aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/gcc-interface/utils.cc
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/ada/gcc-interface/utils.cc')
-rw-r--r--gcc/ada/gcc-interface/utils.cc7156
1 files changed, 7156 insertions, 0 deletions
diff --git a/gcc/ada/gcc-interface/utils.cc b/gcc/ada/gcc-interface/utils.cc
new file mode 100644
index 0000000..d5dd04a
--- /dev/null
+++ b/gcc/ada/gcc-interface/utils.cc
@@ -0,0 +1,7156 @@
+/****************************************************************************
+ * *
+ * GNAT COMPILER COMPONENTS *
+ * *
+ * U T I L S *
+ * *
+ * C Implementation File *
+ * *
+ * Copyright (C) 1992-2021, Free Software Foundation, Inc. *
+ * *
+ * GNAT is free software; you can redistribute it and/or modify it under *
+ * terms of the GNU General Public License as published by the Free Soft- *
+ * ware Foundation; either version 3, or (at your option) any later ver- *
+ * sion. GNAT is distributed in the hope that it will be useful, but WITH- *
+ * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
+ * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
+ * for more details. You should have received a copy of the GNU General *
+ * Public License along with GCC; see the file COPYING3. If not see *
+ * <http://www.gnu.org/licenses/>. *
+ * *
+ * GNAT was originally developed by the GNAT team at New York University. *
+ * Extensive contributions were provided by Ada Core Technologies Inc. *
+ * *
+ ****************************************************************************/
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "target.h"
+#include "function.h"
+#include "tree.h"
+#include "stringpool.h"
+#include "cgraph.h"
+#include "diagnostic.h"
+#include "alias.h"
+#include "fold-const.h"
+#include "stor-layout.h"
+#include "attribs.h"
+#include "varasm.h"
+#include "toplev.h"
+#include "opts.h"
+#include "output.h"
+#include "debug.h"
+#include "convert.h"
+#include "common/common-target.h"
+#include "langhooks.h"
+#include "tree-dump.h"
+#include "tree-inline.h"
+
+#include "ada.h"
+#include "types.h"
+#include "atree.h"
+#include "nlists.h"
+#include "snames.h"
+#include "uintp.h"
+#include "fe.h"
+#include "sinfo.h"
+#include "einfo.h"
+#include "ada-tree.h"
+#include "gigi.h"
+
+/* If nonzero, pretend we are allocating at global level. */
+int force_global;
+
+/* The default alignment of "double" floating-point types, i.e. floating
+ point types whose size is equal to 64 bits, or 0 if this alignment is
+ not specifically capped. */
+int double_float_alignment;
+
+/* The default alignment of "double" or larger scalar types, i.e. scalar
+ types whose size is greater or equal to 64 bits, or 0 if this alignment
+ is not specifically capped. */
+int double_scalar_alignment;
+
+/* True if floating-point arithmetics may use wider intermediate results. */
+bool fp_arith_may_widen = true;
+
+/* Tree nodes for the various types and decls we create. */
+tree gnat_std_decls[(int) ADT_LAST];
+
+/* Functions to call for each of the possible raise reasons. */
+tree gnat_raise_decls[(int) LAST_REASON_CODE + 1];
+
+/* Likewise, but with extra info for each of the possible raise reasons. */
+tree gnat_raise_decls_ext[(int) LAST_REASON_CODE + 1];
+
+/* Forward declarations for handlers of attributes. */
+static tree handle_const_attribute (tree *, tree, tree, int, bool *);
+static tree handle_nothrow_attribute (tree *, tree, tree, int, bool *);
+static tree handle_pure_attribute (tree *, tree, tree, int, bool *);
+static tree handle_novops_attribute (tree *, tree, tree, int, bool *);
+static tree handle_nonnull_attribute (tree *, tree, tree, int, bool *);
+static tree handle_sentinel_attribute (tree *, tree, tree, int, bool *);
+static tree handle_noreturn_attribute (tree *, tree, tree, int, bool *);
+static tree handle_stack_protect_attribute (tree *, tree, tree, int, bool *);
+static tree handle_no_stack_protector_attribute (tree *, tree, tree, int, bool *);
+static tree handle_strub_attribute (tree *, tree, tree, int, bool *);
+static tree handle_noinline_attribute (tree *, tree, tree, int, bool *);
+static tree handle_noclone_attribute (tree *, tree, tree, int, bool *);
+static tree handle_noicf_attribute (tree *, tree, tree, int, bool *);
+static tree handle_noipa_attribute (tree *, tree, tree, int, bool *);
+static tree handle_leaf_attribute (tree *, tree, tree, int, bool *);
+static tree handle_always_inline_attribute (tree *, tree, tree, int, bool *);
+static tree handle_malloc_attribute (tree *, tree, tree, int, bool *);
+static tree handle_type_generic_attribute (tree *, tree, tree, int, bool *);
+static tree handle_flatten_attribute (tree *, tree, tree, int, bool *);
+static tree handle_used_attribute (tree *, tree, tree, int, bool *);
+static tree handle_cold_attribute (tree *, tree, tree, int, bool *);
+static tree handle_hot_attribute (tree *, tree, tree, int, bool *);
+static tree handle_target_attribute (tree *, tree, tree, int, bool *);
+static tree handle_target_clones_attribute (tree *, tree, tree, int, bool *);
+static tree handle_vector_size_attribute (tree *, tree, tree, int, bool *);
+static tree handle_vector_type_attribute (tree *, tree, tree, int, bool *);
+static tree handle_zero_call_used_regs_attribute (tree *, tree, tree, int,
+ bool *);
+
+static const struct attribute_spec::exclusions attr_cold_hot_exclusions[] =
+{
+ { "cold", true, true, true },
+ { "hot" , true, true, true },
+ { NULL , false, false, false }
+};
+
+static const struct attribute_spec::exclusions attr_stack_protect_exclusions[] =
+{
+ { "stack_protect", true, false, false },
+ { "no_stack_protector", true, false, false },
+ { NULL, false, false, false },
+};
+
+/* Fake handler for attributes we don't properly support, typically because
+ they'd require dragging a lot of the common-c front-end circuitry. */
+static tree fake_attribute_handler (tree *, tree, tree, int, bool *);
+
+/* Table of machine-independent internal attributes for Ada. We support
+ this minimal set of attributes to accommodate the needs of builtins. */
+const struct attribute_spec gnat_internal_attribute_table[] =
+{
+ /* { name, min_len, max_len, decl_req, type_req, fn_type_req,
+ affects_type_identity, handler, exclude } */
+ { "const", 0, 0, true, false, false, false,
+ handle_const_attribute, NULL },
+ { "nothrow", 0, 0, true, false, false, false,
+ handle_nothrow_attribute, NULL },
+ { "pure", 0, 0, true, false, false, false,
+ handle_pure_attribute, NULL },
+ { "no vops", 0, 0, true, false, false, false,
+ handle_novops_attribute, NULL },
+ { "nonnull", 0, -1, false, true, true, false,
+ handle_nonnull_attribute, NULL },
+ { "sentinel", 0, 1, false, true, true, false,
+ handle_sentinel_attribute, NULL },
+ { "noreturn", 0, 0, true, false, false, false,
+ handle_noreturn_attribute, NULL },
+ { "stack_protect",0, 0, true, false, false, false,
+ handle_stack_protect_attribute,
+ attr_stack_protect_exclusions },
+ { "no_stack_protector",0, 0, true, false, false, false,
+ handle_no_stack_protector_attribute,
+ attr_stack_protect_exclusions },
+ { "strub", 0, 1, false, true, false, true,
+ handle_strub_attribute, NULL },
+ { "noinline", 0, 0, true, false, false, false,
+ handle_noinline_attribute, NULL },
+ { "noclone", 0, 0, true, false, false, false,
+ handle_noclone_attribute, NULL },
+ { "no_icf", 0, 0, true, false, false, false,
+ handle_noicf_attribute, NULL },
+ { "noipa", 0, 0, true, false, false, false,
+ handle_noipa_attribute, NULL },
+ { "leaf", 0, 0, true, false, false, false,
+ handle_leaf_attribute, NULL },
+ { "always_inline",0, 0, true, false, false, false,
+ handle_always_inline_attribute, NULL },
+ { "malloc", 0, 0, true, false, false, false,
+ handle_malloc_attribute, NULL },
+ { "type generic", 0, 0, false, true, true, false,
+ handle_type_generic_attribute, NULL },
+
+ { "flatten", 0, 0, true, false, false, false,
+ handle_flatten_attribute, NULL },
+ { "used", 0, 0, true, false, false, false,
+ handle_used_attribute, NULL },
+ { "cold", 0, 0, true, false, false, false,
+ handle_cold_attribute, attr_cold_hot_exclusions },
+ { "hot", 0, 0, true, false, false, false,
+ handle_hot_attribute, attr_cold_hot_exclusions },
+ { "target", 1, -1, true, false, false, false,
+ handle_target_attribute, NULL },
+ { "target_clones",1, -1, true, false, false, false,
+ handle_target_clones_attribute, NULL },
+
+ { "vector_size", 1, 1, false, true, false, false,
+ handle_vector_size_attribute, NULL },
+ { "vector_type", 0, 0, false, true, false, false,
+ handle_vector_type_attribute, NULL },
+ { "may_alias", 0, 0, false, true, false, false,
+ NULL, NULL },
+
+ { "zero_call_used_regs", 1, 1, true, false, false, false,
+ handle_zero_call_used_regs_attribute, NULL },
+
+ /* ??? format and format_arg are heavy and not supported, which actually
+ prevents support for stdio builtins, which we however declare as part
+ of the common builtins.def contents. */
+ { "format", 3, 3, false, true, true, false,
+ fake_attribute_handler, NULL },
+ { "format_arg", 1, 1, false, true, true, false,
+ fake_attribute_handler, NULL },
+
+ { NULL, 0, 0, false, false, false, false,
+ NULL, NULL }
+};
+
+/* Associates a GNAT tree node to a GCC tree node. It is used in
+ `save_gnu_tree', `get_gnu_tree' and `present_gnu_tree'. See documentation
+ of `save_gnu_tree' for more info. */
+static GTY((length ("max_gnat_nodes"))) tree *associate_gnat_to_gnu;
+
+#define GET_GNU_TREE(GNAT_ENTITY) \
+ associate_gnat_to_gnu[(GNAT_ENTITY) - First_Node_Id]
+
+#define SET_GNU_TREE(GNAT_ENTITY,VAL) \
+ associate_gnat_to_gnu[(GNAT_ENTITY) - First_Node_Id] = (VAL)
+
+#define PRESENT_GNU_TREE(GNAT_ENTITY) \
+ (associate_gnat_to_gnu[(GNAT_ENTITY) - First_Node_Id] != NULL_TREE)
+
+/* Associates a GNAT entity to a GCC tree node used as a dummy, if any. */
+static GTY((length ("max_gnat_nodes"))) tree *dummy_node_table;
+
+#define GET_DUMMY_NODE(GNAT_ENTITY) \
+ dummy_node_table[(GNAT_ENTITY) - First_Node_Id]
+
+#define SET_DUMMY_NODE(GNAT_ENTITY,VAL) \
+ dummy_node_table[(GNAT_ENTITY) - First_Node_Id] = (VAL)
+
+#define PRESENT_DUMMY_NODE(GNAT_ENTITY) \
+ (dummy_node_table[(GNAT_ENTITY) - First_Node_Id] != NULL_TREE)
+
+/* This variable keeps a table for types for each precision so that we only
+ allocate each of them once. Signed and unsigned types are kept separate.
+
+ Note that these types are only used when fold-const requests something
+ special. Perhaps we should NOT share these types; we'll see how it
+ goes later. */
+static GTY(()) tree signed_and_unsigned_types[2 * MAX_BITS_PER_WORD + 1][2];
+
+/* Likewise for float types, but record these by mode. */
+static GTY(()) tree float_types[NUM_MACHINE_MODES];
+
+/* For each binding contour we allocate a binding_level structure to indicate
+ the binding depth. */
+
+struct GTY((chain_next ("%h.chain"))) gnat_binding_level {
+ /* The binding level containing this one (the enclosing binding level). */
+ struct gnat_binding_level *chain;
+ /* The BLOCK node for this level. */
+ tree block;
+ /* If nonzero, the setjmp buffer that needs to be updated for any
+ variable-sized definition within this context. */
+ tree jmpbuf_decl;
+};
+
+/* The binding level currently in effect. */
+static GTY(()) struct gnat_binding_level *current_binding_level;
+
+/* A chain of gnat_binding_level structures awaiting reuse. */
+static GTY((deletable)) struct gnat_binding_level *free_binding_level;
+
+/* The context to be used for global declarations. */
+static GTY(()) tree global_context;
+
+/* An array of global declarations. */
+static GTY(()) vec<tree, va_gc> *global_decls;
+
+/* An array of builtin function declarations. */
+static GTY(()) vec<tree, va_gc> *builtin_decls;
+
+/* A chain of unused BLOCK nodes. */
+static GTY((deletable)) tree free_block_chain;
+
+/* A hash table of packable types. It is modelled on the generic type
+ hash table in tree.c, which must thus be used as a reference. */
+
+struct GTY((for_user)) packable_type_hash
+{
+ hashval_t hash;
+ tree type;
+};
+
+struct packable_type_hasher : ggc_cache_ptr_hash<packable_type_hash>
+{
+ static inline hashval_t hash (packable_type_hash *t) { return t->hash; }
+ static bool equal (packable_type_hash *a, packable_type_hash *b);
+
+ static int
+ keep_cache_entry (packable_type_hash *&t)
+ {
+ return ggc_marked_p (t->type);
+ }
+};
+
+static GTY ((cache)) hash_table<packable_type_hasher> *packable_type_hash_table;
+
+/* A hash table of padded types. It is modelled on the generic type
+ hash table in tree.c, which must thus be used as a reference. */
+
+struct GTY((for_user)) pad_type_hash
+{
+ hashval_t hash;
+ tree type;
+};
+
+struct pad_type_hasher : ggc_cache_ptr_hash<pad_type_hash>
+{
+ static inline hashval_t hash (pad_type_hash *t) { return t->hash; }
+ static bool equal (pad_type_hash *a, pad_type_hash *b);
+
+ static int
+ keep_cache_entry (pad_type_hash *&t)
+ {
+ return ggc_marked_p (t->type);
+ }
+};
+
+static GTY ((cache)) hash_table<pad_type_hasher> *pad_type_hash_table;
+
+static tree merge_sizes (tree, tree, tree, bool, bool);
+static tree fold_bit_position (const_tree);
+static tree compute_related_constant (tree, tree);
+static tree split_plus (tree, tree *);
+static tree float_type_for_precision (int, machine_mode);
+static tree convert_to_fat_pointer (tree, tree);
+static unsigned int scale_by_factor_of (tree, unsigned int);
+
+/* Linked list used as a queue to defer the initialization of the DECL_CONTEXT
+ of ..._DECL nodes and of the TYPE_CONTEXT of ..._TYPE nodes. */
+struct deferred_decl_context_node
+{
+ /* The ..._DECL node to work on. */
+ tree decl;
+
+ /* The corresponding entity's Scope. */
+ Entity_Id gnat_scope;
+
+ /* The value of force_global when DECL was pushed. */
+ int force_global;
+
+ /* The list of ..._TYPE nodes to propagate the context to. */
+ vec<tree> types;
+
+ /* The next queue item. */
+ struct deferred_decl_context_node *next;
+};
+
+static struct deferred_decl_context_node *deferred_decl_context_queue = NULL;
+
+/* Defer the initialization of DECL's DECL_CONTEXT attribute, scheduling to
+ feed it with the elaboration of GNAT_SCOPE. */
+static struct deferred_decl_context_node *
+add_deferred_decl_context (tree decl, Entity_Id gnat_scope, int force_global);
+
+/* Defer the initialization of TYPE's TYPE_CONTEXT attribute, scheduling to
+ feed it with the DECL_CONTEXT computed as part of N as soon as it is
+ computed. */
+static void add_deferred_type_context (struct deferred_decl_context_node *n,
+ tree type);
+
+/* Initialize data structures of the utils.c module. */
+
+void
+init_gnat_utils (void)
+{
+ /* Initialize the association of GNAT nodes to GCC trees. */
+ associate_gnat_to_gnu = ggc_cleared_vec_alloc<tree> (max_gnat_nodes);
+
+ /* Initialize the association of GNAT nodes to GCC trees as dummies. */
+ dummy_node_table = ggc_cleared_vec_alloc<tree> (max_gnat_nodes);
+
+ /* Initialize the hash table of packable types. */
+ packable_type_hash_table = hash_table<packable_type_hasher>::create_ggc (512);
+
+ /* Initialize the hash table of padded types. */
+ pad_type_hash_table = hash_table<pad_type_hasher>::create_ggc (512);
+}
+
+/* Destroy data structures of the utils.c module. */
+
+void
+destroy_gnat_utils (void)
+{
+ /* Destroy the association of GNAT nodes to GCC trees. */
+ ggc_free (associate_gnat_to_gnu);
+ associate_gnat_to_gnu = NULL;
+
+ /* Destroy the association of GNAT nodes to GCC trees as dummies. */
+ ggc_free (dummy_node_table);
+ dummy_node_table = NULL;
+
+ /* Destroy the hash table of packable types. */
+ packable_type_hash_table->empty ();
+ packable_type_hash_table = NULL;
+
+ /* Destroy the hash table of padded types. */
+ pad_type_hash_table->empty ();
+ pad_type_hash_table = NULL;
+}
+
+/* GNAT_ENTITY is a GNAT tree node for an entity. Associate GNU_DECL, a GCC
+ tree node, with GNAT_ENTITY. If GNU_DECL is not a ..._DECL node, abort.
+ If NO_CHECK is true, the latter check is suppressed.
+
+ If GNU_DECL is zero, reset a previous association. */
+
+void
+save_gnu_tree (Entity_Id gnat_entity, tree gnu_decl, bool no_check)
+{
+ /* Check that GNAT_ENTITY is not already defined and that it is being set
+ to something which is a decl. If that is not the case, this usually
+ means GNAT_ENTITY is defined twice, but occasionally is due to some
+ Gigi problem. */
+ gcc_assert (!(gnu_decl
+ && (PRESENT_GNU_TREE (gnat_entity)
+ || (!no_check && !DECL_P (gnu_decl)))));
+
+ SET_GNU_TREE (gnat_entity, gnu_decl);
+}
+
+/* GNAT_ENTITY is a GNAT tree node for an entity. Return the GCC tree node
+ that was associated with it. If there is no such tree node, abort.
+
+ In some cases, such as delayed elaboration or expressions that need to
+ be elaborated only once, GNAT_ENTITY is really not an entity. */
+
+tree
+get_gnu_tree (Entity_Id gnat_entity)
+{
+ gcc_assert (PRESENT_GNU_TREE (gnat_entity));
+ return GET_GNU_TREE (gnat_entity);
+}
+
+/* Return nonzero if a GCC tree has been associated with GNAT_ENTITY. */
+
+bool
+present_gnu_tree (Entity_Id gnat_entity)
+{
+ return PRESENT_GNU_TREE (gnat_entity);
+}
+
+/* Make a dummy type corresponding to GNAT_TYPE. */
+
+tree
+make_dummy_type (Entity_Id gnat_type)
+{
+ Entity_Id gnat_equiv = Gigi_Equivalent_Type (Underlying_Type (gnat_type));
+ tree gnu_type, debug_type;
+
+ /* If there was no equivalent type (can only happen when just annotating
+ types) or underlying type, go back to the original type. */
+ if (No (gnat_equiv))
+ gnat_equiv = gnat_type;
+
+ /* If it there already a dummy type, use that one. Else make one. */
+ if (PRESENT_DUMMY_NODE (gnat_equiv))
+ return GET_DUMMY_NODE (gnat_equiv);
+
+ /* If this is a record, make a RECORD_TYPE or UNION_TYPE; else make
+ an ENUMERAL_TYPE. */
+ gnu_type = make_node (Is_Record_Type (gnat_equiv)
+ ? tree_code_for_record_type (gnat_equiv)
+ : ENUMERAL_TYPE);
+ TYPE_NAME (gnu_type) = get_entity_name (gnat_type);
+ TYPE_DUMMY_P (gnu_type) = 1;
+ TYPE_STUB_DECL (gnu_type)
+ = create_type_stub_decl (TYPE_NAME (gnu_type), gnu_type);
+ if (Is_By_Reference_Type (gnat_equiv))
+ TYPE_BY_REFERENCE_P (gnu_type) = 1;
+ if (Has_Discriminants (gnat_equiv))
+ decl_attributes (&gnu_type,
+ tree_cons (get_identifier ("may_alias"), NULL_TREE,
+ NULL_TREE),
+ ATTR_FLAG_TYPE_IN_PLACE);
+
+ SET_DUMMY_NODE (gnat_equiv, gnu_type);
+
+ /* Create a debug type so that debuggers only see an unspecified type. */
+ if (Needs_Debug_Info (gnat_type))
+ {
+ debug_type = make_node (LANG_TYPE);
+ TYPE_NAME (debug_type) = TYPE_NAME (gnu_type);
+ TYPE_ARTIFICIAL (debug_type) = TYPE_ARTIFICIAL (gnu_type);
+ SET_TYPE_DEBUG_TYPE (gnu_type, debug_type);
+ }
+
+ return gnu_type;
+}
+
+/* Return the dummy type that was made for GNAT_TYPE, if any. */
+
+tree
+get_dummy_type (Entity_Id gnat_type)
+{
+ return GET_DUMMY_NODE (gnat_type);
+}
+
+/* Build dummy fat and thin pointer types whose designated type is specified
+ by GNAT_DESIG_TYPE/GNU_DESIG_TYPE and attach them to the latter. */
+
+void
+build_dummy_unc_pointer_types (Entity_Id gnat_desig_type, tree gnu_desig_type)
+{
+ tree gnu_template_type, gnu_ptr_template, gnu_array_type, gnu_ptr_array;
+ tree gnu_fat_type, fields, gnu_object_type;
+
+ gnu_template_type = make_node (RECORD_TYPE);
+ TYPE_NAME (gnu_template_type) = create_concat_name (gnat_desig_type, "XUB");
+ TYPE_DUMMY_P (gnu_template_type) = 1;
+ gnu_ptr_template = build_pointer_type (gnu_template_type);
+
+ gnu_array_type = make_node (ENUMERAL_TYPE);
+ TYPE_NAME (gnu_array_type) = create_concat_name (gnat_desig_type, "XUA");
+ TYPE_DUMMY_P (gnu_array_type) = 1;
+ gnu_ptr_array = build_pointer_type (gnu_array_type);
+
+ gnu_fat_type = make_node (RECORD_TYPE);
+ /* Build a stub DECL to trigger the special processing for fat pointer types
+ in gnat_pushdecl. */
+ TYPE_NAME (gnu_fat_type)
+ = create_type_stub_decl (create_concat_name (gnat_desig_type, "XUP"),
+ gnu_fat_type);
+ fields = create_field_decl (get_identifier ("P_ARRAY"), gnu_ptr_array,
+ gnu_fat_type, NULL_TREE, NULL_TREE, 0, 1);
+ DECL_CHAIN (fields)
+ = create_field_decl (get_identifier ("P_BOUNDS"), gnu_ptr_template,
+ gnu_fat_type, NULL_TREE, NULL_TREE, 0, 1);
+ finish_fat_pointer_type (gnu_fat_type, fields);
+ SET_TYPE_UNCONSTRAINED_ARRAY (gnu_fat_type, gnu_desig_type);
+ /* Suppress debug info until after the type is completed. */
+ TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (gnu_fat_type)) = 1;
+
+ gnu_object_type = make_node (RECORD_TYPE);
+ TYPE_NAME (gnu_object_type) = create_concat_name (gnat_desig_type, "XUT");
+ TYPE_DUMMY_P (gnu_object_type) = 1;
+
+ TYPE_POINTER_TO (gnu_desig_type) = gnu_fat_type;
+ TYPE_REFERENCE_TO (gnu_desig_type) = gnu_fat_type;
+ TYPE_OBJECT_RECORD_TYPE (gnu_desig_type) = gnu_object_type;
+}
+
+/* Return true if we are in the global binding level. */
+
+bool
+global_bindings_p (void)
+{
+ return force_global || !current_function_decl;
+}
+
+/* Enter a new binding level. */
+
+void
+gnat_pushlevel (void)
+{
+ struct gnat_binding_level *newlevel = NULL;
+
+ /* Reuse a struct for this binding level, if there is one. */
+ if (free_binding_level)
+ {
+ newlevel = free_binding_level;
+ free_binding_level = free_binding_level->chain;
+ }
+ else
+ newlevel = ggc_alloc<gnat_binding_level> ();
+
+ /* Use a free BLOCK, if any; otherwise, allocate one. */
+ if (free_block_chain)
+ {
+ newlevel->block = free_block_chain;
+ free_block_chain = BLOCK_CHAIN (free_block_chain);
+ BLOCK_CHAIN (newlevel->block) = NULL_TREE;
+ }
+ else
+ newlevel->block = make_node (BLOCK);
+
+ /* Point the BLOCK we just made to its parent. */
+ if (current_binding_level)
+ BLOCK_SUPERCONTEXT (newlevel->block) = current_binding_level->block;
+
+ BLOCK_VARS (newlevel->block) = NULL_TREE;
+ BLOCK_SUBBLOCKS (newlevel->block) = NULL_TREE;
+ TREE_USED (newlevel->block) = 1;
+
+ /* Add this level to the front of the chain (stack) of active levels. */
+ newlevel->chain = current_binding_level;
+ newlevel->jmpbuf_decl = NULL_TREE;
+ current_binding_level = newlevel;
+}
+
+/* Set SUPERCONTEXT of the BLOCK for the current binding level to FNDECL
+ and point FNDECL to this BLOCK. */
+
+void
+set_current_block_context (tree fndecl)
+{
+ BLOCK_SUPERCONTEXT (current_binding_level->block) = fndecl;
+ DECL_INITIAL (fndecl) = current_binding_level->block;
+ set_block_for_group (current_binding_level->block);
+}
+
+/* Set the jmpbuf_decl for the current binding level to DECL. */
+
+void
+set_block_jmpbuf_decl (tree decl)
+{
+ current_binding_level->jmpbuf_decl = decl;
+}
+
+/* Get the jmpbuf_decl, if any, for the current binding level. */
+
+tree
+get_block_jmpbuf_decl (void)
+{
+ return current_binding_level->jmpbuf_decl;
+}
+
+/* Exit a binding level. Set any BLOCK into the current code group. */
+
+void
+gnat_poplevel (void)
+{
+ struct gnat_binding_level *level = current_binding_level;
+ tree block = level->block;
+
+ BLOCK_VARS (block) = nreverse (BLOCK_VARS (block));
+ BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
+
+ /* If this is a function-level BLOCK don't do anything. Otherwise, if there
+ are no variables free the block and merge its subblocks into those of its
+ parent block. Otherwise, add it to the list of its parent. */
+ if (TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL)
+ ;
+ else if (!BLOCK_VARS (block))
+ {
+ BLOCK_SUBBLOCKS (level->chain->block)
+ = block_chainon (BLOCK_SUBBLOCKS (block),
+ BLOCK_SUBBLOCKS (level->chain->block));
+ BLOCK_CHAIN (block) = free_block_chain;
+ free_block_chain = block;
+ }
+ else
+ {
+ BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (level->chain->block);
+ BLOCK_SUBBLOCKS (level->chain->block) = block;
+ TREE_USED (block) = 1;
+ set_block_for_group (block);
+ }
+
+ /* Free this binding structure. */
+ current_binding_level = level->chain;
+ level->chain = free_binding_level;
+ free_binding_level = level;
+}
+
+/* Exit a binding level and discard the associated BLOCK. */
+
+void
+gnat_zaplevel (void)
+{
+ struct gnat_binding_level *level = current_binding_level;
+ tree block = level->block;
+
+ BLOCK_CHAIN (block) = free_block_chain;
+ free_block_chain = block;
+
+ /* Free this binding structure. */
+ current_binding_level = level->chain;
+ level->chain = free_binding_level;
+ free_binding_level = level;
+}
+
+/* Set the context of TYPE and its parallel types (if any) to CONTEXT. */
+
+static void
+gnat_set_type_context (tree type, tree context)
+{
+ tree decl = TYPE_STUB_DECL (type);
+
+ TYPE_CONTEXT (type) = context;
+
+ while (decl && DECL_PARALLEL_TYPE (decl))
+ {
+ tree parallel_type = DECL_PARALLEL_TYPE (decl);
+
+ /* Give a context to the parallel types and their stub decl, if any.
+ Some parallel types seems to be present in multiple parallel type
+ chains, so don't mess with their context if they already have one. */
+ if (!TYPE_CONTEXT (parallel_type))
+ {
+ if (TYPE_STUB_DECL (parallel_type))
+ DECL_CONTEXT (TYPE_STUB_DECL (parallel_type)) = context;
+ TYPE_CONTEXT (parallel_type) = context;
+ }
+
+ decl = TYPE_STUB_DECL (DECL_PARALLEL_TYPE (decl));
+ }
+}
+
+/* Return the innermost scope, starting at GNAT_NODE, we are be interested in
+ the debug info, or Empty if there is no such scope. If not NULL, set
+ IS_SUBPROGRAM to whether the returned entity is a subprogram. */
+
+Entity_Id
+get_debug_scope (Node_Id gnat_node, bool *is_subprogram)
+{
+ Entity_Id gnat_entity;
+
+ if (is_subprogram)
+ *is_subprogram = false;
+
+ if (Nkind (gnat_node) == N_Defining_Identifier
+ || Nkind (gnat_node) == N_Defining_Operator_Symbol)
+ gnat_entity = Scope (gnat_node);
+ else
+ return Empty;
+
+ while (Present (gnat_entity))
+ {
+ switch (Ekind (gnat_entity))
+ {
+ case E_Function:
+ case E_Procedure:
+ if (Present (Protected_Body_Subprogram (gnat_entity)))
+ gnat_entity = Protected_Body_Subprogram (gnat_entity);
+
+ /* If the scope is a subprogram, then just rely on
+ current_function_decl, so that we don't have to defer
+ anything. This is needed because other places rely on the
+ validity of the DECL_CONTEXT attribute of FUNCTION_DECL nodes. */
+ if (is_subprogram)
+ *is_subprogram = true;
+ return gnat_entity;
+
+ case E_Record_Type:
+ case E_Record_Subtype:
+ return gnat_entity;
+
+ default:
+ /* By default, we are not interested in this particular scope: go to
+ the outer one. */
+ break;
+ }
+
+ gnat_entity = Scope (gnat_entity);
+ }
+
+ return Empty;
+}
+
+/* If N is NULL, set TYPE's context to CONTEXT. Defer this to the processing
+ of N otherwise. */
+
+static void
+defer_or_set_type_context (tree type, tree context,
+ struct deferred_decl_context_node *n)
+{
+ if (n)
+ add_deferred_type_context (n, type);
+ else
+ gnat_set_type_context (type, context);
+}
+
+/* Return global_context, but create it first if need be. */
+
+static tree
+get_global_context (void)
+{
+ if (!global_context)
+ {
+ global_context
+ = build_translation_unit_decl (get_identifier (main_input_filename));
+ debug_hooks->register_main_translation_unit (global_context);
+ }
+
+ return global_context;
+}
+
+/* Record DECL as belonging to the current lexical scope and use GNAT_NODE
+ for location information and flag propagation. */
+
+void
+gnat_pushdecl (tree decl, Node_Id gnat_node)
+{
+ tree context = NULL_TREE;
+ struct deferred_decl_context_node *deferred_decl_context = NULL;
+
+ /* If explicitly asked to make DECL global or if it's an imported nested
+ object, short-circuit the regular Scope-based context computation. */
+ if (!((TREE_PUBLIC (decl) && DECL_EXTERNAL (decl)) || force_global == 1))
+ {
+ /* Rely on the GNAT scope, or fallback to the current_function_decl if
+ the GNAT scope reached the global scope, if it reached a subprogram
+ or the declaration is a subprogram or a variable (for them we skip
+ intermediate context types because the subprogram body elaboration
+ machinery and the inliner both expect a subprogram context).
+
+ Falling back to current_function_decl is necessary for implicit
+ subprograms created by gigi, such as the elaboration subprograms. */
+ bool context_is_subprogram = false;
+ const Entity_Id gnat_scope
+ = get_debug_scope (gnat_node, &context_is_subprogram);
+
+ if (Present (gnat_scope)
+ && !context_is_subprogram
+ && TREE_CODE (decl) != FUNCTION_DECL
+ && TREE_CODE (decl) != VAR_DECL)
+ /* Always assume the scope has not been elaborated, thus defer the
+ context propagation to the time its elaboration will be
+ available. */
+ deferred_decl_context
+ = add_deferred_decl_context (decl, gnat_scope, force_global);
+
+ /* External declarations (when force_global > 0) may not be in a
+ local context. */
+ else if (current_function_decl && force_global == 0)
+ context = current_function_decl;
+ }
+
+ /* If either we are forced to be in global mode or if both the GNAT scope and
+ the current_function_decl did not help in determining the context, use the
+ global scope. */
+ if (!deferred_decl_context && !context)
+ context = get_global_context ();
+
+ /* Functions imported in another function are not really nested.
+ For really nested functions mark them initially as needing
+ a static chain for uses of that flag before unnesting;
+ lower_nested_functions will then recompute it. */
+ if (TREE_CODE (decl) == FUNCTION_DECL
+ && !TREE_PUBLIC (decl)
+ && context
+ && (TREE_CODE (context) == FUNCTION_DECL
+ || decl_function_context (context)))
+ DECL_STATIC_CHAIN (decl) = 1;
+
+ if (!deferred_decl_context)
+ DECL_CONTEXT (decl) = context;
+
+ suppress_warning (decl, all_warnings,
+ No (gnat_node) || Warnings_Off (gnat_node));
+
+ /* Set the location of DECL and emit a declaration for it. */
+ if (Present (gnat_node) && !renaming_from_instantiation_p (gnat_node))
+ Sloc_to_locus (Sloc (gnat_node), &DECL_SOURCE_LOCATION (decl));
+
+ add_decl_expr (decl, gnat_node);
+
+ /* Put the declaration on the list. The list of declarations is in reverse
+ order. The list will be reversed later. Put global declarations in the
+ globals list and local ones in the current block. But skip TYPE_DECLs
+ for UNCONSTRAINED_ARRAY_TYPE in both cases, as they will cause trouble
+ with the debugger and aren't needed anyway. */
+ if (!(TREE_CODE (decl) == TYPE_DECL
+ && TREE_CODE (TREE_TYPE (decl)) == UNCONSTRAINED_ARRAY_TYPE))
+ {
+ /* External declarations must go to the binding level they belong to.
