aboutsummaryrefslogtreecommitdiff
path: root/libstdc++-v3/include/bits/stl_map.h
diff options
context:
space:
mode:
authorPhil Edwards <pme@gcc.gnu.org>2002-08-09 16:51:15 +0000
committerPhil Edwards <pme@gcc.gnu.org>2002-08-09 16:51:15 +0000
commit3971a4d235bd87ba9bcfe3b3b103ca173b7f3646 (patch)
treeb009990cf67b37b3e79e6bb6b4bcbcf800ee80a7 /libstdc++-v3/include/bits/stl_map.h
parent2043c38e8dcf438b3e3f86c6559feaab84d852ef (diff)
downloadgcc-3971a4d235bd87ba9bcfe3b3b103ca173b7f3646.zip
gcc-3971a4d235bd87ba9bcfe3b3b103ca173b7f3646.tar.gz
gcc-3971a4d235bd87ba9bcfe3b3b103ca173b7f3646.tar.bz2
deque.tcc, [...]: Re-indent contents of namespace std, re-wrap comment lines as necessary.
2002-08-09 Phil Edwards <pme@gcc.gnu.org> * include/bits/deque.tcc, include/bits/list.tcc, include/bits/stl_deque.h, include/bits/stl_iterator_base_funcs.h, include/bits/stl_list.h, include/bits/stl_map.h, include/bits/stl_multimap.h, include/bits/stl_queue.h, include/bits/stl_stack.h, include/bits/stl_vector.h, include/bits/vector.tcc: Re-indent contents of namespace std, re-wrap comment lines as necessary. From-SVN: r56165
Diffstat (limited to 'libstdc++-v3/include/bits/stl_map.h')
-rw-r--r--libstdc++-v3/include/bits/stl_map.h1164
1 files changed, 580 insertions, 584 deletions
diff --git a/libstdc++-v3/include/bits/stl_map.h b/libstdc++-v3/include/bits/stl_map.h
index 26546d3..bf86ece 100644
--- a/libstdc++-v3/include/bits/stl_map.h
+++ b/libstdc++-v3/include/bits/stl_map.h
@@ -63,603 +63,599 @@
#include <bits/concept_check.h>
-// Since this entire file is within namespace std, there's no reason to
-// waste two spaces along the left column. Thus the leading indentation is
-// slightly violated from here on.
namespace std
{
-
-/**
- * @brief A standard container made up of (key,value) pairs, which can be
- * retrieved based on a key, in logarithmic time.
- *
- * @ingroup Containers
- * @ingroup Assoc_containers
- *
- * Meets the requirements of a <a href="tables.html#65">container</a>, a
- * <a href="tables.html#66">reversible container</a>, and an
- * <a href="tables.html#69">associative container</a> (using unique keys).
- * For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
- * value_type is std::pair<const Key,T>.
- *
- * Maps support bidirectional iterators.
- *
- * @if maint
- * The private tree data is declared exactly the same way for map and
- * multimap; the distinction is made entirely in how the tree functions are
- * called (*_unique versus *_equal, same as the standard).
- * @endif
-*/
-template <typename _Key, typename _Tp, typename _Compare = less<_Key>,
- typename _Alloc = allocator<pair<const _Key, _Tp> > >
- class map
-{
- // concept requirements
- __glibcpp_class_requires(_Tp, _SGIAssignableConcept)
- __glibcpp_class_requires4(_Compare, bool, _Key, _Key, _BinaryFunctionConcept)
-
-public:
- typedef _Key key_type;
- typedef _Tp mapped_type;
- typedef pair<const _Key, _Tp> value_type;
- typedef _Compare key_compare;
-
- class value_compare
- : public binary_function<value_type, value_type, bool>
- {
- friend class map<_Key,_Tp,_Compare,_Alloc>;
- protected:
- _Compare comp;
- value_compare(_Compare __c) : comp(__c) {}
- public:
- bool operator()(const value_type& __x, const value_type& __y) const
- { return comp(__x.first, __y.first); }
- };
-
-private:
- /// @if maint This turns a red-black tree into a [multi]map. @endif
- typedef _Rb_tree<key_type, value_type,
- _Select1st<value_type>, key_compare, _Alloc> _Rep_type;
- /// @if maint The actual tree structure. @endif
- _Rep_type _M_t;
-
-public:
- // many of these are specified differently in ISO, but the following are
- // "functionally equivalent"
- typedef typename _Rep_type::allocator_type allocator_type;
- typedef typename _Rep_type::reference reference;
- typedef typename _Rep_type::const_reference const_reference;
- typedef typename _Rep_type::iterator iterator;
- typedef typename _Rep_type::const_iterator const_iterator;
- typedef typename _Rep_type::size_type size_type;
- typedef typename _Rep_type::difference_type difference_type;
- typedef typename _Rep_type::pointer pointer;
- typedef typename _Rep_type::const_pointer const_pointer;
- typedef typename _Rep_type::reverse_iterator reverse_iterator;
- typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
-
-
- // [23.3.1.1] construct/copy/destroy
- // (get_allocator() is normally listed in this section, but seems to have
- // been accidentally omitted in the printed standard)
- /**
- * @brief Default constructor creates no elements.
