aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/a-cbmutr.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/ada/a-cbmutr.adb')
-rw-r--r--gcc/ada/a-cbmutr.adb3327
1 files changed, 0 insertions, 3327 deletions
diff --git a/gcc/ada/a-cbmutr.adb b/gcc/ada/a-cbmutr.adb
deleted file mode 100644
index 3fe986d..0000000
--- a/gcc/ada/a-cbmutr.adb
+++ /dev/null
@@ -1,3327 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNAT LIBRARY COMPONENTS --
--- --
--- ADA.CONTAINERS.BOUNDED_MULTIWAY_TREES --
--- --
--- B o d y --
--- --
--- Copyright (C) 2011-2015, Free Software Foundation, Inc. --
--- --
--- GNAT is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 3, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. --
--- --
--- As a special exception under Section 7 of GPL version 3, you are granted --
--- additional permissions described in the GCC Runtime Library Exception, --
--- version 3.1, as published by the Free Software Foundation. --
--- --
--- You should have received a copy of the GNU General Public License and --
--- a copy of the GCC Runtime Library Exception along with this program; --
--- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
--- <http://www.gnu.org/licenses/>. --
--- --
--- This unit was originally developed by Matthew J Heaney. --
-------------------------------------------------------------------------------
-
-with Ada.Finalization;
-with System; use type System.Address;
-
-package body Ada.Containers.Bounded_Multiway_Trees is
-
- pragma Warnings (Off, "variable ""Busy*"" is not referenced");
- pragma Warnings (Off, "variable ""Lock*"" is not referenced");
- -- See comment in Ada.Containers.Helpers
-
- use Finalization;
-
- --------------------
- -- Root_Iterator --
- --------------------
-
- type Root_Iterator is abstract new Limited_Controlled and
- Tree_Iterator_Interfaces.Forward_Iterator with
- record
- Container : Tree_Access;
- Subtree : Count_Type;
- end record;
-
- overriding procedure Finalize (Object : in out Root_Iterator);
-
- -----------------------
- -- Subtree_Iterator --
- -----------------------
-
- type Subtree_Iterator is new Root_Iterator with null record;
-
- overriding function First (Object : Subtree_Iterator) return Cursor;
-
- overriding function Next
- (Object : Subtree_Iterator;
- Position : Cursor) return Cursor;
-
- ---------------------
- -- Child_Iterator --
- ---------------------
-
- type Child_Iterator is new Root_Iterator and
- Tree_Iterator_Interfaces.Reversible_Iterator with null record;
-
- overriding function First (Object : Child_Iterator) return Cursor;
-
- overriding function Next
- (Object : Child_Iterator;
- Position : Cursor) return Cursor;
-
- overriding function Last (Object : Child_Iterator) return Cursor;
-
- overriding function Previous
- (Object : Child_Iterator;
- Position : Cursor) return Cursor;
-
- -----------------------
- -- Local Subprograms --
- -----------------------
-
- procedure Initialize_Node (Container : in out Tree; Index : Count_Type);
- procedure Initialize_Root (Container : in out Tree);
-
- procedure Allocate_Node
- (Container : in out Tree;
- Initialize_Element : not null access procedure (Index : Count_Type);
- New_Node : out Count_Type);
-
- procedure Allocate_Node
- (Container : in out Tree;
- New_Item : Element_Type;
- New_Node : out Count_Type);
-
- procedure Allocate_Node
- (Container : in out Tree;
- Stream : not null access Root_Stream_Type'Class;
- New_Node : out Count_Type);
-
- procedure Deallocate_Node
- (Container : in out Tree;
- X : Count_Type);
-
- procedure Deallocate_Children
- (Container : in out Tree;
- Subtree : Count_Type;
- Count : in out Count_Type);
-
- procedure Deallocate_Subtree
- (Container : in out Tree;
- Subtree : Count_Type;
- Count : in out Count_Type);
-
- function Equal_Children
- (Left_Tree : Tree;
- Left_Subtree : Count_Type;
- Right_Tree : Tree;
- Right_Subtree : Count_Type) return Boolean;
-
- function Equal_Subtree
- (Left_Tree : Tree;
- Left_Subtree : Count_Type;
- Right_Tree : Tree;
- Right_Subtree : Count_Type) return Boolean;
-
- procedure Iterate_Children
- (Container : Tree;
- Subtree : Count_Type;
- Process : not null access procedure (Position : Cursor));
-
- procedure Iterate_Subtree
- (Container : Tree;
- Subtree : Count_Type;
- Process : not null access procedure (Position : Cursor));
-
- procedure Copy_Children
- (Source : Tree;
- Source_Parent : Count_Type;
- Target : in out Tree;
- Target_Parent : Count_Type;
- Count : in out Count_Type);
-
- procedure Copy_Subtree
- (Source : Tree;
- Source_Subtree : Count_Type;
- Target : in out Tree;
- Target_Parent : Count_Type;
- Target_Subtree : out Count_Type;
- Count : in out Count_Type);
-
- function Find_In_Children
- (Container : Tree;
- Subtree : Count_Type;
- Item : Element_Type) return Count_Type;
-
- function Find_In_Subtree
- (Container : Tree;
- Subtree : Count_Type;
- Item : Element_Type) return Count_Type;
-
- function Child_Count
- (Container : Tree;
- Parent : Count_Type) return Count_Type;
-
- function Subtree_Node_Count
- (Container : Tree;
- Subtree : Count_Type) return Count_Type;
-
- function Is_Reachable
- (Container : Tree;
- From, To : Count_Type) return Boolean;
-
- function Root_Node (Container : Tree) return Count_Type;
-
- procedure Remove_Subtree
- (Container : in out Tree;
- Subtree : Count_Type);
-
- procedure Insert_Subtree_Node
- (Container : in out Tree;
- Subtree : Count_Type'Base;
- Parent : Count_Type;
- Before : Count_Type'Base);
-
- procedure Insert_Subtree_List
- (Container : in out Tree;
- First : Count_Type'Base;
- Last : Count_Type'Base;
- Parent : Count_Type;
- Before : Count_Type'Base);
-
- procedure Splice_Children
- (Container : in out Tree;
- Target_Parent : Count_Type;
- Before : Count_Type'Base;
- Source_Parent : Count_Type);
-
- procedure Splice_Children
- (Target : in out Tree;
- Target_Parent : Count_Type;
- Before : Count_Type'Base;
- Source : in out Tree;
- Source_Parent : Count_Type);
-
- procedure Splice_Subtree
- (Target : in out Tree;
- Parent : Count_Type;
- Before : Count_Type'Base;
- Source : in out Tree;
- Position : in out Count_Type); -- source on input, target on output
-
- ---------
- -- "=" --
- ---------
-
- function "=" (Left, Right : Tree) return Boolean is
- begin
- if Left.Count /= Right.Count then
- return False;
- end if;
-
- if Left.Count = 0 then
- return True;
- end if;
-
- return Equal_Children
- (Left_Tree => Left,
- Left_Subtree => Root_Node (Left),
- Right_Tree => Right,
- Right_Subtree => Root_Node (Right));
- end "=";
-
- -------------------
- -- Allocate_Node --
- -------------------
-
- procedure Allocate_Node
- (Container : in out Tree;
- Initialize_Element : not null access procedure (Index : Count_Type);
- New_Node : out Count_Type)
- is
- begin
- if Container.Free >= 0 then
- New_Node := Container.Free;
- pragma Assert (New_Node in Container.Elements'Range);
-
- -- We always perform the assignment first, before we change container
- -- state, in order to defend against exceptions duration assignment.
-
- Initialize_Element (New_Node);
-
- Container.Free := Container.Nodes (New_Node).Next;
-
- else
- -- A negative free store value means that the links of the nodes in
- -- the free store have not been initialized. In this case, the nodes
- -- are physically contiguous in the array, starting at the index that
- -- is the absolute value of the Container.Free, and continuing until
- -- the end of the array (Nodes'Last).
-
- New_Node := abs Container.Free;
- pragma Assert (New_Node in Container.Elements'Range);
-
- -- As above, we perform this assignment first, before modifying any
- -- container state.
-
- Initialize_Element (New_Node);
-
- Container.Free := Container.Free - 1;
-
- if abs Container.Free > Container.Capacity then
- Container.Free := 0;
- end if;
- end if;
-
- Initialize_Node (Container, New_Node);
- end Allocate_Node;
-
- procedure Allocate_Node
- (Container : in out Tree;
- New_Item : Element_Type;
- New_Node : out Count_Type)
- is
- procedure Initialize_Element (Index : Count_Type);
-
- procedure Initialize_Element (Index : Count_Type) is
- begin
- Container.Elements (Index) := New_Item;
- end Initialize_Element;
-
- begin
- Allocate_Node (Container, Initialize_Element'Access, New_Node);
- end Allocate_Node;
-
- procedure Allocate_Node
- (Container : in out Tree;
- Stream : not null access Root_Stream_Type'Class;
- New_Node : out Count_Type)
- is
- procedure Initialize_Element (Index : Count_Type);
-
- procedure Initialize_Element (Index : Count_Type) is
- begin
- Element_Type'Read (Stream, Container.Elements (Index));
- end Initialize_Element;
-
- begin
- Allocate_Node (Container, Initialize_Element'Access, New_Node);
- end Allocate_Node;
-
- -------------------
- -- Ancestor_Find --
- -------------------
-
- function Ancestor_Find
- (Position : Cursor;
- Item : Element_Type) return Cursor
- is
- R, N : Count_Type;
-
- begin
- if Checks and then Position = No_Element then
- raise Constraint_Error with "Position cursor has no element";
- end if;
-
- -- AI-0136 says to raise PE if Position equals the root node. This does
- -- not seem correct, as this value is just the limiting condition of the
- -- search. For now we omit this check, pending a ruling from the ARG.
- -- ???
- --
- -- if Checks and then Is_Root (Position) then
- -- raise Program_Error with "Position cursor designates root";
- -- end if;
-
- R := Root_Node (Position.Container.all);
- N := Position.Node;
- while N /= R loop
- if Position.Container.Elements (N) = Item then
- return Cursor'(Position.Container, N);
- end if;
-
- N := Position.Container.Nodes (N).Parent;
- end loop;
-
- return No_Element;
- end Ancestor_Find;
-
- ------------------
- -- Append_Child --
- ------------------
-
- procedure Append_Child
- (Container : in out Tree;
- Parent : Cursor;
- New_Item : Element_Type;
- Count : Count_Type := 1)
- is
- Nodes : Tree_Node_Array renames Container.Nodes;
- First, Last : Count_Type;
-
- begin
- if Checks and then Parent = No_Element then
- raise Constraint_Error with "Parent cursor has no element";
- end if;
-
- if Checks and then Parent.Container /= Container'Unrestricted_Access then
- raise Program_Error with "Parent cursor not in container";
- end if;
-
- if Count = 0 then
- return;
- end if;
-
- if Checks and then Container.Count > Container.Capacity - Count then
- raise Capacity_Error
- with "requested count exceeds available storage";
- end if;
-
- TC_Check (Container.TC);
-
- if Container.Count = 0 then
- Initialize_Root (Container);
- end if;
-
- Allocate_Node (Container, New_Item, First);
- Nodes (First).Parent := Parent.Node;
-
- Last := First;
- for J in Count_Type'(2) .. Count loop
- Allocate_Node (Container, New_Item, Nodes (Last).Next);
- Nodes (Nodes (Last).Next).Parent := Parent.Node;
- Nodes (Nodes (Last).Next).Prev := Last;
-
- Last := Nodes (Last).Next;
- end loop;
-
- Insert_Subtree_List
- (Container => Container,
- First => First,
- Last => Last,
- Parent => Parent.Node,
- Before => No_Node); -- means "insert at end of list"
-
- Container.Count := Container.Count + Count;
- end Append_Child;
-
- ------------
- -- Assign --
- ------------
-
- procedure Assign (Target : in out Tree; Source : Tree) is
- Target_Count : Count_Type;
-
- begin
- if Target'Address = Source'Address then
- return;
- end if;
-
- if Checks and then Target.Capacity < Source.Count then
- raise Capacity_Error -- ???
