULL_TREE, void_type_node, NULL_TREE);
+
+ /* malloc is a function declaration tree for a function to allocate
+ memory. */
+ malloc_decl = create_subprog_decl (get_identifier ("__gnat_malloc"),
+ NULL_TREE,
+ build_function_type (ptr_void_type_node,
+ tree_cons (NULL_TREE,
+ sizetype,
+ endlink)),
+ NULL_TREE, 0, 1, 1, 0);
+
+ /* free is a function declaration tree for a function to free memory. */
+
+ free_decl
+ = create_subprog_decl (get_identifier ("__gnat_free"), NULL_TREE,
+ build_function_type (void_type_node,
+ tree_cons (NULL_TREE,
+ ptr_void_type_node,
+ endlink)),
+ NULL_TREE, 0, 1, 1, 0);
+
+ /* Make the types and functions used for exception processing. */
+ jmpbuf_type
+ = build_array_type (type_for_mode (Pmode, 0),
+ build_index_type (build_int_2 (5, 0)));
+ pushdecl (build_decl (TYPE_DECL, get_identifier ("JMPBUF_T"), jmpbuf_type));
+ jmpbuf_ptr_type = build_pointer_type (jmpbuf_type);
+
+ /* Functions to get and set the jumpbuf pointer for the current thread. */
+ get_jmpbuf_decl
+ = create_subprog_decl
+ (get_identifier ("system__soft_links__get_jmpbuf_address_soft"),
+ NULL_TREE, build_function_type (jmpbuf_ptr_type, NULL_TREE),
+ NULL_TREE, 0, 1, 1, 0);
+
+ set_jmpbuf_decl
+ = create_subprog_decl
+ (get_identifier ("system__soft_links__set_jmpbuf_address_soft"),
+ NULL_TREE,
+ build_function_type (void_type_node,
+ tree_cons (NULL_TREE, jmpbuf_ptr_type, endlink)),
+ NULL_TREE, 0, 1, 1, 0);
+
+ /* Function to get the current exception. */
+ get_excptr_decl
+ = create_subprog_decl
+ (get_identifier ("system__soft_links__get_gnat_exception"),
+ NULL_TREE,
+ build_function_type (build_pointer_type (except_type_node), NULL_TREE),
+ NULL_TREE, 0, 1, 1, 0);
+
+ /* Function that raise exceptions. */
+ raise_nodefer_decl
+ = create_subprog_decl
+ (get_identifier ("__gnat_raise_nodefer_with_msg"), NULL_TREE,
+ build_function_type (void_type_node,
+ tree_cons (NULL_TREE,
+ build_pointer_type (except_type_node),
+ endlink)),
+ NULL_TREE, 0, 1, 1, 0);
+
+
+ /* __gnat_raise_constraint_error takes a string, an integer and never
+ returns. */
+ raise_constraint_error_decl
+ = create_subprog_decl
+ (get_identifier ("__gnat_raise_constraint_error"), NULL_TREE,
+ build_function_type (void_type_node,
+ tree_cons (NULL_TREE,
+ build_pointer_type (char_type_node),
+ tree_cons (NULL_TREE,
+ integer_type_node,
+ endlink))),
+ NULL_TREE, 0, 1, 1, 0);
+
+ /* Likewise for __gnat_raise_program_error. */
+ raise_program_error_decl
+ = create_subprog_decl
+ (get_identifier ("__gnat_raise_program_error"), NULL_TREE,
+ build_function_type (void_type_node,
+ tree_cons (NULL_TREE,
+ build_pointer_type (char_type_node),
+ tree_cons (NULL_TREE,
+ integer_type_node,
+ endlink))),
+ NULL_TREE, 0, 1, 1, 0);
+
+ /* Likewise for __gnat_raise_storage_error. */
+ raise_storage_error_decl
+ = create_subprog_decl
+ (get_identifier ("__gnat_raise_storage_error"), NULL_TREE,
+ build_function_type (void_type_node,
+ tree_cons (NULL_TREE,
+ build_pointer_type (char_type_node),
+ tree_cons (NULL_TREE,
+ integer_type_node,
+ endlink))),
+ NULL_TREE, 0, 1, 1, 0);
+
+ /* Indicate that these never return. */
+
+ TREE_THIS_VOLATILE (raise_nodefer_decl) = 1;
+ TREE_THIS_VOLATILE (raise_constraint_error_decl) = 1;
+ TREE_THIS_VOLATILE (raise_program_error_decl) = 1;
+ TREE_THIS_VOLATILE (raise_storage_error_decl) = 1;
+
+ TREE_SIDE_EFFECTS (raise_nodefer_decl) = 1;
+ TREE_SIDE_EFFECTS (raise_constraint_error_decl) = 1;
+ TREE_SIDE_EFFECTS (raise_program_error_decl) = 1;
+ TREE_SIDE_EFFECTS (raise_storage_error_decl) = 1;
+
+ TREE_TYPE (raise_nodefer_decl)
+ = build_qualified_type (TREE_TYPE (raise_nodefer_decl),
+ TYPE_QUAL_VOLATILE);
+ TREE_TYPE (raise_constraint_error_decl)
+ = build_qualified_type (TREE_TYPE (raise_constraint_error_decl),
+ TYPE_QUAL_VOLATILE);
+ TREE_TYPE (raise_program_error_decl)
+ = build_qualified_type (TREE_TYPE (raise_program_error_decl),
+ TYPE_QUAL_VOLATILE);
+ TREE_TYPE (raise_storage_error_decl)
+ = build_qualified_type (TREE_TYPE (raise_storage_error_decl),
+ TYPE_QUAL_VOLATILE);
+
+ /* setjmp returns an integer and has one operand, which is a pointer to
+ a jmpbuf. */
+ setjmp_decl
+ = create_subprog_decl
+ (get_identifier ("setjmp"), NULL_TREE,
+ build_function_type (integer_type_node,
+ tree_cons (NULL_TREE, jmpbuf_ptr_type, endlink)),
+ NULL_TREE, 0, 1, 1, 0);
+
+ DECL_BUILT_IN_CLASS (setjmp_decl) = BUILT_IN_NORMAL;
+ DECL_FUNCTION_CODE (setjmp_decl) = BUILT_IN_SETJMP;
+
+ ggc_add_tree_root (gnat_std_decls,
+ sizeof gnat_std_decls / sizeof gnat_std_decls[0]);
+}
+
+/* This routine is called in tree.c to print an error message for invalid use
+ of an incomplete type. */
+
+void
+incomplete_type_error (dont_care_1, dont_care_2)
+ tree dont_care_1 ATTRIBUTE_UNUSED;
+ tree dont_care_2 ATTRIBUTE_UNUSED;
+{
+ gigi_abort (404);
+}
+
+/* This function is called indirectly from toplev.c to handle incomplete
+ declarations, i.e. VAR_DECL nodes whose DECL_SIZE is zero. To be precise,
+ compile_file in toplev.c makes an indirect call through the function pointer
+ incomplete_decl_finalize_hook which is initialized to this routine in
+ init_decl_processing. */
+
+void
+finish_incomplete_decl (dont_care)
+ tree dont_care ATTRIBUTE_UNUSED;
+{
+ gigi_abort (405);
+}
+
+/* Given a record type (RECORD_TYPE) and a chain of FIELD_DECL
+ nodes (FIELDLIST), finish constructing the record or union type.
+ If HAS_REP is nonzero, this record has a rep clause; don't call
+ layout_type but merely set the size and alignment ourselves.
+ If DEFER_DEBUG is nonzero, do not call the debugging routines
+ on this type; it will be done later. */
+
+void
+finish_record_type (record_type, fieldlist, has_rep, defer_debug)
+ tree record_type;
+ tree fieldlist;
+ int has_rep;
+ int defer_debug;
+{
+ enum tree_code code = TREE_CODE (record_type);
+ tree ada_size = bitsize_zero_node;
+ tree size = bitsize_zero_node;
+ tree size_unit = size_zero_node;
+ tree field;
+
+ TYPE_FIELDS (record_type) = fieldlist;
+
+ if (TYPE_NAME (record_type) != 0
+ && TREE_CODE (TYPE_NAME (record_type)) == TYPE_DECL)
+ TYPE_STUB_DECL (record_type) = TYPE_NAME (record_type);
+ else
+ TYPE_STUB_DECL (record_type)
+ = pushdecl (build_decl (TYPE_DECL, TYPE_NAME (record_type),
+ record_type));
+
+ /* We don't need both the typedef name and the record name output in
+ the debugging information, since they are the same. */
+ DECL_ARTIFICIAL (TYPE_STUB_DECL (record_type)) = 1;
+
+ /* Globally initialize the record first. If this is a rep'ed record,
+ that just means some initializations; otherwise, layout the record. */
+
+ if (has_rep)
+ {
+ TYPE_ALIGN (record_type) = MAX (BITS_PER_UNIT, TYPE_ALIGN (record_type));
+ TYPE_MODE (record_type) = BLKmode;
+ if (TYPE_SIZE (record_type) == 0)
+ {
+ TYPE_SIZE (record_type) = bitsize_zero_node;
+ TYPE_SIZE_UNIT (record_type) = size_zero_node;
+ }
+ }
+ else
+ {
+ /* Ensure there isn't a size already set. There can be in an error
+ case where there is a rep clause but all fields have errors and
+ no longer have a position. */
+ TYPE_SIZE (record_type) = 0;
+ layout_type (record_type);
+ }
+
+ /* At this point, the position and size of each field is known. It was
+ either set before entry by a rep clause, or by laying out the type
+ above. We now make a pass through the fields (in reverse order for
+ QUAL_UNION_TYPEs) to compute the Ada size; the GCC size and alignment
+ (for rep'ed records that are not padding types); and the mode (for
+ rep'ed records). */
+
+ if (code == QUAL_UNION_TYPE)
+ fieldlist = nreverse (fieldlist);
+
+ for (field = fieldlist; field; field = TREE_CHAIN (field))
+ {
+ tree type = TREE_TYPE (field);
+ tree this_size = DECL_SIZE (field);
+ tree this_size_unit = DECL_SIZE_UNIT (field);
+ tree this_ada_size = DECL_SIZE (field);
+
+ if ((TREE_CODE (type) == RECORD_TYPE || TREE_CODE (type) == UNION_TYPE
+ || TREE_CODE (type) == QUAL_UNION_TYPE)
+ && ! TYPE_IS_FAT_POINTER_P (type)
+ && ! TYPE_CONTAINS_TEMPLATE_P (type)
+ && TYPE_ADA_SIZE (type) != 0)
+ this_ada_size = TYPE_ADA_SIZE (type);
+
+ if (has_rep && ! DECL_BIT_FIELD (field))
+ TYPE_ALIGN (record_type)
+ = MAX (TYPE_ALIGN (record_type), DECL_ALIGN (field));
+
+ switch (code)
+ {
+ case UNION_TYPE:
+ ada_size = size_binop (MAX_EXPR, ada_size, this_ada_size);
+ size = size_binop (MAX_EXPR, size, this_size);
+ size_unit = size_binop (MAX_EXPR, size_unit, this_size_unit);
+ break;
+
+ case QUAL_UNION_TYPE:
+ ada_size
+ = fold (build (COND_EXPR, bitsizetype, DECL_QUALIFIER (field),
+ this_ada_size, ada_size));
+ size = fold (build (COND_EXPR, bitsizetype, DECL_QUALIFIER (field),
+ this_size, size));
+ size_unit = fold (build (COND_EXPR, sizetype, DECL_QUALIFIER (field),
+ this_size_unit, size_unit));
+ break;
+
+ case RECORD_TYPE:
+ /* Since we know here that all fields are sorted in order of
+ increasing bit position, the size of the record is one
+ higher than the ending bit of the last field processed
+ unless we have a rep clause, since in that case we might
+ have a field outside a QUAL_UNION_TYPE that has a higher ending
+ position. So use a MAX in that case. Also, if this field is a
+ QUAL_UNION_TYPE, we need to take into account the previous size in
+ the case of empty variants. */
+ ada_size
+ = merge_sizes (ada_size, bit_position (field), this_ada_size,
+ TREE_CODE (type) == QUAL_UNION_TYPE, has_rep);
+ size = merge_sizes (size, bit_position (field), this_size,
+ TREE_CODE (type) == QUAL_UNION_TYPE, has_rep);
+ size_unit
+ = merge_sizes (size_unit, byte_position (field), this_size_unit,
+ TREE_CODE (type) == QUAL_UNION_TYPE, has_rep);
+ break;
+
+ default:
+ abort ();
+ }
+ }
+
+ if (code == QUAL_UNION_TYPE)
+ nreverse (fieldlist);
+
+ /* If this is a padding record, we never want to make the size smaller than
+ what was specified in it, if any. */
+ if (TREE_CODE (record_type) == RECORD_TYPE
+ && TYPE_IS_PADDING_P (record_type) && TYPE_SIZE (record_type) != 0)
+ {
+ size = TYPE_SIZE (record_type);
+ size_unit = TYPE_SIZE_UNIT (record_type);
+ }
+
+ /* Now set any of the values we've just computed that apply. */
+ if (! TYPE_IS_FAT_POINTER_P (record_type)
+ && ! TYPE_CONTAINS_TEMPLATE_P (record_type))
+ TYPE_ADA_SIZE (record_type) = ada_size;
+
+#ifdef ROUND_TYPE_SIZE
+ size = ROUND_TYPE_SIZE (record_type, size, TYPE_ALIGN (record_type));
+ size_unit = ROUND_TYPE_SIZE_UNIT (record_size, size_unit,
+ TYPE_ALIGN (record_type) / BITS_PER_UNIT);
+#else
+ size = round_up (size, TYPE_ALIGN (record_type));
+ size_unit = round_up (size_unit, TYPE_ALIGN (record_type) / BITS_PER_UNIT);
+#endif
+
+ if (has_rep
+ && ! (TREE_CODE (record_type) == RECORD_TYPE
+ && TYPE_IS_PADDING_P (record_type)
+ && TREE_CODE (size) != INTEGER_CST
+ && contains_placeholder_p (size)))
+ {
+ TYPE_SIZE (record_type) = size;
+ TYPE_SIZE_UNIT (record_type) = size_unit;
+ }
+
+ if (has_rep)
+ compute_record_mode (record_type);
+
+ if (! defer_debug)
+ {
+ /* If this record is of variable size, rename it so that the
+ debugger knows it is and make a new, parallel, record
+ that tells the debugger how the record is laid out. See
+ exp_dbug.ads. */
+ if (TREE_CODE (TYPE_SIZE (record_type)) != INTEGER_CST)
+ {
+ tree new_record_type
+ = make_node (TREE_CODE (record_type) == QUAL_UNION_TYPE
+ ? UNION_TYPE : TREE_CODE (record_type));
+ tree orig_id = DECL_NAME (TYPE_STUB_DECL (record_type));
+ tree new_id
+ = concat_id_with_name (orig_id,
+ TREE_CODE (record_type) == QUAL_UNION_TYPE
+ ? "XVU" : "XVE");
+ tree last_pos = bitsize_zero_node;
+ tree old_field;
+
+ TYPE_NAME (new_record_type) = new_id;
+ TYPE_ALIGN (new_record_type) = BIGGEST_ALIGNMENT;
+ TYPE_STUB_DECL (new_record_type)
+ = pushdecl (build_decl (TYPE_DECL, new_id, new_record_type));
+ DECL_ARTIFICIAL (TYPE_STUB_DECL (new_record_type)) = 1;
+ DECL_IGNORED_P (TYPE_STUB_DECL (new_record_type))
+ = DECL_IGNORED_P (TYPE_STUB_DECL (record_type));
+ TYPE_SIZE (new_record_type) = size_int (TYPE_ALIGN (record_type));
+
+ /* Now scan all the fields, replacing each field with a new
+ field corresponding to the new encoding. */
+ for (old_field = TYPE_FIELDS (record_type); old_field != 0;
+ old_field = TREE_CHAIN (old_field))
+ {
+ tree field_type = TREE_TYPE (old_field);
+ tree field_name = DECL_NAME (old_field);
+ tree new_field;
+ tree curpos = bit_position (old_field);
+ int var = 0;
+ unsigned int align = 0;
+ tree pos;
+
+ /* See how the position was modified from the last position.