- */
- map() : _M_t(_Compare(), allocator_type()) { }
-
- // for some reason this was made a separate function
/**
- * @brief Default constructor creates no elements.
- */
- explicit
- map(const _Compare& __comp, const allocator_type& __a = allocator_type())
- : _M_t(__comp, __a) { }
-
- /**
- * @brief Map copy constructor.
- * @param x A %map of identical element and allocator types.
+ * @brief A standard container made up of (key,value) pairs, which can be
+ * retrieved based on a key, in logarithmic time.
*
- * The newly-created %map uses a copy of the allocation object used
- * by @a x.
- */
- map(const map& __x)
- : _M_t(__x._M_t) { }
-
- /**
- * @brief Builds a %map from a range.
- * @param first An input iterator.
- * @param last An input iterator.
- *
- * Create a %map consisting of copies of the elements from [first,last).
- * This is linear in N if the range is already sorted, and NlogN
- * otherwise (where N is distance(first,last)).
- */
- template <typename _InputIterator>
- map(_InputIterator __first, _InputIterator __last)
- : _M_t(_Compare(), allocator_type())
- { _M_t.insert_unique(__first, __last); }
-
- /**
- * @brief Builds a %map from a range.
- * @param first An input iterator.
- * @param last An input iterator.
- * @param comp A comparison functor.
- * @param a An allocator object.
- *
- * Create a %map consisting of copies of the elements from [first,last).
- * This is linear in N if the range is already sorted, and NlogN
- * otherwise (where N is distance(first,last)).
- */
- template <typename _InputIterator>
- map(_InputIterator __first, _InputIterator __last,
- const _Compare& __comp, const allocator_type& __a = allocator_type())
- : _M_t(__comp, __a)
- { _M_t.insert_unique(__first, __last); }
-
- // FIXME There is no dtor declared, but we should have something generated
- // by Doxygen. I don't know what tags to add to this paragraph to make
- // that happen:
- /**
- * The dtor only erases the elements, and note that if the elements
- * themselves are pointers, the pointed-to memory is not touched in any
- * way. Managing the pointer is the user's responsibilty.
- */
-
- /**
- * @brief Map assignment operator.
- * @param x A %map of identical element and allocator types.
+ * @ingroup Containers
+ * @ingroup Assoc_containers
*
- * All the elements of @a x are copied, but unlike the copy constructor, the
- * allocator object is not copied.
- */
- map&
- operator=(const map& __x)
- {
- _M_t = __x._M_t;
- return *this;
- }
-
- /// Get a copy of the memory allocation object.
- allocator_type
- get_allocator() const { return _M_t.get_allocator(); }
-
- // iterators
- /**
- * Returns a read/write iterator that points to the first pair in the %map.
- * Iteration is done in ascending order according to the keys.
- */
- iterator
- begin() { return _M_t.begin(); }
-
- /**
- * Returns a read-only (constant) iterator that points to the first pair
- * in the %map. Iteration is done in ascending order according to the keys.
- */
- const_iterator
- begin() const { return _M_t.begin(); }
-
- /**
- * Returns a read/write iterator that points one past the last pair in the
- * %map. Iteration is done in ascending order according to the keys.
- */
- iterator
- end() { return _M_t.end(); }
-
- /**
- * Returns a read-only (constant) iterator that points one past the last
- * pair in the %map. Iteration is done in ascending order according to the
- * keys.
- */
- const_iterator
- end() const { return _M_t.end(); }
-
- /**
- * Returns a read/write reverse iterator that points to the last pair in
- * the %map. Iteration is done in descending order according to the keys.
