aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--libstdc++-v3/ChangeLog13
-rw-r--r--libstdc++-v3/include/bits/stl_alloc.h138
-rw-r--r--libstdc++-v3/include/bits/stl_vector.h1539
-rw-r--r--libstdc++-v3/include/bits/vector.tcc122
-rw-r--r--libstdc++-v3/testsuite/20_util/allocator_members.cc33
-rw-r--r--libstdc++-v3/testsuite/23_containers/vector_capacity.cc21
6 files changed, 985 insertions, 881 deletions
diff --git a/libstdc++-v3/ChangeLog b/libstdc++-v3/ChangeLog
index 33ff5c3..69d6d1b 100644
--- a/libstdc++-v3/ChangeLog
+++ b/libstdc++-v3/ChangeLog
@@ -1,3 +1,16 @@
+2002-11-15 Benjamin Kosnik <bkoz@redhat.com>
+ Gabriel Dos Reis <gdr@integrable-solutions.net>
+
+ PR libstdc++/8230
+ * include/bits/stl_alloc.h: Use builtin_expect for the most
+ obvious limit checks.
+ (__default_alloc_template::allocate): Check for null, throw
+ bad_alloc.
+ * include/bits/vector.tcc: Formatting tweaks.
+ * include/bits/stl_vector.h: Same.
+ * testsuite/20_util/allocator_members.cc (test02): Add.
+ * testsuite/23_containers/vector_capacity.cc (test03): Add.
+
2002-11-15 Rainer Orth <ro@TechFak.Uni-Bielefeld.DE>
* src/ios.cc [_GLIBCPP_HAVE_UNISTD_H]: Include unistd.h.
diff --git a/libstdc++-v3/include/bits/stl_alloc.h b/libstdc++-v3/include/bits/stl_alloc.h
index fceed49..bab39fb 100644
--- a/libstdc++-v3/include/bits/stl_alloc.h
+++ b/libstdc++-v3/include/bits/stl_alloc.h
@@ -139,7 +139,8 @@ namespace std
allocate(size_t __n)
{
void* __result = malloc(__n);
- if (0 == __result) __result = _S_oom_malloc(__n);
+ if (__builtin_expect(__result == 0, 0))
+ __result = _S_oom_malloc(__n);
return __result;
}
@@ -152,7 +153,7 @@ namespace std
reallocate(void* __p, size_t /* old_sz */, size_t __new_sz)
{
void* __result = realloc(__p, __new_sz);
- if (0 == __result)
+ if (__builtin_expect(__result == 0, 0))
__result = _S_oom_realloc(__p, __new_sz);
return __result;
}
@@ -181,8 +182,8 @@ namespace std
for (;;)
{
__my_malloc_handler = __malloc_alloc_oom_handler;
- if (0 == __my_malloc_handler)
- std::__throw_bad_alloc();
+ if (__builtin_expect(__my_malloc_handler == 0, 0))
+ __throw_bad_alloc();
(*__my_malloc_handler)();
__result = malloc(__n);
if (__result)
@@ -202,8 +203,8 @@ namespace std
for (;;)
{
__my_malloc_handler = __malloc_alloc_oom_handler;
- if (0 == __my_malloc_handler)
- std::__throw_bad_alloc();
+ if (__builtin_expect(__my_malloc_handler == 0, 0))
+ __throw_bad_alloc();
(*__my_malloc_handler)();
__result = realloc(__p, __n);
if (__result)
@@ -232,7 +233,12 @@ namespace std
public:
static _Tp*
allocate(size_t __n)
- { return 0 == __n ? 0 : (_Tp*) _Alloc::allocate(__n * sizeof (_Tp)); }
+ {
+ _Tp* __ret = 0;
+ if (__n)
+ __ret = static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp)));
+ return __ret;
+ }
static _Tp*
allocate()
@@ -293,9 +299,9 @@ namespace std
{
char* __real_p = (char*)__p - (int) _S_extra;
assert(*(size_t*)__real_p == __old_sz);
- char* __result = (char*)
- _Alloc::reallocate(__real_p, __old_sz + (int) _S_extra,
- __new_sz + (int) _S_extra);
+ char* __result = (char*) _Alloc::reallocate(__real_p,
+ __old_sz + (int) _S_extra,
+ __new_sz + (int) _S_extra);
*(size_t*)__result = __new_sz;
return __result + (int) _S_extra;
}
@@ -362,7 +368,7 @@ namespace std
static size_t
_S_freelist_index(size_t __bytes)
- { return (((__bytes) + (size_t)_ALIGN-1)/(size_t)_ALIGN - 1); }
+ { return (((__bytes) + (size_t)_ALIGN - 1)/(size_t)_ALIGN - 1); }
// Returns an object of size __n, and optionally adds to size __n
// free list.
@@ -402,7 +408,7 @@ namespace std
else
__atomic_add(&_S_force_new, -1);
// Trust but verify...
- assert (_S_force_new != 0);
+ assert(_S_force_new != 0);
}
if ((__n > (size_t) _MAX_BYTES) || (_S_force_new > 0))
@@ -416,13 +422,15 @@ namespace std
// unwinding.
_Lock __lock_instance;
_Obj* __restrict__ __result = *__my_free_list;
- if (__result == 0)
+ if (__builtin_expect(__result == 0, 0))
__ret = _S_refill(_S_round_up(__n));
else
{
*__my_free_list = __result -> _M_free_list_link;
__ret = __result;
- }
+ }
+ if (__builtin_expect(__ret == 0, 0))
+ __throw_bad_alloc();
}
return __ret;
}
@@ -510,7 +518,7 @@ namespace std
*__my_free_list = (_Obj*)_S_start_free;
}
_S_start_free = (char*) __new_alloc::allocate(__bytes_to_get);
- if (0 == _S_start_free)
+ if (_S_start_free == 0)
{
size_t __i;
_Obj* volatile* __my_free_list;
@@ -523,7 +531,7 @@ namespace std
{
__my_free_list = _S_free_list + _S_freelist_index(__i);
__p = *__my_free_list;
- if (0 != __p)
+ if (__p != 0)
{
*__my_free_list = __p -> _M_free_list_link;
_S_start_free = (char*)__p;
@@ -569,17 +577,17 @@ namespace std
*__my_free_list = __next_obj = (_Obj*)(__chunk + __n);
for (__i = 1; ; __i++)
{
- __current_obj = __next_obj;
+ __current_obj = __next_obj;
__next_obj = (_Obj*)((char*)__next_obj + __n);
- if (__nobjs - 1 == __i)
- {
- __current_obj -> _M_free_list_link = 0;
- break;
- }
- else
- __current_obj -> _M_free_list_link = __next_obj;
- }
- return(__result);
+ if (__nobjs - 1 == __i)
+ {
+ __current_obj -> _M_free_list_link = 0;
+ break;
+ }
+ else
+ __current_obj -> _M_free_list_link = __next_obj;
+ }
+ return __result;
}
@@ -600,7 +608,7 @@ namespace std
__copy_sz = __new_sz > __old_sz? __old_sz : __new_sz;
memcpy(__result, __p, __copy_sz);
deallocate(__p, __old_sz);
- return(__result);
+ return __result;
}
#endif
@@ -669,13 +677,20 @@ namespace std
const_pointer
address(const_reference __x) const { return &__x; }
- // __n is permitted to be 0. The C++ standard says nothing about what
- // the return value is when __n == 0.
+ // NB: __n is permitted to be 0. The C++ standard says nothing
+ // about what the return value is when __n == 0.
_Tp*
allocate(size_type __n, const void* = 0)
{
- return __n != 0
- ? static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp))) : 0;
+ _Tp* __ret = 0;
+ if (__n)
+ {
+ if (__n <= this->max_size())
+ __ret = static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp)));
+ else
+ __throw_bad_alloc();
+ }
+ return __ret;
}
// __p is not permitted to be a null pointer.
@@ -719,12 +734,13 @@ namespace std
/**
* @if maint
- * Allocator adaptor to turn an "SGI" style allocator (e.g., __alloc,
- * __malloc_alloc_template) into a "standard" conforming allocator. Note
- * that this adaptor does *not* assume that all objects of the underlying
- * alloc class are identical, nor does it assume that all of the underlying
- * alloc's member functions are static member functions. Note, also, that
- * __allocator<_Tp, __alloc> is essentially the same thing as allocator<_Tp>.
+ * Allocator adaptor to turn an "SGI" style allocator (e.g.,
+ * __alloc, __malloc_alloc_template) into a "standard" conforming
+ * allocator. Note that this adaptor does *not* assume that all
+ * objects of the underlying alloc class are identical, nor does it
+ * assume that all of the underlying alloc's member functions are
+ * static member functions. Note, also, that __allocator<_Tp,
+ * __alloc> is essentially the same thing as allocator<_Tp>.
* @endif
* (See @link Allocators allocators info @endlink for more.)