- with "Target capacity is less than Source count";
- end if;
-
- Target.Clear; -- Checks busy bit
-
- if Source.Count = 0 then
- return;
- end if;
-
- Initialize_Root (Target);
-
- -- Copy_Children returns the number of nodes that it allocates, but it
- -- does this by incrementing the count value passed in, so we must
- -- initialize the count before calling Copy_Children.
-
- Target_Count := 0;
-
- Copy_Children
- (Source => Source,
- Source_Parent => Root_Node (Source),
- Target => Target,
- Target_Parent => Root_Node (Target),
- Count => Target_Count);
-
- pragma Assert (Target_Count = Source.Count);
- Target.Count := Source.Count;
- end Assign;
-
- -----------------
- -- Child_Count --
- -----------------
-
- function Child_Count (Parent : Cursor) return Count_Type is
- begin
- if Parent = No_Element then
- return 0;
-
- elsif Parent.Container.Count = 0 then
- pragma Assert (Is_Root (Parent));
- return 0;
-
- else
- return Child_Count (Parent.Container.all, Parent.Node);
- end if;
- end Child_Count;
-
- function Child_Count
- (Container : Tree;
- Parent : Count_Type) return Count_Type
- is
- NN : Tree_Node_Array renames Container.Nodes;
- CC : Children_Type renames NN (Parent).Children;
-
- Result : Count_Type;
- Node : Count_Type'Base;
-
- begin
- Result := 0;
- Node := CC.First;
- while Node > 0 loop
- Result := Result + 1;
- Node := NN (Node).Next;
- end loop;
-
- return Result;
- end Child_Count;
-
- -----------------
- -- Child_Depth --
- -----------------
-
- function Child_Depth (Parent, Child : Cursor) return Count_Type is
- Result : Count_Type;
- N : Count_Type'Base;
-
- begin
- if Checks and then Parent = No_Element then
- raise Constraint_Error with "Parent cursor has no element";
- end if;
-
- if Checks and then Child = No_Element then
- raise Constraint_Error with "Child cursor has no element";
- end if;
-
- if Checks and then Parent.Container /= Child.Container then
- raise Program_Error with "Parent and Child in different containers";
- end if;
-
- if Parent.Container.Count = 0 then
- pragma Assert (Is_Root (Parent));
- pragma Assert (Child = Parent);
- return 0;
- end if;
-
- Result := 0;
- N := Child.Node;
- while N /= Parent.Node loop
- Result := Result + 1;
- N := Parent.Container.Nodes (N).Parent;
-
- if Checks and then N < 0 then
- raise Program_Error with "Parent is not ancestor of Child";
- end if;
- end loop;
-
- return Result;
- end Child_Depth;
-
- -----------
- -- Clear --
- -----------
-
- procedure Clear (Container : in out Tree) is
- Container_Count : constant Count_Type := Container.Count;
- Count : Count_Type;
-
- begin
- TC_Check (Container.TC);
-
- if Container_Count = 0 then
- return;
- end if;
-
- Container.Count := 0;
-
- -- Deallocate_Children returns the number of nodes that it deallocates,
- -- but it does this by incrementing the count value that is passed in,
- -- so we must first initialize the count return value before calling it.
-
- Count := 0;
-
- Deallocate_Children
- (Container => Container,
- Subtree => Root_Node (Container),
- Count => Count);
-
- pragma Assert (Count = Container_Count);
- end Clear;
-
- ------------------------
- -- Constant_Reference --
- ------------------------
-
- function Constant_Reference
- (Container : aliased Tree;
- Position : Cursor) return Constant_Reference_Type
- is
- begin
- if Checks and then Position.Container = null then
- raise Constraint_Error with
- "Position cursor has no element";
- end if;
-
- if Checks and then Position.Container /= Container'Unrestricted_Access
- then
- raise Program_Error with
- "Position cursor designates wrong container";
- end if;
-
- if Checks and then Position.Node = Root_Node (Container) then
- raise Program_Error with "Position cursor designates root";
- end if;
-
- -- Implement Vet for multiway tree???
- -- pragma Assert (Vet (Position),
- -- "Position cursor in Constant_Reference is bad");
-
- declare
- TC : constant Tamper_Counts_Access :=
- Container.TC'Unrestricted_Access;
- begin
- return R : constant Constant_Reference_Type :=
- (Element => Container.Elements (Position.Node)'Access,
- Control => (Controlled with TC))
- do
- Lock (TC.all);
- end return;
- end;
- end Constant_Reference;
-
- --------------
- -- Contains --
- --------------
-
- function Contains
- (Container : Tree;
- Item : Element_Type) return Boolean
- is
- begin
- return Find (Container, Item) /= No_Element;
- end Contains;
-
- ----------
- -- Copy --
- ----------
-
- function Copy
- (Source : Tree;
- Capacity : Count_Type := 0) return Tree
- is
- C : Count_Type;
-
- begin
- if Capacity = 0 then
- C := Source.Count;
- elsif Capacity >= Source.Count then
- C := Capacity;
- elsif Checks then
- raise Capacity_Error with "Capacity value too small";
- end if;
-
- return Target : Tree (Capacity => C) do
- Initialize_Root (Target);
-
- if Source.Count = 0 then
- return;
- end if;
-
- Copy_Children
- (Source => Source,
- Source_Parent => Root_Node (Source),
- Target => Target,
- Target_Parent => Root_Node (Target),
- Count => Target.Count);
-
- pragma Assert (Target.Count = Source.Count);
- end return;
- end Copy;
-
- -------------------
- -- Copy_Children --
- -------------------
-
- procedure Copy_Children
- (Source : Tree;
- Source_Parent : Count_Type;
- Target : in out Tree;
- Target_Parent : Count_Type;
- Count : in out Count_Type)
- is
- S_Nodes : Tree_Node_Array renames Source.Nodes;
- S_Node : Tree_Node_Type renames S_Nodes (Source_Parent);
-
- T_Nodes : Tree_Node_Array renames Target.Nodes;
- T_Node : Tree_Node_Type renames T_Nodes (Target_Parent);
-
- pragma Assert (T_Node.Children.First <= 0);
- pragma Assert (T_Node.Children.Last <= 0);
-
- T_CC : Children_Type;
- C : Count_Type'Base;
-
- begin
- -- We special-case the first allocation, in order to establish the
- -- representation invariants for type Children_Type.
-
- C := S_Node.Children.First;
-
- if C <= 0 then -- source parent has no children
- return;
- end if;
-
- Copy_Subtree
- (Source => Source,
- Source_Subtree => C,
- Target => Target,
- Target_Parent => Target_Parent,
- Target_Subtree => T_CC.First,
- Count => Count);
-
- T_CC.Last := T_CC.First;
-
- -- The representation invariants for the Children_Type list have been
- -- established, so we can now copy the remaining children of Source.
-
- C := S_Nodes (C).Next;
- while C > 0 loop
- Copy_Subtree
- (Source => Source,
- Source_Subtree => C,
- Target => Target,
- Target_Parent => Target_Parent,
- Target_Subtree => T_Nodes (T_CC.Last).Next,
- Count => Count);
-
- T_Nodes (T_Nodes (T_CC.Last).Next).Prev := T_CC.Last;
- T_CC.Last := T_Nodes (T_CC.Last).Next;
-
- C := S_Nodes (C).Next;
- end loop;
-
- -- We add the newly-allocated children to their parent list only after
- -- the allocation has succeeded, in order to preserve invariants of the
- -- parent.
-
- T_Node.Children := T_CC;
- end Copy_Children;
-
- ------------------
- -- Copy_Subtree --
- ------------------
-
- procedure Copy_Subtree
- (Target : in out Tree;
- Parent : Cursor;
- Before : Cursor;
- Source : Cursor)
- is
- Target_Subtree : Count_Type;
- Target_Count : Count_Type;
-
- begin
- if Checks and then Parent = No_Element then
- raise Constraint_Error with "Parent cursor has no element";
- end if;
-
- if Checks and then Parent.Container /= Target'Unrestricted_Access then
- raise Program_Error with "Parent cursor not in container";
- end if;
-
- if Before /= No_Element then
- if Checks and then Before.Container /= Target'Unrestricted_Access then
- raise Program_Error with "Before cursor not in container";
- end if;
-
- if Checks and then
- Before.Container.Nodes (Before.Node).Parent /= Parent.Node
- then
- raise Constraint_Error with "Before cursor not child of Parent";
- end if;
- end if;
-
- if Source = No_Element then
- return;
- end if;
-
- if Checks and then Is_Root (Source) then
- raise Constraint_Error with "Source cursor designates root";
- end if;
-
- if Target.Count = 0 then
- Initialize_Root (Target);
- end if;
-
- -- Copy_Subtree returns a count of the number of nodes that it
- -- allocates, but it works by incrementing the value that is passed
- -- in. We must therefore initialize the count value before calling
- -- Copy_Subtree.
-
- Target_Count := 0;
-
- Copy_Subtree
- (Source => Source.Container.all,
- Source_Subtree => Source.Node,
- Target => Target,
- Target_Parent => Parent.Node,
- Target_Subtree => Target_Subtree,
- Count => Target_Count);
-
- Insert_Subtree_Node
- (Container => Target,
- Subtree => Target_Subtree,
- Parent => Parent.Node,
- Before => Before.Node);
-
- Target.Count := Target.Count + Target_Count;
- end Copy_Subtree;
-
- procedure Copy_Subtree
- (Source : Tree;
- Source_Subtree : Count_Type;
- Target : in out Tree;
- Target_Parent : Count_Type;
- Target_Subtree : out Count_Type;
- Count : in out Count_Type)
- is
- T_Nodes : Tree_Node_Array renames Target.Nodes;
-
- begin
- -- First we allocate the root of the target subtree.
-
- Allocate_Node
- (Container => Target,
- New_Item => Source.Elements (Source_Subtree),
- New_Node => Target_Subtree);
-
- T_Nodes (Target_Subtree).Parent := Target_Parent;
- Count := Count + 1;
-
- -- We now have a new subtree (for the Target tree), containing only a
- -- copy of the corresponding element in the Source subtree. Next we copy
- -- the children of the Source subtree as children of the new Target
- -- subtree.