- */
- reverse_iterator
- rbegin() { return _M_t.rbegin(); }
-
- /**
- * Returns a read-only (constant) reverse iterator that points to the last
- * pair in the %map. Iteration is done in descending order according to
- * the keys.
- */
- const_reverse_iterator
- rbegin() const { return _M_t.rbegin(); }
-
- /**
- * Returns a read/write reverse iterator that points to one before the
- * first pair in the %map. Iteration is done in descending order according
- * to the keys.
- */
- reverse_iterator
- rend() { return _M_t.rend(); }
-
- /**
- * Returns a read-only (constant) reverse iterator that points to one
- * before the first pair in the %map. Iteration is done in descending order
- * according to the keys.
- */
- const_reverse_iterator
- rend() const { return _M_t.rend(); }
-
- // capacity
- /** Returns true if the %map is empty. (Thus begin() would equal end().) */
- bool
- empty() const { return _M_t.empty(); }
-
- /** Returns the size of the %map. */
- size_type
- size() const { return _M_t.size(); }
-
- /** Returns the maximum size of the %map. */
- size_type
- max_size() const { return _M_t.max_size(); }
-
- // [23.3.1.2] element access
- /**
- * @brief Subscript ( @c [] ) access to %map data.
- * @param k The key for which data should be retrieved.
- * @return A reference to the data of the (key,data) %pair.
+ * Meets the requirements of a <a href="tables.html#65">container</a>, a
+ * <a href="tables.html#66">reversible container</a>, and an
+ * <a href="tables.html#69">associative container</a> (using unique keys).
+ * For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
+ * value_type is std::pair<const Key,T>.
*
- * Allows for easy lookup with the subscript ( @c [] ) operator. Returns
- * data associated with the key specified in subscript. If the key does
- * not exist, a pair with that key is created using default values, which
- * is then returned.
+ * Maps support bidirectional iterators.
*
- * Lookup requires logarithmic time.
- */
- mapped_type&
- operator[](const key_type& __k)
+ * @if maint
+ * The private tree data is declared exactly the same way for map and
+ * multimap; the distinction is made entirely in how the tree functions are
+ * called (*_unique versus *_equal, same as the standard).
+ * @endif
+ */
+ template <typename _Key, typename _Tp, typename _Compare = less<_Key>,
+ typename _Alloc = allocator<pair<const _Key, _Tp> > >
+ class map
{
// concept requirements
- __glibcpp_function_requires(_DefaultConstructibleConcept<mapped_type>)
-
- iterator __i = lower_bound(__k);
- // __i->first is greater than or equivalent to __k.
- if (__i == end() || key_comp()(__k, (*__i).first))
- __i = insert(__i, value_type(__k, mapped_type()));
- return (*__i).second;
- }
-
- // modifiers
- /**
- * @brief Attempts to insert a std::pair into the %map.
- * @param x Pair to be inserted (see std::make_pair for easy creation of
- * pairs).
- * @return A pair, of which the first element is an iterator that points
- * to the possibly inserted pair, and the second is a bool that
- * is true if the pair was actually inserted.
- *
- * This function attempts to insert a (key, value) %pair into the %map. A
- * %map relies on unique keys and thus a %pair is only inserted if its first
- * element (the key) is not already present in the %map.
- *
- * Insertion requires logarithmic time.
- */
- pair<iterator,bool>
- insert(const value_type& __x)
- { return _M_t.insert_unique(__x); }
-
- /**
- * @brief Attempts to insert a std::pair into the %map.
- * @param position An iterator that serves as a hint as to where the
- * pair should be inserted.
- * @param x Pair to be inserted (see std::make_pair for easy creation of
- * pairs).
- * @return An iterator that points to the element with key of @a x (may
- * or may not be the %pair passed in).
- *
- * This function is not concerned about whether the insertion took place,
- * and thus does not return a boolean like the single-argument
- * insert() does. Note that the first parameter is only a hint and can
- * potentially improve the performance of the insertion process. A bad
- * hint would cause no gains in efficiency.
- *
- * See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
- * for more on "hinting".
- *
- * Insertion requires logarithmic time (if the hint is not taken).
- */
- iterator
- insert(iterator position, const value_type& __x)
- { return _M_t.insert_unique(position, __x); }
-
- /**
- * @brief A template function that attemps to insert a range of elements.
- * @param first Iterator pointing to the start of the range to be inserted.
- * @param last Iterator pointing to the end of the range.
