diff options
| -rw-r--r-- | gcc/fortran/intrinsic.texi | 207 |
1 files changed, 147 insertions, 60 deletions
diff --git a/gcc/fortran/intrinsic.texi b/gcc/fortran/intrinsic.texi index 63b8b2b..d8456e8 100644 --- a/gcc/fortran/intrinsic.texi +++ b/gcc/fortran/intrinsic.texi @@ -404,11 +404,12 @@ end program test_abs @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 @item Name @tab Argument @tab Return type @tab Standard -@item @code{CABS(A)} @tab @code{COMPLEX(4) Z} @tab @code{REAL(4)} @tab Fortran 77 and later -@item @code{DABS(A)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later -@item @code{IABS(A)} @tab @code{INTEGER(4) I} @tab @code{INTEGER(4)} @tab Fortran 77 and later -@item @code{ZABS(A)} @tab @code{COMPLEX(8) Z} @tab @code{COMPLEX(8)} @tab GNU extension -@item @code{CDABS(A)} @tab @code{COMPLEX(8) Z} @tab @code{COMPLEX(8)} @tab GNU extension +@item @code{ABS(A)} @tab @code{REAL(4) A} @tab @code{REAL(4)} @tab Fortran 77 and later +@item @code{CABS(A)} @tab @code{COMPLEX(4) A} @tab @code{REAL(4)} @tab Fortran 77 and later +@item @code{DABS(A)} @tab @code{REAL(8) A} @tab @code{REAL(8)} @tab Fortran 77 and later +@item @code{IABS(A)} @tab @code{INTEGER(4) A} @tab @code{INTEGER(4)} @tab Fortran 77 and later +@item @code{ZABS(A)} @tab @code{COMPLEX(8) A} @tab @code{COMPLEX(8)} @tab GNU extension +@item @code{CDABS(A)} @tab @code{COMPLEX(8) A} @tab @code{COMPLEX(8)} @tab GNU extension @end multitable @end table @@ -565,8 +566,9 @@ end program test_acos @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 -@item Name @tab Argument @tab Return type @tab Standard -@item @code{DACOS(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later +@item Name @tab Argument @tab Return type @tab Standard +@item @code{ACOS(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 77 and later +@item @code{DACOS(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later @end multitable @item @emph{See also}: @@ -765,10 +767,11 @@ end program test_aimag @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 -@item Name @tab Argument @tab Return type @tab Standard -@item @code{DIMAG(Z)} @tab @code{COMPLEX(8) Z} @tab @code{REAL(8)} @tab GNU extension -@item @code{IMAG(Z)} @tab @code{COMPLEX Z} @tab @code{REAL} @tab GNU extension -@item @code{IMAGPART(Z)} @tab @code{COMPLEX Z} @tab @code{REAL} @tab GNU extension +@item Name @tab Argument @tab Return type @tab Standard +@item @code{AIMAG(Z)} @tab @code{COMPLEX Z} @tab @code{REAL} @tab GNU extension +@item @code{DIMAG(Z)} @tab @code{COMPLEX(8) Z} @tab @code{REAL(8)} @tab GNU extension +@item @code{IMAG(Z)} @tab @code{COMPLEX Z} @tab @code{REAL} @tab GNU extension +@item @code{IMAGPART(Z)} @tab @code{COMPLEX Z} @tab @code{REAL} @tab GNU extension @end multitable @end table @@ -825,7 +828,8 @@ end program test_aint @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 @item Name @tab Argument @tab Return type @tab Standard -@item @code{DINT(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later +@item @code{AINT(A)} @tab @code{REAL(4) A} @tab @code{REAL(4)} @tab Fortran 77 and later +@item @code{DINT(A)} @tab @code{REAL(8) A} @tab @code{REAL(8)} @tab Fortran 77 and later @end multitable @end table @@ -956,26 +960,29 @@ end program test_all @table @asis @item @emph{Description}: -@code{ALLOCATED(ARRAY)} checks the status of whether @var{X} is allocated. +@code{ALLOCATED(ARRAY)} and @code{ALLOCATED(SCALAR)} check the allocation +status of @var{ARRAY} and @var{SCALAR}, respectively. @item @emph{Standard}: -Fortran 95 and later +Fortran 95 and later. Note, the @code{SCALAR=} keyword and allocatable +scalar entities are available