*/
@@ -732,7 +748,7 @@ namespace std
struct __allocator
{
_Alloc __underlying_alloc;
-
+
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Tp* pointer;
@@ -761,29 +777,31 @@ namespace std
const_pointer
address(const_reference __x) const { return &__x; }
- // __n is permitted to be 0.
- _Tp*
- allocate(size_type __n, const void* = 0)
- {
- return __n != 0
- ? static_cast<_Tp*>(__underlying_alloc.allocate(__n * sizeof(_Tp)))
- : 0;
- }
-
- // __p is not permitted to be a null pointer.
- void
- deallocate(pointer __p, size_type __n)
- { __underlying_alloc.deallocate(__p, __n * sizeof(_Tp)); }
-
- size_type
- max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
-
- void
- construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); }
+ // NB: __n is permitted to be 0. The C++ standard says nothing
+ // about what the return value is when __n == 0.
+ _Tp*
+ allocate(size_type __n, const void* = 0)
+ {
+ _Tp* __ret = 0;
+ if (__n)
+ __ret = static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp)));
+ return __ret;
+ }
- void
- destroy(pointer __p) { __p->~_Tp(); }
- };
+ // __p is not permitted to be a null pointer.
+ void
+ deallocate(pointer __p, size_type __n)
+ { __underlying_alloc.deallocate(__p, __n * sizeof(_Tp)); }
+
+ size_type
+ max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
+
+ void
+ construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); }
+
+ void
+ destroy(pointer __p) { __p->~_Tp(); }
+ };
template<typename _Alloc>
struct __allocator<void, _Alloc>
diff --git a/libstdc++-v3/include/bits/stl_vector.h b/libstdc++-v3/include/bits/stl_vector.h
index a885d9f..5354732 100644
--- a/libstdc++-v3/include/bits/stl_vector.h
+++ b/libstdc++-v3/include/bits/stl_vector.h
@@ -73,62 +73,62 @@ namespace std
* See bits/stl_deque.h's _Deque_alloc_base for an explanation.
* @endif
*/
- template <typename _Tp, typename _Allocator, bool _IsStatic>
+ template<typename _Tp, typename _Allocator, bool _IsStatic>
class _Vector_alloc_base
- {
- public:
- typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
- allocator_type;
-
- allocator_type
- get_allocator() const { return _M_data_allocator; }
+ {
+ public:
+ typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
+ allocator_type;
+
+ allocator_type
+ get_allocator() const { return _M_data_allocator; }
- _Vector_alloc_base(const allocator_type& __a)
+ _Vector_alloc_base(const allocator_type& __a)
: _M_data_allocator(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
- {}
+ { }
- protected:
- allocator_type _M_data_allocator;
- _Tp* _M_start;
- _Tp* _M_finish;
- _Tp* _M_end_of_storage;
+ protected:
+ allocator_type _M_data_allocator;
+ _Tp* _M_start;
+ _Tp* _M_finish;
+ _Tp* _M_end_of_storage;
- _Tp*
- _M_allocate(size_t __n) { return _M_data_allocator.allocate(__n); }
+ _Tp*
+ _M_allocate(size_t __n) { return _M_data_allocator.allocate(__n); }
- void
- _M_deallocate(_Tp* __p, size_t __n)
- { if (__p) _M_data_allocator.deallocate(__p, __n); }
- };
+ void
+ _M_deallocate(_Tp* __p, size_t __n)
+ { if (__p) _M_data_allocator.deallocate(__p, __n); }
+ };
/// @if maint Specialization for instanceless allocators. @endif
- template <typename _Tp, typename _Allocator>
+ template<typename _Tp, typename _Allocator>
class _Vector_alloc_base<_Tp, _Allocator, true>
- {
- public:
- typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
- allocator_type;
-
- allocator_type
- get_allocator() const { return allocator_type(); }
-
- _Vector_alloc_base(const allocator_type&)
+ {
+ public:
+ typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
+ allocator_type;
+
+ allocator_type
+ get_allocator() const { return allocator_type(); }
+
+ _Vector_alloc_base(const allocator_type&)
: _M_start(0), _M_finish(0), _M_end_of_storage(0)
- {}
-
- protected:
- _Tp* _M_start;
- _Tp* _M_finish;
- _Tp* _M_end_of_storage;
+ { }
- typedef typename _Alloc_traits<_Tp, _Allocator>::_Alloc_type _Alloc_type;
+ protected:
+ _Tp* _M_start;
+ _Tp* _M_finish;
+ _Tp* _M_end_of_storage;
- _Tp*
- _M_allocate(size_t __n) { return _Alloc_type::allocate(__n); }
+ typedef typename _Alloc_traits<_Tp, _Allocator>::_Alloc_type _Alloc_type;
+
+ _Tp*
+ _M_allocate(size_t __n) { return _Alloc_type::allocate(__n); }
- void
- _M_deallocate(_Tp* __p, size_t __n) { _Alloc_type::deallocate(__p, __n);}
- };
+ void
+ _M_deallocate(_Tp* __p, size_t __n) { _Alloc_type::deallocate(__p, __n);}
+ };
/**
@@ -136,29 +136,31 @@ namespace std
* See bits/stl_deque.h's _Deque_base for an explanation.
* @endif
*/
- template <typename _Tp, typename _Alloc>
+ template<typename _Tp, typename _Alloc>
struct _Vector_base
: public _Vector_alloc_base<_Tp, _Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
- {
- public:
- typedef _Vector_alloc_base<_Tp, _Alloc,
- _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
- _Base;
- typedef typename _Base::allocator_type allocator_type;
-
- _Vector_base(const allocator_type& __a)
- : _Base(__a) {}
- _Vector_base(size_t __n, const allocator_type& __a)
- : _Base(__a)
{
- _M_start = _M_allocate(__n);
- _M_finish = _M_start;
- _M_end_of_storage = _M_start + __n;
- }
-
- ~_Vector_base() { _M_deallocate(_M_start, _M_end_of_storage - _M_start); }
- };
+ public:
+ typedef _Vector_alloc_base<_Tp, _Alloc,
+ _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
+ _Base;
+ typedef typename _Base::allocator_type allocator_type;
+
+ _Vector_base(const allocator_type& __a)
+ : _Base(__a) { }
+
+ _Vector_base(size_t __n, const allocator_type& __a)
+ : _Base(__a)
+ {
+ _M_start = _M_allocate(__n);
+ _M_finish = _M_start;
+ _M_end_of_storage = _M_start + __n;
+ }
+
+ ~_Vector_base()
+ { _M_deallocate(_M_start, _M_end_of_storage - _M_start); }
+ };
/**
@@ -179,723 +181,744 @@ namespace std
* and saves the user from worrying about memory and size allocation.
* Subscripting ( @c [] ) access is also provided as with C-style arrays.
*/
- template <typename _Tp, typename _Alloc = allocator<_Tp> >
+ template<typename _Tp, typename _Alloc = allocator<_Tp> >
class vector : protected _Vector_base<_Tp, _Alloc>
- {
- // concept requirements
- __glibcpp_class_requires(_Tp, _SGIAssignableConcept)
-
- typedef _Vector_base<_Tp, _Alloc> _Base;
- typedef vector<_Tp, _Alloc> vector_type;
-
- public:
- typedef _Tp value_type;
- typedef value_type* pointer;
- typedef const value_type* const_pointer;
- typedef __gnu_cxx::__normal_iterator<pointer, vector_type> iterator;
- typedef __gnu_cxx::__normal_iterator<const_pointer, vector_type>
- const_iterator;
- typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
- typedef std::reverse_iterator<iterator> reverse_iterator;
- typedef value_type& reference;
- typedef const value_type& const_reference;
- typedef size_t size_type;
- typedef ptrdiff_t difference_type;
- typedef typename _Base::allocator_type allocator_type;
-
- protected:
- /** @if maint
- * These two functions and three data members are all from the top-most
- * base class, which varies depending on the type of %allocator. They
- * should be pretty self-explanatory, as %vector uses a simple contiguous
- * allocation scheme.
- * @endif
- */
- using _Base::_M_allocate;
- using _Base::_M_deallocate;
- using _Base::_M_start;
- using _Base::_M_finish;
- using _Base::_M_end_of_storage;
-
- public:
- // [23.2.4.1] construct/copy/destroy
- // (assign() and get_allocator() are also listed in this section)
- /**
- * @brief Default constructor creates no elements.
- */
- explicit
- vector(const allocator_type& __a = allocator_type())
- : _Base(__a) {}
-
- /**
- * @brief Create a %vector with copies of an exemplar element.
- * @param n The number of elements to initially create.
- * @param value An element to copy.
- *
- * This constructor fills the %vector with @a n copies of @a value.
- */
- vector(size_type __n, const value_type& __value,
- const allocator_type& __a = allocator_type())
+ {
+ // Concept requirements.