+ This will make corresponding imported entities are available in the
+ debugger at the proper time. */
+ if (DECL_EXTERNAL (decl)
+ && TREE_CODE (decl) == FUNCTION_DECL
+ && fndecl_built_in_p (decl))
+ vec_safe_push (builtin_decls, decl);
+ else if (global_bindings_p ())
+ vec_safe_push (global_decls, decl);
+ else
+ {
+ DECL_CHAIN (decl) = BLOCK_VARS (current_binding_level->block);
+ BLOCK_VARS (current_binding_level->block) = decl;
+ }
+ }
+
+ /* For the declaration of a type, set its name either if it isn't already
+ set or if the previous type name was not derived from a source name.
+ We'd rather have the type named with a real name and all the pointer
+ types to the same object have the same node, except when the names are
+ both derived from source names. */
+ if (TREE_CODE (decl) == TYPE_DECL && DECL_NAME (decl))
+ {
+ tree t = TREE_TYPE (decl);
+
+ /* Array and pointer types aren't tagged types in the C sense so we need
+ to generate a typedef in DWARF for them and make sure it is preserved,
+ unless the type is artificial. */
+ if (!(TYPE_NAME (t) && TREE_CODE (TYPE_NAME (t)) == TYPE_DECL)
+ && ((TREE_CODE (t) != ARRAY_TYPE && TREE_CODE (t) != POINTER_TYPE)
+ || DECL_ARTIFICIAL (decl)))
+ ;
+ /* For array and pointer types, create the DECL_ORIGINAL_TYPE that will
+ generate the typedef in DWARF. Also do that for fat pointer types
+ because, even though they are tagged types in the C sense, they are
+ still XUP types attached to the base array type at this point. */
+ else if (!DECL_ARTIFICIAL (decl)
+ && (TREE_CODE (t) == ARRAY_TYPE
+ || TREE_CODE (t) == POINTER_TYPE
+ || TYPE_IS_FAT_POINTER_P (t)))
+ {
+ tree tt = build_variant_type_copy (t);
+ TYPE_NAME (tt) = decl;
+ defer_or_set_type_context (tt,
+ DECL_CONTEXT (decl),
+ deferred_decl_context);
+ TREE_TYPE (decl) = tt;
+ if (TYPE_NAME (t)
+ && TREE_CODE (TYPE_NAME (t)) == TYPE_DECL
+ && DECL_ORIGINAL_TYPE (TYPE_NAME (t)))
+ DECL_ORIGINAL_TYPE (decl) = DECL_ORIGINAL_TYPE (TYPE_NAME (t));
+ else
+ DECL_ORIGINAL_TYPE (decl) = t;
+ /* Array types need to have a name so that they can be related to
+ their GNAT encodings. */
+ if (TREE_CODE (t) == ARRAY_TYPE && !TYPE_NAME (t))
+ TYPE_NAME (t) = DECL_NAME (decl);
+ /* Remark the canonical fat pointer type as artificial. */
+ if (TYPE_IS_FAT_POINTER_P (t))
+ TYPE_ARTIFICIAL (t) = 1;
+ t = NULL_TREE;
+ }
+ else if (TYPE_NAME (t)
+ && TREE_CODE (TYPE_NAME (t)) == TYPE_DECL
+ && DECL_ARTIFICIAL (TYPE_NAME (t)) && !DECL_ARTIFICIAL (decl))
+ ;
+ else
+ t = NULL_TREE;
+
+ /* Propagate the name to all the variants, this is needed for the type
+ qualifiers machinery to work properly (see check_qualified_type).
+ Also propagate the context to them. Note that it will be propagated
+ to all parallel types too thanks to gnat_set_type_context. */
+ if (t)
+ for (t = TYPE_MAIN_VARIANT (t); t; t = TYPE_NEXT_VARIANT (t))
+ /* ??? Because of the previous kludge, we can have variants of fat
+ pointer types with different names. */
+ if (!(TYPE_IS_FAT_POINTER_P (t)
+ && TYPE_NAME (t)
+ && TREE_CODE (TYPE_NAME (t)) == TYPE_DECL))
+ {
+ TYPE_NAME (t) = decl;
+ defer_or_set_type_context (t,
+ DECL_CONTEXT (decl),
+ deferred_decl_context);
+ }
+ }
+}
+
+/* Create a record type that contains a SIZE bytes long field of TYPE with a
+ starting bit position so that it is aligned to ALIGN bits, and leaving at
+ least ROOM bytes free before the field. BASE_ALIGN is the alignment the
+ record is guaranteed to get. GNAT_NODE is used for the position of the
+ associated TYPE_DECL. */
+
+tree
+make_aligning_type (tree type, unsigned int align, tree size,
+ unsigned int base_align, int room, Node_Id gnat_node)
+{
+ /* We will be crafting a record type with one field at a position set to be
+ the next multiple of ALIGN past record'address + room bytes. We use a
+ record placeholder to express record'address. */
+ tree record_type = make_node (RECORD_TYPE);
+ tree record = build0 (PLACEHOLDER_EXPR, record_type);
+
+ tree record_addr_st
+ = convert (sizetype, build_unary_op (ADDR_EXPR, NULL_TREE, record));
+
+ /* The diagram below summarizes the shape of what we manipulate:
+
+ <--------- pos ---------->
+ { +------------+-------------+-----------------+
+ record =>{ |############| ... | field (type) |
+ { +------------+-------------+-----------------+
+ |<-- room -->|<- voffset ->|<---- size ----->|
+ o o
+ | |
+ record_addr vblock_addr
+
+ Every length is in sizetype bytes there, except "pos" which has to be
+ set as a bit position in the GCC tree for the record. */
+ tree room_st = size_int (room);
+ tree vblock_addr_st = size_binop (PLUS_EXPR, record_addr_st, room_st);
+ tree voffset_st, pos, field;
+
+ tree name = TYPE_IDENTIFIER (type);
+
+ name = concat_name (name, "ALIGN");
+ TYPE_NAME (record_type) = name;
+
+ /* Compute VOFFSET and then POS. The next byte position multiple of some
+ alignment after some address is obtained by "and"ing the alignment minus
+ 1 with the two's complement of the address. */
+ voffset_st = size_binop (BIT_AND_EXPR,
+ fold_build1 (NEGATE_EXPR, sizetype, vblock_addr_st),
+ size_int ((align / BITS_PER_UNIT) - 1));
+
+ /* POS = (ROOM + VOFFSET) * BIT_PER_UNIT, in bitsizetype. */
+ pos = size_binop (MULT_EXPR,
+ convert (bitsizetype,
+ size_binop (PLUS_EXPR, room_st, voffset_st)),
+ bitsize_unit_node);
+
+ /* Craft the GCC record representation. We exceptionally do everything
+ manually here because 1) our generic circuitry is not quite ready to
+ handle the complex position/size expressions we are setting up, 2) we
+ have a strong simplifying factor at hand: we know the maximum possible
+ value of voffset, and 3) we have to set/reset at least the sizes in
+ accordance with this maximum value anyway, as we need them to convey
+ what should be "alloc"ated for this type.
+
+ Use -1 as the 'addressable' indication for the field to prevent the
+ creation of a bitfield. We don't need one, it would have damaging
+ consequences on the alignment computation, and create_field_decl would
+ make one without this special argument, for instance because of the
+ complex position expression. */
+ field = create_field_decl (get_identifier ("F"), type, record_type, size,
+ pos, 1, -1);
+ TYPE_FIELDS (record_type) = field;
+
+ SET_TYPE_ALIGN (record_type, base_align);
+ TYPE_USER_ALIGN (record_type) = 1;
+
+ TYPE_SIZE (record_type)
+ = size_binop (PLUS_EXPR,
+ size_binop (MULT_EXPR, convert (bitsizetype, size),
+ bitsize_unit_node),
+ bitsize_int (align + room * BITS_PER_UNIT));
+ TYPE_SIZE_UNIT (record_type)
+ = size_binop (PLUS_EXPR, size,
+ size_int (room + align / BITS_PER_UNIT));
+
+ SET_TYPE_MODE (record_type, BLKmode);
+ relate_alias_sets (record_type, type, ALIAS_SET_COPY);
+
+ /* Declare it now since it will never be declared otherwise. This is
+ necessary to ensure that its subtrees are properly marked. */
+ create_type_decl (name, record_type, true, false, gnat_node);
+
+ return record_type;
+}
+
+/* Return true iff the packable types are equivalent. */
+
+bool
+packable_type_hasher::equal (packable_type_hash *t1, packable_type_hash *t2)
+{
+ tree type1, type2;
+
+ if (t1->hash != t2->hash)
+ return 0;
+
+ type1 = t1->type;
+ type2 = t2->type;
+
+ /* We consider that packable types are equivalent if they have the same name,
+ size, alignment, RM size and storage order. Taking the mode into account
+ is redundant since it is determined by the others. */
+ return
+ TYPE_NAME (type1) == TYPE_NAME (type2)
+ && TYPE_SIZE (type1) == TYPE_SIZE (type2)
+ && TYPE_ALIGN (type1) == TYPE_ALIGN (type2)
+ && TYPE_ADA_SIZE (type1) == TYPE_ADA_SIZE (type2)
+ && TYPE_REVERSE_STORAGE_ORDER (type1) == TYPE_REVERSE_STORAGE_ORDER (type2);
+}
+
+/* Compute the hash value for the packable TYPE. */
+
+static hashval_t
+hash_packable_type (tree type)
+{
+ hashval_t hashcode;
+
+ hashcode = iterative_hash_expr (TYPE_NAME (type), 0);
+ hashcode = iterative_hash_expr (TYPE_SIZE (type), hashcode);
+ hashcode = iterative_hash_hashval_t (TYPE_ALIGN (type), hashcode);
+ hashcode = iterative_hash_expr (TYPE_ADA_SIZE (type), hashcode);
+ hashcode
+ = iterative_hash_hashval_t (TYPE_REVERSE_STORAGE_ORDER (type), hashcode);
+
+ return hashcode;
+}
+
+/* Look up the packable TYPE in the hash table and return its canonical version
+ if it exists; otherwise, insert it into the hash table. */
+
+static tree
+canonicalize_packable_type (tree type)
+{
+ const hashval_t hashcode = hash_packable_type (type);
+ struct packable_type_hash in, *h, **slot;
+
+ in.hash = hashcode;
+ in.type = type;
+ slot = packable_type_hash_table->find_slot_with_hash (&in, hashcode, INSERT);
+ h = *slot;
+ if (!h)
+ {
+ h = ggc_alloc<packable_type_hash> ();
+ h->hash = hashcode;
+ h->type = type;
+ *slot = h;
+ }
+
+ return h->type;
+}
+
+/* TYPE is an ARRAY_TYPE that is being used as the type of a field in a packed
+ record. See if we can rewrite it as a type that has non-BLKmode, which we
+ can pack tighter in the packed record. If so, return the new type; if not,
+ return the original type. */
+
+static tree
+make_packable_array_type (tree type)
+{
+ const unsigned HOST_WIDE_INT size = tree_to_uhwi (TYPE_SIZE (type));
+ unsigned HOST_WIDE_INT new_size;
+ unsigned int new_align;
+
+ /* No point in doing anything if the size is either zero or too large for an
+ integral mode, or if the type already has non-BLKmode. */
+ if (size == 0 || size > MAX_FIXED_MODE_SIZE || TYPE_MODE (type) != BLKmode)
+ return type;
+
+ /* Punt if the component type is an aggregate type for now. */
+ if (AGGREGATE_TYPE_P (TREE_TYPE (type)))
+ return type;
+
+ tree new_type = copy_type (type);
+
+ new_size = ceil_pow2 (size);
+ new_align = MIN (new_size, BIGGEST_ALIGNMENT);
+ SET_TYPE_ALIGN (new_type, new_align);
+
+ TYPE_SIZE (new_type) = bitsize_int (new_size);
+ TYPE_SIZE_UNIT (new_type) = size_int (new_size / BITS_PER_UNIT);
+
+ SET_TYPE_MODE (new_type, mode_for_size (new_size, MODE_INT, 1).else_blk ());
+
+ return new_type;
+}
+
+/* TYPE is a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE that is being used
+ as the type of a field in a packed record if IN_RECORD is true, or as
+ the component type of a packed array if IN_RECORD is false. See if we
+ can rewrite it either as a type that has non-BLKmode, which we can pack
+ tighter in the packed record case, or as a smaller type with at most
+ MAX_ALIGN alignment if the value is non-zero. If so, return the new
+ type; if not, return the original type. */
+
+tree
+make_packable_type (tree type, bool in_record, unsigned int max_align)
+{
+ const unsigned HOST_WIDE_INT size = tree_to_uhwi (TYPE_SIZE (type));
+ const unsigned int align = TYPE_ALIGN (type);
+ unsigned HOST_WIDE_INT new_size;
+ unsigned int new_align;
+
+ /* No point in doing anything if the size is zero. */
+ if (size == 0)
+ return type;
+
+ tree new_type = make_node (TREE_CODE (type));
+
+ /* Copy the name and flags from the old type to that of the new.
+ Note that we rely on the pointer equality created here for
+ TYPE_NAME to look through conversions in various places. */
+ TYPE_NAME (new_type) = TYPE_NAME (type);
+ TYPE_PACKED (new_type) = 1;
+ TYPE_JUSTIFIED_MODULAR_P (new_type) = TYPE_JUSTIFIED_MODULAR_P (type);
+ TYPE_CONTAINS_TEMPLATE_P (new_type) = TYPE_CONTAINS_TEMPLATE_P (type);
+ TYPE_REVERSE_STORAGE_ORDER (new_type) = TYPE_REVERSE_STORAGE_ORDER (type);
+ if (TREE_CODE (type) == RECORD_TYPE)
+ TYPE_PADDING_P (new_type) = TYPE_PADDING_P (type);
+
+ /* If we are in a record and have a small size, set the alignment to
+ try for an integral mode. Otherwise set it to try for a smaller
+ type with BLKmode. */
+ if (in_record && size <= MAX_FIXED_MODE_SIZE)
+ {
+ new_size = ceil_pow2 (size);
+ new_align = MIN (new_size, BIGGEST_ALIGNMENT);
+ SET_TYPE_ALIGN (new_type, new_align);
+ }
+ else
+ {
+ tree ada_size = TYPE_ADA_SIZE (type);
+
+ /* Do not try to shrink the size if the RM size is not constant. */
+ if (TYPE_CONTAINS_TEMPLATE_P (type) || !tree_fits_uhwi_p (ada_size))
+ return type;
+
+ /* Round the RM size up to a unit boundary to get the minimal size
+ for a BLKmode record. Give up if it's already the size and we
+ don't need to lower the alignment. */
+ new_size = tree_to_uhwi (ada_size);
+ new_size = (new_size + BITS_PER_UNIT - 1) & -BITS_PER_UNIT;
+ if (new_size == size && (max_align == 0 || align <= max_align))
+ return type;
+
+ new_align = MIN (new_size & -new_size, BIGGEST_ALIGNMENT);
+ if (max_align > 0 && new_align > max_align)
+ new_align = max_align;
+ SET_TYPE_ALIGN (new_type, MIN (align, new_align));
+ }
+
+ TYPE_USER_ALIGN (new_type) = 1;
+
+ /* Now copy the fields, keeping the position and size as we don't want
+ to change the layout by propagating the packedness downwards. */
+ tree new_field_list = NULL_TREE;
+ for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
+ {
+ tree new_field_type = TREE_TYPE (field);
+ tree new_field, new_field_size;
+
+ if (AGGREGATE_TYPE_P (new_field_type)
+ && tree_fits_uhwi_p (TYPE_SIZE (new_field_type)))
+ {
+ if (RECORD_OR_UNION_TYPE_P (new_field_type)
+ && !TYPE_FAT_POINTER_P (new_field_type))
+ new_field_type
+ = make_packable_type (new_field_type, true, max_align);
+ else if (in_record
+ && max_align > 0
+ && max_align < BITS_PER_UNIT
+ && TREE_CODE (new_field_type) == ARRAY_TYPE)
+ new_field_type = make_packable_array_type (new_field_type);
+ }
+
+ /* However, for the last field in a not already packed record type
+ that is of an aggregate type, we need to use the RM size in the
+ packable version of the record type, see finish_record_type. */
+ if (!DECL_CHAIN (field)
+ && !TYPE_PACKED (type)
+ && RECORD_OR_UNION_TYPE_P (new_field_type)
+ && !TYPE_FAT_POINTER_P (new_field_type)
+ && !TYPE_CONTAINS_TEMPLATE_P (new_field_type)
+ && TYPE_ADA_SIZE (new_field_type))
+ new_field_size = TYPE_ADA_SIZE (new_field_type);
+ else
+ {
+ new_field_size = DECL_SIZE (field);
+
+ /* Make sure not to use too small a type for the size. */
+ if (TYPE_MODE (new_field_type) == BLKmode)
+ new_field_type = TREE_TYPE (field);
+ }
+
+ /* This is a layout with full representation, alignment and size clauses
+ so we simply pass 0 as PACKED like gnat_to_gnu_field in this case. */
+ new_field
+ = create_field_decl (DECL_NAME (field), new_field_type, new_type,
+ new_field_size, bit_position (field), 0,
+ !DECL_NONADDRESSABLE_P (field));
+
+ DECL_INTERNAL_P (new_field) = DECL_INTERNAL_P (field);
+ SET_DECL_ORIGINAL_FIELD_TO_FIELD (new_field, field);
+ if (TREE_CODE (new_type) == QUAL_UNION_TYPE)
+ DECL_QUALIFIER (new_field) = DECL_QUALIFIER (field);
+
+ DECL_CHAIN (new_field) = new_field_list;
+ new_field_list = new_field;
+ }
+
+ /* If this is a padding record, we never want to make the size smaller
+ than what was specified. For QUAL_UNION_TYPE, also copy the size. */
+ if (TYPE_IS_PADDING_P (type) || TREE_CODE (type) == QUAL_UNION_TYPE)
+ {
+ TYPE_SIZE (new_type) = TYPE_SIZE (type);
+ TYPE_SIZE_UNIT (new_type) = TYPE_SIZE_UNIT (type);
+ new_size = size;
+ }
+ else
+ {
+ TYPE_SIZE (new_type) = bitsize_int (new_size);
+ TYPE_SIZE_UNIT (new_type) = size_int (new_size / BITS_PER_UNIT);
+ }
+
+ if (!TYPE_CONTAINS_TEMPLATE_P (type))
+ SET_TYPE_ADA_SIZE (new_type, TYPE_ADA_SIZE (type));
+
+ finish_record_type (new_type, nreverse (new_field_list), 2, false);
+ relate_alias_sets (new_type, type, ALIAS_SET_COPY);
+ if (gnat_encodings != DWARF_GNAT_ENCODINGS_ALL)
+ SET_TYPE_DEBUG_TYPE (new_type, TYPE_DEBUG_TYPE (type));
+ else if (TYPE_STUB_DECL (type))
+ SET_DECL_PARALLEL_TYPE (TYPE_STUB_DECL (new_type),
+ DECL_PARALLEL_TYPE (TYPE_STUB_DECL (type)));
+
+ /* Try harder to get a packable type if necessary, for example in case
+ the record itself contains a BLKmode field. */
+ if (in_record && TYPE_MODE (new_type) == BLKmode)
+ SET_TYPE_MODE (new_type,
+ mode_for_size_tree (TYPE_SIZE (new_type),
+ MODE_INT, 1).else_blk ());
+
+ /* If neither mode nor size nor alignment shrunk, return the old type. */
+ if (TYPE_MODE (new_type) == BLKmode && new_size >= size && max_align == 0)
+ return type;
+
+ /* If the packable type is named, we canonicalize it by means of the hash
+ table. This is consistent with the language semantics and ensures that
+ gigi and the middle-end have a common view of these packable types. */
+ return
+ TYPE_NAME (new_type) ? canonicalize_packable_type (new_type) : new_type;
+}
+
+/* Return true if TYPE has an unsigned representation. This needs to be used
+ when the representation of types whose precision is not equal to their size
+ is manipulated based on the RM size. */
+
+static inline bool
+type_unsigned_for_rm (tree type)
+{
+ /* This is the common case. */
+ if (TYPE_UNSIGNED (type))
+ return true;
+
+ /* See the E_Signed_Integer_Subtype case of gnat_to_gnu_entity. */
+ if (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
+ && tree_int_cst_sgn (TYPE_MIN_VALUE (type)) >= 0)
+ return true;
+
+ return false;
+}
+
+/* Given a type TYPE, return a new type whose size is appropriate for SIZE.
+ If TYPE is the best type, return it. Otherwise, make a new type. We
+ only support new integral and pointer types. FOR_BIASED is true if
+ we are making a biased type. */
+
+tree
+make_type_from_size (tree type, tree size_tree, bool for_biased)
+{
+ unsigned HOST_WIDE_INT size;
+ bool biased_p;
+ tree new_type;
+
+ /* If size indicates an error, just return TYPE to avoid propagating
+ the error. Likewise if it's too large to represent. */
+ if (!size_tree || !tree_fits_uhwi_p (size_tree))
+ return type;
+
+ size = tree_to_uhwi (size_tree);
+
+ switch (TREE_CODE (type))
+ {
+ case BOOLEAN_TYPE:
+ /* Do not mess with boolean types that have foreign convention. */
+ if (TYPE_PRECISION (type) == 1 && TYPE_SIZE (type) == size_tree)
+ break;
+
+ /* ... fall through ... */
+
+ case INTEGER_TYPE:
+ case ENUMERAL_TYPE:
+ biased_p = (TREE_CODE (type) == INTEGER_TYPE
+ && TYPE_BIASED_REPRESENTATION_P (type));
+
+ /* Integer types with precision 0 are forbidden. */
+ if (size == 0)
+ size = 1;
+
+ /* Only do something if the type is not a bit-packed array type and does
+ not already have the proper size and the size is not too large. */
+ if (BIT_PACKED_ARRAY_TYPE_P (type)
+ || (TYPE_PRECISION (type) == size && biased_p == for_biased)
+ || size > (Enable_128bit_Types ? 128 : LONG_LONG_TYPE_SIZE))
+ break;
+
+ biased_p |= for_biased;
+
+ /* The type should be an unsigned type if the original type is unsigned
+ or if the lower bound is constant and non-negative or if the type is
+ biased, see E_Signed_Integer_Subtype case of gnat_to_gnu_entity. */
+ if (type_unsigned_for_rm (type) || biased_p)
+ new_type = make_unsigned_type (size);
+ else
+ new_type = make_signed_type (size);
+ TREE_TYPE (new_type) = TREE_TYPE (type) ? TREE_TYPE (type) : type;
+ SET_TYPE_RM_MIN_VALUE (new_type, TYPE_MIN_VALUE (type));
+ SET_TYPE_RM_MAX_VALUE (new_type, TYPE_MAX_VALUE (type));
+ /* Copy the name to show that it's essentially the same type and
+ not a subrange type. */
+ TYPE_NAME (new_type) = TYPE_NAME (type);
+ TYPE_BIASED_REPRESENTATION_P (new_type) = biased_p;
+ SET_TYPE_RM_SIZE (new_type, bitsize_int (size));
+ return new_type;
+
+ case RECORD_TYPE:
+ /* Do something if this is a fat pointer, in which case we
+ may need to return the thin pointer. */
+ if (TYPE_FAT_POINTER_P (type) && size < POINTER_SIZE * 2)
+ {
+ scalar_int_mode p_mode;
+ if (!int_mode_for_size (size, 0).exists (&p_mode)
+ || !targetm.valid_pointer_mode (p_mode))
+ p_mode = ptr_mode;
+ return
+ build_pointer_type_for_mode
+ (TYPE_OBJECT_RECORD_TYPE (TYPE_UNCONSTRAINED_ARRAY (type)),
+ p_mode, 0);
+ }
+ break;
+
+ case POINTER_TYPE:
+ /* Only do something if this is a thin pointer, in which case we
+ may need to return the fat pointer. */
+ if (TYPE_IS_THIN_POINTER_P (type) && size >= POINTER_SIZE * 2)
+ return
+ build_pointer_type (TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type)));
+ break;
+
+ default:
+ break;
+ }
+
+ return type;
+}
+
+/* Return true iff the padded types are equivalent. */
+
+bool
+pad_type_hasher::equal (pad_type_hash *t1, pad_type_hash *t2)
+{
+ tree type1, type2;
+
+ if (t1->hash != t2->hash)
+ return 0;
+
+ type1 = t1->type;
+ type2 = t2->type;
+
+ /* We consider that padded types are equivalent if they pad the same type
+ and have the same size, alignment, RM size and storage order. Taking the
+ mode into account is redundant since it is determined by the others. */
+ return
+ TREE_TYPE (TYPE_FIELDS (type1)) == TREE_TYPE (TYPE_FIELDS (type2))
+ && TYPE_SIZE (type1) == TYPE_SIZE (type2)
+ && TYPE_ALIGN (type1) == TYPE_ALIGN (type2)
+ && TYPE_ADA_SIZE (type1) == TYPE_ADA_SIZE (type2)
+ && TYPE_REVERSE_STORAGE_ORDER (type1) == TYPE_REVERSE_STORAGE_ORDER (type2);
+}
+
+/* Compute the hash value for the padded TYPE. */
+
+static hashval_t
+hash_pad_type (tree type)
+{
+ hashval_t hashcode;
+
+ hashcode
+ = iterative_hash_object (TYPE_HASH (TREE_TYPE (TYPE_FIELDS (type))), 0);
+ hashcode = iterative_hash_expr (TYPE_SIZE (type), hashcode);
+ hashcode = iterative_hash_hashval_t (TYPE_ALIGN (type), hashcode);
+ hashcode = iterative_hash_expr (TYPE_ADA_SIZE (type), hashcode);
+ hashcode
+ = iterative_hash_hashval_t (TYPE_REVERSE_STORAGE_ORDER (type), hashcode);
+
+ return hashcode;
+}
+
+/* Look up the padded TYPE in the hash table and return its canonical version
+ if it exists; otherwise, insert it into the hash table. */
+
+static tree
+canonicalize_pad_type (tree type)
+{
+ const hashval_t hashcode = hash_pad_type (type);
+ struct pad_type_hash in, *h, **slot;
+
+ in.hash = hashcode;
+ in.type = type;
+ slot = pad_type_hash_table->find_slot_with_hash (&in, hashcode, INSERT);
+ h = *slot;
+ if (!h)
+ {
+ h = ggc_alloc<pad_type_hash> ();
+ h->hash = hashcode;
+ h->type = type;
+ *slot = h;
+ }
+
+ return h->type;
+}
+
+/* Ensure that TYPE has SIZE and ALIGN. Make and return a new padded type
+ if needed. We have already verified that SIZE and ALIGN are large enough.
+ GNAT_ENTITY is used to name the resulting record and to issue a warning.
+ IS_COMPONENT_TYPE is true if this is being done for the component type of
+ an array. DEFINITION is true if this type is being defined. SET_RM_SIZE
+ is true if the RM size of the resulting type is to be set to SIZE too; in
+ this case, the padded type is canonicalized before being returned. */
+
+tree
+maybe_pad_type (tree type, tree size, unsigned int align,
+ Entity_Id gnat_entity, bool is_component_type,
+ bool definition, bool set_rm_size)
+{
+ tree orig_size = TYPE_SIZE (type);
+ unsigned int orig_align = TYPE_ALIGN (type);
+ tree record, field;
+
+ /* If TYPE is a padded type, see if it agrees with any size and alignment
+ we were given. If so, return the original type. Otherwise, strip
+ off the padding, since we will either be returning the inner type
+ or repadding it. If no size or alignment is specified, use that of
+ the original padded type. */
+ if (TYPE_IS_PADDING_P (type))
+ {
+ if ((!size
+ || operand_equal_p (round_up (size, orig_align), orig_size, 0))
+ && (align == 0 || align == orig_align))
+ return type;
+
+ if (!size)
+ size = orig_size;
+ if (align == 0)
+ align = orig_align;
+
+ type = TREE_TYPE (TYPE_FIELDS (type));
+ orig_size = TYPE_SIZE (type);
+ orig_align = TYPE_ALIGN (type);
+ }
+
+ /* If the size is either not being changed or is being made smaller (which
+ is not done here and is only valid for bitfields anyway), show the size
+ isn't changing. Likewise, clear the alignment if it isn't being
+ changed. Then return if we aren't doing anything. */
+ if (size
+ && (operand_equal_p (size, orig_size, 0)
+ || (TREE_CODE (orig_size) == INTEGER_CST
+ && tree_int_cst_lt (size, orig_size))))
+ size = NULL_TREE;
+
+ if (align == orig_align)
+ align = 0;
+
+ if (align == 0 && !size)
+ return type;
+
+ /* We used to modify the record in place in some cases, but that could
+ generate incorrect debugging information. So make a new record
+ type and name. */
+ record = make_node (RECORD_TYPE);
+ TYPE_PADDING_P (record) = 1;
+
+ if (Present (gnat_entity))
+ TYPE_NAME (record) = create_concat_name (gnat_entity, "PAD");
+
+ SET_TYPE_ALIGN (record, align ? align : orig_align);
+ TYPE_SIZE (record) = size ? size : orig_size;
+ TYPE_SIZE_UNIT (record)
+ = convert (sizetype,
+ size_binop (EXACT_DIV_EXPR, TYPE_SIZE (record),
+ bitsize_unit_node));
+
+ /* If we are changing the alignment and the input type is a record with
+ BLKmode and a small constant size, try to make a form that has an
+ integral mode. This might allow the padding record to also have an
+ integral mode, which will be much more efficient. There is no point
+ in doing so if a size is specified unless it is also a small constant
+ size and it is incorrect to do so if we cannot guarantee that the mode
+ will be naturally aligned since the field must always be addressable.
+
+ ??? This might not always be a win when done for a stand-alone object:
+ since the nominal and the effective type of the object will now have
+ different modes, a VIEW_CONVERT_EXPR will be required for converting
+ between them and it might be hard to overcome afterwards, including
+ at the RTL level when the stand-alone object is accessed as a whole. */
+ if (align > 0
+ && RECORD_OR_UNION_TYPE_P (type)
+ && TYPE_MODE (type) == BLKmode
+ && !TYPE_BY_REFERENCE_P (type)
+ && TREE_CODE (orig_size) == INTEGER_CST
+ && !TREE_OVERFLOW (orig_size)
+ && compare_tree_int (orig_size, MAX_FIXED_MODE_SIZE) <= 0
+ && (!size
+ || (TREE_CODE (size) == INTEGER_CST
+ && compare_tree_int (size, MAX_FIXED_MODE_SIZE) <= 0)))
+ {
+ tree packable_type = make_packable_type (type, true, align);
+ if (TYPE_MODE (packable_type) != BLKmode
+ && compare_tree_int (TYPE_SIZE (packable_type), align) <= 0)
+ type = packable_type;
+ }
+
+ /* Now create the field with the original size. */
+ field = create_field_decl (get_identifier ("F"), type, record, orig_size,
+ bitsize_zero_node, 0, 1);
+ DECL_INTERNAL_P (field) = 1;
+
+ /* We will output additional debug info manually below. */
+ finish_record_type (record, field, 1, false);
+
+ /* Set the RM size if requested. */
+ if (set_rm_size)
+ {
+ SET_TYPE_ADA_SIZE (record, size ? size : orig_size);
+
+ /* If the padded type is complete and has constant size, we canonicalize
+ it by means of the hash table. This is consistent with the language
+ semantics and ensures that gigi and the middle-end have a common view
+ of these padded types. */
+ if (TREE_CONSTANT (TYPE_SIZE (record)))
+ {
+ tree canonical = canonicalize_pad_type (record);
+ if (canonical != record)
+ {
+ record = canonical;
+ goto built;
+ }
+ }
+ }
+
+ /* Make the inner type the debug type of the padded type. */
+ if (gnat_encodings != DWARF_GNAT_ENCODINGS_ALL)
+ SET_TYPE_DEBUG_TYPE (record, maybe_debug_type (type));
+
+ /* Unless debugging information isn't being written for the input type,
+ write a record that shows what we are a subtype of and also make a
+ variable that indicates our size, if still variable. */
+ if (TREE_CODE (orig_size) != INTEGER_CST
+ && TYPE_NAME (record)
+ && TYPE_NAME (type)
+ && !(TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
+ && DECL_IGNORED_P (TYPE_NAME (type))))
+ {
+ tree name = TYPE_IDENTIFIER (record);
+ tree size_unit = TYPE_SIZE_UNIT (record);
+
+ /* A variable that holds the size is required even with no encoding since
+ it will be referenced by debugging information attributes. At global
+ level, we need a single variable across all translation units. */
+ if (size
+ && TREE_CODE (size) != INTEGER_CST
+ && (definition || global_bindings_p ()))
+ {
+ /* Whether or not gnat_entity comes from source, this XVZ variable is
+ is a compilation artifact. */
+ size_unit
+ = create_var_decl (concat_name (name, "XVZ"), NULL_TREE, sizetype,
+ size_unit, true, global_bindings_p (),
+ !definition && global_bindings_p (), false,
+ false, true, true, NULL, gnat_entity, false);
+ TYPE_SIZE_UNIT (record) = size_unit;
+ }
+
+ /* There is no need to show what we are a subtype of when outputting as
+ few encodings as possible: regular debugging infomation makes this
+ redundant. */
+ if (gnat_encodings == DWARF_GNAT_ENCODINGS_ALL)
+ {
+ tree marker = make_node (RECORD_TYPE);
+ tree orig_name = TYPE_IDENTIFIER (type);
+
+ TYPE_NAME (marker) = concat_name (name, "XVS");
+ finish_record_type (marker,
+ create_field_decl (orig_name,
+ build_reference_type (type),
+ marker, NULL_TREE, NULL_TREE,
+ 0, 0),
+ 0, true);
+ TYPE_SIZE_UNIT (marker) = size_unit;
+
+ add_parallel_type (record, marker);
+ }
+ }
+
+built:
+ /* If a simple size was explicitly given, maybe issue a warning. */
+ if (!size
+ || TREE_CODE (size) == COND_EXPR
+ || TREE_CODE (size) == MAX_EXPR
+ || No (gnat_entity))
+ return record;
+
+ /* But don't do it if we are just annotating types and the type is tagged or
+ concurrent, since these types aren't fully laid out in this mode. */
+ if (type_annotate_only)
+ {
+ Entity_Id gnat_type
+ = is_component_type
+ ? Component_Type (gnat_entity) : Etype (gnat_entity);
+
+ if (Is_Tagged_Type (gnat_type) || Is_Concurrent_Type (gnat_type))
+ return record;
+ }
+
+ /* Take the original size as the maximum size of the input if there was an
+ unconstrained record involved and round it up to the specified alignment,
+ if one was specified, but only for aggregate types. */
+ if (CONTAINS_PLACEHOLDER_P (orig_size))
+ orig_size = max_size (orig_size, true);
+
+ if (align && AGGREGATE_TYPE_P (type))
+ orig_size = round_up (orig_size, align);
+
+ if (!operand_equal_p (size, orig_size, 0)
+ && !(TREE_CODE (size) == INTEGER_CST
+ && TREE_CODE (orig_size) == INTEGER_CST
+ && (TREE_OVERFLOW (size)
+ || TREE_OVERFLOW (orig_size)
+ || tree_int_cst_lt (size, orig_size))))
+ {
+ Node_Id gnat_error_node;
+
+ /* For a packed array, post the message on the original array type. */
+ if (Is_Packed_Array_Impl_Type (gnat_entity))
+ gnat_entity = Original_Array_Type (gnat_entity);
+
+ if ((Ekind (gnat_entity) == E_Component
+ || Ekind (gnat_entity) == E_Discriminant)
+ && Present (Component_Clause (gnat_entity)))
+ gnat_error_node = Last_Bit (Component_Clause (gnat_entity));
+ else if (Has_Size_Clause (gnat_entity))
+ gnat_error_node = Expression (Size_Clause (gnat_entity));
+ else if (Has_Object_Size_Clause (gnat_entity))
+ gnat_error_node = Expression (Object_Size_Clause (gnat_entity));
+ else
+ gnat_error_node = Empty;
+
+ /* Generate message only for entities that come from source, since
+ if we have an entity created by expansion, the message will be
+ generated for some other corresponding source entity. */
+ if (Comes_From_Source (gnat_entity))
+ {
+ if (is_component_type)
+ post_error_ne_tree ("component of& padded{ by ^ bits}??",
+ gnat_entity, gnat_entity,
+ size_diffop (size, orig_size));
+ else if (Present (gnat_error_node))
+ post_error_ne_tree ("{^ }bits of & unused??",
+ gnat_error_node, gnat_entity,
+ size_diffop (size, orig_size));
+ }
+ }
+
+ return record;
+}
+
+/* Return true if padded TYPE was built with an RM size. */
+
+bool
+pad_type_has_rm_size (tree type)
+{
+ /* This is required for the lookup. */
+ if (!TREE_CONSTANT (TYPE_SIZE (type)))
+ return false;
+
+ const hashval_t hashcode = hash_pad_type (type);
+ struct pad_type_hash in, *h;
+
+ in.hash = hashcode;
+ in.type = type;
+ h = pad_type_hash_table->find_with_hash (&in, hashcode);
+
+ /* The types built with an RM size are the canonicalized ones. */
+ return h && h->type == type;
+}
+
+/* Return a copy of the padded TYPE but with reverse storage order. */
+
+tree
+set_reverse_storage_order_on_pad_type (tree type)
+{
+ if (flag_checking)
+ {
+ /* If the inner type is not scalar then the function does nothing. */
+ tree inner_type = TREE_TYPE (TYPE_FIELDS (type));
+ gcc_assert (!AGGREGATE_TYPE_P (inner_type)
+ && !VECTOR_TYPE_P (inner_type));
+ }
+
+ /* This is required for the canonicalization. */
+ gcc_assert (TREE_CONSTANT (TYPE_SIZE (type)));
+
+ tree field = copy_node (TYPE_FIELDS (type));
+ type = copy_type (type);
+ DECL_CONTEXT (field) = type;
+ TYPE_FIELDS (type) = field;
+ TYPE_REVERSE_STORAGE_ORDER (type) = 1;
+ return canonicalize_pad_type (type);
+}
+
+/* Relate the alias sets of GNU_NEW_TYPE and GNU_OLD_TYPE according to OP.