in Fortran 2003 and later. @item @emph{Class}: Inquiry function @item @emph{Syntax}: -@code{RESULT = ALLOCATED(ARRAY)} +@code{RESULT = ALLOCATED(ARRAY)} or @code{RESULT = ALLOCATED(SCALAR)} @item @emph{Arguments}: @multitable @columnfractions .15 .70 @item @var{ARRAY} @tab The argument shall be an @code{ALLOCATABLE} array. +@item @var{SCALAR} @tab The argument shall be an @code{ALLOCATABLE} scalar. @end multitable @item @emph{Return value}: The return value is a scalar @code{LOGICAL} with the default logical -kind type parameter. If @var{ARRAY} is allocated, @code{ALLOCATED(ARRAY)} -is @code{.TRUE.}; otherwise, it returns @code{.FALSE.} +kind type parameter. If the argument is allocated, then the result is +@code{.TRUE.}; otherwise, it returns @code{.FALSE.} @item @emph{Example}: @smallexample @@ -1092,6 +1099,7 @@ end program test_anint @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 @item Name @tab Argument @tab Return type @tab Standard +@item @code{AINT(A)} @tab @code{REAL(4) A} @tab @code{REAL(4)} @tab Fortran 77 and later @item @code{DNINT(A)} @tab @code{REAL(8) A} @tab @code{REAL(8)} @tab Fortran 77 and later @end multitable @end table @@ -1207,6 +1215,7 @@ end program test_asin @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 @item Name @tab Argument @tab Return type @tab Standard +@item @code{ASIN(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 77 and later @item @code{DASIN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later @end multitable @@ -1393,6 +1402,7 @@ end program test_atan @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 @item Name @tab Argument @tab Return type @tab Standard +@item @code{ATAN(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 77 and later @item @code{DATAN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later @end multitable @@ -1452,8 +1462,9 @@ end program test_atan2 @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 -@item Name @tab Argument @tab Return type @tab Standard -@item @code{DATAN2(X, Y)} @tab @code{REAL(8) X}, @code{REAL(8) Y} @tab @code{REAL(8)} @tab Fortran 77 and later +@item Name @tab Argument @tab Return type @tab Standard +@item @code{ATAN2(X, Y)} @tab @code{REAL(4) X, Y} @tab @code{REAL(4)} @tab Fortran 77 and later +@item @code{DATAN2(X, Y)} @tab @code{REAL(8) X, Y} @tab @code{REAL(8)} @tab Fortran 77 and later @end multitable @end table @@ -1603,8 +1614,8 @@ end program test_besj1 @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 -@item Name @tab Argument @tab Return type @tab Standard -@item @code{DBESJ1(X)}@tab @code{REAL(8) X} @tab @code{REAL(8)} @tab GNU extension +@item Name @tab Argument @tab Return type @tab Standard +@item @code{DBESJ1(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab GNU extension @end multitable @end table @@ -1804,7 +1815,7 @@ end program test_besyn @multitable @columnfractions .20 .20 .20 .25 @item Name @tab Argument @tab Return type @tab Standard @item @code{DBESYN(N,X)} @tab @code{INTEGER N} @tab @code{REAL(8)} @tab GNU extension -@item @tab @code{REAL(8) X} @tab @tab +@item @tab @code{REAL(8) X} @tab @tab @end multitable @end table @@ -2292,6 +2303,12 @@ program test_char end program test_char @end smallexample +@item @emph{Specific names}: +@multitable @columnfractions .20 .20 .20 .25 +@item Name @tab Argument @tab Return type @tab Standard +@item @code{CHAR(I)} @tab @code{INTEGER I} @tab @code{CHARACTER(LEN=1)} @tab F77 and later +@end multitable + @item @emph{Note}: See @ref{ICHAR} for a discussion of converting between numerical values and formatted string representations. @@ -2615,8 +2632,9 @@ end program test_conjg @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 -@item Name @tab Argument @tab Return type @tab Standard -@item @code{DCONJG(Z)} @tab @code{COMPLEX(8) Z} @tab @code{COMPLEX(8)} @tab GNU extension +@item Name @tab Argument @tab Return type @tab Standard +@item @code{CONJG(Z)} @tab @code{COMPLEX Z} @tab @code{COMPLEX} @tab GNU extension +@item @code{DCONJG(Z)} @tab @code{COMPLEX(8) Z} @tab @code{COMPLEX(8)} @tab GNU extension @end multitable @end table @@ -2667,6 +2685,7 @@ end program test_cos @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 @item Name @tab Argument @tab Return type @tab Standard +@item @code{COS(X)} n@tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 77 and later @item @code{DCOS(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later @item @code{CCOS(X)} @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab Fortran 77 and later @item @code{ZCOS(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension @@ -2723,6 +2742,7 @@ end program test_cosh @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 @item Name @tab Argument @tab Return type @tab Standard +@item @code{COSH(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 77 and later @item @code{DCOSH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later @end multitable @@ -3264,9 +3284,10 @@ end program test_dim @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 -@item Name @tab Argument @tab Return type @tab Standard -@item @code{IDIM(X,Y)} @tab @code{INTEGER(4) X,Y} @tab @code{INTEGER(4)} @tab Fortran 77 and later -@item @code{DDIM(X,Y)} @tab @code{REAL(8) X,Y} @tab @code{REAL(8)} @tab Fortran 77 and later +@item Name @tab Argument @tab Return type @tab Standard +@item @code{DIM(X,Y)} @tab @code{REAL(4) X, Y} @tab @code{REAL(4)} @tab Fortran 77 and later +@item @code{IDIM(X,Y)} @tab @code{INTEGER(4) X, Y} @tab @code{INTEGER(4)} @tab Fortran 77 and later +@item @code{DDIM(X,Y)} @tab @code{REAL(8) X, Y} @tab @code{REAL(8)} @tab Fortran 77 and later @end multitable @end table @@ -3363,8 +3384,14 @@ program test_dprod print *, d end program test_dprod @end smallexample -@end table +@item @emph{Specific names}: +@multitable @columnfractions .20 .20 .20 .25 +@item Name @tab Argument @tab Return type @tab Standard +@item @code{DPROD(X,Y)} @tab @code{REAL(4) X, Y} @tab @code{REAL(4)} @tab Fortran 77 and later +@end multitable + +@end table @node DREAL @@ -3892,6 +3919,7 @@ end program test_exp @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 @item Name @tab Argument @tab Return type @tab Standard +@item @code{EXP(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 77 and later @item @code{DEXP(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later @item @code{CEXP(X)} @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab Fortran 77 and later @item @code{ZEXP(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension @@ -5701,6 +5729,12 @@ program test_ichar end program test_ichar @end smallexample +@item @emph{Specific names}: +@multitable @columnfractions .20 .20 .20 .25 +@item Name @tab Argument @tab Return type @tab Standard +@item @code{ICHAR(C)} @tab @code{CHARACTER C} @tab @code{INTEGER(4)} @tab Fortran 77 and later +@end multitable + @item @emph{Note}: No intrinsic exists to convert between a numeric value and a formatted character string representation -- for instance, given the @@ -5886,6 +5920,12 @@ expression indicating the kind parameter of the result. The return value is of type @code{INTEGER} and of kind @var{KIND}. If @var{KIND} is absent, the return value is of default integer kind. +@item @emph{Specific names}: +@multitable @columnfractions .20 .20 .20 .25 +@item Name @tab Argument @tab Return type @tab Standard +@item @code{INDEX(STRING, SUBSTRING)} @tab @code{CHARACTER} @tab @code{INTEGER(4)} @tab Fortran 77 and later +@end multitable + @item @emph{See also}: @ref{SCAN}, @ref{VERIFY} @end table @@ -5947,15 +5987,15 @@ end program @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 -@item Name @tab Argument @tab Return type @tab Standard -@item @code{IFIX(A)} @tab @code{REAL(4) A} @tab @code{INTEGER} @tab Fortran 77 and later -@item @code{IDINT(A)} @tab @code{REAL(8) A} @tab @code{INTEGER} @tab Fortran 77 and later +@item Name @tab Argument @tab Return type @tab Standard +@item @code{INT(A)} @tab @code{REAL(4) A} @tab @code{INTEGER} @tab Fortran 77 and later +@item @code{IFIX(A)} @tab @code{REAL(4) A} @tab @code{INTEGER} @tab Fortran 77 and later +@item @code{IDINT(A)} @tab @code{REAL(8) A} @tab @code{INTEGER} @tab Fortran 77 and later @end multitable @end table - @node INT2 @section @code{INT2} --- Convert to 16-bit integer type @fnindex INT2 @@ -6700,6 +6740,14 @@ expression indicating the kind parameter of the result. The return value is of type @code{INTEGER} and of kind @var{KIND}. If @var{KIND} is absent, the return value is of default integer kind. + +@item @emph{Specific names}: +@multitable @columnfractions .20 .20 .20 .25 +@item Name @tab Argument @tab Return type @tab Standard +@item @code{LEN(STRING)} @tab @code{CHARACTER} @tab @code{INTEGER} @tab Fortran 77 and later +@end multitable + + @item @emph{See also}: @ref{LEN_TRIM}, @ref{ADJUSTL}, @ref{ADJUSTR} @end table @@ -6782,6 +6830,12 @@ Elemental function Returns @code{.TRUE.} if @code{STRING_A >= STRING_B}, and @code{.FALSE.} otherwise, based on the ASCII ordering. +@item @emph{Specific names}: +@multitable @columnfractions .20 .20 .20 .25 +@item Name @tab Argument @tab Return type @tab Standard +@item @code{LGE(STRING_A, STRING_B)} @tab @code{CHARACTER} @tab @code{LOGICAL} @tab Fortran 77 and later +@end multitable + @item @emph{See also}: @ref{LGT}, @ref{LLE}, @ref{LLT} @end table @@ -6828,6 +6882,12 @@ Elemental function Returns @code{.TRUE.} if @code{STRING_A > STRING_B}, and @code{.FALSE.} otherwise, based on the ASCII ordering. +@item @emph{Specific names}: +@multitable @columnfractions .20 .20 .20 .25 +@item Name @tab Argument @tab Return type @tab Standard +@item @code{LGT(STRING_A, STRING_B)} @tab @code{CHARACTER} @tab @code{LOGICAL} @tab Fortran 77 and later +@end multitable + @item @emph{See also}: @ref{LGE}, @ref{LLE}, @ref{LLT} @end table @@ -6917,6 +6977,12 @@ Elemental function Returns @code{.TRUE.} if @code{STRING_A <= STRING_B}, and @code{.FALSE.} otherwise, based on the ASCII ordering. +@item @emph{Specific names}: +@multitable @columnfractions .20 .20 .20 .25 +@item Name @tab Argument @tab Return type @tab Standard +@item @code{LLE(STRING_A, STRING_B)} @tab @code{CHARACTER} @tab @code{LOGICAL} @tab Fortran 77 and later +@end multitable + @item @emph{See also}: @ref{LGE}, @ref{LGT}, @ref{LLT} @end table @@ -6963,6 +7029,12 @@ Elemental function Returns @code{.TRUE.} if @code{STRING_A < STRING_B}, and @code{.FALSE.