-
- Copy_Children
- (Source => Source,
- Source_Parent => Source_Subtree,
- Target => Target,
- Target_Parent => Target_Subtree,
- Count => Count);
- end Copy_Subtree;
-
- -------------------------
- -- Deallocate_Children --
- -------------------------
-
- procedure Deallocate_Children
- (Container : in out Tree;
- Subtree : Count_Type;
- Count : in out Count_Type)
- is
- Nodes : Tree_Node_Array renames Container.Nodes;
- Node : Tree_Node_Type renames Nodes (Subtree); -- parent
- CC : Children_Type renames Node.Children;
- C : Count_Type'Base;
-
- begin
- while CC.First > 0 loop
- C := CC.First;
- CC.First := Nodes (C).Next;
-
- Deallocate_Subtree (Container, C, Count);
- end loop;
-
- CC.Last := 0;
- end Deallocate_Children;
-
- ---------------------
- -- Deallocate_Node --
- ---------------------
-
- procedure Deallocate_Node
- (Container : in out Tree;
- X : Count_Type)
- is
- NN : Tree_Node_Array renames Container.Nodes;
- pragma Assert (X > 0);
- pragma Assert (X <= NN'Last);
-
- N : Tree_Node_Type renames NN (X);
- pragma Assert (N.Parent /= X); -- node is active
-
- begin
- -- The tree container actually contains two lists: one for the "active"
- -- nodes that contain elements that have been inserted onto the tree,
- -- and another for the "inactive" nodes of the free store, from which
- -- nodes are allocated when a new child is inserted in the tree.
-
- -- We desire that merely declaring a tree object should have only
- -- minimal cost; specially, we want to avoid having to initialize the
- -- free store (to fill in the links), especially if the capacity of the
- -- tree object is large.
-
- -- The head of the free list is indicated by Container.Free. If its
- -- value is non-negative, then the free store has been initialized in
- -- the "normal" way: Container.Free points to the head of the list of
- -- free (inactive) nodes, and the value 0 means the free list is
- -- empty. Each node on the free list has been initialized to point to
- -- the next free node (via its Next component), and the value 0 means
- -- that this is the last node of the free list.
-
- -- If Container.Free is negative, then the links on the free store have
- -- not been initialized. In this case the link values are implied: the
- -- free store comprises the components of the node array started with
- -- the absolute value of Container.Free, and continuing until the end of
- -- the array (Nodes'Last).
-
- -- We prefer to lazy-init the free store (in fact, we would prefer to
- -- not initialize it at all, because such initialization is an O(n)
- -- operation). The time when we need to actually initialize the nodes in
- -- the free store is when the node that becomes inactive is not at the
- -- end of the active list. The free store would then be discontigous and
- -- so its nodes would need to be linked in the traditional way.
-
- -- It might be possible to perform an optimization here. Suppose that
- -- the free store can be represented as having two parts: one comprising
- -- the non-contiguous inactive nodes linked together in the normal way,
- -- and the other comprising the contiguous inactive nodes (that are not
- -- linked together, at the end of the nodes array). This would allow us
- -- to never have to initialize the free store, except in a lazy way as
- -- nodes become inactive. ???
-
- -- When an element is deleted from the list container, its node becomes
- -- inactive, and so we set its Parent and Prev components to an
- -- impossible value (the index of the node itself), to indicate that it
- -- is now inactive. This provides a useful way to detect a dangling
- -- cursor reference.
-
- N.Parent := X; -- Node is deallocated (not on active list)
- N.Prev := X;
-
- if Container.Free >= 0 then
- -- The free store has previously been initialized. All we need to do
- -- here is link the newly-free'd node onto the free list.
-
- N.Next := Container.Free;
- Container.Free := X;
-
- elsif X + 1 = abs Container.Free then
- -- The free store has not been initialized, and the node becoming
- -- inactive immediately precedes the start of the free store. All
- -- we need to do is move the start of the free store back by one.
-
- N.Next := X; -- Not strictly necessary, but marginally safer
- Container.Free := Container.Free + 1;
-
- else
- -- The free store has not been initialized, and the node becoming
- -- inactive does not immediately precede the free store. Here we
- -- first initialize the free store (meaning the links are given
- -- values in the traditional way), and then link the newly-free'd
- -- node onto the head of the free store.
-
- -- See the comments above for an optimization opportunity. If the
- -- next link for a node on the free store is negative, then this
- -- means the remaining nodes on the free store are physically
- -- contiguous, starting at the absolute value of that index value.
- -- ???
-
- Container.Free := abs Container.Free;
-
- if Container.Free > Container.Capacity then
- Container.Free := 0;
-
- else
- for J in Container.Free .. Container.Capacity - 1 loop
- NN (J).Next := J + 1;
- end loop;
-
- NN (Container.Capacity).Next := 0;
- end if;
-
- NN (X).Next := Container.Free;
- Container.Free := X;
- end if;
- end Deallocate_Node;
-
- ------------------------
- -- Deallocate_Subtree --
- ------------------------
-
- procedure Deallocate_Subtree
- (Container : in out Tree;
- Subtree : Count_Type;
- Count : in out Count_Type)
- is
- begin
- Deallocate_Children (Container, Subtree, Count);
- Deallocate_Node (Container, Subtree);
- Count := Count + 1;
- end Deallocate_Subtree;
-
- ---------------------
- -- Delete_Children --
- ---------------------
-
- procedure Delete_Children
- (Container : in out Tree;
- Parent : Cursor)
- is
- Count : Count_Type;
-
- begin
- if Checks and then Parent = No_Element then
- raise Constraint_Error with "Parent cursor has no element";
- end if;
-
- if Checks and then Parent.Container /= Container'Unrestricted_Access then
- raise Program_Error with "Parent cursor not in container";
- end if;
-
- TC_Check (Container.TC);
-
- if Container.Count = 0 then
- pragma Assert (Is_Root (Parent));
- return;
- end if;
-
- -- Deallocate_Children returns a count of the number of nodes that it
- -- deallocates, but it works by incrementing the value that is passed
- -- in. We must therefore initialize the count value before calling
- -- Deallocate_Children.
-
- Count := 0;
-
- Deallocate_Children (Container, Parent.Node, Count);
- pragma Assert (Count <= Container.Count);
-
- Container.Count := Container.Count - Count;
- end Delete_Children;
-
- -----------------
- -- Delete_Leaf --
- -----------------
-
- procedure Delete_Leaf
- (Container : in out Tree;
- Position : in out Cursor)
- is
- X : Count_Type;
-
- begin
- if Checks and then Position = No_Element then
- raise Constraint_Error with "Position cursor has no element";
- end if;
-
- if Checks and then Position.Container /= Container'Unrestricted_Access
- then
- raise Program_Error with "Position cursor not in container";
- end if;
-
- if Checks and then Is_Root (Position) then
- raise Program_Error with "Position cursor designates root";
- end if;
-
- if Checks and then not Is_Leaf (Position) then
- raise Constraint_Error with "Position cursor does not designate leaf";
- end if;
-
- TC_Check (Container.TC);
-
- X := Position.Node;
- Position := No_Element;
-
- Remove_Subtree (Container, X);
- Container.Count := Container.Count - 1;
-
- Deallocate_Node (Container, X);
- end Delete_Leaf;
-
- --------------------
- -- Delete_Subtree --
- --------------------
-
- procedure Delete_Subtree
- (Container : in out Tree;
- Position : in out Cursor)
- is
- X : Count_Type;
- Count : Count_Type;
-
- begin
- if Checks and then Position = No_Element then
- raise Constraint_Error with "Position cursor has no element";
- end if;
-
- if Checks and then Position.Container /= Container'Unrestricted_Access
- then
- raise Program_Error with "Position cursor not in container";
- end if;
-
- if Checks and then Is_Root (Position) then
- raise Program_Error with "Position cursor designates root";
- end if;
-
- TC_Check (Container.TC);
-
- X := Position.Node;
- Position := No_Element;
-
- Remove_Subtree (Container, X);
-
- -- Deallocate_Subtree returns a count of the number of nodes that it
- -- deallocates, but it works by incrementing the value that is passed
- -- in. We must therefore initialize the count value before calling
- -- Deallocate_Subtree.