- *
- * Complexity similar to that of the range constructor.
- */
- template <typename _InputIterator>
- void
- insert(_InputIterator __first, _InputIterator __last)
+ __glibcpp_class_requires(_Tp, _SGIAssignableConcept)
+ __glibcpp_class_requires4(_Compare, bool, _Key, _Key, _BinaryFunctionConcept)
+
+ public:
+ typedef _Key key_type;
+ typedef _Tp mapped_type;
+ typedef pair<const _Key, _Tp> value_type;
+ typedef _Compare key_compare;
+
+ class value_compare
+ : public binary_function<value_type, value_type, bool>
+ {
+ friend class map<_Key,_Tp,_Compare,_Alloc>;
+ protected:
+ _Compare comp;
+ value_compare(_Compare __c) : comp(__c) {}
+ public:
+ bool operator()(const value_type& __x, const value_type& __y) const
+ { return comp(__x.first, __y.first); }
+ };
+
+ private:
+ /// @if maint This turns a red-black tree into a [multi]map. @endif
+ typedef _Rb_tree<key_type, value_type,
+ _Select1st<value_type>, key_compare, _Alloc> _Rep_type;
+ /// @if maint The actual tree structure. @endif
+ _Rep_type _M_t;
+
+ public:
+ // many of these are specified differently in ISO, but the following are
+ // "functionally equivalent"
+ typedef typename _Rep_type::allocator_type allocator_type;
+ typedef typename _Rep_type::reference reference;
+ typedef typename _Rep_type::const_reference const_reference;
+ typedef typename _Rep_type::iterator iterator;
+ typedef typename _Rep_type::const_iterator const_iterator;
+ typedef typename _Rep_type::size_type size_type;
+ typedef typename _Rep_type::difference_type difference_type;
+ typedef typename _Rep_type::pointer pointer;
+ typedef typename _Rep_type::const_pointer const_pointer;
+ typedef typename _Rep_type::reverse_iterator reverse_iterator;
+ typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
+
+
+ // [23.3.1.1] construct/copy/destroy
+ // (get_allocator() is normally listed in this section, but seems to have
+ // been accidentally omitted in the printed standard)
+ /**
+ * @brief Default constructor creates no elements.
+ */
+ map() : _M_t(_Compare(), allocator_type()) { }
+
+ // for some reason this was made a separate function
+ /**
+ * @brief Default constructor creates no elements.
+ */
+ explicit
+ map(const _Compare& __comp, const allocator_type& __a = allocator_type())
+ : _M_t(__comp, __a) { }
+
+ /**
+ * @brief Map copy constructor.
+ * @param x A %map of identical element and allocator types.
+ *
+ * The newly-created %map uses a copy of the allocation object used
+ * by @a x.
+ */
+ map(const map& __x)
+ : _M_t(__x._M_t) { }
+
+ /**
+ * @brief Builds a %map from a range.
+ * @param first An input iterator.
+ * @param last An input iterator.
+ *
+ * Create a %map consisting of copies of the elements from [first,last).
+ * This is linear in N if the range is already sorted, and NlogN
+ * otherwise (where N is distance(first,last)).
+ */
+ template <typename _InputIterator>
+ map(_InputIterator __first, _InputIterator __last)
+ : _M_t(_Compare(), allocator_type())
{ _M_t.insert_unique(__first, __last); }
-
- /**
- * @brief Erases an element from a %map.
- * @param position An iterator pointing to the element to be erased.
- *
- * This function erases an element, pointed to by the given iterator, from
- * a %map. Note that this function only erases the element, and that if
- * the element is itself a pointer, the pointed-to memory is not touched
- * in any way. Managing the pointer is the user's responsibilty.
- */
- void
- erase(iterator __position) { _M_t.erase(__position); }
-
- /**
- * @brief Erases elements according to the provided key.
- * @param x Key of element to be erased.
- * @return The number of elements erased.
- *
- * This function erases all the elements located by the given key from
- * a %map.
- * Note that this function only erases the element, and that if
- * the element is itself a pointer, the pointed-to memory is not touched
- * in any way. Managing the pointer is the user's responsibilty.
- */
- size_type
- erase(const key_type& __x) { return _M_t.erase(__x); }
-
- /**
- * @brief Erases a [first,last) range of elements from a %map.
- * @param first Iterator pointing to the start of the range to be erased.
- * @param last Iterator pointing to the end of the range to be erased.