} otherwise, based on the ASCII ordering. +@item @emph{Specific names}: +@multitable @columnfractions .20 .20 .20 .25 +@item Name @tab Argument @tab Return type @tab Standard +@item @code{LLT(STRING_A, STRING_B)} @tab @code{CHARACTER} @tab @code{LOGICAL} @tab Fortran 77 and later +@end multitable + @item @emph{See also}: @ref{LGE}, @ref{LGT}, @ref{LLE} @end table @@ -7556,12 +7628,12 @@ and has the same type and kind as the first argument. @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 -@item Name @tab Argument @tab Return type @tab Standard -@item @code{MAX0(I)} @tab @code{INTEGER(4) I} @tab @code{INTEGER(4)} @tab Fortran 77 and later -@item @code{AMAX0(I)} @tab @code{INTEGER(4) I} @tab @code{REAL(MAX(X))} @tab Fortran 77 and later -@item @code{MAX1(X)} @tab @code{REAL X} @tab @code{INT(MAX(X))} @tab Fortran 77 and later -@item @code{AMAX1(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 77 and later -@item @code{DMAX1(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later +@item Name @tab Argument @tab Return type @tab Standard +@item @code{MAX0(A1)} @tab @code{INTEGER(4) A1} @tab @code{INTEGER(4)} @tab Fortran 77 and later +@item @code{AMAX0(A1)} @tab @code{INTEGER(4) A1} @tab @code{REAL(MAX(X))} @tab Fortran 77 and later +@item @code{MAX1(A1)} @tab @code{REAL A1} @tab @code{INT(MAX(X))} @tab Fortran 77 and later +@item @code{AMAX1(A1)} @tab @code{REAL(4) A1} @tab @code{REAL(4)} @tab Fortran 77 and later +@item @code{DMAX1(A1)} @tab @code{REAL(8) A1} @tab @code{REAL(8)} @tab Fortran 77 and later @end multitable @item @emph{See also}: @@ -7876,12 +7948,12 @@ and has the same type and kind as the first argument. @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 -@item Name @tab Argument @tab Return type @tab Standard -@item @code{MIN0(I)} @tab @code{INTEGER(4) I} @tab @code{INTEGER(4)} @tab Fortran 77 and later -@item @code{AMIN0(I)} @tab @code{INTEGER(4) I} @tab @code{REAL(MIN(X))} @tab Fortran 77 and later -@item @code{MIN1(X)} @tab @code{REAL X} @tab @code{INT(MIN(X))} @tab Fortran 77 and later -@item @code{AMIN1(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 77 and later -@item @code{DMIN1(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later +@item Name @tab Argument @tab Return type @tab Standard +@item @code{MIN0(A1)} @tab @code{INTEGER(4) A1} @tab @code{INTEGER(4)} @tab Fortran 77 and later +@item @code{AMIN0(A1)} @tab @code{INTEGER(4) A1} @tab @code{REAL(4)} @tab Fortran 77 and later +@item @code{MIN1(A1)} @tab @code{REAL A1} @tab @code{INTEGER(4)} @tab Fortran 77 and later +@item @code{AMIN1(A1)} @tab @code{REAL(4) A1} @tab @code{REAL(4)} @tab Fortran 77 and later +@item @code{DMIN1(A1)} @tab @code{REAL(8) A1} @tab @code{REAL(8)} @tab Fortran 77 and later @end multitable @item @emph{See also}: @@ -8091,9 +8163,10 @@ end program test_mod @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 -@item Name @tab Arguments @tab Return type @tab Standard -@item @code{AMOD(A,P)} @tab @code{REAL(4)} @tab @code{REAL(4)} @tab Fortran 95 and later -@item @code{DMOD(A,P)} @tab @code{REAL(8)} @tab @code{REAL(8)} @tab Fortran 95 and later +@item Name @tab Arguments @tab Return type @tab Standard +@item @code{MOD(A,P)} @tab @code{INTEGER A,P} @tab @code{INTEGER} @tab Fortran 95 and later +@item @code{AMOD(A,P)} @tab @code{REAL(4) A,P} @tab @code{REAL(4)} @tab Fortran 95 and later +@item @code{DMOD(A,P)} @tab @code{REAL(8) A,P} @tab @code{REAL(8)} @tab Fortran 95 and later @end multitable @end table @@ -8370,9 +8443,10 @@ end program test_nint @end smallexample @item @emph{Specific names}: -@multitable @columnfractions .25 .25 .25 -@item Name @tab Argument @tab Standard -@item @code{IDNINT(X)} @tab @code{REAL(8)} @tab Fortran 95 and later +@multitable @columnfractions .20 .20 .20 .25 +@item Name @tab Argument @tab Return Type @tab Standard +@item @code{NINT(A)} @tab @code{REAL(4) A} @tab @code{INTEGER} @tab Fortran 95 and later +@item @code{IDNINT(A)} @tab @code{REAL(8) A} @tab @code{INTEGER} @tab Fortran 95 and later @end multitable @item @emph{See also}: @@ -9134,6 +9208,13 @@ program test_real end program test_real @end smallexample +@item @emph{Specific