aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/exp_util.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/ada/exp_util.adb')
-rw-r--r--gcc/ada/exp_util.adb3186
1 files changed, 3186 insertions, 0 deletions
diff --git a/gcc/ada/exp_util.adb b/gcc/ada/exp_util.adb
new file mode 100644
index 0000000..c95fd9f
--- /dev/null
+++ b/gcc/ada/exp_util.adb
@@ -0,0 +1,3186 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- E X P _ U T I L --
+-- --
+-- B o d y --
+-- --
+-- $Revision: 1.331 $
+-- --
+-- Copyright (C) 1992-2001, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 2, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING. If not, write --
+-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
+-- MA 02111-1307, USA. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
+-- --
+------------------------------------------------------------------------------
+
+with Atree; use Atree;
+with Checks; use Checks;
+with Einfo; use Einfo;
+with Elists; use Elists;
+with Errout; use Errout;
+with Exp_Ch7; use Exp_Ch7;
+with Exp_Ch11; use Exp_Ch11;
+with Hostparm; use Hostparm;
+with Inline; use Inline;
+with Itypes; use Itypes;
+with Lib; use Lib;
+with Namet; use Namet;
+with Nlists; use Nlists;
+with Nmake; use Nmake;
+with Opt; use Opt;
+with Restrict; use Restrict;
+with Sem; use Sem;
+with Sem_Ch8; use Sem_Ch8;
+with Sem_Eval; use Sem_Eval;
+with Sem_Res; use Sem_Res;
+with Sem_Util; use Sem_Util;
+with Sinfo; use Sinfo;
+with Stand; use Stand;
+with Stringt; use Stringt;
+with Tbuild; use Tbuild;
+with Ttypes; use Ttypes;
+with Uintp; use Uintp;
+with Validsw; use Validsw;
+
+package body Exp_Util is
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ function Build_Task_Array_Image
+ (Loc : Source_Ptr;
+ Id_Ref : Node_Id;
+ A_Type : Entity_Id)
+ return Node_Id;
+ -- Build function to generate the image string for a task that is an
+ -- array component, concatenating the images of each index. To avoid
+ -- storage leaks, the string is built with successive slice assignments.
+
+ function Build_Task_Image_Function
+ (Loc : Source_Ptr;
+ Decls : List_Id;
+ Stats : List_Id;
+ Res : Entity_Id)
+ return Node_Id;
+ -- Common processing for Task_Array_Image and Task_Record_Image.
+ -- Build function body that computes image.
+
+ procedure Build_Task_Image_Prefix
+ (Loc : Source_Ptr;
+ Len : out Entity_Id;
+ Res : out Entity_Id;
+ Pos : out Entity_Id;
+ Prefix : Entity_Id;
+ Sum : Node_Id;
+ Decls : in out List_Id;
+ Stats : in out List_Id);
+ -- Common processing for Task_Array_Image and Task_Record_Image.
+ -- Create local variables and assign prefix of name to result string.
+
+ function Build_Task_Record_Image
+ (Loc : Source_Ptr;
+ Id_Ref : Node_Id;
+ A_Type : Entity_Id)
+ return Node_Id;
+ -- Build function to generate the image string for a task that is a
+ -- record component. Concatenate name of variable with that of selector.
+
+ function Make_CW_Equivalent_Type
+ (T : Entity_Id;
+ E : Node_Id)
+ return Entity_Id;
+ -- T is a class-wide type entity, E is the initial expression node that
+ -- constrains T in case such as: " X: T := E" or "new T'(E)"
+ -- This function returns the entity of the Equivalent type and inserts
+ -- on the fly the necessary declaration such as:
+ -- type anon is record
+ -- _parent : Root_Type (T); constrained with E discriminants (if any)
+ -- Extension : String (1 .. expr to match size of E);
+ -- end record;
+ --
+ -- This record is compatible with any object of the class of T thanks
+ -- to the first field and has the same size as E thanks to the second.
+
+ function Make_Literal_Range
+ (Loc : Source_Ptr;
+ Literal_Typ : Entity_Id;
+ Index_Typ : Entity_Id)
+ return Node_Id;
+ -- Produce a Range node whose bounds are:
+ -- Index_Typ'first .. Index_Typ'First + Length (Literal_Typ)
+ -- this is used for expanding declarations like X : String := "sdfgdfg";
+
+ function New_Class_Wide_Subtype
+ (CW_Typ : Entity_Id;
+ N : Node_Id)
+ return Entity_Id;
+ -- Create an implicit subtype of CW_Typ attached to node N.
+
+ ----------------------
+ -- Adjust_Condition --
+ ----------------------
+
+ procedure Adjust_Condition (N : Node_Id) is
+ begin
+ if No (N) then
+ return;
+ end if;
+
+ declare
+ Loc : constant Source_Ptr := Sloc (N);
+ T : constant Entity_Id := Etype (N);
+ Ti : Entity_Id;
+
+ begin
+ -- For now, we simply ignore a call where the argument has no
+ -- type (probably case of unanalyzed condition), or has a type
+ -- that is not Boolean. This is because this is a pretty marginal
+ -- piece of functionality, and violations of these rules are
+ -- likely to be truly marginal (how much code uses Fortran Logical
+ -- as the barrier to a protected entry?) and we do not want to
+ -- blow up existing programs. We can change this to an assertion
+ -- after 3.12a is released ???
+
+ if No (T) or else not Is_Boolean_Type (T) then
+ return;
+ end if;
+
+ -- Apply validity checking if needed
+
+ if Validity_Checks_On and Validity_Check_Tests then
+ Ensure_Valid (N);
+ end if;
+
+ -- Immediate return if standard boolean, the most common case,
+ -- where nothing needs to be done.
+
+ if Base_Type (T) = Standard_Boolean then
+ return;
+ end if;
+
+ -- Case of zero/non-zero semantics or non-standard enumeration
+ -- representation. In each case, we rewrite the node as:
+
+ -- ityp!(N) /= False'Enum_Rep
+
+ -- where ityp is an integer type with large enough size to hold
+ -- any value of type T.
+
+ if Nonzero_Is_True (T) or else Has_Non_Standard_Rep (T) then
+ if Esize (T) <= Esize (Standard_Integer) then
+ Ti := Standard_Integer;
+ else
+ Ti := Standard_Long_Long_Integer;
+ end if;
+
+ Rewrite (N,
+ Make_Op_Ne (Loc,
+ Left_Opnd => Unchecked_Convert_To (Ti, N),
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Enum_Rep,
+ Prefix =>
+ New_Occurrence_Of (First_Literal (T), Loc))));
+ Analyze_And_Resolve (N, Standard_Boolean);
+
+ else
+ Rewrite (N, Convert_To (Standard_Boolean, N));
+ Analyze_And_Resolve (N, Standard_Boolean);
+ end if;
+ end;
+ end Adjust_Condition;
+
+ ------------------------
+ -- Adjust_Result_Type --
+ ------------------------
+
+ procedure Adjust_Result_Type (N : Node_Id; T : Entity_Id) is
+ begin
+ -- Ignore call if current type is not Standard.Boolean
+
+ if Etype (N) /= Standard_Boolean then
+ return;
+ end if;
+
+ -- If result is already of correct type, nothing to do. Note that
+ -- this will get the most common case where everything has a type
+ -- of Standard.Boolean.
+
+ if Base_Type (T) = Standard_Boolean then
+ return;
+
+ else
+ declare
+ KP : constant Node_Kind := Nkind (Parent (N));
+
+ begin
+ -- If result is to be used as a Condition in the syntax, no need
+ -- to convert it back, since if it was changed to Standard.Boolean
+ -- using Adjust_Condition, that is just fine for this usage.
+
+ if KP in N_Raise_xxx_Error or else KP in N_Has_Condition then
+ return;
+
+ -- If result is an operand of another logical operation, no need
+ -- to reset its type, since Standard.Boolean is just fine, and
+ -- such operations always do Adjust_Condition on their operands.
+
+ elsif KP in N_Op_Boolean
+ or else KP = N_And_Then
+ or else KP = N_Or_Else
+ or else KP = N_Op_Not
+ then
+ return;
+
+ -- Otherwise we perform a conversion from the current type,
+ -- which must be Standard.Boolean, to the desired type.
+
+ else
+ Set_Analyzed (N);
+ Rewrite (N, Convert_To (T, N));
+ Analyze_And_Resolve (N, T);
+ end if;
+ end;
+ end if;
+ end Adjust_Result_Type;
+
+ --------------------------
+ -- Append_Freeze_Action --
+ --------------------------
+
+ procedure Append_Freeze_Action (T : Entity_Id; N : Node_Id) is
+ Fnode : Node_Id := Freeze_Node (T);
+
+ begin
+ Ensure_Freeze_Node (T);
+ Fnode := Freeze_Node (T);
+
+ if not Present (Actions (Fnode)) then
+ Set_Actions (Fnode, New_List);
+ end if;
+
+ Append (N, Actions (Fnode));
+ end Append_Freeze_Action;
+
+ ---------------------------
+ -- Append_Freeze_Actions --
+ ---------------------------
+
+ procedure Append_Freeze_Actions (T : Entity_Id; L : List_Id) is
+ Fnode : constant Node_Id := Freeze_Node (T);
+
+ begin
+ if No (L) then
+ return;
+
+ else
+ if No (Actions (Fnode)) then
+ Set_Actions (Fnode, L);
+
+ else
+ Append_List (L, Actions (Fnode));
+ end if;
+
+ end if;
+ end Append_Freeze_Actions;
+
+ ------------------------
+ -- Build_Runtime_Call --
+ ------------------------
+
+ function Build_Runtime_Call (Loc : Source_Ptr; RE : RE_Id) return Node_Id is
+ begin
+ return
+ Make_Procedure_Call_Statement (Loc,
+ Name => New_Reference_To (RTE (RE), Loc));
+ end Build_Runtime_Call;
+
+ -----------------------------
+ -- Build_Task_Array_Image --
+ -----------------------------
+
+ -- This function generates the body for a function that constructs the
+ -- image string for a task that is an array component. The function is
+ -- local to the init_proc for the array type, and is called for each one
+ -- of the components. The constructed image has the form of an indexed
+ -- component, whose prefix is the outer variable of the array type.
+ -- The n-dimensional array type has known indices Index, Index2...
+ -- Id_Ref is an indexed component form created by the enclosing init_proc.
+ -- Its successive indices are Val1, Val2,.. which are the loop variables
+ -- in the loops that call the individual task init_proc on each component.
+
+ -- The generated function has the following structure:
+
+ -- function F return Task_Image_Type is
+ -- Prefix : string := Task_Id.all;
+ -- T1 : String := Index1'Image (Val1);
+ -- ...
+ -- Tn : String := indexn'image (Valn);
+ -- Len : Integer := T1'Length + ... + Tn'Length + n + 1;
+ -- -- Len includes commas and the end parentheses.
+ -- Res : String (1..Len);
+ -- Pos : Integer := Prefix'Length;
+ --
+ -- begin
+ -- Res (1 .. Pos) := Prefix;
+ -- Pos := Pos + 1;
+ -- Res (Pos) := '(';
+ -- Pos := Pos + 1;
+ -- Res (Pos .. Pos + T1'Length - 1) := T1;
+ -- Pos := Pos + T1'Length;
+ -- Res (Pos) := '.';
+ -- Pos := Pos + 1;
+ -- ...
+ -- Res (Pos .. Pos + Tn'Length - 1) := Tn;
+ -- Res (Len) := ')';
+ --
+ -- return new String (Res);
+ -- end F;
+ --
+ -- Needless to say, multidimensional arrays of tasks are rare enough
+ -- that the bulkiness of this code is not really a concern.
+
+ function Build_Task_Array_Image
+ (Loc : Source_Ptr;
+ Id_Ref : Node_Id;
+ A_Type : Entity_Id)
+ return Node_Id
+ is
+ Dims : constant Nat := Number_Dimensions (A_Type);
+ -- Number of dimensions for array of tasks.
+
+ Temps : array (1 .. Dims) of Entity_Id;
+ -- Array of temporaries to hold string for each index.