-
- Count := 0;
-
- Deallocate_Subtree (Container, X, Count);
- pragma Assert (Count <= Container.Count);
-
- Container.Count := Container.Count - Count;
- end Delete_Subtree;
-
- -----------
- -- Depth --
- -----------
-
- function Depth (Position : Cursor) return Count_Type is
- Result : Count_Type;
- N : Count_Type'Base;
-
- begin
- if Position = No_Element then
- return 0;
- end if;
-
- if Is_Root (Position) then
- return 1;
- end if;
-
- Result := 0;
- N := Position.Node;
- while N >= 0 loop
- N := Position.Container.Nodes (N).Parent;
- Result := Result + 1;
- end loop;
-
- return Result;
- end Depth;
-
- -------------
- -- Element --
- -------------
-
- function Element (Position : Cursor) return Element_Type is
- begin
- if Checks and then Position.Container = null then
- raise Constraint_Error with "Position cursor has no element";
- end if;
-
- if Checks and then Position.Node = Root_Node (Position.Container.all)
- then
- raise Program_Error with "Position cursor designates root";
- end if;
-
- return Position.Container.Elements (Position.Node);
- end Element;
-
- --------------------
- -- Equal_Children --
- --------------------
-
- function Equal_Children
- (Left_Tree : Tree;
- Left_Subtree : Count_Type;
- Right_Tree : Tree;
- Right_Subtree : Count_Type) return Boolean
- is
- L_NN : Tree_Node_Array renames Left_Tree.Nodes;
- R_NN : Tree_Node_Array renames Right_Tree.Nodes;
-
- Left_Children : Children_Type renames L_NN (Left_Subtree).Children;
- Right_Children : Children_Type renames R_NN (Right_Subtree).Children;
-
- L, R : Count_Type'Base;
-
- begin
- if Child_Count (Left_Tree, Left_Subtree)
- /= Child_Count (Right_Tree, Right_Subtree)
- then
- return False;
- end if;
-
- L := Left_Children.First;
- R := Right_Children.First;
- while L > 0 loop
- if not Equal_Subtree (Left_Tree, L, Right_Tree, R) then
- return False;
- end if;
-
- L := L_NN (L).Next;
- R := R_NN (R).Next;
- end loop;
-
- return True;
- end Equal_Children;
-
- -------------------
- -- Equal_Subtree --
- -------------------
-
- function Equal_Subtree
- (Left_Position : Cursor;
- Right_Position : Cursor) return Boolean
- is
- begin
- if Checks and then Left_Position = No_Element then
- raise Constraint_Error with "Left cursor has no element";
- end if;
-
- if Checks and then Right_Position = No_Element then
- raise Constraint_Error with "Right cursor has no element";
- end if;
-
- if Left_Position = Right_Position then
- return True;
- end if;
-
- if Is_Root (Left_Position) then
- if not Is_Root (Right_Position) then
- return False;
- end if;
-
- if Left_Position.Container.Count = 0 then
- return Right_Position.Container.Count = 0;
- end if;
-
- if Right_Position.Container.Count = 0 then
- return False;
- end if;
-
- return Equal_Children
- (Left_Tree => Left_Position.Container.all,
- Left_Subtree => Left_Position.Node,
- Right_Tree => Right_Position.Container.all,
- Right_Subtree => Right_Position.Node);
- end if;
-
- if Is_Root (Right_Position) then
- return False;
- end if;
-
- return Equal_Subtree
- (Left_Tree => Left_Position.Container.all,
- Left_Subtree => Left_Position.Node,
- Right_Tree => Right_Position.Container.all,
- Right_Subtree => Right_Position.Node);
- end Equal_Subtree;
-
- function Equal_Subtree
- (Left_Tree : Tree;
- Left_Subtree : Count_Type;
- Right_Tree : Tree;
- Right_Subtree : Count_Type) return Boolean
- is
- begin
- if Left_Tree.Elements (Left_Subtree) /=
- Right_Tree.Elements (Right_Subtree)
- then
- return False;
- end if;
-
- return Equal_Children
- (Left_Tree => Left_Tree,
- Left_Subtree => Left_Subtree,
- Right_Tree => Right_Tree,
- Right_Subtree => Right_Subtree);
- end Equal_Subtree;
-
- --------------
- -- Finalize --
- --------------
-
- procedure Finalize (Object : in out Root_Iterator) is
- begin
- Unbusy (Object.Container.TC);
- end Finalize;
-
- ----------
- -- Find --
- ----------
-
- function Find
- (Container : Tree;
- Item : Element_Type) return Cursor
- is
- Node : Count_Type;
-
- begin
- if Container.Count = 0 then
- return No_Element;
- end if;
-
- Node := Find_In_Children (Container, Root_Node (Container), Item);
-
- if Node = 0 then
- return No_Element;
- end if;
-
- return Cursor'(Container'Unrestricted_Access, Node);
- end Find;
-
- -----------
- -- First --
- -----------
-
- overriding function First (Object : Subtree_Iterator) return Cursor is
- begin
- if Object.Subtree = Root_Node (Object.Container.all) then
- return First_Child (Root (Object.Container.all));
- else
- return Cursor'(Object.Container, Object.Subtree);
- end if;
- end First;
-
- overriding function First (Object : Child_Iterator) return Cursor is
- begin
- return First_Child (Cursor'(Object.Container, Object.Subtree));
- end First;
-
- -----------------
- -- First_Child --
- -----------------
-
- function First_Child (Parent : Cursor) return Cursor is
- Node : Count_Type'Base;
-
- begin
- if Checks and then Parent = No_Element then
- raise Constraint_Error with "Parent cursor has no element";
- end if;
-
- if Parent.Container.Count = 0 then
- pragma Assert (Is_Root (Parent));
- return No_Element;
- end if;
-
- Node := Parent.Container.Nodes (Parent.Node).Children.First;
-
- if Node <= 0 then
- return No_Element;
- end if;
-
- return Cursor'(Parent.Container, Node);
- end First_Child;
-
- -------------------------
- -- First_Child_Element --
- -------------------------
-
- function First_Child_Element (Parent : Cursor) return Element_Type is
- begin
- return Element (First_Child (Parent));
- end First_Child_Element;
-
- ----------------------
- -- Find_In_Children --
- ----------------------
-
- function Find_In_Children
- (Container : Tree;
- Subtree : Count_Type;
- Item : Element_Type) return Count_Type
- is
- N : Count_Type'Base;
- Result : Count_Type;
-
- begin
- N := Container.Nodes (Subtree).Children.First;
- while N > 0 loop
- Result := Find_In_Subtree (Container, N, Item);
-
- if Result > 0 then
- return Result;
- end if;
-
- N := Container.Nodes (N).Next;
- end loop;
-
- return 0;
- end Find_In_Children;
-
- ---------------------
- -- Find_In_Subtree --
- ---------------------
-
- function Find_In_Subtree
- (Position : Cursor;
- Item : Element_Type) return Cursor
- is
- Result : Count_Type;
-
- begin
- if Checks and then Position = No_Element then
- raise Constraint_Error with "Position cursor has no element";
- end if;
-
- -- Commented-out pending ruling by ARG. ???
-
- -- if Checks and then
- -- Position.Container /= Container'Unrestricted_Access
- -- then
- -- raise Program_Error with "Position cursor not in container";
- -- end if;
-
- if Position.Container.Count = 0 then
- pragma Assert (Is_Root (Position));
- return No_Element;
- end if;
-
- if Is_Root (Position) then
- Result := Find_In_Children
- (Container => Position.Container.all,
- Subtree => Position.Node,
- Item => Item);
-
- else
- Result := Find_In_Subtree
- (Container => Position.Container.all,
- Subtree => Position.Node,
- Item => Item);
- end if;
-
- if Result = 0 then
- return No_Element;
- end if;
-
- return Cursor'(Position.Container, Result);
- end Find_In_Subtree;
-
- function Find_In_Subtree
- (Container : Tree;
- Subtree : Count_Type;
- Item : Element_Type) return Count_Type
- is
- begin
- if Container.Elements (Subtree) = Item then
- return Subtree;
- end if;
-
- return Find_In_Children (Container, Subtree, Item);
- end Find_In_Subtree;
-
- ------------------------
- -- Get_Element_Access --
- ------------------------
-
- function Get_Element_Access
- (Position : Cursor) return not null Element_Access is
- begin
- return Position.Container.Elements (Position.Node)'Access;
- end Get_Element_Access;
-
- -----------------
- -- Has_Element --
- -----------------
-
- function Has_Element (Position : Cursor) return Boolean is
- begin
- if Position = No_Element then
- return False;
- end if;
-
- return Position.Node /= Root_Node (Position.Container.all);
- end Has_Element;
-
- ---------------------
- -- Initialize_Node --
- ---------------------
-
- procedure Initialize_Node
- (Container : in out Tree;
- Index : Count_Type)
- is
- begin
- Container.Nodes (Index) :=
- (Parent => No_Node,
- Prev => 0,
- Next => 0,
- Children => (others => 0));
- end Initialize_Node;
-
- ---------------------
- -- Initialize_Root --
- ---------------------
-
- procedure Initialize_Root (Container : in out Tree) is
- begin
- Initialize_Node (Container, Root_Node (Container));
- end Initialize_Root;
-
- ------------------
- -- Insert_Child --
- ------------------
-
- procedure Insert_Child
- (Container : in out Tree;
- Parent : Cursor;
- Before : Cursor;
- New_Item : Element_Type;
- Count : Count_Type := 1)
- is
- Position : Cursor;
- pragma Unreferenced (Position);
-
- begin
- Insert_Child (Container, Parent, Before, New_Item, Position, Count);
- end Insert_Child;
-
- procedure Insert_Child
- (Container : in out Tree;
- Parent : Cursor;
- Before : Cursor;
- New_Item : Element_Type;
- Position : out Cursor;
- Count : Count_Type := 1)
- is
- Nodes : Tree_Node_Array renames Container.Nodes;
- First : Count_Type;
- Last : Count_Type;
-
- begin
- if Checks and then Parent = No_Element then
- raise Constraint_Error with "Parent cursor has no element";
- end if;
-
- if Checks and then Parent.Container /= Container'Unrestricted_Access then
- raise Program_Error with "Parent cursor not in container";
- end if;
-
- if Before /= No_Element then
- if Checks and then Before.Container /= Container'Unrestricted_Access
- then
- raise Program_Error with "Before cursor not in container";
- end if;
-
- if Checks and then
- Before.Container.Nodes (Before.Node).Parent /= Parent.Node
- then
- raise Constraint_Error with "Parent cursor not parent of Before";
- end if;
- end if;
-
- if Count = 0 then
- Position := No_Element; -- Need ruling from ARG ???
- return;
- end if;
-
- if Checks and then Container.Count > Container.Capacity - Count then
- raise Capacity_Error
- with "requested count exceeds available storage";
- end if;
-
- TC_Check (Container.TC);
-
- if Container.Count = 0 then
- Initialize_Root (Container);
- end if;
-
- Allocate_Node (Container, New_Item, First);
- Nodes (First).Parent := Parent.Node;
-
- Last := First;
- for J in Count_Type'(2) .. Count loop
- Allocate_Node (Container, New_Item, Nodes (Last).Next);
- Nodes (Nodes (Last).Next).Parent := Parent.Node;
- Nodes (Nodes (Last).Next).Prev := Last;
-
- Last := Nodes (Last).Next;
- end loop;
-
- Insert_Subtree_List
- (Container => Container,
- First => First,
- Last => Last,
- Parent => Parent.Node,
- Before => Before.Node);
-
- Container.Count := Container.Count + Count;
-
- Position := Cursor'(Parent.Container, First);
- end Insert_Child;
-
- procedure Insert_Child
- (Container : in out Tree;
- Parent : Cursor;
- Before : Cursor;
- Position : out Cursor;
- Count : Count_Type := 1)
- is
- Nodes : Tree_Node_Array renames Container.Nodes;
- First : Count_Type;
- Last : Count_Type;
-
- New_Item : Element_Type;
- pragma Unmodified (New_Item);
- -- OK to reference, see below
-
- begin
- if Checks and then Parent = No_Element then
- raise Constraint_Error with "Parent cursor has no element";
- end if;
-
- if Checks and then Parent.Container /= Container'Unrestricted_Access then
- raise Program_Error with "Parent cursor not in container";
- end if;
-
- if Before /= No_Element then
- if Checks and then Before.Container /= Container'Unrestricted_Access
- then
- raise Program_Error with "Before cursor not in container";
- end if;
-
- if Checks and then
- Before.Container.Nodes (Before.Node).Parent /= Parent.Node
- then
- raise Constraint_Error with "Parent cursor not parent of Before";
- end if;
- end if;
-
- if Count = 0 then
- Position := No_Element; -- Need ruling from ARG ???
- return;
- end if;
-
- if Checks and then Container.Count > Container.Capacity - Count then
- raise Capacity_Error
- with "requested count exceeds available storage";
- end if;
-
- TC_Check (Container.TC);
-
- if Container.Count = 0 then
- Initialize_Root (Container);
- end if;
-
- -- There is no explicit element provided, but in an instance the element
- -- type may be a scalar with a Default_Value aspect, or a composite
- -- type with such a scalar component, or components with default
- -- initialization, so insert the specified number of possibly
- -- initialized elements at the given position.