+ __glibcpp_class_requires(_Tp, _SGIAssignableConcept)
+
+ typedef _Vector_base<_Tp, _Alloc> _Base;
+ typedef vector<_Tp, _Alloc> vector_type;
+
+ public:
+ typedef _Tp value_type;
+ typedef value_type* pointer;
+ typedef const value_type* const_pointer;
+ typedef __gnu_cxx::__normal_iterator<pointer, vector_type> iterator;
+ typedef __gnu_cxx::__normal_iterator<const_pointer, vector_type>
+ const_iterator;
+ typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
+ typedef std::reverse_iterator<iterator> reverse_iterator;
+ typedef value_type& reference;
+ typedef const value_type& const_reference;
+ typedef size_t size_type;
+ typedef ptrdiff_t difference_type;
+ typedef typename _Base::allocator_type allocator_type;
+
+ protected:
+ /** @if maint
+ * These two functions and three data members are all from the
+ * top-most base class, which varies depending on the type of
+ * %allocator. They should be pretty self-explanatory, as
+ * %vector uses a simple contiguous allocation scheme. @endif
+ */
+ using _Base::_M_allocate;
+ using _Base::_M_deallocate;
+ using _Base::_M_start;
+ using _Base::_M_finish;
+ using _Base::_M_end_of_storage;
+
+ public:
+ // [23.2.4.1] construct/copy/destroy
+ // (assign() and get_allocator() are also listed in this section)
+ /**
+ * @brief Default constructor creates no elements.
+ */
+ explicit
+ vector(const allocator_type& __a = allocator_type())
+ : _Base(__a) { }
+
+ /**
+ * @brief Create a %vector with copies of an exemplar element.
+ * @param n The number of elements to initially create.
+ * @param value An element to copy.
+ *
+ * This constructor fills the %vector with @a n copies of @a value.
+ */
+ vector(size_type __n, const value_type& __value,
+ const allocator_type& __a = allocator_type())
: _Base(__n, __a)
{ _M_finish = uninitialized_fill_n(_M_start, __n, __value); }
- /**
- * @brief Create a %vector with default elements.
- * @param n The number of elements to initially create.
- *
- * This constructor fills the %vector with @a n copies of a
- * default-constructed element.
- */
- explicit
- vector(size_type __n)
+ /**
+ * @brief Create a %vector with default elements.
+ * @param n The number of elements to initially create.
+ *
+ * This constructor fills the %vector with @a n copies of a
+ * default-constructed element.
+ */
+ explicit
+ vector(size_type __n)
: _Base(__n, allocator_type())
{ _M_finish = uninitialized_fill_n(_M_start, __n, value_type()); }
-
- /**
- * @brief %Vector copy constructor.
- * @param x A %vector of identical element and allocator types.
- *
- * The newly-created %vector uses a copy of the allocation object used
- * by @a x. All the elements of @a x are copied, but any extra memory in
- * @a x (for fast expansion) will not be copied.
- */
- vector(const vector& __x)
+
+ /**
+ * @brief %Vector copy constructor.
+ * @param x A %vector of identical element and allocator types.
+ *
+ * The newly-created %vector uses a copy of the allocation
+ * object used by @a x. All the elements of @a x are copied,
+ * but any extra memory in
+ * @a x (for fast expansion) will not be copied.
+ */
+ vector(const vector& __x)
: _Base(__x.size(), __x.get_allocator())
{ _M_finish = uninitialized_copy(__x.begin(), __x.end(), _M_start); }
- /**
- * @brief Builds a %vector from a range.
- * @param first An input iterator.
- * @param last An input iterator.
- *
- * Create a %vector consisting of copies of the elements from [first,last).
- *
- * If the iterators are forward, bidirectional, or random-access, then
- * this will call the elements' copy constructor N times (where N is
- * distance(first,last)) and do no memory reallocation. But if only
- * input iterators are used, then this will do at most 2N calls to the
- * copy constructor, and logN memory reallocations.
- */
- template <typename _InputIterator>
- vector(_InputIterator __first, _InputIterator __last,
- const allocator_type& __a = allocator_type())
- : _Base(__a)
- {
- // Check whether it's an integral type. If so, it's not an iterator.
- typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
- _M_initialize_dispatch(__first, __last, _Integral());
- }
-
- /**
- * The dtor only erases the elements, and note that if the elements
- * themselves are pointers, the pointed-to memory is not touched in any
- * way. Managing the pointer is the user's responsibilty.
- */
- ~vector() { _Destroy(_M_start, _M_finish); }
-
- /**
- * @brief %Vector assignment operator.
- * @param x A %vector of identical element and allocator types.
- *
- * All the elements of @a x are copied, but any extra memory in @a x (for
- * fast expansion) will not be copied. Unlike the copy constructor, the
- * allocator object is not copied.
- */
- vector&
- operator=(const vector& __x);
-
- /**
- * @brief Assigns a given value to a %vector.
- * @param n Number of elements to be assigned.
- * @param val Value to be assigned.
- *
- * This function fills a %vector with @a n copies of the given value.
- * Note that the assignment completely changes the %vector and that the
- * resulting %vector's size is the same as the number of elements assigned.
- * Old data may be lost.
- */
- void
- assign(size_type __n, const value_type& __val) { _M_fill_assign(__n, __val); }
-
- /**
- * @brief Assigns a range to a %vector.
- * @param first An input iterator.
- * @param last An input iterator.
- *
- * This function fills a %vector with copies of the elements in the
- * range [first,last).
- *
- * Note that the assignment completely changes the %vector and that the
- * resulting %vector's size is the same as the number of elements assigned.
- * Old data may be lost.
- */
- template<typename _InputIterator>
- void
- assign(_InputIterator __first, _InputIterator __last)
- {
- // Check whether it's an integral type. If so, it's not an iterator.
- typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
- _M_assign_dispatch(__first, __last, _Integral());
- }
-
- /// Get a copy of the memory allocation object.
- allocator_type
- get_allocator() const { return _Base::get_allocator(); }
-
- // iterators
- /**
- * Returns a read/write iterator that points to the first element in the
- * %vector. Iteration is done in ordinary element order.
- */
- iterator
- begin() { return iterator (_M_start); }
-
- /**
- * Returns a read-only (constant) iterator that points to the first element
- * in the %vector. Iteration is done in ordinary element order.
- */
- const_iterator
- begin() const { return const_iterator (_M_start); }
-
- /**
- * Returns a read/write iterator that points one past the last element in
- * the %vector. Iteration is done in ordinary element order.
- */
- iterator
- end() { return iterator (_M_finish); }
-
- /**
- * Returns a read-only (constant) iterator that points one past the last
- * element in the %vector. Iteration is done in ordinary element order.
- */
- const_iterator
- end() const { return const_iterator (_M_finish); }
-
- /**
- * Returns a read/write reverse iterator that points to the last element in
- * the %vector. Iteration is done in reverse element order.
- */
- reverse_iterator
- rbegin() { return reverse_iterator(end()); }
-
- /**
- * Returns a read-only (constant) reverse iterator that points to the last
- * element in the %vector. Iteration is done in reverse element order.
- */
- const_reverse_iterator
- rbegin() const { return const_reverse_iterator(end()); }
-
- /**
- * Returns a read/write reverse iterator that points to one before the
- * first element in the %vector. Iteration is done in reverse element
- * order.
- */
- reverse_iterator
- rend() { return reverse_iterator(begin()); }
-
- /**
- * Returns a read-only (constant) reverse iterator that points to one
- * before the first element in the %vector. Iteration is done in reverse
- * element order.
- */
- const_reverse_iterator
- rend() const { return const_reverse_iterator(begin()); }
-
- // [23.2.4.2] capacity
- /** Returns the number of elements in the %vector. */
- size_type
- size() const { return size_type(end() - begin()); }
-
- /** Returns the size() of the largest possible %vector. */
- size_type
- max_size() const { return size_type(-1) / sizeof(value_type); }
-
- /**
- * @brief Resizes the %vector to the specified number of elements.
- * @param new_size Number of elements the %vector should contain.
- * @param x Data with which new elements should be populated.
- *
- * This function will %resize the %vector to the specified number of
- * elements. If the number is smaller than the %vector's current size the
- * %vector is truncated, otherwise the %vector is extended and new elements
- * are populated with given data.
- */
- void
- resize(size_type __new_size, const value_type& __x)
- {
- if (__new_size < size())
- erase(begin() + __new_size, end());
- else
- insert(end(), __new_size - size(), __x);
- }
-
- /**
- * @brief Resizes the %vector to the specified number of elements.
- * @param new_size Number of elements the %vector should contain.
- *
- * This function will resize the %vector to the specified number of
- * elements. If the number is smaller than the %vector's current size the
- * %vector is truncated, otherwise the %vector is extended and new elements
- * are default-constructed.
- */
- void
- resize(size_type __new_size) { resize(__new_size, value_type()); }
-
- /**
- * Returns the total number of elements that the %vector can hold before
- * needing to allocate more memory.
- */
- size_type
- capacity() const
- { return size_type(const_iterator(_M_end_of_storage) - begin()); }
-
- /**
- * Returns true if the %vector is empty. (Thus begin() would equal end().)
- */
- bool
- empty() const { return begin() == end(); }
-
- /**
- * @brief Attempt to preallocate enough memory for specified number of
- * elements.