+
+ Indx : Node_Id;
+ -- Index expression
+
+ Len : Entity_Id;
+ -- Total length of generated name
+
+ Pos : Entity_Id;
+ -- Running index for substring assignments
+
+ Prefix : Entity_Id;
+ -- Name of enclosing variable, prefix of resulting name
+
+ Res : Entity_Id;
+ -- String to hold result
+
+ Val : Node_Id;
+ -- Value of successive indices
+
+ Sum : Node_Id;
+ -- Expression to compute total size of string
+
+ T : Entity_Id;
+ -- Entity for name at one index position
+
+ Decls : List_Id := New_List;
+ Stats : List_Id := New_List;
+
+ begin
+ Prefix := Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
+
+ Append_To (Decls,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Prefix,
+ Object_Definition => New_Occurrence_Of (Standard_String, Loc),
+ Expression =>
+ Make_Explicit_Dereference (Loc,
+ Prefix => Make_Identifier (Loc, Name_uTask_Id))));
+
+ Indx := First_Index (A_Type);
+ Val := First (Expressions (Id_Ref));
+
+ for J in 1 .. Dims loop
+ T := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
+ Temps (J) := T;
+
+ Append_To (Decls,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => T,
+ Object_Definition => New_Occurrence_Of (Standard_String, Loc),
+ Expression =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Image,
+ Prefix =>
+ New_Occurrence_Of (Etype (Indx), Loc),
+ Expressions => New_List (
+ New_Copy_Tree (Val)))));
+
+ Next_Index (Indx);
+ Next (Val);
+ end loop;
+
+ Sum := Make_Integer_Literal (Loc, Dims + 1);
+
+ Sum :=
+ Make_Op_Add (Loc,
+ Left_Opnd => Sum,
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Length,
+ Prefix =>
+ New_Occurrence_Of (Prefix, Loc),
+ Expressions => New_List (Make_Integer_Literal (Loc, 1))));
+
+ for J in 1 .. Dims loop
+ Sum :=
+ Make_Op_Add (Loc,
+ Left_Opnd => Sum,
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Length,
+ Prefix =>
+ New_Occurrence_Of (Temps (J), Loc),
+ Expressions => New_List (Make_Integer_Literal (Loc, 1))));
+ end loop;
+
+ Build_Task_Image_Prefix (Loc, Len, Res, Pos, Prefix, Sum, Decls, Stats);
+
+ Set_Character_Literal_Name (Char_Code (Character'Pos ('(')));
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => Make_Indexed_Component (Loc,
+ Prefix => New_Occurrence_Of (Res, Loc),
+ Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
+ Expression =>
+ Make_Character_Literal (Loc,
+ Chars => Name_Find,
+ Char_Literal_Value =>
+ Char_Code (Character'Pos ('(')))));
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Pos, Loc),
+ Expression =>
+ Make_Op_Add (Loc,
+ Left_Opnd => New_Occurrence_Of (Pos, Loc),
+ Right_Opnd => Make_Integer_Literal (Loc, 1))));
+
+ for J in 1 .. Dims loop
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => Make_Slice (Loc,
+ Prefix => New_Occurrence_Of (Res, Loc),
+ Discrete_Range =>
+ Make_Range (Loc,
+ Low_Bound => New_Occurrence_Of (Pos, Loc),
+ High_Bound => Make_Op_Subtract (Loc,
+ Left_Opnd =>
+ Make_Op_Add (Loc,
+ Left_Opnd => New_Occurrence_Of (Pos, Loc),
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Length,
+ Prefix =>
+ New_Occurrence_Of (Temps (J), Loc),
+ Expressions =>
+ New_List (Make_Integer_Literal (Loc, 1)))),
+ Right_Opnd => Make_Integer_Literal (Loc, 1)))),
+
+ Expression => New_Occurrence_Of (Temps (J), Loc)));
+
+ if J < Dims then
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Pos, Loc),
+ Expression =>
+ Make_Op_Add (Loc,
+ Left_Opnd => New_Occurrence_Of (Pos, Loc),
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Length,
+ Prefix => New_Occurrence_Of (Temps (J), Loc),
+ Expressions =>
+ New_List (Make_Integer_Literal (Loc, 1))))));
+
+ Set_Character_Literal_Name (Char_Code (Character'Pos (',')));
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => Make_Indexed_Component (Loc,
+ Prefix => New_Occurrence_Of (Res, Loc),
+ Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
+ Expression =>
+ Make_Character_Literal (Loc,
+ Chars => Name_Find,
+ Char_Literal_Value =>
+ Char_Code (Character'Pos (',')))));
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Pos, Loc),
+ Expression =>
+ Make_Op_Add (Loc,
+ Left_Opnd => New_Occurrence_Of (Pos, Loc),
+ Right_Opnd => Make_Integer_Literal (Loc, 1))));
+ end if;
+ end loop;
+
+ Set_Character_Literal_Name (Char_Code (Character'Pos (')')));
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => Make_Indexed_Component (Loc,
+ Prefix => New_Occurrence_Of (Res, Loc),
+ Expressions => New_List (New_Occurrence_Of (Len, Loc))),
+ Expression =>
+ Make_Character_Literal (Loc,
+ Chars => Name_Find,
+ Char_Literal_Value =>
+ Char_Code (Character'Pos (')')))));
+ return Build_Task_Image_Function (Loc, Decls, Stats, Res);
+ end Build_Task_Array_Image;
+
+ ----------------------------
+ -- Build_Task_Image_Decls --
+ ----------------------------
+
+ function Build_Task_Image_Decls
+ (Loc : Source_Ptr;
+ Id_Ref : Node_Id;
+ A_Type : Entity_Id)
+ return List_Id
+ is
+ T_Id : Entity_Id := Empty;
+ Decl : Node_Id;
+ Decls : List_Id := New_List;
+ Expr : Node_Id := Empty;
+ Fun : Node_Id := Empty;
+
+ begin
+ -- If Discard_Names is in effect, generate a dummy declaration only.
+
+ if Global_Discard_Names then
+ T_Id :=
+ Make_Defining_Identifier (Loc, New_Internal_Name ('I'));
+
+ return
+ New_List (
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => T_Id,
+ Object_Definition =>
+ New_Occurrence_Of (RTE (RE_Task_Image_Type), Loc)));
+
+ else
+ if Nkind (Id_Ref) = N_Identifier
+ or else Nkind (Id_Ref) = N_Defining_Identifier
+ then
+ -- For a simple variable, the image of the task is the name
+ -- of the variable.
+
+ T_Id :=
+ Make_Defining_Identifier (Loc,
+ New_External_Name (Chars (Id_Ref), 'I'));
+
+ Get_Name_String (Chars (Id_Ref));
+
+ Expr :=
+ Make_Allocator (Loc,
+ Expression =>
+ Make_Qualified_Expression (Loc,
+ Subtype_Mark =>
+ New_Occurrence_Of (Standard_String, Loc),
+ Expression =>
+ Make_String_Literal
+ (Loc, Strval => String_From_Name_Buffer)));
+
+ elsif Nkind (Id_Ref) = N_Selected_Component then
+ T_Id :=
+ Make_Defining_Identifier (Loc,
+ New_External_Name (Chars (Selector_Name (Id_Ref)), 'I'));
+ Fun := Build_Task_Record_Image (Loc, Id_Ref, A_Type);
+
+ elsif Nkind (Id_Ref) = N_Indexed_Component then
+ T_Id :=
+ Make_Defining_Identifier (Loc,
+ New_External_Name (Chars (A_Type), 'I'));
+
+ Fun := Build_Task_Array_Image (Loc, Id_Ref, A_Type);
+ end if;
+ end if;
+
+ if Present (Fun) then
+ Append (Fun, Decls);
+
+ Expr :=
+ Make_Function_Call (Loc,
+ Name => New_Occurrence_Of (Defining_Entity (Fun), Loc));
+ end if;
+
+ Decl := Make_Object_Declaration (Loc,
+ Defining_Identifier => T_Id,
+ Object_Definition =>
+ New_Occurrence_Of (RTE (RE_Task_Image_Type), Loc),
+ Expression => Expr);
+
+ Append (Decl, Decls);
+ return Decls;
+ end Build_Task_Image_Decls;
+
+ -------------------------------
+ -- Build_Task_Image_Function --
+ -------------------------------
+
+ function Build_Task_Image_Function
+ (Loc : Source_Ptr;
+ Decls : List_Id;
+ Stats : List_Id;
+ Res : Entity_Id)
+ return Node_Id
+ is
+ Spec : Node_Id;
+
+ begin
+ Append_To (Stats,
+ Make_Return_Statement (Loc,
+ Expression =>
+ Make_Allocator (Loc,
+ Expression =>
+ Make_Qualified_Expression (Loc,
+ Subtype_Mark =>
+ New_Occurrence_Of (Standard_String, Loc),
+ Expression => New_Occurrence_Of (Res, Loc)))));
+
+ Spec := Make_Function_Specification (Loc,
+ Defining_Unit_Name =>
+ Make_Defining_Identifier (Loc, New_Internal_Name ('F')),
+ Subtype_Mark => New_Occurrence_Of (RTE (RE_Task_Image_Type), Loc));
+
+ return Make_Subprogram_Body (Loc,
+ Specification => Spec,
+ Declarations => Decls,
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => Stats));
+ end Build_Task_Image_Function;
+
+ -----------------------------
+ -- Build_Task_Image_Prefix --
+ -----------------------------
+
+ procedure Build_Task_Image_Prefix
+ (Loc : Source_Ptr;
+ Len : out Entity_Id;
+ Res : out Entity_Id;
+ Pos : out Entity_Id;
+ Prefix : Entity_Id;
+ Sum : Node_Id;
+ Decls : in out List_Id;
+ Stats : in out List_Id)
+ is
+ begin
+ Len := Make_Defining_Identifier (Loc, New_Internal_Name ('L'));
+
+ Append_To (Decls,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Len,
+ Object_Definition => New_Occurrence_Of (Standard_Integer, Loc),
+ Expression => Sum));
+
+ Res := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
+
+ Append_To (Decls,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Res,
+ Object_Definition =>
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint (Loc,
+ Constraints =>
+ New_List (
+ Make_Range (Loc,
+ Low_Bound => Make_Integer_Literal (Loc, 1),
+ High_Bound => New_Occurrence_Of (Len, Loc)))))));
+
+ Pos := Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
+
+ Append_To (Decls,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Pos,
+ Object_Definition => New_Occurrence_Of (Standard_Integer, Loc)));
+
+ -- Pos := Prefix'Length;
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Pos, Loc),
+ Expression =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Length,
+ Prefix => New_Occurrence_Of (Prefix, Loc),
+ Expressions =>
+ New_List (Make_Integer_Literal (Loc, 1)))));
+
+ -- Res (1 .. Pos) := Prefix;
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => Make_Slice (Loc,
+ Prefix => New_Occurrence_Of (Res, Loc),
+ Discrete_Range =>
+ Make_Range (Loc,
+ Low_Bound => Make_Integer_Literal (Loc, 1),
+ High_Bound => New_Occurrence_Of (Pos, Loc))),
+
+ Expression => New_Occurrence_Of (Prefix, Loc)));
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Pos, Loc),
+ Expression =>
+ Make_Op_Add (Loc,
+ Left_Opnd => New_Occurrence_Of (Pos, Loc),
+ Right_Opnd => Make_Integer_Literal (Loc, 1))));
+ end Build_Task_Image_Prefix;
+
+ -----------------------------
+ -- Build_Task_Record_Image --
+ -----------------------------
+
+ function Build_Task_Record_Image
+ (Loc : Source_Ptr;
+ Id_Ref : Node_Id;
+ A_Type : Entity_Id)
+ return Node_Id
+ is
+ Len : Entity_Id;
+ -- Total length of generated name
+
+ Pos : Entity_Id;
+ -- Index into result
+
+ Res : Entity_Id;
+ -- String to hold result
+
+ Prefix : Entity_Id;
+ -- Name of enclosing variable, prefix of resulting name
+
+ Sum : Node_Id;
+ -- Expression to compute total size of string.