-
- Allocate_Node (Container, New_Item, First);
- Nodes (First).Parent := Parent.Node;
-
- Last := First;
- for J in Count_Type'(2) .. Count loop
- Allocate_Node (Container, New_Item, Nodes (Last).Next);
- Nodes (Nodes (Last).Next).Parent := Parent.Node;
- Nodes (Nodes (Last).Next).Prev := Last;
-
- Last := Nodes (Last).Next;
- end loop;
-
- Insert_Subtree_List
- (Container => Container,
- First => First,
- Last => Last,
- Parent => Parent.Node,
- Before => Before.Node);
-
- Container.Count := Container.Count + Count;
-
- Position := Cursor'(Parent.Container, First);
- end Insert_Child;
-
- -------------------------
- -- Insert_Subtree_List --
- -------------------------
-
- procedure Insert_Subtree_List
- (Container : in out Tree;
- First : Count_Type'Base;
- Last : Count_Type'Base;
- Parent : Count_Type;
- Before : Count_Type'Base)
- is
- NN : Tree_Node_Array renames Container.Nodes;
- N : Tree_Node_Type renames NN (Parent);
- CC : Children_Type renames N.Children;
-
- begin
- -- This is a simple utility operation to insert a list of nodes
- -- (First..Last) as children of Parent. The Before node specifies where
- -- the new children should be inserted relative to existing children.
-
- if First <= 0 then
- pragma Assert (Last <= 0);
- return;
- end if;
-
- pragma Assert (Last > 0);
- pragma Assert (Before <= 0 or else NN (Before).Parent = Parent);
-
- if CC.First <= 0 then -- no existing children
- CC.First := First;
- NN (CC.First).Prev := 0;
- CC.Last := Last;
- NN (CC.Last).Next := 0;
-
- elsif Before <= 0 then -- means "insert after existing nodes"
- NN (CC.Last).Next := First;
- NN (First).Prev := CC.Last;
- CC.Last := Last;
- NN (CC.Last).Next := 0;
-
- elsif Before = CC.First then
- NN (Last).Next := CC.First;
- NN (CC.First).Prev := Last;
- CC.First := First;
- NN (CC.First).Prev := 0;
-
- else
- NN (NN (Before).Prev).Next := First;
- NN (First).Prev := NN (Before).Prev;
- NN (Last).Next := Before;
- NN (Before).Prev := Last;
- end if;
- end Insert_Subtree_List;
-
- -------------------------
- -- Insert_Subtree_Node --
- -------------------------
-
- procedure Insert_Subtree_Node
- (Container : in out Tree;
- Subtree : Count_Type'Base;
- Parent : Count_Type;
- Before : Count_Type'Base)
- is
- begin
- -- This is a simple wrapper operation to insert a single child into the
- -- Parent's children list.
-
- Insert_Subtree_List
- (Container => Container,
- First => Subtree,
- Last => Subtree,
- Parent => Parent,
- Before => Before);
- end Insert_Subtree_Node;
-
- --------------
- -- Is_Empty --
- --------------
-
- function Is_Empty (Container : Tree) return Boolean is
- begin
- return Container.Count = 0;
- end Is_Empty;
-
- -------------
- -- Is_Leaf --
- -------------
-
- function Is_Leaf (Position : Cursor) return Boolean is
- begin
- if Position = No_Element then
- return False;
- end if;
-
- if Position.Container.Count = 0 then
- pragma Assert (Is_Root (Position));
- return True;
- end if;
-
- return Position.Container.Nodes (Position.Node).Children.First <= 0;
- end Is_Leaf;
-
- ------------------
- -- Is_Reachable --
- ------------------
-
- function Is_Reachable
- (Container : Tree;
- From, To : Count_Type) return Boolean
- is
- Idx : Count_Type;
-
- begin
- Idx := From;
- while Idx >= 0 loop
- if Idx = To then
- return True;
- end if;
-
- Idx := Container.Nodes (Idx).Parent;
- end loop;
-
- return False;
- end Is_Reachable;
-
- -------------
- -- Is_Root --
- -------------
-
- function Is_Root (Position : Cursor) return Boolean is
- begin
- return
- (if Position.Container = null then False
- else Position.Node = Root_Node (Position.Container.all));
- end Is_Root;
-
- -------------
- -- Iterate --
- -------------
-
- procedure Iterate
- (Container : Tree;
- Process : not null access procedure (Position : Cursor))
- is
- Busy : With_Busy (Container.TC'Unrestricted_Access);
- begin
- if Container.Count = 0 then
- return;
- end if;
-
- Iterate_Children
- (Container => Container,
- Subtree => Root_Node (Container),
- Process => Process);
- end Iterate;
-
- function Iterate (Container : Tree)
- return Tree_Iterator_Interfaces.Forward_Iterator'Class
- is
- begin
- return Iterate_Subtree (Root (Container));
- end Iterate;
-
- ----------------------
- -- Iterate_Children --
- ----------------------
-
- procedure Iterate_Children
- (Parent : Cursor;
- Process : not null access procedure (Position : Cursor))
- is
- begin
- if Checks and then Parent = No_Element then
- raise Constraint_Error with "Parent cursor has no element";
- end if;
-
- if Parent.Container.Count = 0 then
- pragma Assert (Is_Root (Parent));
- return;
- end if;
-
- declare
- C : Count_Type;
- NN : Tree_Node_Array renames Parent.Container.Nodes;
- Busy : With_Busy (Parent.Container.TC'Unrestricted_Access);
-
- begin
- C := NN (Parent.Node).Children.First;
- while C > 0 loop
- Process (Cursor'(Parent.Container, Node => C));
- C := NN (C).Next;
- end loop;
- end;
- end Iterate_Children;
-
- procedure Iterate_Children
- (Container : Tree;
- Subtree : Count_Type;
- Process : not null access procedure (Position : Cursor))
- is
- NN : Tree_Node_Array renames Container.Nodes;
- N : Tree_Node_Type renames NN (Subtree);
- C : Count_Type;
-
- begin
- -- This is a helper function to recursively iterate over all the nodes
- -- in a subtree, in depth-first fashion. This particular helper just
- -- visits the children of this subtree, not the root of the subtree
- -- itself. This is useful when starting from the ultimate root of the
- -- entire tree (see Iterate), as that root does not have an element.
-
- C := N.Children.First;
- while C > 0 loop
- Iterate_Subtree (Container, C, Process);
- C := NN (C).Next;
- end loop;
- end Iterate_Children;
-
- function Iterate_Children
- (Container : Tree;
- Parent : Cursor)
- return Tree_Iterator_Interfaces.Reversible_Iterator'Class
- is
- C : constant Tree_Access := Container'Unrestricted_Access;
- begin
- if Checks and then Parent = No_Element then
- raise Constraint_Error with "Parent cursor has no element";
- end if;
-
- if Checks and then Parent.Container /= C then
- raise Program_Error with "Parent cursor not in container";
- end if;
-
- return It : constant Child_Iterator :=
- Child_Iterator'(Limited_Controlled with
- Container => C,
- Subtree => Parent.Node)
- do
- Busy (C.TC);
- end return;
- end Iterate_Children;
-
- ---------------------
- -- Iterate_Subtree --
- ---------------------
-
- function Iterate_Subtree
- (Position : Cursor)
- return Tree_Iterator_Interfaces.Forward_Iterator'Class
- is
- C : constant Tree_Access := Position.Container;
- begin
- if Checks and then Position = No_Element then
- raise Constraint_Error with "Position cursor has no element";
- end if;
-
- -- Implement Vet for multiway trees???
- -- pragma Assert (Vet (Position), "bad subtree cursor");
-
- return It : constant Subtree_Iterator :=
- (Limited_Controlled with
- Container => C,
- Subtree => Position.Node)
- do
- Busy (C.TC);
- end return;
- end Iterate_Subtree;
-
- procedure Iterate_Subtree
- (Position : Cursor;
- Process : not null access procedure (Position : Cursor))
- is
- begin
- if Checks and then Position = No_Element then
- raise Constraint_Error with "Position cursor has no element";
- end if;
-
- if Position.Container.Count = 0 then
- pragma Assert (Is_Root (Position));
- return;
- end if;
-
- declare
- T : Tree renames Position.Container.all;
- Busy : With_Busy (T.TC'Unrestricted_Access);
- begin
- if Is_Root (Position) then
- Iterate_Children (T, Position.Node, Process);
- else
- Iterate_Subtree (T, Position.Node, Process);
- end if;
- end;
- end Iterate_Subtree;
-
- procedure Iterate_Subtree
- (Container : Tree;
- Subtree : Count_Type;
- Process : not null access procedure (Position : Cursor))
- is
- begin
- -- This is a helper function to recursively iterate over all the nodes
- -- in a subtree, in depth-first fashion. It first visits the root of the
- -- subtree, then visits its children.
-
- Process (Cursor'(Container'Unrestricted_Access, Subtree));
- Iterate_Children (Container, Subtree, Process);
- end Iterate_Subtree;
-
- ----------
- -- Last --
- ----------
-
- overriding function Last (Object : Child_Iterator) return Cursor is
- begin
- return Last_Child (Cursor'(Object.Container, Object.Subtree));
- end Last;
-
- ----------------
- -- Last_Child --
- ----------------
-
- function Last_Child (Parent : Cursor) return Cursor is
- Node : Count_Type'Base;
-
- begin
- if Checks and then Parent = No_Element then
- raise Constraint_Error with "Parent cursor has no element";
- end if;
-
- if Parent.Container.Count = 0 then
- pragma Assert (Is_Root (Parent));
- return No_Element;
- end if;
-
- Node := Parent.Container.Nodes (Parent.Node).Children.Last;
-
- if Node <= 0 then
- return No_Element;
- end if;
-
- return Cursor'(Parent.Container, Node);
- end Last_Child;
-
- ------------------------
- -- Last_Child_Element --
- ------------------------
-
- function Last_Child_Element (Parent : Cursor) return Element_Type is
- begin
- return Element (Last_Child (Parent));
- end Last_Child_Element;
-
- ----------
- -- Move --
- ----------
-
- procedure Move (Target : in out Tree; Source : in out Tree) is
- begin
- if Target'Address = Source'Address then
- return;
- end if;
-
- TC_Check (Source.TC);
-
- Target.Assign (Source);
- Source.Clear;
- end Move;
-
- ----------
- -- Next --
- ----------
-
- overriding function Next
- (Object : Subtree_Iterator;
- Position : Cursor) return Cursor
- is
- begin
- if Position.Container = null then
- return No_Element;
- end if;
-
- if Checks and then Position.Container /= Object.Container then
- raise Program_Error with
- "Position cursor of Next designates wrong tree";
- end if;
-
- pragma Assert (Object.Container.Count > 0);
- pragma Assert (Position.Node /= Root_Node (Object.Container.all));
-
- declare
- Nodes : Tree_Node_Array renames Object.Container.Nodes;
- Node : Count_Type;
-
- begin
- Node := Position.Node;
-
- if Nodes (Node).Children.First > 0 then
- return Cursor'(Object.Container, Nodes (Node).Children.First);
- end if;
-
- while Node /= Object.Subtree loop
- if Nodes (Node).Next > 0 then
- return Cursor'(Object.Container, Nodes (Node).Next);
- end if;
-
- Node := Nodes (Node).Parent;
- end loop;
-
- return No_Element;
- end;
- end Next;
-
- overriding function Next
- (Object : Child_Iterator;
- Position : Cursor) return Cursor
- is
- begin
- if Position.Container = null then
- return No_Element;
- end if;
-
- if Checks and then Position.Container /= Object.Container then
- raise Program_Error with
- "Position cursor of Next designates wrong tree";
- end if;
-
- pragma Assert (Object.Container.Count > 0);
- pragma Assert (Position.Node /= Root_Node (Object.Container.all));
-
- return Next_Sibling (Position);
- end Next;
-
- ------------------
- -- Next_Sibling --
- ------------------
-
- function Next_Sibling (Position : Cursor) return Cursor is
- begin
- if Position = No_Element then
- return No_Element;
- end if;
-
- if Position.Container.Count = 0 then
- pragma Assert (Is_Root (Position));
- return No_Element;
- end if;
-
- declare
- T : Tree renames Position.Container.all;
- NN : Tree_Node_Array renames T.Nodes;
- N : Tree_Node_Type renames NN (Position.Node);
-
- begin
- if N.Next <= 0 then
- return No_Element;
- end if;
-
- return Cursor'(Position.Container, N.Next);
- end;
- end Next_Sibling;
-
- procedure Next_Sibling (Position : in out Cursor) is
- begin
- Position := Next_Sibling (Position);
- end Next_Sibling;
-
- ----------------
- -- Node_Count --
- ----------------
-
- function Node_Count (Container : Tree) return Count_Type is
- begin
- -- Container.Count is the number of nodes we have actually allocated. We
- -- cache the value specifically so this Node_Count operation can execute
- -- in O(1) time, which makes it behave similarly to how the Length
- -- selector function behaves for other containers.