+ If this is a multi-dimensional array type, do this recursively.
+
+ OP may be
+ - ALIAS_SET_COPY: the new set is made a copy of the old one.
+ - ALIAS_SET_SUPERSET: the new set is made a superset of the old one.
+ - ALIAS_SET_SUBSET: the new set is made a subset of the old one. */
+
+void
+relate_alias_sets (tree gnu_new_type, tree gnu_old_type, enum alias_set_op op)
+{
+ /* Remove any padding from GNU_OLD_TYPE. It doesn't matter in the case
+ of a one-dimensional array, since the padding has the same alias set
+ as the field type, but if it's a multi-dimensional array, we need to
+ see the inner types. */
+ while (TREE_CODE (gnu_old_type) == RECORD_TYPE
+ && (TYPE_JUSTIFIED_MODULAR_P (gnu_old_type)
+ || TYPE_PADDING_P (gnu_old_type)))
+ gnu_old_type = TREE_TYPE (TYPE_FIELDS (gnu_old_type));
+
+ /* Unconstrained array types are deemed incomplete and would thus be given
+ alias set 0. Retrieve the underlying array type. */
+ if (TREE_CODE (gnu_old_type) == UNCONSTRAINED_ARRAY_TYPE)
+ gnu_old_type
+ = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_old_type))));
+ if (TREE_CODE (gnu_new_type) == UNCONSTRAINED_ARRAY_TYPE)
+ gnu_new_type
+ = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_new_type))));
+
+ if (TREE_CODE (gnu_new_type) == ARRAY_TYPE
+ && TREE_CODE (TREE_TYPE (gnu_new_type)) == ARRAY_TYPE
+ && TYPE_MULTI_ARRAY_P (TREE_TYPE (gnu_new_type)))
+ relate_alias_sets (TREE_TYPE (gnu_new_type), TREE_TYPE (gnu_old_type), op);
+
+ switch (op)
+ {
+ case ALIAS_SET_COPY:
+ /* The alias set shouldn't be copied between array types with different
+ aliasing settings because this can break the aliasing relationship
+ between the array type and its element type. */
+ if (flag_checking || flag_strict_aliasing)
+ gcc_assert (!(TREE_CODE (gnu_new_type) == ARRAY_TYPE
+ && TREE_CODE (gnu_old_type) == ARRAY_TYPE
+ && TYPE_NONALIASED_COMPONENT (gnu_new_type)
+ != TYPE_NONALIASED_COMPONENT (gnu_old_type)));
+
+ TYPE_ALIAS_SET (gnu_new_type) = get_alias_set (gnu_old_type);
+ break;
+
+ case ALIAS_SET_SUBSET:
+ case ALIAS_SET_SUPERSET:
+ {
+ alias_set_type old_set = get_alias_set (gnu_old_type);
+ alias_set_type new_set = get_alias_set (gnu_new_type);
+
+ /* Do nothing if the alias sets conflict. This ensures that we
+ never call record_alias_subset several times for the same pair
+ or at all for alias set 0. */
+ if (!alias_sets_conflict_p (old_set, new_set))
+ {
+ if (op == ALIAS_SET_SUBSET)
+ record_alias_subset (old_set, new_set);
+ else
+ record_alias_subset (new_set, old_set);
+ }
+ }
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ record_component_aliases (gnu_new_type);
+}
+
+/* Record TYPE as a builtin type for Ada. NAME is the name of the type.
+ ARTIFICIAL_P is true if the type was generated by the compiler. */
+
+void
+record_builtin_type (const char *name, tree type, bool artificial_p)
+{
+ tree type_decl = build_decl (input_location,
+ TYPE_DECL, get_identifier (name), type);
+ DECL_ARTIFICIAL (type_decl) = artificial_p;
+ TYPE_ARTIFICIAL (type) = artificial_p;
+ gnat_pushdecl (type_decl, Empty);
+
+ if (debug_hooks->type_decl)
+ debug_hooks->type_decl (type_decl, false);
+}
+
+/* Finish constructing the character type CHAR_TYPE.
+
+ In Ada character types are enumeration types and, as a consequence, are
+ represented in the front-end by integral types holding the positions of
+ the enumeration values as defined by the language, which means that the
+ integral types are unsigned.
+
+ Unfortunately the signedness of 'char' in C is implementation-defined
+ and GCC even has the option -f[un]signed-char to toggle it at run time.
+ Since GNAT's philosophy is to be compatible with C by default, to wit
+ Interfaces.C.char is defined as a mere copy of Character, we may need
+ to declare character types as signed types in GENERIC and generate the
+ necessary adjustments to make them behave as unsigned types.
+
+ The overall strategy is as follows: if 'char' is unsigned, do nothing;
+ if 'char' is signed, translate character types of CHAR_TYPE_SIZE and
+ character subtypes with RM_Size = Esize = CHAR_TYPE_SIZE into signed
+ types. The idea is to ensure that the bit pattern contained in the
+ Esize'd objects is not changed, even though the numerical value will
+ be interpreted differently depending on the signedness. */
+
+void
+finish_character_type (tree char_type)
+{
+ if (TYPE_UNSIGNED (char_type))
+ return;
+
+ /* Make a copy of a generic unsigned version since we'll modify it. */
+ tree unsigned_char_type
+ = (char_type == char_type_node
+ ? unsigned_char_type_node
+ : copy_type (gnat_unsigned_type_for (char_type)));
+
+ /* Create an unsigned version of the type and set it as debug type. */
+ TYPE_NAME (unsigned_char_type) = TYPE_NAME (char_type);
+ TYPE_STRING_FLAG (unsigned_char_type) = TYPE_STRING_FLAG (char_type);
+ TYPE_ARTIFICIAL (unsigned_char_type) = TYPE_ARTIFICIAL (char_type);
+ SET_TYPE_DEBUG_TYPE (char_type, unsigned_char_type);
+
+ /* If this is a subtype, make the debug type a subtype of the debug type
+ of the base type and convert literal RM bounds to unsigned. */
+ if (TREE_TYPE (char_type))
+ {
+ tree base_unsigned_char_type = TYPE_DEBUG_TYPE (TREE_TYPE (char_type));
+ tree min_value = TYPE_RM_MIN_VALUE (char_type);
+ tree max_value = TYPE_RM_MAX_VALUE (char_type);
+
+ if (TREE_CODE (min_value) == INTEGER_CST)
+ min_value = fold_convert (base_unsigned_char_type, min_value);
+ if (TREE_CODE (max_value) == INTEGER_CST)
+ max_value = fold_convert (base_unsigned_char_type, max_value);
+
+ TREE_TYPE (unsigned_char_type) = base_unsigned_char_type;
+ SET_TYPE_RM_MIN_VALUE (unsigned_char_type, min_value);
+ SET_TYPE_RM_MAX_VALUE (unsigned_char_type, max_value);
+ }
+
+ /* Adjust the RM bounds of the original type to unsigned; that's especially
+ important for types since they are implicit in this case. */
+ SET_TYPE_RM_MIN_VALUE (char_type, TYPE_MIN_VALUE (unsigned_char_type));
+ SET_TYPE_RM_MAX_VALUE (char_type, TYPE_MAX_VALUE (unsigned_char_type));
+}
+
+/* Given a record type RECORD_TYPE and a list of FIELD_DECL nodes FIELD_LIST,
+ finish constructing the record type as a fat pointer type. */
+
+void
+finish_fat_pointer_type (tree record_type, tree field_list)
+{
+ /* Make sure we can put it into a register. */
+ if (STRICT_ALIGNMENT)
+ SET_TYPE_ALIGN (record_type, MIN (BIGGEST_ALIGNMENT, 2 * POINTER_SIZE));
+
+ /* Show what it really is. */
+ TYPE_FAT_POINTER_P (record_type) = 1;
+
+ /* Do not emit debug info for it since the types of its fields may still be
+ incomplete at this point. */
+ finish_record_type (record_type, field_list, 0, false);
+
+ /* Force type_contains_placeholder_p to return true on it. Although the
+ PLACEHOLDER_EXPRs are referenced only indirectly, this isn't a pointer
+ type but the representation of the unconstrained array. */
+ TYPE_CONTAINS_PLACEHOLDER_INTERNAL (record_type) = 2;
+}
+
+/* Given a record type RECORD_TYPE and a list of FIELD_DECL nodes FIELD_LIST,
+ finish constructing the record or union type. If REP_LEVEL is zero, this
+ record has no representation clause and so will be entirely laid out here.
+ If REP_LEVEL is one, this record has a representation clause and has been
+ laid out already; only set the sizes and alignment. If REP_LEVEL is two,
+ this record is derived from a parent record and thus inherits its layout;
+ only make a pass on the fields to finalize them. DEBUG_INFO_P is true if
+ additional debug info needs to be output for this type. */
+
+void
+finish_record_type (tree record_type, tree field_list, int rep_level,
+ bool debug_info_p)
+{
+ const enum tree_code orig_code = TREE_CODE (record_type);
+ const bool had_size = TYPE_SIZE (record_type) != NULL_TREE;
+ const bool had_align = TYPE_ALIGN (record_type) > 0;
+ /* For all-repped records with a size specified, lay the QUAL_UNION_TYPE
+ out just like a UNION_TYPE, since the size will be fixed. */
+ const enum tree_code code
+ = (orig_code == QUAL_UNION_TYPE && rep_level > 0 && had_size
+ ? UNION_TYPE : orig_code);
+ tree name = TYPE_IDENTIFIER (record_type);
+ tree ada_size = bitsize_zero_node;
+ tree size = bitsize_zero_node;
+ tree field;
+
+ TYPE_FIELDS (record_type) = field_list;
+
+ /* Always attach the TYPE_STUB_DECL for a record type. It is required to
+ generate debug info and have a parallel type. */
+ TYPE_STUB_DECL (record_type) = create_type_stub_decl (name, record_type);
+
+ /* Globally initialize the record first. If this is a rep'ed record,
+ that just means some initializations; otherwise, layout the record. */
+ if (rep_level > 0)
+ {
+ if (TYPE_ALIGN (record_type) < BITS_PER_UNIT)
+ SET_TYPE_ALIGN (record_type, BITS_PER_UNIT);
+
+ if (!had_size)
+ TYPE_SIZE (record_type) = bitsize_zero_node;
+ }
+ else
+ {
+ /* Ensure there isn't a size already set. There can be in an error
+ case where there is a rep clause but all fields have errors and
+ no longer have a position. */
+ TYPE_SIZE (record_type) = NULL_TREE;
+
+ /* Ensure we use the traditional GCC layout for bitfields when we need
+ to pack the record type or have a representation clause. The other
+ possible layout (Microsoft C compiler), if available, would prevent
+ efficient packing in almost all cases. */
+#ifdef TARGET_MS_BITFIELD_LAYOUT
+ if (TARGET_MS_BITFIELD_LAYOUT && TYPE_PACKED (record_type))
+ decl_attributes (&record_type,
+ tree_cons (get_identifier ("gcc_struct"),
+ NULL_TREE, NULL_TREE),
+ ATTR_FLAG_TYPE_IN_PLACE);
+#endif
+
+ layout_type (record_type);
+ }
+
+ /* At this point, the position and size of each field is known. It was
+ either set before entry by a rep clause, or by laying out the type above.
+
+ We now run a pass over the fields (in reverse order for QUAL_UNION_TYPEs)
+ to compute the Ada size; the GCC size and alignment (for rep'ed records
+ that are not padding types); and the mode (for rep'ed records). We also
+ clear the DECL_BIT_FIELD indication for the cases we know have not been
+ handled yet, and adjust DECL_NONADDRESSABLE_P accordingly. */
+
+ if (code == QUAL_UNION_TYPE)
+ field_list = nreverse (field_list);
+
+ for (field = field_list; field; field = DECL_CHAIN (field))
+ {
+ tree type = TREE_TYPE (field);
+ tree pos = bit_position (field);
+ tree this_size = DECL_SIZE (field);
+ tree this_ada_size;
+
+ if (RECORD_OR_UNION_TYPE_P (type)
+ && !TYPE_FAT_POINTER_P (type)
+ && !TYPE_CONTAINS_TEMPLATE_P (type)
+ && TYPE_ADA_SIZE (type))
+ this_ada_size = TYPE_ADA_SIZE (type);
+ else
+ this_ada_size = this_size;
+
+ const bool variant_part = (TREE_CODE (type) == QUAL_UNION_TYPE);
+
+ /* Clear DECL_BIT_FIELD for the cases layout_decl does not handle. */
+ if (DECL_BIT_FIELD (field)
+ && operand_equal_p (this_size, TYPE_SIZE (type), 0))
+ {
+ const unsigned int align = TYPE_ALIGN (type);
+
+ /* In the general case, type alignment is required. */
+ if (value_factor_p (pos, align))
+ {
+ /* The enclosing record type must be sufficiently aligned.
+ Otherwise, if no alignment was specified for it and it
+ has been laid out already, bump its alignment to the
+ desired one if this is compatible with its size and
+ maximum alignment, if any. */
+ if (TYPE_ALIGN (record_type) >= align)
+ {
+ SET_DECL_ALIGN (field, MAX (DECL_ALIGN (field), align));
+ DECL_BIT_FIELD (field) = 0;
+ }
+ else if (!had_align
+ && rep_level == 0
+ && value_factor_p (TYPE_SIZE (record_type), align)
+ && (!TYPE_MAX_ALIGN (record_type)
+ || TYPE_MAX_ALIGN (record_type) >= align))
+ {
+ SET_TYPE_ALIGN (record_type, align);
+ SET_DECL_ALIGN (field, MAX (DECL_ALIGN (field), align));
+ DECL_BIT_FIELD (field) = 0;
+ }
+ }
+
+ /* In the non-strict alignment case, only byte alignment is. */
+ if (!STRICT_ALIGNMENT
+ && DECL_BIT_FIELD (field)
+ && value_factor_p (pos, BITS_PER_UNIT))
+ DECL_BIT_FIELD (field) = 0;
+ }
+
+ /* Clear DECL_BIT_FIELD_TYPE for a variant part at offset 0, it's simply
+ not supported by the DECL_BIT_FIELD_REPRESENTATIVE machinery because
+ the variant part is always the last field in the list. */
+ if (variant_part && integer_zerop (pos))
+ DECL_BIT_FIELD_TYPE (field) = NULL_TREE;
+
+ /* If we still have DECL_BIT_FIELD set at this point, we know that the
+ field is technically not addressable. Except that it can actually
+ be addressed if it is BLKmode and happens to be properly aligned. */
+ if (DECL_BIT_FIELD (field)
+ && !(DECL_MODE (field) == BLKmode
+ && value_factor_p (pos, BITS_PER_UNIT)))
+ DECL_NONADDRESSABLE_P (field) = 1;
+
+ /* A type must be as aligned as its most aligned field that is not
+ a bit-field. But this is already enforced by layout_type. */
+ if (rep_level > 0 && !DECL_BIT_FIELD (field))
+ SET_TYPE_ALIGN (record_type,
+ MAX (TYPE_ALIGN (record_type), DECL_ALIGN (field)));
+
+ switch (code)
+ {
+ case UNION_TYPE:
+ ada_size = size_binop (MAX_EXPR, ada_size, this_ada_size);
+ size = size_binop (MAX_EXPR, size, this_size);
+ break;
+
+ case QUAL_UNION_TYPE:
+ ada_size
+ = fold_build3 (COND_EXPR, bitsizetype, DECL_QUALIFIER (field),
+ this_ada_size, ada_size);
+ size = fold_build3 (COND_EXPR, bitsizetype, DECL_QUALIFIER (field),
+ this_size, size);
+ break;
+
+ case RECORD_TYPE:
+ /* Since we know here that all fields are sorted in order of
+ increasing bit position, the size of the record is one
+ higher than the ending bit of the last field processed
+ unless we have a rep clause, because we might be processing
+ the REP part of a record with a variant part for which the
+ variant part has a rep clause but not the fixed part, in
+ which case this REP part may contain overlapping fields
+ and thus needs to be treated like a union tyoe above, so
+ use a MAX in that case. Also, if this field is a variant
+ part, we need to take into account the previous size in
+ the case of empty variants. */
+ ada_size
+ = merge_sizes (ada_size, pos, this_ada_size, rep_level > 0,
+ variant_part);
+ size
+ = merge_sizes (size, pos, this_size, rep_level > 0, variant_part);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+
+ if (code == QUAL_UNION_TYPE)
+ nreverse (field_list);
+
+ /* We need to set the regular sizes if REP_LEVEL is one. */
+ if (rep_level == 1)
+ {
+ /* We round TYPE_SIZE and TYPE_SIZE_UNIT up to TYPE_ALIGN separately
+ to avoid having very large masking constants in TYPE_SIZE_UNIT. */
+ const unsigned int align = TYPE_ALIGN (record_type);
+
+ /* If this is a padding record, we never want to make the size smaller
+ than what was specified in it, if any. */
+ if (TYPE_IS_PADDING_P (record_type) && had_size)
+ size = TYPE_SIZE (record_type);
+ else
+ size = round_up (size, BITS_PER_UNIT);
+
+ TYPE_SIZE (record_type) = variable_size (round_up (size, align));
+
+ tree size_unit
+ = convert (sizetype,
+ size_binop (EXACT_DIV_EXPR, size, bitsize_unit_node));
+ TYPE_SIZE_UNIT (record_type)
+ = variable_size (round_up (size_unit, align / BITS_PER_UNIT));
+ }
+
+ /* We need to set the Ada size if REP_LEVEL is zero or one. */
+ if (rep_level < 2)
+ {
+ /* Now set any of the values we've just computed that apply. */
+ if (!TYPE_FAT_POINTER_P (record_type)
+ && !TYPE_CONTAINS_TEMPLATE_P (record_type))
+ SET_TYPE_ADA_SIZE (record_type, ada_size);
+ }
+
+ /* We need to set the mode if REP_LEVEL is one or two. */
+ if (rep_level > 0)
+ {
+ compute_record_mode (record_type);
+ finish_bitfield_layout (record_type);
+ }
+
+ /* Reset the TYPE_MAX_ALIGN field since it's private to gigi. */
+ TYPE_MAX_ALIGN (record_type) = 0;
+
+ if (debug_info_p)
+ rest_of_record_type_compilation (record_type);
+}
+
+/* Append PARALLEL_TYPE on the chain of parallel types of TYPE. If
+ PARRALEL_TYPE has no context and its computation is not deferred yet, also
+ propagate TYPE's context to PARALLEL_TYPE's or defer its propagation to the
+ moment TYPE will get a context. */
+
+void
+add_parallel_type (tree type, tree parallel_type)
+{
+ tree decl = TYPE_STUB_DECL (type);
+
+ while (DECL_PARALLEL_TYPE (decl))
+ decl = TYPE_STUB_DECL (DECL_PARALLEL_TYPE (decl));
+
+ SET_DECL_PARALLEL_TYPE (decl, parallel_type);
+
+ /* If PARALLEL_TYPE already has a context, we are done. */
+ if (TYPE_CONTEXT (parallel_type))
+ return;
+
+ /* Otherwise, try to get one from TYPE's context. If so, simply propagate
+ it to PARALLEL_TYPE. */
+ if (TYPE_CONTEXT (type))
+ gnat_set_type_context (parallel_type, TYPE_CONTEXT (type));
+
+ /* Otherwise TYPE has not context yet. We know it will have one thanks to
+ gnat_pushdecl and then its context will be propagated to PARALLEL_TYPE,
+ so we have nothing to do in this case. */
+}
+
+/* Return true if TYPE has a parallel type. */
+
+static bool
+has_parallel_type (tree type)
+{
+ tree decl = TYPE_STUB_DECL (type);
+
+ return DECL_PARALLEL_TYPE (decl) != NULL_TREE;
+}
+
+/* Wrap up compilation of RECORD_TYPE, i.e. output additional debug info
+ associated with it. It need not be invoked directly in most cases as
+ finish_record_type takes care of doing so. */
+
+void
+rest_of_record_type_compilation (tree record_type)
+{
+ bool var_size = false;
+ tree field;
+
+ /* If this is a padded type, the bulk of the debug info has already been
+ generated for the field's type. */
+ if (TYPE_IS_PADDING_P (record_type))
+ return;
+
+ /* If the type already has a parallel type (XVS type), then we're done. */
+ if (has_parallel_type (record_type))
+ return;
+
+ for (field = TYPE_FIELDS (record_type); field; field = DECL_CHAIN (field))
+ {
+ /* We need to make an XVE/XVU record if any field has variable size,
+ whether or not the record does. For example, if we have a union,
+ it may be that all fields, rounded up to the alignment, have the
+ same size, in which case we'll use that size. But the debug
+ output routines (except Dwarf2) won't be able to output the fields,
+ so we need to make the special record. */
+ if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
+ /* If a field has a non-constant qualifier, the record will have
+ variable size too. */
+ || (TREE_CODE (record_type) == QUAL_UNION_TYPE
+ && TREE_CODE (DECL_QUALIFIER (field)) != INTEGER_CST))
+ {
+ var_size = true;
+ break;
+ }
+ }
+
+ /* If this record type is of variable size, make a parallel record type that
+ will tell the debugger how the former is laid out (see exp_dbug.ads). */
+ if (var_size && gnat_encodings == DWARF_GNAT_ENCODINGS_ALL)
+ {
+ tree new_record_type
+ = make_node (TREE_CODE (record_type) == QUAL_UNION_TYPE
+ ? UNION_TYPE : TREE_CODE (record_type));
+ tree orig_name = TYPE_IDENTIFIER (record_type), new_name;
+ tree last_pos = bitsize_zero_node;
+
+ new_name
+ = concat_name (orig_name, TREE_CODE (record_type) == QUAL_UNION_TYPE
+ ? "XVU" : "XVE");
+ TYPE_NAME (new_record_type) = new_name;
+ SET_TYPE_ALIGN (new_record_type, BIGGEST_ALIGNMENT);
+ TYPE_STUB_DECL (new_record_type)
+ = create_type_stub_decl (new_name, new_record_type);
+ DECL_IGNORED_P (TYPE_STUB_DECL (new_record_type))
+ = DECL_IGNORED_P (TYPE_STUB_DECL (record_type));
+ gnat_pushdecl (TYPE_STUB_DECL (new_record_type), Empty);
+ TYPE_SIZE (new_record_type) = size_int (TYPE_ALIGN (record_type));
+ TYPE_SIZE_UNIT (new_record_type)
+ = size_int (TYPE_ALIGN (record_type) / BITS_PER_UNIT);
+
+ /* Now scan all the fields, replacing each field with a new field
+ corresponding to the new encoding. */
+ for (tree old_field = TYPE_FIELDS (record_type);
+ old_field;
+ old_field = DECL_CHAIN (old_field))
+ {
+ tree field_type = TREE_TYPE (old_field);
+ tree field_name = DECL_NAME (old_field);
+ tree curpos = fold_bit_position (old_field);
+ tree pos, new_field;
+ bool var = false;
+ unsigned int align = 0;
+
+ /* See how the position was modified from the last position.
+
+ There are two basic cases we support: a value was added
+ to the last position or the last position was rounded to
+ a boundary and they something was added. Check for the
+ first case first. If not, see if there is any evidence
+ of rounding. If so, round the last position and retry.
+
+ If this is a union, the position can be taken as zero. */
+ if (TREE_CODE (new_record_type) == UNION_TYPE)
+ pos = bitsize_zero_node;
+ else
+ pos = compute_related_constant (curpos, last_pos);
+
+ if (pos)
+ ;
+ else if (TREE_CODE (curpos) == MULT_EXPR
+ && tree_fits_uhwi_p (TREE_OPERAND (curpos, 1)))
+ {
+ tree offset = TREE_OPERAND (curpos, 0);
+ align = tree_to_uhwi (TREE_OPERAND (curpos, 1));
+ align = scale_by_factor_of (offset, align);
+ last_pos = round_up (last_pos, align);
+ pos = compute_related_constant (curpos, last_pos);
+ }
+ else if (TREE_CODE (curpos) == PLUS_EXPR
+ && tree_fits_uhwi_p (TREE_OPERAND (curpos, 1))
+ && TREE_CODE (TREE_OPERAND (curpos, 0)) == MULT_EXPR
+ && tree_fits_uhwi_p
+ (TREE_OPERAND (TREE_OPERAND (curpos, 0), 1)))
+ {
+ tree offset = TREE_OPERAND (TREE_OPERAND (curpos, 0), 0);
+ unsigned HOST_WIDE_INT addend
+ = tree_to_uhwi (TREE_OPERAND (curpos, 1));
+ align
+ = tree_to_uhwi (TREE_OPERAND (TREE_OPERAND (curpos, 0), 1));
+ align = scale_by_factor_of (offset, align);
+ align = MIN (align, addend & -addend);
+ last_pos = round_up (last_pos, align);
+ pos = compute_related_constant (curpos, last_pos);
+ }
+ else
+ {
+ align = DECL_ALIGN (old_field);
+ last_pos = round_up (last_pos, align);
+ pos = compute_related_constant (curpos, last_pos);
+ }
+
+ /* See if this type is variable-sized and make a pointer type
+ and indicate the indirection if so. Beware that the debug
+ back-end may adjust the position computed above according
+ to the alignment of the field type, i.e. the pointer type
+ in this case, if we don't preventively counter that. */
+ if (TREE_CODE (DECL_SIZE (old_field)) != INTEGER_CST)
+ {
+ field_type = copy_type (build_pointer_type (field_type));
+ SET_TYPE_ALIGN (field_type, BITS_PER_UNIT);
+ var = true;
+
+ /* ??? Kludge to work around a bug in Workbench's debugger. */
+ if (align == 0)
+ {
+ align = DECL_ALIGN (old_field);
+ last_pos = round_up (last_pos, align);
+ pos = compute_related_constant (curpos, last_pos);
+ }
+ }
+
+ /* If we can't compute a position, set it to zero.
+
+ ??? We really should abort here, but it's too much work
+ to get this correct for all cases. */
+ if (!pos)
+ pos = bitsize_zero_node;
+
+ /* Make a new field name, if necessary. */
+ if (var || align != 0)
+ {
+ char suffix[16];
+
+ if (align != 0)
+ sprintf (suffix, "XV%c%u", var ? 'L' : 'A',
+ align / BITS_PER_UNIT);
+ else
+ strcpy (suffix, "XVL");
+
+ field_name = concat_name (field_name, suffix);
+ }
+
+ new_field
+ = create_field_decl (field_name, field_type, new_record_type,
+ DECL_SIZE (old_field), pos, 0, 0);
+ /* The specified position is not the actual position of the field
+ but the gap with the previous field, so the computation of the
+ bit-field status may be incorrect. We adjust it manually to
+ avoid generating useless attributes for the field in DWARF. */
+ if (DECL_SIZE (old_field) == TYPE_SIZE (field_type)
+ && value_factor_p (pos, BITS_PER_UNIT))
+ {
+ DECL_BIT_FIELD (new_field) = 0;
+ DECL_BIT_FIELD_TYPE (new_field) = NULL_TREE;
+ }
+ DECL_CHAIN (new_field) = TYPE_FIELDS (new_record_type);
+ TYPE_FIELDS (new_record_type) = new_field;
+
+ /* If old_field is a QUAL_UNION_TYPE, take its size as being
+ zero. The only time it's not the last field of the record
+ is when there are other components at fixed positions after
+ it (meaning there was a rep clause for every field) and we
+ want to be able to encode them. */
+ last_pos = size_binop (PLUS_EXPR, curpos,
+ (TREE_CODE (TREE_TYPE (old_field))
+ == QUAL_UNION_TYPE)
+ ? bitsize_zero_node
+ : DECL_SIZE (old_field));
+ }
+
+ TYPE_FIELDS (new_record_type) = nreverse (TYPE_FIELDS (new_record_type));
+
+ add_parallel_type (record_type, new_record_type);
+ }
+}
+
+/* Utility function of above to merge LAST_SIZE, the previous size of a record
+ with FIRST_BIT and SIZE that describe a field. If MAX is true, we take the
+ MAX of the end position of this field with LAST_SIZE. In all other cases,
+ we use FIRST_BIT plus SIZE. SPECIAL is true if it's for a QUAL_UNION_TYPE,
+ in which case we must look for COND_EXPRs and replace a value of zero with
+ the old size. Return an expression for the size. */
+
+static tree
+merge_sizes (tree last_size, tree first_bit, tree size, bool max, bool special)
+{
+ tree type = TREE_TYPE (last_size);
+ tree new_size;
+
+ if (!special || TREE_CODE (size) != COND_EXPR)
+ {
+ new_size = size_binop (PLUS_EXPR, first_bit, size);
+ if (max)
+ new_size = size_binop (MAX_EXPR, last_size, new_size);
+ }
+
+ else
+ new_size = fold_build3 (COND_EXPR, type, TREE_OPERAND (size, 0),
+ integer_zerop (TREE_OPERAND (size, 1))
+ ? last_size : merge_sizes (last_size, first_bit,
+ TREE_OPERAND (size, 1),
+ max, special),
+ integer_zerop (TREE_OPERAND (size, 2))
+ ? last_size : merge_sizes (last_size, first_bit,
+ TREE_OPERAND (size, 2),
+ max, special));
+
+ /* We don't need any NON_VALUE_EXPRs and they can confuse us (especially
+ when fed through SUBSTITUTE_IN_EXPR) into thinking that a constant
+ size is not constant. */
+ while (TREE_CODE (new_size) == NON_LVALUE_EXPR)
+ new_size = TREE_OPERAND (new_size, 0);
+
+ return new_size;
+}
+
+/* Convert the size expression EXPR to TYPE and fold the result. */
+
+static tree
+fold_convert_size (tree type, tree expr)
+{
+ /* We assume that size expressions do not wrap around. */
+ if (TREE_CODE (expr) == MULT_EXPR || TREE_CODE (expr) == PLUS_EXPR)
+ return size_binop (TREE_CODE (expr),
+ fold_convert_size (type, TREE_OPERAND (expr, 0)),
+ fold_convert_size (type, TREE_OPERAND (expr, 1)));
+
+ return fold_convert (type, expr);
+}
+
+/* Return the bit position of FIELD, in bits from the start of the record,
+ and fold it as much as possible. This is a tree of type bitsizetype. */
+
+static tree
+fold_bit_position (const_tree field)
+{
+ tree offset = fold_convert_size (bitsizetype, DECL_FIELD_OFFSET (field));
+ return size_binop (PLUS_EXPR, DECL_FIELD_BIT_OFFSET (field),
+ size_binop (MULT_EXPR, offset, bitsize_unit_node));
+}
+
+/* Utility function of above to see if OP0 and OP1, both of SIZETYPE, are
+ related by the addition of a constant. Return that constant if so. */
+
+static tree
+compute_related_constant (tree op0, tree op1)
+{
+ tree factor, op0_var, op1_var, op0_cst, op1_cst, result;
+
+ if (TREE_CODE (op0) == MULT_EXPR
+ && TREE_CODE (op1) == MULT_EXPR
+ && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST
+ && TREE_OPERAND (op1, 1) == TREE_OPERAND (op0, 1))
+ {
+ factor = TREE_OPERAND (op0, 1);
+ op0 = TREE_OPERAND (op0, 0);
+ op1 = TREE_OPERAND (op1, 0);
+ }
+ else
+ factor = NULL_TREE;
+
+ op0_cst = split_plus (op0, &op0_var);
+ op1_cst = split_plus (op1, &op1_var);
+ result = size_binop (MINUS_EXPR, op0_cst, op1_cst);
+
+ if (operand_equal_p (op0_var, op1_var, 0))
+ return factor ? size_binop (MULT_EXPR, factor, result) : result;
+
+ return NULL_TREE;
+}
+
+/* Utility function of above to split a tree OP which may be a sum, into a
+ constant part, which is returned, and a variable part, which is stored
+ in *PVAR. *PVAR may be bitsize_zero_node. All operations must be of
+ bitsizetype. */
+
+static tree
+split_plus (tree in, tree *pvar)
+{
+ /* Strip conversions in order to ease the tree traversal and maximize the
+ potential for constant or plus/minus discovery. We need to be careful
+ to always return and set *pvar to bitsizetype trees, but it's worth
+ the effort. */
+ in = remove_conversions (in, false);
+
+ *pvar = convert (bitsizetype, in);
+
+ if (TREE_CODE (in) == INTEGER_CST)
+ {
+ *pvar = bitsize_zero_node;
+ return convert (bitsizetype, in);
+ }
+ else if (TREE_CODE (in) == PLUS_EXPR || TREE_CODE (in) == MINUS_EXPR)
+ {
+ tree lhs_var, rhs_var;
+ tree lhs_con = split_plus (TREE_OPERAND (in, 0), &lhs_var);
+ tree rhs_con = split_plus (TREE_OPERAND (in, 1), &rhs_var);
+
+ if (lhs_var == TREE_OPERAND (in, 0)
+ && rhs_var == TREE_OPERAND (in, 1))
+ return bitsize_zero_node;
+
+ *pvar = size_binop (TREE_CODE (in), lhs_var, rhs_var);
+ return size_binop (TREE_CODE (in), lhs_con, rhs_con);
+ }
+ else
+ return bitsize_zero_node;
+}
+
+/* Return a copy of TYPE but safe to modify in any way. */
+
+tree
+copy_type (tree type)
+{
+ tree new_type = copy_node (type);
+
+ /* Unshare the language-specific data. */
+ if (TYPE_LANG_SPECIFIC (type))
+ {
+ TYPE_LANG_SPECIFIC (new_type) = NULL;
+ SET_TYPE_LANG_SPECIFIC (new_type, GET_TYPE_LANG_SPECIFIC (type));
+ }
+
+ /* And the contents of the language-specific slot if needed. */
+ if ((INTEGRAL_TYPE_P (type) || SCALAR_FLOAT_TYPE_P (type))
+ && TYPE_RM_VALUES (type))
+ {
+ TYPE_RM_VALUES (new_type) = NULL_TREE;
+ SET_TYPE_RM_SIZE (new_type, TYPE_RM_SIZE (type));
+ SET_TYPE_RM_MIN_VALUE (new_type, TYPE_RM_MIN_VALUE (type));
+ SET_TYPE_RM_MAX_VALUE (new_type, TYPE_RM_MAX_VALUE (type));
+ }
+
+ /* copy_node clears this field instead of copying it, because it is
+ aliased with TREE_CHAIN. */
+ TYPE_STUB_DECL (new_type) = TYPE_STUB_DECL (type);
+
+ TYPE_POINTER_TO (new_type) = NULL_TREE;
+ TYPE_REFERENCE_TO (new_type) = NULL_TREE;
+ TYPE_MAIN_VARIANT (new_type) = new_type;
+ TYPE_NEXT_VARIANT (new_type) = NULL_TREE;
+ TYPE_CANONICAL (new_type) = new_type;
+
+ return new_type;
+}
+
+/* Return a subtype of sizetype with range MIN to MAX and whose
+ TYPE_INDEX_TYPE is INDEX. GNAT_NODE is used for the position
+ of the associated TYPE_DECL. */
+
+tree
+create_index_type (tree min, tree max, tree index, Node_Id gnat_node)
+{
+ /* First build a type for the desired range. */
+ tree type = build_nonshared_range_type (sizetype, min, max);
+
+ /* Then set the index type. */
+ SET_TYPE_INDEX_TYPE (type, index);
+ create_type_decl (NULL_TREE, type, true, false, gnat_node);
+
+ return type;
+}
+
+/* Return a subtype of TYPE with range MIN to MAX. If TYPE is NULL,
+ sizetype is used. */
+
+tree
+create_range_type (tree type, tree min, tree max)
+{
+ tree range_type;
+
+ if (!type)
+ type = sizetype;
+
+ /* First build a type with the base range. */
+ range_type = build_nonshared_range_type (type, TYPE_MIN_VALUE (type),
+ TYPE_MAX_VALUE (type));
+
+ /* Then set the actual range. */
+ SET_TYPE_RM_MIN_VALUE (range_type, min);
+ SET_TYPE_RM_MAX_VALUE (range_type, max);
+
+ return range_type;
+}
+
+/* Return an extra subtype of TYPE with range MIN to MAX. */
+
+tree
+create_extra_subtype (tree type, tree min, tree max)
+{
+ const bool uns = TYPE_UNSIGNED (type);
+ const unsigned prec = TYPE_PRECISION (type);
+ tree subtype = uns ? make_unsigned_type (prec) : make_signed_type (prec);
+
+ TREE_TYPE (subtype) = type;
+ TYPE_EXTRA_SUBTYPE_P (subtype) = 1;
+
+ SET_TYPE_RM_MIN_VALUE (subtype, min);
+ SET_TYPE_RM_MAX_VALUE (subtype, max);
+
+ return subtype;
+}
+
+/* Return a TYPE_DECL node suitable for the TYPE_STUB_DECL field of TYPE.