- *
- * This function erases a sequence of elements from a %map.
- * Note that this function only erases the element, and that if
- * the element is itself a pointer, the pointed-to memory is not touched
- * in any way. Managing the pointer is the user's responsibilty.
- */
- void
- erase(iterator __first, iterator __last) { _M_t.erase(__first, __last); }
-
- /**
- * @brief Swaps data with another %map.
- * @param x A %map of the same element and allocator types.
- *
- * This exchanges the elements between two maps in constant time.
- * (It is only swapping a pointer, an integer, and an instance of
- * the @c Compare type (which itself is often stateless and empty), so it
- * should be quite fast.)
- * Note that the global std::swap() function is specialized such that
- * std::swap(m1,m2) will feed to this function.
- */
- void
- swap(map& __x) { _M_t.swap(__x._M_t); }
-
- /**
- * Erases all elements in a %map. Note that this function only erases
- * the elements, and that if the elements themselves are pointers, the
- * pointed-to memory is not touched in any way. Managing the pointer is
- * the user's responsibilty.
- */
- void
- clear() { _M_t.clear(); }
-
- // observers
- /**
- * Returns the key comparison object out of which the %map was constructed.
- */
- key_compare
- key_comp() const { return _M_t.key_comp(); }
-
- /**
- * Returns a value comparison object, built from the key comparison
- * object out of which the %map was constructed.
- */
- value_compare
- value_comp() const { return value_compare(_M_t.key_comp()); }
-
- // [23.3.1.3] map operations
- /**
- * @brief Tries to locate an element in a %map.
- * @param x Key of (key, value) %pair to be located.
- * @return Iterator pointing to sought-after element, or end() if not
- * found.
- *
- * This function takes a key and tries to locate the element with which
- * the key matches. If successful the function returns an iterator
- * pointing to the sought after %pair. If unsuccessful it returns the
- * past-the-end ( @c end() ) iterator.
- */
- iterator
- find(const key_type& __x) { return _M_t.find(__x); }
-
- /**
- * @brief Tries to locate an element in a %map.
- * @param x Key of (key, value) %pair to be located.
- * @return Read-only (constant) iterator pointing to sought-after
- * element, or end() if not found.
- *
- * This function takes a key and tries to locate the element with which
- * the key matches. If successful the function returns a constant iterator
- * pointing to the sought after %pair. If unsuccessful it returns the
- * past-the-end ( @c end() ) iterator.
- */
- const_iterator
- find(const key_type& __x) const { return _M_t.find(__x); }
-
- /**
- * @brief Finds the number of elements with given key.
- * @param x Key of (key, value) pairs to be located.
- * @return Number of elements with specified key.
- *
- * This function only makes sense for multimaps; for map the result will
- * either be 0 (not present) or 1 (present).
- */
- size_type
- count(const key_type& __x) const
- { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
-
- /**
- * @brief Finds the beginning of a subsequence matching given key.
- * @param x Key of (key, value) pair to be located.
- * @return Iterator pointing to first element matching given key, or
- * end() if not found.
- *
- * This function is useful only with multimaps. It returns the first
- * element of a subsequence of elements that matches the given key. If
- * unsuccessful it returns an iterator pointing to the first element that
- * has a greater value than given key or end() if no such element exists.
- */
- iterator
- lower_bound(const key_type& __x) { return _M_t.lower_bound(__x); }
-
- /**
- * @brief Finds the beginning of a subsequence matching given key.
- * @param x Key of (key, value) pair to be located.
- * @return Read-only (constant) iterator pointing to first element
- * matching given key, or end() if not found.
- *
- * This function is useful only with multimaps. It returns the first
- * element of a subsequence of elements that matches the given key. If
- * unsuccessful the iterator will point to the next greatest element or,
- * if no such greater element exists, to end().
- */
- const_iterator
- lower_bound(const key_type& __x) const { return _M_t.lower_bound(__x); }
-
- /**
- * @brief Finds the end of a subsequence matching given key.
- * @param x Key of (key, value) pair to be located.
- * @return Iterator pointing to last element matching given key.
- *
- * This function only makes sense with multimaps.
- */
- iterator
- upper_bound(const key_type& __x) { return _M_t.upper_bound(__x); }
-
- /**
- * @brief Finds the end of a subsequence matching given key.
- * @param x Key of (key, value) pair to be located.
- * @return Read-only (constant) iterator pointing to last element matching
- * given key.