+
+ Sel : Entity_Id;
+ -- Entity for selector name
+
+ Decls : List_Id := New_List;
+ Stats : List_Id := New_List;
+
+ begin
+ Prefix := Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
+
+ Append_To (Decls,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Prefix,
+ Object_Definition => New_Occurrence_Of (Standard_String, Loc),
+ Expression =>
+ Make_Explicit_Dereference (Loc,
+ Prefix => Make_Identifier (Loc, Name_uTask_Id))));
+
+ Sel := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
+
+ Get_Name_String (Chars (Selector_Name (Id_Ref)));
+
+ Append_To (Decls,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Sel,
+ Object_Definition => New_Occurrence_Of (Standard_String, Loc),
+ Expression =>
+ Make_String_Literal (Loc, Strval => String_From_Name_Buffer)));
+
+ Sum := Make_Integer_Literal (Loc, Nat (Name_Len + 1));
+
+ Sum :=
+ Make_Op_Add (Loc,
+ Left_Opnd => Sum,
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Length,
+ Prefix =>
+ New_Occurrence_Of (Prefix, Loc),
+ Expressions => New_List (Make_Integer_Literal (Loc, 1))));
+
+ Build_Task_Image_Prefix (Loc, Len, Res, Pos, Prefix, Sum, Decls, Stats);
+
+ Set_Character_Literal_Name (Char_Code (Character'Pos ('.')));
+
+ -- Res (Pos) := '.';
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => Make_Indexed_Component (Loc,
+ Prefix => New_Occurrence_Of (Res, Loc),
+ Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
+ Expression =>
+ Make_Character_Literal (Loc,
+ Chars => Name_Find,
+ Char_Literal_Value =>
+ Char_Code (Character'Pos ('.')))));
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Pos, Loc),
+ Expression =>
+ Make_Op_Add (Loc,
+ Left_Opnd => New_Occurrence_Of (Pos, Loc),
+ Right_Opnd => Make_Integer_Literal (Loc, 1))));
+
+ -- Res (Pos .. Len) := Selector;
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => Make_Slice (Loc,
+ Prefix => New_Occurrence_Of (Res, Loc),
+ Discrete_Range =>
+ Make_Range (Loc,
+ Low_Bound => New_Occurrence_Of (Pos, Loc),
+ High_Bound => New_Occurrence_Of (Len, Loc))),
+ Expression => New_Occurrence_Of (Sel, Loc)));
+
+ return Build_Task_Image_Function (Loc, Decls, Stats, Res);
+ end Build_Task_Record_Image;
+
+ -------------------------------
+ -- Convert_To_Actual_Subtype --
+ -------------------------------
+
+ procedure Convert_To_Actual_Subtype (Exp : Entity_Id) is
+ Act_ST : Entity_Id;
+
+ begin
+ Act_ST := Get_Actual_Subtype (Exp);
+
+ if Act_ST = Etype (Exp) then
+ return;
+
+ else
+ Rewrite (Exp,
+ Convert_To (Act_ST, Relocate_Node (Exp)));
+ Analyze_And_Resolve (Exp, Act_ST);
+ end if;
+ end Convert_To_Actual_Subtype;
+
+ -----------------------------------
+ -- Current_Sem_Unit_Declarations --
+ -----------------------------------
+
+ function Current_Sem_Unit_Declarations return List_Id is
+ U : Node_Id := Unit (Cunit (Current_Sem_Unit));
+ Decls : List_Id;
+
+ begin
+ -- If the current unit is a package body, locate the visible
+ -- declarations of the package spec.
+
+ if Nkind (U) = N_Package_Body then
+ U := Unit (Library_Unit (Cunit (Current_Sem_Unit)));
+ end if;
+
+ if Nkind (U) = N_Package_Declaration then
+ U := Specification (U);
+ Decls := Visible_Declarations (U);
+
+ if No (Decls) then
+ Decls := New_List;
+ Set_Visible_Declarations (U, Decls);
+ end if;
+
+ else
+ Decls := Declarations (U);
+
+ if No (Decls) then
+ Decls := New_List;
+ Set_Declarations (U, Decls);
+ end if;
+ end if;
+
+ return Decls;
+ end Current_Sem_Unit_Declarations;
+
+ -----------------------
+ -- Duplicate_Subexpr --
+ -----------------------
+
+ function Duplicate_Subexpr
+ (Exp : Node_Id;
+ Name_Req : Boolean := False)
+ return Node_Id
+ is
+ begin
+ Remove_Side_Effects (Exp, Name_Req);
+ return New_Copy_Tree (Exp);
+ end Duplicate_Subexpr;
+
+ --------------------
+ -- Ensure_Defined --
+ --------------------
+
+ procedure Ensure_Defined (Typ : Entity_Id; N : Node_Id) is
+ IR : Node_Id;
+ P : Node_Id;
+
+ begin
+ if Is_Itype (Typ) then
+ IR := Make_Itype_Reference (Sloc (N));
+ Set_Itype (IR, Typ);
+
+ if not In_Open_Scopes (Scope (Typ))
+ and then Is_Subprogram (Current_Scope)
+ and then Scope (Current_Scope) /= Standard_Standard
+ then
+ -- Insert node in front of subprogram, to avoid scope anomalies
+ -- in gigi.
+
+ P := Parent (N);
+
+ while Present (P)
+ and then Nkind (P) /= N_Subprogram_Body
+ loop
+ P := Parent (P);
+ end loop;
+
+ if Present (P) then
+ Insert_Action (P, IR);
+ else
+ Insert_Action (N, IR);
+ end if;
+
+ else
+ Insert_Action (N, IR);
+ end if;
+ end if;
+ end Ensure_Defined;
+
+ ---------------------
+ -- Evolve_And_Then --
+ ---------------------
+
+ procedure Evolve_And_Then (Cond : in out Node_Id; Cond1 : Node_Id) is
+ begin
+ if No (Cond) then
+ Cond := Cond1;
+ else
+ Cond :=
+ Make_And_Then (Sloc (Cond1),
+ Left_Opnd => Cond,
+ Right_Opnd => Cond1);
+ end if;
+ end Evolve_And_Then;
+
+ --------------------
+ -- Evolve_Or_Else --
+ --------------------
+
+ procedure Evolve_Or_Else (Cond : in out Node_Id; Cond1 : Node_Id) is
+ begin
+ if No (Cond) then
+ Cond := Cond1;
+ else
+ Cond :=
+ Make_Or_Else (Sloc (Cond1),
+ Left_Opnd => Cond,
+ Right_Opnd => Cond1);
+ end if;
+ end Evolve_Or_Else;
+
+ ------------------------------
+ -- Expand_Subtype_From_Expr --
+ ------------------------------
+
+ -- This function is applicable for both static and dynamic allocation of
+ -- objects which are constrained by an initial expression. Basically it
+ -- transforms an unconstrained subtype indication into a constrained one.
+ -- The expression may also be transformed in certain cases in order to
+ -- avoid multiple evaulation. In the static allocation case, the general
+ -- scheme is :
+
+ -- Val : T := Expr;
+
+ -- is transformed into
+
+ -- Val : Constrained_Subtype_of_T := Maybe_Modified_Expr;
+ --
+ -- Here are the main cases :
+ --
+ -- <if Expr is a Slice>
+ -- Val : T ([Index_Subtype (Expr)]) := Expr;
+ --
+ -- <elsif Expr is a String Literal>
+ -- Val : T (T'First .. T'First + Length (string literal) - 1) := Expr;
+ --
+ -- <elsif Expr is Constrained>
+ -- subtype T is Type_Of_Expr
+ -- Val : T := Expr;
+ --
+ -- <elsif Expr is an entity_name>
+ -- Val : T (contraints taken from Expr) := Expr;
+ --
+ -- <else>
+ -- type Axxx is access all T;
+ -- Rval : Axxx := Expr'ref;
+ -- Val : T (contraints taken from Rval) := Rval.all;
+
+ -- ??? note: when the Expression is allocated in the secondary stack
+ -- we could use it directly instead of copying it by declaring
+ -- Val : T (...) renames Rval.all
+
+ procedure Expand_Subtype_From_Expr
+ (N : Node_Id;
+ Unc_Type : Entity_Id;
+ Subtype_Indic : Node_Id;
+ Exp : Node_Id)
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+ Exp_Typ : constant Entity_Id := Etype (Exp);
+ T : Entity_Id;
+
+ begin
+ -- In general we cannot build the subtype if expansion is disabled,
+ -- because internal entities may not have been defined. However, to
+ -- avoid some cascaded errors, we try to continue when the expression
+ -- is an array (or string), because it is safe to compute the bounds.
+ -- It is in fact required to do so even in a generic context, because
+ -- there may be constants that depend on bounds of string literal.
+
+ if not Expander_Active
+ and then (No (Etype (Exp))
+ or else Base_Type (Etype (Exp)) /= Standard_String)
+ then
+ return;
+ end if;
+
+ if Nkind (Exp) = N_Slice then
+ declare
+ Slice_Type : constant Entity_Id := Etype (First_Index (Exp_Typ));
+
+ begin
+ Rewrite (Subtype_Indic,
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Reference_To (Unc_Type, Loc),
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint (Loc,
+ Constraints => New_List
+ (New_Reference_To (Slice_Type, Loc)))));
+
+ -- This subtype indication may be used later for contraint checks
+ -- we better make sure that if a variable was used as a bound of
+ -- of the original slice, its value is frozen.
+
+ Force_Evaluation (Low_Bound (Scalar_Range (Slice_Type)));
+ Force_Evaluation (High_Bound (Scalar_Range (Slice_Type)));
+ end;
+
+ elsif Ekind (Exp_Typ) = E_String_Literal_Subtype then
+ Rewrite (Subtype_Indic,
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Reference_To (Unc_Type, Loc),
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint (Loc,
+ Constraints => New_List (
+ Make_Literal_Range (Loc,
+ Literal_Typ => Exp_Typ,
+ Index_Typ => Etype (First_Index (Unc_Type)))))));
+
+ elsif Is_Constrained (Exp_Typ)
+ and then not Is_Class_Wide_Type (Unc_Type)
+ then
+ if Is_Itype (Exp_Typ) then
+
+ -- No need to generate a new one.
+
+ T := Exp_Typ;
+
+ else
+ T :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('T'));
+
+ Insert_Action (N,
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier => T,
+ Subtype_Indication => New_Reference_To (Exp_Typ, Loc)));
+
+ -- This type is marked as an itype even though it has an
+ -- explicit declaration because otherwise it can be marked
+ -- with Is_Generic_Actual_Type and generate spurious errors.
+ -- (see sem_ch8.Analyze_Package_Renaming and sem_type.covers)
+
+ Set_Is_Itype (T);
+ Set_Associated_Node_For_Itype (T, Exp);
+ end if;
+
+ Rewrite (Subtype_Indic, New_Reference_To (T, Loc));
+
+ -- nothing needs to be done for private types with unknown discriminants
+ -- if the underlying type is not an unconstrained composite type.
+
+ elsif Is_Private_Type (Unc_Type)
+ and then Has_Unknown_Discriminants (Unc_Type)
+ and then (not Is_Composite_Type (Underlying_Type (Unc_Type))
+ or else Is_Constrained (Underlying_Type (Unc_Type)))
+ then
+ null;
+
+ else
+ Remove_Side_Effects (Exp);
+ Rewrite (Subtype_Indic,
+ Make_Subtype_From_Expr (Exp, Unc_Type));
+ end if;
+ end Expand_Subtype_From_Expr;
+
+ ------------------
+ -- Find_Prim_Op --
+ ------------------
+
+ function Find_Prim_Op (T : Entity_Id; Name : Name_Id) return Entity_Id is
+ Prim : Elmt_Id;
+ Typ : Entity_Id := T;
+
+ begin
+ if Is_Class_Wide_Type (Typ) then
+ Typ := Root_Type (Typ);
+ end if;
+
+ Typ := Underlying_Type (Typ);
+
+ Prim := First_Elmt (Primitive_Operations (Typ));
+ while Chars (Node (Prim)) /= Name loop
+ Next_Elmt (Prim);
+ pragma Assert (Present (Prim));
+ end loop;
+
+ return Node (Prim);
+ end Find_Prim_Op;
+
+ ----------------------
+ -- Force_Evaluation --
+ ----------------------
+
+ procedure Force_Evaluation (Exp : Node_Id; Name_Req : Boolean := False) is
+ begin
+ Remove_Side_Effects (Exp, Name_Req, Variable_Ref => True);
+ end Force_Evaluation;
+
+ ------------------------
+ -- Generate_Poll_Call --
+ ------------------------
+
+ procedure Generate_Poll_Call (N : Node_Id) is
+ begin
+ -- No poll call if polling not active
+
+ if not Polling_Required then
+ return;
+
+ -- Otherwise generate require poll call
+
+ else
+ Insert_Before_And_Analyze (N,
+ Make_Procedure_Call_Statement (Sloc (N),
+ Name => New_Occurrence_Of (RTE (RE_Poll), Sloc (N))));
+ end if;
+ end Generate_Poll_Call;
+
+ --------------------
+ -- Homonym_Number --
+ --------------------
+
+ function Homonym_Number (Subp : Entity_Id) return Nat is
+ Count : Nat;
+ Hom : Entity_Id;
+
+ begin
+ Count := 1;
+ Hom := Homonym (Subp);
+ while Present (Hom) loop
+ if Scope (Hom) = Scope (Subp) then
+ Count := Count + 1;
+ end if;
+
+ Hom := Homonym (Hom);
+ end loop;
+
+ return Count;
+ end Homonym_Number;
+
+ ------------------------------
+ -- In_Unconditional_Context --
+ ------------------------------
+
+ function In_Unconditional_Context (Node : Node_Id) return Boolean is
+ P : Node_Id;
+
+ begin
+ P := Node;
+ while Present (P) loop
+ case Nkind (P) is
+ when N_Subprogram_Body =>
+ return True;
+
+ when N_If_Statement =>
+ return False;
+
+ when N_Loop_Statement =>
+ return False;
+
+ when N_Case_Statement =>
+ return False;
+
+ when others =>
+ P := Parent (P);
+ end case;
+ end loop;
+
+ return False;
+ end In_Unconditional_Context;
+
+ -------------------
+ -- Insert_Action --
+ -------------------
+
+ procedure Insert_Action (Assoc_Node : Node_Id; Ins_Action : Node_Id) is
+ begin
+ if Present (Ins_Action) then
+ Insert_Actions (Assoc_Node, New_List (Ins_Action));
+ end if;
+ end Insert_Action;
+
+ -- Version with check(s) suppressed
+
+ procedure Insert_Action
+ (Assoc_Node : Node_Id; Ins_Action : Node_Id; Suppress : Check_Id)
+ is
+ begin
+ Insert_Actions (Assoc_Node, New_List (Ins_Action), Suppress);
+ end Insert_Action;
+
+ --------------------
+ -- Insert_Actions --
+ --------------------
+
+ procedure Insert_Actions (Assoc_Node : Node_Id; Ins_Actions : List_Id) is
+ N : Node_Id;
+ P : Node_Id;
+
+ Wrapped_Node : Node_Id := Empty;
+
+ begin
+ if No (Ins_Actions) or else Is_Empty_List (Ins_Actions) then
+ return;
+ end if;
+
+ -- Ignore insert of actions from inside default expression in the
+ -- special preliminary analyze mode. Any insertions at this point
+ -- have no relevance, since we are only doing the analyze to freeze
+ -- the types of any static expressions. See section "Handling of
+ -- Default Expressions" in the spec of package Sem for further details.