+ NAME gives the name of the type to be used in the declaration. */
+
+tree
+create_type_stub_decl (tree name, tree type)
+{
+ tree type_decl = build_decl (input_location, TYPE_DECL, name, type);
+ DECL_ARTIFICIAL (type_decl) = 1;
+ TYPE_ARTIFICIAL (type) = 1;
+ return type_decl;
+}
+
+/* Return a TYPE_DECL node for TYPE. NAME gives the name of the type to be
+ used in the declaration. ARTIFICIAL_P is true if the declaration was
+ generated by the compiler. DEBUG_INFO_P is true if we need to write
+ debug information about this type. GNAT_NODE is used for the position
+ of the decl. */
+
+tree
+create_type_decl (tree name, tree type, bool artificial_p, bool debug_info_p,
+ Node_Id gnat_node)
+{
+ enum tree_code code = TREE_CODE (type);
+ bool is_named
+ = TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL;
+ tree type_decl;
+
+ /* Only the builtin TYPE_STUB_DECL should be used for dummy types. */
+ gcc_assert (!TYPE_IS_DUMMY_P (type));
+
+ /* If the type hasn't been named yet, we're naming it; preserve an existing
+ TYPE_STUB_DECL that has been attached to it for some purpose. */
+ if (!is_named && TYPE_STUB_DECL (type))
+ {
+ type_decl = TYPE_STUB_DECL (type);
+ DECL_NAME (type_decl) = name;
+ }
+ else
+ type_decl = build_decl (input_location, TYPE_DECL, name, type);
+
+ DECL_ARTIFICIAL (type_decl) = artificial_p;
+ TYPE_ARTIFICIAL (type) = artificial_p;
+
+ /* Add this decl to the current binding level. */
+ gnat_pushdecl (type_decl, gnat_node);
+
+ /* If we're naming the type, equate the TYPE_STUB_DECL to the name. This
+ causes the name to be also viewed as a "tag" by the debug back-end, with
+ the advantage that no DW_TAG_typedef is emitted for artificial "tagged"
+ types in DWARF.
+
+ Note that if "type" is used as a DECL_ORIGINAL_TYPE, it may be referenced
+ from multiple contexts, and "type_decl" references a copy of it: in such a
+ case, do not mess TYPE_STUB_DECL: we do not want to re-use the TYPE_DECL
+ with the mechanism above. */
+ if (!is_named && type != DECL_ORIGINAL_TYPE (type_decl))
+ TYPE_STUB_DECL (type) = type_decl;
+
+ /* Do not generate debug info for UNCONSTRAINED_ARRAY_TYPE that the
+ back-end doesn't support, and for others if we don't need to. */
+ if (code == UNCONSTRAINED_ARRAY_TYPE || !debug_info_p)
+ DECL_IGNORED_P (type_decl) = 1;
+
+ return type_decl;
+}
+
+/* Return a VAR_DECL or CONST_DECL node.
+
+ NAME gives the name of the variable. ASM_NAME is its assembler name
+ (if provided). TYPE is its data type (a GCC ..._TYPE node). INIT is
+ the GCC tree for an optional initial expression; NULL_TREE if none.
+
+ CONST_FLAG is true if this variable is constant, in which case we might
+ return a CONST_DECL node unless CONST_DECL_ALLOWED_P is false.
+
+ PUBLIC_FLAG is true if this is for a reference to a public entity or for a
+ definition to be made visible outside of the current compilation unit, for
+ instance variable definitions in a package specification.
+
+ EXTERN_FLAG is true when processing an external variable declaration (as
+ opposed to a definition: no storage is to be allocated for the variable).
+
+ STATIC_FLAG is only relevant when not at top level and indicates whether
+ to always allocate storage to the variable.
+
+ VOLATILE_FLAG is true if this variable is declared as volatile.
+
+ ARTIFICIAL_P is true if the variable was generated by the compiler.
+
+ DEBUG_INFO_P is true if we need to write debug information for it.
+
+ ATTR_LIST is the list of attributes to be attached to the variable.
+
+ GNAT_NODE is used for the position of the decl. */
+
+tree
+create_var_decl (tree name, tree asm_name, tree type, tree init,
+ bool const_flag, bool public_flag, bool extern_flag,
+ bool static_flag, bool volatile_flag, bool artificial_p,
+ bool debug_info_p, struct attrib *attr_list,
+ Node_Id gnat_node, bool const_decl_allowed_p)
+{
+ /* Whether the object has static storage duration, either explicitly or by
+ virtue of being declared at the global level. */
+ const bool static_storage = static_flag || global_bindings_p ();
+
+ /* Whether the initializer is constant: for an external object or an object
+ with static storage duration, we check that the initializer is a valid
+ constant expression for initializing a static variable; otherwise, we
+ only check that it is constant. */
+ const bool init_const
+ = (init
+ && gnat_types_compatible_p (type, TREE_TYPE (init))
+ && (extern_flag || static_storage
+ ? initializer_constant_valid_p (init, TREE_TYPE (init))
+ != NULL_TREE
+ : TREE_CONSTANT (init)));
+
+ /* Whether we will make TREE_CONSTANT the DECL we produce here, in which
+ case the initializer may be used in lieu of the DECL node (as done in
+ Identifier_to_gnu). This is useful to prevent the need of elaboration
+ code when an identifier for which such a DECL is made is in turn used
+ as an initializer. We used to rely on CONST_DECL vs VAR_DECL for this,
+ but extra constraints apply to this choice (see below) and they are not
+ relevant to the distinction we wish to make. */
+ const bool constant_p = const_flag && init_const;
+
+ /* The actual DECL node. CONST_DECL was initially intended for enumerals
+ and may be used for scalars in general but not for aggregates. */
+ tree var_decl
+ = build_decl (input_location,
+ (constant_p
+ && const_decl_allowed_p
+ && !AGGREGATE_TYPE_P (type) ? CONST_DECL : VAR_DECL),
+ name, type);
+
+ /* Detect constants created by the front-end to hold 'reference to function
+ calls for stabilization purposes. This is needed for renaming. */
+ if (const_flag && init && POINTER_TYPE_P (type))
+ {
+ tree inner = init;
+ if (TREE_CODE (inner) == COMPOUND_EXPR)
+ inner = TREE_OPERAND (inner, 1);
+ inner = remove_conversions (inner, true);
+ if (TREE_CODE (inner) == ADDR_EXPR
+ && ((TREE_CODE (TREE_OPERAND (inner, 0)) == CALL_EXPR
+ && !call_is_atomic_load (TREE_OPERAND (inner, 0)))
+ || (TREE_CODE (TREE_OPERAND (inner, 0)) == VAR_DECL
+ && DECL_RETURN_VALUE_P (TREE_OPERAND (inner, 0)))))
+ DECL_RETURN_VALUE_P (var_decl) = 1;
+ }
+
+ /* If this is external, throw away any initializations (they will be done
+ elsewhere) unless this is a constant for which we would like to remain
+ able to get the initializer. If we are defining a global here, leave a
+ constant initialization and save any variable elaborations for the
+ elaboration routine. If we are just annotating types, throw away the
+ initialization if it isn't a constant. */
+ if ((extern_flag && !constant_p)
+ || (type_annotate_only && init && !TREE_CONSTANT (init)))
+ init = NULL_TREE;
+
+ /* At the global level, a non-constant initializer generates elaboration
+ statements. Check that such statements are allowed, that is to say,
+ not violating a No_Elaboration_Code restriction. */
+ if (init && !init_const && global_bindings_p ())
+ Check_Elaboration_Code_Allowed (gnat_node);
+
+ /* Attach the initializer, if any. */
+ DECL_INITIAL (var_decl) = init;
+
+ /* Directly set some flags. */
+ DECL_ARTIFICIAL (var_decl) = artificial_p;
+ DECL_EXTERNAL (var_decl) = extern_flag;
+
+ TREE_CONSTANT (var_decl) = constant_p;
+ TREE_READONLY (var_decl) = const_flag;
+
+ /* The object is public if it is external or if it is declared public
+ and has static storage duration. */
+ TREE_PUBLIC (var_decl) = extern_flag || (public_flag && static_storage);
+
+ /* We need to allocate static storage for an object with static storage
+ duration if it isn't external. */
+ TREE_STATIC (var_decl) = !extern_flag && static_storage;
+
+ TREE_SIDE_EFFECTS (var_decl)
+ = TREE_THIS_VOLATILE (var_decl)
+ = TYPE_VOLATILE (type) | volatile_flag;
+
+ if (TREE_SIDE_EFFECTS (var_decl))
+ TREE_ADDRESSABLE (var_decl) = 1;
+
+ /* Ada doesn't feature Fortran-like COMMON variables so we shouldn't
+ try to fiddle with DECL_COMMON. However, on platforms that don't
+ support global BSS sections, uninitialized global variables would
+ go in DATA instead, thus increasing the size of the executable. */
+ if (!flag_no_common
+ && TREE_CODE (var_decl) == VAR_DECL
+ && TREE_PUBLIC (var_decl)
+ && !have_global_bss_p ())
+ DECL_COMMON (var_decl) = 1;
+
+ /* Do not emit debug info if not requested, or for an external constant whose
+ initializer is not absolute because this would require a global relocation
+ in a read-only section which runs afoul of the PE-COFF run-time relocation
+ mechanism. */
+ if (!debug_info_p
+ || (extern_flag
+ && constant_p
+ && init
+ && initializer_constant_valid_p (init, TREE_TYPE (init))
+ != null_pointer_node))
+ DECL_IGNORED_P (var_decl) = 1;
+
+ /* ??? Some attributes cannot be applied to CONST_DECLs. */
+ if (TREE_CODE (var_decl) == VAR_DECL)
+ process_attributes (&var_decl, &attr_list, true, gnat_node);
+
+ /* Add this decl to the current binding level. */
+ gnat_pushdecl (var_decl, gnat_node);
+
+ if (TREE_CODE (var_decl) == VAR_DECL && asm_name)
+ {
+ /* Let the target mangle the name if this isn't a verbatim asm. */
+ if (*IDENTIFIER_POINTER (asm_name) != '*')
+ asm_name = targetm.mangle_decl_assembler_name (var_decl, asm_name);
+
+ SET_DECL_ASSEMBLER_NAME (var_decl, asm_name);
+ }
+
+ return var_decl;
+}
+
+/* Return true if TYPE, an aggregate type, contains (or is) an array. */
+
+static bool
+aggregate_type_contains_array_p (tree type)
+{
+ switch (TREE_CODE (type))
+ {
+ case RECORD_TYPE:
+ case UNION_TYPE:
+ case QUAL_UNION_TYPE:
+ {
+ tree field;
+ for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
+ if (AGGREGATE_TYPE_P (TREE_TYPE (field))
+ && aggregate_type_contains_array_p (TREE_TYPE (field)))
+ return true;
+ return false;
+ }
+
+ case ARRAY_TYPE:
+ return true;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Return true if TYPE is a type with variable size or a padding type with a
+ field of variable size or a record that has a field with such a type. */
+
+bool
+type_has_variable_size (tree type)
+{
+ tree field;
+
+ if (!TREE_CONSTANT (TYPE_SIZE (type)))
+ return true;
+
+ if (TYPE_IS_PADDING_P (type)
+ && !TREE_CONSTANT (DECL_SIZE (TYPE_FIELDS (type))))
+ return true;
+
+ if (!RECORD_OR_UNION_TYPE_P (type))
+ return false;
+
+ for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
+ if (type_has_variable_size (TREE_TYPE (field)))
+ return true;
+
+ return false;
+}
+
+/* Return a FIELD_DECL node. NAME is the field's name, TYPE is its type and
+ RECORD_TYPE is the type of the enclosing record. If SIZE is nonzero, it
+ is the specified size of the field. If POS is nonzero, it is the bit
+ position. PACKED is 1 if the enclosing record is packed, -1 if it has
+ Component_Alignment of Storage_Unit. If ADDRESSABLE is nonzero, it
+ means we are allowed to take the address of the field; if it is negative,
+ we should not make a bitfield, which is used by make_aligning_type. */
+
+tree
+create_field_decl (tree name, tree type, tree record_type, tree size, tree pos,
+ int packed, int addressable)
+{
+ tree field_decl = build_decl (input_location, FIELD_DECL, name, type);
+
+ DECL_CONTEXT (field_decl) = record_type;
+ TREE_READONLY (field_decl) = TYPE_READONLY (type);
+
+ /* If a size is specified, use it. Otherwise, if the record type is packed
+ compute a size to use, which may differ from the object's natural size.
+ We always set a size in this case to trigger the checks for bitfield
+ creation below, which is typically required when no position has been
+ specified. */
+ if (size)
+ size = convert (bitsizetype, size);
+ else if (packed == 1)
+ {
+ size = rm_size (type);
+ if (TYPE_MODE (type) == BLKmode)
+ size = round_up (size, BITS_PER_UNIT);
+ }
+
+ /* If we may, according to ADDRESSABLE, then make a bitfield when the size
+ is specified for two reasons: first, when it differs from the natural
+ size; second, when the alignment is insufficient.
+
+ We never make a bitfield if the type of the field has a nonconstant size,
+ because no such entity requiring bitfield operations should reach here.
+
+ We do *preventively* make a bitfield when there might be the need for it
+ but we don't have all the necessary information to decide, as is the case
+ of a field in a packed record.
+
+ We also don't look at STRICT_ALIGNMENT here, and rely on later processing
+ in layout_decl or finish_record_type to clear the bit_field indication if
+ it is in fact not needed. */
+ if (addressable >= 0
+ && size
+ && TREE_CODE (size) == INTEGER_CST
+ && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
+ && (packed
+ || !tree_int_cst_equal (size, TYPE_SIZE (type))
+ || (pos && !value_factor_p (pos, TYPE_ALIGN (type)))
+ || (TYPE_ALIGN (record_type)
+ && TYPE_ALIGN (record_type) < TYPE_ALIGN (type))))
+ {
+ DECL_BIT_FIELD (field_decl) = 1;
+ DECL_SIZE (field_decl) = size;
+ if (!packed && !pos)
+ {
+ if (TYPE_ALIGN (record_type)
+ && TYPE_ALIGN (record_type) < TYPE_ALIGN (type))
+ SET_DECL_ALIGN (field_decl, TYPE_ALIGN (record_type));
+ else
+ SET_DECL_ALIGN (field_decl, TYPE_ALIGN (type));
+ }
+ }
+
+ DECL_PACKED (field_decl) = pos ? DECL_BIT_FIELD (field_decl) : packed;
+
+ /* If FIELD_TYPE has BLKmode, we must ensure this is aligned to at least
+ a byte boundary since GCC cannot handle less aligned BLKmode bitfields.
+ Likewise if it has a variable size and no specified position because
+ variable-sized objects need to be aligned to at least a byte boundary.
+ Likewise for an aggregate without specified position that contains an
+ array because, in this case, slices of variable length of this array
+ must be handled by GCC and have variable size. */
+ if (packed && (TYPE_MODE (type) == BLKmode
+ || (!pos && type_has_variable_size (type))
+ || (!pos
+ && AGGREGATE_TYPE_P (type)
+ && aggregate_type_contains_array_p (type))))
+ SET_DECL_ALIGN (field_decl, BITS_PER_UNIT);
+
+ /* Bump the alignment if need be, either for bitfield/packing purposes or
+ to satisfy the type requirements if no such considerations apply. When
+ we get the alignment from the type, indicate if this is from an explicit
+ user request, which prevents stor-layout from lowering it later on. */
+ else
+ {
+ const unsigned int field_align
+ = DECL_BIT_FIELD (field_decl)
+ ? 1
+ : packed
+ ? BITS_PER_UNIT
+ : 0;
+
+ if (field_align > DECL_ALIGN (field_decl))
+ SET_DECL_ALIGN (field_decl, field_align);
+ else if (!field_align && TYPE_ALIGN (type) > DECL_ALIGN (field_decl))
+ {
+ SET_DECL_ALIGN (field_decl, TYPE_ALIGN (type));
+ DECL_USER_ALIGN (field_decl) = TYPE_USER_ALIGN (type);
+ }
+ }
+
+ if (pos)
+ {
+ /* We need to pass in the alignment the DECL is known to have.
+ This is the lowest-order bit set in POS, but no more than
+ the alignment of the record, if one is specified. Note
+ that an alignment of 0 is taken as infinite. */
+ unsigned int known_align;
+
+ if (tree_fits_uhwi_p (pos))
+ known_align = tree_to_uhwi (pos) & -tree_to_uhwi (pos);
+ else
+ known_align = BITS_PER_UNIT;
+
+ if (TYPE_ALIGN (record_type)
+ && (known_align == 0 || known_align > TYPE_ALIGN (record_type)))
+ known_align = TYPE_ALIGN (record_type);
+
+ layout_decl (field_decl, known_align);
+ SET_DECL_OFFSET_ALIGN (field_decl,
+ tree_fits_uhwi_p (pos)
+ ? BIGGEST_ALIGNMENT : BITS_PER_UNIT);
+ pos_from_bit (&DECL_FIELD_OFFSET (field_decl),
+ &DECL_FIELD_BIT_OFFSET (field_decl),
+ DECL_OFFSET_ALIGN (field_decl), pos);
+ }
+
+ /* In addition to what our caller says, claim the field is addressable if we
+ know that its type is not suitable.
+
+ The field may also be "technically" nonaddressable, meaning that even if
+ we attempt to take the field's address we will actually get the address
+ of a copy. This is the case for true bitfields, but the DECL_BIT_FIELD
+ value we have at this point is not accurate enough, so we don't account
+ for this here and let finish_record_type decide. */
+ if (!addressable && !type_for_nonaliased_component_p (type))
+ addressable = 1;
+
+ /* Note that there is a trade-off in making a field nonaddressable because
+ this will cause type-based alias analysis to use the same alias set for
+ accesses to the field as for accesses to the whole record: while doing
+ so will make it more likely to disambiguate accesses to other objects
+ and accesses to the field, it will make it less likely to disambiguate
+ accesses to the other fields of the record and accesses to the field.
+ If the record is fully static, then the trade-off is irrelevant since
+ the fields of the record can always be disambiguated by their offsets
+ but, if the record is dynamic, then it can become problematic. */
+ DECL_NONADDRESSABLE_P (field_decl) = !addressable;
+
+ return field_decl;
+}
+
+/* Return a PARM_DECL node with NAME and TYPE. */
+
+tree
+create_param_decl (tree name, tree type)
+{
+ tree param_decl = build_decl (input_location, PARM_DECL, name, type);
+
+ /* Honor TARGET_PROMOTE_PROTOTYPES like the C compiler, as not doing so
+ can lead to various ABI violations. */
+ if (targetm.calls.promote_prototypes (NULL_TREE)
+ && INTEGRAL_TYPE_P (type)
+ && TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node))
+ {
+ /* We have to be careful about biased types here. Make a subtype
+ of integer_type_node with the proper biasing. */
+ if (TREE_CODE (type) == INTEGER_TYPE
+ && TYPE_BIASED_REPRESENTATION_P (type))
+ {
+ tree subtype
+ = make_unsigned_type (TYPE_PRECISION (integer_type_node));
+ TREE_TYPE (subtype) = integer_type_node;
+ TYPE_BIASED_REPRESENTATION_P (subtype) = 1;
+ SET_TYPE_RM_MIN_VALUE (subtype, TYPE_MIN_VALUE (type));
+ SET_TYPE_RM_MAX_VALUE (subtype, TYPE_MAX_VALUE (type));
+ type = subtype;
+ }
+ else
+ type = integer_type_node;
+ }
+
+ DECL_ARG_TYPE (param_decl) = type;
+ return param_decl;
+}
+
+/* Process the attributes in ATTR_LIST for NODE, which is either a DECL or
+ a TYPE. If IN_PLACE is true, the tree pointed to by NODE should not be
+ changed. GNAT_NODE is used for the position of error messages. */
+
+void
+process_attributes (tree *node, struct attrib **attr_list, bool in_place,
+ Node_Id gnat_node)
+{
+ struct attrib *attr;
+
+ for (attr = *attr_list; attr; attr = attr->next)
+ switch (attr->type)
+ {
+ case ATTR_MACHINE_ATTRIBUTE:
+ Sloc_to_locus (Sloc (gnat_node), &input_location);
+ decl_attributes (node, tree_cons (attr->name, attr->args, NULL_TREE),
+ in_place ? ATTR_FLAG_TYPE_IN_PLACE : 0);
+ break;
+
+ case ATTR_LINK_ALIAS:
+ if (!DECL_EXTERNAL (*node))
+ {
+ TREE_STATIC (*node) = 1;
+ assemble_alias (*node, attr->name);
+ }
+ break;
+
+ case ATTR_WEAK_EXTERNAL:
+ if (SUPPORTS_WEAK)
+ declare_weak (*node);
+ else
+ post_error ("?weak declarations not supported on this target",
+ attr->error_point);
+ break;
+
+ case ATTR_LINK_SECTION:
+ if (targetm_common.have_named_sections)
+ {
+ set_decl_section_name (*node, IDENTIFIER_POINTER (attr->name));
+ DECL_COMMON (*node) = 0;
+ }
+ else
+ post_error ("?section attributes are not supported for this target",
+ attr->error_point);
+ break;
+
+ case ATTR_LINK_CONSTRUCTOR:
+ DECL_STATIC_CONSTRUCTOR (*node) = 1;
+ TREE_USED (*node) = 1;
+ break;
+
+ case ATTR_LINK_DESTRUCTOR:
+ DECL_STATIC_DESTRUCTOR (*node) = 1;
+ TREE_USED (*node) = 1;
+ break;
+
+ case ATTR_THREAD_LOCAL_STORAGE:
+ set_decl_tls_model (*node, decl_default_tls_model (*node));
+ DECL_COMMON (*node) = 0;
+ break;
+ }
+
+ *attr_list = NULL;
+}
+
+/* Return true if VALUE is a known to be a multiple of FACTOR, which must be
+ a power of 2. */
+
+bool
+value_factor_p (tree value, unsigned HOST_WIDE_INT factor)
+{
+ gcc_checking_assert (pow2p_hwi (factor));
+
+ if (tree_fits_uhwi_p (value))
+ return (tree_to_uhwi (value) & (factor - 1)) == 0;
+
+ if (TREE_CODE (value) == MULT_EXPR)
+ return (value_factor_p (TREE_OPERAND (value, 0), factor)
+ || value_factor_p (TREE_OPERAND (value, 1), factor));
+
+ return false;
+}
+
+/* Defer the initialization of DECL's DECL_CONTEXT attribute, scheduling to
+ feed it with the elaboration of GNAT_SCOPE. */
+
+static struct deferred_decl_context_node *
+add_deferred_decl_context (tree decl, Entity_Id gnat_scope, int force_global)
+{
+ struct deferred_decl_context_node *new_node;
+
+ new_node
+ = (struct deferred_decl_context_node * ) xmalloc (sizeof (*new_node));
+ new_node->decl = decl;
+ new_node->gnat_scope = gnat_scope;
+ new_node->force_global = force_global;
+ new_node->types.create (1);
+ new_node->next = deferred_decl_context_queue;
+ deferred_decl_context_queue = new_node;
+ return new_node;
+}
+
+/* Defer the initialization of TYPE's TYPE_CONTEXT attribute, scheduling to
+ feed it with the DECL_CONTEXT computed as part of N as soon as it is
+ computed. */
+
+static void
+add_deferred_type_context (struct deferred_decl_context_node *n, tree type)
+{
+ n->types.safe_push (type);
+}
+
+/* Get the GENERIC node corresponding to GNAT_SCOPE, if available. Return
+ NULL_TREE if it is not available. */
+
+static tree
+compute_deferred_decl_context (Entity_Id gnat_scope)
+{
+ tree context;
+
+ if (present_gnu_tree (gnat_scope))
+ context = get_gnu_tree (gnat_scope);
+ else
+ return NULL_TREE;
+
+ if (TREE_CODE (context) == TYPE_DECL)
+ {
+ tree context_type = TREE_TYPE (context);
+
+ /* Skip dummy types: only the final ones can appear in the context
+ chain. */
+ if (TYPE_DUMMY_P (context_type))
+ return NULL_TREE;
+
+ /* ..._TYPE nodes are more useful than TYPE_DECL nodes in the context
+ chain. */
+ else
+ context = context_type;
+ }
+
+ return context;
+}
+
+/* Try to process all deferred nodes in the queue. Keep in the queue the ones
+ that cannot be processed yet, remove the other ones. If FORCE is true,
+ force the processing for all nodes, use the global context when nodes don't
+ have a GNU translation. */
+
+void
+process_deferred_decl_context (bool force)
+{
+ struct deferred_decl_context_node **it = &deferred_decl_context_queue;
+ struct deferred_decl_context_node *node;
+
+ while (*it)
+ {
+ bool processed = false;
+ tree context = NULL_TREE;
+ Entity_Id gnat_scope;
+
+ node = *it;
+
+ /* If FORCE, get the innermost elaborated scope. Otherwise, just try to
+ get the first scope. */
+ gnat_scope = node->gnat_scope;
+ while (Present (gnat_scope))
+ {
+ context = compute_deferred_decl_context (gnat_scope);
+ if (!force || context)
+ break;
+ gnat_scope = get_debug_scope (gnat_scope, NULL);
+ }
+
+ /* Imported declarations must not be in a local context (i.e. not inside
+ a function). */
+ if (context && node->force_global > 0)
+ {
+ tree ctx = context;
+
+ while (ctx)
+ {
+ gcc_assert (TREE_CODE (ctx) != FUNCTION_DECL);
+ ctx = DECL_P (ctx) ? DECL_CONTEXT (ctx) : TYPE_CONTEXT (ctx);
+ }
+ }
+
+ /* If FORCE, we want to get rid of all nodes in the queue: in case there
+ was no elaborated scope, use the global context. */
+ if (force && !context)
+ context = get_global_context ();
+
+ if (context)
+ {
+ tree t;
+ int i;
+
+ DECL_CONTEXT (node->decl) = context;
+
+ /* Propagate it to the TYPE_CONTEXT attributes of the requested
+ ..._TYPE nodes. */
+ FOR_EACH_VEC_ELT (node->types, i, t)
+ {
+ gnat_set_type_context (t, context);
+ }
+ processed = true;
+ }
+
+ /* If this node has been successfuly processed, remove it from the
+ queue. Then move to the next node. */
+ if (processed)
+ {
+ *it = node->next;
+ node->types.release ();
+ free (node);
+ }
+ else
+ it = &node->next;
+ }
+}
+
+/* Return VALUE scaled by the biggest power-of-2 factor of EXPR. */
+
+static unsigned int
+scale_by_factor_of (tree expr, unsigned int value)
+{
+ unsigned HOST_WIDE_INT addend = 0;
+ unsigned HOST_WIDE_INT factor = 1;
+
+ /* Peel conversions around EXPR and try to extract bodies from function
+ calls: it is possible to get the scale factor from size functions. */
+ expr = remove_conversions (expr, true);
+ if (TREE_CODE (expr) == CALL_EXPR)
+ expr = maybe_inline_call_in_expr (expr);
+
+ /* Sometimes we get PLUS_EXPR (BIT_AND_EXPR (..., X), Y), where Y is a
+ multiple of the scale factor we are looking for. */
+ if (TREE_CODE (expr) == PLUS_EXPR
+ && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
+ && tree_fits_uhwi_p (TREE_OPERAND (expr, 1)))
+ {
+ addend = TREE_INT_CST_LOW (TREE_OPERAND (expr, 1));
+ expr = TREE_OPERAND (expr, 0);
+ }
+
+ /* An expression which is a bitwise AND with a mask has a power-of-2 factor
+ corresponding to the number of trailing zeros of the mask. */
+ if (TREE_CODE (expr) == BIT_AND_EXPR
+ && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST)
+ {
+ unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (TREE_OPERAND (expr, 1));
+ unsigned int i = 0;
+
+ while ((mask & 1) == 0 && i < HOST_BITS_PER_WIDE_INT)
+ {
+ mask >>= 1;
+ factor *= 2;
+ i++;
+ }
+ }
+
+ /* If the addend is not a multiple of the factor we found, give up. In
+ theory we could find a smaller common factor but it's useless for our
+ needs. This situation arises when dealing with a field F1 with no
+ alignment requirement but that is following a field F2 with such
+ requirements. As long as we have F2's offset, we don't need alignment
+ information to compute F1's. */
+ if (addend % factor != 0)
+ factor = 1;
+
+ return factor * value;
+}
+
+/* Return a LABEL_DECL with NAME. GNAT_NODE is used for the position of
+ the decl. */
+
+tree
+create_label_decl (tree name, Node_Id gnat_node)
+{
+ tree label_decl
+ = build_decl (input_location, LABEL_DECL, name, void_type_node);
+
+ SET_DECL_MODE (label_decl, VOIDmode);
+
+ /* Add this decl to the current binding level. */
+ gnat_pushdecl (label_decl, gnat_node);
+
+ return label_decl;
+}
+
+/* Return a FUNCTION_DECL node. NAME is the name of the subprogram, ASM_NAME
+ its assembler name, TYPE its type (a FUNCTION_TYPE or METHOD_TYPE node),
+ PARAM_DECL_LIST the list of its parameters (a list of PARM_DECL nodes
+ chained through the DECL_CHAIN field).
+
+ INLINE_STATUS describes the inline flags to be set on the FUNCTION_DECL.
+
+ PUBLIC_FLAG is true if this is for a reference to a public entity or for a
+ definition to be made visible outside of the current compilation unit.
+
+ EXTERN_FLAG is true when processing an external subprogram declaration.
+
+ ARTIFICIAL_P is true if the subprogram was generated by the compiler.
+
+ DEBUG_INFO_P is true if we need to write debug information for it.
+
+ DEFINITION is true if the subprogram is to be considered as a definition.
+
+ ATTR_LIST is the list of attributes to be attached to the subprogram.