+
+ There are two basic cases we support: a value was added
+ to the last position or the last position was rounded to
+ a boundary and they something was added. Check for the
+ first case first. If not, see if there is any evidence
+ of rounding. If so, round the last position and try
+ again.
+
+ If this is a union, the position can be taken as zero. */
+
+ if (TREE_CODE (new_record_type) == UNION_TYPE)
+ pos = bitsize_zero_node, align = 0;
+ else
+ pos = compute_related_constant (curpos, last_pos);
+
+ if (pos == 0 && TREE_CODE (curpos) == MULT_EXPR
+ && TREE_CODE (TREE_OPERAND (curpos, 1)) == INTEGER_CST)
+ {
+ align = TREE_INT_CST_LOW (TREE_OPERAND (curpos, 1));
+ pos = compute_related_constant (curpos,
+ round_up (last_pos, align));
+ }
+ else if (pos == 0 && TREE_CODE (curpos) == PLUS_EXPR
+ && TREE_CODE (TREE_OPERAND (curpos, 1)) == INTEGER_CST
+ && TREE_CODE (TREE_OPERAND (curpos, 0)) == MULT_EXPR
+ && host_integerp (TREE_OPERAND
+ (TREE_OPERAND (curpos, 0), 1),
+ 1))
+ {
+ align
+ = tree_low_cst
+ (TREE_OPERAND (TREE_OPERAND (curpos, 0), 1), 1);
+ pos = compute_related_constant (curpos,
+ round_up (last_pos, align));
+ }
+
+ /* If we can't compute a position, set it to zero.
+
+ ??? We really should abort here, but it's too much work
+ to get this correct for all cases. */
+
+ if (pos == 0)
+ pos = bitsize_zero_node;
+
+ /* See if this type is variable-size and make a new type
+ and indicate the indirection if so. */
+ if (TREE_CODE (TYPE_SIZE (field_type)) != INTEGER_CST)
+ {
+ field_type = build_pointer_type (field_type);
+ var = 1;
+ }
+
+ /* Make a new field name, if necessary. */
+ if (var || align != 0)
+ {
+ char suffix[6];
+
+ if (align != 0)
+ sprintf (suffix, "XV%c%u", var ? 'L' : 'A',
+ align / BITS_PER_UNIT);
+ else
+ strcpy (suffix, "XVL");
+
+ field_name = concat_id_with_name (field_name, suffix);
+ }
+
+ new_field = create_field_decl (field_name, field_type,
+ new_record_type, 0,
+ TYPE_SIZE (field_type), pos, 0);
+ TREE_CHAIN (new_field) = TYPE_FIELDS (new_record_type);
+ TYPE_FIELDS (new_record_type) = new_field;
+
+ /* If old_field is a QUAL_UNION_TYPE, take its size as being
+ zero. The only time it's not the last field of the record
+ is when there are other components at fixed positions after
+ it (meaning there was a rep clause for every field) and we
+ want to be able to encode them. */
+ last_pos = size_binop (PLUS_EXPR, bit_position (old_field),
+ (TREE_CODE (TREE_TYPE (old_field))
+ == QUAL_UNION_TYPE)
+ ? bitsize_zero_node
+ : TYPE_SIZE (TREE_TYPE (old_field)));
+ }
+
+ TYPE_FIELDS (new_record_type)
+ = nreverse (TYPE_FIELDS (new_record_type));
+
+ rest_of_type_compilation (new_record_type, global_bindings_p ());
+ }
+
+ rest_of_type_compilation (record_type, global_bindings_p ());
+ }
+}
+
+/* Utility function of above to merge LAST_SIZE, the previous size of a record
+ with FIRST_BIT and SIZE that describe a field. SPECIAL is nonzero
+ if this represents a QUAL_UNION_TYPE in which case we must look for
+ COND_EXPRs and replace a value of zero with the old size. If HAS_REP
+ is nonzero, we must take the MAX of the end position of this field
+ with LAST_SIZE. In all other cases, we use FIRST_BIT plus SIZE.
+
+ We return an expression for the size. */
+
+static tree
+merge_sizes (last_size, first_bit, size, special, has_rep)
+ tree last_size;
+ tree first_bit, size;
+ int special;
+ int has_rep;
+{
+ tree type = TREE_TYPE (last_size);
+
+ if (! special || TREE_CODE (size) != COND_EXPR)
+ {
+ tree new = size_binop (PLUS_EXPR, first_bit, size);
+
+ if (has_rep)
+ new = size_binop (MAX_EXPR, last_size, new);
+
+ return new;
+ }
+
+ return fold (build (COND_EXPR, type, TREE_OPERAND (size, 0),
+ integer_zerop (TREE_OPERAND (size, 1))
+ ? last_size : merge_sizes (last_size, first_bit,
+ TREE_OPERAND (size, 1),
+ 1, has_rep),
+ integer_zerop (TREE_OPERAND (size, 2))
+ ? last_size : merge_sizes (last_size, first_bit,
+ TREE_OPERAND (size, 2),
+ 1, has_rep)));
+}
+
+/* Utility function of above to see if OP0 and OP1, both of SIZETYPE, are
+ related by the addition of a constant. Return that constant if so. */
+
+static tree
+compute_related_constant (op0, op1)
+ tree op0, op1;
+{
+ tree op0_var, op1_var;
+ tree op0_con = split_plus (op0, &op0_var);
+ tree op1_con = split_plus (op1, &op1_var);
+ tree result = size_binop (MINUS_EXPR, op0_con, op1_con);
+
+ if (operand_equal_p (op0_var, op1_var, 0))
+ return result;
+ else if (operand_equal_p (op0, size_binop (PLUS_EXPR, op1_var, result), 0))
+ return result;
+ else
+ return 0;
+}
+
+/* Utility function of above to split a tree OP which may be a sum, into a
+ constant part, which is returned, and a variable part, which is stored
+ in *PVAR. *PVAR may be size_zero_node. All operations must be of
+ sizetype. */
+
+static tree
+split_plus (in, pvar)
+ tree in;
+ tree *pvar;
+{
+ tree result = bitsize_zero_node;
+
+ while (TREE_CODE (in) == NON_LVALUE_EXPR)
+ in = TREE_OPERAND (in, 0);
+
+ *pvar = in;
+ if (TREE_CODE (in) == INTEGER_CST)
+ {
+ *pvar = bitsize_zero_node;
+ return in;
+ }
+ else if (TREE_CODE (in) == PLUS_EXPR || TREE_CODE (in) == MINUS_EXPR)
+ {
+ tree lhs_var, rhs_var;
+ tree lhs_con = split_plus (TREE_OPERAND (in, 0), &lhs_var);
+ tree rhs_con = split_plus (TREE_OPERAND (in, 1), &rhs_var);
+
+ result = size_binop (PLUS_EXPR, result, lhs_con);
+ result = size_binop (TREE_CODE (in), result, rhs_con);
+
+ if (lhs_var == TREE_OPERAND (in, 0)
+ && rhs_var == TREE_OPERAND (in, 1))
+ return bitsize_zero_node;
+
+ *pvar = size_binop (TREE_CODE (in), lhs_var, rhs_var);
+ return result;
+ }
+ else
+ return bitsize_zero_node;
+}
+
+/* Return a FUNCTION_TYPE node. RETURN_TYPE is the type returned by the
+ subprogram. If it is void_type_node, then we are dealing with a procedure,
+ otherwise we are dealing with a function. PARAM_DECL_LIST is a list of
+ PARM_DECL nodes that are the subprogram arguments. CICO_LIST is the
+ copy-in/copy-out list to be stored into TYPE_CICO_LIST.
+ RETURNS_UNCONSTRAINED is nonzero if the function returns an unconstrained
+ object. RETURNS_BY_REF is nonzero if the function returns by reference.
+ RETURNS_WITH_DSP is nonzero if the function is to return with a
+ depressed stack pointer. */
+
+tree
+create_subprog_type (return_type, param_decl_list, cico_list,
+ returns_unconstrained, returns_by_ref, returns_with_dsp)
+ tree return_type;
+ tree param_decl_list;
+ tree cico_list;
+ int returns_unconstrained, returns_by_ref, returns_with_dsp;
+{
+ /* A chain of TREE_LIST nodes whose TREE_VALUEs are the data type nodes of
+ the subprogram formal parameters. This list is generated by traversing the
+ input list of PARM_DECL nodes. */
+ tree param_type_list = NULL;
+ tree param_decl;
+ tree type;
+
+ for (param_decl = param_decl_list; param_decl;
+ param_decl = TREE_CHAIN (param_decl))
+ param_type_list = tree_cons (NULL_TREE, TREE_TYPE (param_decl),
+ param_type_list);
+
+ /* The list of the function parameter types has to be terminated by the void
+ type to signal to the back-end that we are not dealing with a variable
+ parameter subprogram, but that the subprogram has a fixed number of
+ parameters. */
+ param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
+
+ /* The list of argument types has been created in reverse
+ so nreverse it. */
+ param_type_list = nreverse (param_type_list);
+
+ type = build_function_type (return_type, param_type_list);
+
+ /* TYPE may have been shared since GCC hashes types. If it has a CICO_LIST
+ or the new type should, make a copy of TYPE. Likewise for
+ RETURNS_UNCONSTRAINED and RETURNS_BY_REF. */
+ if (TYPE_CI_CO_LIST (type) != 0 || cico_list != 0
+ || TYPE_RETURNS_UNCONSTRAINED_P (type) != returns_unconstrained
+ || TYPE_RETURNS_BY_REF_P (type) != returns_by_ref)
+ type = copy_type (type);
+
+ TYPE_CI_CO_LIST (type) = cico_list;
+ TYPE_RETURNS_UNCONSTRAINED_P (type) = returns_unconstrained;
+ TYPE_RETURNS_STACK_DEPRESSED (type) = returns_with_dsp;
+ TYPE_RETURNS_BY_REF_P (type) = returns_by_ref;
+ return type;
+}
+
+/* Return a copy of TYPE but safe to modify in any way. */
+
+tree
+copy_type (type)
+ tree type;
+{
+ tree new = copy_node (type);
+
+ /* copy_node clears this field instead of copying it, because it is
+ aliased with TREE_CHAIN. */
+ TYPE_STUB_DECL (new) = TYPE_STUB_DECL (type);
+
+ TYPE_POINTER_TO (new) = 0;
+ TYPE_REFERENCE_TO (new) = 0;
+ TYPE_MAIN_VARIANT (new) = new;
+ TYPE_NEXT_VARIANT (new) = 0;
+
+ return new;
+}
+
+/* Return an INTEGER_TYPE of SIZETYPE with range MIN to MAX and whose
+ TYPE_INDEX_TYPE is INDEX. */
+
+tree
+create_index_type (min, max, index)
+ tree min, max;
+ tree index;
+{
+ /* First build a type for the desired range. */
+ tree type = build_index_2_type (min, max);
+
+ /* If this type has the TYPE_INDEX_TYPE we want, return it. Otherwise, if it
+ doesn't have TYPE_INDEX_TYPE set, set it to INDEX. If TYPE_INDEX_TYPE
+ is set, but not to INDEX, make a copy of this type with the requested
+ index type. Note that we have no way of sharing these types, but that's
+ only a small hole. */
+ if (TYPE_INDEX_TYPE (type) == index)
+ return type;
+ else if (TYPE_INDEX_TYPE (type) != 0)
+ type = copy_type (type);
+
+ TYPE_INDEX_TYPE (type) = index;
+ return type;
+}
+
+/* Return a TYPE_DECL node. TYPE_NAME gives the name of the type (a character
+ string) and TYPE is a ..._TYPE node giving its data type.