+
+ if In_Default_Expression then
+ return;
+ end if;
+
+ -- If the action derives from stuff inside a record, then the actions
+ -- are attached to the current scope, to be inserted and analyzed on
+ -- exit from the scope. The reason for this is that we may also
+ -- be generating freeze actions at the same time, and they must
+ -- eventually be elaborated in the correct order.
+
+ if Is_Record_Type (Current_Scope)
+ and then not Is_Frozen (Current_Scope)
+ then
+ if No (Scope_Stack.Table
+ (Scope_Stack.Last).Pending_Freeze_Actions)
+ then
+ Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions :=
+ Ins_Actions;
+ else
+ Append_List
+ (Ins_Actions,
+ Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions);
+ end if;
+
+ return;
+ end if;
+
+ -- We now intend to climb up the tree to find the right point to
+ -- insert the actions. We start at Assoc_Node, unless this node is
+ -- a subexpression in which case we start with its parent. We do this
+ -- for two reasons. First it speeds things up. Second, if Assoc_Node
+ -- is itself one of the special nodes like N_And_Then, then we assume
+ -- that an initial request to insert actions for such a node does not
+ -- expect the actions to get deposited in the node for later handling
+ -- when the node is expanded, since clearly the node is being dealt
+ -- with by the caller. Note that in the subexpression case, N is
+ -- always the child we came from.
+
+ -- N_Raise_xxx_Error is an annoying special case, it is a statement
+ -- if it has type Standard_Void_Type, and a subexpression otherwise.
+ -- otherwise. Procedure attribute references are also statements.
+
+ if Nkind (Assoc_Node) in N_Subexpr
+ and then (Nkind (Assoc_Node) in N_Raise_xxx_Error
+ or else Etype (Assoc_Node) /= Standard_Void_Type)
+ and then (Nkind (Assoc_Node) /= N_Attribute_Reference
+ or else
+ not Is_Procedure_Attribute_Name
+ (Attribute_Name (Assoc_Node)))
+ then
+ P := Assoc_Node; -- ????? does not agree with above!
+ N := Parent (Assoc_Node);
+
+ -- Non-subexpression case. Note that N is initially Empty in this
+ -- case (N is only guaranteed Non-Empty in the subexpr case).
+
+ else
+ P := Assoc_Node;
+ N := Empty;
+ end if;
+
+ -- Capture root of the transient scope
+
+ if Scope_Is_Transient then
+ Wrapped_Node := Node_To_Be_Wrapped;
+ end if;
+
+ loop
+ pragma Assert (Present (P));
+
+ case Nkind (P) is
+
+ -- Case of right operand of AND THEN or OR ELSE. Put the actions
+ -- in the Actions field of the right operand. They will be moved
+ -- out further when the AND THEN or OR ELSE operator is expanded.
+ -- Nothing special needs to be done for the left operand since
+ -- in that case the actions are executed unconditionally.
+
+ when N_And_Then | N_Or_Else =>
+ if N = Right_Opnd (P) then
+ if Present (Actions (P)) then
+ Insert_List_After_And_Analyze
+ (Last (Actions (P)), Ins_Actions);
+ else
+ Set_Actions (P, Ins_Actions);
+ Analyze_List (Actions (P));
+ end if;
+
+ return;
+ end if;
+
+ -- Then or Else operand of conditional expression. Add actions to
+ -- Then_Actions or Else_Actions field as appropriate. The actions
+ -- will be moved further out when the conditional is expanded.
+
+ when N_Conditional_Expression =>
+ declare
+ ThenX : constant Node_Id := Next (First (Expressions (P)));
+ ElseX : constant Node_Id := Next (ThenX);
+
+ begin
+ -- Actions belong to the then expression, temporarily
+ -- place them as Then_Actions of the conditional expr.
+ -- They will be moved to the proper place later when
+ -- the conditional expression is expanded.
+
+ if N = ThenX then
+ if Present (Then_Actions (P)) then
+ Insert_List_After_And_Analyze
+ (Last (Then_Actions (P)), Ins_Actions);
+ else
+ Set_Then_Actions (P, Ins_Actions);
+ Analyze_List (Then_Actions (P));
+ end if;
+
+ return;
+
+ -- Actions belong to the else expression, temporarily
+ -- place them as Else_Actions of the conditional expr.
+ -- They will be moved to the proper place later when
+ -- the conditional expression is expanded.
+
+ elsif N = ElseX then
+ if Present (Else_Actions (P)) then
+ Insert_List_After_And_Analyze
+ (Last (Else_Actions (P)), Ins_Actions);
+ else
+ Set_Else_Actions (P, Ins_Actions);
+ Analyze_List (Else_Actions (P));
+ end if;
+
+ return;
+
+ -- Actions belong to the condition. In this case they are
+ -- unconditionally executed, and so we can continue the
+ -- search for the proper insert point.
+
+ else
+ null;
+ end if;
+ end;
+
+ -- Case of appearing in the condition of a while expression or
+ -- elsif. We insert the actions into the Condition_Actions field.
+ -- They will be moved further out when the while loop or elsif
+ -- is analyzed.
+
+ when N_Iteration_Scheme |
+ N_Elsif_Part
+ =>
+ if N = Condition (P) then
+ if Present (Condition_Actions (P)) then
+ Insert_List_After_And_Analyze
+ (Last (Condition_Actions (P)), Ins_Actions);
+ else
+ Set_Condition_Actions (P, Ins_Actions);
+
+ -- Set the parent of the insert actions explicitly.
+ -- This is not a syntactic field, but we need the
+ -- parent field set, in particular so that freeze
+ -- can understand that it is dealing with condition
+ -- actions, and properly insert the freezing actions.
+
+ Set_Parent (Ins_Actions, P);
+ Analyze_List (Condition_Actions (P));
+ end if;
+
+ return;
+ end if;
+
+ -- Statements, declarations, pragmas, representation clauses.
+
+ when
+ -- Statements
+
+ N_Procedure_Call_Statement |
+ N_Statement_Other_Than_Procedure_Call |
+
+ -- Pragmas
+
+ N_Pragma |
+
+ -- Representation_Clause
+
+ N_At_Clause |
+ N_Attribute_Definition_Clause |
+ N_Enumeration_Representation_Clause |
+ N_Record_Representation_Clause |
+
+ -- Declarations
+
+ N_Abstract_Subprogram_Declaration |
+ N_Entry_Body |
+ N_Exception_Declaration |
+ N_Exception_Renaming_Declaration |
+ N_Formal_Object_Declaration |
+ N_Formal_Subprogram_Declaration |
+ N_Formal_Type_Declaration |
+ N_Full_Type_Declaration |
+ N_Function_Instantiation |
+ N_Generic_Function_Renaming_Declaration |
+ N_Generic_Package_Declaration |
+ N_Generic_Package_Renaming_Declaration |
+ N_Generic_Procedure_Renaming_Declaration |
+ N_Generic_Subprogram_Declaration |
+ N_Implicit_Label_Declaration |
+ N_Incomplete_Type_Declaration |
+ N_Number_Declaration |
+ N_Object_Declaration |
+ N_Object_Renaming_Declaration |
+ N_Package_Body |
+ N_Package_Body_Stub |
+ N_Package_Declaration |
+ N_Package_Instantiation |
+ N_Package_Renaming_Declaration |
+ N_Private_Extension_Declaration |
+ N_Private_Type_Declaration |
+ N_Procedure_Instantiation |
+ N_Protected_Body_Stub |
+ N_Protected_Type_Declaration |
+ N_Single_Task_Declaration |
+ N_Subprogram_Body |
+ N_Subprogram_Body_Stub |
+ N_Subprogram_Declaration |
+ N_Subprogram_Renaming_Declaration |
+ N_Subtype_Declaration |
+ N_Task_Body |
+ N_Task_Body_Stub |
+ N_Task_Type_Declaration |
+
+ -- Freeze entity behaves like a declaration or statement
+
+ N_Freeze_Entity
+ =>
+ -- Do not insert here if the item is not a list member (this
+ -- happens for example with a triggering statement, and the
+ -- proper approach is to insert before the entire select).
+
+ if not Is_List_Member (P) then
+ null;
+
+ -- Do not insert if parent of P is an N_Component_Association
+ -- node (i.e. we are in the context of an N_Aggregate node.
+ -- In this case we want to insert before the entire aggregate.
+
+ elsif Nkind (Parent (P)) = N_Component_Association then
+ null;
+
+ -- Do not insert if the parent of P is either an N_Variant
+ -- node or an N_Record_Definition node, meaning in either
+ -- case that P is a member of a component list, and that
+ -- therefore the actions should be inserted outside the
+ -- complete record declaration.
+
+ elsif Nkind (Parent (P)) = N_Variant
+ or else Nkind (Parent (P)) = N_Record_Definition
+ then
+ null;
+
+ -- Do not insert freeze nodes within the loop generated for
+ -- an aggregate, because they may be elaborated too late for
+ -- subsequent use in the back end: within a package spec the
+ -- loop is part of the elaboration procedure and is only
+ -- elaborated during the second pass.
+ -- If the loop comes from source, or the entity is local to
+ -- the loop itself it must remain within.
+
+ elsif Nkind (Parent (P)) = N_Loop_Statement
+ and then not Comes_From_Source (Parent (P))
+ and then Nkind (First (Ins_Actions)) = N_Freeze_Entity
+ and then
+ Scope (Entity (First (Ins_Actions))) /= Current_Scope
+ then
+ null;
+
+ -- Otherwise we can go ahead and do the insertion
+
+ elsif P = Wrapped_Node then
+ Store_Before_Actions_In_Scope (Ins_Actions);
+ return;
+
+ else
+ Insert_List_Before_And_Analyze (P, Ins_Actions);
+ return;
+ end if;
+
+ -- A special case, N_Raise_xxx_Error can act either as a
+ -- statement or a subexpression. We tell the difference
+ -- by looking at the Etype. It is set to Standard_Void_Type
+ -- in the statement case.
+
+ when
+ N_Raise_xxx_Error =>
+ if Etype (P) = Standard_Void_Type then
+ if P = Wrapped_Node then
+ Store_Before_Actions_In_Scope (Ins_Actions);
+ else
+ Insert_List_Before_And_Analyze (P, Ins_Actions);
+ end if;
+
+ return;
+
+ -- In the subexpression case, keep climbing
+
+ else
+ null;
+ end if;
+
+ -- If a component association appears within a loop created for
+ -- an array aggregate, attach the actions to the association so
+ -- they can be subsequently inserted within the loop. For other
+ -- component associations insert outside of the aggregate.
+
+ -- The list of loop_actions can in turn generate additional ones,
+ -- that are inserted before the associated node. If the associated
+ -- node is outside the aggregate, the new actions are collected
+ -- at the end of the loop actions, to respect the order in which
+ -- they are to be elaborated.
+
+ when
+ N_Component_Association =>
+ if Nkind (Parent (P)) = N_Aggregate
+ and then Present (Aggregate_Bounds (Parent (P)))
+ and then Nkind (First (Choices (P))) = N_Others_Choice
+ and then Nkind (First (Ins_Actions)) /= N_Freeze_Entity
+ then
+ if No (Loop_Actions (P)) then
+ Set_Loop_Actions (P, Ins_Actions);
+ Analyze_List (Ins_Actions);
+
+ else
+ declare
+ Decl : Node_Id := Assoc_Node;
+
+ begin
+ -- Check whether these actions were generated
+ -- by a declaration that is part of the loop_
+ -- actions for the component_association.