+
+ GNAT_NODE is used for the position of the decl. */
+
+tree
+create_subprog_decl (tree name, tree asm_name, tree type, tree param_decl_list,
+ enum inline_status_t inline_status, bool public_flag,
+ bool extern_flag, bool artificial_p, bool debug_info_p,
+ bool definition, struct attrib *attr_list,
+ Node_Id gnat_node)
+{
+ tree subprog_decl = build_decl (input_location, FUNCTION_DECL, name, type);
+ DECL_ARGUMENTS (subprog_decl) = param_decl_list;
+
+ DECL_ARTIFICIAL (subprog_decl) = artificial_p;
+ DECL_EXTERNAL (subprog_decl) = extern_flag;
+ DECL_FUNCTION_IS_DEF (subprog_decl) = definition;
+ DECL_IGNORED_P (subprog_decl) = !debug_info_p;
+ TREE_PUBLIC (subprog_decl) = public_flag;
+
+ switch (inline_status)
+ {
+ case is_suppressed:
+ DECL_UNINLINABLE (subprog_decl) = 1;
+ break;
+
+ case is_default:
+ break;
+
+ case is_required:
+ if (Back_End_Inlining)
+ {
+ decl_attributes (&subprog_decl,
+ tree_cons (get_identifier ("always_inline"),
+ NULL_TREE, NULL_TREE),
+ ATTR_FLAG_TYPE_IN_PLACE);
+
+ /* Inline_Always guarantees that every direct call is inlined and
+ that there is no indirect reference to the subprogram, so the
+ instance in the original package (as well as its clones in the
+ client packages created for inter-unit inlining) can be made
+ private, which causes the out-of-line body to be eliminated. */
+ TREE_PUBLIC (subprog_decl) = 0;
+ }
+
+ /* ... fall through ... */
+
+ case is_prescribed:
+ DECL_DISREGARD_INLINE_LIMITS (subprog_decl) = 1;
+
+ /* ... fall through ... */
+
+ case is_requested:
+ DECL_DECLARED_INLINE_P (subprog_decl) = 1;
+ if (!Debug_Generated_Code)
+ DECL_NO_INLINE_WARNING_P (subprog_decl) = artificial_p;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ process_attributes (&subprog_decl, &attr_list, true, gnat_node);
+
+ /* Once everything is processed, finish the subprogram declaration. */
+ finish_subprog_decl (subprog_decl, asm_name, type);
+
+ /* Add this decl to the current binding level. */
+ gnat_pushdecl (subprog_decl, gnat_node);
+
+ /* Output the assembler code and/or RTL for the declaration. */
+ rest_of_decl_compilation (subprog_decl, global_bindings_p (), 0);
+
+ return subprog_decl;
+}
+
+/* Given a subprogram declaration DECL, its assembler name and its type,
+ finish constructing the subprogram declaration from ASM_NAME and TYPE. */
+
+void
+finish_subprog_decl (tree decl, tree asm_name, tree type)
+{
+ /* DECL_ARGUMENTS is set by the caller, but not its context. */
+ for (tree param_decl = DECL_ARGUMENTS (decl);
+ param_decl;
+ param_decl = DECL_CHAIN (param_decl))
+ DECL_CONTEXT (param_decl) = decl;
+
+ tree result_decl
+ = build_decl (DECL_SOURCE_LOCATION (decl), RESULT_DECL, NULL_TREE,
+ TREE_TYPE (type));
+
+ DECL_ARTIFICIAL (result_decl) = 1;
+ DECL_IGNORED_P (result_decl) = 1;
+ DECL_CONTEXT (result_decl) = decl;
+ DECL_BY_REFERENCE (result_decl) = TREE_ADDRESSABLE (type);
+ DECL_RESULT (decl) = result_decl;
+
+ /* Propagate the "pure" property. */
+ DECL_PURE_P (decl) = TYPE_RESTRICT (type);
+
+ /* Propagate the "noreturn" property. */
+ TREE_THIS_VOLATILE (decl) = TYPE_VOLATILE (type);
+
+ if (asm_name)
+ {
+ /* Let the target mangle the name if this isn't a verbatim asm. */
+ if (*IDENTIFIER_POINTER (asm_name) != '*')
+ asm_name = targetm.mangle_decl_assembler_name (decl, asm_name);
+
+ SET_DECL_ASSEMBLER_NAME (decl, asm_name);
+
+ /* The expand_main_function circuitry expects "main_identifier_node" to
+ designate the DECL_NAME of the 'main' entry point, in turn expected
+ to be declared as the "main" function literally by default. Ada
+ program entry points are typically declared with a different name
+ within the binder generated file, exported as 'main' to satisfy the
+ system expectations. Force main_identifier_node in this case. */
+ if (asm_name == main_identifier_node)
+ DECL_NAME (decl) = main_identifier_node;
+ }
+}
+
+/* Set up the framework for generating code for SUBPROG_DECL, a subprogram
+ body. This routine needs to be invoked before processing the declarations
+ appearing in the subprogram. */
+
+void
+begin_subprog_body (tree subprog_decl)
+{
+ announce_function (subprog_decl);
+
+ /* This function is being defined. */
+ TREE_STATIC (subprog_decl) = 1;
+
+ /* The failure of this assertion will likely come from a wrong context for
+ the subprogram body, e.g. another procedure for a procedure declared at
+ library level. */
+ gcc_assert (current_function_decl == decl_function_context (subprog_decl));
+
+ current_function_decl = subprog_decl;
+
+ /* Enter a new binding level and show that all the parameters belong to
+ this function. */
+ gnat_pushlevel ();
+}
+
+/* Finish translating the current subprogram and set its BODY. */
+
+void
+end_subprog_body (tree body)
+{
+ tree fndecl = current_function_decl;
+
+ /* Attach the BLOCK for this level to the function and pop the level. */
+ BLOCK_SUPERCONTEXT (current_binding_level->block) = fndecl;
+ DECL_INITIAL (fndecl) = current_binding_level->block;
+ gnat_poplevel ();
+
+ /* The body should be a BIND_EXPR whose BLOCK is the top-level one. */
+ if (TREE_CODE (body) == BIND_EXPR)
+ {
+ BLOCK_SUPERCONTEXT (BIND_EXPR_BLOCK (body)) = fndecl;
+ DECL_INITIAL (fndecl) = BIND_EXPR_BLOCK (body);
+ }
+
+ DECL_SAVED_TREE (fndecl) = body;
+
+ current_function_decl = decl_function_context (fndecl);
+}
+
+/* Wrap up compilation of SUBPROG_DECL, a subprogram body. */
+
+void
+rest_of_subprog_body_compilation (tree subprog_decl)
+{
+ /* We cannot track the location of errors past this point. */
+ Current_Error_Node = Empty;
+
+ /* If we're only annotating types, don't actually compile this function. */
+ if (type_annotate_only)
+ return;
+
+ /* Dump functions before gimplification. */
+ dump_function (TDI_original, subprog_decl);
+
+ if (!decl_function_context (subprog_decl))
+ cgraph_node::finalize_function (subprog_decl, false);
+ else
+ /* Register this function with cgraph just far enough to get it
+ added to our parent's nested function list. */
+ (void) cgraph_node::get_create (subprog_decl);
+}
+
+tree
+gnat_builtin_function (tree decl)
+{
+ gnat_pushdecl (decl, Empty);
+ return decl;
+}
+
+/* Return an integer type with the number of bits of precision given by
+ PRECISION. UNSIGNEDP is nonzero if the type is unsigned; otherwise
+ it is a signed type. */
+
+tree
+gnat_type_for_size (unsigned precision, int unsignedp)
+{
+ tree t;
+ char type_name[20];
+
+ if (precision <= 2 * MAX_BITS_PER_WORD
+ && signed_and_unsigned_types[precision][unsignedp])
+ return signed_and_unsigned_types[precision][unsignedp];
+
+ if (unsignedp)
+ t = make_unsigned_type (precision);
+ else
+ t = make_signed_type (precision);
+ TYPE_ARTIFICIAL (t) = 1;
+
+ if (precision <= 2 * MAX_BITS_PER_WORD)
+ signed_and_unsigned_types[precision][unsignedp] = t;
+
+ if (!TYPE_NAME (t))
+ {
+ sprintf (type_name, "%sSIGNED_%u", unsignedp ? "UN" : "", precision);
+ TYPE_NAME (t) = get_identifier (type_name);
+ }
+
+ return t;
+}
+
+/* Likewise for floating-point types. */
+
+static tree
+float_type_for_precision (int precision, machine_mode mode)
+{
+ tree t;
+ char type_name[20];
+
+ if (float_types[(int) mode])
+ return float_types[(int) mode];
+
+ float_types[(int) mode] = t = make_node (REAL_TYPE);
+ TYPE_PRECISION (t) = precision;
+ layout_type (t);
+
+ gcc_assert (TYPE_MODE (t) == mode);
+ if (!TYPE_NAME (t))
+ {
+ sprintf (type_name, "FLOAT_%d", precision);
+ TYPE_NAME (t) = get_identifier (type_name);
+ }
+
+ return t;
+}
+
+/* Return a data type that has machine mode MODE. UNSIGNEDP selects
+ an unsigned type; otherwise a signed type is returned. */
+
+tree
+gnat_type_for_mode (machine_mode mode, int unsignedp)
+{
+ if (mode == BLKmode)
+ return NULL_TREE;
+
+ if (mode == VOIDmode)
+ return void_type_node;
+
+ if (COMPLEX_MODE_P (mode))
+ return NULL_TREE;
+
+ scalar_float_mode float_mode;
+ if (is_a <scalar_float_mode> (mode, &float_mode))
+ return float_type_for_precision (GET_MODE_PRECISION (float_mode),
+ float_mode);
+
+ scalar_int_mode int_mode;
+ if (is_a <scalar_int_mode> (mode, &int_mode))
+ return gnat_type_for_size (GET_MODE_BITSIZE (int_mode), unsignedp);
+
+ if (VECTOR_MODE_P (mode))
+ {
+ machine_mode inner_mode = GET_MODE_INNER (mode);
+ tree inner_type = gnat_type_for_mode (inner_mode, unsignedp);
+ if (inner_type)
+ return build_vector_type_for_mode (inner_type, mode);
+ }
+
+ return NULL_TREE;
+}
+
+/* Return the signed or unsigned version of TYPE_NODE, a scalar type, the
+ signedness being specified by UNSIGNEDP. */
+
+tree
+gnat_signed_or_unsigned_type_for (int unsignedp, tree type_node)
+{
+ if (type_node == char_type_node)
+ return unsignedp ? unsigned_char_type_node : signed_char_type_node;
+
+ tree type = gnat_type_for_size (TYPE_PRECISION (type_node), unsignedp);
+
+ if (TREE_CODE (type_node) == INTEGER_TYPE && TYPE_MODULAR_P (type_node))
+ {
+ type = copy_type (type);
+ TREE_TYPE (type) = type_node;
+ }
+ else if (TREE_TYPE (type_node)
+ && TREE_CODE (TREE_TYPE (type_node)) == INTEGER_TYPE
+ && TYPE_MODULAR_P (TREE_TYPE (type_node)))
+ {
+ type = copy_type (type);
+ TREE_TYPE (type) = TREE_TYPE (type_node);
+ }
+
+ return type;
+}
+
+/* Return 1 if the types T1 and T2 are compatible, i.e. if they can be
+ transparently converted to each other. */
+
+int
+gnat_types_compatible_p (tree t1, tree t2)
+{
+ enum tree_code code;
+
+ /* This is the default criterion. */
+ if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
+ return 1;
+
+ /* We only check structural equivalence here. */
+ if ((code = TREE_CODE (t1)) != TREE_CODE (t2))
+ return 0;
+
+ /* Vector types are also compatible if they have the same number of subparts
+ and the same form of (scalar) element type. */
+ if (code == VECTOR_TYPE
+ && known_eq (TYPE_VECTOR_SUBPARTS (t1), TYPE_VECTOR_SUBPARTS (t2))
+ && TREE_CODE (TREE_TYPE (t1)) == TREE_CODE (TREE_TYPE (t2))
+ && TYPE_PRECISION (TREE_TYPE (t1)) == TYPE_PRECISION (TREE_TYPE (t2)))
+ return 1;
+
+ /* Array types are also compatible if they are constrained and have the same
+ domain(s), the same component type and the same scalar storage order. */
+ if (code == ARRAY_TYPE
+ && (TYPE_DOMAIN (t1) == TYPE_DOMAIN (t2)
+ || (TYPE_DOMAIN (t1)
+ && TYPE_DOMAIN (t2)
+ && tree_int_cst_equal (TYPE_MIN_VALUE (TYPE_DOMAIN (t1)),
+ TYPE_MIN_VALUE (TYPE_DOMAIN (t2)))
+ && tree_int_cst_equal (TYPE_MAX_VALUE (TYPE_DOMAIN (t1)),
+ TYPE_MAX_VALUE (TYPE_DOMAIN (t2)))))
+ && (TREE_TYPE (t1) == TREE_TYPE (t2)
+ || (TREE_CODE (TREE_TYPE (t1)) == ARRAY_TYPE
+ && gnat_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2))))
+ && TYPE_REVERSE_STORAGE_ORDER (t1) == TYPE_REVERSE_STORAGE_ORDER (t2))
+ return 1;
+
+ return 0;
+}
+
+/* Return true if EXPR is a useless type conversion. */
+
+bool
+gnat_useless_type_conversion (tree expr)
+{
+ if (CONVERT_EXPR_P (expr)
+ || TREE_CODE (expr) == VIEW_CONVERT_EXPR
+ || TREE_CODE (expr) == NON_LVALUE_EXPR)
+ return gnat_types_compatible_p (TREE_TYPE (expr),
+ TREE_TYPE (TREE_OPERAND (expr, 0)));
+
+ return false;
+}
+
+/* Return true if T, a {FUNCTION,METHOD}_TYPE, has the specified flags. */
+
+bool
+fntype_same_flags_p (const_tree t, tree cico_list, bool return_unconstrained_p,
+ bool return_by_direct_ref_p, bool return_by_invisi_ref_p)
+{
+ return TYPE_CI_CO_LIST (t) == cico_list
+ && TYPE_RETURN_UNCONSTRAINED_P (t) == return_unconstrained_p
+ && TYPE_RETURN_BY_DIRECT_REF_P (t) == return_by_direct_ref_p
+ && TREE_ADDRESSABLE (t) == return_by_invisi_ref_p;
+}
+
+/* EXP is an expression for the size of an object. If this size contains
+ discriminant references, replace them with the maximum (if MAX_P) or
+ minimum (if !MAX_P) possible value of the discriminant.
+
+ Note that the expression may have already been gimplified,in which case
+ COND_EXPRs have VOID_TYPE and no operands, and this must be handled. */
+
+tree
+max_size (tree exp, bool max_p)
+{
+ enum tree_code code = TREE_CODE (exp);
+ tree type = TREE_TYPE (exp);
+ tree op0, op1, op2;
+
+ switch (TREE_CODE_CLASS (code))
+ {
+ case tcc_declaration:
+ case tcc_constant:
+ return exp;
+
+ case tcc_exceptional:
+ gcc_assert (code == SSA_NAME);
+ return exp;
+
+ case tcc_vl_exp:
+ if (code == CALL_EXPR)
+ {
+ tree t, *argarray;
+ int n, i;
+
+ t = maybe_inline_call_in_expr (exp);
+ if (t)
+ return max_size (t, max_p);
+
+ n = call_expr_nargs (exp);
+ gcc_assert (n > 0);
+ argarray = XALLOCAVEC (tree, n);
+ for (i = 0; i < n; i++)
+ argarray[i] = max_size (CALL_EXPR_ARG (exp, i), max_p);
+ return build_call_array (type, CALL_EXPR_FN (exp), n, argarray);
+ }
+ break;
+
+ case tcc_reference:
+ /* If this contains a PLACEHOLDER_EXPR, it is the thing we want to
+ modify. Otherwise, we treat it like a variable. */
+ if (CONTAINS_PLACEHOLDER_P (exp))
+ {
+ tree base_type = get_base_type (TREE_TYPE (TREE_OPERAND (exp, 1)));
+ tree val
+ = fold_convert (base_type,
+ max_p
+ ? TYPE_MAX_VALUE (type) : TYPE_MIN_VALUE (type));
+
+ /* Walk down the extra subtypes to get more restrictive bounds. */
+ while (TYPE_IS_EXTRA_SUBTYPE_P (type))
+ {
+ type = TREE_TYPE (type);
+ if (max_p)
+ val = fold_build2 (MIN_EXPR, base_type, val,
+ fold_convert (base_type,
+ TYPE_MAX_VALUE (type)));
+ else
+ val = fold_build2 (MAX_EXPR, base_type, val,
+ fold_convert (base_type,
+ TYPE_MIN_VALUE (type)));
+ }
+
+ return fold_convert (type, max_size (val, max_p));
+ }
+
+ return exp;
+
+ case tcc_comparison:
+ return build_int_cst (type, max_p ? 1 : 0);
+
+ case tcc_unary:
+ op0 = TREE_OPERAND (exp, 0);
+
+ if (code == NON_LVALUE_EXPR)
+ return max_size (op0, max_p);
+
+ if (VOID_TYPE_P (TREE_TYPE (op0)))
+ return max_p ? TYPE_MAX_VALUE (type) : TYPE_MIN_VALUE (type);
+
+ op0 = max_size (op0, code == NEGATE_EXPR ? !max_p : max_p);
+
+ if (op0 == TREE_OPERAND (exp, 0))
+ return exp;
+
+ return fold_build1 (code, type, op0);
+
+ case tcc_binary:
+ op0 = TREE_OPERAND (exp, 0);
+ op1 = TREE_OPERAND (exp, 1);
+
+ /* If we have a multiply-add with a "negative" value in an unsigned
+ type, do a multiply-subtract with the negated value, in order to
+ avoid creating a spurious overflow below. */
+ if (code == PLUS_EXPR
+ && TREE_CODE (op0) == MULT_EXPR
+ && TYPE_UNSIGNED (type)
+ && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST
+ && !TREE_OVERFLOW (TREE_OPERAND (op0, 1))
+ && tree_int_cst_sign_bit (TREE_OPERAND (op0, 1)))
+ {
+ tree tmp = op1;
+ op1 = build2 (MULT_EXPR, type, TREE_OPERAND (op0, 0),
+ fold_build1 (NEGATE_EXPR, type,
+ TREE_OPERAND (op0, 1)));
+ op0 = tmp;
+ code = MINUS_EXPR;
+ }
+
+ op0 = max_size (op0, max_p);
+ op1 = max_size (op1, code == MINUS_EXPR ? !max_p : max_p);
+
+ if ((code == MINUS_EXPR || code == PLUS_EXPR))
+ {
+ /* If the op0 has overflowed and the op1 is a variable,
+ propagate the overflow by returning the op0. */
+ if (TREE_CODE (op0) == INTEGER_CST
+ && TREE_OVERFLOW (op0)
+ && TREE_CODE (op1) != INTEGER_CST)
+ return op0;
+
+ /* If we have a "negative" value in an unsigned type, do the
+ opposite operation on the negated value, in order to avoid
+ creating a spurious overflow below. */
+ if (TYPE_UNSIGNED (type)
+ && TREE_CODE (op1) == INTEGER_CST
+ && !TREE_OVERFLOW (op1)
+ && tree_int_cst_sign_bit (op1))
+ {
+ op1 = fold_build1 (NEGATE_EXPR, type, op1);
+ code = (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR);
+ }
+ }
+
+ if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
+ return exp;
+
+ /* We need to detect overflows so we call size_binop here. */
+ return size_binop (code, op0, op1);
+
+ case tcc_expression:
+ switch (TREE_CODE_LENGTH (code))
+ {
+ case 1:
+ if (code == SAVE_EXPR)
+ return exp;
+
+ op0 = max_size (TREE_OPERAND (exp, 0),
+ code == TRUTH_NOT_EXPR ? !max_p : max_p);
+
+ if (op0 == TREE_OPERAND (exp, 0))
+ return exp;
+
+ return fold_build1 (code, type, op0);
+
+ case 2:
+ if (code == COMPOUND_EXPR)
+ return max_size (TREE_OPERAND (exp, 1), max_p);
+
+ op0 = max_size (TREE_OPERAND (exp, 0), max_p);
+ op1 = max_size (TREE_OPERAND (exp, 1), max_p);
+
+ if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
+ return exp;
+
+ return fold_build2 (code, type, op0, op1);
+
+ case 3:
+ if (code == COND_EXPR)
+ {
+ op0 = TREE_OPERAND (exp, 0);
+ op1 = TREE_OPERAND (exp, 1);
+ op2 = TREE_OPERAND (exp, 2);
+
+ if (!op1 || !op2)
+ return exp;
+
+ op1 = max_size (op1, max_p);
+ op2 = max_size (op2, max_p);
+
+ /* If we have the MAX of a "negative" value in an unsigned type
+ and zero for a length expression, just return zero. */
+ if (max_p
+ && TREE_CODE (op0) == LE_EXPR
+ && TYPE_UNSIGNED (type)
+ && TREE_CODE (op1) == INTEGER_CST
+ && !TREE_OVERFLOW (op1)
+ && tree_int_cst_sign_bit (op1)
+ && integer_zerop (op2))
+ return op2;
+
+ return fold_build2 (max_p ? MAX_EXPR : MIN_EXPR, type, op1, op2);
+ }
+ break;
+
+ default:
+ break;
+ }
+
+ /* Other tree classes cannot happen. */
+ default:
+ break;
+ }
+
+ gcc_unreachable ();
+}
+
+/* Build a template of type TEMPLATE_TYPE from the array bounds of ARRAY_TYPE.
+ EXPR is an expression that we can use to locate any PLACEHOLDER_EXPRs.
+ Return a constructor for the template. */
+
+tree
+build_template (tree template_type, tree array_type, tree expr)
+{
+ vec<constructor_elt, va_gc> *template_elts = NULL;
+ tree bound_list = NULL_TREE;
+ tree field;
+
+ while (TREE_CODE (array_type) == RECORD_TYPE
+ && (TYPE_PADDING_P (array_type)
+ || TYPE_JUSTIFIED_MODULAR_P (array_type)))
+ array_type = TREE_TYPE (TYPE_FIELDS (array_type));
+
+ if (TREE_CODE (array_type) == ARRAY_TYPE
+ || (TREE_CODE (array_type) == INTEGER_TYPE
+ && TYPE_HAS_ACTUAL_BOUNDS_P (array_type)))
+ bound_list = TYPE_ACTUAL_BOUNDS (array_type);
+
+ /* First make the list for a CONSTRUCTOR for the template. Go down
+ the field list of the template instead of the type chain because
+ this array might be an Ada array of array and we can't tell where
+ the nested array stop being the underlying object. */
+ for (field = TYPE_FIELDS (template_type);
+ field;
+ field = DECL_CHAIN (DECL_CHAIN (field)))
+ {
+ tree bounds, min, max;
+
+ /* If we have a bound list, get the bounds from there. Likewise
+ for an ARRAY_TYPE. Otherwise, if expr is a PARM_DECL with
+ DECL_BY_COMPONENT_PTR_P, use the bounds of the field in the
+ template, but this will only give us a maximum range. */
+ if (bound_list)
+ {
+ bounds = TREE_VALUE (bound_list);
+ bound_list = TREE_CHAIN (bound_list);
+ }
+ else if (TREE_CODE (array_type) == ARRAY_TYPE)
+ {
+ bounds = TYPE_INDEX_TYPE (TYPE_DOMAIN (array_type));
+ array_type = TREE_TYPE (array_type);
+ }
+ else if (expr && TREE_CODE (expr) == PARM_DECL
+ && DECL_BY_COMPONENT_PTR_P (expr))
+ bounds = TREE_TYPE (field);
+ else
+ gcc_unreachable ();
+
+ min = convert (TREE_TYPE (field), TYPE_MIN_VALUE (bounds));
+ max = convert (TREE_TYPE (DECL_CHAIN (field)), TYPE_MAX_VALUE (bounds));
+
+ /* If either MIN or MAX involve a PLACEHOLDER_EXPR, we must
+ substitute it from OBJECT. */
+ min = SUBSTITUTE_PLACEHOLDER_IN_EXPR (min, expr);
+ max = SUBSTITUTE_PLACEHOLDER_IN_EXPR (max, expr);
+
+ CONSTRUCTOR_APPEND_ELT (template_elts, field, min);
+ CONSTRUCTOR_APPEND_ELT (template_elts, DECL_CHAIN (field), max);
+ }
+
+ return gnat_build_constructor (template_type, template_elts);
+}
+
+/* Return true if TYPE is suitable for the element type of a vector. */
+
+static bool
+type_for_vector_element_p (tree type)
+{
+ machine_mode mode;
+
+ if (!INTEGRAL_TYPE_P (type)
+ && !SCALAR_FLOAT_TYPE_P (type)
+ && !FIXED_POINT_TYPE_P (type))
+ return false;
+
+ mode = TYPE_MODE (type);
+ if (GET_MODE_CLASS (mode) != MODE_INT
+ && !SCALAR_FLOAT_MODE_P (mode)
+ && !ALL_SCALAR_FIXED_POINT_MODE_P (mode))
+ return false;
+
+ return true;
+}
+
+/* Return a vector type given the SIZE and the INNER_TYPE, or NULL_TREE if
+ this is not possible. If ATTRIBUTE is non-zero, we are processing the
+ attribute declaration and want to issue error messages on failure. */
+
+static tree
+build_vector_type_for_size (tree inner_type, tree size, tree attribute)
+{
+ unsigned HOST_WIDE_INT size_int, inner_size_int;
+ int nunits;
+
+ /* Silently punt on variable sizes. We can't make vector types for them,
+ need to ignore them on front-end generated subtypes of unconstrained
+ base types, and this attribute is for binding implementors, not end
+ users, so we should never get there from legitimate explicit uses. */
+ if (!tree_fits_uhwi_p (size))
+ return NULL_TREE;
+ size_int = tree_to_uhwi (size);
+
+ if (!type_for_vector_element_p (inner_type))
+ {
+ if (attribute)
+ error ("invalid element type for attribute %qs",
+ IDENTIFIER_POINTER (attribute));
+ return NULL_TREE;
+ }
+ inner_size_int = tree_to_uhwi (TYPE_SIZE_UNIT (inner_type));
+
+ if (size_int % inner_size_int)
+ {
+ if (attribute)
+ error ("vector size not an integral multiple of component size");
+ return NULL_TREE;
+ }
+
+ if (size_int == 0)
+ {
+ if (attribute)
+ error ("zero vector size");
+ return NULL_TREE;
+ }
+
+ nunits = size_int / inner_size_int;
+ if (nunits & (nunits - 1))
+ {
+ if (attribute)
+ error ("number of components of vector not a power of two");
+ return NULL_TREE;
+ }
+
+ return build_vector_type (inner_type, nunits);
+}
+
+/* Return a vector type whose representative array type is ARRAY_TYPE, or
+ NULL_TREE if this is not possible. If ATTRIBUTE is non-zero, we are
+ processing the attribute and want to issue error messages on failure. */
+
+static tree
+build_vector_type_for_array (tree array_type, tree attribute)
+{
+ tree vector_type = build_vector_type_for_size (TREE_TYPE (array_type),
+ TYPE_SIZE_UNIT (array_type),
+ attribute);
+ if (!vector_type)
+ return NULL_TREE;
+
+ TYPE_REPRESENTATIVE_ARRAY (vector_type) = array_type;
+ return vector_type;
+}
+
+/* Build a type to be used to represent an aliased object whose nominal type
+ is an unconstrained array. This consists of a RECORD_TYPE containing a
+ field of TEMPLATE_TYPE and a field of OBJECT_TYPE, which is an ARRAY_TYPE.
+ If ARRAY_TYPE is that of an unconstrained array, this is used to represent
+ an arbitrary unconstrained object. Use NAME as the name of the record.
+ DEBUG_INFO_P is true if we need to write debug information for the type. */
+
+tree
+build_unc_object_type (tree template_type, tree object_type, tree name,
+ bool debug_info_p)
+{
+ tree type = make_node (RECORD_TYPE);
+ tree template_field
+ = create_field_decl (get_identifier ("BOUNDS"), template_type, type,
+ NULL_TREE, NULL_TREE, 0, 1);
+ tree array_field
+ = create_field_decl (get_identifier ("ARRAY"), object_type, type,
+ NULL_TREE, NULL_TREE, 0, 1);
+
+ TYPE_NAME (type) = name;
+ TYPE_CONTAINS_TEMPLATE_P (type) = 1;
+ DECL_CHAIN (template_field) = array_field;
+ finish_record_type (type, template_field, 0, true);
+
+ /* Declare it now since it will never be declared otherwise. This is
+ necessary to ensure that its subtrees are properly marked. */
+ create_type_decl (name, type, true, debug_info_p, Empty);
+
+ return type;
+}
+
+/* Same, taking a thin or fat pointer type instead of a template type. */
+
+tree
+build_unc_object_type_from_ptr (tree thin_fat_ptr_type, tree object_type,
+ tree name, bool debug_info_p)
+{
+ tree template_type;
+
+ gcc_assert (TYPE_IS_FAT_OR_THIN_POINTER_P (thin_fat_ptr_type));
+
+ template_type
+ = (TYPE_IS_FAT_POINTER_P (thin_fat_ptr_type)
+ ? TREE_TYPE (TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (thin_fat_ptr_type))))
+ : TREE_TYPE (TYPE_FIELDS (TREE_TYPE (thin_fat_ptr_type))));
+
+ return
+ build_unc_object_type (template_type, object_type, name, debug_info_p);
+}
+
+/* Update anything previously pointing to OLD_TYPE to point to NEW_TYPE.
+ In the normal case this is just two adjustments, but we have more to
+ do if NEW_TYPE is an UNCONSTRAINED_ARRAY_TYPE. */
+
+void
+update_pointer_to (tree old_type, tree new_type)
+{
+ tree ptr = TYPE_POINTER_TO (old_type);
+ tree ref = TYPE_REFERENCE_TO (old_type);
+ tree t;
+
+ /* If this is the main variant, process all the other variants first. */
+ if (TYPE_MAIN_VARIANT (old_type) == old_type)
+ for (t = TYPE_NEXT_VARIANT (old_type); t; t = TYPE_NEXT_VARIANT (t))
+ update_pointer_to (t, new_type);
+
+ /* If no pointers and no references, we are done. */
+ if (!ptr && !ref)
+ return;
+
+ /* Merge the old type qualifiers in the new type.
+
+ Each old variant has qualifiers for specific reasons, and the new
+ designated type as well. Each set of qualifiers represents useful
+ information grabbed at some point, and merging the two simply unifies
+ these inputs into the final type description.
+
+ Consider for instance a volatile type frozen after an access to constant
+ type designating it; after the designated type's freeze, we get here with
+ a volatile NEW_TYPE and a dummy OLD_TYPE with a readonly variant, created
+ when the access type was processed. We will make a volatile and readonly
+ designated type, because that's what it really is.
+
+ We might also get here for a non-dummy OLD_TYPE variant with different
+ qualifiers than those of NEW_TYPE, for instance in some cases of pointers
+ to private record type elaboration (see the comments around the call to
+ this routine in gnat_to_gnu_entity <E_Access_Type>). We have to merge
+ the qualifiers in those cases too, to avoid accidentally discarding the
+ initial set, and will often end up with OLD_TYPE == NEW_TYPE then. */
+ new_type
+ = build_qualified_type (new_type,
+ TYPE_QUALS (old_type) | TYPE_QUALS (new_type));
+
+ /* If old type and new type are identical, there is nothing to do. */
+ if (old_type == new_type)
+ return;
+
+ /* Otherwise, first handle the simple case. */
+ if (TREE_CODE (new_type) != UNCONSTRAINED_ARRAY_TYPE)
+ {
+ tree new_ptr, new_ref;
+
+ /* If pointer or reference already points to new type, nothing to do.
+ This can happen as update_pointer_to can be invoked multiple times
+ on the same couple of types because of the type variants. */
+ if ((ptr && TREE_TYPE (ptr) == new_type)
+ || (ref && TREE_TYPE (ref) == new_type))
+ return;
+
+ /* Chain PTR and its variants at the end. */
+ new_ptr = TYPE_POINTER_TO (new_type);
+ if (new_ptr)
+ {
+ while (TYPE_NEXT_PTR_TO (new_ptr))
+ new_ptr = TYPE_NEXT_PTR_TO (new_ptr);
+ TYPE_NEXT_PTR_TO (new_ptr) = ptr;
+ }
+ else
+ TYPE_POINTER_TO (new_type) = ptr;
+
+ /* Now adjust them. */
+ for (; ptr; ptr = TYPE_NEXT_PTR_TO (ptr))
+ for (t = TYPE_MAIN_VARIANT (ptr); t; t = TYPE_NEXT_VARIANT (t))
+ {
+ TREE_TYPE (t) = new_type;
+ if (TYPE_NULL_BOUNDS (t))
+ TREE_TYPE (TREE_OPERAND (TYPE_NULL_BOUNDS (t), 0)) = new_type;
+ TYPE_CANONICAL (t) = TYPE_CANONICAL (TYPE_POINTER_TO (new_type));
+ }
+
+ /* Chain REF and its variants at the end. */
+ new_ref = TYPE_REFERENCE_TO (new_type);
+ if (new_ref)
+ {
+ while (TYPE_NEXT_REF_TO (new_ref))
+ new_ref = TYPE_NEXT_REF_TO (new_ref);
+ TYPE_NEXT_REF_TO (new_ref) = ref;
+ }
+ else
+ TYPE_REFERENCE_TO (new_type) = ref;
+
+ /* Now adjust them. */
+ for (; ref; ref = TYPE_NEXT_REF_TO (ref))
+ for (t = TYPE_MAIN_VARIANT (ref); t; t = TYPE_NEXT_VARIANT (t))
+ {
+ TREE_TYPE (t) = new_type;
+ TYPE_CANONICAL (t) = TYPE_CANONICAL (TYPE_REFERENCE_TO (new_type));
+ }
+
+ TYPE_POINTER_TO (old_type) = NULL_TREE;
+ TYPE_REFERENCE_TO (old_type) = NULL_TREE;
+ }
+
+ /* Now deal with the unconstrained array case. In this case the pointer
+ is actually a record where both fields are pointers to dummy nodes.
+ Turn them into pointers to the correct types using update_pointer_to.