+ ARTIFICIAL_P is nonzero if this is a declaration that was generated
+ by the compiler. DEBUG_INFO_P is nonzero if we need to write debugging
+ information about this type. */
+
+tree
+create_type_decl (type_name, type, attr_list, artificial_p, debug_info_p)
+ tree type_name;
+ tree type;
+ struct attrib *attr_list;
+ int artificial_p;
+ int debug_info_p;
+{
+ tree type_decl = build_decl (TYPE_DECL, type_name, type);
+ enum tree_code code = TREE_CODE (type);
+
+ DECL_ARTIFICIAL (type_decl) = artificial_p;
+ pushdecl (type_decl);
+ process_attributes (type_decl, attr_list);
+
+ /* Pass type declaration information to the debugger unless this is an
+ UNCONSTRAINED_ARRAY_TYPE, which the debugger does not support,
+ and ENUMERAL_TYPE or RECORD_TYPE which is handled separately,
+ a dummy type, which will be completed later, or a type for which
+ debugging information was not requested. */
+ if (code == UNCONSTRAINED_ARRAY_TYPE || TYPE_IS_DUMMY_P (type)
+ || ! debug_info_p)
+ DECL_IGNORED_P (type_decl) = 1;
+ else if (code != ENUMERAL_TYPE && code != RECORD_TYPE
+ && ! ((code == POINTER_TYPE || code == REFERENCE_TYPE)
+ && TYPE_IS_DUMMY_P (TREE_TYPE (type))))
+ rest_of_decl_compilation (type_decl, NULL, global_bindings_p (), 0);
+
+ return type_decl;
+}
+
+/* Returns a GCC VAR_DECL node. VAR_NAME gives the name of the variable.
+ ASM_NAME is its assembler name (if provided). TYPE is its data type
+ (a GCC ..._TYPE node). VAR_INIT is the GCC tree for an optional initial
+ expression; NULL_TREE if none.
+
+ CONST_FLAG is nonzero if this variable is constant.
+
+ PUBLIC_FLAG is nonzero if this definition is to be made visible outside of
+ the current compilation unit. This flag should be set when processing the
+ variable definitions in a package specification. EXTERN_FLAG is nonzero
+ when processing an external variable declaration (as opposed to a
+ definition: no storage is to be allocated for the variable here).
+
+ STATIC_FLAG is only relevant when not at top level. In that case
+ it indicates whether to always allocate storage to the variable. */
+
+tree
+create_var_decl (var_name, asm_name, type, var_init, const_flag, public_flag,
+ extern_flag, static_flag, attr_list)
+ tree var_name;
+ tree asm_name;
+ tree type;
+ tree var_init;
+ int const_flag;
+ int public_flag;
+ int extern_flag;
+ int static_flag;
+ struct attrib *attr_list;
+{
+ int init_const
+ = (var_init == 0
+ ? 0
+ : (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (TREE_TYPE (var_init))
+ && (global_bindings_p () || static_flag
+ ? 0 != initializer_constant_valid_p (var_init,
+ TREE_TYPE (var_init))
+ : TREE_CONSTANT (var_init))));
+ tree var_decl
+ = build_decl ((const_flag && init_const
+ /* Only make a CONST_DECL for sufficiently-small objects.
+ We consider complex double "sufficiently-small" */
+ && TYPE_SIZE (type) != 0
+ && host_integerp (TYPE_SIZE_UNIT (type), 1)
+ && 0 >= compare_tree_int (TYPE_SIZE_UNIT (type),
+ GET_MODE_SIZE (DCmode)))
+ ? CONST_DECL : VAR_DECL, var_name, type);
+ tree assign_init = 0;
+
+ /* If this is external, throw away any initializations unless this is a
+ CONST_DECL (meaning we have a constant); they will be done elsewhere. If
+ we are defining a global here, leave a constant initialization and save
+ any variable elaborations for the elaboration routine. Otherwise, if
+ the initializing expression is not the same as TYPE, generate the
+ initialization with an assignment statement, since it knows how
+ to do the required adjustents. */
+
+ if (extern_flag && TREE_CODE (var_decl) != CONST_DECL)
+ var_init = 0;
+
+ if (global_bindings_p () && var_init != 0 && ! init_const)
+ {
+ add_pending_elaborations (var_decl, var_init);
+ var_init = 0;
+ }
+
+ else if (var_init != 0
+ && ((TYPE_MAIN_VARIANT (TREE_TYPE (var_init))
+ != TYPE_MAIN_VARIANT (type))
+ || (static_flag && ! init_const)))
+ assign_init = var_init, var_init = 0;
+
+ DECL_COMMON (var_decl) = !flag_no_common;
+ DECL_INITIAL (var_decl) = var_init;
+ TREE_READONLY (var_decl) = const_flag;
+ DECL_EXTERNAL (var_decl) = extern_flag;
+ TREE_PUBLIC (var_decl) = public_flag || extern_flag;
+ TREE_CONSTANT (var_decl) = TREE_CODE (var_decl) == CONST_DECL;
+ TREE_THIS_VOLATILE (var_decl) = TREE_SIDE_EFFECTS (var_decl)
+ = TYPE_VOLATILE (type);
+
+ /* At the global binding level we need to allocate static storage for the
+ variable if and only if its not external. If we are not at the top level
+ we allocate automatic storage unless requested not to. */
+ TREE_STATIC (var_decl) = global_bindings_p () ? !extern_flag : static_flag;
+
+ if (asm_name != 0)
+ SET_DECL_ASSEMBLER_NAME (var_decl, asm_name);
+
+ process_attributes (var_decl, attr_list);
+
+ /* Add this decl to the current binding level and generate any
+ needed code and RTL. */
+ var_decl = pushdecl (var_decl);
+ expand_decl (var_decl);
+
+ if (DECL_CONTEXT (var_decl) != 0)
+ expand_decl_init (var_decl);
+
+ /* If this is volatile, force it into memory. */
+ if (TREE_SIDE_EFFECTS (var_decl))
+ mark_addressable (var_decl);
+
+ if (TREE_CODE (var_decl) != CONST_DECL)
+ rest_of_decl_compilation (var_decl, 0, global_bindings_p (), 0);
+
+ if (assign_init != 0)
+ {
+ /* If VAR_DECL has a padded type, convert it to the unpadded
+ type so the assignment is done properly. */
+ tree lhs = var_decl;
+
+ if (TREE_CODE (TREE_TYPE (lhs)) == RECORD_TYPE
+ && TYPE_IS_PADDING_P (TREE_TYPE (lhs)))
+ lhs = convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (lhs))), lhs);
+
+ expand_expr_stmt (build_binary_op (MODIFY_EXPR, NULL_TREE, lhs,
+ assign_init));
+ }
+
+ return var_decl;
+}
+
+/* Returns a FIELD_DECL node. FIELD_NAME the field name, FIELD_TYPE is its
+ type, and RECORD_TYPE is the type of the parent. PACKED is nonzero if
+ this field is in a record type with a "pragma pack". If SIZE is nonzero
+ it is the specified size for this field. If POS is nonzero, it is the bit
+ position. If ADDRESSABLE is nonzero, it means we are allowed to take
+ the address of this field for aliasing purposes. */
+
+tree
+create_field_decl (field_name, field_type, record_type, packed, size, pos,
+ addressable)
+ tree field_name;
+ tree field_type;
+ tree record_type;
+ int packed;
+ tree size, pos;
+ int addressable;
+{
+ tree field_decl = build_decl (FIELD_DECL, field_name, field_type);
+
+ DECL_CONTEXT (field_decl) = record_type;
+ TREE_READONLY (field_decl) = TREE_READONLY (field_type);
+
+ /* If FIELD_TYPE is BLKmode, we must ensure this is aligned to at least a
+ byte boundary since GCC cannot handle less-aligned BLKmode bitfields.
+ If it is a padding type where the inner field is of variable size, it
+ must be at its natural alignment. Just handle the packed case here; we
+ will disallow non-aligned rep clauses elsewhere. */
+ if (packed && TYPE_MODE (field_type) == BLKmode)
+ DECL_ALIGN (field_decl)
+ = ((TREE_CODE (field_type) == RECORD_TYPE
+ && TYPE_IS_PADDING_P (field_type)
+ && ! TREE_CONSTANT (DECL_SIZE (TYPE_FIELDS (field_type))))
+ ? TYPE_ALIGN (field_type) : BITS_PER_UNIT);
+
+ /* If a size is specified, use it. Otherwise, see if we have a size
+ to use that may differ from the natural size of the object. */
+ if (size != 0)
+ size = convert (bitsizetype, size);
+ else if (packed)
+ {
+ if (packed == 1 && ! operand_equal_p (rm_size (field_type),
+ TYPE_SIZE (field_type), 0))
+ size = rm_size (field_type);
+
+ /* For a constant size larger than MAX_FIXED_MODE_SIZE, round up to
+ byte. */
+ if (size != 0 && TREE_CODE (size) == INTEGER_CST
+ && compare_tree_int (size, MAX_FIXED_MODE_SIZE) > 0)
+ size = round_up (size, BITS_PER_UNIT);
+ }
+
+ /* Make a bitfield if a size is specified for two reasons: first if the size
+ differs from the natural size. Second, if the alignment is insufficient.
+ There are a number of ways the latter can be true. But never make a
+ bitfield if the type of the field has a nonconstant size. */
+
+ if (size != 0 && TREE_CODE (size) == INTEGER_CST
+ && TREE_CODE (TYPE_SIZE (field_type)) == INTEGER_CST
+ && (! operand_equal_p (TYPE_SIZE (field_type), size, 0)
+ || (pos != 0
+ && ! value_zerop (size_binop (TRUNC_MOD_EXPR, pos,
+ bitsize_int (TYPE_ALIGN
+ (field_type)))))
+ || packed
+ || (TYPE_ALIGN (record_type) != 0
+ && TYPE_ALIGN (record_type) < TYPE_ALIGN (field_type))))
+ {
+ DECL_BIT_FIELD (field_decl) = 1;
+ DECL_SIZE (field_decl) = size;
+ if (! packed && pos == 0)
+ DECL_ALIGN (field_decl)
+ = (TYPE_ALIGN (record_type) != 0
+ ? MIN (TYPE_ALIGN (record_type), TYPE_ALIGN (field_type))
+ : TYPE_ALIGN (field_type));
+ }
+
+ DECL_PACKED (field_decl) = pos != 0 ? DECL_BIT_FIELD (field_decl) : packed;
+ DECL_ALIGN (field_decl)
+ = MAX (DECL_ALIGN (field_decl),
+ DECL_BIT_FIELD (field_decl) ? 1
+ : packed && TYPE_MODE (field_type) != BLKmode ? BITS_PER_UNIT
+ : TYPE_ALIGN (field_type));
+
+ if (pos != 0)
+ {
+ /* We need to pass in the alignment the DECL is known to have.