- --
- -- The cached node count value only describes the nodes we have
- -- allocated; the root node itself is not included in that count. The
- -- Node_Count operation returns a value that includes the root node
- -- (because the RM says so), so we must add 1 to our cached value.
-
- return 1 + Container.Count;
- end Node_Count;
-
- ------------
- -- Parent --
- ------------
-
- function Parent (Position : Cursor) return Cursor is
- begin
- if Position = No_Element then
- return No_Element;
- end if;
-
- if Position.Container.Count = 0 then
- pragma Assert (Is_Root (Position));
- return No_Element;
- end if;
-
- declare
- T : Tree renames Position.Container.all;
- NN : Tree_Node_Array renames T.Nodes;
- N : Tree_Node_Type renames NN (Position.Node);
-
- begin
- if N.Parent < 0 then
- pragma Assert (Position.Node = Root_Node (T));
- return No_Element;
- end if;
-
- return Cursor'(Position.Container, N.Parent);
- end;
- end Parent;
-
- -------------------
- -- Prepend_Child --
- -------------------
-
- procedure Prepend_Child
- (Container : in out Tree;
- Parent : Cursor;
- New_Item : Element_Type;
- Count : Count_Type := 1)
- is
- Nodes : Tree_Node_Array renames Container.Nodes;
- First, Last : Count_Type;
-
- begin
- if Checks and then Parent = No_Element then
- raise Constraint_Error with "Parent cursor has no element";
- end if;
-
- if Checks and then Parent.Container /= Container'Unrestricted_Access then
- raise Program_Error with "Parent cursor not in container";
- end if;
-
- if Count = 0 then
- return;
- end if;
-
- if Checks and then Container.Count > Container.Capacity - Count then
- raise Capacity_Error
- with "requested count exceeds available storage";
- end if;
-
- TC_Check (Container.TC);
-
- if Container.Count = 0 then
- Initialize_Root (Container);
- end if;
-
- Allocate_Node (Container, New_Item, First);
- Nodes (First).Parent := Parent.Node;
-
- Last := First;
- for J in Count_Type'(2) .. Count loop
- Allocate_Node (Container, New_Item, Nodes (Last).Next);
- Nodes (Nodes (Last).Next).Parent := Parent.Node;
- Nodes (Nodes (Last).Next).Prev := Last;
-
- Last := Nodes (Last).Next;
- end loop;
-
- Insert_Subtree_List
- (Container => Container,
- First => First,
- Last => Last,
- Parent => Parent.Node,
- Before => Nodes (Parent.Node).Children.First);
-
- Container.Count := Container.Count + Count;
- end Prepend_Child;
-
- --------------
- -- Previous --
- --------------
-
- overriding function Previous
- (Object : Child_Iterator;
- Position : Cursor) return Cursor
- is
- begin
- if Position.Container = null then
- return No_Element;
- end if;
-
- if Checks and then Position.Container /= Object.Container then
- raise Program_Error with
- "Position cursor of Previous designates wrong tree";
- end if;
-
- return Previous_Sibling (Position);
- end Previous;
-
- ----------------------
- -- Previous_Sibling --
- ----------------------
-
- function Previous_Sibling (Position : Cursor) return Cursor is
- begin
- if Position = No_Element then
- return No_Element;
- end if;
-
- if Position.Container.Count = 0 then
- pragma Assert (Is_Root (Position));
- return No_Element;
- end if;
-
- declare
- T : Tree renames Position.Container.all;
- NN : Tree_Node_Array renames T.Nodes;
- N : Tree_Node_Type renames NN (Position.Node);
-
- begin
- if N.Prev <= 0 then
- return No_Element;
- end if;
-
- return Cursor'(Position.Container, N.Prev);
- end;
- end Previous_Sibling;
-
- procedure Previous_Sibling (Position : in out Cursor) is
- begin
- Position := Previous_Sibling (Position);
- end Previous_Sibling;
-
- ----------------------
- -- Pseudo_Reference --
- ----------------------
-
- function Pseudo_Reference
- (Container : aliased Tree'Class) return Reference_Control_Type
- is
- TC : constant Tamper_Counts_Access := Container.TC'Unrestricted_Access;
- begin
- return R : constant Reference_Control_Type := (Controlled with TC) do
- Lock (TC.all);
- end return;
- end Pseudo_Reference;
-
- -------------------
- -- Query_Element --
- -------------------
-
- procedure Query_Element
- (Position : Cursor;
- Process : not null access procedure (Element : Element_Type))
- is
- begin
- if Checks and then Position = No_Element then
- raise Constraint_Error with "Position cursor has no element";
- end if;
-
- if Checks and then Is_Root (Position) then
- raise Program_Error with "Position cursor designates root";
- end if;
-
- declare
- T : Tree renames Position.Container.all'Unrestricted_Access.all;
- Lock : With_Lock (T.TC'Unrestricted_Access);
- begin
- Process (Element => T.Elements (Position.Node));
- end;
- end Query_Element;
-
- ----------
- -- Read --
- ----------
-
- procedure Read
- (Stream : not null access Root_Stream_Type'Class;
- Container : out Tree)
- is
- procedure Read_Children (Subtree : Count_Type);
-
- function Read_Subtree
- (Parent : Count_Type) return Count_Type;
-
- NN : Tree_Node_Array renames Container.Nodes;
-
- Total_Count : Count_Type'Base;
- -- Value read from the stream that says how many elements follow
-
- Read_Count : Count_Type'Base;
- -- Actual number of elements read from the stream
-
- -------------------
- -- Read_Children --
- -------------------
-
- procedure Read_Children (Subtree : Count_Type) is
- Count : Count_Type'Base;
- -- number of child subtrees
-
- CC : Children_Type;
-
- begin
- Count_Type'Read (Stream, Count);
-
- if Checks and then Count < 0 then
- raise Program_Error with "attempt to read from corrupt stream";
- end if;
-
- if Count = 0 then
- return;
- end if;
-
- CC.First := Read_Subtree (Parent => Subtree);
- CC.Last := CC.First;
-
- for J in Count_Type'(2) .. Count loop
- NN (CC.Last).Next := Read_Subtree (Parent => Subtree);
- NN (NN (CC.Last).Next).Prev := CC.Last;
- CC.Last := NN (CC.Last).Next;
- end loop;
-
- -- Now that the allocation and reads have completed successfully, it
- -- is safe to link the children to their parent.
-
- NN (Subtree).Children := CC;
- end Read_Children;
-
- ------------------
- -- Read_Subtree --
- ------------------
-
- function Read_Subtree
- (Parent : Count_Type) return Count_Type
- is
- Subtree : Count_Type;
-
- begin
- Allocate_Node (Container, Stream, Subtree);
- Container.Nodes (Subtree).Parent := Parent;
-
- Read_Count := Read_Count + 1;
-
- Read_Children (Subtree);
-
- return Subtree;
- end Read_Subtree;
-
- -- Start of processing for Read
-
- begin
- Container.Clear; -- checks busy bit
-
- Count_Type'Read (Stream, Total_Count);
-
- if Checks and then Total_Count < 0 then
- raise Program_Error with "attempt to read from corrupt stream";
- end if;
-
- if Total_Count = 0 then
- return;
- end if;
-
- if Checks and then Total_Count > Container.Capacity then
- raise Capacity_Error -- ???
- with "node count in stream exceeds container capacity";
- end if;
-
- Initialize_Root (Container);
-
- Read_Count := 0;
-
- Read_Children (Root_Node (Container));
-
- if Checks and then Read_Count /= Total_Count then
- raise Program_Error with "attempt to read from corrupt stream";
- end if;
-
- Container.Count := Total_Count;
- end Read;
-
- procedure Read
- (Stream : not null access Root_Stream_Type'Class;
- Position : out Cursor)
- is
- begin
- raise Program_Error with "attempt to read tree cursor from stream";
- end Read;
-
- procedure Read
- (Stream : not null access Root_Stream_Type'Class;
- Item : out Reference_Type)
- is
- begin
- raise Program_Error with "attempt to stream reference";
- end Read;
-
- procedure Read
- (Stream : not null access Root_Stream_Type'Class;
- Item : out Constant_Reference_Type)
- is
- begin
- raise Program_Error with "attempt to stream reference";
- end Read;
-
- ---------------
- -- Reference --
- ---------------
-
- function Reference
- (Container : aliased in out Tree;
- Position : Cursor) return Reference_Type
- is
- begin
- if Checks and then Position.Container = null then
- raise Constraint_Error with
- "Position cursor has no element";
- end if;
-
- if Checks and then Position.Container /= Container'Unrestricted_Access
- then
- raise Program_Error with
- "Position cursor designates wrong container";
- end if;
-
- if Checks and then Position.Node = Root_Node (Container) then
- raise Program_Error with "Position cursor designates root";
- end if;
-
- -- Implement Vet for multiway tree???
- -- pragma Assert (Vet (Position),
- -- "Position cursor in Constant_Reference is bad");
-
- declare
- TC : constant Tamper_Counts_Access :=
- Container.TC'Unrestricted_Access;
- begin
- return R : constant Reference_Type :=
- (Element => Container.Elements (Position.Node)'Access,
- Control => (Controlled with TC))
- do
- Lock (TC.all);
- end return;
- end;
- end Reference;
-
- --------------------
- -- Remove_Subtree --
- --------------------
-
- procedure Remove_Subtree
- (Container : in out Tree;
- Subtree : Count_Type)
- is
- NN : Tree_Node_Array renames Container.Nodes;
- N : Tree_Node_Type renames NN (Subtree);
- CC : Children_Type renames NN (N.Parent).Children;
-
- begin
- -- This is a utility operation to remove a subtree node from its
- -- parent's list of children.