+ Likewise for the pointer to the object record (thin pointer). */
+ else
+ {
+ tree new_ptr = TYPE_POINTER_TO (new_type);
+
+ gcc_assert (TYPE_IS_FAT_POINTER_P (ptr));
+
+ /* If PTR already points to NEW_TYPE, nothing to do. This can happen
+ since update_pointer_to can be invoked multiple times on the same
+ couple of types because of the type variants. */
+ if (TYPE_UNCONSTRAINED_ARRAY (ptr) == new_type)
+ return;
+
+ update_pointer_to
+ (TREE_TYPE (TREE_TYPE (TYPE_FIELDS (ptr))),
+ TREE_TYPE (TREE_TYPE (TYPE_FIELDS (new_ptr))));
+
+ update_pointer_to
+ (TREE_TYPE (TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (ptr)))),
+ TREE_TYPE (TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (new_ptr)))));
+
+ update_pointer_to (TYPE_OBJECT_RECORD_TYPE (old_type),
+ TYPE_OBJECT_RECORD_TYPE (new_type));
+
+ TYPE_POINTER_TO (old_type) = NULL_TREE;
+ TYPE_REFERENCE_TO (old_type) = NULL_TREE;
+ }
+}
+
+/* Convert EXPR, a pointer to a constrained array, into a pointer to an
+ unconstrained one. This involves making or finding a template. */
+
+static tree
+convert_to_fat_pointer (tree type, tree expr)
+{
+ tree template_type = TREE_TYPE (TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type))));
+ tree p_array_type = TREE_TYPE (TYPE_FIELDS (type));
+ tree etype = TREE_TYPE (expr);
+ tree template_addr;
+ vec<constructor_elt, va_gc> *v;
+ vec_alloc (v, 2);
+
+ /* If EXPR is null, make a fat pointer that contains a null pointer to the
+ array (compare_fat_pointers ensures that this is the full discriminant)
+ and a valid pointer to the bounds. This latter property is necessary
+ since the compiler can hoist the load of the bounds done through it. */
+ if (integer_zerop (expr))
+ {
+ tree ptr_template_type = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
+ tree null_bounds, t;
+
+ if (TYPE_NULL_BOUNDS (ptr_template_type))
+ null_bounds = TYPE_NULL_BOUNDS (ptr_template_type);
+ else
+ {
+ /* The template type can still be dummy at this point so we build an
+ empty constructor. The middle-end will fill it in with zeros. */
+ t = build_constructor (template_type, NULL);
+ TREE_CONSTANT (t) = TREE_STATIC (t) = 1;
+ null_bounds = build_unary_op (ADDR_EXPR, NULL_TREE, t);
+ SET_TYPE_NULL_BOUNDS (ptr_template_type, null_bounds);
+ }
+
+ CONSTRUCTOR_APPEND_ELT (v, TYPE_FIELDS (type),
+ fold_convert (p_array_type, null_pointer_node));
+ CONSTRUCTOR_APPEND_ELT (v, DECL_CHAIN (TYPE_FIELDS (type)), null_bounds);
+ t = build_constructor (type, v);
+ /* Do not set TREE_CONSTANT so as to force T to static memory. */
+ TREE_CONSTANT (t) = 0;
+ TREE_STATIC (t) = 1;
+
+ return t;
+ }
+
+ /* If EXPR is a thin pointer, make template and data from the record. */
+ if (TYPE_IS_THIN_POINTER_P (etype))
+ {
+ tree field = TYPE_FIELDS (TREE_TYPE (etype));
+
+ expr = gnat_protect_expr (expr);
+
+ /* If we have a TYPE_UNCONSTRAINED_ARRAY attached to the RECORD_TYPE,
+ the thin pointer value has been shifted so we shift it back to get
+ the template address. */
+ if (TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (etype)))
+ {
+ template_addr
+ = build_binary_op (POINTER_PLUS_EXPR, etype, expr,
+ fold_build1 (NEGATE_EXPR, sizetype,
+ byte_position
+ (DECL_CHAIN (field))));
+ template_addr
+ = fold_convert (TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type))),
+ template_addr);
+ }
+
+ /* Otherwise we explicitly take the address of the fields. */
+ else
+ {
+ expr = build_unary_op (INDIRECT_REF, NULL_TREE, expr);
+ template_addr
+ = build_unary_op (ADDR_EXPR, NULL_TREE,
+ build_component_ref (expr, field, false));
+ expr = build_unary_op (ADDR_EXPR, NULL_TREE,
+ build_component_ref (expr, DECL_CHAIN (field),
+ false));
+ }
+ }
+
+ /* Otherwise, build the constructor for the template. */
+ else
+ template_addr
+ = build_unary_op (ADDR_EXPR, NULL_TREE,
+ build_template (template_type, TREE_TYPE (etype),
+ expr));
+
+ /* The final result is a constructor for the fat pointer.
+
+ If EXPR is an argument of a foreign convention subprogram, the type it
+ points to is directly the component type. In this case, the expression
+ type may not match the corresponding FIELD_DECL type at this point, so we
+ call "convert" here to fix that up if necessary. This type consistency is
+ required, for instance because it ensures that possible later folding of
+ COMPONENT_REFs against this constructor always yields something of the
+ same type as the initial reference.
+
+ Note that the call to "build_template" above is still fine because it
+ will only refer to the provided TEMPLATE_TYPE in this case. */
+ CONSTRUCTOR_APPEND_ELT (v, TYPE_FIELDS (type), convert (p_array_type, expr));
+ CONSTRUCTOR_APPEND_ELT (v, DECL_CHAIN (TYPE_FIELDS (type)), template_addr);
+ return gnat_build_constructor (type, v);
+}
+
+/* Create an expression whose value is that of EXPR,
+ converted to type TYPE. The TREE_TYPE of the value
+ is always TYPE. This function implements all reasonable
+ conversions; callers should filter out those that are
+ not permitted by the language being compiled. */
+
+tree
+convert (tree type, tree expr)
+{
+ tree etype = TREE_TYPE (expr);
+ enum tree_code ecode = TREE_CODE (etype);
+ enum tree_code code = TREE_CODE (type);
+
+ /* If the expression is already of the right type, we are done. */
+ if (etype == type)
+ return expr;
+
+ /* If both input and output have padding and are of variable size, do this
+ as an unchecked conversion. Likewise if one is a mere variant of the
+ other, so we avoid a pointless unpad/repad sequence. */
+ else if (code == RECORD_TYPE && ecode == RECORD_TYPE
+ && TYPE_PADDING_P (type) && TYPE_PADDING_P (etype)
+ && (!TREE_CONSTANT (TYPE_SIZE (type))
+ || !TREE_CONSTANT (TYPE_SIZE (etype))
+ || TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (etype)
+ || TYPE_NAME (TREE_TYPE (TYPE_FIELDS (type)))
+ == TYPE_NAME (TREE_TYPE (TYPE_FIELDS (etype)))))
+ ;
+
+ /* If the output type has padding, convert to the inner type and make a
+ constructor to build the record, unless a variable size is involved. */
+ else if (code == RECORD_TYPE && TYPE_PADDING_P (type))
+ {
+ /* If we previously converted from another type and our type is
+ of variable size, remove the conversion to avoid the need for
+ variable-sized temporaries. Likewise for a conversion between
+ original and packable version. */
+ if (TREE_CODE (expr) == VIEW_CONVERT_EXPR
+ && (!TREE_CONSTANT (TYPE_SIZE (type))
+ || (ecode == RECORD_TYPE
+ && TYPE_NAME (etype)
+ == TYPE_NAME (TREE_TYPE (TREE_OPERAND (expr, 0))))))
+ expr = TREE_OPERAND (expr, 0);
+
+ /* If we are just removing the padding from expr, convert the original
+ object if we have variable size in order to avoid the need for some
+ variable-sized temporaries. Likewise if the padding is a variant
+ of the other, so we avoid a pointless unpad/repad sequence. */
+ if (TREE_CODE (expr) == COMPONENT_REF
+ && TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (expr, 0)))
+ && (!TREE_CONSTANT (TYPE_SIZE (type))
+ || TYPE_MAIN_VARIANT (type)
+ == TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (expr, 0)))
+ || (ecode == RECORD_TYPE
+ && TYPE_NAME (etype)
+ == TYPE_NAME (TREE_TYPE (TYPE_FIELDS (type))))))
+ return convert (type, TREE_OPERAND (expr, 0));
+
+ /* If the inner type is of self-referential size and the expression type
+ is a record, do this as an unchecked conversion unless both types are
+ essentially the same. */
+ if (ecode == RECORD_TYPE
+ && CONTAINS_PLACEHOLDER_P (DECL_SIZE (TYPE_FIELDS (type)))
+ && TYPE_MAIN_VARIANT (etype)
+ != TYPE_MAIN_VARIANT (TREE_TYPE (TYPE_FIELDS (type))))
+ return unchecked_convert (type, expr, false);
+
+ /* If we are converting between array types with variable size, do the
+ final conversion as an unchecked conversion, again to avoid the need
+ for some variable-sized temporaries. If valid, this conversion is
+ very likely purely technical and without real effects. */
+ if (ecode == ARRAY_TYPE
+ && TREE_CODE (TREE_TYPE (TYPE_FIELDS (type))) == ARRAY_TYPE
+ && !TREE_CONSTANT (TYPE_SIZE (etype))
+ && !TREE_CONSTANT (TYPE_SIZE (type)))
+ return unchecked_convert (type,
+ convert (TREE_TYPE (TYPE_FIELDS (type)),
+ expr),
+ false);
+
+ tree t = convert (TREE_TYPE (TYPE_FIELDS (type)), expr);
+
+ /* If converting to the inner type has already created a CONSTRUCTOR with
+ the right size, then reuse it instead of creating another one. This
+ can happen for the padding type built to overalign local variables. */
+ if (TREE_CODE (t) == VIEW_CONVERT_EXPR
+ && TREE_CODE (TREE_OPERAND (t, 0)) == CONSTRUCTOR
+ && TREE_CONSTANT (TYPE_SIZE (TREE_TYPE (TREE_OPERAND (t, 0))))
+ && tree_int_cst_equal (TYPE_SIZE (type),
+ TYPE_SIZE (TREE_TYPE (TREE_OPERAND (t, 0)))))
+ return build1 (VIEW_CONVERT_EXPR, type, TREE_OPERAND (t, 0));
+
+ vec<constructor_elt, va_gc> *v;
+ vec_alloc (v, 1);
+ CONSTRUCTOR_APPEND_ELT (v, TYPE_FIELDS (type), t);
+ return gnat_build_constructor (type, v);
+ }
+
+ /* If the input type has padding, remove it and convert to the output type.
+ The conditions ordering is arranged to ensure that the output type is not
+ a padding type here, as it is not clear whether the conversion would
+ always be correct if this was to happen. */
+ else if (ecode == RECORD_TYPE && TYPE_PADDING_P (etype))
+ {
+ tree unpadded;
+
+ /* If we have just converted to this padded type, just get the
+ inner expression. */
+ if (TREE_CODE (expr) == CONSTRUCTOR)
+ unpadded = CONSTRUCTOR_ELT (expr, 0)->value;
+
+ /* Otherwise, build an explicit component reference. */
+ else
+ unpadded = build_component_ref (expr, TYPE_FIELDS (etype), false);
+
+ return convert (type, unpadded);
+ }
+
+ /* If the input is a biased type, convert first to the base type and add
+ the bias. Note that the bias must go through a full conversion to the
+ base type, lest it is itself a biased value; this happens for subtypes
+ of biased types. */
+ if (ecode == INTEGER_TYPE && TYPE_BIASED_REPRESENTATION_P (etype))
+ return convert (type, fold_build2 (PLUS_EXPR, TREE_TYPE (etype),
+ fold_convert (TREE_TYPE (etype), expr),
+ convert (TREE_TYPE (etype),
+ TYPE_MIN_VALUE (etype))));
+
+ /* If the input is a justified modular type, we need to extract the actual
+ object before converting it to an other type with the exceptions of an
+ [unconstrained] array or a mere type variant. It is useful to avoid
+ the extraction and conversion in these cases because it could end up
+ replacing a VAR_DECL by a constructor and we might be about the take
+ the address of the result. */
+ if (ecode == RECORD_TYPE && TYPE_JUSTIFIED_MODULAR_P (etype)
+ && code != ARRAY_TYPE
+ && code != UNCONSTRAINED_ARRAY_TYPE
+ && TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (etype))
+ return
+ convert (type, build_component_ref (expr, TYPE_FIELDS (etype), false));
+
+ /* If converting to a type that contains a template, convert to the data
+ type and then build the template. */
+ if (code == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (type))
+ {
+ tree obj_type = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
+ vec<constructor_elt, va_gc> *v;
+ vec_alloc (v, 2);
+
+ /* If the source already has a template, get a reference to the
+ associated array only, as we are going to rebuild a template
+ for the target type anyway. */
+ expr = maybe_unconstrained_array (expr);
+
+ CONSTRUCTOR_APPEND_ELT (v, TYPE_FIELDS (type),
+ build_template (TREE_TYPE (TYPE_FIELDS (type)),
+ obj_type, NULL_TREE));
+ if (expr)
+ CONSTRUCTOR_APPEND_ELT (v, DECL_CHAIN (TYPE_FIELDS (type)),
+ convert (obj_type, expr));
+ return gnat_build_constructor (type, v);
+ }
+
+ /* There are some cases of expressions that we process specially. */
+ switch (TREE_CODE (expr))
+ {
+ case ERROR_MARK:
+ return expr;
+
+ case NULL_EXPR:
+ /* Just set its type here. For TRANSFORM_EXPR, we will do the actual
+ conversion in gnat_expand_expr. NULL_EXPR does not represent
+ and actual value, so no conversion is needed. */
+ expr = copy_node (expr);
+ TREE_TYPE (expr) = type;
+ return expr;
+
+ case STRING_CST:
+ /* If we are converting a STRING_CST to another constrained array type,
+ just make a new one in the proper type. */
+ if (code == ecode
+ && !(TREE_CONSTANT (TYPE_SIZE (etype))
+ && !TREE_CONSTANT (TYPE_SIZE (type))))
+ {
+ expr = copy_node (expr);
+ TREE_TYPE (expr) = type;
+ return expr;
+ }
+ break;
+
+ case VECTOR_CST:
+ /* If we are converting a VECTOR_CST to a mere type variant, just make
+ a new one in the proper type. */
+ if (code == ecode && gnat_types_compatible_p (type, etype))
+ {
+ expr = copy_node (expr);
+ TREE_TYPE (expr) = type;
+ return expr;
+ }
+ break;
+
+ case CONSTRUCTOR:
+ /* If we are converting a CONSTRUCTOR to a mere type variant, or to
+ another padding type around the same type, just make a new one in
+ the proper type. */
+ if (code == ecode
+ && (gnat_types_compatible_p (type, etype)
+ || (code == RECORD_TYPE
+ && TYPE_PADDING_P (type) && TYPE_PADDING_P (etype)
+ && TREE_TYPE (TYPE_FIELDS (type))
+ == TREE_TYPE (TYPE_FIELDS (etype)))))
+ {
+ expr = copy_node (expr);
+ TREE_TYPE (expr) = type;
+ CONSTRUCTOR_ELTS (expr) = vec_safe_copy (CONSTRUCTOR_ELTS (expr));
+ return expr;
+ }
+
+ /* Likewise for a conversion between original and packable version, or
+ conversion between types of the same size and with the same list of
+ fields, but we have to work harder to preserve type consistency. */
+ if (code == ecode
+ && code == RECORD_TYPE
+ && (TYPE_NAME (type) == TYPE_NAME (etype)
+ || tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (etype))))
+
+ {
+ vec<constructor_elt, va_gc> *e = CONSTRUCTOR_ELTS (expr);
+ unsigned HOST_WIDE_INT len = vec_safe_length (e);
+ vec<constructor_elt, va_gc> *v;
+ vec_alloc (v, len);
+ tree efield = TYPE_FIELDS (etype), field = TYPE_FIELDS (type);
+ unsigned HOST_WIDE_INT idx;
+ tree index, value;
+
+ /* Whether we need to clear TREE_CONSTANT et al. on the output
+ constructor when we convert in place. */
+ bool clear_constant = false;
+
+ FOR_EACH_CONSTRUCTOR_ELT(e, idx, index, value)
+ {
+ /* Skip the missing fields in the CONSTRUCTOR. */
+ while (efield && field && !SAME_FIELD_P (efield, index))
+ {
+ efield = DECL_CHAIN (efield);
+ field = DECL_CHAIN (field);
+ }
+ /* The field must be the same. */
+ if (!(efield && field && SAME_FIELD_P (efield, field)))
+ break;
+ constructor_elt elt
+ = {field, convert (TREE_TYPE (field), value)};
+ v->quick_push (elt);
+
+ /* If packing has made this field a bitfield and the input
+ value couldn't be emitted statically any more, we need to
+ clear TREE_CONSTANT on our output. */
+ if (!clear_constant
+ && TREE_CONSTANT (expr)
+ && !CONSTRUCTOR_BITFIELD_P (efield)
+ && CONSTRUCTOR_BITFIELD_P (field)
+ && !initializer_constant_valid_for_bitfield_p (value))
+ clear_constant = true;
+
+ efield = DECL_CHAIN (efield);
+ field = DECL_CHAIN (field);
+ }
+
+ /* If we have been able to match and convert all the input fields
+ to their output type, convert in place now. We'll fallback to a
+ view conversion downstream otherwise. */
+ if (idx == len)
+ {
+ expr = copy_node (expr);
+ TREE_TYPE (expr) = type;
+ CONSTRUCTOR_ELTS (expr) = v;
+ if (clear_constant)
+ TREE_CONSTANT (expr) = TREE_STATIC (expr) = 0;
+ return expr;
+ }
+ }
+
+ /* Likewise for a conversion between array type and vector type with a
+ compatible representative array. */
+ else if (code == VECTOR_TYPE
+ && ecode == ARRAY_TYPE
+ && gnat_types_compatible_p (TYPE_REPRESENTATIVE_ARRAY (type),
+ etype))
+ {
+ vec<constructor_elt, va_gc> *e = CONSTRUCTOR_ELTS (expr);
+ unsigned HOST_WIDE_INT len = vec_safe_length (e);
+ vec<constructor_elt, va_gc> *v;
+ unsigned HOST_WIDE_INT ix;
+ tree value;
+
+ /* Build a VECTOR_CST from a *constant* array constructor. */
+ if (TREE_CONSTANT (expr))
+ {
+ bool constant_p = true;
+
+ /* Iterate through elements and check if all constructor
+ elements are *_CSTs. */
+ FOR_EACH_CONSTRUCTOR_VALUE (e, ix, value)
+ if (!CONSTANT_CLASS_P (value))
+ {
+ constant_p = false;
+ break;
+ }
+
+ if (constant_p)
+ return build_vector_from_ctor (type,
+ CONSTRUCTOR_ELTS (expr));
+ }
+
+ /* Otherwise, build a regular vector constructor. */
+ vec_alloc (v, len);
+ FOR_EACH_CONSTRUCTOR_VALUE (e, ix, value)
+ {
+ constructor_elt elt = {NULL_TREE, value};
+ v->quick_push (elt);
+ }
+ expr = copy_node (expr);
+ TREE_TYPE (expr) = type;
+ CONSTRUCTOR_ELTS (expr) = v;
+ return expr;
+ }
+ break;
+
+ case UNCONSTRAINED_ARRAY_REF:
+ /* First retrieve the underlying array. */
+ expr = maybe_unconstrained_array (expr);
+ etype = TREE_TYPE (expr);
+ ecode = TREE_CODE (etype);
+ break;
+
+ case VIEW_CONVERT_EXPR:
+ {
+ /* GCC 4.x is very sensitive to type consistency overall, and view
+ conversions thus are very frequent. Even though just "convert"ing
+ the inner operand to the output type is fine in most cases, it
+ might expose unexpected input/output type mismatches in special
+ circumstances so we avoid such recursive calls when we can. */
+ tree op0 = TREE_OPERAND (expr, 0);
+
+ /* If we are converting back to the original type, we can just
+ lift the input conversion. This is a common occurrence with
+ switches back-and-forth amongst type variants. */
+ if (type == TREE_TYPE (op0))
+ return op0;
+
+ /* Otherwise, if we're converting between two aggregate or vector
+ types, we might be allowed to substitute the VIEW_CONVERT_EXPR
+ target type in place or to just convert the inner expression. */
+ if ((AGGREGATE_TYPE_P (type) && AGGREGATE_TYPE_P (etype))
+ || (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (etype)))
+ {
+ /* If we are converting between mere variants, we can just
+ substitute the VIEW_CONVERT_EXPR in place. */
+ if (gnat_types_compatible_p (type, etype))
+ return build1 (VIEW_CONVERT_EXPR, type, op0);
+
+ /* Otherwise, we may just bypass the input view conversion unless
+ one of the types is a fat pointer, which is handled by
+ specialized code below which relies on exact type matching. */
+ else if (!TYPE_IS_FAT_POINTER_P (type)
+ && !TYPE_IS_FAT_POINTER_P (etype))
+ return convert (type, op0);
+ }
+
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ /* Check for converting to a pointer to an unconstrained array. */
+ if (TYPE_IS_FAT_POINTER_P (type) && !TYPE_IS_FAT_POINTER_P (etype))
+ return convert_to_fat_pointer (type, expr);
+
+ /* If we are converting between two aggregate or vector types that are mere
+ variants, just make a VIEW_CONVERT_EXPR. Likewise when we are converting
+ to a vector type from its representative array type. */
+ else if ((code == ecode
+ && (AGGREGATE_TYPE_P (type) || VECTOR_TYPE_P (type))
+ && gnat_types_compatible_p (type, etype))
+ || (code == VECTOR_TYPE
+ && ecode == ARRAY_TYPE
+ && gnat_types_compatible_p (TYPE_REPRESENTATIVE_ARRAY (type),
+ etype)))
+ return build1 (VIEW_CONVERT_EXPR, type, expr);
+
+ /* If we are converting between tagged types, try to upcast properly.
+ But don't do it if we are just annotating types since tagged types
+ aren't fully laid out in this mode. */
+ else if (ecode == RECORD_TYPE && code == RECORD_TYPE
+ && TYPE_ALIGN_OK (etype) && TYPE_ALIGN_OK (type)
+ && !type_annotate_only)
+ {
+ tree child_etype = etype;
+ do {
+ tree field = TYPE_FIELDS (child_etype);
+ if (DECL_NAME (field) == parent_name_id && TREE_TYPE (field) == type)
+ return build_component_ref (expr, field, false);
+ child_etype = TREE_TYPE (field);
+ } while (TREE_CODE (child_etype) == RECORD_TYPE);
+ }
+
+ /* If we are converting from a smaller form of record type back to it, just
+ make a VIEW_CONVERT_EXPR. But first pad the expression to have the same
+ size on both sides. */
+ else if (ecode == RECORD_TYPE && code == RECORD_TYPE
+ && smaller_form_type_p (etype, type))
+ {
+ expr = convert (maybe_pad_type (etype, TYPE_SIZE (type), 0, Empty,
+ false, false, true),
+ expr);
+ return build1 (VIEW_CONVERT_EXPR, type, expr);
+ }
+
+ /* In all other cases of related types, make a NOP_EXPR. */
+ else if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (etype))
+ return fold_convert (type, expr);
+
+ switch (code)
+ {
+ case VOID_TYPE:
+ return fold_build1 (CONVERT_EXPR, type, expr);
+
+ case INTEGER_TYPE:
+ if (TYPE_HAS_ACTUAL_BOUNDS_P (type)
+ && (ecode == ARRAY_TYPE || ecode == UNCONSTRAINED_ARRAY_TYPE
+ || (ecode == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (etype))))
+ return unchecked_convert (type, expr, false);
+
+ /* If the output is a biased type, convert first to the base type and
+ subtract the bias. Note that the bias itself must go through a full
+ conversion to the base type, lest it is a biased value; this happens
+ for subtypes of biased types. */
+ if (TYPE_BIASED_REPRESENTATION_P (type))
+ return fold_convert (type,
+ fold_build2 (MINUS_EXPR, TREE_TYPE (type),
+ convert (TREE_TYPE (type), expr),
+ convert (TREE_TYPE (type),
+ TYPE_MIN_VALUE (type))));
+
+ /* If we are converting an additive expression to an integer type
+ with lower precision, be wary of the optimization that can be
+ applied by convert_to_integer. There are 2 problematic cases:
+ - if the first operand was originally of a biased type,
+ because we could be recursively called to convert it
+ to an intermediate type and thus rematerialize the
+ additive operator endlessly,
+ - if the expression contains a placeholder, because an
+ intermediate conversion that changes the sign could
+ be inserted and thus introduce an artificial overflow
+ at compile time when the placeholder is substituted. */
+ if (ecode == INTEGER_TYPE
+ && TYPE_PRECISION (type) < TYPE_PRECISION (etype)
+ && (TREE_CODE (expr) == PLUS_EXPR || TREE_CODE (expr) == MINUS_EXPR))
+ {
+ tree op0 = get_unwidened (TREE_OPERAND (expr, 0), type);
+
+ if ((TREE_CODE (TREE_TYPE (op0)) == INTEGER_TYPE
+ && TYPE_BIASED_REPRESENTATION_P (TREE_TYPE (op0)))
+ || CONTAINS_PLACEHOLDER_P (expr))
+ return fold_convert (type, expr);
+ }
+
+ /* ... fall through ... */
+
+ case ENUMERAL_TYPE:
+ return fold (convert_to_integer (type, expr));
+
+ case BOOLEAN_TYPE:
+ /* Do not use convert_to_integer with boolean types. */
+ return fold_convert_loc (EXPR_LOCATION (expr), type, expr);
+
+ case POINTER_TYPE:
+ case REFERENCE_TYPE:
+ /* If converting between two thin pointers, adjust if needed to account
+ for differing offsets from the base pointer, depending on whether
+ there is a TYPE_UNCONSTRAINED_ARRAY attached to the record type. */
+ if (TYPE_IS_THIN_POINTER_P (etype) && TYPE_IS_THIN_POINTER_P (type))
+ {
+ tree etype_pos
+ = TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (etype))
+ ? byte_position (DECL_CHAIN (TYPE_FIELDS (TREE_TYPE (etype))))
+ : size_zero_node;
+ tree type_pos
+ = TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type))
+ ? byte_position (DECL_CHAIN (TYPE_FIELDS (TREE_TYPE (type))))
+ : size_zero_node;
+ tree byte_diff = size_diffop (type_pos, etype_pos);
+
+ expr = build1 (NOP_EXPR, type, expr);
+ if (integer_zerop (byte_diff))
+ return expr;
+
+ return build_binary_op (POINTER_PLUS_EXPR, type, expr,
+ fold_convert (sizetype, byte_diff));
+ }
+
+ /* If converting fat pointer to normal or thin pointer, get the pointer
+ to the array and then convert it. */
+ if (TYPE_IS_FAT_POINTER_P (etype))
+ expr = build_component_ref (expr, TYPE_FIELDS (etype), false);
+
+ return fold (convert_to_pointer (type, expr));
+
+ case REAL_TYPE:
+ return fold (convert_to_real (type, expr));
+
+ case RECORD_TYPE:
+ /* Do a normal conversion between scalar and justified modular type. */
+ if (TYPE_JUSTIFIED_MODULAR_P (type) && !AGGREGATE_TYPE_P (etype))
+ {
+ vec<constructor_elt, va_gc> *v;
+ vec_alloc (v, 1);
+
+ CONSTRUCTOR_APPEND_ELT (v, TYPE_FIELDS (type),
+ convert (TREE_TYPE (TYPE_FIELDS (type)),
+ expr));
+ return gnat_build_constructor (type, v);
+ }
+
+ /* In these cases, assume the front-end has validated the conversion.
+ If the conversion is valid, it will be a bit-wise conversion, so
+ it can be viewed as an unchecked conversion. */
+ return unchecked_convert (type, expr, false);
+
+ case ARRAY_TYPE:
+ /* Do a normal conversion between unconstrained and constrained array
+ type, assuming the latter is a constrained version of the former. */
+ if (TREE_CODE (expr) == INDIRECT_REF
+ && ecode == ARRAY_TYPE
+ && TREE_TYPE (etype) == TREE_TYPE (type))
+ {
+ tree ptr_type = build_pointer_type (type);
+ tree t = build_unary_op (INDIRECT_REF, NULL_TREE,
+ fold_convert (ptr_type,
+ TREE_OPERAND (expr, 0)));
+ TREE_READONLY (t) = TREE_READONLY (expr);
+ TREE_THIS_NOTRAP (t) = TREE_THIS_NOTRAP (expr);
+ return t;
+ }
+
+ /* In these cases, assume the front-end has validated the conversion.
+ If the conversion is valid, it will be a bit-wise conversion, so
+ it can be viewed as an unchecked conversion. */
+ return unchecked_convert (type, expr, false);
+
+ case UNION_TYPE:
+ /* This is a either a conversion between a tagged type and some
+ subtype, which we have to mark as a UNION_TYPE because of
+ overlapping fields or a conversion of an Unchecked_Union. */
+ return unchecked_convert (type, expr, false);
+
+ case UNCONSTRAINED_ARRAY_TYPE:
+ /* If the input is a VECTOR_TYPE, convert to the representative
+ array type first. */
+ if (ecode == VECTOR_TYPE)
+ {
+ expr = convert (TYPE_REPRESENTATIVE_ARRAY (etype), expr);
+ etype = TREE_TYPE (expr);
+ ecode = TREE_CODE (etype);
+ }
+
+ /* If EXPR is a constrained array, take its address, convert it to a
+ fat pointer, and then dereference it. Likewise if EXPR is a
+ record containing both a template and a constrained array.
+ Note that a record representing a justified modular type
+ always represents a packed constrained array. */
+ if (ecode == ARRAY_TYPE
+ || (ecode == INTEGER_TYPE && TYPE_HAS_ACTUAL_BOUNDS_P (etype))
+ || (ecode == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (etype))
+ || (ecode == RECORD_TYPE && TYPE_JUSTIFIED_MODULAR_P (etype)))
+ return
+ build_unary_op
+ (INDIRECT_REF, NULL_TREE,
+ convert_to_fat_pointer (TREE_TYPE (type),
+ build_unary_op (ADDR_EXPR,
+ NULL_TREE, expr)));
+
+ /* Do something very similar for converting one unconstrained
+ array to another. */
+ else if (ecode == UNCONSTRAINED_ARRAY_TYPE)
+ return
+ build_unary_op (INDIRECT_REF, NULL_TREE,
+ convert (TREE_TYPE (type),
+ build_unary_op (ADDR_EXPR,
+ NULL_TREE, expr)));
+ else
+ gcc_unreachable ();
+
+ case COMPLEX_TYPE:
+ return fold (convert_to_complex (type, expr));
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Create an expression whose value is that of EXPR converted to the common
+ index type, which is sizetype. EXPR is supposed to be in the base type
+ of the GNAT index type. Calling it is equivalent to doing
+
+ convert (sizetype, expr)
+
+ but we try to distribute the type conversion with the knowledge that EXPR
+ cannot overflow in its type. This is a best-effort approach and we fall
+ back to the above expression as soon as difficulties are encountered.
+
+ This is necessary to overcome issues that arise when the GNAT base index
+ type and the GCC common index type (sizetype) don't have the same size,
+ which is quite frequent on 64-bit architectures. In this case, and if
+ the GNAT base index type is signed but the iteration type of the loop has
+ been forced to unsigned, the loop scalar evolution engine cannot compute
+ a simple evolution for the general induction variables associated with the
+ array indices, because it will preserve the wrap-around semantics in the
+ unsigned type of their "inner" part. As a result, many loop optimizations
+ are blocked.
+
+ The solution is to use a special (basic) induction variable that is at
+ least as large as sizetype, and to express the aforementioned general
+ induction variables in terms of this induction variable, eliminating
+ the problematic intermediate truncation to the GNAT base index type.
+ This is possible as long as the original expression doesn't overflow
+ and if the middle-end hasn't introduced artificial overflows in the
+ course of the various simplification it can make to the expression. */
+
+tree
+convert_to_index_type (tree expr)
+{
+ enum tree_code code = TREE_CODE (expr);
+ tree type = TREE_TYPE (expr);
+
+ /* If the type is unsigned, overflow is allowed so we cannot be sure that
+ EXPR doesn't overflow. Keep it simple if optimization is disabled. */
+ if (TYPE_UNSIGNED (type) || !optimize || optimize_debug)
+ return convert (sizetype, expr);
+
+ switch (code)
+ {
+ case VAR_DECL:
+ /* The main effect of the function: replace a loop parameter with its
+ associated special induction variable. */
+ if (DECL_LOOP_PARM_P (expr) && DECL_INDUCTION_VAR (expr))
+ expr = DECL_INDUCTION_VAR (expr);
+ break;
+
+ CASE_CONVERT:
+ {
+ tree otype = TREE_TYPE (TREE_OPERAND (expr, 0));
+ /* Bail out as soon as we suspect some sort of type frobbing. */
+ if (TYPE_PRECISION (type) != TYPE_PRECISION (otype)
+ || TYPE_UNSIGNED (type) != TYPE_UNSIGNED (otype))
+ break;
+ }
+
+ /* ... fall through ... */
+
+ case NON_LVALUE_EXPR:
+ return fold_build1 (code, sizetype,
+ convert_to_index_type (TREE_OPERAND (expr, 0)));
+
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ case MULT_EXPR:
+ return fold_build2 (code, sizetype,
+ convert_to_index_type (TREE_OPERAND (expr, 0)),
+ convert_to_index_type (TREE_OPERAND (expr, 1)));
+
+ case COMPOUND_EXPR:
+ return fold_build2 (code, sizetype, TREE_OPERAND (expr, 0),
+ convert_to_index_type (TREE_OPERAND (expr, 1)));
+
+ case COND_EXPR:
+ return fold_build3 (code, sizetype, TREE_OPERAND (expr, 0),
+ convert_to_index_type (TREE_OPERAND (expr, 1)),
+ convert_to_index_type (TREE_OPERAND (expr, 2)));
+
+ default:
+ break;
+ }
+
+ return convert (sizetype, expr);
+}
+
+/* Remove all conversions that are done in EXP. This includes converting
+ from a padded type or to a justified modular type. If TRUE_ADDRESS
+ is true, always return the address of the containing object even if
+ the address is not bit-aligned. */
+
+tree
+remove_conversions (tree exp, bool true_address)
+{
+ switch (TREE_CODE (exp))
+ {
+ case CONSTRUCTOR:
+ if (true_address
+ && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE
+ && TYPE_JUSTIFIED_MODULAR_P (TREE_TYPE (exp)))
+ return
+ remove_conversions (CONSTRUCTOR_ELT (exp, 0)->value, true);
+ break;
+
+ case COMPONENT_REF:
+ if (TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (exp, 0))))
+ return remove_conversions (TREE_OPERAND (exp, 0), true_address);
+ break;
+
+ CASE_CONVERT:
+ case VIEW_CONVERT_EXPR:
+ case NON_LVALUE_EXPR:
+ return remove_conversions (TREE_OPERAND (exp, 0), true_address);
+
+ default:
+ break;
+ }
+
+ return exp;
+}
+
+/* If EXP's type is an UNCONSTRAINED_ARRAY_TYPE, return an expression that
+ refers to the underlying array. If it has TYPE_CONTAINS_TEMPLATE_P,
+ likewise return an expression pointing to the underlying array. */
+
+tree
+maybe_unconstrained_array (tree exp)
+{
+ enum tree_code code = TREE_CODE (exp);
+ tree type = TREE_TYPE (exp);
+
+ switch (TREE_CODE (type))
+ {
+ case UNCONSTRAINED_ARRAY_TYPE:
+ if (code == UNCONSTRAINED_ARRAY_REF)
+ {
+ const bool read_only = TREE_READONLY (exp);
+ const bool no_trap = TREE_THIS_NOTRAP (exp);
+
+ exp = TREE_OPERAND (exp, 0);
+ type = TREE_TYPE (exp);
+
+ if (TREE_CODE (exp) == COND_EXPR)
+ {
+ tree op1
+ = build_unary_op (INDIRECT_REF, NULL_TREE,
+ build_component_ref (TREE_OPERAND (exp, 1),
+ TYPE_FIELDS (type),
+ false));
+ tree op2
+ = build_unary_op (INDIRECT_REF, NULL_TREE,
+ build_component_ref (TREE_OPERAND (exp, 2),
+ TYPE_FIELDS (type),
+ false));
+
+ exp = build3 (COND_EXPR,
+ TREE_TYPE (TREE_TYPE (TYPE_FIELDS (type))),
+ TREE_OPERAND (exp, 0), op1, op2);
+ }
+ else
+ {
+ exp = build_unary_op (INDIRECT_REF, NULL_TREE,
+ build_component_ref (exp,
+ TYPE_FIELDS (type),
+ false));
+ TREE_READONLY (exp) = read_only;
+ TREE_THIS_NOTRAP (exp) = no_trap;
+ }
+ }
+
+ else if (code == NULL_EXPR)
+ exp = build1 (NULL_EXPR,
+ TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (type)))),
+ TREE_OPERAND (exp, 0));
+ break;
+
+ case RECORD_TYPE:
+ /* If this is a padded type and it contains a template, convert to the
+ unpadded type first. */
+ if (TYPE_PADDING_P (type)
+ && TREE_CODE (TREE_TYPE (TYPE_FIELDS (type))) == RECORD_TYPE
+ && TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (TYPE_FIELDS (type))))
+ {
+ exp = convert (TREE_TYPE (TYPE_FIELDS (type)), exp);
+ code = TREE_CODE (exp);
+ type = TREE_TYPE (exp);
+ }
+
+ if (TYPE_CONTAINS_TEMPLATE_P (type))
+ {
+ /* If the array initializer is a box, return NULL_TREE. */
+ if (code == CONSTRUCTOR && CONSTRUCTOR_NELTS (exp) < 2)
+ return NULL_TREE;
+
+ exp = build_component_ref (exp, DECL_CHAIN (TYPE_FIELDS (type)),
+ false);
+
+ /* If the array is padded, remove the padding. */
+ exp = maybe_padded_object (exp);
+ }
+ break;
+
+ default:
+ break;
+ }
+
+ return exp;
+}
+
+/* Return true if EXPR is an expression that can be folded as an operand
+ of a VIEW_CONVERT_EXPR. See ada-tree.h for a complete rationale. */
+
+static bool
+can_fold_for_view_convert_p (tree expr)
+{
+ tree t1, t2;
+
+ /* The folder will fold NOP_EXPRs between integral types with the same
+ precision (in the middle-end's sense). We cannot allow it if the
+ types don't have the same precision in the Ada sense as well. */
+ if (TREE_CODE (expr) != NOP_EXPR)
+ return true;
+
+ t1 = TREE_TYPE (expr);
+ t2 = TREE_TYPE (TREE_OPERAND (expr, 0));
+
+ /* Defer to the folder for non-integral conversions. */
+ if (!(INTEGRAL_TYPE_P (t1) && INTEGRAL_TYPE_P (t2)))
+ return true;
+
+ /* Only fold conversions that preserve both precisions. */
+ if (TYPE_PRECISION (t1) == TYPE_PRECISION (t2)
+ && operand_equal_p (rm_size (t1), rm_size (t2), 0))
+ return true;
+
+ return false;
+}
+
+/* Return an expression that does an unchecked conversion of EXPR to TYPE.