+ This is the lowest-order bit set in POS, but no more than
+ the alignment of the record, if one is specified. Note
+ that an alignment of 0 is taken as infinite. */
+ unsigned int known_align;
+
+ if (host_integerp (pos, 1))
+ known_align = tree_low_cst (pos, 1) & - tree_low_cst (pos, 1);
+ else
+ known_align = BITS_PER_UNIT;
+
+ if (TYPE_ALIGN (record_type)
+ && (known_align == 0 || known_align > TYPE_ALIGN (record_type)))
+ known_align = TYPE_ALIGN (record_type);
+
+ layout_decl (field_decl, known_align);
+ SET_DECL_OFFSET_ALIGN (field_decl, BIGGEST_ALIGNMENT);
+ pos_from_bit (&DECL_FIELD_OFFSET (field_decl),
+ &DECL_FIELD_BIT_OFFSET (field_decl),
+ BIGGEST_ALIGNMENT, pos);
+
+ DECL_HAS_REP_P (field_decl) = 1;
+ }
+
+ /* Mark the decl as nonaddressable if it either is indicated so semantically
+ or if it is a bit field. */
+ DECL_NONADDRESSABLE_P (field_decl)
+ = ! addressable || DECL_BIT_FIELD (field_decl);
+
+ return field_decl;
+}
+
+/* Subroutine of previous function: return nonzero if EXP, ignoring any side
+ effects, has the value of zero. */
+
+static int
+value_zerop (exp)
+ tree exp;
+{
+ if (TREE_CODE (exp) == COMPOUND_EXPR)
+ return value_zerop (TREE_OPERAND (exp, 1));
+
+ return integer_zerop (exp);
+}
+
+/* Returns a PARM_DECL node. PARAM_NAME is the name of the parameter,
+ PARAM_TYPE is its type. READONLY is nonzero if the parameter is
+ readonly (either an IN parameter or an address of a pass-by-ref
+ parameter). */
+
+tree
+create_param_decl (param_name, param_type, readonly)
+ tree param_name;
+ tree param_type;
+ int readonly;
+{
+ tree param_decl = build_decl (PARM_DECL, param_name, param_type);
+
+ DECL_ARG_TYPE (param_decl) = param_type;
+ DECL_ARG_TYPE_AS_WRITTEN (param_decl) = param_type;
+ TREE_READONLY (param_decl) = readonly;
+ return param_decl;
+}
+
+/* Given a DECL and ATTR_LIST, process the listed attributes. */
+
+void
+process_attributes (decl, attr_list)
+ tree decl;
+ struct attrib *attr_list;
+{
+ for (; attr_list; attr_list = attr_list->next)
+ switch (attr_list->type)
+ {
+ case ATTR_MACHINE_ATTRIBUTE:
+ decl_attributes (&decl, tree_cons (attr_list->name, attr_list->arg,
+ NULL_TREE),
+ ATTR_FLAG_TYPE_IN_PLACE);
+ break;
+
+ case ATTR_LINK_ALIAS:
+ TREE_STATIC (decl) = 1;
+ assemble_alias (decl, attr_list->name);
+ break;
+
+ case ATTR_WEAK_EXTERNAL:
+ if (SUPPORTS_WEAK)
+ declare_weak (decl);
+ else
+ post_error ("?weak declarations not supported on this target",
+ attr_list->error_point);
+ break;
+
+ case ATTR_LINK_SECTION:
+#ifdef ASM_OUTPUT_SECTION_NAME
+ DECL_SECTION_NAME (decl)
+ = build_string (IDENTIFIER_LENGTH (attr_list->name),
+ IDENTIFIER_POINTER (attr_list->name));
+ DECL_COMMON (decl) = 0;
+#else
+ post_error ("?section attributes are not supported for this target",
+ attr_list->error_point);
+#endif
+ break;
+ }
+}
+
+/* Add some pending elaborations on the list. */
+
+void
+add_pending_elaborations (var_decl, var_init)
+ tree var_decl;
+ tree var_init;
+{
+ if (var_init != 0)
+ Check_Elaboration_Code_Allowed (error_gnat_node);
+
+ pending_elaborations
+ = chainon (pending_elaborations, build_tree_list (var_decl, var_init));
+}
+
+/* Obtain any pending elaborations and clear the old list. */
+
+tree
+get_pending_elaborations ()
+{
+ /* Each thing added to the list went on the end; we want it on the
+ beginning. */
+ tree result = TREE_CHAIN (pending_elaborations);
+
+ TREE_CHAIN (pending_elaborations) = 0;
+ return result;
+}
+
+/* Mark the binding level stack. */
+
+static void
+mark_binding_level (arg)
+ PTR arg;
+{
+ struct binding_level *level = *(struct binding_level **) arg;
+
+ for (; level != 0; level = level->level_chain)
+ {
+ ggc_mark_tree (level->names);
+ ggc_mark_tree (level->blocks);
+ ggc_mark_tree (level->this_block);
+ }
+}
+
+/* Mark the pending elaboration list. */
+
+static void
+mark_e_stack (data)
+ PTR data;
+{
+ struct e_stack *p = *((struct e_stack **) data);
+
+ if (p != 0)
+ {
+ ggc_mark_tree (p->elab_list);
+ mark_e_stack (&p->next);
+ }
+}
+
+/* Return nonzero if there are pending elaborations. */
+
+int
+pending_elaborations_p ()
+{
+ return TREE_CHAIN (pending_elaborations) != 0;
+}
+
+/* Save a copy of the current pending elaboration list and make a new
+ one. */
+
+void
+push_pending_elaborations ()
+{
+ struct e_stack *p = (struct e_stack *) xmalloc (sizeof (struct e_stack));
+
+ p->next = elist_stack;
+ p->elab_list = pending_elaborations;
+ elist_stack = p;
+ pending_elaborations = build_tree_list (NULL_TREE, NULL_TREE);
+}
+
+/* Pop the stack of pending elaborations. */
+
+void
+pop_pending_elaborations ()
+{
+ struct e_stack *p = elist_stack;
+
+ pending_elaborations = p->elab_list;
+ elist_stack = p->next;
+ free (p);
+}
+
+/* Return the current position in pending_elaborations so we can insert
+ elaborations after that point. */
+
+tree
+get_elaboration_location ()
+{
+ return tree_last (pending_elaborations);
+}
+
+/* Insert the current elaborations after ELAB, which is in some elaboration
+ list. */
+
+void
+insert_elaboration_list (elab)
+ tree elab;
+{
+ tree next = TREE_CHAIN (elab);
+
+ if (TREE_CHAIN (pending_elaborations))
+ {
+ TREE_CHAIN (elab) = TREE_CHAIN (pending_elaborations);
+ TREE_CHAIN (tree_last (pending_elaborations)) = next;
+ TREE_CHAIN (pending_elaborations) = 0;
+ }
+}
+
+/* Returns a LABEL_DECL node for LABEL_NAME. */
+
+tree
+create_label_decl (label_name)
+ tree label_name;
+{
+ tree label_decl = build_decl (LABEL_DECL, label_name, void_type_node);
+
+ DECL_CONTEXT (label_decl) = current_function_decl;
+ DECL_MODE (label_decl) = VOIDmode;
+ DECL_SOURCE_LINE (label_decl) = lineno;
+ DECL_SOURCE_FILE (label_decl) = input_filename;
+
+ return label_decl;
+}
+
+/* Returns a FUNCTION_DECL node. SUBPROG_NAME is the name of the subprogram,
+ ASM_NAME is its assembler name, SUBPROG_TYPE is its type (a FUNCTION_TYPE
+ node), PARAM_DECL_LIST is the list of the subprogram arguments (a list of
+ PARM_DECL nodes chained through the TREE_CHAIN field).
+
+ INLINE_FLAG, PUBLIC_FLAG, and EXTERN_FLAG are used to set the appropriate
+ fields in the FUNCTION_DECL. */
+
+tree
+create_subprog_decl (subprog_name, asm_name, subprog_type, param_decl_list,
+ inline_flag, public_flag, extern_flag, attr_list)
+ tree subprog_name;
+ tree asm_name;
+ tree subprog_type;
+ tree param_decl_list;
+ int inline_flag;
+ int public_flag;
+ int extern_flag;
+ struct attrib *attr_list;
+{
+ tree return_type = TREE_TYPE (subprog_type);
+ tree subprog_decl = build_decl (FUNCTION_DECL, subprog_name, subprog_type);
+
+ /* If this is a function nested inside an inlined external function, it
+ means we aren't going to compile the outer function unless it is
+ actually inlined, so do the same for us. */
+ if (current_function_decl != 0 && DECL_INLINE (current_function_decl)
+ && DECL_EXTERNAL (current_function_decl))
+ extern_flag = 1;
+
+ DECL_EXTERNAL (subprog_decl) = extern_flag;
+ TREE_PUBLIC (subprog_decl) = public_flag;
+ DECL_INLINE (subprog_decl) = inline_flag;
+ TREE_READONLY (subprog_decl) = TYPE_READONLY (subprog_type);
+ TREE_THIS_VOLATILE (subprog_decl) = TYPE_VOLATILE (subprog_type);
+ TREE_SIDE_EFFECTS (subprog_decl) = TYPE_VOLATILE (subprog_type);
+ DECL_ARGUMENTS (subprog_decl) = param_decl_list;
+ DECL_RESULT (subprog_decl) = build_decl (RESULT_DECL, 0, return_type);
+
+ if (asm_name != 0)
+ DECL_ASSEMBLER_NAME (subprog_decl) = asm_name;
+
+ process_attributes (subprog_decl, attr_list);
+
+ /* Add this decl to the current binding level. */
+ subprog_decl = pushdecl (subprog_decl);
+
+ /* Output the assembler code and/or RTL for the declaration. */
+ rest_of_decl_compilation (subprog_decl, 0, global_bindings_p (), 0);
+
+ return subprog_decl;
+}
+
+/* Count how deep we are into nested functions. This is because
+ we shouldn't call the backend function context routines unless we
+ are in a nested function. */
+
+static int function_nesting_depth;
+
+/* Set up the framework for generating code for SUBPROG_DECL, a subprogram
+ body. This routine needs to be invoked before processing the declarations
+ appearing in the subprogram. */
+
+void
+begin_subprog_body (subprog_decl)
+ tree subprog_decl;
+{
+ tree param_decl_list;
+ tree param_decl;
+ tree next_param;
+
+ if (function_nesting_depth++ != 0)
+ push_function_context ();
+
+ announce_function (subprog_decl);
+
+ /* Make this field nonzero so further routines know that this is not
+ tentative. error_mark_node is replaced below (in poplevel) with the
+ adequate BLOCK. */
+ DECL_INITIAL (subprog_decl) = error_mark_node;
+
+ /* This function exists in static storage. This does not mean `static' in
+ the C sense! */
+ TREE_STATIC (subprog_decl) = 1;
+
+ /* Enter a new binding level. */
+ current_function_decl = subprog_decl;
+ pushlevel (0);
+
+ /* Push all the PARM_DECL nodes onto the current scope (i.e. the scope of the
+ subprogram body) so that they can be recognized as local variables in the
+ subprogram.
+
+ The list of PARM_DECL nodes is stored in the right order in
+ DECL_ARGUMENTS. Since ..._DECL nodes get stored in the reverse order in
+ which they are transmitted to `pushdecl' we need to reverse the list of
+ PARM_DECLs if we want it to be stored in the right order. The reason why
+ we want to make sure the PARM_DECLs are stored in the correct order is
+ that this list will be retrieved in a few lines with a call to `getdecl'
+ to store it back into the DECL_ARGUMENTS field. */
+ param_decl_list = nreverse (DECL_ARGUMENTS (subprog_decl));
+
+ for (param_decl = param_decl_list; param_decl; param_decl = next_param)
+ {
+ next_param = TREE_CHAIN (param_decl);
+ TREE_CHAIN (param_decl) = NULL;
+ pushdecl (param_decl);
+ }
+
+ /* Store back the PARM_DECL nodes. They appear in the right order. */
+ DECL_ARGUMENTS (subprog_decl) = getdecls ();
+
+ init_function_start (subprog_decl, input_filename, lineno);
+ expand_function_start (subprog_decl, 0);
+}
+
+
+/* Finish the definition of the current subprogram and compile it all the way
+ to assembler language output. */
+
+void
+end_subprog_body (void)
+{
+ tree decl;
+ tree cico_list;
+
+ poplevel (1, 0, 1);
+ BLOCK_SUPERCONTEXT (DECL_INITIAL (current_function_decl))
+ = current_function_decl;
+
+ /* Mark the RESULT_DECL as being in this subprogram. */
+ DECL_CONTEXT (DECL_RESULT (current_function_decl)) = current_function_decl;
+
+ expand_function_end (input_filename, lineno, 0);
+ rest_of_compilation (current_function_decl);
+
+#if 0
+ /* If we're sure this function is defined in this file then mark it
+ as such */
+ if (TREE_ASM_WRITTEN (current_function_decl))
+ mark_fn_defined_in_this_file (current_function_decl);
+#endif
+
+ /* Throw away any VAR_DECLs we made for OUT parameters; they must
+ not be seen when we call this function and will be in
+ unallocated memory anyway. */
+ for (cico_list = TYPE_CI_CO_LIST (TREE_TYPE (current_function_decl));
+ cico_list != 0; cico_list = TREE_CHAIN (cico_list))
+ TREE_VALUE (cico_list) = 0;
+
+ if (DECL_SAVED_INSNS (current_function_decl) == 0)
+ {
+ /* Throw away DECL_RTL in any PARM_DECLs unless this function
+ was saved for inline, in which case the DECL_RTLs are in
+ preserved memory. */
+ for (decl = DECL_ARGUMENTS (current_function_decl);
+ decl != 0; decl = TREE_CHAIN (decl))
+ {
+ SET_DECL_RTL (decl, 0);
+ DECL_INCOMING_RTL (decl) = 0;
+ }
+
+ /* Similarly, discard DECL_RTL of the return value. */
+ SET_DECL_RTL (DECL_RESULT (current_function_decl), 0);
+
+ /* But DECL_INITIAL must remain nonzero so we know this
+ was an actual function definition unless toplev.c decided not
+ to inline it. */
+ if (DECL_INITIAL (current_function_decl) != 0)
+ DECL_INITIAL (current_function_decl) = error_mark_node;
+
+ DECL_ARGUMENTS (current_function_decl) = 0;
+ }
+
+ /* If we are not at the bottom of the function nesting stack, pop up to
+ the containing function. Otherwise show we aren't in any function. */
+ if (--function_nesting_depth != 0)
+ pop_function_context ();
+ else
+ current_function_decl = 0;
+}
+
+/* Return a definition for a builtin function named NAME and whose data type
+ is TYPE. TYPE should be a function type with argument types.
+ FUNCTION_CODE tells later passes how to compile calls to this function.
+ See tree.h for its possible values.