- *
- * This function only makes sense with multimaps.
- */
- const_iterator
- upper_bound(const key_type& __x) const
- { return _M_t.upper_bound(__x); }
-
- /**
- * @brief Finds a subsequence matching given key.
- * @param x Key of (key, value) pairs to be located.
- * @return Pair of iterators that possibly points to the subsequence
- * matching given key.
- *
- * This function returns a pair of which the first
- * element possibly points to the first element matching the given key
- * and the second element possibly points to the last element matching the
- * given key. If unsuccessful the first element of the returned pair will
- * contain an iterator pointing to the next greatest element or, if no such
- * greater element exists, to end().
+
+ /**
+ * @brief Builds a %map from a range.
+ * @param first An input iterator.
+ * @param last An input iterator.
+ * @param comp A comparison functor.
+ * @param a An allocator object.
+ *
+ * Create a %map consisting of copies of the elements from [first,last).
+ * This is linear in N if the range is already sorted, and NlogN
+ * otherwise (where N is distance(first,last)).
+ */
+ template <typename _InputIterator>
+ map(_InputIterator __first, _InputIterator __last,
+ const _Compare& __comp, const allocator_type& __a = allocator_type())
+ : _M_t(__comp, __a)
+ { _M_t.insert_unique(__first, __last); }
+
+ // FIXME There is no dtor declared, but we should have something generated
+ // by Doxygen. I don't know what tags to add to this paragraph to make
+ // that happen:
+ /**
+ * The dtor only erases the elements, and note that if the elements
+ * themselves are pointers, the pointed-to memory is not touched in any
+ * way. Managing the pointer is the user's responsibilty.
+ */
+
+ /**
+ * @brief Map assignment operator.
+ * @param x A %map of identical element and allocator types.
+ *
+ * All the elements of @a x are copied, but unlike the copy constructor,
+ * the allocator object is not copied.
+ */
+ map&
+ operator=(const map& __x)
+ {
+ _M_t = __x._M_t;
+ return *this;
+ }
+
+ /// Get a copy of the memory allocation object.
+ allocator_type
+ get_allocator() const { return _M_t.get_allocator(); }
+
+ // iterators
+ /**
+ * Returns a read/write iterator that points to the first pair in the %map.
+ * Iteration is done in ascending order according to the keys.
+ */
+ iterator
+ begin() { return _M_t.begin(); }
+
+ /**
+ * Returns a read-only (constant) iterator that points to the first pair
+ * in the %map. Iteration is done in ascending order according to the
+ * keys.
+ */
+ const_iterator
+ begin() const { return _M_t.begin(); }
+
+ /**
+ * Returns a read/write iterator that points one past the last pair in the
+ * %map. Iteration is done in ascending order according to the keys.
+ */
+ iterator
+ end() { return _M_t.end(); }
+
+ /**
+ * Returns a read-only (constant) iterator that points one past the last
+ * pair in the %map. Iteration is done in ascending order according to the
+ * keys.
+ */
+ const_iterator
+ end() const { return _M_t.end(); }
+
+ /**
+ * Returns a read/write reverse iterator that points to the last pair in
+ * the %map. Iteration is done in descending order according to the keys.
+ */
+ reverse_iterator
+ rbegin() { return _M_t.rbegin(); }
+
+ /**
+ * Returns a read-only (constant) reverse iterator that points to the last
+ * pair in the %map. Iteration is done in descending order according to
+ * the keys.
+ */
+ const_reverse_iterator
+ rbegin() const { return _M_t.rbegin(); }
+
+ /**
+ * Returns a read/write reverse iterator that points to one before the
+ * first pair in the %map. Iteration is done in descending order according
+ * to the keys.
+ */
+ reverse_iterator
+ rend() { return _M_t.rend(); }
+
+ /**
+ * Returns a read-only (constant) reverse iterator that points to one
+ * before the first pair in the %map. Iteration is done in descending
+ * order according to the keys.
+ */
+ const_reverse_iterator
+ rend() const { return _M_t.rend(); }
+
+ // capacity
+ /** Returns true if the %map is empty. (Thus begin() would equal end().) */
+ bool
+ empty() const { return _M_t.empty(); }
+
+ /** Returns the size of the %map. */
+ size_type
+ size() const { return _M_t.size(); }
+
+ /** Returns the maximum size of the %map. */
+ size_type
+ max_size() const { return _M_t.max_size(); }
+
+ // [23.3.1.2] element access
+ /**
+ * @brief Subscript ( @c [] ) access to %map data.