+ If NOTRUNC_P is true, truncation operations should be suppressed.
+
+ Special care is required with (source or target) integral types whose
+ precision is not equal to their size, to make sure we fetch or assign
+ the value bits whose location might depend on the endianness, e.g.
+
+ Rmsize : constant := 8;
+ subtype Int is Integer range 0 .. 2 ** Rmsize - 1;
+
+ type Bit_Array is array (1 .. Rmsize) of Boolean;
+ pragma Pack (Bit_Array);
+
+ function To_Bit_Array is new Unchecked_Conversion (Int, Bit_Array);
+
+ Value : Int := 2#1000_0001#;
+ Vbits : Bit_Array := To_Bit_Array (Value);
+
+ we expect the 8 bits at Vbits'Address to always contain Value, while
+ their original location depends on the endianness, at Value'Address
+ on a little-endian architecture but not on a big-endian one.
+
+ One pitfall is that we cannot use TYPE_UNSIGNED directly to decide how
+ the bits between the precision and the size are filled, because of the
+ trick used in the E_Signed_Integer_Subtype case of gnat_to_gnu_entity.
+ So we use the special predicate type_unsigned_for_rm above. */
+
+tree
+unchecked_convert (tree type, tree expr, bool notrunc_p)
+{
+ tree etype = TREE_TYPE (expr);
+ enum tree_code ecode = TREE_CODE (etype);
+ enum tree_code code = TREE_CODE (type);
+ const bool ebiased
+ = (ecode == INTEGER_TYPE && TYPE_BIASED_REPRESENTATION_P (etype));
+ const bool biased
+ = (code == INTEGER_TYPE && TYPE_BIASED_REPRESENTATION_P (type));
+ const bool ereverse
+ = (AGGREGATE_TYPE_P (etype) && TYPE_REVERSE_STORAGE_ORDER (etype));
+ const bool reverse
+ = (AGGREGATE_TYPE_P (type) && TYPE_REVERSE_STORAGE_ORDER (type));
+ tree tem;
+ int c = 0;
+
+ /* If the expression is already of the right type, we are done. */
+ if (etype == type)
+ return expr;
+
+ /* If both types are integral or regular pointer, then just do a normal
+ conversion. Likewise for a conversion to an unconstrained array. */
+ if (((INTEGRAL_TYPE_P (type)
+ || (POINTER_TYPE_P (type) && !TYPE_IS_THIN_POINTER_P (type))
+ || (code == RECORD_TYPE && TYPE_JUSTIFIED_MODULAR_P (type)))
+ && (INTEGRAL_TYPE_P (etype)
+ || (POINTER_TYPE_P (etype) && !TYPE_IS_THIN_POINTER_P (etype))
+ || (ecode == RECORD_TYPE && TYPE_JUSTIFIED_MODULAR_P (etype))))
+ || code == UNCONSTRAINED_ARRAY_TYPE)
+ {
+ if (ebiased)
+ {
+ tree ntype = copy_type (etype);
+ TYPE_BIASED_REPRESENTATION_P (ntype) = 0;
+ TYPE_MAIN_VARIANT (ntype) = ntype;
+ expr = build1 (NOP_EXPR, ntype, expr);
+ }
+
+ if (biased)
+ {
+ tree rtype = copy_type (type);
+ TYPE_BIASED_REPRESENTATION_P (rtype) = 0;
+ TYPE_MAIN_VARIANT (rtype) = rtype;
+ expr = convert (rtype, expr);
+ expr = build1 (NOP_EXPR, type, expr);
+ }
+ else
+ expr = convert (type, expr);
+ }
+
+ /* If we are converting to an integral type whose precision is not equal
+ to its size, first unchecked convert to a record type that contains a
+ field of the given precision. Then extract the result from the field.
+
+ There is a subtlety if the source type is an aggregate type with reverse
+ storage order because its representation is not contiguous in the native
+ storage order, i.e. a direct unchecked conversion to an integral type
+ with N bits of precision cannot read the first N bits of the aggregate
+ type. To overcome it, we do an unchecked conversion to an integral type
+ with reverse storage order and return the resulting value. This also
+ ensures that the result of the unchecked conversion doesn't depend on
+ the endianness of the target machine, but only on the storage order of
+ the aggregate type.
+
+ Finally, for the sake of consistency, we do the unchecked conversion
+ to an integral type with reverse storage order as soon as the source
+ type is an aggregate type with reverse storage order, even if there
+ are no considerations of precision or size involved. Ultimately, we
+ further extend this processing to any scalar type. */
+ else if ((INTEGRAL_TYPE_P (type)
+ && TYPE_RM_SIZE (type)
+ && ((c = tree_int_cst_compare (TYPE_RM_SIZE (type),
+ TYPE_SIZE (type))) < 0
+ || ereverse))
+ || (SCALAR_FLOAT_TYPE_P (type) && ereverse))
+ {
+ tree rec_type = make_node (RECORD_TYPE);
+ tree field_type, field;
+
+ TYPE_REVERSE_STORAGE_ORDER (rec_type) = ereverse;
+
+ if (c < 0)
+ {
+ const unsigned HOST_WIDE_INT prec
+ = TREE_INT_CST_LOW (TYPE_RM_SIZE (type));
+ if (type_unsigned_for_rm (type))
+ field_type = make_unsigned_type (prec);
+ else
+ field_type = make_signed_type (prec);
+ SET_TYPE_RM_SIZE (field_type, TYPE_RM_SIZE (type));
+ }
+ else
+ field_type = type;
+
+ field = create_field_decl (get_identifier ("OBJ"), field_type, rec_type,
+ NULL_TREE, bitsize_zero_node, c < 0, 0);
+
+ finish_record_type (rec_type, field, 1, false);
+
+ expr = unchecked_convert (rec_type, expr, notrunc_p);
+ expr = build_component_ref (expr, field, false);
+ expr = fold_build1 (NOP_EXPR, type, expr);
+ }
+
+ /* Similarly if we are converting from an integral type whose precision is
+ not equal to its size, first copy into a field of the given precision
+ and unchecked convert the record type.
+
+ The same considerations as above apply if the target type is an aggregate
+ type with reverse storage order and we also proceed similarly. */
+ else if ((INTEGRAL_TYPE_P (etype)
+ && TYPE_RM_SIZE (etype)
+ && ((c = tree_int_cst_compare (TYPE_RM_SIZE (etype),
+ TYPE_SIZE (etype))) < 0
+ || reverse))
+ || (SCALAR_FLOAT_TYPE_P (etype) && reverse))
+ {
+ tree rec_type = make_node (RECORD_TYPE);
+ vec<constructor_elt, va_gc> *v;
+ vec_alloc (v, 1);
+ tree field_type, field;
+
+ TYPE_REVERSE_STORAGE_ORDER (rec_type) = reverse;
+
+ if (c < 0)
+ {
+ const unsigned HOST_WIDE_INT prec
+ = TREE_INT_CST_LOW (TYPE_RM_SIZE (etype));
+ if (type_unsigned_for_rm (etype))
+ field_type = make_unsigned_type (prec);
+ else
+ field_type = make_signed_type (prec);
+ SET_TYPE_RM_SIZE (field_type, TYPE_RM_SIZE (etype));
+ }
+ else
+ field_type = etype;
+
+ field = create_field_decl (get_identifier ("OBJ"), field_type, rec_type,
+ NULL_TREE, bitsize_zero_node, c < 0, 0);
+
+ finish_record_type (rec_type, field, 1, false);
+
+ expr = fold_build1 (NOP_EXPR, field_type, expr);
+ CONSTRUCTOR_APPEND_ELT (v, field, expr);
+ expr = gnat_build_constructor (rec_type, v);
+ expr = unchecked_convert (type, expr, notrunc_p);
+ }
+
+ /* If we are converting from a scalar type to a type with a different size,
+ we need to pad to have the same size on both sides.
+
+ ??? We cannot do it unconditionally because unchecked conversions are
+ used liberally by the front-end to implement interface thunks:
+
+ type ada__tags__addr_ptr is access system.address;
+ S191s : constant ada__tags__addr_ptr := ada__tags__addr_ptr!(S190s);
+ return p___size__4 (p__object!(S191s.all));
+
+ so we need to skip dereferences. */
+ else if (!INDIRECT_REF_P (expr)
+ && !AGGREGATE_TYPE_P (etype)
+ && ecode != UNCONSTRAINED_ARRAY_TYPE
+ && TREE_CONSTANT (TYPE_SIZE (type))
+ && (c = tree_int_cst_compare (TYPE_SIZE (etype), TYPE_SIZE (type))))
+ {
+ if (c < 0)
+ {
+ expr = convert (maybe_pad_type (etype, TYPE_SIZE (type), 0, Empty,
+ false, false, true),
+ expr);
+ expr = unchecked_convert (type, expr, notrunc_p);
+ }
+ else
+ {
+ tree rec_type = maybe_pad_type (type, TYPE_SIZE (etype), 0, Empty,
+ false, false, true);
+ expr = unchecked_convert (rec_type, expr, notrunc_p);
+ expr = build_component_ref (expr, TYPE_FIELDS (rec_type), false);
+ }
+ }
+
+ /* Likewise if we are converting from a scalar type to a type with self-
+ referential size. We use the max size to do the padding in this case. */
+ else if (!INDIRECT_REF_P (expr)
+ && !AGGREGATE_TYPE_P (etype)
+ && ecode != UNCONSTRAINED_ARRAY_TYPE
+ && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type)))
+ {
+ tree new_size = max_size (TYPE_SIZE (type), true);
+ c = tree_int_cst_compare (TYPE_SIZE (etype), new_size);
+ if (c < 0)
+ {
+ expr = convert (maybe_pad_type (etype, new_size, 0, Empty,
+ false, false, true),
+ expr);
+ expr = unchecked_convert (type, expr, notrunc_p);
+ }
+ else
+ {
+ tree rec_type = maybe_pad_type (type, TYPE_SIZE (etype), 0, Empty,
+ false, false, true);
+ expr = unchecked_convert (rec_type, expr, notrunc_p);
+ expr = build_component_ref (expr, TYPE_FIELDS (rec_type), false);
+ }
+ }
+
+ /* We have a special case when we are converting between two unconstrained
+ array types. In that case, take the address, convert the fat pointer
+ types, and dereference. */
+ else if (ecode == code && code == UNCONSTRAINED_ARRAY_TYPE)
+ expr = build_unary_op (INDIRECT_REF, NULL_TREE,
+ build1 (VIEW_CONVERT_EXPR, TREE_TYPE (type),
+ build_unary_op (ADDR_EXPR, NULL_TREE,
+ expr)));
+
+ /* Another special case is when we are converting to a vector type from its
+ representative array type; this a regular conversion. */
+ else if (code == VECTOR_TYPE
+ && ecode == ARRAY_TYPE
+ && gnat_types_compatible_p (TYPE_REPRESENTATIVE_ARRAY (type),
+ etype))
+ expr = convert (type, expr);
+
+ /* And, if the array type is not the representative, we try to build an
+ intermediate vector type of which the array type is the representative
+ and to do the unchecked conversion between the vector types, in order
+ to enable further simplifications in the middle-end. */
+ else if (code == VECTOR_TYPE
+ && ecode == ARRAY_TYPE
+ && (tem = build_vector_type_for_array (etype, NULL_TREE)))
+ {
+ expr = convert (tem, expr);
+ return unchecked_convert (type, expr, notrunc_p);
+ }
+
+ /* If we are converting a CONSTRUCTOR to a more aligned aggregate type, bump
+ the alignment of the CONSTRUCTOR to speed up the copy operation. But do
+ not do it for a conversion between original and packable version to avoid
+ an infinite recursion. */
+ else if (TREE_CODE (expr) == CONSTRUCTOR
+ && AGGREGATE_TYPE_P (type)
+ && TYPE_NAME (type) != TYPE_NAME (etype)
+ && TYPE_ALIGN (etype) < TYPE_ALIGN (type))
+ {
+ expr = convert (maybe_pad_type (etype, NULL_TREE, TYPE_ALIGN (type),
+ Empty, false, false, true),
+ expr);
+ return unchecked_convert (type, expr, notrunc_p);
+ }
+
+ /* If we are converting a CONSTRUCTOR to a larger aggregate type, bump the
+ size of the CONSTRUCTOR to make sure there are enough allocated bytes.
+ But do not do it for a conversion between original and packable version
+ to avoid an infinite recursion. */
+ else if (TREE_CODE (expr) == CONSTRUCTOR
+ && AGGREGATE_TYPE_P (type)
+ && TYPE_NAME (type) != TYPE_NAME (etype)
+ && TREE_CONSTANT (TYPE_SIZE (type))
+ && (!TREE_CONSTANT (TYPE_SIZE (etype))
+ || tree_int_cst_lt (TYPE_SIZE (etype), TYPE_SIZE (type))))
+ {
+ expr = convert (maybe_pad_type (etype, TYPE_SIZE (type), 0,
+ Empty, false, false, true),
+ expr);
+ return unchecked_convert (type, expr, notrunc_p);
+ }
+
+ /* Otherwise, just build a VIEW_CONVERT_EXPR of the expression. */
+ else
+ {
+ expr = maybe_unconstrained_array (expr);
+ etype = TREE_TYPE (expr);
+ ecode = TREE_CODE (etype);
+ if (can_fold_for_view_convert_p (expr))
+ expr = fold_build1 (VIEW_CONVERT_EXPR, type, expr);
+ else
+ expr = build1 (VIEW_CONVERT_EXPR, type, expr);
+ }
+
+ /* If the result is a non-biased integral type whose precision is not equal
+ to its size, sign- or zero-extend the result. But we need not do this
+ if the input is also an integral type and both are unsigned or both are
+ signed and have the same precision. */
+ tree type_rm_size;
+ if (!notrunc_p
+ && !biased
+ && INTEGRAL_TYPE_P (type)
+ && (type_rm_size = TYPE_RM_SIZE (type))
+ && tree_int_cst_compare (type_rm_size, TYPE_SIZE (type)) < 0
+ && !(INTEGRAL_TYPE_P (etype)
+ && type_unsigned_for_rm (type) == type_unsigned_for_rm (etype)
+ && (type_unsigned_for_rm (type)
+ || tree_int_cst_compare (type_rm_size,
+ TYPE_RM_SIZE (etype)
+ ? TYPE_RM_SIZE (etype)
+ : TYPE_SIZE (etype)) == 0)))
+ {
+ if (integer_zerop (type_rm_size))
+ expr = build_int_cst (type, 0);
+ else
+ {
+ tree base_type
+ = gnat_type_for_size (TREE_INT_CST_LOW (TYPE_SIZE (type)),
+ type_unsigned_for_rm (type));
+ tree shift_expr
+ = convert (base_type,
+ size_binop (MINUS_EXPR,
+ TYPE_SIZE (type), type_rm_size));
+ expr
+ = convert (type,
+ build_binary_op (RSHIFT_EXPR, base_type,
+ build_binary_op (LSHIFT_EXPR, base_type,
+ convert (base_type,
+ expr),
+ shift_expr),
+ shift_expr));
+ }
+ }
+
+ /* An unchecked conversion should never raise Constraint_Error. The code
+ below assumes that GCC's conversion routines overflow the same way that
+ the underlying hardware does. This is probably true. In the rare case
+ when it is false, we can rely on the fact that such conversions are
+ erroneous anyway. */
+ if (TREE_CODE (expr) == INTEGER_CST)
+ TREE_OVERFLOW (expr) = 0;
+
+ /* If the sizes of the types differ and this is an VIEW_CONVERT_EXPR,
+ show no longer constant. */
+ if (TREE_CODE (expr) == VIEW_CONVERT_EXPR
+ && !operand_equal_p (TYPE_SIZE_UNIT (type), TYPE_SIZE_UNIT (etype),
+ OEP_ONLY_CONST))
+ TREE_CONSTANT (expr) = 0;
+
+ return expr;
+}
+
+/* Return the appropriate GCC tree code for the specified GNAT_TYPE,
+ the latter being a record type as predicated by Is_Record_Type. */
+
+enum tree_code
+tree_code_for_record_type (Entity_Id gnat_type)
+{
+ Node_Id component_list, component;
+
+ /* Return UNION_TYPE if it's an Unchecked_Union whose non-discriminant
+ fields are all in the variant part. Otherwise, return RECORD_TYPE. */
+ if (!Is_Unchecked_Union (gnat_type))
+ return RECORD_TYPE;
+
+ gnat_type = Implementation_Base_Type (gnat_type);
+ component_list
+ = Component_List (Type_Definition (Declaration_Node (gnat_type)));
+
+ for (component = First_Non_Pragma (Component_Items (component_list));
+ Present (component);
+ component = Next_Non_Pragma (component))
+ if (Ekind (Defining_Entity (component)) == E_Component)
+ return RECORD_TYPE;
+
+ return UNION_TYPE;
+}
+
+/* Return true if GNAT_TYPE is a "double" floating-point type, i.e. whose
+ size is equal to 64 bits, or an array of such a type. Set ALIGN_CLAUSE
+ according to the presence of an alignment clause on the type or, if it
+ is an array, on the component type. */
+
+bool
+is_double_float_or_array (Entity_Id gnat_type, bool *align_clause)
+{
+ gnat_type = Underlying_Type (gnat_type);
+
+ *align_clause = Present (Alignment_Clause (gnat_type));
+
+ if (Is_Array_Type (gnat_type))
+ {
+ gnat_type = Underlying_Type (Component_Type (gnat_type));
+ if (Present (Alignment_Clause (gnat_type)))
+ *align_clause = true;
+ }
+
+ if (!Is_Floating_Point_Type (gnat_type))
+ return false;
+
+ if (UI_To_Int (Esize (gnat_type)) != 64)
+ return false;
+
+ return true;
+}
+
+/* Return true if GNAT_TYPE is a "double" or larger scalar type, i.e. whose
+ size is greater or equal to 64 bits, or an array of such a type. Set
+ ALIGN_CLAUSE according to the presence of an alignment clause on the
+ type or, if it is an array, on the component type. */
+
+bool
+is_double_scalar_or_array (Entity_Id gnat_type, bool *align_clause)
+{
+ gnat_type = Underlying_Type (gnat_type);
+
+ *align_clause = Present (Alignment_Clause (gnat_type));
+
+ if (Is_Array_Type (gnat_type))
+ {
+ gnat_type = Underlying_Type (Component_Type (gnat_type));
+ if (Present (Alignment_Clause (gnat_type)))
+ *align_clause = true;
+ }
+
+ if (!Is_Scalar_Type (gnat_type))
+ return false;
+
+ if (UI_To_Int (Esize (gnat_type)) < 64)
+ return false;
+
+ return true;
+}
+
+/* Return true if GNU_TYPE is suitable as the type of a non-aliased
+ component of an aggregate type. */
+
+bool
+type_for_nonaliased_component_p (tree gnu_type)
+{
+ /* If the type is passed by reference, we may have pointers to the
+ component so it cannot be made non-aliased. */
+ if (must_pass_by_ref (gnu_type) || default_pass_by_ref (gnu_type))
+ return false;
+
+ /* We used to say that any component of aggregate type is aliased
+ because the front-end may take 'Reference of it. The front-end
+ has been enhanced in the meantime so as to use a renaming instead
+ in most cases, but the back-end can probably take the address of
+ such a component too so we go for the conservative stance.
+
+ For instance, we might need the address of any array type, even
+ if normally passed by copy, to construct a fat pointer if the
+ component is used as an actual for an unconstrained formal.
+
+ Likewise for record types: even if a specific record subtype is
+ passed by copy, the parent type might be passed by ref (e.g. if
+ it's of variable size) and we might take the address of a child
+ component to pass to a parent formal. We have no way to check
+ for such conditions here. */
+ if (AGGREGATE_TYPE_P (gnu_type))
+ return false;
+
+ return true;
+}
+
+/* Return true if TYPE is a smaller form of ORIG_TYPE. */
+
+bool
+smaller_form_type_p (tree type, tree orig_type)
+{
+ tree size, osize;
+
+ /* We're not interested in variants here. */
+ if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig_type))
+ return false;
+
+ /* Like a variant, a packable version keeps the original TYPE_NAME. */
+ if (TYPE_NAME (type) != TYPE_NAME (orig_type))
+ return false;
+
+ size = TYPE_SIZE (type);
+ osize = TYPE_SIZE (orig_type);
+
+ if (!(TREE_CODE (size) == INTEGER_CST && TREE_CODE (osize) == INTEGER_CST))
+ return false;
+
+ return tree_int_cst_lt (size, osize) != 0;
+}
+
+/* Return whether EXPR, which is the renamed object in an object renaming
+ declaration, can be materialized as a reference (with a REFERENCE_TYPE).
+ This should be synchronized with Exp_Dbug.Debug_Renaming_Declaration. */
+
+bool
+can_materialize_object_renaming_p (Node_Id expr)
+{
+ while (true)
+ {
+ expr = Original_Node (expr);
+
+ switch (Nkind (expr))
+ {
+ case N_Identifier:
+ case N_Expanded_Name:
+ if (!Present (Renamed_Object (Entity (expr))))
+ return true;
+ expr = Renamed_Object (Entity (expr));
+ break;
+
+ case N_Selected_Component:
+ {
+ if (Is_Packed (Underlying_Type (Etype (Prefix (expr)))))
+ return false;
+
+ const Uint bitpos
+ = Normalized_First_Bit (Entity (Selector_Name (expr)));
+ if (bitpos != UI_No_Uint && bitpos != Uint_0)
+ return false;
+
+ expr = Prefix (expr);
+ break;
+ }
+
+ case N_Indexed_Component:
+ case N_Slice:
+ {
+ const Entity_Id t = Underlying_Type (Etype (Prefix (expr)));
+
+ if (Is_Array_Type (t) && Present (Packed_Array_Impl_Type (t)))
+ return false;
+
+ expr = Prefix (expr);
+ break;
+ }
+
+ case N_Explicit_Dereference:
+ expr = Prefix (expr);
+ break;
+
+ default:
+ return true;
+ };
+ }
+}
+
+/* Perform final processing on global declarations. */
+
+static GTY (()) tree dummy_global;
+
+void
+gnat_write_global_declarations (void)
+{
+ unsigned int i;
+ tree iter;
+
+ /* If we have declared types as used at the global level, insert them in
+ the global hash table. We use a dummy variable for this purpose, but
+ we need to build it unconditionally to avoid -fcompare-debug issues. */
+ if (first_global_object_name)
+ {
+ struct varpool_node *node;
+ char *label;
+
+ ASM_FORMAT_PRIVATE_NAME (label, first_global_object_name, ULONG_MAX);
+ dummy_global
+ = build_decl (BUILTINS_LOCATION, VAR_DECL, get_identifier (label),
+ void_type_node);
+ DECL_HARD_REGISTER (dummy_global) = 1;
+ TREE_STATIC (dummy_global) = 1;
+ node = varpool_node::get_create (dummy_global);
+ node->definition = 1;
+ node->force_output = 1;
+
+ if (types_used_by_cur_var_decl)
+ while (!types_used_by_cur_var_decl->is_empty ())
+ {
+ tree t = types_used_by_cur_var_decl->pop ();
+ types_used_by_var_decl_insert (t, dummy_global);
+ }
+ }
+
+ /* First output the integral global variables, so that they can be referenced
+ as bounds by the global dynamic types. Skip external variables, unless we
+ really need to emit debug info for them:, e.g. imported variables. */
+ FOR_EACH_VEC_SAFE_ELT (global_decls, i, iter)
+ if (TREE_CODE (iter) == VAR_DECL
+ && INTEGRAL_TYPE_P (TREE_TYPE (iter))
+ && (!DECL_EXTERNAL (iter) || !DECL_IGNORED_P (iter)))
+ rest_of_decl_compilation (iter, true, 0);
+
+ /* Now output debug information for the global type declarations. This
+ ensures that global types whose compilation hasn't been finalized yet,
+ for example pointers to Taft amendment types, have their compilation
+ finalized in the right context. */
+ FOR_EACH_VEC_SAFE_ELT (global_decls, i, iter)
+ if (TREE_CODE (iter) == TYPE_DECL && !DECL_IGNORED_P (iter))
+ debug_hooks->type_decl (iter, false);
+
+ /* Then output the other global variables. We need to do that after the
+ information for global types is emitted so that they are finalized. */
+ FOR_EACH_VEC_SAFE_ELT (global_decls, i, iter)
+ if (TREE_CODE (iter) == VAR_DECL
+ && !INTEGRAL_TYPE_P (TREE_TYPE (iter))
+ && (!DECL_EXTERNAL (iter) || !DECL_IGNORED_P (iter)))
+ rest_of_decl_compilation (iter, true, 0);
+
+ /* Output debug information for the global constants. */
+ FOR_EACH_VEC_SAFE_ELT (global_decls, i, iter)
+ if (TREE_CODE (iter) == CONST_DECL && !DECL_IGNORED_P (iter))
+ debug_hooks->early_global_decl (iter);
+
+ /* Output it for the imported functions. */
+ FOR_EACH_VEC_SAFE_ELT (global_decls, i, iter)
+ if (TREE_CODE (iter) == FUNCTION_DECL
+ && DECL_EXTERNAL (iter)
+ && DECL_INITIAL (iter) == NULL
+ && !DECL_IGNORED_P (iter)
+ && DECL_FUNCTION_IS_DEF (iter))
+ debug_hooks->early_global_decl (iter);
+
+ /* Output it for the imported modules/declarations. In GNAT, these are only
+ materializing subprogram. */
+ FOR_EACH_VEC_SAFE_ELT (global_decls, i, iter)
+ if (TREE_CODE (iter) == IMPORTED_DECL && !DECL_IGNORED_P (iter))
+ debug_hooks->imported_module_or_decl (iter, DECL_NAME (iter),
+ DECL_CONTEXT (iter), false, false);
+}
+
+/* ************************************************************************
+ * * GCC builtins support *
+ * ************************************************************************ */
+
+/* The general scheme is fairly simple:
+
+ For each builtin function/type to be declared, gnat_install_builtins calls
+ internal facilities which eventually get to gnat_pushdecl, which in turn
+ tracks the so declared builtin function decls in the 'builtin_decls' global
+ datastructure. When an Intrinsic subprogram declaration is processed, we
+ search this global datastructure to retrieve the associated BUILT_IN DECL
+ node. */
+
+/* Search the chain of currently available builtin declarations for a node
+ corresponding to function NAME (an IDENTIFIER_NODE). Return the first node
+ found, if any, or NULL_TREE otherwise. */
+tree
+builtin_decl_for (tree name)
+{
+ unsigned i;
+ tree decl;
+
+ FOR_EACH_VEC_SAFE_ELT (builtin_decls, i, decl)
+ if (DECL_NAME (decl) == name)
+ return decl;
+
+ return NULL_TREE;
+}
+
+/* The code below eventually exposes gnat_install_builtins, which declares
+ the builtin types and functions we might need, either internally or as
+ user accessible facilities.
+
+ ??? This is a first implementation shot, still in rough shape. It is
+ heavily inspired from the "C" family implementation, with chunks copied
+ verbatim from there.
+
+ Two obvious improvement candidates are:
+ o Use a more efficient name/decl mapping scheme
+ o Devise a middle-end infrastructure to avoid having to copy
+ pieces between front-ends. */
+
+/* ----------------------------------------------------------------------- *
+ * BUILTIN ELEMENTARY TYPES *
+ * ----------------------------------------------------------------------- */
+
+/* Standard data types to be used in builtin argument declarations. */
+
+enum c_tree_index
+{
+ CTI_SIGNED_SIZE_TYPE, /* For format checking only. */
+ CTI_STRING_TYPE,
+ CTI_CONST_STRING_TYPE,
+
+ CTI_MAX
+};
+
+static tree c_global_trees[CTI_MAX];
+
+#define signed_size_type_node c_global_trees[CTI_SIGNED_SIZE_TYPE]
+#define string_type_node c_global_trees[CTI_STRING_TYPE]
+#define const_string_type_node c_global_trees[CTI_CONST_STRING_TYPE]
+
+/* ??? In addition some attribute handlers, we currently don't support a
+ (small) number of builtin-types, which in turns inhibits support for a
+ number of builtin functions. */
+#define wint_type_node void_type_node
+#define intmax_type_node void_type_node
+#define uintmax_type_node void_type_node
+
+/* Used to help initialize the builtin-types.def table. When a type of
+ the correct size doesn't exist, use error_mark_node instead of NULL.
+ The later results in segfaults even when a decl using the type doesn't
+ get invoked. */
+
+static tree
+builtin_type_for_size (int size, bool unsignedp)
+{
+ tree type = gnat_type_for_size (size, unsignedp);
+ return type ? type : error_mark_node;
+}
+
+/* Build/push the elementary type decls that builtin functions/types
+ will need. */
+
+static void
+install_builtin_elementary_types (void)
+{
+ signed_size_type_node = gnat_signed_type_for (size_type_node);
+ pid_type_node = integer_type_node;
+
+ string_type_node = build_pointer_type (char_type_node);
+ const_string_type_node
+ = build_pointer_type (build_qualified_type
+ (char_type_node, TYPE_QUAL_CONST));
+}
+
+/* ----------------------------------------------------------------------- *
+ * BUILTIN FUNCTION TYPES *
+ * ----------------------------------------------------------------------- */
+
+/* Now, builtin function types per se. */
+
+enum c_builtin_type
+{
+#define DEF_PRIMITIVE_TYPE(NAME, VALUE) NAME,
+#define DEF_FUNCTION_TYPE_0(NAME, RETURN) NAME,
+#define DEF_FUNCTION_TYPE_1(NAME, RETURN, ARG1) NAME,
+#define DEF_FUNCTION_TYPE_2(NAME, RETURN, ARG1, ARG2) NAME,
+#define DEF_FUNCTION_TYPE_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME,
+#define DEF_FUNCTION_TYPE_4(NAME, RETURN, ARG1, ARG2, ARG3, ARG4) NAME,
+#define DEF_FUNCTION_TYPE_5(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) NAME,
+#define DEF_FUNCTION_TYPE_6(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
+ ARG6) NAME,
+#define DEF_FUNCTION_TYPE_7(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
+ ARG6, ARG7) NAME,
+#define DEF_FUNCTION_TYPE_8(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
+ ARG6, ARG7, ARG8) NAME,
+#define DEF_FUNCTION_TYPE_9(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
+ ARG6, ARG7, ARG8, ARG9) NAME,
+#define DEF_FUNCTION_TYPE_10(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
+ ARG6, ARG7, ARG8, ARG9, ARG10) NAME,
+#define DEF_FUNCTION_TYPE_11(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
+ ARG6, ARG7, ARG8, ARG9, ARG10, ARG11) NAME,
+#define DEF_FUNCTION_TYPE_VAR_0(NAME, RETURN) NAME,
+#define DEF_FUNCTION_TYPE_VAR_1(NAME, RETURN, ARG1) NAME,
+#define DEF_FUNCTION_TYPE_VAR_2(NAME, RETURN, ARG1, ARG2) NAME,
+#define DEF_FUNCTION_TYPE_VAR_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME,
+#define DEF_FUNCTION_TYPE_VAR_4(NAME, RETURN, ARG1, ARG2, ARG3, ARG4) NAME,
+#define DEF_FUNCTION_TYPE_VAR_5(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) \
+ NAME,
+#define DEF_FUNCTION_TYPE_VAR_6(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
+ ARG6) NAME,
+#define DEF_FUNCTION_TYPE_VAR_7(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
+ ARG6, ARG7) NAME,
+#define DEF_POINTER_TYPE(NAME, TYPE) NAME,
+#include "builtin-types.def"
+#include "ada-builtin-types.def"
+#undef DEF_PRIMITIVE_TYPE
+#undef DEF_FUNCTION_TYPE_0
+#undef DEF_FUNCTION_TYPE_1
+#undef DEF_FUNCTION_TYPE_2
+#undef DEF_FUNCTION_TYPE_3
+#undef DEF_FUNCTION_TYPE_4
+#undef DEF_FUNCTION_TYPE_5
+#undef DEF_FUNCTION_TYPE_6
+#undef DEF_FUNCTION_TYPE_7
+#undef DEF_FUNCTION_TYPE_8
+#undef DEF_FUNCTION_TYPE_9
+#undef DEF_FUNCTION_TYPE_10
+#undef DEF_FUNCTION_TYPE_11
+#undef DEF_FUNCTION_TYPE_VAR_0
+#undef DEF_FUNCTION_TYPE_VAR_1
+#undef DEF_FUNCTION_TYPE_VAR_2
+#undef DEF_FUNCTION_TYPE_VAR_3
+#undef DEF_FUNCTION_TYPE_VAR_4
+#undef DEF_FUNCTION_TYPE_VAR_5
+#undef DEF_FUNCTION_TYPE_VAR_6
+#undef DEF_FUNCTION_TYPE_VAR_7
+#undef DEF_POINTER_TYPE
+ BT_LAST
+};
+
+typedef enum c_builtin_type builtin_type;
+
+/* A temporary array used in communication with def_fn_type. */
+static GTY(()) tree builtin_types[(int) BT_LAST + 1];
+
+/* A helper function for install_builtin_types. Build function type
+ for DEF with return type RET and N arguments. If VAR is true, then the
+ function should be variadic after those N arguments.