+
+ while Present (Decl) loop
+ exit when Parent (Decl) = P
+ and then Is_List_Member (Decl)
+ and then
+ List_Containing (Decl) = Loop_Actions (P);
+ Decl := Parent (Decl);
+ end loop;
+
+ if Present (Decl) then
+ Insert_List_Before_And_Analyze
+ (Decl, Ins_Actions);
+ else
+ Insert_List_After_And_Analyze
+ (Last (Loop_Actions (P)), Ins_Actions);
+ end if;
+ end;
+ end if;
+
+ return;
+
+ else
+ null;
+ end if;
+
+ -- Another special case, an attribute denoting a procedure call
+
+ when
+ N_Attribute_Reference =>
+ if Is_Procedure_Attribute_Name (Attribute_Name (P)) then
+ if P = Wrapped_Node then
+ Store_Before_Actions_In_Scope (Ins_Actions);
+ else
+ Insert_List_Before_And_Analyze (P, Ins_Actions);
+ end if;
+
+ return;
+
+ -- In the subexpression case, keep climbing
+
+ else
+ null;
+ end if;
+
+ -- For all other node types, keep climbing tree
+
+ when
+ N_Abortable_Part |
+ N_Accept_Alternative |
+ N_Access_Definition |
+ N_Access_Function_Definition |
+ N_Access_Procedure_Definition |
+ N_Access_To_Object_Definition |
+ N_Aggregate |
+ N_Allocator |
+ N_Case_Statement_Alternative |
+ N_Character_Literal |
+ N_Compilation_Unit |
+ N_Compilation_Unit_Aux |
+ N_Component_Clause |
+ N_Component_Declaration |
+ N_Component_List |
+ N_Constrained_Array_Definition |
+ N_Decimal_Fixed_Point_Definition |
+ N_Defining_Character_Literal |
+ N_Defining_Identifier |
+ N_Defining_Operator_Symbol |
+ N_Defining_Program_Unit_Name |
+ N_Delay_Alternative |
+ N_Delta_Constraint |
+ N_Derived_Type_Definition |
+ N_Designator |
+ N_Digits_Constraint |
+ N_Discriminant_Association |
+ N_Discriminant_Specification |
+ N_Empty |
+ N_Entry_Body_Formal_Part |
+ N_Entry_Call_Alternative |
+ N_Entry_Declaration |
+ N_Entry_Index_Specification |
+ N_Enumeration_Type_Definition |
+ N_Error |
+ N_Exception_Handler |
+ N_Expanded_Name |
+ N_Explicit_Dereference |
+ N_Extension_Aggregate |
+ N_Floating_Point_Definition |
+ N_Formal_Decimal_Fixed_Point_Definition |
+ N_Formal_Derived_Type_Definition |
+ N_Formal_Discrete_Type_Definition |
+ N_Formal_Floating_Point_Definition |
+ N_Formal_Modular_Type_Definition |
+ N_Formal_Ordinary_Fixed_Point_Definition |
+ N_Formal_Package_Declaration |
+ N_Formal_Private_Type_Definition |
+ N_Formal_Signed_Integer_Type_Definition |
+ N_Function_Call |
+ N_Function_Specification |
+ N_Generic_Association |
+ N_Handled_Sequence_Of_Statements |
+ N_Identifier |
+ N_In |
+ N_Index_Or_Discriminant_Constraint |
+ N_Indexed_Component |
+ N_Integer_Literal |
+ N_Itype_Reference |
+ N_Label |
+ N_Loop_Parameter_Specification |
+ N_Mod_Clause |
+ N_Modular_Type_Definition |
+ N_Not_In |
+ N_Null |
+ N_Op_Abs |
+ N_Op_Add |
+ N_Op_And |
+ N_Op_Concat |
+ N_Op_Divide |
+ N_Op_Eq |
+ N_Op_Expon |
+ N_Op_Ge |
+ N_Op_Gt |
+ N_Op_Le |
+ N_Op_Lt |
+ N_Op_Minus |
+ N_Op_Mod |
+ N_Op_Multiply |
+ N_Op_Ne |
+ N_Op_Not |
+ N_Op_Or |
+ N_Op_Plus |
+ N_Op_Rem |
+ N_Op_Rotate_Left |
+ N_Op_Rotate_Right |
+ N_Op_Shift_Left |
+ N_Op_Shift_Right |
+ N_Op_Shift_Right_Arithmetic |
+ N_Op_Subtract |
+ N_Op_Xor |
+ N_Operator_Symbol |
+ N_Ordinary_Fixed_Point_Definition |
+ N_Others_Choice |
+ N_Package_Specification |
+ N_Parameter_Association |
+ N_Parameter_Specification |
+ N_Pragma_Argument_Association |
+ N_Procedure_Specification |
+ N_Protected_Body |
+ N_Protected_Definition |
+ N_Qualified_Expression |
+ N_Range |
+ N_Range_Constraint |
+ N_Real_Literal |
+ N_Real_Range_Specification |
+ N_Record_Definition |
+ N_Reference |
+ N_Selected_Component |
+ N_Signed_Integer_Type_Definition |
+ N_Single_Protected_Declaration |
+ N_Slice |
+ N_String_Literal |
+ N_Subprogram_Info |
+ N_Subtype_Indication |
+ N_Subunit |
+ N_Task_Definition |
+ N_Terminate_Alternative |
+ N_Triggering_Alternative |
+ N_Type_Conversion |
+ N_Unchecked_Expression |
+ N_Unchecked_Type_Conversion |
+ N_Unconstrained_Array_Definition |
+ N_Unused_At_End |
+ N_Unused_At_Start |
+ N_Use_Package_Clause |
+ N_Use_Type_Clause |
+ N_Variant |
+ N_Variant_Part |
+ N_Validate_Unchecked_Conversion |
+ N_With_Clause |
+ N_With_Type_Clause
+ =>
+ null;
+
+ end case;
+
+ -- Make sure that inserted actions stay in the transient scope
+
+ if P = Wrapped_Node then
+ Store_Before_Actions_In_Scope (Ins_Actions);
+ return;
+ end if;
+
+ -- If we fall through above tests, keep climbing tree
+
+ N := P;
+
+ if Nkind (Parent (N)) = N_Subunit then
+
+ -- This is the proper body corresponding to a stub. Insertion
+ -- must be done at the point of the stub, which is in the decla-
+ -- tive part of the parent unit.
+
+ P := Corresponding_Stub (Parent (N));
+
+ else
+ P := Parent (N);
+ end if;
+ end loop;
+
+ end Insert_Actions;
+
+ -- Version with check(s) suppressed
+
+ procedure Insert_Actions
+ (Assoc_Node : Node_Id; Ins_Actions : List_Id; Suppress : Check_Id)
+ is
+ begin
+ if Suppress = All_Checks then
+ declare
+ Svg : constant Suppress_Record := Scope_Suppress;
+
+ begin
+ Scope_Suppress := (others => True);
+ Insert_Actions (Assoc_Node, Ins_Actions);
+ Scope_Suppress := Svg;
+ end;
+
+ else
+ declare
+ Svg : constant Boolean := Get_Scope_Suppress (Suppress);
+
+ begin
+ Set_Scope_Suppress (Suppress, True);
+ Insert_Actions (Assoc_Node, Ins_Actions);
+ Set_Scope_Suppress (Suppress, Svg);
+ end;
+ end if;
+ end Insert_Actions;
+
+ --------------------------
+ -- Insert_Actions_After --
+ --------------------------
+
+ procedure Insert_Actions_After
+ (Assoc_Node : Node_Id;
+ Ins_Actions : List_Id)
+ is
+ begin
+ if Scope_Is_Transient
+ and then Assoc_Node = Node_To_Be_Wrapped
+ then
+ Store_After_Actions_In_Scope (Ins_Actions);
+ else
+ Insert_List_After_And_Analyze (Assoc_Node, Ins_Actions);
+ end if;
+ end Insert_Actions_After;
+
+ ---------------------------------
+ -- Insert_Library_Level_Action --
+ ---------------------------------
+
+ procedure Insert_Library_Level_Action (N : Node_Id) is
+ Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
+
+ begin
+ New_Scope (Cunit_Entity (Main_Unit));
+
+ if No (Actions (Aux)) then
+ Set_Actions (Aux, New_List (N));
+ else
+ Append (N, Actions (Aux));
+ end if;
+
+ Analyze (N);
+ Pop_Scope;
+ end Insert_Library_Level_Action;
+
+ ----------------------------------
+ -- Insert_Library_Level_Actions --
+ ----------------------------------
+
+ procedure Insert_Library_Level_Actions (L : List_Id) is
+ Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
+
+ begin
+ if Is_Non_Empty_List (L) then
+ New_Scope (Cunit_Entity (Main_Unit));
+
+ if No (Actions (Aux)) then
+ Set_Actions (Aux, L);
+ Analyze_List (L);
+ else
+ Insert_List_After_And_Analyze (Last (Actions (Aux)), L);
+ end if;
+
+ Pop_Scope;
+ end if;
+ end Insert_Library_Level_Actions;
+
+ ----------------------
+ -- Inside_Init_Proc --
+ ----------------------
+
+ function Inside_Init_Proc return Boolean is
+ S : Entity_Id;
+
+ begin
+ S := Current_Scope;
+ while S /= Standard_Standard loop
+ if Chars (S) = Name_uInit_Proc then
+ return True;
+ else
+ S := Scope (S);
+ end if;
+ end loop;
+
+ return False;
+ end Inside_Init_Proc;
+
+ --------------------------------
+ -- Is_Ref_To_Bit_Packed_Array --
+ --------------------------------
+
+ function Is_Ref_To_Bit_Packed_Array (P : Node_Id) return Boolean is
+ Result : Boolean;
+ Expr : Node_Id;
+
+ begin
+ if Nkind (P) = N_Indexed_Component
+ or else
+ Nkind (P) = N_Selected_Component
+ then
+ if Is_Bit_Packed_Array (Etype (Prefix (P))) then
+ Result := True;
+ else
+ Result := Is_Ref_To_Bit_Packed_Array (Prefix (P));
+ end if;
+
+ if Result and then Nkind (P) = N_Indexed_Component then
+ Expr := First (Expressions (P));
+
+ while Present (Expr) loop
+ Force_Evaluation (Expr);
+ Next (Expr);
+ end loop;
+ end if;
+
+ return Result;
+
+ else
+ return False;
+ end if;
+ end Is_Ref_To_Bit_Packed_Array;
+
+ --------------------------------
+ -- Is_Ref_To_Bit_Packed_Slce --
+ --------------------------------
+
+ function Is_Ref_To_Bit_Packed_Slice (P : Node_Id) return Boolean is
+ begin
+ if Nkind (P) = N_Slice
+ and then Is_Bit_Packed_Array (Etype (Prefix (P)))
+ then
+ return True;
+
+ elsif Nkind (P) = N_Indexed_Component
+ or else
+ Nkind (P) = N_Selected_Component
+ then
+ return Is_Ref_To_Bit_Packed_Slice (Prefix (P));
+
+ else
+ return False;
+ end if;
+ end Is_Ref_To_Bit_Packed_Slice;
+
+ -----------------------
+ -- Is_Renamed_Object --
+ -----------------------
+
+ function Is_Renamed_Object (N : Node_Id) return Boolean is
+ Pnod : constant Node_Id := Parent (N);
+ Kind : constant Node_Kind := Nkind (Pnod);
+
+ begin
+ if Kind = N_Object_Renaming_Declaration then
+ return True;
+
+ elsif Kind = N_Indexed_Component
+ or else Kind = N_Selected_Component
+ then
+ return Is_Renamed_Object (Pnod);
+
+ else
+ return False;
+ end if;
+ end Is_Renamed_Object;
+
+ ----------------------------
+ -- Is_Untagged_Derivation --
+ ----------------------------
+
+ function Is_Untagged_Derivation (T : Entity_Id) return Boolean is
+ begin
+ return (not Is_Tagged_Type (T) and then Is_Derived_Type (T))
+ or else
+ (Is_Private_Type (T) and then Present (Full_View (T))
+ and then not Is_Tagged_Type (Full_View (T))
+ and then Is_Derived_Type (Full_View (T))
+ and then Etype (Full_View (T)) /= T);
+
+ end Is_Untagged_Derivation;
+
+ --------------------
+ -- Kill_Dead_Code --
+ --------------------
+
+ procedure Kill_Dead_Code (N : Node_Id) is
+ begin
+ if Present (N) then
+ Remove_Handler_Entries (N);
+ Remove_Warning_Messages (N);
+
+ -- Recurse into block statements to process declarations/statements
+
+ if Nkind (N) = N_Block_Statement then
+ Kill_Dead_Code (Declarations (N));
+ Kill_Dead_Code (Statements (Handled_Statement_Sequence (N)));
+
+ -- Recurse into composite statement to kill individual statements,
+ -- in particular instantiations.