+
+ If LIBRARY_NAME is nonzero, use that for DECL_ASSEMBLER_NAME,
+ the name to be called if we can't opencode the function. */
+
+tree
+builtin_function (name, type, function_code, class, library_name)
+ const char *name;
+ tree type;
+ int function_code;
+ enum built_in_class class;
+ const char *library_name;
+{
+ tree decl = build_decl (FUNCTION_DECL, get_identifier (name), type);
+
+ DECL_EXTERNAL (decl) = 1;
+ TREE_PUBLIC (decl) = 1;
+ if (library_name)
+ DECL_ASSEMBLER_NAME (decl) = get_identifier (library_name);
+
+ pushdecl (decl);
+ DECL_BUILT_IN_CLASS (decl) = class;
+ DECL_FUNCTION_CODE (decl) = function_code;
+ return decl;
+}
+
+/* Return an integer type with the number of bits of precision given by
+ PRECISION. UNSIGNEDP is nonzero if the type is unsigned; otherwise
+ it is a signed type. */
+
+tree
+type_for_size (precision, unsignedp)
+ unsigned precision;
+ int unsignedp;
+{
+ tree t;
+ char type_name[20];
+
+ if (precision <= 2 * MAX_BITS_PER_WORD
+ && signed_and_unsigned_types[precision][unsignedp] != 0)
+ return signed_and_unsigned_types[precision][unsignedp];
+
+ if (unsignedp)
+ t = make_unsigned_type (precision);
+ else
+ t = make_signed_type (precision);
+
+ if (precision <= 2 * MAX_BITS_PER_WORD)
+ signed_and_unsigned_types[precision][unsignedp] = t;
+
+ if (TYPE_NAME (t) == 0)
+ {
+ sprintf (type_name, "%sSIGNED_%d", unsignedp ? "UN" : "", precision);
+ TYPE_NAME (t) = get_identifier (type_name);
+ }
+
+ return t;
+}
+
+/* Likewise for floating-point types. */
+
+static tree
+float_type_for_size (precision, mode)
+ int precision;
+ enum machine_mode mode;
+{
+ tree t;
+ char type_name[20];
+
+ if (float_types[(int) mode] != 0)
+ return float_types[(int) mode];
+
+ float_types[(int) mode] = t = make_node (REAL_TYPE);
+ TYPE_PRECISION (t) = precision;
+ layout_type (t);
+
+ if (TYPE_MODE (t) != mode)
+ gigi_abort (414);
+
+ if (TYPE_NAME (t) == 0)
+ {
+ sprintf (type_name, "FLOAT_%d", precision);
+ TYPE_NAME (t) = get_identifier (type_name);
+ }
+
+ return t;
+}
+
+/* Return a data type that has machine mode MODE. UNSIGNEDP selects
+ an unsigned type; otherwise a signed type is returned. */
+
+tree
+type_for_mode (mode, unsignedp)
+ enum machine_mode mode;
+ int unsignedp;
+{
+ if (GET_MODE_CLASS (mode) == MODE_FLOAT)
+ return float_type_for_size (GET_MODE_BITSIZE (mode), mode);
+ else
+ return type_for_size (GET_MODE_BITSIZE (mode), unsignedp);
+}
+
+/* Return the unsigned version of a TYPE_NODE, a scalar type. */
+
+tree
+unsigned_type (type_node)
+ tree type_node;
+{
+ tree type = type_for_size (TYPE_PRECISION (type_node), 1);
+
+ if (TREE_CODE (type_node) == INTEGER_TYPE && TYPE_MODULAR_P (type_node))
+ {
+ type = copy_node (type);
+ TREE_TYPE (type) = type_node;
+ }
+ else if (TREE_TYPE (type_node) != 0
+ && TREE_CODE (TREE_TYPE (type_node)) == INTEGER_TYPE
+ && TYPE_MODULAR_P (TREE_TYPE (type_node)))
+ {
+ type = copy_node (type);
+ TREE_TYPE (type) = TREE_TYPE (type_node);
+ }
+
+ return type;
+}
+
+/* Return the signed version of a TYPE_NODE, a scalar type. */
+
+tree
+signed_type (type_node)
+ tree type_node;
+{
+ tree type = type_for_size (TYPE_PRECISION (type_node), 0);
+
+ if (TREE_CODE (type_node) == INTEGER_TYPE && TYPE_MODULAR_P (type_node))
+ {
+ type = copy_node (type);
+ TREE_TYPE (type) = type_node;
+ }
+ else if (TREE_TYPE (type_node) != 0
+ && TREE_CODE (TREE_TYPE (type_node)) == INTEGER_TYPE
+ && TYPE_MODULAR_P (TREE_TYPE (type_node)))
+ {
+ type = copy_node (type);
+ TREE_TYPE (type) = TREE_TYPE (type_node);
+ }
+
+ return type;
+}
+
+/* Return a type the same as TYPE except unsigned or signed according to
+ UNSIGNEDP. */
+
+tree
+signed_or_unsigned_type (unsignedp, type)
+ int unsignedp;
+ tree type;
+{
+ if (! INTEGRAL_TYPE_P (type) || TREE_UNSIGNED (type) == unsignedp)
+ return type;
+ else
+ return type_for_size (TYPE_PRECISION (type), unsignedp);
+}
+
+/* EXP is an expression for the size of an object. If this size contains
+ discriminant references, replace them with the maximum (if MAX_P) or
+ minimum (if ! MAX_P) possible value of the discriminant. */
+
+tree
+max_size (exp, max_p)
+ tree exp;
+ int max_p;
+{
+ enum tree_code code = TREE_CODE (exp);
+ tree type = TREE_TYPE (exp);
+
+ switch (TREE_CODE_CLASS (code))
+ {
+ case 'd':
+ case 'c':
+ return exp;
+
+ case 'x':
+ if (code == TREE_LIST)
+ return tree_cons (TREE_PURPOSE (exp),
+ max_size (TREE_VALUE (exp), max_p),
+ TREE_CHAIN (exp) != 0
+ ? max_size (TREE_CHAIN (exp), max_p) : 0);
+ break;
+
+ case 'r':
+ /* If this contains a PLACEHOLDER_EXPR, it is the thing we want to
+ modify. Otherwise, we abort since it is something we can't
+ handle. */
+ if (! contains_placeholder_p (exp))
+ gigi_abort (406);
+
+ type = TREE_TYPE (TREE_OPERAND (exp, 1));
+ return
+ max_size (max_p ? TYPE_MAX_VALUE (type) : TYPE_MIN_VALUE (type), 1);
+
+ case '<':
+ return max_p ? size_one_node : size_zero_node;
+
+ case '1':
+ case '2':
+ case 'e':
+ switch (TREE_CODE_LENGTH (code))
+ {
+ case 1:
+ if (code == NON_LVALUE_EXPR)
+ return max_size (TREE_OPERAND (exp, 0), max_p);
+ else
+ return
+ fold (build1 (code, type,
+ max_size (TREE_OPERAND (exp, 0),
+ code == NEGATE_EXPR ? ! max_p : max_p)));
+
+ case 2:
+ if (code == RTL_EXPR)
+ gigi_abort (407);
+ else if (code == COMPOUND_EXPR)
+ return max_size (TREE_OPERAND (exp, 1), max_p);
+ else if (code == WITH_RECORD_EXPR)
+ return exp;
+
+ {
+ tree lhs = max_size (TREE_OPERAND (exp, 0), max_p);
+ tree rhs = max_size (TREE_OPERAND (exp, 1),
+ code == MINUS_EXPR ? ! max_p : max_p);
+
+ /* Special-case wanting the maximum value of a MIN_EXPR.
+ In that case, if one side overflows, return the other.
+ sizetype is signed, but we know sizes are non-negative.
+ Likewise, handle a MINUS_EXPR or PLUS_EXPR with the LHS
+ overflowing or the maximum possible value and the RHS
+ a variable. */
+ if (max_p && code == MIN_EXPR && TREE_OVERFLOW (rhs))
+ return lhs;
+ else if (max_p && code == MIN_EXPR && TREE_OVERFLOW (lhs))
+ return rhs;
+ else if ((code == MINUS_EXPR || code == PLUS_EXPR)
+ && (TREE_OVERFLOW (lhs)
+ || operand_equal_p (lhs, TYPE_MAX_VALUE (type), 0))
+ && ! TREE_CONSTANT (rhs))
+ return lhs;
+ else
+ return fold (build (code, type, lhs, rhs));
+ }
+
+ case 3:
+ if (code == SAVE_EXPR)
+ return exp;
+ else if (code == COND_EXPR)
+ return fold (build (MAX_EXPR, type,
+ max_size (TREE_OPERAND (exp, 1), max_p),
+ max_size (TREE_OPERAND (exp, 2), max_p)));
+ else if (code == CALL_EXPR && TREE_OPERAND (exp, 1) != 0)
+ return build (CALL_EXPR, type, TREE_OPERAND (exp, 0),
+ max_size (TREE_OPERAND (exp, 1), max_p));
+ }
+ }
+
+ gigi_abort (408);
+}
+
+/* Build a template of type TEMPLATE_TYPE from the array bounds of ARRAY_TYPE.
+ EXPR is an expression that we can use to locate any PLACEHOLDER_EXPRs.
+ Return a constructor for the template. */
+
+tree
+build_template (template_type, array_type, expr)
+ tree template_type;
+ tree array_type;
+ tree expr;
+{
+ tree template_elts = NULL_TREE;
+ tree bound_list = NULL_TREE;
+ tree field;
+
+ if (TREE_CODE (array_type) == RECORD_TYPE
+ && (TYPE_IS_PADDING_P (array_type)
+ || TYPE_LEFT_JUSTIFIED_MODULAR_P (array_type)))
+ array_type = TREE_TYPE (TYPE_FIELDS (array_type));
+
+ if (TREE_CODE (array_type) == ARRAY_TYPE
+ || (TREE_CODE (array_type) == INTEGER_TYPE
+ && TYPE_HAS_ACTUAL_BOUNDS_P (array_type)))
+ bound_list = TYPE_ACTUAL_BOUNDS (array_type);
+
+ /* First make the list for a CONSTRUCTOR for the template. Go down the
+ field list of the template instead of the type chain because this
+ array might be an Ada array of arrays and we can't tell where the
+ nested arrays stop being the underlying object. */
+
+ for (field = TYPE_FIELDS (template_type); field;
+ (bound_list != 0
+ ? (bound_list = TREE_CHAIN (bound_list))
+ : (array_type = TREE_TYPE (array_type))),
+ field = TREE_CHAIN (TREE_CHAIN (field)))
+ {
+ tree bounds, min, max;
+
+ /* If we have a bound list, get the bounds from there. Likewise
+ for an ARRAY_TYPE. Otherwise, if expr is a PARM_DECL with
+ DECL_BY_COMPONENT_PTR_P, use the bounds of the field in the template.
+ This will give us a maximum range. */
+ if (bound_list != 0)
+ bounds = TREE_VALUE (bound_list);
+ else if (TREE_CODE (array_type) == ARRAY_TYPE)
+ bounds = TYPE_INDEX_TYPE (TYPE_DOMAIN (array_type));
+ else if (expr != 0 && TREE_CODE (expr) == PARM_DECL
+ && DECL_BY_COMPONENT_PTR_P (expr))
+ bounds = TREE_TYPE (field);
+ else
+ gigi_abort (411);
+
+ min = convert (TREE_TYPE (TREE_CHAIN (field)), TYPE_MIN_VALUE (bounds));
+ max = convert (TREE_TYPE (field), TYPE_MAX_VALUE (bounds));
+
+ /* If either MIN or MAX involve a PLACEHOLDER_EXPR, we must
+ surround them with a WITH_RECORD_EXPR giving EXPR as the
+ OBJECT. */
+ if (! TREE_CONSTANT (min) && contains_placeholder_p (min))
+ min = build (WITH_RECORD_EXPR, TREE_TYPE (min), min, expr);
+ if (! TREE_CONSTANT (max) && contains_placeholder_p (max))
+ max = build (WITH_RECORD_EXPR, TREE_TYPE (max), max, expr);
+
+ template_elts = tree_cons (TREE_CHAIN (field), max,
+ tree_cons (field, min, template_elts));
+ }
+
+ return build_constructor (template_type, nreverse (template_elts));
+}
+
+/* Build a VMS descriptor from a Mechanism_Type, which must specify
+ a descriptor type, and the GCC type of an object. Each FIELD_DECL
+ in the type contains in its DECL_INITIAL the expression to use when
+ a constructor is made for the type. GNAT_ENTITY is a gnat node used
+ to print out an error message if the mechanism cannot be applied to
+ an object of that type and also for the name. */
+
+tree
+build_vms_descriptor (type, mech, gnat_entity)
+ tree type;
+ Mechanism_Type mech;
+ Entity_Id gnat_entity;
+{