- * @param n Number of elements required.
- * @throw std::length_error If @a n exceeds @c max_size().
- *
- * This function attempts to reserve enough memory for the %vector to hold
- * the specified number of elements. If the number requested is more than
- * max_size(), length_error is thrown.
- *
- * The advantage of this function is that if optimal code is a necessity
- * and the user can determine the number of elements that will be required,
- * the user can reserve the memory in %advance, and thus prevent a possible
- * reallocation of memory and copying of %vector data.
- */
- void
- reserve(size_type __n);
-
- // element access
- /**
- * @brief Subscript access to the data contained in the %vector.
- * @param n The index of the element for which data should be accessed.
- * @return Read/write reference to data.
- *
- * This operator allows for easy, array-style, data access.
- * Note that data access with this operator is unchecked and out_of_range
- * lookups are not defined. (For checked lookups see at().)
- */
- reference
- operator[](size_type __n) { return *(begin() + __n); }
-
- /**
- * @brief Subscript access to the data contained in the %vector.
- * @param n The index of the element for which data should be accessed.
- * @return Read-only (constant) reference to data.
- *
- * This operator allows for easy, array-style, data access.
- * Note that data access with this operator is unchecked and out_of_range
- * lookups are not defined. (For checked lookups see at().)
- */
- const_reference
- operator[](size_type __n) const { return *(begin() + __n); }
-
- protected:
- /// @if maint Safety check used only from at(). @endif
- void
- _M_range_check(size_type __n) const
- {
- if (__n >= this->size())
- __throw_out_of_range("vector [] access out of range");
- }
-
- public:
- /**
- * @brief Provides access to the data contained in the %vector.
- * @param n The index of the element for which data should be accessed.
- * @return Read/write reference to data.
- * @throw std::out_of_range If @a n is an invalid index.
- *
- * This function provides for safer data access. The parameter is first
- * checked that it is in the range of the vector. The function throws
- * out_of_range if the check fails.
- */
- reference
- at(size_type __n) { _M_range_check(__n); return (*this)[__n]; }
-
- /**
- * @brief Provides access to the data contained in the %vector.
- * @param n The index of the element for which data should be accessed.
- * @return Read-only (constant) reference to data.
- * @throw std::out_of_range If @a n is an invalid index.
- *
- * This function provides for safer data access. The parameter is first
- * checked that it is in the range of the vector. The function throws
- * out_of_range if the check fails.
- */
- const_reference
- at(size_type __n) const { _M_range_check(__n); return (*this)[__n]; }
-
- /**
- * Returns a read/write reference to the data at the first element of the
- * %vector.
- */
- reference
- front() { return *begin(); }
-
- /**
- * Returns a read-only (constant) reference to the data at the first
- * element of the %vector.
- */
- const_reference
- front() const { return *begin(); }
-
- /**
- * Returns a read/write reference to the data at the last element of the
- * %vector.
- */
- reference
- back() { return *(end() - 1); }
-
- /**
- * Returns a read-only (constant) reference to the data at the last
- * element of the %vector.
- */
- const_reference
- back() const { return *(end() - 1); }
-
- // [23.2.4.3] modifiers
- /**
- * @brief Add data to the end of the %vector.
- * @param x Data to be added.
- *
- * This is a typical stack operation. The function creates an element at
- * the end of the %vector and assigns the given data to it.
- * Due to the nature of a %vector this operation can be done in constant
- * time if the %vector has preallocated space available.
- */
- void
- push_back(const value_type& __x)
- {
- if (_M_finish != _M_end_of_storage)
- {
- _Construct(_M_finish, __x);
- ++_M_finish;
- }
- else
- _M_insert_aux(end(), __x);
- }
-
- /**
- * @brief Removes last element.
- *
- * This is a typical stack operation. It shrinks the %vector by one.
- *
- * Note that no data is returned, and if the last element's data is
- * needed, it should be retrieved before pop_back() is called.
- */
- void
- pop_back()
- {
- --_M_finish;
- _Destroy(_M_finish);
- }
-
- /**
- * @brief Inserts given value into %vector before specified iterator.
- * @param position An iterator into the %vector.
- * @param x Data to be inserted.
- * @return An iterator that points to the inserted data.
- *
- * This function will insert a copy of the given value before the specified
- * location.
- * Note that this kind of operation could be expensive for a %vector and if
- * it is frequently used the user should consider using std::list.
- */
- iterator
- insert(iterator __position, const value_type& __x);
-
- #ifdef _GLIBCPP_DEPRECATED
- /**
- * @brief Inserts an element into the %vector.
- * @param position An iterator into the %vector.
- * @return An iterator that points to the inserted element.
- *
- * This function will insert a default-constructed element before the
- * specified location. You should consider using
- * insert(position,value_type()) instead.
- * Note that this kind of operation could be expensive for a vector and if
- * it is frequently used the user should consider using std::list.
- *
- * @note This was deprecated in 3.2 and will be removed in 3.4. You must
- * define @c _GLIBCPP_DEPRECATED to make this visible in 3.2; see
- * c++config.h.
- */
- iterator
- insert(iterator __position)
- { return insert(__position, value_type()); }
- #endif
-
- /**
- * @brief Inserts a number of copies of given data into the %vector.
- * @param position An iterator into the %vector.
- * @param n Number of elements to be inserted.
- * @param x Data to be inserted.
- *
- * This function will insert a specified number of copies of the given data
- * before the location specified by @a position.
- *
- * Note that this kind of operation could be expensive for a %vector and if
- * it is frequently used the user should consider using std::list.
- */
- void
- insert (iterator __pos, size_type __n, const value_type& __x)
- { _M_fill_insert(__pos, __n, __x); }
-
- /**
- * @brief Inserts a range into the %vector.
- * @param pos An iterator into the %vector.
- * @param first An input iterator.
- * @param last An input iterator.
- *
- * This function will insert copies of the data in the range [first,last)
- * into the %vector before the location specified by @a pos.
- *
- * Note that this kind of operation could be expensive for a %vector and if
- * it is frequently used the user should consider using std::list.
- */
- template<typename _InputIterator>
- void
- insert(iterator __pos, _InputIterator __first, _InputIterator __last)
- {
- // Check whether it's an integral type. If so, it's not an iterator.
- typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
- _M_insert_dispatch(__pos, __first, __last, _Integral());
- }
-
- /**
- * @brief Remove element at given position.
- * @param position Iterator pointing to element to be erased.
- * @return An iterator pointing to the next element (or end()).
- *
- * This function will erase the element at the given position and thus
- * shorten the %vector by one.
- *
- * Note This operation could be expensive and if it is frequently used the
- * user should consider using std::list. The user is also cautioned that
- * this function only erases the element, and that if the element is itself
- * a pointer, the pointed-to memory is not touched in any way. Managing
- * the pointer is the user's responsibilty.
- */
- iterator
- erase(iterator __position);
-
- /**
- * @brief Remove a range of elements.
- * @param first Iterator pointing to the first element to be erased.
- * @param last Iterator pointing to one past the last element to be
- * erased.
- * @return An iterator pointing to the element pointed to by @a last
- * prior to erasing (or end()).
- *
- * This function will erase the elements in the range [first,last) and
- * shorten the %vector accordingly.
- *
- * Note This operation could be expensive and if it is frequently used the
- * user should consider using std::list. The user is also cautioned that
- * this function only erases the elements, and that if the elements
- * themselves are pointers, the pointed-to memory is not touched in any
- * way. Managing the pointer is the user's responsibilty.
- */
- iterator
- erase(iterator __first, iterator __last);
-
- /**
- * @brief Swaps data with another %vector.
- * @param x A %vector of the same element and allocator types.
- *
- * This exchanges the elements between two vectors in constant time.
- * (Three pointers, so it should be quite fast.)
- * Note that the global std::swap() function is specialized such that
- * std::swap(v1,v2) will feed to this function.
- */
- void
- swap(vector& __x)
- {
- std::swap(_M_start, __x._M_start);
- std::swap(_M_finish, __x._M_finish);
- std::swap(_M_end_of_storage, __x._M_end_of_storage);
- }
-
- /**
- * Erases all the elements. Note that this function only erases the
- * elements, and that if the elements themselves are pointers, the
- * pointed-to memory is not touched in any way. Managing the pointer is
- * the user's responsibilty.
- */
- void
- clear() { erase(begin(), end()); }
-
- protected:
- /**
- * @if maint
- * Memory expansion handler. Uses the member allocation function to
- * obtain @a n bytes of memory, and then copies [first,last) into it.
- * @endif
- */
- template <typename _ForwardIterator>
- pointer
- _M_allocate_and_copy(size_type __n,
- _ForwardIterator __first, _ForwardIterator __last)
- {
- pointer __result = _M_allocate(__n);
- try
+ /**
+ * @brief Builds a %vector from a range.
+ * @param first An input iterator.
+ * @param last An input iterator.
+ *
+ * Create a %vector consisting of copies of the elements from
+ * [first,last).