+
+ elsif Nkind (N) = N_If_Statement then
+ Kill_Dead_Code (Then_Statements (N));
+ Kill_Dead_Code (Elsif_Parts (N));
+ Kill_Dead_Code (Else_Statements (N));
+
+ elsif Nkind (N) = N_Loop_Statement then
+ Kill_Dead_Code (Statements (N));
+
+ elsif Nkind (N) = N_Case_Statement then
+ declare
+ Alt : Node_Id := First (Alternatives (N));
+
+ begin
+ while Present (Alt) loop
+ Kill_Dead_Code (Statements (Alt));
+ Next (Alt);
+ end loop;
+ end;
+
+ -- Deal with dead instances caused by deleting instantiations
+
+ elsif Nkind (N) in N_Generic_Instantiation then
+ Remove_Dead_Instance (N);
+ end if;
+
+ Delete_Tree (N);
+ end if;
+ end Kill_Dead_Code;
+
+ -- Case where argument is a list of nodes to be killed
+
+ procedure Kill_Dead_Code (L : List_Id) is
+ N : Node_Id;
+
+ begin
+ if Is_Non_Empty_List (L) then
+ loop
+ N := Remove_Head (L);
+ exit when No (N);
+ Kill_Dead_Code (N);
+ end loop;
+ end if;
+ end Kill_Dead_Code;
+
+ ------------------------
+ -- Known_Non_Negative --
+ ------------------------
+
+ function Known_Non_Negative (Opnd : Node_Id) return Boolean is
+ begin
+ if Is_OK_Static_Expression (Opnd)
+ and then Expr_Value (Opnd) >= 0
+ then
+ return True;
+
+ else
+ declare
+ Lo : constant Node_Id := Type_Low_Bound (Etype (Opnd));
+
+ begin
+ return
+ Is_OK_Static_Expression (Lo) and then Expr_Value (Lo) >= 0;
+ end;
+ end if;
+ end Known_Non_Negative;
+
+ -----------------------------
+ -- Make_CW_Equivalent_Type --
+ -----------------------------
+
+ -- Create a record type used as an equivalent of any member
+ -- of the class which takes its size from exp.
+
+ -- Generate the following code:
+
+ -- type Equiv_T is record
+ -- _parent : T (List of discriminant constaints taken from Exp);
+ -- Ext__50 : Storage_Array (1 .. (Exp'size - Typ'size) / Storage_Unit);
+ -- end Equiv_T;
+
+ function Make_CW_Equivalent_Type
+ (T : Entity_Id;
+ E : Node_Id)
+ return Entity_Id
+ is
+ Loc : constant Source_Ptr := Sloc (E);
+ Root_Typ : constant Entity_Id := Root_Type (T);
+ Equiv_Type : Entity_Id;
+ Range_Type : Entity_Id;
+ Str_Type : Entity_Id;
+ List_Def : List_Id := Empty_List;
+ Constr_Root : Entity_Id;
+ Sizexpr : Node_Id;
+
+ begin
+ if not Has_Discriminants (Root_Typ) then
+ Constr_Root := Root_Typ;
+ else
+ Constr_Root :=
+ Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
+
+ -- subtype cstr__n is T (List of discr constraints taken from Exp)
+
+ Append_To (List_Def,
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier => Constr_Root,
+ Subtype_Indication =>
+ Make_Subtype_From_Expr (E, Root_Typ)));
+ end if;
+
+ -- subtype rg__xx is Storage_Offset range
+ -- (Expr'size - typ'size) / Storage_Unit
+
+ Range_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('G'));
+
+ Sizexpr :=
+ Make_Op_Subtract (Loc,
+ Left_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Prefix => OK_Convert_To (T, Duplicate_Subexpr (E)),
+ Attribute_Name => Name_Size),
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Reference_To (Constr_Root, Loc),
+ Attribute_Name => Name_Size));
+
+ Set_Paren_Count (Sizexpr, 1);
+
+ Append_To (List_Def,
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier => Range_Type,
+ Subtype_Indication =>
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Reference_To (RTE (RE_Storage_Offset), Loc),
+ Constraint => Make_Range_Constraint (Loc,
+ Range_Expression =>
+ Make_Range (Loc,
+ Low_Bound => Make_Integer_Literal (Loc, 1),
+ High_Bound =>
+ Make_Op_Divide (Loc,
+ Left_Opnd => Sizexpr,
+ Right_Opnd => Make_Integer_Literal (Loc,
+ Intval => System_Storage_Unit)))))));
+
+ -- subtype str__nn is Storage_Array (rg__x);
+
+ Str_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
+ Append_To (List_Def,
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier => Str_Type,
+ Subtype_Indication =>
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Reference_To (RTE (RE_Storage_Array), Loc),
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint (Loc,
+ Constraints =>
+ New_List (New_Reference_To (Range_Type, Loc))))));
+
+ -- type Equiv_T is record
+ -- _parent : Tnn;
+ -- E : Str_Type;
+ -- end Equiv_T;
+
+ Equiv_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
+
+ -- Avoid the generation of an init procedure
+
+ Set_Is_Frozen (Equiv_Type);
+
+ Set_Ekind (Equiv_Type, E_Record_Type);
+ Set_Parent_Subtype (Equiv_Type, Constr_Root);
+
+ Append_To (List_Def,
+ Make_Full_Type_Declaration (Loc,
+ Defining_Identifier => Equiv_Type,
+
+ Type_Definition =>
+ Make_Record_Definition (Loc,
+ Component_List => Make_Component_List (Loc,
+ Component_Items => New_List (
+ Make_Component_Declaration (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Loc, Name_uParent),
+ Subtype_Indication => New_Reference_To (Constr_Root, Loc)),
+
+ Make_Component_Declaration (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('C')),
+ Subtype_Indication => New_Reference_To (Str_Type, Loc))),
+ Variant_Part => Empty))));
+
+ Insert_Actions (E, List_Def);
+ return Equiv_Type;
+ end Make_CW_Equivalent_Type;
+
+ ------------------------
+ -- Make_Literal_Range --
+ ------------------------
+
+ function Make_Literal_Range
+ (Loc : Source_Ptr;
+ Literal_Typ : Entity_Id;
+ Index_Typ : Entity_Id)
+ return Node_Id
+ is
+ begin
+ return
+ Make_Range (Loc,
+ Low_Bound =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (Index_Typ, Loc),
+ Attribute_Name => Name_First),
+
+ High_Bound =>
+ Make_Op_Subtract (Loc,
+ Left_Opnd =>
+ Make_Op_Add (Loc,
+ Left_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (Index_Typ, Loc),
+ Attribute_Name => Name_First),
+ Right_Opnd => Make_Integer_Literal (Loc,
+ String_Literal_Length (Literal_Typ))),
+ Right_Opnd => Make_Integer_Literal (Loc, 1)));
+ end Make_Literal_Range;
+
+ ----------------------------
+ -- Make_Subtype_From_Expr --
+ ----------------------------
+
+ -- 1. If Expr is an uncontrained array expression, creates
+ -- Unc_Type(Expr'first(1)..Expr'Last(1),..., Expr'first(n)..Expr'last(n))
+
+ -- 2. If Expr is a unconstrained discriminated type expression, creates
+ -- Unc_Type(Expr.Discr1, ... , Expr.Discr_n)
+
+ -- 3. If Expr is class-wide, creates an implicit class wide subtype
+
+ function Make_Subtype_From_Expr
+ (E : Node_Id;
+ Unc_Typ : Entity_Id)
+ return Node_Id
+ is
+ Loc : constant Source_Ptr := Sloc (E);
+ List_Constr : List_Id := New_List;
+ D : Entity_Id;
+
+ Full_Subtyp : Entity_Id;
+ Priv_Subtyp : Entity_Id;
+ Utyp : Entity_Id;
+ Full_Exp : Node_Id;
+
+ begin
+ if Is_Private_Type (Unc_Typ)
+ and then Has_Unknown_Discriminants (Unc_Typ)
+ then
+ -- Prepare the subtype completion
+
+ Utyp := Underlying_Type (Unc_Typ);
+ Full_Subtyp := Make_Defining_Identifier (Loc,
+ New_Internal_Name ('C'));
+ Full_Exp := Unchecked_Convert_To (Utyp, Duplicate_Subexpr (E));
+ Set_Parent (Full_Exp, Parent (E));
+
+ Priv_Subtyp :=
+ Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
+
+ Insert_Action (E,
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier => Full_Subtyp,
+ Subtype_Indication => Make_Subtype_From_Expr (Full_Exp, Utyp)));
+
+ -- Define the dummy private subtype
+
+ Set_Ekind (Priv_Subtyp, Subtype_Kind (Ekind (Unc_Typ)));
+ Set_Etype (Priv_Subtyp, Unc_Typ);
+ Set_Scope (Priv_Subtyp, Full_Subtyp);
+ Set_Is_Constrained (Priv_Subtyp);
+ Set_Is_Tagged_Type (Priv_Subtyp, Is_Tagged_Type (Unc_Typ));
+ Set_Is_Itype (Priv_Subtyp);
+ Set_Associated_Node_For_Itype (Priv_Subtyp, E);
+
+ if Is_Tagged_Type (Priv_Subtyp) then
+ Set_Class_Wide_Type
+ (Base_Type (Priv_Subtyp), Class_Wide_Type (Unc_Typ));
+ Set_Primitive_Operations (Priv_Subtyp,
+ Primitive_Operations (Unc_Typ));
+ end if;
+
+ Set_Full_View (Priv_Subtyp, Full_Subtyp);
+
+ return New_Reference_To (Priv_Subtyp, Loc);
+
+ elsif Is_Array_Type (Unc_Typ) then
+ for J in 1 .. Number_Dimensions (Unc_Typ) loop
+ Append_To (List_Constr,
+ Make_Range (Loc,
+ Low_Bound =>
+ Make_Attribute_Reference (Loc,
+ Prefix => Duplicate_Subexpr (E),
+ Attribute_Name => Name_First,
+ Expressions => New_List (
+ Make_Integer_Literal (Loc, J))),
+ High_Bound =>
+ Make_Attribute_Reference (Loc,
+ Prefix => Duplicate_Subexpr (E),
+ Attribute_Name => Name_Last,
+ Expressions => New_List (
+ Make_Integer_Literal (Loc, J)))));
+ end loop;
+
+ elsif Is_Class_Wide_Type (Unc_Typ) then
+ declare
+ CW_Subtype : Entity_Id;
+ EQ_Typ : Entity_Id := Empty;
+
+ begin
+ -- A class-wide equivalent type is not needed when Java_VM
+ -- because the JVM back end handles the class-wide object
+ -- intialization itself (and doesn't need or want the
+ -- additional intermediate type to handle the assignment).
+
+ if Expander_Active and then not Java_VM then
+ EQ_Typ := Make_CW_Equivalent_Type (Unc_Typ, E);
+ end if;
+
+ CW_Subtype := New_Class_Wide_Subtype (Unc_Typ, E);
+ Set_Equivalent_Type (CW_Subtype, EQ_Typ);
+ Set_Cloned_Subtype (CW_Subtype, Base_Type (Unc_Typ));
+
+ return New_Occurrence_Of (CW_Subtype, Loc);
+ end;
+
+ else
+ D := First_Discriminant (Unc_Typ);
+ while (Present (D)) loop
+
+ Append_To (List_Constr,
+ Make_Selected_Component (Loc,
+ Prefix => Duplicate_Subexpr (E),
+ Selector_Name => New_Reference_To (D, Loc)));
+
+ Next_Discriminant (D);
+ end loop;
+ end if;
+
+ return
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Reference_To (Unc_Typ, Loc),
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint (Loc,
+ Constraints => List_Constr));
+ end Make_Subtype_From_Expr;
+
+ -----------------------------
+ -- May_Generate_Large_Temp --
+ -----------------------------
+
+ -- At the current time, the only types that we return False for (i.e.
+ -- where we decide we know they cannot generate large temps) are ones
+ -- where we know the size is 128 bits or less at compile time, and we
+ -- are still not doing a thorough job on arrays and records ???
+
+ function May_Generate_Large_Temp (Typ : Entity_Id) return Boolean is
+ begin
+ if not Stack_Checking_Enabled then
+ return False;
+
+ elsif not Size_Known_At_Compile_Time (Typ) then
+ return False;
+
+ elsif Esize (Typ) /= 0 and then Esize (Typ) <= 256 then
+ return False;
+
+ elsif Is_Array_Type (Typ)
+ and then Present (Packed_Array_Type (Typ))
+ then
+ return May_Generate_Large_Temp (Packed_Array_Type (Typ));
+
+ -- We could do more here to find other small types ???