+ tree record_type = make_node (RECORD_TYPE);
+ tree field_list = 0;
+ int class;
+ int dtype = 0;
+ tree inner_type;
+ int ndim;
+ int i;
+ tree *idx_arr;
+ tree tem;
+
+ /* If TYPE is an unconstrained array, use the underlying array type. */
+ if (TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
+ type = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (type))));
+
+ /* If this is an array, compute the number of dimensions in the array,
+ get the index types, and point to the inner type. */
+ if (TREE_CODE (type) != ARRAY_TYPE)
+ ndim = 0;
+ else
+ for (ndim = 1, inner_type = type;
+ TREE_CODE (TREE_TYPE (inner_type)) == ARRAY_TYPE
+ && TYPE_MULTI_ARRAY_P (TREE_TYPE (inner_type));
+ ndim++, inner_type = TREE_TYPE (inner_type))
+ ;
+
+ idx_arr = (tree *) alloca (ndim * sizeof (tree));
+
+ if (mech != By_Descriptor_NCA
+ && TREE_CODE (type) == ARRAY_TYPE && TYPE_CONVENTION_FORTRAN_P (type))
+ for (i = ndim - 1, inner_type = type;
+ i >= 0;
+ i--, inner_type = TREE_TYPE (inner_type))
+ idx_arr[i] = TYPE_DOMAIN (inner_type);
+ else
+ for (i = 0, inner_type = type;
+ i < ndim;
+ i++, inner_type = TREE_TYPE (inner_type))
+ idx_arr[i] = TYPE_DOMAIN (inner_type);
+
+ /* Now get the DTYPE value. */
+ switch (TREE_CODE (type))
+ {
+ case INTEGER_TYPE:
+ case ENUMERAL_TYPE:
+ if (TYPE_VAX_FLOATING_POINT_P (type))
+ switch ((int) TYPE_DIGITS_VALUE (type))
+ {
+ case 6:
+ dtype = 10;
+ break;
+ case 9:
+ dtype = 11;
+ break;
+ case 15:
+ dtype = 27;
+ break;
+ }
+ else
+ switch (GET_MODE_BITSIZE (TYPE_MODE (type)))
+ {
+ case 8:
+ dtype = TREE_UNSIGNED (type) ? 2 : 6;
+ break;
+ case 16:
+ dtype = TREE_UNSIGNED (type) ? 3 : 7;
+ break;
+ case 32:
+ dtype = TREE_UNSIGNED (type) ? 4 : 8;
+ break;
+ case 64:
+ dtype = TREE_UNSIGNED (type) ? 5 : 9;
+ break;
+ case 128:
+ dtype = TREE_UNSIGNED (type) ? 25 : 26;
+ break;
+ }
+ break;
+
+ case REAL_TYPE:
+ dtype = GET_MODE_BITSIZE (TYPE_MODE (type)) == 32 ? 52 : 53;
+ break;
+
+ case COMPLEX_TYPE:
+ if (TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE
+ && TYPE_VAX_FLOATING_POINT_P (type))
+ switch ((int) TYPE_DIGITS_VALUE (type))
+ {
+ case 6:
+ dtype = 12;
+ break;
+ case 9:
+ dtype = 13;
+ break;
+ case 15:
+ dtype = 29;
+ }
+ else
+ dtype = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) == 32 ? 54: 55;
+ break;
+
+ case ARRAY_TYPE:
+ dtype = 14;
+ break;
+
+ default:
+ break;
+ }
+
+ /* Get the CLASS value. */
+ switch (mech)
+ {
+ case By_Descriptor_A:
+ class = 4;
+ break;
+ case By_Descriptor_NCA:
+ class = 10;
+ break;
+ case By_Descriptor_SB:
+ class = 15;
+ break;
+ default:
+ class = 1;
+ }
+
+ /* Make the type for a descriptor for VMS. The first four fields
+ are the same for all types. */
+
+ field_list
+ = chainon (field_list,
+ make_descriptor_field
+ ("LENGTH", type_for_size (16, 1), record_type,
+ size_in_bytes (mech == By_Descriptor_A ? inner_type : type)));
+
+ field_list = chainon (field_list,
+ make_descriptor_field ("DTYPE", type_for_size (8, 1),
+ record_type, size_int (dtype)));
+ field_list = chainon (field_list,
+ make_descriptor_field ("CLASS", type_for_size (8, 1),
+ record_type, size_int (class)));
+
+ field_list
+ = chainon (field_list,
+ make_descriptor_field ("POINTER",
+ build_pointer_type (type),
+ record_type,
+ build1 (ADDR_EXPR,
+ build_pointer_type (type),
+ build (PLACEHOLDER_EXPR,
+ type))));
+
+ switch (mech)
+ {
+ case By_Descriptor:
+ case By_Descriptor_S:
+ break;
+
+ case By_Descriptor_SB:
+ field_list
+ = chainon (field_list,
+ make_descriptor_field
+ ("SB_L1", type_for_size (32, 1), record_type,
+ TREE_CODE (type) == ARRAY_TYPE
+ ? TYPE_MIN_VALUE (TYPE_DOMAIN (type)) : size_zero_node));
+ field_list
+ = chainon (field_list,
+ make_descriptor_field
+ ("SB_L2", type_for_size (32, 1), record_type,
+ TREE_CODE (type) == ARRAY_TYPE
+ ? TYPE_MAX_VALUE (TYPE_DOMAIN (type)) : size_zero_node));
+ break;
+
+ case By_Descriptor_A:
+ case By_Descriptor_NCA:
+ field_list = chainon (field_list,
+ make_descriptor_field ("SCALE",
+ type_for_size (8, 1),
+ record_type,
+ size_zero_node));
+
+ field_list = chainon (field_list,
+ make_descriptor_field ("DIGITS",
+ type_for_size (8, 1),
+ record_type,
+ size_zero_node));
+
+ field_list
+ = chainon (field_list,
+ make_descriptor_field
+ ("AFLAGS", type_for_size (8, 1), record_type,
+ size_int (mech == By_Descriptor_NCA
+ ? 0
+ /* Set FL_COLUMN, FL_COEFF, and FL_BOUNDS. */
+ : (TREE_CODE (type) == ARRAY_TYPE
+ && TYPE_CONVENTION_FORTRAN_P (type)
+ ? 224 : 192))));
+
+ field_list = chainon (field_list,
+ make_descriptor_field ("DIMCT",
+ type_for_size (8, 1),
+ record_type,
+ size_int (ndim)));
+
+ field_list = chainon (field_list,
+ make_descriptor_field ("ARSIZE",
+ type_for_size (32, 1),
+ record_type,
+ size_in_bytes (type)));
+
+ /* Now build a pointer to the 0,0,0... element. */
+ tem = build (PLACEHOLDER_EXPR, type);
+ for (i = 0, inner_type = type; i < ndim;
+ i++, inner_type = TREE_TYPE (inner_type))
+ tem = build (ARRAY_REF, TREE_TYPE (inner_type), tem,
+ convert (TYPE_DOMAIN (inner_type), size_zero_node));
+
+ field_list
+ = chainon (field_list,
+ make_descriptor_field
+ ("A0", build_pointer_type (inner_type), record_type,
+ build1 (ADDR_EXPR, build_pointer_type (inner_type), tem)));
+
+ /* Next come the addressing coefficients. */
+ tem = size_int (1);
+ for (i = 0; i < ndim; i++)
+ {
+ char fname[3];
+ tree idx_length
+ = size_binop (MULT_EXPR, tem,
+ size_binop (PLUS_EXPR,
+ size_binop (MINUS_EXPR,
+ TYPE_MAX_VALUE (idx_arr[i]),
+ TYPE_MIN_VALUE (idx_arr[i])),
+ size_int (1)));
+
+ fname[0] = (mech == By_Descriptor_NCA ? 'S' : 'M');
+ fname[1] = '0' + i, fname[2] = 0;
+ field_list = chainon (field_list,
+ make_descriptor_field (fname,
+ type_for_size (32, 1),
+ record_type,
+ idx_length));
+
+ if (mech == By_Descriptor_NCA)
+ tem = idx_length;
+ }
+
+ /* Finally here are the bounds. */
+ for (i = 0; i < ndim; i++)
+ {
+ char fname[3];
+
+ fname[0] = 'L', fname[1] = '0' + i, fname[2] = 0;
+ field_list
+ = chainon (field_list,
+ make_descriptor_field
+ (fname, type_for_size (32, 1), record_type,
+ TYPE_MIN_VALUE (idx_arr[i])));
+
+ fname[0] = 'U';
+ field_list
+ = chainon (field_list,
+ make_descriptor_field
+ (fname, type_for_size (32, 1), record_type,
+ TYPE_MAX_VALUE (idx_arr[i])));
+ }
+ break;
+
+ default:
+ post_error ("unsupported descriptor type for &", gnat_entity);
+ }
+
+ finish_record_type (record_type, field_list, 0, 1);
+ pushdecl (build_decl (TYPE_DECL, create_concat_name (gnat_entity, "DESC"),
+ record_type));
+
+ return record_type;
+}
+
+/* Utility routine for above code to make a field. */
+
+static tree
+make_descriptor_field (name, type, rec_type, initial)
+ const char *name;
+ tree type;
+ tree rec_type;
+ tree initial;
+{
+ tree field
+ = create_field_decl (get_identifier (name), type, rec_type, 0, 0, 0, 0);
+
+ DECL_INITIAL (field) = initial;
+ return field;
+}
+
+/* Build a type to be used to represent an aliased object whose nominal
+ type is an unconstrained array. This consists of a RECORD_TYPE containing
+ a field of TEMPLATE_TYPE and a field of OBJECT_TYPE, which is an
+ ARRAY_TYPE. If ARRAY_TYPE is that of the unconstrained array, this
+ is used to represent an arbitrary unconstrained object. Use NAME
+ as the name of the record. */
+
+tree
+build_unc_object_type (template_type, object_type, name)
+ tree template_type;
+ tree object_type;
+ tree name;
+{
+ tree type = make_node (RECORD_TYPE);
+ tree template_field = create_field_decl (get_identifier ("BOUNDS"),
+ template_type, type, 0, 0, 0, 1);
+ tree array_field = create_field_decl (get_identifier ("ARRAY"), object_type,
+ type, 0, 0, 0, 1);
+
+ TYPE_NAME (type) = name;
+ TYPE_CONTAINS_TEMPLATE_P (type) = 1;
+ finish_record_type (type,
+ chainon (chainon (NULL_TREE, template_field),
+ array_field),
+ 0, 0);
+
+ return type;
+}
+
+/* Update anything previously pointing to OLD_TYPE to point to NEW_TYPE. In
+ the normal case this is just two adjustments, but we have more to do
+ if NEW is an UNCONSTRAINED_ARRAY_TYPE. */
+
+void
+update_pointer_to (old_type, new_type)
+ tree old_type;
+ tree new_type;
+{
+ tree ptr = TYPE_POINTER_TO (old_type);
+ tree ref = TYPE_REFERENCE_TO (old_type);
+
+ if ((ptr == 0 && ref == 0) || old_type == new_type)
+ return;
+
+ /* First handle the simple case. */
+ if (TREE_CODE (new_type) != UNCONSTRAINED_ARRAY_TYPE)
+ {
+ if (ptr != 0)
+ TREE_TYPE (ptr) = new_type;
+ TYPE_POINTER_TO (new_type) = ptr;
+
+ if (ref != 0)
+ TREE_TYPE (ref) = new_type;
+ TYPE_REFERENCE_TO (new_type) = ref;
+
+ if (ptr != 0 && TYPE_NAME (ptr) != 0
+ && TREE_CODE (TYPE_NAME (ptr)) == TYPE_DECL
+ && TREE_CODE (new_type) != ENUMERAL_TYPE)
+ rest_of_decl_compilation (TYPE_NAME (ptr), NULL,
+ global_bindings_p (), 0);
+ if (ref != 0 && TYPE_NAME (ref) != 0
+ && TREE_CODE (TYPE_NAME (ref)) == TYPE_DECL
+ && TREE_CODE (new_type) != ENUMERAL_TYPE)
+ rest_of_decl_compilation (TYPE_NAME (ref), NULL,
+ global_bindings_p (), 0);
+ }
+
+ /* Now deal with the unconstrained array case. In this case the "pointer"
+ is actually a RECORD_TYPE where the types of both fields are
+ pointers to void. In that case, copy the field list from the
+ old type to the new one and update the fields' context. */
+ else if (TREE_CODE (ptr) != RECORD_TYPE || ! TYPE_IS_FAT_POINTER_P (ptr))
+ gigi_abort (412);
+
+ else
+ {
+ tree new_obj_rec = TYPE_OBJECT_RECORD_TYPE (new_type);
+ tree ptr_temp_type;
+ tree new_ref;
+ tree var;
+
+ TYPE_FIELDS (ptr) = TYPE_FIELDS (TYPE_POINTER_TO (new_type));
+ DECL_CONTEXT (TYPE_FIELDS (ptr)) = ptr;
+ DECL_CONTEXT (TREE_CHAIN (TYPE_FIELDS (ptr))) = ptr;
+
+ /* Rework the PLACEHOLDER_EXPR inside the reference to the
+ template bounds.