-
- if CC.First = Subtree then
- pragma Assert (N.Prev <= 0);
-
- if CC.Last = Subtree then
- pragma Assert (N.Next <= 0);
- CC.First := 0;
- CC.Last := 0;
-
- else
- CC.First := N.Next;
- NN (CC.First).Prev := 0;
- end if;
-
- elsif CC.Last = Subtree then
- pragma Assert (N.Next <= 0);
- CC.Last := N.Prev;
- NN (CC.Last).Next := 0;
-
- else
- NN (N.Prev).Next := N.Next;
- NN (N.Next).Prev := N.Prev;
- end if;
- end Remove_Subtree;
-
- ----------------------
- -- Replace_Element --
- ----------------------
-
- procedure Replace_Element
- (Container : in out Tree;
- Position : Cursor;
- New_Item : Element_Type)
- is
- begin
- if Checks and then Position = No_Element then
- raise Constraint_Error with "Position cursor has no element";
- end if;
-
- if Checks and then Position.Container /= Container'Unrestricted_Access
- then
- raise Program_Error with "Position cursor not in container";
- end if;
-
- if Checks and then Is_Root (Position) then
- raise Program_Error with "Position cursor designates root";
- end if;
-
- TE_Check (Container.TC);
-
- Container.Elements (Position.Node) := New_Item;
- end Replace_Element;
-
- ------------------------------
- -- Reverse_Iterate_Children --
- ------------------------------
-
- procedure Reverse_Iterate_Children
- (Parent : Cursor;
- Process : not null access procedure (Position : Cursor))
- is
- begin
- if Checks and then Parent = No_Element then
- raise Constraint_Error with "Parent cursor has no element";
- end if;
-
- if Parent.Container.Count = 0 then
- pragma Assert (Is_Root (Parent));
- return;
- end if;
-
- declare
- NN : Tree_Node_Array renames Parent.Container.Nodes;
- Busy : With_Busy (Parent.Container.TC'Unrestricted_Access);
- C : Count_Type;
-
- begin
- C := NN (Parent.Node).Children.Last;
- while C > 0 loop
- Process (Cursor'(Parent.Container, Node => C));
- C := NN (C).Prev;
- end loop;
- end;
- end Reverse_Iterate_Children;
-
- ----------
- -- Root --
- ----------
-
- function Root (Container : Tree) return Cursor is
- begin
- return (Container'Unrestricted_Access, Root_Node (Container));
- end Root;
-
- ---------------
- -- Root_Node --
- ---------------
-
- function Root_Node (Container : Tree) return Count_Type is
- pragma Unreferenced (Container);
-
- begin
- return 0;
- end Root_Node;
-
- ---------------------
- -- Splice_Children --
- ---------------------
-
- procedure Splice_Children
- (Target : in out Tree;
- Target_Parent : Cursor;
- Before : Cursor;
- Source : in out Tree;
- Source_Parent : Cursor)
- is
- begin
- if Checks and then Target_Parent = No_Element then
- raise Constraint_Error with "Target_Parent cursor has no element";
- end if;
-
- if Checks and then Target_Parent.Container /= Target'Unrestricted_Access
- then
- raise Program_Error
- with "Target_Parent cursor not in Target container";
- end if;
-
- if Before /= No_Element then
- if Checks and then Before.Container /= Target'Unrestricted_Access then
- raise Program_Error
- with "Before cursor not in Target container";
- end if;
-
- if Checks and then
- Target.Nodes (Before.Node).Parent /= Target_Parent.Node
- then
- raise Constraint_Error
- with "Before cursor not child of Target_Parent";
- end if;
- end if;
-
- if Checks and then Source_Parent = No_Element then
- raise Constraint_Error with "Source_Parent cursor has no element";
- end if;
-
- if Checks and then Source_Parent.Container /= Source'Unrestricted_Access
- then
- raise Program_Error
- with "Source_Parent cursor not in Source container";
- end if;
-
- if Source.Count = 0 then
- pragma Assert (Is_Root (Source_Parent));
- return;
- end if;
-
- if Target'Address = Source'Address then
- if Target_Parent = Source_Parent then
- return;
- end if;
-
- TC_Check (Target.TC);
-
- if Checks and then Is_Reachable (Container => Target,
- From => Target_Parent.Node,
- To => Source_Parent.Node)
- then
- raise Constraint_Error
- with "Source_Parent is ancestor of Target_Parent";
- end if;
-
- Splice_Children
- (Container => Target,
- Target_Parent => Target_Parent.Node,
- Before => Before.Node,
- Source_Parent => Source_Parent.Node);
-
- return;
- end if;
-
- TC_Check (Target.TC);
- TC_Check (Source.TC);
-
- if Target.Count = 0 then
- Initialize_Root (Target);
- end if;
-
- Splice_Children
- (Target => Target,
- Target_Parent => Target_Parent.Node,
- Before => Before.Node,
- Source => Source,
- Source_Parent => Source_Parent.Node);
- end Splice_Children;
-
- procedure Splice_Children
- (Container : in out Tree;
- Target_Parent : Cursor;
- Before : Cursor;
- Source_Parent : Cursor)
- is
- begin
- if Checks and then Target_Parent = No_Element then
- raise Constraint_Error with "Target_Parent cursor has no element";
- end if;
-
- if Checks and then
- Target_Parent.Container /= Container'Unrestricted_Access
- then
- raise Program_Error
- with "Target_Parent cursor not in container";
- end if;
-
- if Before /= No_Element then
- if Checks and then Before.Container /= Container'Unrestricted_Access
- then
- raise Program_Error
- with "Before cursor not in container";
- end if;
-
- if Checks and then
- Container.Nodes (Before.Node).Parent /= Target_Parent.Node
- then
- raise Constraint_Error
- with "Before cursor not child of Target_Parent";
- end if;
- end if;
-
- if Checks and then Source_Parent = No_Element then
- raise Constraint_Error with "Source_Parent cursor has no element";
- end if;
-
- if Checks and then
- Source_Parent.Container /= Container'Unrestricted_Access
- then
- raise Program_Error
- with "Source_Parent cursor not in container";
- end if;
-
- if Target_Parent = Source_Parent then
- return;
- end if;
-
- pragma Assert (Container.Count > 0);
-
- TC_Check (Container.TC);
-
- if Checks and then Is_Reachable (Container => Container,
- From => Target_Parent.Node,
- To => Source_Parent.Node)
- then
- raise Constraint_Error
- with "Source_Parent is ancestor of Target_Parent";
- end if;
-
- Splice_Children
- (Container => Container,
- Target_Parent => Target_Parent.Node,
- Before => Before.Node,
- Source_Parent => Source_Parent.Node);
- end Splice_Children;
-
- procedure Splice_Children
- (Container : in out Tree;
- Target_Parent : Count_Type;
- Before : Count_Type'Base;
- Source_Parent : Count_Type)
- is
- NN : Tree_Node_Array renames Container.Nodes;
- CC : constant Children_Type := NN (Source_Parent).Children;
- C : Count_Type'Base;
-
- begin
- -- This is a utility operation to remove the children from Source parent
- -- and insert them into Target parent.
-
- NN (Source_Parent).Children := Children_Type'(others => 0);
-
- -- Fix up the Parent pointers of each child to designate its new Target
- -- parent.
-
- C := CC.First;
- while C > 0 loop
- NN (C).Parent := Target_Parent;
- C := NN (C).Next;
- end loop;
-
- Insert_Subtree_List
- (Container => Container,
- First => CC.First,
- Last => CC.Last,
- Parent => Target_Parent,
- Before => Before);
- end Splice_Children;
-
- procedure Splice_Children
- (Target : in out Tree;
- Target_Parent : Count_Type;
- Before : Count_Type'Base;
- Source : in out Tree;
- Source_Parent : Count_Type)
- is
- S_NN : Tree_Node_Array renames Source.Nodes;
- S_CC : Children_Type renames S_NN (Source_Parent).Children;
-
- Target_Count, Source_Count : Count_Type;
- T, S : Count_Type'Base;
-
- begin
- -- This is a utility operation to copy the children from the Source
- -- parent and insert them as children of the Target parent, and then
- -- delete them from the Source. (This is not a true splice operation,
- -- but it is the best we can do in a bounded form.) The Before position
- -- specifies where among the Target parent's exising children the new
- -- children are inserted.
-
- -- Before we attempt the insertion, we must count the sources nodes in
- -- order to determine whether the target have enough storage
- -- available. Note that calculating this value is an O(n) operation.
-
- -- Here is an optimization opportunity: iterate of each children the
- -- source explicitly, and keep a running count of the total number of
- -- nodes. Compare the running total to the capacity of the target each
- -- pass through the loop. This is more efficient than summing the counts
- -- of child subtree (which is what Subtree_Node_Count does) and then
- -- comparing that total sum to the target's capacity. ???
-
- -- Here is another possibility. We currently treat the splice as an
- -- all-or-nothing proposition: either we can insert all of children of
- -- the source, or we raise exception with modifying the target. The
- -- price for not causing side-effect is an O(n) determination of the
- -- source count. If we are willing to tolerate side-effect, then we
- -- could loop over the children of the source, counting that subtree and
- -- then immediately inserting it in the target. The issue here is that
- -- the test for available storage could fail during some later pass,
- -- after children have already been inserted into target. ???
-
- Source_Count := Subtree_Node_Count (Source, Source_Parent) - 1;
-
- if Source_Count = 0 then
- return;
- end if;
-
- if Checks and then Target.Count > Target.Capacity - Source_Count then
- raise Capacity_Error -- ???
- with "Source count exceeds available storage on Target";
- end if;
-
- -- Copy_Subtree returns a count of the number of nodes it inserts, but
- -- it does this by incrementing the value passed in. Therefore we must
- -- initialize the count before calling Copy_Subtree.
-
- Target_Count := 0;
-
- S := S_CC.First;
- while S > 0 loop
- Copy_Subtree
- (Source => Source,
- Source_Subtree => S,
- Target => Target,
- Target_Parent => Target_Parent,
- Target_Subtree => T,
- Count => Target_Count);
-
- Insert_Subtree_Node
- (Container => Target,
- Subtree => T,
- Parent => Target_Parent,
- Before => Before);
-
- S := S_NN (S).Next;
- end loop;
-
- pragma Assert (Target_Count = Source_Count);
- Target.Count := Target.Count + Target_Count;
-
- -- As with Copy_Subtree, operation Deallocate_Children returns a count
- -- of the number of nodes it deallocates, but it works by incrementing
- -- the value passed in. We must therefore initialize the count before
- -- calling it.