+ * @param k The key for which data should be retrieved.
+ * @return A reference to the data of the (key,data) %pair.
+ *
+ * Allows for easy lookup with the subscript ( @c [] ) operator. Returns
+ * data associated with the key specified in subscript. If the key does
+ * not exist, a pair with that key is created using default values, which
+ * is then returned.
+ *
+ * Lookup requires logarithmic time.
+ */
+ mapped_type&
+ operator[](const key_type& __k)
+ {
+ // concept requirements
+ __glibcpp_function_requires(_DefaultConstructibleConcept<mapped_type>)
+
+ iterator __i = lower_bound(__k);
+ // __i->first is greater than or equivalent to __k.
+ if (__i == end() || key_comp()(__k, (*__i).first))
+ __i = insert(__i, value_type(__k, mapped_type()));
+ return (*__i).second;
+ }
+
+ // modifiers
+ /**
+ * @brief Attempts to insert a std::pair into the %map.
+ * @param x Pair to be inserted (see std::make_pair for easy creation of
+ * pairs).
+ * @return A pair, of which the first element is an iterator that points
+ * to the possibly inserted pair, and the second is a bool that
+ * is true if the pair was actually inserted.
+ *
+ * This function attempts to insert a (key, value) %pair into the %map.
+ * A %map relies on unique keys and thus a %pair is only inserted if its
+ * first element (the key) is not already present in the %map.
+ *
+ * Insertion requires logarithmic time.
+ */
+ pair<iterator,bool>
+ insert(const value_type& __x)
+ { return _M_t.insert_unique(__x); }
+
+ /**
+ * @brief Attempts to insert a std::pair into the %map.
+ * @param position An iterator that serves as a hint as to where the
+ * pair should be inserted.
+ * @param x Pair to be inserted (see std::make_pair for easy creation of
+ * pairs).
+ * @return An iterator that points to the element with key of @a x (may
+ * or may not be the %pair passed in).
+ *
+ * This function is not concerned about whether the insertion took place,
+ * and thus does not return a boolean like the single-argument
+ * insert() does. Note that the first parameter is only a hint and can
+ * potentially improve the performance of the insertion process. A bad
+ * hint would cause no gains in efficiency.
+ *
+ * See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
+ * for more on "hinting".
+ *
+ * Insertion requires logarithmic time (if the hint is not taken).
+ */
+ iterator
+ insert(iterator position, const value_type& __x)
+ { return _M_t.insert_unique(position, __x); }
+
+ /**
+ * @brief A template function that attemps to insert a range of elements.
+ * @param first Iterator pointing to the start of the range to be
+ * inserted.
+ * @param last Iterator pointing to the end of the range.
+ *
+ * Complexity similar to that of the range constructor.
+ */
+ template <typename _InputIterator>
+ void
+ insert(_InputIterator __first, _InputIterator __last)
+ { _M_t.insert_unique(__first, __last); }
+
+ /**
+ * @brief Erases an element from a %map.
+ * @param position An iterator pointing to the element to be erased.
+ *
+ * This function erases an element, pointed to by the given iterator, from
+ * a %map. Note that this function only erases the element, and that if
+ * the element is itself a pointer, the pointed-to memory is not touched
+ * in any way. Managing the pointer is the user's responsibilty.
+ */
+ void
+ erase(iterator __position) { _M_t.erase(__position); }
+
+ /**
+ * @brief Erases elements according to the provided key.
+ * @param x Key of element to be erased.
+ * @return The number of elements erased.
+ *
+ * This function erases all the elements located by the given key from
+ * a %map.
+ * Note that this function only erases the element, and that if
+ * the element is itself a pointer, the pointed-to memory is not touched
+ * in any way. Managing the pointer is the user's responsibilty.
+ */
+ size_type
+ erase(const key_type& __x) { return _M_t.erase(__x); }
+
+ /**
+ * @brief Erases a [first,last) range of elements from a %map.
+ * @param first Iterator pointing to the start of the range to be erased.
+ * @param last Iterator pointing to the end of the range to be erased.
+ *
+ * This function erases a sequence of elements from a %map.
+ * Note that this function only erases the element, and that if
+ * the element is itself a pointer, the pointed-to memory is not touched
+ * in any way. Managing the pointer is the user's responsibilty.