+
+ ??? This is now the only use of gnat_substitute_in_type, which
+ is now a very "heavy" routine to do this, so it should be replaced
+ at some point. */
+ ptr_temp_type = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (ptr)));
+ new_ref = build (COMPONENT_REF, ptr_temp_type,
+ build (PLACEHOLDER_EXPR, ptr),
+ TREE_CHAIN (TYPE_FIELDS (ptr)));
+
+ update_pointer_to
+ (TREE_TYPE (TREE_TYPE (TYPE_FIELDS (ptr))),
+ gnat_substitute_in_type (TREE_TYPE (TREE_TYPE (TYPE_FIELDS (ptr))),
+ TREE_CHAIN (TYPE_FIELDS (ptr)), new_ref));
+
+ for (var = TYPE_MAIN_VARIANT (ptr); var; var = TYPE_NEXT_VARIANT (var))
+ TYPE_UNCONSTRAINED_ARRAY (var) = new_type;
+
+ TYPE_POINTER_TO (new_type) = TYPE_REFERENCE_TO (new_type)
+ = TREE_TYPE (new_type) = ptr;
+
+ /* Now handle updating the allocation record, what the thin pointer
+ points to. Update all pointers from the old record into the new
+ one, update the types of the fields, and recompute the size. */
+
+ update_pointer_to (TYPE_OBJECT_RECORD_TYPE (old_type), new_obj_rec);
+
+ TREE_TYPE (TYPE_FIELDS (new_obj_rec)) = TREE_TYPE (ptr_temp_type);
+ TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (new_obj_rec)))
+ = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (ptr)));
+ DECL_SIZE (TREE_CHAIN (TYPE_FIELDS (new_obj_rec)))
+ = TYPE_SIZE (TREE_TYPE (TREE_TYPE (TYPE_FIELDS (ptr))));
+ DECL_SIZE_UNIT (TREE_CHAIN (TYPE_FIELDS (new_obj_rec)))
+ = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (TYPE_FIELDS (ptr))));
+
+ TYPE_SIZE (new_obj_rec)
+ = size_binop (PLUS_EXPR,
+ DECL_SIZE (TYPE_FIELDS (new_obj_rec)),
+ DECL_SIZE (TREE_CHAIN (TYPE_FIELDS (new_obj_rec))));
+ TYPE_SIZE_UNIT (new_obj_rec)
+ = size_binop (PLUS_EXPR,
+ DECL_SIZE_UNIT (TYPE_FIELDS (new_obj_rec)),
+ DECL_SIZE_UNIT (TREE_CHAIN (TYPE_FIELDS (new_obj_rec))));
+ rest_of_type_compilation (ptr, global_bindings_p ());
+ }
+}
+
+/* Convert a pointer to a constrained array into a pointer to a fat
+ pointer. This involves making or finding a template. */
+
+static tree
+convert_to_fat_pointer (type, expr)
+ tree type;
+ tree expr;
+{
+ tree template_type = TREE_TYPE (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (type))));
+ tree template, template_addr;
+ tree etype = TREE_TYPE (expr);
+
+ /* If EXPR is a constant of zero, we make a fat pointer that has a null
+ pointer to the template and array. */
+ if (integer_zerop (expr))
+ return
+ build_constructor
+ (type,
+ tree_cons (TYPE_FIELDS (type),
+ convert (TREE_TYPE (TYPE_FIELDS (type)), expr),
+ tree_cons (TREE_CHAIN (TYPE_FIELDS (type)),
+ convert (build_pointer_type (template_type),
+ expr),
+ NULL_TREE)));
+
+ /* If EXPR is a thin pointer, make the template and data from the record. */
+
+ else if (TYPE_THIN_POINTER_P (etype))
+ {
+ tree fields = TYPE_FIELDS (TREE_TYPE (etype));
+
+ expr = save_expr (expr);
+ if (TREE_CODE (expr) == ADDR_EXPR)
+ expr = TREE_OPERAND (expr, 0);
+ else
+ expr = build1 (INDIRECT_REF, TREE_TYPE (etype), expr);
+
+ template = build_component_ref (expr, NULL_TREE, fields);
+ expr = build_unary_op (ADDR_EXPR, NULL_TREE,
+ build_component_ref (expr, NULL_TREE,
+ TREE_CHAIN (fields)));
+ }
+ else
+ /* Otherwise, build the constructor for the template. */
+ template = build_template (template_type, TREE_TYPE (etype), expr);
+
+ template_addr = build_unary_op (ADDR_EXPR, NULL_TREE, template);
+
+ /* The result is a CONSTRUCTOR for the fat pointer. */
+ return
+ build_constructor (type,
+ tree_cons (TYPE_FIELDS (type), expr,
+ tree_cons (TREE_CHAIN (TYPE_FIELDS (type)),
+ template_addr, NULL_TREE)));
+}
+
+/* Convert to a thin pointer type, TYPE. The only thing we know how to convert
+ is something that is a fat pointer, so convert to it first if it EXPR
+ is not already a fat pointer. */
+
+static tree
+convert_to_thin_pointer (type, expr)
+ tree type;
+ tree expr;
+{
+ if (! TYPE_FAT_POINTER_P (TREE_TYPE (expr)))
+ expr
+ = convert_to_fat_pointer
+ (TREE_TYPE (TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type))), expr);
+
+ /* We get the pointer to the data and use a NOP_EXPR to make it the
+ proper GCC type. */
+ expr = build_component_ref (expr, NULL_TREE, TYPE_FIELDS (TREE_TYPE (expr)));
+ expr = build1 (NOP_EXPR, type, expr);
+
+ return expr;
+}
+
+/* Create an expression whose value is that of EXPR,
+ converted to type TYPE. The TREE_TYPE of the value
+ is always TYPE. This function implements all reasonable
+ conversions; callers should filter out those that are
+ not permitted by the language being compiled. */
+
+tree
+convert (type, expr)
+ tree type, expr;
+{
+ enum tree_code code = TREE_CODE (type);
+ tree etype = TREE_TYPE (expr);
+ enum tree_code ecode = TREE_CODE (etype);
+ tree tem;
+
+ /* If EXPR is already the right type, we are done. */
+ if (type == etype)
+ return expr;
+
+ /* If EXPR is a WITH_RECORD_EXPR, do the conversion inside and then make a
+ new one. */
+ if (TREE_CODE (expr) == WITH_RECORD_EXPR)
+ return build (WITH_RECORD_EXPR, type,
+ convert (type, TREE_OPERAND (expr, 0)),
+ TREE_OPERAND (expr, 1));
+
+ /* If the input type has padding, remove it by doing a component reference
+ to the field. If the output type has padding, make a constructor
+ to build the record. If both input and output have padding and are
+ of variable size, do this as an unchecked conversion. */
+ if (ecode == RECORD_TYPE && code == RECORD_TYPE
+ && TYPE_IS_PADDING_P (type) && TYPE_IS_PADDING_P (etype)
+ && (! TREE_CONSTANT (TYPE_SIZE (type))
+ || ! TREE_CONSTANT (TYPE_SIZE (etype))))
+ ;
+ else if (ecode == RECORD_TYPE && TYPE_IS_PADDING_P (etype))
+ {
+ /* If we have just converted to this padded type, just get
+ the inner expression. */
+ if (TREE_CODE (expr) == CONSTRUCTOR
+ && CONSTRUCTOR_ELTS (expr) != 0
+ && TREE_PURPOSE (CONSTRUCTOR_ELTS (expr)) == TYPE_FIELDS (etype))
+ return TREE_VALUE (CONSTRUCTOR_ELTS (expr));
+ else
+ return convert (type, build_component_ref (expr, NULL_TREE,
+ TYPE_FIELDS (etype)));
+ }
+ else if (code == RECORD_TYPE && TYPE_IS_PADDING_P (type))
+ {
+ /* If we previously converted from another type and our type is
+ of variable size, remove the conversion to avoid the need for
+ variable-size temporaries. */
+ if (TREE_CODE (expr) == UNCHECKED_CONVERT_EXPR
+ && ! TREE_CONSTANT (TYPE_SIZE (type)))
+ expr = TREE_OPERAND (expr, 0);
+
+ /* If we are just removing the padding from expr, convert the original
+ object if we have variable size. That will avoid the need
+ for some variable-size temporaries. */
+ if (TREE_CODE (expr) == COMPONENT_REF
+ && TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == RECORD_TYPE
+ && TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (expr, 0)))
+ && ! TREE_CONSTANT (TYPE_SIZE (type)))
+ return convert (type, TREE_OPERAND (expr, 0));
+
+ /* If the result type is a padded type with a self-referentially-sized
+ field and the expression type is a record, do this as an
+ unchecked converstion. */
+ else if (TREE_CODE (DECL_SIZE (TYPE_FIELDS (type))) != INTEGER_CST
+ && contains_placeholder_p (DECL_SIZE (TYPE_FIELDS (type)))
+ && TREE_CODE (etype) == RECORD_TYPE)
+ return unchecked_convert (type, expr);
+
+ else
+ return
+ build_constructor (type,
+ tree_cons (TYPE_FIELDS (type),
+ convert (TREE_TYPE
+ (TYPE_FIELDS (type)),
+ expr),
+ NULL_TREE));
+ }
+
+ /* If the input is a biased type, adjust first. */
+ if (ecode == INTEGER_TYPE && TYPE_BIASED_REPRESENTATION_P (etype))
+ return convert (type, fold (build (PLUS_EXPR, TREE_TYPE (etype),
+ fold (build1 (GNAT_NOP_EXPR,
+ TREE_TYPE (etype), expr)),
+ TYPE_MIN_VALUE (etype))));
+
+ /* If the input is a left-justified modular type, we need to extract
+ the actual object before converting it to any other type with the
+ exception of an unconstrained array. */
+ if (ecode == RECORD_TYPE && TYPE_LEFT_JUSTIFIED_MODULAR_P (etype)
+ && code != UNCONSTRAINED_ARRAY_TYPE)
+ return convert (type, build_component_ref (expr, NULL_TREE,
+ TYPE_FIELDS (etype)));
+
+ /* If converting a type that does not contain a template into one
+ that does, convert to the data type and then build the template. */
+ if (code == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (type)
+ && ! (ecode == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (etype)))
+ {
+ tree obj_type = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (type)));
+
+ return
+ build_constructor
+ (type,
+ tree_cons (TYPE_FIELDS (type),
+ build_template (TREE_TYPE (TYPE_FIELDS (type)),
+ obj_type, NULL_TREE),
+ tree_cons (TREE_CHAIN (TYPE_FIELDS (type)),
+ convert (obj_type, expr), NULL_TREE)));
+ }
+
+ /* There are some special cases of expressions that we process
+ specially. */
+ switch (TREE_CODE (expr))
+ {
+ case ERROR_MARK:
+ return expr;
+
+ case TRANSFORM_EXPR:
+ case NULL_EXPR:
+ /* Just set its type here. For TRANSFORM_EXPR, we will do the actual
+ conversion in gnat_expand_expr. NULL_EXPR does not represent
+ and actual value, so no conversion is needed. */
+ TREE_TYPE (expr) = type;
+ return expr;
+
+ case STRING_CST:
+ case CONSTRUCTOR:
+ /* If we are converting a STRING_CST to another constrained array type,
+ just make a new one in the proper type. Likewise for a
+ CONSTRUCTOR. But if the mode of the type is different, we must
+ ensure a new RTL is made for the constant. */
+ if (code == ecode && AGGREGATE_TYPE_P (etype)
+ && ! (TREE_CODE (TYPE_SIZE (etype)) == INTEGER_CST
+ && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST))
+ {
+ expr = copy_node (expr);
+ TREE_TYPE (expr) = type;
+
+ if (TYPE_MODE (type) != TYPE_MODE (etype))
+ TREE_CST_RTL (expr) = 0;
+
+ return expr;
+ }
+ break;
+
+ case COMPONENT_REF:
+ /* If we are converting between two aggregate types of the same
+ kind, size, mode, and alignment, just make a new COMPONENT_REF.
+ This avoid unneeded conversions which makes reference computations
+ more complex. */
+ if (code == ecode && TYPE_MODE (type) == TYPE_MODE (etype)
+ && AGGREGATE_TYPE_P (type) && AGGREGATE_TYPE_P (etype)
+ && TYPE_ALIGN (type) == TYPE_ALIGN (etype)
+ && operand_equal_p (TYPE_SIZE (type), TYPE_SIZE (etype), 0))
+ return build (COMPONENT_REF, type, TREE_OPERAND (expr, 0),
+ TREE_OPERAND (expr, 1));
+
+ break;
+
+ case UNCONSTRAINED_ARRAY_REF:
+ /* Convert this to the type of the inner array by getting the address of
+ the array from the template. */
+ expr = build_unary_op (INDIRECT_REF, NULL_TREE,
+ build_component_ref (TREE_OPERAND (expr, 0),
+ get_identifier ("P_ARRAY"),
+ NULL_TREE));
+ etype = TREE_TYPE (expr);
+ ecode = TREE_CODE (etype);
+ break;
+
+ case UNCHECKED_CONVERT_EXPR:
+ if (AGGREGATE_TYPE_P (type) && AGGREGATE_TYPE_P (etype)
+ && ! TYPE_FAT_POINTER_P (type) && ! TYPE_FAT_POINTER_P (etype))
+ return convert (type, TREE_OPERAND (expr, 0));
+ break;
+
+ case INDIRECT_REF:
+ /* If both types are record types, just convert the pointer and
+ make a new INDIRECT_REF.
+
+ ??? Disable this for now since it causes problems with the
+ code in build_binary_op for MODIFY_EXPR which wants to
+ strip off conversions. But that code really is a mess and
+ we need to do this a much better way some time. */
+ if (0
+ && (TREE_CODE (type) == RECORD_TYPE
+ || TREE_CODE (type) == UNION_TYPE)
+ && (TREE_CODE (etype) == RECORD_TYPE
+ || TREE_CODE (etype) == UNION_TYPE)
+ && ! TYPE_FAT_POINTER_P (type) && ! TYPE_FAT_POINTER_P (etype))
+ return build_unary_op (INDIRECT_REF, NULL_TREE,
+ convert (build_pointer_type (type),
+ TREE_OPERAND (expr, 0)));
+ break;
+
+ default:
+ break;
+ }
+
+ /* Check for converting to a pointer to an unconstrained array. */
+ if (TYPE_FAT_POINTER_P (type) && ! TYPE_FAT_POINTER_P (etype))
+ return convert_to_fat_pointer (type, expr);
+
+ if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (etype)
+ || (code == INTEGER_CST && ecode == INTEGER_CST
+ && (type == TREE_TYPE (etype) || etype == TREE_TYPE (type))))
+ return fold (build1 (NOP_EXPR, type, expr));
+
+ switch (code)
+ {
+ case VOID_TYPE:
+ return build1 (CONVERT_EXPR, type, expr);
+
+ case INTEGER_TYPE:
+ if (TYPE_HAS_ACTUAL_BOUNDS_P (type)
+ && (ecode == ARRAY_TYPE || ecode == UNCONSTRAINED_ARRAY_TYPE))
+ return unchecked_convert (type, expr);
+ else if (TYPE_BIASED_REPRESENTATION_P (type))
+ return fold (build1 (CONVERT_EXPR, type,
+ fold (build (MINUS_EXPR, TREE_TYPE (type),
+ convert (TREE_TYPE (type), expr),
+ TYPE_MIN_VALUE (type)))));
+
+ /* ... fall through ... */
+
+ case ENUMERAL_TYPE:
+ return fold (convert_to_integer (type, expr));
+
+ case POINTER_TYPE:
+ case REFERENCE_TYPE:
+ /* If converting between two pointers to records denoting
+ both a template and type, adjust if needed to account
+ for any differing offsets, since one might be negative. */
+ if (TYPE_THIN_POINTER_P (etype) && TYPE_THIN_POINTER_P (type))
+ {
+ tree bit_diff
+ = size_diffop (bit_position (TYPE_FIELDS (TREE_TYPE (etype))),
+ bit_position (TYPE_FIELDS (TREE_TYPE (type))));
+ tree byte_diff = size_binop (CEIL_DIV_EXPR, bit_diff,
+ sbitsize_int (BITS_PER_UNIT));
+
+ expr = build1 (NOP_EXPR, type, expr);
+ TREE_CONSTANT (expr) = TREE_CONSTANT (TREE_OPERAND (expr, 0));
+ if (integer_zerop (byte_diff))
+ return expr;
+
+ return build_binary_op (PLUS_EXPR, type, expr,
+ fold (convert_to_pointer (type, byte_diff)));
+ }
+
+ /* If converting to a thin pointer, handle specially. */
+ if (TYPE_THIN_POINTER_P (type)
+ && TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type)) != 0)
+ return convert_to_thin_pointer (type, expr);
+
+ /* If converting fat pointer to normal pointer, get the pointer to the
+ array and then convert it. */
+ else if (TYPE_FAT_POINTER_P (etype))
+ expr = build_component_ref (expr, get_identifier ("P_ARRAY"),
+ NULL_TREE);
+
+ return fold (convert_to_pointer (type, expr));
+
+ case REAL_TYPE:
+ return fold (convert_to_real (type, expr));
+
+ case RECORD_TYPE:
+ if (TYPE_LEFT_JUSTIFIED_MODULAR_P (type) && ! AGGREGATE_TYPE_P (etype))
+ return
+ build_constructor
+ (type, tree_cons (TYPE_FIELDS (type),
+ convert (TREE_TYPE (TYPE_FIELDS (type)), expr),
+ NULL_TREE));
+
+ /* ... fall through ... */
+
+ case ARRAY_TYPE:
+ /* In these cases, assume the front-end has validated the conversion.