+
+ else
+ return True;
+ end if;
+ end May_Generate_Large_Temp;
+
+ ---------------------
+ -- Must_Be_Aligned --
+ ---------------------
+
+ function Must_Be_Aligned (Obj : Node_Id) return Boolean is
+ Typ : constant Entity_Id := Etype (Obj);
+
+ begin
+ -- If object is strictly aligned, we can quit now
+
+ if Strict_Alignment (Typ) then
+ return True;
+
+ -- Case of subscripted array reference
+
+ elsif Nkind (Obj) = N_Indexed_Component then
+
+ -- If we have a pointer to an array, then this is definitely
+ -- aligned, because pointers always point to aligned versions.
+
+ if Is_Access_Type (Etype (Prefix (Obj))) then
+ return True;
+
+ -- Otherwise, go look at the prefix
+
+ else
+ return Must_Be_Aligned (Prefix (Obj));
+ end if;
+
+ -- Case of record field
+
+ elsif Nkind (Obj) = N_Selected_Component then
+
+ -- What is significant here is whether the record type is packed
+
+ if Is_Record_Type (Etype (Prefix (Obj)))
+ and then Is_Packed (Etype (Prefix (Obj)))
+ then
+ return False;
+
+ -- Or the component has a component clause which might cause
+ -- the component to become unaligned (we can't tell if the
+ -- backend is doing alignment computations).
+
+ elsif Present (Component_Clause (Entity (Selector_Name (Obj)))) then
+ return False;
+
+ -- In all other cases, go look at prefix
+
+ else
+ return Must_Be_Aligned (Prefix (Obj));
+ end if;
+
+ -- If not selected or indexed component, must be aligned
+
+ else
+ return True;
+ end if;
+ end Must_Be_Aligned;
+
+ ----------------------------
+ -- New_Class_Wide_Subtype --
+ ----------------------------
+
+ function New_Class_Wide_Subtype
+ (CW_Typ : Entity_Id;
+ N : Node_Id)
+ return Entity_Id
+ is
+ Res : Entity_Id := Create_Itype (E_Void, N);
+ Res_Name : constant Name_Id := Chars (Res);
+ Res_Scope : Entity_Id := Scope (Res);
+
+ begin
+ Copy_Node (CW_Typ, Res);
+ Set_Sloc (Res, Sloc (N));
+ Set_Is_Itype (Res);
+ Set_Associated_Node_For_Itype (Res, N);
+ Set_Is_Public (Res, False); -- By default, may be changed below.
+ Set_Public_Status (Res);
+ Set_Chars (Res, Res_Name);
+ Set_Scope (Res, Res_Scope);
+ Set_Ekind (Res, E_Class_Wide_Subtype);
+ Set_Next_Entity (Res, Empty);
+ Set_Etype (Res, Base_Type (CW_Typ));
+ Set_Freeze_Node (Res, Empty);
+ return (Res);
+ end New_Class_Wide_Subtype;
+
+ -------------------------
+ -- Remove_Side_Effects --
+ -------------------------
+
+ procedure Remove_Side_Effects
+ (Exp : Node_Id;
+ Name_Req : Boolean := False;
+ Variable_Ref : Boolean := False)
+ is
+ Loc : constant Source_Ptr := Sloc (Exp);
+ Exp_Type : constant Entity_Id := Etype (Exp);
+ Svg_Suppress : constant Suppress_Record := Scope_Suppress;
+ Def_Id : Entity_Id;
+ Ref_Type : Entity_Id;
+ Res : Node_Id;
+ Ptr_Typ_Decl : Node_Id;
+ New_Exp : Node_Id;
+ E : Node_Id;
+
+ function Side_Effect_Free (N : Node_Id) return Boolean;
+ -- Determines if the tree N represents an expession that is known
+ -- not to have side effects, and for which no processing is required.
+
+ function Side_Effect_Free (L : List_Id) return Boolean;
+ -- Determines if all elements of the list L are side effect free
+
+ function Mutable_Dereference (N : Node_Id) return Boolean;
+ -- If a selected component involves an implicit dereference and
+ -- the type of the prefix is not an_access_to_constant, the node
+ -- must be evaluated because it may be affected by a subsequent
+ -- assignment.
+
+ -------------------------
+ -- Mutable_Dereference --
+ -------------------------
+
+ function Mutable_Dereference (N : Node_Id) return Boolean is
+ begin
+ return Nkind (N) = N_Selected_Component
+ and then Is_Access_Type (Etype (Prefix (N)))
+ and then not Is_Access_Constant (Etype (Prefix (N)))
+ and then Variable_Ref;
+ end Mutable_Dereference;
+
+ ----------------------
+ -- Side_Effect_Free --
+ ----------------------
+
+ function Side_Effect_Free (N : Node_Id) return Boolean is
+ K : constant Node_Kind := Nkind (N);
+
+ begin
+ -- Note on checks that could raise Constraint_Error. Strictly, if
+ -- we take advantage of 11.6, these checks do not count as side
+ -- effects. However, we would just as soon consider that they are
+ -- side effects, since the backend CSE does not work very well on
+ -- expressions which can raise Constraint_Error. On the other
+ -- hand, if we do not consider them to be side effect free, then
+ -- we get some awkward expansions in -gnato mode, resulting in
+ -- code insertions at a point where we do not have a clear model
+ -- for performing the insertions. See 4908-002/comment for details.
+
+ -- An attribute reference is side effect free if its expressions
+ -- are side effect free and its prefix is (could be a dereference
+ -- or an indexed retrieval for example).
+
+ if K = N_Attribute_Reference then
+ return Side_Effect_Free (Expressions (N))
+ and then (Is_Entity_Name (Prefix (N))
+ or else Side_Effect_Free (Prefix (N)));
+
+ -- An entity is side effect free unless it is a function call, or
+ -- a reference to a volatile variable and Name_Req is False. If
+ -- Name_Req is True then we can't help returning a name which
+ -- effectively allows multiple references in any case.
+
+ elsif Is_Entity_Name (N)
+ and then Ekind (Entity (N)) /= E_Function
+ and then (not Is_Volatile (Entity (N)) or else Name_Req)
+ then
+ -- If the entity is a constant, it is definitely side effect
+ -- free. Note that the test of Is_Variable (N) below might
+ -- be expected to catch this case, but it does not, because
+ -- this test goes to the original tree, and we may have
+ -- already rewritten a variable node with a constant as
+ -- a result of an earlier Force_Evaluation call.
+
+ if Ekind (Entity (N)) = E_Constant then
+ return True;
+
+ -- If the Variable_Ref flag is set, any variable reference is
+ -- is considered a side-effect
+
+ elsif Variable_Ref then
+ return not Is_Variable (N);
+
+ else
+ return True;
+ end if;
+
+ -- A value known at compile time is always side effect free
+
+ elsif Compile_Time_Known_Value (N) then
+ return True;
+
+ -- Literals are always side-effect free
+
+ elsif (K = N_Integer_Literal
+ or else K = N_Real_Literal
+ or else K = N_Character_Literal
+ or else K = N_String_Literal
+ or else K = N_Null)
+ and then not Raises_Constraint_Error (N)
+ then
+ return True;
+
+ -- A type conversion or qualification is side effect free if the
+ -- expression to be converted is side effect free.
+
+ elsif K = N_Type_Conversion or else K = N_Qualified_Expression then
+ return Side_Effect_Free (Expression (N));
+
+ -- An unchecked type conversion is never side effect free since we
+ -- need to check whether it is safe.
+ -- effect free if its argument is side effect free.
+
+ elsif K = N_Unchecked_Type_Conversion then
+ if Safe_Unchecked_Type_Conversion (N) then
+ return Side_Effect_Free (Expression (N));
+ else
+ return False;
+ end if;
+
+ -- A unary operator is side effect free if the operand
+ -- is side effect free.
+
+ elsif K in N_Unary_Op then
+ return Side_Effect_Free (Right_Opnd (N));
+
+ -- A binary operator is side effect free if and both operands
+ -- are side effect free.
+
+ elsif K in N_Binary_Op then
+ return Side_Effect_Free (Left_Opnd (N))
+ and then Side_Effect_Free (Right_Opnd (N));
+
+ -- An explicit dereference or selected component is side effect
+ -- free if its prefix is side effect free.
+
+ elsif K = N_Explicit_Dereference
+ or else K = N_Selected_Component
+ then
+ return Side_Effect_Free (Prefix (N))
+ and then not Mutable_Dereference (Prefix (N));
+
+ -- An indexed component can be copied if the prefix is copyable
+ -- and all the indexing expressions are copyable and there is
+ -- no access check and no range checks.
+
+ elsif K = N_Indexed_Component then
+ return Side_Effect_Free (Prefix (N))
+ and then Side_Effect_Free (Expressions (N));
+
+ elsif K = N_Unchecked_Expression then
+ return Side_Effect_Free (Expression (N));
+
+ -- A call to _rep_to_pos is side effect free, since we generate
+ -- this pure function call ourselves. Moreover it is critically
+ -- important to make this exception, since otherwise we can
+ -- have discriminants in array components which don't look
+ -- side effect free in the case of an array whose index type
+ -- is an enumeration type with an enumeration rep clause.
+
+ elsif K = N_Function_Call
+ and then Nkind (Name (N)) = N_Identifier
+ and then Chars (Name (N)) = Name_uRep_To_Pos
+ then
+ return True;
+
+ -- We consider that anything else has side effects. This is a bit
+ -- crude, but we are pretty close for most common cases, and we
+ -- are certainly correct (i.e. we never return True when the
+ -- answer should be False).
+
+ else
+ return False;
+ end if;
+ end Side_Effect_Free;
+
+ function Side_Effect_Free (L : List_Id) return Boolean is
+ N : Node_Id;
+
+ begin
+ if L = No_List or else L = Error_List then
+ return True;
+
+ else
+ N := First (L);
+
+ while Present (N) loop
+ if not Side_Effect_Free (N) then
+ return False;
+ else
+ Next (N);
+ end if;
+ end loop;
+
+ return True;
+ end if;
+ end Side_Effect_Free;
+
+ -- Start of processing for Remove_Side_Effects
+
+ begin
+ -- If we are side effect free already or expansion is disabled,
+ -- there is nothing to do.
+
+ if Side_Effect_Free (Exp) or else not Expander_Active then
+ return;
+ end if;
+
+ -- All the must not have any checks
+
+ Scope_Suppress := (others => True);
+
+ -- If the expression has the form v.all then we can just capture
+ -- the pointer, and then do an explicit dereference on the result.
+
+ if Nkind (Exp) = N_Explicit_Dereference then
+ Def_Id :=
+ Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
+ Res :=
+ Make_Explicit_Dereference (Loc, New_Reference_To (Def_Id, Loc));
+
+ Insert_Action (Exp,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Def_Id,
+ Object_Definition =>
+ New_Reference_To (Etype (Prefix (Exp)), Loc),
+ Constant_Present => True,
+ Expression => Relocate_Node (Prefix (Exp))));
+
+ -- If this is a type conversion, leave the type conversion and remove
+ -- the side effects in the expression. This is important in several
+ -- circumstances: for change of representations, and also when this
+ -- is a view conversion to a smaller object, where gigi can end up
+ -- its own temporary of the wrong size.
+ -- ??? this transformation is inhibited for elementary types that are
+ -- not involved in a change of representation because it causes
+ -- regressions that are not fully understood yet.
+
+ elsif Nkind (Exp) = N_Type_Conversion
+ and then (not Is_Elementary_Type (Underlying_Type (Exp_Type))
+ or else Nkind (Parent (Exp)) = N_Assignment_Statement)
+ then
+ Remove_Side_Effects (Expression (Exp), Variable_Ref);
+ Scope_Suppress := Svg_Suppress;
+ return;
+
+ -- For expressions that denote objects, we can use a renaming scheme.
+ -- We skip using this if we have a volatile variable and we do not
+ -- have Nam_Req set true (see comments above for Side_Effect_Free).
+ -- We also skip this scheme for class-wide expressions in order to
+ -- avoid recursive expension (see Expand_N_Object_Renaming_Declaration)
+ -- If the object is a function call, we need to create a temporary and
+ -- not a renaming.