+ *
+ * If the iterators are forward, bidirectional, or random-access, then
+ * this will call the elements' copy constructor N times (where N is
+ * distance(first,last)) and do no memory reallocation. But if only
+ * input iterators are used, then this will do at most 2N calls to the
+ * copy constructor, and logN memory reallocations.
+ */
+ template<typename _InputIterator>
+ vector(_InputIterator __first, _InputIterator __last,
+ const allocator_type& __a = allocator_type())
+ : _Base(__a)
{
- uninitialized_copy(__first, __last, __result);
- return __result;
- }
- catch(...)
+ // Check whether it's an integral type. If so, it's not an iterator.
+ typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
+ _M_initialize_dispatch(__first, __last, _Integral());
+ }
+
+ /**
+ * The dtor only erases the elements, and note that if the elements
+ * themselves are pointers, the pointed-to memory is not touched in any
+ * way. Managing the pointer is the user's responsibilty.
+ */
+ ~vector() { _Destroy(_M_start, _M_finish); }
+
+ /**
+ * @brief %Vector assignment operator.
+ * @param x A %vector of identical element and allocator types.
+ *
+ * All the elements of @a x are copied, but any extra memory in
+ * @a x (for fast expansion) will not be copied. Unlike the
+ * copy constructor, the allocator object is not copied.
+ */
+ vector&
+ operator=(const vector& __x);
+
+ /**
+ * @brief Assigns a given value to a %vector.
+ * @param n Number of elements to be assigned.
+ * @param val Value to be assigned.
+ *
+ * This function fills a %vector with @a n copies of the given
+ * value. Note that the assignment completely changes the
+ * %vector and that the resulting %vector's size is the same as
+ * the number of elements assigned. Old data may be lost.
+ */
+ void
+ assign(size_type __n, const value_type& __val)
+ { _M_fill_assign(__n, __val); }
+
+ /**
+ * @brief Assigns a range to a %vector.
+ * @param first An input iterator.
+ * @param last An input iterator.
+ *
+ * This function fills a %vector with copies of the elements in the
+ * range [first,last).
+ *
+ * Note that the assignment completely changes the %vector and
+ * that the resulting %vector's size is the same as the number
+ * of elements assigned. Old data may be lost.
+ */
+ template<typename _InputIterator>
+ void
+ assign(_InputIterator __first, _InputIterator __last)
{
- _M_deallocate(__result, __n);
- __throw_exception_again;
- }
- }
-
-
- // Internal constructor functions follow.
-
- // called by the range constructor to implement [23.1.1]/9
- template<typename _Integer>
+ // Check whether it's an integral type. If so, it's not an iterator.
+ typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
+ _M_assign_dispatch(__first, __last, _Integral());
+ }
+
+ /// Get a copy of the memory allocation object.
+ allocator_type
+ get_allocator() const { return _Base::get_allocator(); }
+
+ // iterators
+ /**
+ * Returns a read/write iterator that points to the first element in the
+ * %vector. Iteration is done in ordinary element order.
+ */
+ iterator
+ begin() { return iterator (_M_start); }
+
+ /**
+ * Returns a read-only (constant) iterator that points to the
+ * first element in the %vector. Iteration is done in ordinary
+ * element order.
+ */
+ const_iterator
+ begin() const { return const_iterator (_M_start); }
+
+ /**
+ * Returns a read/write iterator that points one past the last
+ * element in the %vector. Iteration is done in ordinary
+ * element order.
+ */
+ iterator
+ end() { return iterator (_M_finish); }
+
+ /**
+ * Returns a read-only (constant) iterator that points one past the last
+ * element in the %vector. Iteration is done in ordinary element order.
+ */
+ const_iterator
+ end() const { return const_iterator (_M_finish); }
+
+ /**
+ * Returns a read/write reverse iterator that points to the
+ * last element in the %vector. Iteration is done in reverse
+ * element order.
+ */
+ reverse_iterator
+ rbegin() { return reverse_iterator(end()); }
+
+ /**
+ * Returns a read-only (constant) reverse iterator that points
+ * to the last element in the %vector. Iteration is done in
+ * reverse element order.
+ */
+ const_reverse_iterator
+ rbegin() const { return const_reverse_iterator(end()); }
+
+ /**
+ * Returns a read/write reverse iterator that points to one before the
+ * first element in the %vector. Iteration is done in reverse element
+ * order.
+ */
+ reverse_iterator
+ rend() { return reverse_iterator(begin()); }
+
+ /**
+ * Returns a read-only (constant) reverse iterator that points
+ * to one before the first element in the %vector. Iteration
+ * is done in reverse element order.
+ */
+ const_reverse_iterator
+ rend() const { return const_reverse_iterator(begin()); }
+
+ // [23.2.4.2] capacity
+ /** Returns the number of elements in the %vector. */
+ size_type
+ size() const { return size_type(end() - begin()); }
+
+ /** Returns the size() of the largest possible %vector. */
+ size_type
+ max_size() const { return size_type(-1) / sizeof(value_type); }
+
+ /**
+ * @brief Resizes the %vector to the specified number of elements.
+ * @param new_size Number of elements the %vector should contain.
+ * @param x Data with which new elements should be populated.
+ *
+ * This function will %resize the %vector to the specified
+ * number of elements. If the number is smaller than the
+ * %vector's current size the %vector is truncated, otherwise
+ * the %vector is extended and new elements are populated with
+ * given data.
+ */
void
- _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
+ resize(size_type __new_size, const value_type& __x)
{
- _M_start = _M_allocate(__n);
- _M_end_of_storage = _M_start + __n;
- _M_finish = uninitialized_fill_n(_M_start, __n, __value);
+ if (__new_size < size())
+ erase(begin() + __new_size, end());
+ else
+ insert(end(), __new_size - size(), __x);
}
-
- // called by the range constructor to implement [23.1.1]/9
- template<typename _InputIter>
+
+ /**
+ * @brief Resizes the %vector to the specified number of elements.
+ * @param new_size Number of elements the %vector should contain.
+ *
+ * This function will resize the %vector to the specified
+ * number of elements. If the number is smaller than the
+ * %vector's current size the %vector is truncated, otherwise
+ * the %vector is extended and new elements are
+ * default-constructed.
+ */
+ void
+ resize(size_type __new_size) { resize(__new_size, value_type()); }
+
+ /**
+ * Returns the total number of elements that the %vector can hold before
+ * needing to allocate more memory.
+ */
+ size_type
+ capacity() const
+ { return size_type(const_iterator(_M_end_of_storage) - begin()); }
+
+ /**
+ * Returns true if the %vector is empty. (Thus begin() would
+ * equal end().)
+ */
+ bool
+ empty() const { return begin() == end(); }
+
+ /**
+ * @brief Attempt to preallocate enough memory for specified number of
+ * elements.
+ * @param n Number of elements required.
+ * @throw std::length_error If @a n exceeds @c max_size().
+ *
+ * This function attempts to reserve enough memory for the
+ * %vector to hold the specified number of elements. If the
+ * number requested is more than max_size(), length_error is
+ * thrown.
+ *
+ * The advantage of this function is that if optimal code is a
+ * necessity and the user can determine the number of elements
+ * that will be required, the user can reserve the memory in
+ * %advance, and thus prevent a possible reallocation of memory
+ * and copying of %vector data.
+ */
+ void
+ reserve(size_type __n);
+
+ // element access
+ /**
+ * @brief Subscript access to the data contained in the %vector.
+ * @param n The index of the element for which data should be accessed.
+ * @return Read/write reference to data.
+ *
+ * This operator allows for easy, array-style, data access.
+ * Note that data access with this operator is unchecked and
+ * out_of_range lookups are not defined. (For checked lookups
+ * see at().)
+ */
+ reference
+ operator[](size_type __n) { return *(begin() + __n); }
+
+ /**
+ * @brief Subscript access to the data contained in the %vector.
+ * @param n The index of the element for which data should be
+ * accessed.
+ * @return Read-only (constant) reference to data.
+ *
+ * This operator allows for easy, array-style, data access.
+ * Note that data access with this operator is unchecked and
+ * out_of_range lookups are not defined. (For checked lookups
+ * see at().)
+ */
+ const_reference
+ operator[](size_type __n) const { return *(begin() + __n); }
+
+ protected:
+ /// @if maint Safety check used only from at(). @endif
void
- _M_initialize_dispatch(_InputIter __first, _InputIter __last,
- __false_type)
+ _M_range_check(size_type __n) const
{
- typedef typename iterator_traits<_InputIter>::iterator_category
- _IterCategory;
- _M_range_initialize(__first, __last, _IterCategory());
+ if (__n >= this->size())
+ __throw_out_of_range("vector [] access out of range");
}
-
- // called by the second initialize_dispatch above
- template <typename _InputIterator>
- void
- _M_range_initialize(_InputIterator __first,
- _InputIterator __last, input_iterator_tag)
- {
- for ( ; __first != __last; ++__first)
- push_back(*__first);
- }
-
- // called by the second initialize_dispatch above
- template <typename _ForwardIterator>
- void _M_range_initialize(_ForwardIterator __first,
- _ForwardIterator __last, forward_iterator_tag)
- {
- size_type __n = distance(__first, __last);
- _M_start = _M_allocate(__n);
- _M_end_of_storage = _M_start + __n;
- _M_finish = uninitialized_copy(__first, __last, _M_start);
- }
-
-
- // Internal assign functions follow. The *_aux functions do the actual
- // assignment work for the range versions.