+ If the conversion is valid, it will be a bit-wise conversion, so
+ it can be viewed as an unchecked conversion. */
+ return unchecked_convert (type, expr);
+
+ case UNION_TYPE:
+ /* Just validate that the type is indeed that of a field
+ of the type. Then make the simple conversion. */
+ for (tem = TYPE_FIELDS (type); tem; tem = TREE_CHAIN (tem))
+ if (TREE_TYPE (tem) == etype)
+ return build1 (CONVERT_EXPR, type, expr);
+
+ gigi_abort (413);
+
+ case UNCONSTRAINED_ARRAY_TYPE:
+ /* If EXPR is a constrained array, take its address, convert it to a
+ fat pointer, and then dereference it. Likewise if EXPR is a
+ record containing both a template and a constrained array.
+ Note that a record representing a left justified modular type
+ always represents a packed constrained array. */
+ if (ecode == ARRAY_TYPE
+ || (ecode == INTEGER_TYPE && TYPE_HAS_ACTUAL_BOUNDS_P (etype))
+ || (ecode == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (etype))
+ || (ecode == RECORD_TYPE && TYPE_LEFT_JUSTIFIED_MODULAR_P (etype)))
+ return
+ build_unary_op
+ (INDIRECT_REF, NULL_TREE,
+ convert_to_fat_pointer (TREE_TYPE (type),
+ build_unary_op (ADDR_EXPR,
+ NULL_TREE, expr)));
+
+ /* Do something very similar for converting one unconstrained
+ array to another. */
+ else if (ecode == UNCONSTRAINED_ARRAY_TYPE)
+ return
+ build_unary_op (INDIRECT_REF, NULL_TREE,
+ convert (TREE_TYPE (type),
+ build_unary_op (ADDR_EXPR,
+ NULL_TREE, expr)));
+ else
+ gigi_abort (409);
+
+ case COMPLEX_TYPE:
+ return fold (convert_to_complex (type, expr));
+
+ default:
+ gigi_abort (410);
+ }
+}
+
+/* Remove all conversions that are done in EXP. This includes converting
+ from a padded type or converting to a left-justified modular type. */
+
+tree
+remove_conversions (exp)
+ tree exp;
+{
+ switch (TREE_CODE (exp))
+ {
+ case CONSTRUCTOR:
+ if (TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE
+ && TYPE_LEFT_JUSTIFIED_MODULAR_P (TREE_TYPE (exp)))
+ return remove_conversions (TREE_VALUE (CONSTRUCTOR_ELTS (exp)));
+ break;
+
+ case COMPONENT_REF:
+ if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == RECORD_TYPE
+ && TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (exp, 0))))
+ return remove_conversions (TREE_OPERAND (exp, 0));
+ break;
+
+ case UNCHECKED_CONVERT_EXPR:
+ case NOP_EXPR: case CONVERT_EXPR:
+ return remove_conversions (TREE_OPERAND (exp, 0));
+
+ default:
+ break;
+ }
+
+ return exp;
+}
+
+/* If EXP's type is an UNCONSTRAINED_ARRAY_TYPE, return an expression that
+ refers to the underlying array. If its type has TYPE_CONTAINS_TEMPLATE_P,
+ likewise return an expression pointing to the underlying array. */
+
+tree
+maybe_unconstrained_array (exp)
+ tree exp;
+{
+ enum tree_code code = TREE_CODE (exp);
+ tree new;
+
+ switch (TREE_CODE (TREE_TYPE (exp)))
+ {
+ case UNCONSTRAINED_ARRAY_TYPE:
+ if (code == UNCONSTRAINED_ARRAY_REF)
+ {
+ new
+ = build_unary_op (INDIRECT_REF, NULL_TREE,
+ build_component_ref (TREE_OPERAND (exp, 0),
+ get_identifier ("P_ARRAY"),
+ NULL_TREE));
+ TREE_READONLY (new) = TREE_STATIC (new) = TREE_READONLY (exp);
+ return new;
+ }
+
+ else if (code == NULL_EXPR)
+ return build1 (NULL_EXPR,
+ TREE_TYPE (TREE_TYPE (TYPE_FIELDS
+ (TREE_TYPE (TREE_TYPE (exp))))),
+ TREE_OPERAND (exp, 0));
+
+ else if (code == WITH_RECORD_EXPR
+ && (TREE_OPERAND (exp, 0)
+ != (new = maybe_unconstrained_array
+ (TREE_OPERAND (exp, 0)))))
+ return build (WITH_RECORD_EXPR, TREE_TYPE (new), new,
+ TREE_OPERAND (exp, 1));
+
+ case RECORD_TYPE:
+ if (TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (exp)))
+ {
+ new
+ = build_component_ref (exp, NULL_TREE,
+ TREE_CHAIN (TYPE_FIELDS (TREE_TYPE (exp))));
+ if (TREE_CODE (TREE_TYPE (new)) == RECORD_TYPE
+ && TYPE_IS_PADDING_P (TREE_TYPE (new)))
+ new = convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (new))), new);
+
+ return new;
+ }
+ break;
+
+ default:
+ break;
+ }
+
+ return exp;
+}
+
+/* Return an expression that does an unchecked converstion of EXPR to TYPE. */
+
+tree
+unchecked_convert (type, expr)
+ tree type;
+ tree expr;
+{
+ tree etype = TREE_TYPE (expr);
+
+ /* If the expression is already the right type, we are done. */
+ if (etype == type)
+ return expr;
+
+ /* If EXPR is a WITH_RECORD_EXPR, do the conversion inside and then make a
+ new one. */
+ if (TREE_CODE (expr) == WITH_RECORD_EXPR)
+ return build (WITH_RECORD_EXPR, type,
+ unchecked_convert (type, TREE_OPERAND (expr, 0)),
+ TREE_OPERAND (expr, 1));
+
+ /* If both types types are integral just do a normal conversion.
+ Likewise for a conversion to an unconstrained array. */
+ if ((((INTEGRAL_TYPE_P (type)
+ && ! (TREE_CODE (type) == INTEGER_TYPE
+ && TYPE_VAX_FLOATING_POINT_P (type)))
+ || (POINTER_TYPE_P (type) && ! TYPE_THIN_POINTER_P (type))
+ || (TREE_CODE (type) == RECORD_TYPE
+ && TYPE_LEFT_JUSTIFIED_MODULAR_P (type)))
+ && ((INTEGRAL_TYPE_P (etype)
+ && ! (TREE_CODE (etype) == INTEGER_TYPE
+ && TYPE_VAX_FLOATING_POINT_P (etype)))
+ || (POINTER_TYPE_P (etype) && ! TYPE_THIN_POINTER_P (etype))
+ || (TREE_CODE (etype) == RECORD_TYPE
+ && TYPE_LEFT_JUSTIFIED_MODULAR_P (etype))))
+ || TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
+ {
+ tree rtype = type;
+
+ if (TREE_CODE (etype) == INTEGER_TYPE
+ && TYPE_BIASED_REPRESENTATION_P (etype))
+ {
+ tree ntype = copy_type (etype);
+
+ TYPE_BIASED_REPRESENTATION_P (ntype) = 0;
+ TYPE_MAIN_VARIANT (ntype) = ntype;
+ expr = build1 (GNAT_NOP_EXPR, ntype, expr);
+ }
+
+ if (TREE_CODE (type) == INTEGER_TYPE
+ && TYPE_BIASED_REPRESENTATION_P (type))
+ {
+ rtype = copy_type (type);
+ TYPE_BIASED_REPRESENTATION_P (rtype) = 0;
+ TYPE_MAIN_VARIANT (rtype) = rtype;
+ }
+
+ expr = convert (rtype, expr);
+ if (type != rtype)
+ expr = build1 (GNAT_NOP_EXPR, type, expr);
+ }
+
+ /* If we are converting TO an integral type whose precision is not the
+ same as its size, first unchecked convert to a record that contains
+ an object of the output type. Then extract the field. */
+ else if (INTEGRAL_TYPE_P (type) && TYPE_RM_SIZE (type) != 0
+ && 0 != compare_tree_int (TYPE_RM_SIZE (type),
+ GET_MODE_BITSIZE (TYPE_MODE (type))))
+ {
+ tree rec_type = make_node (RECORD_TYPE);
+ tree field = create_field_decl (get_identifier ("OBJ"), type,
+ rec_type, 1, 0, 0, 0);
+
+ TYPE_FIELDS (rec_type) = field;
+ layout_type (rec_type);
+
+ expr = unchecked_convert (rec_type, expr);
+ expr = build_component_ref (expr, NULL_TREE, field);
+ }
+
+ /* Similarly for integral input type whose precision is not equal to its
+ size. */
+ else if (INTEGRAL_TYPE_P (etype) && TYPE_RM_SIZE (etype) != 0
+ && 0 != compare_tree_int (TYPE_RM_SIZE (etype),
+ GET_MODE_BITSIZE (TYPE_MODE (etype))))
+ {
+ tree rec_type = make_node (RECORD_TYPE);
+ tree field
+ = create_field_decl (get_identifier ("OBJ"), etype, rec_type,
+ 1, 0, 0, 0);
+
+ TYPE_FIELDS (rec_type) = field;
+ layout_type (rec_type);
+
+ expr = build_constructor (rec_type, build_tree_list (field, expr));
+ expr = unchecked_convert (type, expr);
+ }
+
+ /* We have a special case when we are converting between two
+ unconstrained array types. In that case, take the address,
+ convert the fat pointer types, and dereference. */
+ else if (TREE_CODE (etype) == UNCONSTRAINED_ARRAY_TYPE
+ && TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
+ expr = build_unary_op (INDIRECT_REF, NULL_TREE,
+ build1 (UNCHECKED_CONVERT_EXPR, TREE_TYPE (type),
+ build_unary_op (ADDR_EXPR, NULL_TREE,
+ expr)));
+
+ /* If both types are aggregates with the same mode and alignment (except
+ if the result is a UNION_TYPE), we can do this as a normal conversion. */
+ else if (AGGREGATE_TYPE_P (type) && AGGREGATE_TYPE_P (etype)
+ && TREE_CODE (type) != UNION_TYPE
+ && TYPE_ALIGN (type) == TYPE_ALIGN (etype)
+ && TYPE_MODE (type) == TYPE_MODE (etype))
+ expr = build1 (CONVERT_EXPR, type, expr);
+
+ else
+ {
+ expr = maybe_unconstrained_array (expr);
+ etype = TREE_TYPE (expr);
+ expr = build1 (UNCHECKED_CONVERT_EXPR, type, expr);
+ }
+
+
+ /* If the result is an integral type whose size is not equal to
+ the size of the underlying machine type, sign- or zero-extend
+ the result. We need not do this in the case where the input is
+ an integral type of the same precision and signedness or if the output
+ is a biased type or if both the input and output are unsigned. */
+ if (INTEGRAL_TYPE_P (type) && TYPE_RM_SIZE (type) != 0
+ && ! (TREE_CODE (type) == INTEGER_TYPE
+ && TYPE_BIASED_REPRESENTATION_P (type))
+ && 0 != compare_tree_int (TYPE_RM_SIZE (type),
+ GET_MODE_BITSIZE (TYPE_MODE (type)))
+ && ! (INTEGRAL_TYPE_P (etype)
+ && TREE_UNSIGNED (type) == TREE_UNSIGNED (etype)
+ && operand_equal_p (TYPE_RM_SIZE (type),
+ (TYPE_RM_SIZE (etype) != 0
+ ? TYPE_RM_SIZE (etype) : TYPE_SIZE (etype)),
+ 0))
+ && ! (TREE_UNSIGNED (type) && TREE_UNSIGNED (etype)))
+ {
+ tree base_type = type_for_mode (TYPE_MODE (type), TREE_UNSIGNED (type));
+ tree shift_expr
+ = convert (base_type,
+ size_binop (MINUS_EXPR,
+ bitsize_int
+ (GET_MODE_BITSIZE (TYPE_MODE (type))),
+ TYPE_RM_SIZE (type)));
+ expr
+ = convert (type,
+ build_binary_op (RSHIFT_EXPR, base_type,
+ build_binary_op (LSHIFT_EXPR, base_type,
+ convert (base_type, expr),
+ shift_expr),
+ shift_expr));
+ }
+
+ /* An unchecked conversion should never raise Constraint_Error. The code
+ below assumes that GCC's conversion routines overflow the same
+ way that the underlying hardware does. This is probably true. In
+ the rare case when it isn't, we can rely on the fact that such
+ conversions are erroneous anyway. */
+ if (TREE_CODE (expr) == INTEGER_CST)
+ TREE_OVERFLOW (expr) = TREE_CONSTANT_OVERFLOW (expr) = 0;
+
+ /* If the sizes of the types differ and this is an UNCHECKED_CONVERT_EXPR,
+ show no longer constant. */
+ if (TREE_CODE (expr) == UNCHECKED_CONVERT_EXPR
+ && ! operand_equal_p (TYPE_SIZE_UNIT (type), TYPE_SIZE_UNIT (etype), 1))
+ TREE_CONSTANT (expr) = 0;
+
+ return expr;
+}