-
- Source_Count := 0;
-
- Deallocate_Children (Source, Source_Parent, Source_Count);
- pragma Assert (Source_Count = Target_Count);
-
- Source.Count := Source.Count - Source_Count;
- end Splice_Children;
-
- --------------------
- -- Splice_Subtree --
- --------------------
-
- procedure Splice_Subtree
- (Target : in out Tree;
- Parent : Cursor;
- Before : Cursor;
- Source : in out Tree;
- Position : in out Cursor)
- is
- begin
- if Checks and then Parent = No_Element then
- raise Constraint_Error with "Parent cursor has no element";
- end if;
-
- if Checks and then Parent.Container /= Target'Unrestricted_Access then
- raise Program_Error with "Parent cursor not in Target container";
- end if;
-
- if Before /= No_Element then
- if Checks and then Before.Container /= Target'Unrestricted_Access then
- raise Program_Error with "Before cursor not in Target container";
- end if;
-
- if Checks and then Target.Nodes (Before.Node).Parent /= Parent.Node
- then
- raise Constraint_Error with "Before cursor not child of Parent";
- end if;
- end if;
-
- if Checks and then Position = No_Element then
- raise Constraint_Error with "Position cursor has no element";
- end if;
-
- if Checks and then Position.Container /= Source'Unrestricted_Access then
- raise Program_Error with "Position cursor not in Source container";
- end if;
-
- if Checks and then Is_Root (Position) then
- raise Program_Error with "Position cursor designates root";
- end if;
-
- if Target'Address = Source'Address then
- if Target.Nodes (Position.Node).Parent = Parent.Node then
- if Before = No_Element then
- if Target.Nodes (Position.Node).Next <= 0 then -- last child
- return;
- end if;
-
- elsif Position.Node = Before.Node then
- return;
-
- elsif Target.Nodes (Position.Node).Next = Before.Node then
- return;
- end if;
- end if;
-
- TC_Check (Target.TC);
-
- if Checks and then Is_Reachable (Container => Target,
- From => Parent.Node,
- To => Position.Node)
- then
- raise Constraint_Error with "Position is ancestor of Parent";
- end if;
-
- Remove_Subtree (Target, Position.Node);
-
- Target.Nodes (Position.Node).Parent := Parent.Node;
- Insert_Subtree_Node (Target, Position.Node, Parent.Node, Before.Node);
-
- return;
- end if;
-
- TC_Check (Target.TC);
- TC_Check (Source.TC);
-
- if Target.Count = 0 then
- Initialize_Root (Target);
- end if;
-
- Splice_Subtree
- (Target => Target,
- Parent => Parent.Node,
- Before => Before.Node,
- Source => Source,
- Position => Position.Node); -- modified during call
-
- Position.Container := Target'Unrestricted_Access;
- end Splice_Subtree;
-
- procedure Splice_Subtree
- (Container : in out Tree;
- Parent : Cursor;
- Before : Cursor;
- Position : Cursor)
- is
- begin
- if Checks and then Parent = No_Element then
- raise Constraint_Error with "Parent cursor has no element";
- end if;
-
- if Checks and then Parent.Container /= Container'Unrestricted_Access then
- raise Program_Error with "Parent cursor not in container";
- end if;
-
- if Before /= No_Element then
- if Checks and then Before.Container /= Container'Unrestricted_Access
- then
- raise Program_Error with "Before cursor not in container";
- end if;
-
- if Checks and then Container.Nodes (Before.Node).Parent /= Parent.Node
- then
- raise Constraint_Error with "Before cursor not child of Parent";
- end if;
- end if;
-
- if Checks and then Position = No_Element then
- raise Constraint_Error with "Position cursor has no element";
- end if;
-
- if Checks and then Position.Container /= Container'Unrestricted_Access
- then
- raise Program_Error with "Position cursor not in container";
- end if;
-
- if Checks and then Is_Root (Position) then
-
- -- Should this be PE instead? Need ARG confirmation. ???
-
- raise Constraint_Error with "Position cursor designates root";
- end if;
-
- if Container.Nodes (Position.Node).Parent = Parent.Node then
- if Before = No_Element then
- if Container.Nodes (Position.Node).Next <= 0 then -- last child
- return;
- end if;
-
- elsif Position.Node = Before.Node then
- return;
-
- elsif Container.Nodes (Position.Node).Next = Before.Node then
- return;
- end if;
- end if;
-
- TC_Check (Container.TC);
-
- if Checks and then Is_Reachable (Container => Container,
- From => Parent.Node,
- To => Position.Node)
- then
- raise Constraint_Error with "Position is ancestor of Parent";
- end if;
-
- Remove_Subtree (Container, Position.Node);
- Container.Nodes (Position.Node).Parent := Parent.Node;
- Insert_Subtree_Node (Container, Position.Node, Parent.Node, Before.Node);
- end Splice_Subtree;
-
- procedure Splice_Subtree
- (Target : in out Tree;
- Parent : Count_Type;
- Before : Count_Type'Base;
- Source : in out Tree;
- Position : in out Count_Type) -- Source on input, Target on output
- is
- Source_Count : Count_Type := Subtree_Node_Count (Source, Position);
- pragma Assert (Source_Count >= 1);
-
- Target_Subtree : Count_Type;
- Target_Count : Count_Type;
-
- begin
- -- This is a utility operation to do the heavy lifting associated with
- -- splicing a subtree from one tree to another. Note that "splicing"
- -- is a bit of a misnomer here in the case of a bounded tree, because
- -- the elements must be copied from the source to the target.
-
- if Checks and then Target.Count > Target.Capacity - Source_Count then
- raise Capacity_Error -- ???
- with "Source count exceeds available storage on Target";
- end if;
-
- -- Copy_Subtree returns a count of the number of nodes it inserts, but
- -- it does this by incrementing the value passed in. Therefore we must
- -- initialize the count before calling Copy_Subtree.
-
- Target_Count := 0;
-
- Copy_Subtree
- (Source => Source,
- Source_Subtree => Position,
- Target => Target,
- Target_Parent => Parent,
- Target_Subtree => Target_Subtree,
- Count => Target_Count);
-
- pragma Assert (Target_Count = Source_Count);
-
- -- Now link the newly-allocated subtree into the target.
-
- Insert_Subtree_Node
- (Container => Target,
- Subtree => Target_Subtree,
- Parent => Parent,
- Before => Before);
-
- Target.Count := Target.Count + Target_Count;
-
- -- The manipulation of the Target container is complete. Now we remove
- -- the subtree from the Source container.
-
- Remove_Subtree (Source, Position); -- unlink the subtree
-
- -- As with Copy_Subtree, operation Deallocate_Subtree returns a count of
- -- the number of nodes it deallocates, but it works by incrementing the
- -- value passed in. We must therefore initialize the count before
- -- calling it.
-
- Source_Count := 0;
-
- Deallocate_Subtree (Source, Position, Source_Count);
- pragma Assert (Source_Count = Target_Count);
-
- Source.Count := Source.Count - Source_Count;
-
- Position := Target_Subtree;
- end Splice_Subtree;
-
- ------------------------
- -- Subtree_Node_Count --
- ------------------------
-
- function Subtree_Node_Count (Position : Cursor) return Count_Type is
- begin
- if Position = No_Element then
- return 0;
- end if;
-
- if Position.Container.Count = 0 then
- pragma Assert (Is_Root (Position));
- return 1;
- end if;
-
- return Subtree_Node_Count (Position.Container.all, Position.Node);
- end Subtree_Node_Count;
-
- function Subtree_Node_Count
- (Container : Tree;
- Subtree : Count_Type) return Count_Type
- is
- Result : Count_Type;
- Node : Count_Type'Base;
-
- begin
- Result := 1;
- Node := Container.Nodes (Subtree).Children.First;
- while Node > 0 loop
- Result := Result + Subtree_Node_Count (Container, Node);
- Node := Container.Nodes (Node).Next;
- end loop;
- return Result;
- end Subtree_Node_Count;
-
- ----------
- -- Swap --
- ----------
-
- procedure Swap
- (Container : in out Tree;
- I, J : Cursor)
- is
- begin
- if Checks and then I = No_Element then
- raise Constraint_Error with "I cursor has no element";
- end if;
-
- if Checks and then I.Container /= Container'Unrestricted_Access then
- raise Program_Error with "I cursor not in container";
- end if;
-
- if Checks and then Is_Root (I) then
- raise Program_Error with "I cursor designates root";
- end if;
-
- if I = J then -- make this test sooner???
- return;
- end if;
-
- if Checks and then J = No_Element then
- raise Constraint_Error with "J cursor has no element";
- end if;
-
- if Checks and then J.Container /= Container'Unrestricted_Access then
- raise Program_Error with "J cursor not in container";
- end if;
-
- if Checks and then Is_Root (J) then
- raise Program_Error with "J cursor designates root";
- end if;
-
- TE_Check (Container.TC);
-
- declare
- EE : Element_Array renames Container.Elements;
- EI : constant Element_Type := EE (I.Node);
-
- begin
- EE (I.Node) := EE (J.Node);
- EE (J.Node) := EI;
- end;
- end Swap;
-
- --------------------
- -- Update_Element --
- --------------------
-
- procedure Update_Element
- (Container : in out Tree;
- Position : Cursor;
- Process : not null access procedure (Element : in out Element_Type))
- is
- begin
- if Checks and then Position = No_Element then
- raise Constraint_Error with "Position cursor has no element";
- end if;
-
- if Checks and then Position.Container /= Container'Unrestricted_Access
- then
- raise Program_Error with "Position cursor not in container";
- end if;
-
- if Checks and then Is_Root (Position) then
- raise Program_Error with "Position cursor designates root";
- end if;
-
- declare
- T : Tree renames Position.Container.all'Unrestricted_Access.all;
- Lock : With_Lock (T.TC'Unrestricted_Access);
- begin
- Process (Element => T.Elements (Position.Node));
- end;
- end Update_Element;
-
- -----------
- -- Write --
- -----------
-
- procedure Write
- (Stream : not null access Root_Stream_Type'Class;
- Container : Tree)
- is
- procedure Write_Children (Subtree : Count_Type);
- procedure Write_Subtree (Subtree : Count_Type);
-
- --------------------
- -- Write_Children --
- --------------------
-
- procedure Write_Children (Subtree : Count_Type) is
- CC : Children_Type renames Container.Nodes (Subtree).Children;
- C : Count_Type'Base;
-
- begin
- Count_Type'Write (Stream, Child_Count (Container, Subtree));
-
- C := CC.First;
- while C > 0 loop
- Write_Subtree (C);
- C := Container.Nodes (C).Next;
- end loop;
- end Write_Children;
-
- -------------------
- -- Write_Subtree --
- -------------------
-
- procedure Write_Subtree (Subtree : Count_Type) is
- begin
- Element_Type'Write (Stream, Container.Elements (Subtree));
- Write_Children (Subtree);
- end Write_Subtree;
-
- -- Start of processing for Write
-
- begin
- Count_Type'Write (Stream, Container.Count);
-
- if Container.Count = 0 then
- return;
- end if;
-
- Write_Children (Root_Node (Container));
- end Write;
-
- procedure Write
- (Stream : not null access Root_Stream_Type'Class;
- Position : Cursor)
- is
- begin
- raise Program_Error with "attempt to write tree cursor to stream";
- end Write;
-
- procedure Write
- (Stream : not null access Root_Stream_Type'Class;
- Item : Reference_Type)
- is
- begin
- raise Program_Error with "attempt to stream reference";
- end Write;
-
- procedure Write
- (Stream : not null access Root_Stream_Type'Class;
- Item : Constant_Reference_Type)
- is
- begin
- raise Program_Error with "attempt to stream reference";
- end Write;
-
-end Ada.Containers.Bounded_Multiway_Trees;