+
+ Takes special care not to ICE if any of the types involved are
+ error_mark_node, which indicates that said type is not in fact available
+ (see builtin_type_for_size). In which case the function type as a whole
+ should be error_mark_node. */
+
+static void
+def_fn_type (builtin_type def, builtin_type ret, bool var, int n, ...)
+{
+ tree t;
+ tree *args = XALLOCAVEC (tree, n);
+ va_list list;
+ int i;
+
+ va_start (list, n);
+ for (i = 0; i < n; ++i)
+ {
+ builtin_type a = (builtin_type) va_arg (list, int);
+ t = builtin_types[a];
+ if (t == error_mark_node)
+ goto egress;
+ args[i] = t;
+ }
+
+ t = builtin_types[ret];
+ if (t == error_mark_node)
+ goto egress;
+ if (var)
+ t = build_varargs_function_type_array (t, n, args);
+ else
+ t = build_function_type_array (t, n, args);
+
+ egress:
+ builtin_types[def] = t;
+ va_end (list);
+}
+
+/* Build the builtin function types and install them in the builtin_types
+ array for later use in builtin function decls. */
+
+static void
+install_builtin_function_types (void)
+{
+ tree va_list_ref_type_node;
+ tree va_list_arg_type_node;
+
+ if (TREE_CODE (va_list_type_node) == ARRAY_TYPE)
+ {
+ va_list_arg_type_node = va_list_ref_type_node =
+ build_pointer_type (TREE_TYPE (va_list_type_node));
+ }
+ else
+ {
+ va_list_arg_type_node = va_list_type_node;
+ va_list_ref_type_node = build_reference_type (va_list_type_node);
+ }
+
+#define DEF_PRIMITIVE_TYPE(ENUM, VALUE) \
+ builtin_types[ENUM] = VALUE;
+#define DEF_FUNCTION_TYPE_0(ENUM, RETURN) \
+ def_fn_type (ENUM, RETURN, 0, 0);
+#define DEF_FUNCTION_TYPE_1(ENUM, RETURN, ARG1) \
+ def_fn_type (ENUM, RETURN, 0, 1, ARG1);
+#define DEF_FUNCTION_TYPE_2(ENUM, RETURN, ARG1, ARG2) \
+ def_fn_type (ENUM, RETURN, 0, 2, ARG1, ARG2);
+#define DEF_FUNCTION_TYPE_3(ENUM, RETURN, ARG1, ARG2, ARG3) \
+ def_fn_type (ENUM, RETURN, 0, 3, ARG1, ARG2, ARG3);
+#define DEF_FUNCTION_TYPE_4(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4) \
+ def_fn_type (ENUM, RETURN, 0, 4, ARG1, ARG2, ARG3, ARG4);
+#define DEF_FUNCTION_TYPE_5(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) \
+ def_fn_type (ENUM, RETURN, 0, 5, ARG1, ARG2, ARG3, ARG4, ARG5);
+#define DEF_FUNCTION_TYPE_6(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
+ ARG6) \
+ def_fn_type (ENUM, RETURN, 0, 6, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6);
+#define DEF_FUNCTION_TYPE_7(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
+ ARG6, ARG7) \
+ def_fn_type (ENUM, RETURN, 0, 7, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7);
+#define DEF_FUNCTION_TYPE_8(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
+ ARG6, ARG7, ARG8) \
+ def_fn_type (ENUM, RETURN, 0, 8, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, \
+ ARG7, ARG8);
+#define DEF_FUNCTION_TYPE_9(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
+ ARG6, ARG7, ARG8, ARG9) \
+ def_fn_type (ENUM, RETURN, 0, 9, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, \
+ ARG7, ARG8, ARG9);
+#define DEF_FUNCTION_TYPE_10(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5,\
+ ARG6, ARG7, ARG8, ARG9, ARG10) \
+ def_fn_type (ENUM, RETURN, 0, 10, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, \
+ ARG7, ARG8, ARG9, ARG10);
+#define DEF_FUNCTION_TYPE_11(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5,\
+ ARG6, ARG7, ARG8, ARG9, ARG10, ARG11) \
+ def_fn_type (ENUM, RETURN, 0, 11, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, \
+ ARG7, ARG8, ARG9, ARG10, ARG11);
+#define DEF_FUNCTION_TYPE_VAR_0(ENUM, RETURN) \
+ def_fn_type (ENUM, RETURN, 1, 0);
+#define DEF_FUNCTION_TYPE_VAR_1(ENUM, RETURN, ARG1) \
+ def_fn_type (ENUM, RETURN, 1, 1, ARG1);
+#define DEF_FUNCTION_TYPE_VAR_2(ENUM, RETURN, ARG1, ARG2) \
+ def_fn_type (ENUM, RETURN, 1, 2, ARG1, ARG2);
+#define DEF_FUNCTION_TYPE_VAR_3(ENUM, RETURN, ARG1, ARG2, ARG3) \
+ def_fn_type (ENUM, RETURN, 1, 3, ARG1, ARG2, ARG3);
+#define DEF_FUNCTION_TYPE_VAR_4(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4) \
+ def_fn_type (ENUM, RETURN, 1, 4, ARG1, ARG2, ARG3, ARG4);
+#define DEF_FUNCTION_TYPE_VAR_5(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) \
+ def_fn_type (ENUM, RETURN, 1, 5, ARG1, ARG2, ARG3, ARG4, ARG5);
+#define DEF_FUNCTION_TYPE_VAR_6(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
+ ARG6) \
+ def_fn_type (ENUM, RETURN, 1, 6, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6);
+#define DEF_FUNCTION_TYPE_VAR_7(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
+ ARG6, ARG7) \
+ def_fn_type (ENUM, RETURN, 1, 7, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7);
+#define DEF_POINTER_TYPE(ENUM, TYPE) \
+ builtin_types[(int) ENUM] = build_pointer_type (builtin_types[(int) TYPE]);
+
+#include "builtin-types.def"
+#include "ada-builtin-types.def"
+
+#undef DEF_PRIMITIVE_TYPE
+#undef DEF_FUNCTION_TYPE_0
+#undef DEF_FUNCTION_TYPE_1
+#undef DEF_FUNCTION_TYPE_2
+#undef DEF_FUNCTION_TYPE_3
+#undef DEF_FUNCTION_TYPE_4
+#undef DEF_FUNCTION_TYPE_5
+#undef DEF_FUNCTION_TYPE_6
+#undef DEF_FUNCTION_TYPE_7
+#undef DEF_FUNCTION_TYPE_8
+#undef DEF_FUNCTION_TYPE_9
+#undef DEF_FUNCTION_TYPE_10
+#undef DEF_FUNCTION_TYPE_11
+#undef DEF_FUNCTION_TYPE_VAR_0
+#undef DEF_FUNCTION_TYPE_VAR_1
+#undef DEF_FUNCTION_TYPE_VAR_2
+#undef DEF_FUNCTION_TYPE_VAR_3
+#undef DEF_FUNCTION_TYPE_VAR_4
+#undef DEF_FUNCTION_TYPE_VAR_5
+#undef DEF_FUNCTION_TYPE_VAR_6
+#undef DEF_FUNCTION_TYPE_VAR_7
+#undef DEF_POINTER_TYPE
+ builtin_types[(int) BT_LAST] = NULL_TREE;
+}
+
+/* ----------------------------------------------------------------------- *
+ * BUILTIN ATTRIBUTES *
+ * ----------------------------------------------------------------------- */
+
+enum built_in_attribute
+{
+#define DEF_ATTR_NULL_TREE(ENUM) ENUM,
+#define DEF_ATTR_INT(ENUM, VALUE) ENUM,
+#define DEF_ATTR_STRING(ENUM, VALUE) ENUM,
+#define DEF_ATTR_IDENT(ENUM, STRING) ENUM,
+#define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN) ENUM,
+#include "builtin-attrs.def"
+#undef DEF_ATTR_NULL_TREE
+#undef DEF_ATTR_INT
+#undef DEF_ATTR_STRING
+#undef DEF_ATTR_IDENT
+#undef DEF_ATTR_TREE_LIST
+ ATTR_LAST
+};
+
+static GTY(()) tree built_in_attributes[(int) ATTR_LAST];
+
+static void
+install_builtin_attributes (void)
+{
+ /* Fill in the built_in_attributes array. */
+#define DEF_ATTR_NULL_TREE(ENUM) \
+ built_in_attributes[(int) ENUM] = NULL_TREE;
+#define DEF_ATTR_INT(ENUM, VALUE) \
+ built_in_attributes[(int) ENUM] = build_int_cst (NULL_TREE, VALUE);
+#define DEF_ATTR_STRING(ENUM, VALUE) \
+ built_in_attributes[(int) ENUM] = build_string (strlen (VALUE), VALUE);
+#define DEF_ATTR_IDENT(ENUM, STRING) \
+ built_in_attributes[(int) ENUM] = get_identifier (STRING);
+#define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN) \
+ built_in_attributes[(int) ENUM] \
+ = tree_cons (built_in_attributes[(int) PURPOSE], \
+ built_in_attributes[(int) VALUE], \
+ built_in_attributes[(int) CHAIN]);
+#include "builtin-attrs.def"
+#undef DEF_ATTR_NULL_TREE
+#undef DEF_ATTR_INT
+#undef DEF_ATTR_STRING
+#undef DEF_ATTR_IDENT
+#undef DEF_ATTR_TREE_LIST
+}
+
+/* Handle a "const" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+handle_const_attribute (tree *node, tree ARG_UNUSED (name),
+ tree ARG_UNUSED (args), int ARG_UNUSED (flags),
+ bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) == FUNCTION_DECL)
+ TREE_READONLY (*node) = 1;
+ else
+ *no_add_attrs = true;
+
+ return NULL_TREE;
+}
+
+/* Handle a "nothrow" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+handle_nothrow_attribute (tree *node, tree ARG_UNUSED (name),
+ tree ARG_UNUSED (args), int ARG_UNUSED (flags),
+ bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) == FUNCTION_DECL)
+ TREE_NOTHROW (*node) = 1;
+ else
+ *no_add_attrs = true;
+
+ return NULL_TREE;
+}
+
+/* Handle a "pure" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+handle_pure_attribute (tree *node, tree name, tree ARG_UNUSED (args),
+ int ARG_UNUSED (flags), bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) == FUNCTION_DECL)
+ DECL_PURE_P (*node) = 1;
+ /* TODO: support types. */
+ else
+ {
+ warning (OPT_Wattributes, "%qs attribute ignored",
+ IDENTIFIER_POINTER (name));
+ *no_add_attrs = true;
+ }
+
+ return NULL_TREE;
+}
+
+/* Handle a "no vops" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+handle_novops_attribute (tree *node, tree ARG_UNUSED (name),
+ tree ARG_UNUSED (args), int ARG_UNUSED (flags),
+ bool *ARG_UNUSED (no_add_attrs))
+{
+ gcc_assert (TREE_CODE (*node) == FUNCTION_DECL);
+ DECL_IS_NOVOPS (*node) = 1;
+ return NULL_TREE;
+}
+
+/* Helper for nonnull attribute handling; fetch the operand number
+ from the attribute argument list. */
+
+static bool
+get_nonnull_operand (tree arg_num_expr, unsigned HOST_WIDE_INT *valp)
+{
+ /* Verify the arg number is a constant. */
+ if (!tree_fits_uhwi_p (arg_num_expr))
+ return false;
+
+ *valp = TREE_INT_CST_LOW (arg_num_expr);
+ return true;
+}
+
+/* Handle the "nonnull" attribute. */
+static tree
+handle_nonnull_attribute (tree *node, tree ARG_UNUSED (name),
+ tree args, int ARG_UNUSED (flags),
+ bool *no_add_attrs)
+{
+ tree type = *node;
+ unsigned HOST_WIDE_INT attr_arg_num;
+
+ /* If no arguments are specified, all pointer arguments should be
+ non-null. Verify a full prototype is given so that the arguments
+ will have the correct types when we actually check them later.
+ Avoid diagnosing type-generic built-ins since those have no
+ prototype. */
+ if (!args)
+ {
+ if (!prototype_p (type)
+ && (!TYPE_ATTRIBUTES (type)
+ || !lookup_attribute ("type generic", TYPE_ATTRIBUTES (type))))
+ {
+ error ("%qs attribute without arguments on a non-prototype",
+ "nonnull");
+ *no_add_attrs = true;
+ }
+ return NULL_TREE;
+ }
+
+ /* Argument list specified. Verify that each argument number references
+ a pointer argument. */
+ for (attr_arg_num = 1; args; args = TREE_CHAIN (args))
+ {
+ unsigned HOST_WIDE_INT arg_num = 0, ck_num;
+
+ if (!get_nonnull_operand (TREE_VALUE (args), &arg_num))
+ {
+ error ("%qs argument has invalid operand number (argument %lu)",
+ "nonnull", (unsigned long) attr_arg_num);
+ *no_add_attrs = true;
+ return NULL_TREE;
+ }
+
+ if (prototype_p (type))
+ {
+ function_args_iterator iter;
+ tree argument;
+
+ function_args_iter_init (&iter, type);
+ for (ck_num = 1; ; ck_num++, function_args_iter_next (&iter))
+ {
+ argument = function_args_iter_cond (&iter);
+ if (!argument || ck_num == arg_num)
+ break;
+ }
+
+ if (!argument
+ || TREE_CODE (argument) == VOID_TYPE)
+ {
+ error ("%qs argument with out-of-range operand number "
+ "(argument %lu, operand %lu)", "nonnull",
+ (unsigned long) attr_arg_num, (unsigned long) arg_num);
+ *no_add_attrs = true;
+ return NULL_TREE;
+ }
+
+ if (TREE_CODE (argument) != POINTER_TYPE)
+ {
+ error ("%qs argument references non-pointer operand "
+ "(argument %lu, operand %lu)", "nonnull",
+ (unsigned long) attr_arg_num, (unsigned long) arg_num);
+ *no_add_attrs = true;
+ return NULL_TREE;
+ }
+ }
+ }
+
+ return NULL_TREE;
+}
+
+/* Handle a "sentinel" attribute. */
+
+static tree
+handle_sentinel_attribute (tree *node, tree name, tree args,
+ int ARG_UNUSED (flags), bool *no_add_attrs)
+{
+ if (!prototype_p (*node))
+ {
+ warning (OPT_Wattributes,
+ "%qs attribute requires prototypes with named arguments",
+ IDENTIFIER_POINTER (name));
+ *no_add_attrs = true;
+ }
+ else
+ {
+ if (!stdarg_p (*node))
+ {
+ warning (OPT_Wattributes,
+ "%qs attribute only applies to variadic functions",
+ IDENTIFIER_POINTER (name));
+ *no_add_attrs = true;
+ }
+ }
+
+ if (args)
+ {
+ tree position = TREE_VALUE (args);
+
+ if (TREE_CODE (position) != INTEGER_CST)
+ {
+ warning (0, "requested position is not an integer constant");
+ *no_add_attrs = true;
+ }
+ else
+ {
+ if (tree_int_cst_lt (position, integer_zero_node))
+ {
+ warning (0, "requested position is less than zero");
+ *no_add_attrs = true;
+ }
+ }
+ }
+
+ return NULL_TREE;
+}
+
+/* Handle a "noreturn" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+handle_noreturn_attribute (tree *node, tree name, tree ARG_UNUSED (args),
+ int ARG_UNUSED (flags), bool *no_add_attrs)
+{
+ tree type = TREE_TYPE (*node);
+
+ /* See FIXME comment in c_common_attribute_table. */
+ if (TREE_CODE (*node) == FUNCTION_DECL)
+ TREE_THIS_VOLATILE (*node) = 1;
+ else if (TREE_CODE (type) == POINTER_TYPE
+ && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE)
+ TREE_TYPE (*node)
+ = build_pointer_type
+ (change_qualified_type (TREE_TYPE (type), TYPE_QUAL_VOLATILE));
+ else
+ {
+ warning (OPT_Wattributes, "%qs attribute ignored",
+ IDENTIFIER_POINTER (name));
+ *no_add_attrs = true;
+ }
+
+ return NULL_TREE;
+}
+
+/* Handle a "stack_protect" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+handle_stack_protect_attribute (tree *node, tree name, tree, int,
+ bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) != FUNCTION_DECL)
+ {
+ warning (OPT_Wattributes, "%qE attribute ignored", name);
+ *no_add_attrs = true;
+ }
+
+ return NULL_TREE;
+}
+
+/* Handle a "no_stack_protector" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+handle_no_stack_protector_attribute (tree *node, tree name, tree, int,
+ bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) != FUNCTION_DECL)
+ {
+ warning (OPT_Wattributes, "%qE attribute ignored", name);
+ *no_add_attrs = true;
+ }
+
+ return NULL_TREE;
+}
+
+/* Handle a "strub" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+handle_strub_attribute (tree *, tree, tree, int, bool *no_add_attrs)
+{
+ *no_add_attrs = true;
+ return NULL_TREE;
+}
+
+/* Handle a "noinline" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+handle_noinline_attribute (tree *node, tree name,
+ tree ARG_UNUSED (args),
+ int ARG_UNUSED (flags), bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) == FUNCTION_DECL)
+ {
+ if (lookup_attribute ("always_inline", DECL_ATTRIBUTES (*node)))
+ {
+ warning (OPT_Wattributes, "%qE attribute ignored due to conflict "
+ "with attribute %qs", name, "always_inline");
+ *no_add_attrs = true;
+ }
+ else
+ DECL_UNINLINABLE (*node) = 1;
+ }
+ else
+ {
+ warning (OPT_Wattributes, "%qE attribute ignored", name);
+ *no_add_attrs = true;
+ }
+
+ return NULL_TREE;
+}
+
+/* Handle a "noclone" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+handle_noclone_attribute (tree *node, tree name,
+ tree ARG_UNUSED (args),
+ int ARG_UNUSED (flags), bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) != FUNCTION_DECL)
+ {
+ warning (OPT_Wattributes, "%qE attribute ignored", name);
+ *no_add_attrs = true;
+ }
+
+ return NULL_TREE;
+}
+
+/* Handle a "no_icf" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+handle_noicf_attribute (tree *node, tree name,
+ tree ARG_UNUSED (args),
+ int ARG_UNUSED (flags), bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) != FUNCTION_DECL)
+ {
+ warning (OPT_Wattributes, "%qE attribute ignored", name);
+ *no_add_attrs = true;
+ }
+
+ return NULL_TREE;
+}
+
+/* Handle a "noipa" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+handle_noipa_attribute (tree *node, tree name, tree, int, bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) != FUNCTION_DECL)
+ {
+ warning (OPT_Wattributes, "%qE attribute ignored", name);
+ *no_add_attrs = true;
+ }
+
+ return NULL_TREE;
+}
+
+/* Handle a "leaf" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+handle_leaf_attribute (tree *node, tree name, tree ARG_UNUSED (args),
+ int ARG_UNUSED (flags), bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) != FUNCTION_DECL)
+ {
+ warning (OPT_Wattributes, "%qE attribute ignored", name);
+ *no_add_attrs = true;
+ }
+ if (!TREE_PUBLIC (*node))
+ {
+ warning (OPT_Wattributes, "%qE attribute has no effect", name);
+ *no_add_attrs = true;
+ }
+
+ return NULL_TREE;
+}
+
+/* Handle a "always_inline" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+handle_always_inline_attribute (tree *node, tree name, tree ARG_UNUSED (args),
+ int ARG_UNUSED (flags), bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) == FUNCTION_DECL)
+ {
+ /* Set the attribute and mark it for disregarding inline limits. */
+ DECL_DISREGARD_INLINE_LIMITS (*node) = 1;
+ }
+ else
+ {
+ warning (OPT_Wattributes, "%qE attribute ignored", name);
+ *no_add_attrs = true;
+ }
+
+ return NULL_TREE;
+}
+
+/* Handle a "malloc" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+handle_malloc_attribute (tree *node, tree name, tree ARG_UNUSED (args),
+ int ARG_UNUSED (flags), bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) == FUNCTION_DECL
+ && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (*node))))
+ DECL_IS_MALLOC (*node) = 1;
+ else
+ {
+ warning (OPT_Wattributes, "%qs attribute ignored",
+ IDENTIFIER_POINTER (name));
+ *no_add_attrs = true;
+ }
+
+ return NULL_TREE;
+}
+
+/* Fake handler for attributes we don't properly support. */
+
+tree
+fake_attribute_handler (tree * ARG_UNUSED (node),
+ tree ARG_UNUSED (name),
+ tree ARG_UNUSED (args),
+ int ARG_UNUSED (flags),
+ bool * ARG_UNUSED (no_add_attrs))
+{
+ return NULL_TREE;
+}
+
+/* Handle a "type_generic" attribute. */
+
+static tree
+handle_type_generic_attribute (tree *node, tree ARG_UNUSED (name),
+ tree ARG_UNUSED (args), int ARG_UNUSED (flags),
+ bool * ARG_UNUSED (no_add_attrs))
+{
+ /* Ensure we have a function type. */
+ gcc_assert (TREE_CODE (*node) == FUNCTION_TYPE);
+
+ /* Ensure we have a variadic function. */
+ gcc_assert (!prototype_p (*node) || stdarg_p (*node));
+
+ return NULL_TREE;
+}
+
+/* Handle a "flatten" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+handle_flatten_attribute (tree *node, tree name,
+ tree args ATTRIBUTE_UNUSED,
+ int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) == FUNCTION_DECL)
+ /* Do nothing else, just set the attribute. We'll get at
+ it later with lookup_attribute. */
+ ;
+ else
+ {
+ warning (OPT_Wattributes, "%qE attribute ignored", name);
+ *no_add_attrs = true;
+ }
+
+ return NULL_TREE;
+}
+
+/* Handle a "used" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+handle_used_attribute (tree *pnode, tree name, tree ARG_UNUSED (args),
+ int ARG_UNUSED (flags), bool *no_add_attrs)
+{
+ tree node = *pnode;
+
+ if (TREE_CODE (node) == FUNCTION_DECL
+ || (VAR_P (node) && TREE_STATIC (node))
+ || (TREE_CODE (node) == TYPE_DECL))
+ {
+ TREE_USED (node) = 1;
+ DECL_PRESERVE_P (node) = 1;
+ if (VAR_P (node))
+ DECL_READ_P (node) = 1;
+ }
+ else
+ {
+ warning (OPT_Wattributes, "%qE attribute ignored", name);
+ *no_add_attrs = true;
+ }
+
+ return NULL_TREE;
+}
+
+/* Handle a "cold" and attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+handle_cold_attribute (tree *node, tree name, tree ARG_UNUSED (args),
+ int ARG_UNUSED (flags), bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) == FUNCTION_DECL
+ || TREE_CODE (*node) == LABEL_DECL)
+ {
+ /* Attribute cold processing is done later with lookup_attribute. */
+ }
+ else
+ {
+ warning (OPT_Wattributes, "%qE attribute ignored", name);
+ *no_add_attrs = true;
+ }
+
+ return NULL_TREE;
+}
+
+/* Handle a "hot" and attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+handle_hot_attribute (tree *node, tree name, tree ARG_UNUSED (args),
+ int ARG_UNUSED (flags), bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) == FUNCTION_DECL
+ || TREE_CODE (*node) == LABEL_DECL)
+ {
+ /* Attribute hot processing is done later with lookup_attribute. */
+ }
+ else
+ {
+ warning (OPT_Wattributes, "%qE attribute ignored", name);
+ *no_add_attrs = true;
+ }
+
+ return NULL_TREE;
+}
+
+/* Handle a "target" attribute. */
+
+static tree
+handle_target_attribute (tree *node, tree name, tree args, int flags,
+ bool *no_add_attrs)
+{
+ /* Ensure we have a function type. */
+ if (TREE_CODE (*node) != FUNCTION_DECL)
+ {
+ warning (OPT_Wattributes, "%qE attribute ignored", name);
+ *no_add_attrs = true;
+ }
+ else if (lookup_attribute ("target_clones", DECL_ATTRIBUTES (*node)))
+ {
+ warning (OPT_Wattributes, "%qE attribute ignored due to conflict "
+ "with %qs attribute", name, "target_clones");
+ *no_add_attrs = true;
+ }
+ else if (!targetm.target_option.valid_attribute_p (*node, name, args, flags))
+ *no_add_attrs = true;
+
+ /* Check that there's no empty string in values of the attribute. */
+ for (tree t = args; t != NULL_TREE; t = TREE_CHAIN (t))
+ {
+ tree value = TREE_VALUE (t);
+ if (TREE_CODE (value) == STRING_CST
+ && TREE_STRING_LENGTH (value) == 1
+ && TREE_STRING_POINTER (value)[0] == '\0')
+ {
+ warning (OPT_Wattributes, "empty string in attribute %<target%>");
+ *no_add_attrs = true;
+ }
+ }
+
+ return NULL_TREE;
+}
+
+/* Handle a "target_clones" attribute. */
+
+static tree
+handle_target_clones_attribute (tree *node, tree name, tree ARG_UNUSED (args),
+ int ARG_UNUSED (flags), bool *no_add_attrs)
+{
+ /* Ensure we have a function type. */
+ if (TREE_CODE (*node) == FUNCTION_DECL)
+ {
+ if (lookup_attribute ("always_inline", DECL_ATTRIBUTES (*node)))
+ {
+ warning (OPT_Wattributes, "%qE attribute ignored due to conflict "
+ "with %qs attribute", name, "always_inline");
+ *no_add_attrs = true;
+ }
+ else if (lookup_attribute ("target", DECL_ATTRIBUTES (*node)))
+ {
+ warning (OPT_Wattributes, "%qE attribute ignored due to conflict "
+ "with %qs attribute", name, "target");
+ *no_add_attrs = true;
+ }
+ else
+ /* Do not inline functions with multiple clone targets. */
+ DECL_UNINLINABLE (*node) = 1;
+ }
+ else
+ {
+ warning (OPT_Wattributes, "%qE attribute ignored", name);
+ *no_add_attrs = true;
+ }
+ return NULL_TREE;
+}
+
+/* Handle a "vector_size" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+handle_vector_size_attribute (tree *node, tree name, tree args,
+ int ARG_UNUSED (flags), bool *no_add_attrs)
+{
+ tree type = *node;
+ tree vector_type;
+
+ *no_add_attrs = true;
+
+ /* We need to provide for vector pointers, vector arrays, and
+ functions returning vectors. For example:
+
+ __attribute__((vector_size(16))) short *foo;
+
+ In this case, the mode is SI, but the type being modified is
+ HI, so we need to look further. */
+ while (POINTER_TYPE_P (type)
+ || TREE_CODE (type) == FUNCTION_TYPE
+ || TREE_CODE (type) == ARRAY_TYPE)
+ type = TREE_TYPE (type);
+
+ vector_type = build_vector_type_for_size (type, TREE_VALUE (args), name);
+ if (!vector_type)
+ return NULL_TREE;
+
+ /* Build back pointers if needed. */
+ *node = reconstruct_complex_type (*node, vector_type);
+
+ return NULL_TREE;
+}
+
+/* Handle a "vector_type" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+handle_vector_type_attribute (tree *node, tree name, tree ARG_UNUSED (args),
+ int ARG_UNUSED (flags), bool *no_add_attrs)
+{
+ tree type = *node;
+ tree vector_type;
+
+ *no_add_attrs = true;
+
+ if (TREE_CODE (type) != ARRAY_TYPE)
+ {
+ error ("attribute %qs applies to array types only",
+ IDENTIFIER_POINTER (name));
+ return NULL_TREE;
+ }
+
+ vector_type = build_vector_type_for_array (type, name);
+ if (!vector_type)
+ return NULL_TREE;
+
+ TYPE_REPRESENTATIVE_ARRAY (vector_type) = type;
+ *node = vector_type;
+
+ return NULL_TREE;
+}
+
+/* Handle a "zero_call_used_regs" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+handle_zero_call_used_regs_attribute (tree *node, tree name, tree args,
+ int ARG_UNUSED (flags),
+ bool *no_add_attrs)
+{
+ tree decl = *node;
+ tree id = TREE_VALUE (args);
+
+ if (TREE_CODE (decl) != FUNCTION_DECL)
+ {
+ error_at (DECL_SOURCE_LOCATION (decl),
+ "%qE attribute applies only to functions", name);
+ *no_add_attrs = true;
+ return NULL_TREE;
+ }
+
+ /* pragma Machine_Attribute turns string arguments into identifiers.
+ Reverse it. */
+ if (TREE_CODE (id) == IDENTIFIER_NODE)
+ id = TREE_VALUE (args) = build_string
+ (IDENTIFIER_LENGTH (id), IDENTIFIER_POINTER (id));
+
+ if (TREE_CODE (id) != STRING_CST)
+ {
+ error_at (DECL_SOURCE_LOCATION (decl),
+ "%qE argument not a string", name);
+ *no_add_attrs = true;
+ return NULL_TREE;
+ }
+
+ bool found = false;
+ for (unsigned int i = 0; zero_call_used_regs_opts[i].name != NULL; ++i)
+ if (strcmp (TREE_STRING_POINTER (id),
+ zero_call_used_regs_opts[i].name) == 0)
+ {
+ found = true;
+ break;
+ }
+
+ if (!found)
+ {
+ error_at (DECL_SOURCE_LOCATION (decl),
+ "unrecognized %qE attribute argument %qs",
+ name, TREE_STRING_POINTER (id));
+ *no_add_attrs = true;
+ }
+
+ return NULL_TREE;
+}
+
+/* ----------------------------------------------------------------------- *
+ * BUILTIN FUNCTIONS *
+ * ----------------------------------------------------------------------- */
+
+/* Worker for DEF_BUILTIN. Possibly define a builtin function with one or two
+ names. Does not declare a non-__builtin_ function if flag_no_builtin, or
+ if nonansi_p and flag_no_nonansi_builtin. */
+
+static void
+def_builtin_1 (enum built_in_function fncode,
+ const char *name,
+ enum built_in_class fnclass,
+ tree fntype, tree libtype,
+ bool both_p, bool fallback_p,
+ bool nonansi_p ATTRIBUTE_UNUSED,
+ tree fnattrs, bool implicit_p)
+{
+ tree decl;
+ const char *libname;
+
+ /* Preserve an already installed decl. It most likely was setup in advance
+ (e.g. as part of the internal builtins) for specific reasons. */
+ if (builtin_decl_explicit (fncode))
+ return;
+
+ if (fntype == error_mark_node)
+ return;
+
+ gcc_assert ((!both_p && !fallback_p)
+ || startswith (name, "__builtin_"));
+
+ libname = name + strlen ("__builtin_");
+ decl = add_builtin_function (name, fntype, fncode, fnclass,
+ (fallback_p ? libname : NULL),
+ fnattrs);
+ if (both_p)
+ /* ??? This is normally further controlled by command-line options
+ like -fno-builtin, but we don't have them for Ada. */
+ add_builtin_function (libname, libtype, fncode, fnclass,
+ NULL, fnattrs);
+
+ set_builtin_decl (fncode, decl, implicit_p);
+}
+
+static int flag_isoc94 = 0;
+static int flag_isoc99 = 0;
+static int flag_isoc11 = 0;
+static int flag_isoc2x = 0;
+
+/* Install what the common builtins.def offers plus our local additions.
+
+ Note that ada-builtins.def is included first so that locally redefined
+ built-in functions take precedence over the commonly defined ones. */
+
+static void
+install_builtin_functions (void)
+{
+#define DEF_BUILTIN(ENUM, NAME, CLASS, TYPE, LIBTYPE, BOTH_P, FALLBACK_P, \
+ NONANSI_P, ATTRS, IMPLICIT, COND) \
+ if (NAME && COND) \
+ def_builtin_1 (ENUM, NAME, CLASS, \
+ builtin_types[(int) TYPE], \
+ builtin_types[(int) LIBTYPE], \
+ BOTH_P, FALLBACK_P, NONANSI_P, \
+ built_in_attributes[(int) ATTRS], IMPLICIT);
+#define DEF_ADA_BUILTIN(ENUM, NAME, TYPE, ATTRS) \
+ DEF_BUILTIN (ENUM, "__builtin_" NAME, BUILT_IN_FRONTEND, TYPE, BT_LAST, \
+ false, false, false, ATTRS, true, true)
+#include "ada-builtins.def"
+#include "builtins.def"
+}
+
+/* ----------------------------------------------------------------------- *
+ * BUILTIN FUNCTIONS *
+ * ----------------------------------------------------------------------- */
+
+/* Install the builtin functions we might need. */
+
+void
+gnat_install_builtins (void)
+{
+ install_builtin_elementary_types ();
+ install_builtin_function_types ();
+ install_builtin_attributes ();
+
+ /* Install builtins used by generic middle-end pieces first. Some of these
+ know about internal specificities and control attributes accordingly, for
+ instance __builtin_alloca vs no-throw and -fstack-check. We will ignore
+ the generic definition from builtins.def. */
+ build_common_builtin_nodes ();
+
+ /* Now, install the target specific builtins, such as the AltiVec family on
+ ppc, and the common set as exposed by builtins.def. */
+ targetm.init_builtins ();
+ install_builtin_functions ();
+}
+
+#include "gt-ada-utils.h"
+#include "gtype-ada.h"