names}: +@multitable @columnfractions .20 .20 .20 .25 +@item Name @tab Argument @tab Return type @tab Standard +@item @code{REAL(A)} @tab @code{INTEGER(4)} @tab @code{REAL(4)} @tab Fortran 77 and later +@end multitable + + @item @emph{See also}: @ref{DBLE}, @ref{DFLOAT}, @ref{FLOAT} @@ -9831,9 +9912,10 @@ end program test_sign @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 -@item Name @tab Arguments @tab Return type @tab Standard -@item @code{ISIGN(A,P)} @tab @code{INTEGER(4)} @tab @code{INTEGER(4)} @tab f95, gnu -@item @code{DSIGN(A,P)} @tab @code{REAL(8)} @tab @code{REAL(8)} @tab f95, gnu +@item Name @tab Arguments @tab Return type @tab Standard +@item @code{SIGN(A,B)} @tab @code{REAL(4) A, B} @tab @code{REAL(4)} @tab f77, gnu +@item @code{ISIGN(A,B)} @tab @code{INTEGER(4) A, B} @tab @code{INTEGER(4)} @tab f77, gnu +@item @code{DSIGN(A,B)} @tab @code{REAL(8) A, B} @tab @code{REAL(8)} @tab f77, gnu @end multitable @end table @@ -9939,11 +10021,12 @@ end program test_sin @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 -@item Name @tab Argument @tab Return type @tab Standard -@item @code{DSIN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu -@item @code{CSIN(X)} @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab f95, gnu -@item @code{ZSIN(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab f95, gnu -@item @code{CDSIN(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab f95, gnu +@item Name @tab Argument @tab Return type @tab Standard +@item @code{SIN(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab f77, gnu +@item @code{DSIN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu +@item @code{CSIN(X)} @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab f95, gnu +@item @code{ZSIN(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab f95, gnu +@item @code{CDSIN(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab f95, gnu @end multitable @item @emph{See also}: @@ -9992,6 +10075,7 @@ end program test_sinh @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 @item Name @tab Argument @tab Return type @tab Standard +@item @code{SINH(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 95 and later @item @code{DSINH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 95 and later @end multitable @@ -10305,6 +10389,7 @@ end program test_sqrt @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 @item Name @tab Argument @tab Return type @tab Standard +@item @code{SQRT(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 95 and later @item @code{DSQRT(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 95 and later @item @code{CSQRT(X)} @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab Fortran 95 and later @item @code{ZSQRT(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension @@ -10679,8 +10764,9 @@ end program test_tan @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 -@item Name @tab Argument @tab Return type @tab Standard -@item @code{DTAN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 95 and later +@item Name @tab Argument @tab Return type @tab Standard +@item @code{TAN(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 95 and later +@item @code{DTAN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 95 and later @end multitable @item @emph{See also}: @@ -10732,6 +10818,7 @@ end program test_tanh @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 @item Name @tab Argument @tab Return type @tab Standard +@item @code{TANH(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 95 and later @item @code{DTANH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 95 and later @end multitable |