-
- // called by the range assign to implement [23.1.1]/9
- template<typename _Integer>
- void
- _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
- {
- _M_fill_assign(static_cast<size_type>(__n),
- static_cast<value_type>(__val));
- }
-
- // called by the range assign to implement [23.1.1]/9
- template<typename _InputIter>
+
+ public:
+ /**
+ * @brief Provides access to the data contained in the %vector.
+ * @param n The index of the element for which data should be
+ * accessed.
+ * @return Read/write reference to data.
+ * @throw std::out_of_range If @a n is an invalid index.
+ *
+ * This function provides for safer data access. The parameter is first
+ * checked that it is in the range of the vector. The function throws
+ * out_of_range if the check fails.
+ */
+ reference
+ at(size_type __n) { _M_range_check(__n); return (*this)[__n]; }
+
+ /**
+ * @brief Provides access to the data contained in the %vector.
+ * @param n The index of the element for which data should be
+ * accessed.
+ * @return Read-only (constant) reference to data.
+ * @throw std::out_of_range If @a n is an invalid index.
+ *
+ * This function provides for safer data access. The parameter
+ * is first checked that it is in the range of the vector. The
+ * function throws out_of_range if the check fails.
+ */
+ const_reference
+ at(size_type __n) const { _M_range_check(__n); return (*this)[__n]; }
+
+ /**
+ * Returns a read/write reference to the data at the first
+ * element of the %vector.
+ */
+ reference
+ front() { return *begin(); }
+
+ /**
+ * Returns a read-only (constant) reference to the data at the first
+ * element of the %vector.
+ */
+ const_reference
+ front() const { return *begin(); }
+
+ /**
+ * Returns a read/write reference to the data at the last element of the
+ * %vector.
+ */
+ reference
+ back() { return *(end() - 1); }
+
+ /**
+ * Returns a read-only (constant) reference to the data at the last
+ * element of the %vector.
+ */
+ const_reference
+ back() const { return *(end() - 1); }
+
+ // [23.2.4.3] modifiers
+ /**
+ * @brief Add data to the end of the %vector.
+ * @param x Data to be added.
+ *
+ * This is a typical stack operation. The function creates an
+ * element at the end of the %vector and assigns the given data
+ * to it. Due to the nature of a %vector this operation can be
+ * done in constant time if the %vector has preallocated space
+ * available.
+ */
void
- _M_assign_dispatch(_InputIter __first, _InputIter __last, __false_type)
+ push_back(const value_type& __x)
{
- typedef typename iterator_traits<_InputIter>::iterator_category
- _IterCategory;
- _M_assign_aux(__first, __last, _IterCategory());
+ if (_M_finish != _M_end_of_storage)
+ {
+ _Construct(_M_finish, __x);
+ ++_M_finish;
+ }
+ else
+ _M_insert_aux(end(), __x);
}
-
- // called by the second assign_dispatch above
- template <typename _InputIterator>
- void
- _M_assign_aux(_InputIterator __first, _InputIterator __last,
- input_iterator_tag);
-
- // called by the second assign_dispatch above
- template <typename _ForwardIterator>
- void
- _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
- forward_iterator_tag);
-
- // Called by assign(n,t), and the range assign when it turns out to be the
- // same thing.
- void
- _M_fill_assign(size_type __n, const value_type& __val);
-
-
- // Internal insert functions follow.
-
- // called by the range insert to implement [23.1.1]/9
- template<typename _Integer>
+
+ /**
+ * @brief Removes last element.
+ *
+ * This is a typical stack operation. It shrinks the %vector by one.
+ *
+ * Note that no data is returned, and if the last element's data is
+ * needed, it should be retrieved before pop_back() is called.
+ */
void
- _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
- __true_type)
+ pop_back()
{
- _M_fill_insert(__pos, static_cast<size_type>(__n),
- static_cast<value_type>(__val));
+ --_M_finish;
+ _Destroy(_M_finish);
}
-
- // called by the range insert to implement [23.1.1]/9
- template<typename _InputIterator>
+
+ /**
+ * @brief Inserts given value into %vector before specified iterator.
+ * @param position An iterator into the %vector.
+ * @param x Data to be inserted.
+ * @return An iterator that points to the inserted data.
+ *
+ * This function will insert a copy of the given value before
+ * the specified location. Note that this kind of operation
+ * could be expensive for a %vector and if it is frequently
+ * used the user should consider using std::list.
+ */
+ iterator
+ insert(iterator __position, const value_type& __x);
+
+#ifdef _GLIBCPP_DEPRECATED
+ /**
+ * @brief Inserts an element into the %vector.
+ * @param position An iterator into the %vector.
+ * @return An iterator that points to the inserted element.
+ *
+ * This function will insert a default-constructed element
+ * before the specified location. You should consider using
+ * insert(position,value_type()) instead. Note that this kind
+ * of operation could be expensive for a vector and if it is
+ * frequently used the user should consider using std::list.
+ *
+ * @note This was deprecated in 3.2 and will be removed in 3.4.
+ * You must define @c _GLIBCPP_DEPRECATED to make this visible
+ * in 3.2; see c++config.h.
+ */
+ iterator
+ insert(iterator __position)
+ { return insert(__position, value_type()); }
+#endif
+
+ /**
+ * @brief Inserts a number of copies of given data into the %vector.
+ * @param position An iterator into the %vector.
+ * @param n Number of elements to be inserted.
+ * @param x Data to be inserted.
+ *
+ * This function will insert a specified number of copies of
+ * the given data before the location specified by @a position.
+ *
+ * Note that this kind of operation could be expensive for a
+ * %vector and if it is frequently used the user should
+ * consider using std::list.
+ */
+ void
+ insert(iterator __pos, size_type __n, const value_type& __x)
+ { _M_fill_insert(__pos, __n, __x); }
+
+ /**
+ * @brief Inserts a range into the %vector.
+ * @param pos An iterator into the %vector.
+ * @param first An input iterator.
+ * @param last An input iterator.
+ *
+ * This function will insert copies of the data in the range
+ * [first,last) into the %vector before the location specified
+ * by @a pos.
+ *
+ * Note that this kind of operation could be expensive for a
+ * %vector and if it is frequently used the user should
+ * consider using std::list.
+ */
+ template<typename _InputIterator>
+ void
+ insert(iterator __pos, _InputIterator __first, _InputIterator __last)
+ {
+ // Check whether it's an integral type. If so, it's not an iterator.
+ typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
+ _M_insert_dispatch(__pos, __first, __last, _Integral());
+ }
+
+ /**
+ * @brief Remove element at given position.
+ * @param position Iterator pointing to element to be erased.
+ * @return An iterator pointing to the next element (or end()).
+ *
+ * This function will erase the element at the given position and thus
+ * shorten the %vector by one.
+ *
+ * Note This operation could be expensive and if it is
+ * frequently used the user should consider using std::list.
+ * The user is also cautioned that this function only erases
+ * the element, and that if the element is itself a pointer,
+ * the pointed-to memory is not touched in any way. Managing
+ * the pointer is the user's responsibilty.
+ */
+ iterator
+ erase(iterator __position);
+
+ /**
+ * @brief Remove a range of elements.
+ * @param first Iterator pointing to the first element to be erased.
+ * @param last Iterator pointing to one past the last element to be
+ * erased.
+ * @return An iterator pointing to the element pointed to by @a last
+ * prior to erasing (or end()).
+ *
+ * This function will erase the elements in the range [first,last) and
+ * shorten the %vector accordingly.
+ *
+ * Note This operation could be expensive and if it is
+ * frequently used the user should consider using std::list.
+ * The user is also cautioned that this function only erases
+ * the elements, and that if the elements themselves are
+ * pointers, the pointed-to memory is not touched in any way.
+ * Managing the pointer is the user's responsibilty.
+ */
+ iterator
+ erase(iterator __first, iterator __last);
+
+ /**
+ * @brief Swaps data with another %vector.
+ * @param x A %vector of the same element and allocator types.
+ *
+ * This exchanges the elements between two vectors in constant time.
+ * (Three pointers, so it should be quite fast.)
+ * Note that the global std::swap() function is specialized such that
+ * std::swap(v1,v2) will feed to this function.
+ */
void
- _M_insert_dispatch(iterator __pos, _InputIterator __first,
- _InputIterator __last, __false_type)
+ swap(vector& __x)
{
- typedef typename iterator_traits<_InputIterator>::iterator_category
- _IterCategory;
- _M_range_insert(__pos, __first, __last, _IterCategory());
+ std::swap(_M_start, __x._M_start);
+ std::swap(_M_finish, __x._M_finish);
+ std::swap(_M_end_of_storage, __x._M_end_of_storage);
}
-
- // called by the second insert_dispatch above
- template <typename _InputIterator>
+
+ /**
+ * Erases all the elements. Note that this function only erases the
+ * elements, and that if the elements themselves are pointers, the
+ * pointed-to memory is not touched in any way. Managing the pointer is
+ * the user's responsibilty.