+
+ elsif Is_Object_Reference (Exp)
+ and then Nkind (Exp) /= N_Function_Call
+ and then not Variable_Ref
+ and then (Name_Req
+ or else not Is_Entity_Name (Exp)
+ or else not Is_Volatile (Entity (Exp)))
+ and then not Is_Class_Wide_Type (Exp_Type)
+ then
+ Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
+
+ if Nkind (Exp) = N_Selected_Component
+ and then Nkind (Prefix (Exp)) = N_Function_Call
+ and then Is_Array_Type (Etype (Exp))
+ then
+ -- Avoid generating a variable-sized temporary, by generating
+ -- the renaming declaration just for the function call. The
+ -- transformation could be refined to apply only when the array
+ -- component is constrained by a discriminant???
+
+ Res :=
+ Make_Selected_Component (Loc,
+ Prefix => New_Occurrence_Of (Def_Id, Loc),
+ Selector_Name => Selector_Name (Exp));
+
+ Insert_Action (Exp,
+ Make_Object_Renaming_Declaration (Loc,
+ Defining_Identifier => Def_Id,
+ Subtype_Mark =>
+ New_Reference_To (Base_Type (Etype (Prefix (Exp))), Loc),
+ Name => Relocate_Node (Prefix (Exp))));
+ else
+ Res := New_Reference_To (Def_Id, Loc);
+
+ Insert_Action (Exp,
+ Make_Object_Renaming_Declaration (Loc,
+ Defining_Identifier => Def_Id,
+ Subtype_Mark => New_Reference_To (Exp_Type, Loc),
+ Name => Relocate_Node (Exp)));
+ end if;
+
+ -- If it is a scalar type, just make a copy.
+
+ elsif Is_Elementary_Type (Exp_Type) then
+ Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
+ Set_Etype (Def_Id, Exp_Type);
+ Res := New_Reference_To (Def_Id, Loc);
+
+ E :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Def_Id,
+ Object_Definition => New_Reference_To (Exp_Type, Loc),
+ Constant_Present => True,
+ Expression => Relocate_Node (Exp));
+
+ Set_Assignment_OK (E);
+ Insert_Action (Exp, E);
+
+ -- If this is an unchecked conversion that Gigi can't handle, make
+ -- a copy or a use a renaming to capture the value.
+
+ elsif (Nkind (Exp) = N_Unchecked_Type_Conversion
+ and then not Safe_Unchecked_Type_Conversion (Exp))
+ then
+ if Controlled_Type (Etype (Exp)) then
+ -- Use a renaming to capture the expression, rather than create
+ -- a controlled temporary.
+
+ Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
+ Res := New_Reference_To (Def_Id, Loc);
+
+ Insert_Action (Exp,
+ Make_Object_Renaming_Declaration (Loc,
+ Defining_Identifier => Def_Id,
+ Subtype_Mark => New_Reference_To (Exp_Type, Loc),
+ Name => Relocate_Node (Exp)));
+
+ else
+ Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
+ Set_Etype (Def_Id, Exp_Type);
+ Res := New_Reference_To (Def_Id, Loc);
+
+ E :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Def_Id,
+ Object_Definition => New_Reference_To (Exp_Type, Loc),
+ Constant_Present => True,
+ Expression => Relocate_Node (Exp));
+
+ Set_Assignment_OK (E);
+ Insert_Action (Exp, E);
+ end if;
+
+ -- Otherwise we generate a reference to the value
+
+ else
+ Ref_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
+
+ Ptr_Typ_Decl :=
+ Make_Full_Type_Declaration (Loc,
+ Defining_Identifier => Ref_Type,
+ Type_Definition =>
+ Make_Access_To_Object_Definition (Loc,
+ All_Present => True,
+ Subtype_Indication =>
+ New_Reference_To (Exp_Type, Loc)));
+
+ E := Exp;
+ Insert_Action (Exp, Ptr_Typ_Decl);
+
+ Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
+ Set_Etype (Def_Id, Exp_Type);
+
+ Res :=
+ Make_Explicit_Dereference (Loc,
+ Prefix => New_Reference_To (Def_Id, Loc));
+
+ if Nkind (E) = N_Explicit_Dereference then
+ New_Exp := Relocate_Node (Prefix (E));
+ else
+ E := Relocate_Node (E);
+ New_Exp := Make_Reference (Loc, E);
+ end if;
+
+ if Nkind (E) = N_Aggregate and then Expansion_Delayed (E) then
+ Set_Expansion_Delayed (E, False);
+ Set_Analyzed (E, False);
+ end if;
+
+ Insert_Action (Exp,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Def_Id,
+ Object_Definition => New_Reference_To (Ref_Type, Loc),
+ Expression => New_Exp));
+ end if;
+
+ -- Preserve the Assignment_OK flag in all copies, since at least
+ -- one copy may be used in a context where this flag must be set
+ -- (otherwise why would the flag be set in the first place).
+
+ Set_Assignment_OK (Res, Assignment_OK (Exp));
+
+ -- Finally rewrite the original expression and we are done
+
+ Rewrite (Exp, Res);
+ Analyze_And_Resolve (Exp, Exp_Type);
+ Scope_Suppress := Svg_Suppress;
+ end Remove_Side_Effects;
+
+ ------------------------------------
+ -- Safe_Unchecked_Type_Conversion --
+ ------------------------------------
+
+ -- Note: this function knows quite a bit about the exact requirements
+ -- of Gigi with respect to unchecked type conversions, and its code
+ -- must be coordinated with any changes in Gigi in this area.
+
+ -- The above requirements should be documented in Sinfo ???
+
+ function Safe_Unchecked_Type_Conversion (Exp : Node_Id) return Boolean is
+ Otyp : Entity_Id;
+ Ityp : Entity_Id;
+ Oalign : Uint;
+ Ialign : Uint;
+ Pexp : constant Node_Id := Parent (Exp);
+
+ begin
+ -- If the expression is the RHS of an assignment or object declaration
+ -- we are always OK because there will always be a target.
+
+ -- Object renaming declarations, (generated for view conversions of
+ -- actuals in inlined calls), like object declarations, provide an
+ -- explicit type, and are safe as well.
+
+ if (Nkind (Pexp) = N_Assignment_Statement
+ and then Expression (Pexp) = Exp)
+ or else Nkind (Pexp) = N_Object_Declaration
+ or else Nkind (Pexp) = N_Object_Renaming_Declaration
+ then
+ return True;
+
+ -- If the expression is the prefix of an N_Selected_Component
+ -- we should also be OK because GCC knows to look inside the
+ -- conversion except if the type is discriminated. We assume
+ -- that we are OK anyway if the type is not set yet or if it is
+ -- controlled since we can't afford to introduce a temporary in
+ -- this case.
+
+ elsif Nkind (Pexp) = N_Selected_Component
+ and then Prefix (Pexp) = Exp
+ then
+ if No (Etype (Pexp)) then
+ return True;
+ else
+ return
+ not Has_Discriminants (Etype (Pexp))
+ or else Is_Constrained (Etype (Pexp));
+ end if;
+ end if;
+
+ -- Set the output type, this comes from Etype if it is set, otherwise
+ -- we take it from the subtype mark, which we assume was already
+ -- fully analyzed.
+
+ if Present (Etype (Exp)) then
+ Otyp := Etype (Exp);
+ else
+ Otyp := Entity (Subtype_Mark (Exp));
+ end if;
+
+ -- The input type always comes from the expression, and we assume
+ -- this is indeed always analyzed, so we can simply get the Etype.
+
+ Ityp := Etype (Expression (Exp));
+
+ -- Initialize alignments to unknown so far
+
+ Oalign := No_Uint;
+ Ialign := No_Uint;
+
+ -- Replace a concurrent type by its corresponding record type
+ -- and each type by its underlying type and do the tests on those.
+ -- The original type may be a private type whose completion is a
+ -- concurrent type, so find the underlying type first.
+
+ if Present (Underlying_Type (Otyp)) then
+ Otyp := Underlying_Type (Otyp);
+ end if;
+
+ if Present (Underlying_Type (Ityp)) then
+ Ityp := Underlying_Type (Ityp);
+ end if;
+
+ if Is_Concurrent_Type (Otyp) then
+ Otyp := Corresponding_Record_Type (Otyp);
+ end if;
+
+ if Is_Concurrent_Type (Ityp) then
+ Ityp := Corresponding_Record_Type (Ityp);
+ end if;
+
+ -- If the base types are the same, we know there is no problem since
+ -- this conversion will be a noop.
+
+ if Implementation_Base_Type (Otyp) = Implementation_Base_Type (Ityp) then
+ return True;
+
+ -- If the size of output type is known at compile time, there is
+ -- never a problem. Note that unconstrained records are considered
+ -- to be of known size, but we can't consider them that way here,
+ -- because we are talking about the actual size of the object.
+
+ -- We also make sure that in addition to the size being known, we do
+ -- not have a case which might generate an embarrassingly large temp
+ -- in stack checking mode.
+
+ elsif Size_Known_At_Compile_Time (Otyp)
+ and then not May_Generate_Large_Temp (Otyp)
+ and then not (Is_Record_Type (Otyp) and then not Is_Constrained (Otyp))
+ then
+ return True;
+
+ -- If either type is tagged, then we know the alignment is OK so
+ -- Gigi will be able to use pointer punning.
+
+ elsif Is_Tagged_Type (Otyp) or else Is_Tagged_Type (Ityp) then
+ return True;
+
+ -- If either type is a limited record type, we cannot do a copy, so
+ -- say safe since there's nothing else we can do.
+
+ elsif Is_Limited_Record (Otyp) or else Is_Limited_Record (Ityp) then
+ return True;
+
+ -- Conversions to and from packed array types are always ignored and
+ -- hence are safe.
+
+ elsif Is_Packed_Array_Type (Otyp)
+ or else Is_Packed_Array_Type (Ityp)
+ then
+ return True;
+ end if;
+
+ -- The only other cases known to be safe is if the input type's
+ -- alignment is known to be at least the maximum alignment for the
+ -- target or if both alignments are known and the output type's
+ -- alignment is no stricter than the input's. We can use the alignment
+ -- of the component type of an array if a type is an unpacked
+ -- array type.
+
+ if Present (Alignment_Clause (Otyp)) then
+ Oalign := Expr_Value (Expression (Alignment_Clause (Otyp)));
+
+ elsif Is_Array_Type (Otyp)
+ and then Present (Alignment_Clause (Component_Type (Otyp)))
+ then
+ Oalign := Expr_Value (Expression (Alignment_Clause
+ (Component_Type (Otyp))));
+ end if;
+
+ if Present (Alignment_Clause (Ityp)) then
+ Ialign := Expr_Value (Expression (Alignment_Clause (Ityp)));
+
+ elsif Is_Array_Type (Ityp)
+ and then Present (Alignment_Clause (Component_Type (Ityp)))
+ then
+ Ialign := Expr_Value (Expression (Alignment_Clause
+ (Component_Type (Ityp))));
+ end if;
+
+ if Ialign /= No_Uint and then Ialign > Maximum_Alignment then
+ return True;
+
+ elsif Ialign /= No_Uint and then Oalign /= No_Uint
+ and then Ialign <= Oalign
+ then
+ return True;
+
+ -- Otherwise, Gigi cannot handle this and we must make a temporary.
+
+ else
+ return False;
+ end if;
+
+ end Safe_Unchecked_Type_Conversion;
+
+ --------------------------
+ -- Set_Elaboration_Flag --
+ --------------------------
+
+ procedure Set_Elaboration_Flag (N : Node_Id; Spec_Id : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Asn : Node_Id;
+
+ begin
+ if Present (Elaboration_Entity (Spec_Id)) then
+
+ -- Nothing to do if at the compilation unit level, because in this
+ -- case the flag is set by the binder generated elaboration routine.
+
+ if Nkind (Parent (N)) = N_Compilation_Unit then
+ null;
+
+ -- Here we do need to generate an assignment statement
+
+ else
+ Check_Restriction (No_Elaboration_Code, N);
+ Asn :=
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Elaboration_Entity (Spec_Id), Loc),
+ Expression => New_Occurrence_Of (Standard_True, Loc));
+
+ if Nkind (Parent (N)) = N_Subunit then
+ Insert_After (Corresponding_Stub (Parent (N)), Asn);
+ else
+ Insert_After (N, Asn);
+ end if;
+
+ Analyze (Asn);
+ end if;
+ end if;
+ end Set_Elaboration_Flag;
+
+ ----------------------------
+ -- Wrap_Cleanup_Procedure --
+ ----------------------------
+
+ procedure Wrap_Cleanup_Procedure (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Stseq : constant Node_Id := Handled_Statement_Sequence (N);
+ Stmts : constant List_Id := Statements (Stseq);
+
+ begin
+ if Abort_Allowed then
+ Prepend_To (Stmts, Build_Runtime_Call (Loc, RE_Abort_Defer));
+ Append_To (Stmts, Build_Runtime_Call (Loc, RE_Abort_Undefer));
+ end if;
+ end Wrap_Cleanup_Procedure;
+
+end Exp_Util;