+ */
void
- _M_range_insert(iterator __pos,
- _InputIterator __first, _InputIterator __last,
- input_iterator_tag);
-
- // called by the second insert_dispatch above
- template <typename _ForwardIterator>
+ clear() { erase(begin(), end()); }
+
+ protected:
+ /**
+ * @if maint
+ * Memory expansion handler. Uses the member allocation function to
+ * obtain @a n bytes of memory, and then copies [first,last) into it.
+ * @endif
+ */
+ template<typename _ForwardIterator>
+ pointer
+ _M_allocate_and_copy(size_type __n,
+ _ForwardIterator __first, _ForwardIterator __last)
+ {
+ pointer __result = _M_allocate(__n);
+ try
+ {
+ uninitialized_copy(__first, __last, __result);
+ return __result;
+ }
+ catch(...)
+ {
+ _M_deallocate(__result, __n);
+ __throw_exception_again;
+ }
+ }
+
+
+ // Internal constructor functions follow.
+
+ // Called by the range constructor to implement [23.1.1]/9
+ template<typename _Integer>
+ void
+ _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
+ {
+ _M_start = _M_allocate(__n);
+ _M_end_of_storage = _M_start + __n;
+ _M_finish = uninitialized_fill_n(_M_start, __n, __value);
+ }
+
+ // Called by the range constructor to implement [23.1.1]/9
+ template<typename _InputIter>
+ void
+ _M_initialize_dispatch(_InputIter __first, _InputIter __last,
+ __false_type)
+ {
+ typedef typename iterator_traits<_InputIter>::iterator_category
+ _IterCategory;
+ _M_range_initialize(__first, __last, _IterCategory());
+ }
+
+ // Called by the second initialize_dispatch above
+ template<typename _InputIterator>
+ void
+ _M_range_initialize(_InputIterator __first,
+ _InputIterator __last, input_iterator_tag)
+ {
+ for ( ; __first != __last; ++__first)
+ push_back(*__first);
+ }
+
+ // Called by the second initialize_dispatch above
+ template<typename _ForwardIterator>
+ void
+ _M_range_initialize(_ForwardIterator __first,
+ _ForwardIterator __last, forward_iterator_tag)
+ {
+ size_type __n = distance(__first, __last);
+ _M_start = _M_allocate(__n);
+ _M_end_of_storage = _M_start + __n;
+ _M_finish = uninitialized_copy(__first, __last, _M_start);
+ }
+
+
+ // Internal assign functions follow. The *_aux functions do the actual
+ // assignment work for the range versions.
+
+ // Called by the range assign to implement [23.1.1]/9
+ template<typename _Integer>
+ void
+ _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
+ {
+ _M_fill_assign(static_cast<size_type>(__n),
+ static_cast<value_type>(__val));
+ }
+
+ // Called by the range assign to implement [23.1.1]/9
+ template<typename _InputIter>
+ void
+ _M_assign_dispatch(_InputIter __first, _InputIter __last, __false_type)
+ {
+ typedef typename iterator_traits<_InputIter>::iterator_category
+ _IterCategory;
+ _M_assign_aux(__first, __last, _IterCategory());
+ }
+
+ // Called by the second assign_dispatch above
+ template<typename _InputIterator>
+ void
+ _M_assign_aux(_InputIterator __first, _InputIterator __last,
+ input_iterator_tag);
+
+ // Called by the second assign_dispatch above
+ template<typename _ForwardIterator>
+ void
+ _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
+ forward_iterator_tag);
+
+ // Called by assign(n,t), and the range assign when it turns out
+ // to be the same thing.
void
- _M_range_insert(iterator __pos,
- _ForwardIterator __first, _ForwardIterator __last,
- forward_iterator_tag);
-
- // Called by insert(p,n,x), and the range insert when it turns out to be
- // the same thing.
- void
- _M_fill_insert (iterator __pos, size_type __n, const value_type& __x);
-
- // called by insert(p,x)
- void
- _M_insert_aux(iterator __position, const value_type& __x);
-
- #ifdef _GLIBCPP_DEPRECATED
- // unused now (same situation as in deque)
- void _M_insert_aux(iterator __position);
- #endif
- };
+ _M_fill_assign(size_type __n, const value_type& __val);
+
+
+ // Internal insert functions follow.
+
+ // Called by the range insert to implement [23.1.1]/9
+ template<typename _Integer>
+ void
+ _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
+ __true_type)
+ {
+ _M_fill_insert(__pos, static_cast<size_type>(__n),
+ static_cast<value_type>(__val));
+ }
+
+ // Called by the range insert to implement [23.1.1]/9
+ template<typename _InputIterator>
+ void
+ _M_insert_dispatch(iterator __pos, _InputIterator __first,
+ _InputIterator __last, __false_type)
+ {
+ typedef typename iterator_traits<_InputIterator>::iterator_category
+ _IterCategory;
+ _M_range_insert(__pos, __first, __last, _IterCategory());
+ }
+
+ // Called by the second insert_dispatch above
+ template<typename _InputIterator>
+ void
+ _M_range_insert(iterator __pos, _InputIterator __first,
+ _InputIterator __last, input_iterator_tag);
+
+ // Called by the second insert_dispatch above
+ template<typename _ForwardIterator>
+ void
+ _M_range_insert(iterator __pos, _ForwardIterator __first,
+ _ForwardIterator __last, forward_iterator_tag);
+
+ // Called by insert(p,n,x), and the range insert when it turns out to be
+ // the same thing.
+ void
+ _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
+
+ // Called by insert(p,x)
+ void
+ _M_insert_aux(iterator __position, const value_type& __x);
+
+#ifdef _GLIBCPP_DEPRECATED
+ // Unused now (same situation as in deque)
+ void _M_insert_aux(iterator __position);
+#endif
+ };
/**
@@ -908,7 +931,7 @@ namespace std
* vectors. Vectors are considered equivalent if their sizes are equal,
* and if corresponding elements compare equal.
*/
- template <typename _Tp, typename _Alloc>
+ template<typename _Tp, typename _Alloc>
inline bool
operator==(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y)
{
@@ -927,7 +950,7 @@ namespace std
*
* See std::lexographical_compare() for how the determination is made.
*/
- template <typename _Tp, typename _Alloc>
+ template<typename _Tp, typename _Alloc>
inline bool
operator<(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y)
{
@@ -936,31 +959,31 @@ namespace std
}
/// Based on operator==
- template <typename _Tp, typename _Alloc>
+ template<typename _Tp, typename _Alloc>
inline bool
operator!=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y)
{ return !(__x == __y); }
/// Based on operator<
- template <typename _Tp, typename _Alloc>
+ template<typename _Tp, typename _Alloc>
inline bool
operator>(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y)
{ return __y < __x; }
/// Based on operator<
- template <typename _Tp, typename _Alloc>
+ template<typename _Tp, typename _Alloc>
inline bool
operator<=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y)
{ return !(__y < __x); }
/// Based on operator<
- template <typename _Tp, typename _Alloc>
+ template<typename _Tp, typename _Alloc>
inline bool
operator>=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y)
{ return !(__x < __y); }
/// See std::vector::swap().
- template <typename _Tp, typename _Alloc>
+ template<typename _Tp, typename _Alloc>
inline void
swap(vector<_Tp,_Alloc>& __x, vector<_Tp,_Alloc>& __y)
{ __x.swap(__y); }
diff --git a/libstdc++-v3/include/bits/vector.tcc b/libstdc++-v3/include/bits/vector.tcc
index 4e742dd..da5cf7e 100644
--- a/libstdc++-v3/include/bits/vector.tcc
+++ b/libstdc++-v3/include/bits/vector.tcc
@@ -63,7 +63,7 @@
namespace std
{
- template <typename _Tp, typename _Alloc>
+ template<typename _Tp, typename _Alloc>
void
vector<_Tp,_Alloc>::
reserve(size_type __n)
@@ -82,7 +82,7 @@ namespace std
}
}
- template <typename _Tp, typename _Alloc>
+ template<typename _Tp, typename _Alloc>
typename vector<_Tp,_Alloc>::iterator
vector<_Tp,_Alloc>::
insert(iterator __position, const value_type& __x)
@@ -98,7 +98,7 @@ namespace std
return begin() + __n;
}
- template <typename _Tp, typename _Alloc>
+ template<typename _Tp, typename _Alloc>
typename vector<_Tp,_Alloc>::iterator
vector<_Tp,_Alloc>::
erase(iterator __position)
@@ -110,7 +110,7 @@ namespace std
return __position;
}
- template <typename _Tp, typename _Alloc>
+ template<typename _Tp, typename _Alloc>
typename vector<_Tp,_Alloc>::iterator
vector<_Tp,_Alloc>::
erase(iterator __first, iterator __last)
@@ -121,7 +121,7 @@ namespace std
return __first;
}
- template <typename _Tp, typename _Alloc>
+ template<typename _Tp, typename _Alloc>
vector<_Tp,_Alloc>&
vector<_Tp,_Alloc>::
operator=(const vector<_Tp,_Alloc>& __x)
@@ -152,7 +152,7 @@ namespace std
return *this;
}
- template <typename _Tp, typename _Alloc>
+ template<typename _Tp, typename _Alloc>
void
vector<_Tp,_Alloc>::
_M_fill_assign(size_t __n, const value_type& __val)
@@ -171,7 +171,7 @@ namespace std
erase(fill_n(begin(), __n, __val), end());
}
- template <typename _Tp, typename _Alloc> template <typename _InputIter>
+ template<typename _Tp, typename _Alloc> template<typename _InputIter>
void
vector<_Tp,_Alloc>::
_M_assign_aux(_InputIter __first, _InputIter __last, input_iterator_tag)
@@ -185,7 +185,7 @@ namespace std
insert(end(), __first, __last);
}
- template <typename _Tp, typename _Alloc> template <typename _ForwardIter>
+ template<typename _Tp, typename _Alloc> template<typename _ForwardIter>
void
vector<_Tp,_Alloc>::
_M_assign_aux(_ForwardIter __first, _ForwardIter __last,
@@ -216,7 +216,7 @@ namespace std
}
}
- template <typename _Tp, typename _Alloc>
+ template<typename _Tp, typename _Alloc>
void
vector<_Tp,_Alloc>::
_M_insert_aux(iterator __position, const _Tp& __x)
@@ -259,7 +259,7 @@ namespace std
}
#ifdef _GLIBCPP_DEPRECATED
- template <typename _Tp, typename _Alloc>
+ template<typename _Tp, typename _Alloc>
void
vector<_Tp,_Alloc>::
_M_insert_aux(iterator __position)
@@ -302,63 +302,64 @@ namespace std
}
#endif
- template <typename _Tp, typename _Alloc>
+ template<typename _Tp, typename _Alloc>
void
vector<_Tp,_Alloc>::
_M_fill_insert(iterator __position, size_type __n, const value_type& __x)
{
if (__n != 0)
{
- if (size_type(_M_end_of_storage - _M_finish) >= __n) {
- value_type __x_copy = __x;
- const size_type __elems_after = end() - __position;
- iterator __old_finish(_M_finish);
- if (__elems_after > __n)
- {
- uninitialized_copy(_M_finish - __n, _M_finish, _M_finish);
- _M_finish += __n;
- copy_backward(__position, __old_finish - __n, __old_finish);
- fill(__position, __position + __n, __x_copy);
- }
- else
- {
- uninitialized_fill_n(_M_finish, __n - __elems_after, __x_copy);
- _M_finish += __n - __elems_after;
- uninitialized_copy(__position, __old_finish, _M_finish);
- _M_finish += __elems_after;
- fill(__position, __old_finish, __x_copy);
- }
- }
+ if (size_type(_M_end_of_storage - _M_finish) >= __n)
+ {
+ value_type __x_copy = __x;
+ const size_type __elems_after = end() - __position;
+ iterator __old_finish(_M_finish);
+ if (__elems_after > __n)
+ {
+ uninitialized_copy(_M_finish - __n, _M_finish, _M_finish);
+ _M_finish += __n;
+ copy_backward(__position, __old_finish - __n, __old_finish);
+ fill(__position, __position + __n, __x_copy);
+ }
+ else
+ {
+ uninitialized_fill_n(_M_finish, __n - __elems_after, __x_copy);
+ _M_finish += __n - __elems_after;
+ uninitialized_copy(__position, __old_finish, _M_finish);
+ _M_finish += __elems_after;
+ fill(__position, __old_finish, __x_copy);
+ }
+ }
else
- {
- const size_type __old_size = size();
- const size_type __len = __old_size + max(__old_size, __n);
- iterator __new_start(_M_allocate(__len));
- iterator __new_finish(__new_start);
- try
- {
- __new_finish = uninitialized_copy(begin(), __position,
- __new_start);
- __new_finish = uninitialized_fill_n(__new_finish, __n, __x);
- __new_finish
- = uninitialized_copy(__position, end(), __new_finish);
- }
- catch(...)
- {
- _Destroy(__new_start,__new_finish);
- _M_deallocate(__new_start.base(),__len);
- __throw_exception_again;
- }
- _Destroy(_M_start, _M_finish);
- _M_deallocate(_M_start, _M_end_of_storage - _M_start);
- _M_start = __new_start.base();
- _M_finish = __new_finish.base();
- _M_end_of_storage = __new_start.base() + __len;
- }
+ {
+ const size_type __old_size = size();
+ const size_type __len = __old_size + max(__old_size, __n);
+ iterator __new_start(_M_allocate(__len));
+ iterator __new_finish(__new_start);
+ try
+ {
+ __new_finish = uninitialized_copy(begin(), __position,
+ __new_start);
+ __new_finish = uninitialized_fill_n(__new_finish, __n, __x);
+ __new_finish = uninitialized_copy(__position, end(),
+ __new_finish);
+ }
+ catch(...)
+ {
+ _Destroy(__new_start,__new_finish);
+ _M_deallocate(__new_start.base(),__len);
+ __throw_exception_again;
+ }
+ _Destroy(_M_start, _M_finish);
+ _M_deallocate(_M_start, _M_end_of_storage - _M_start);
+ _M_start = __new_start.base();
+ _M_finish = __new_finish.base();
+ _M_end_of_storage = __new_start.base() + __len;
+ }
}
}
- template <typename _Tp, typename _Alloc> template <typename _InputIterator>
+ template<typename _Tp, typename _Alloc> template<typename _InputIterator>
void
vector<_Tp,_Alloc>::
_M_range_insert(iterator __pos,
@@ -372,12 +373,11 @@ namespace std
}
}
- template <typename _Tp, typename _Alloc> template <typename _ForwardIterator>
+ template<typename _Tp, typename _Alloc> template<typename _ForwardIterator>
void
vector<_Tp,_Alloc>::
- _M_range_insert(iterator __position,
- _ForwardIterator __first, _ForwardIterator __last,
- forward_iterator_tag)
+ _M_range_insert(iterator __position,_ForwardIterator __first,
+ _ForwardIterator __last, forward_iterator_tag)
{
if (__first != __last)
{
diff --git a/libstdc++-v3/testsuite/20_util/allocator_members.cc b/libstdc++-v3/testsuite/20_util/allocator_members.cc
index 5d6cdd7..8c40ab7 100644
--- a/libstdc++-v3/testsuite/20_util/allocator_members.cc
+++ b/libstdc++-v3/testsuite/20_util/allocator_members.cc
@@ -1,6 +1,6 @@
// 2001-06-14 Benjamin Kosnik <bkoz@redhat.com>
-// Copyright (C) 2001 Free Software Foundation, Inc.
+// Copyright (C) 2001, 2002 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
@@ -21,6 +21,7 @@
// 20.4.1.1 allocator members
#include <memory>
+#include <stdexcept>
#include <cstdlib>
#include <testsuite_hooks.h>
@@ -42,7 +43,7 @@ void operator delete(void *v) throw()
return std::free(v);
}
-int main(void)
+void test01()
{
bool test = true;
std::allocator<gnu> obj;
@@ -55,6 +56,34 @@ int main(void)
obj.deallocate(pobj, 256);
VERIFY( check_delete );
+}
+
+// libstdc++/8230
+void test02()
+{
+ bool test = true;
+ try
+ {
+ std::allocator<int> alloc;
+ const std::allocator<int>::size_type n = alloc.max_size();
+ int* p = alloc.allocate(n + 1);
+ p[n] = 2002;
+ }
+ catch(const std::bad_alloc& e)
+ {
+ // Allowed.
+ test = true;
+ }
+ catch(...)
+ {
+ test = false;
+ }
+ VERIFY( test );
+}
+int main()
+{
+ test01();
+ test02();
return 0;
}
diff --git a/libstdc++-v3/testsuite/23_containers/vector_capacity.cc b/libstdc++-v3/testsuite/23_containers/vector_capacity.cc
index e73b15a..8e9b6a8 100644
--- a/libstdc++-v3/testsuite/23_containers/vector_capacity.cc
+++ b/libstdc++-v3/testsuite/23_containers/vector_capacity.cc
@@ -99,9 +99,30 @@ void test02()
}
}
+void test03()
+{
+ bool test = true;
+ std::vector<int> v;
+ try
+ {
+ v.resize(v.max_size());
+ v[v.max_size() - 1] = 2002;
+ }
+ catch (const std::bad_alloc& error)
+ {
+ test = true;
+ }
+ catch (...)
+ {
+ test = false;
+ }
+ VERIFY( test );
+}
+
int main()
{
test01();
test02();
+ test03();
return 0;
}