+ */
+ void
+ erase(iterator __first, iterator __last) { _M_t.erase(__first, __last); }
+
+ /**
+ * @brief Swaps data with another %map.
+ * @param x A %map of the same element and allocator types.
+ *
+ * This exchanges the elements between two maps in constant time.
+ * (It is only swapping a pointer, an integer, and an instance of
+ * the @c Compare type (which itself is often stateless and empty), so it
+ * should be quite fast.)
+ * Note that the global std::swap() function is specialized such that
+ * std::swap(m1,m2) will feed to this function.
+ */
+ void
+ swap(map& __x) { _M_t.swap(__x._M_t); }
+
+ /**
+ * Erases all elements in a %map. Note that this function only erases
+ * the elements, and that if the elements themselves are pointers, the
+ * pointed-to memory is not touched in any way. Managing the pointer is
+ * the user's responsibilty.
+ */
+ void
+ clear() { _M_t.clear(); }
+
+ // observers
+ /**
+ * Returns the key comparison object out of which the %map was constructed.
+ */
+ key_compare
+ key_comp() const { return _M_t.key_comp(); }
+
+ /**
+ * Returns a value comparison object, built from the key comparison
+ * object out of which the %map was constructed.
+ */
+ value_compare
+ value_comp() const { return value_compare(_M_t.key_comp()); }
+
+ // [23.3.1.3] map operations
+ /**
+ * @brief Tries to locate an element in a %map.
+ * @param x Key of (key, value) %pair to be located.
+ * @return Iterator pointing to sought-after element, or end() if not
+ * found.
+ *
+ * This function takes a key and tries to locate the element with which
+ * the key matches. If successful the function returns an iterator
+ * pointing to the sought after %pair. If unsuccessful it returns the
+ * past-the-end ( @c end() ) iterator.
+ */
+ iterator
+ find(const key_type& __x) { return _M_t.find(__x); }
+
+ /**
+ * @brief Tries to locate an element in a %map.
+ * @param x Key of (key, value) %pair to be located.
+ * @return Read-only (constant) iterator pointing to sought-after
+ * element, or end() if not found.
+ *
+ * This function takes a key and tries to locate the element with which
+ * the key matches. If successful the function returns a constant iterator
+ * pointing to the sought after %pair. If unsuccessful it returns the
+ * past-the-end ( @c end() ) iterator.
+ */
+ const_iterator
+ find(const key_type& __x) const { return _M_t.find(__x); }
+
+ /**
+ * @brief Finds the number of elements with given key.
+ * @param x Key of (key, value) pairs to be located.
+ * @return Number of elements with specified key.
+ *
+ * This function only makes sense for multimaps; for map the result will
+ * either be 0 (not present) or 1 (present).
+ */
+ size_type
+ count(const key_type& __x) const
+ { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
+
+ /**
+ * @brief Finds the beginning of a subsequence matching given key.
+ * @param x Key of (key, value) pair to be located.
+ * @return Iterator pointing to first element matching given key, or
+ * end() if not found.
+ *
+ * This function is useful only with multimaps. It returns the first
+ * element of a subsequence of elements that matches the given key. If
+ * unsuccessful it returns an iterator pointing to the first element that
+ * has a greater value than given key or end() if no such element exists.
+ */
+ iterator
+ lower_bound(const key_type& __x) { return _M_t.lower_bound(__x); }
+
+ /**
+ * @brief Finds the beginning of a subsequence matching given key.
+ * @param x Key of (key, value) pair to be located.
+ * @return Read-only (constant) iterator pointing to first element
+ * matching given key, or end() if not found.
+ *
+ * This function is useful only with multimaps. It returns the first
+ * element of a subsequence of elements that matches the given key. If
+ * unsuccessful the iterator will point to the next greatest element or,
+ * if no such greater element exists, to end().
+ */
+ const_iterator
+ lower_bound(const key_type& __x) const { return _M_t.lower_bound(__x); }
+
+ /**
+ * @brief Finds the end of a subsequence matching given key.
+ * @param x Key of (key, value) pair to be located.
+ * @return Iterator pointing to last element matching given key.
+ *
+ * This function only makes sense with multimaps.
+ */
+ iterator
+ upper_bound(const key_type& __x) { return _M_t.upper_bound(__x); }
+
+ /**
+ * @brief Finds the end of a subsequence matching given key.
+ * @param x Key of (key, value) pair to be located.
+ * @return Read-only (constant) iterator pointing to last element matching
+ * given key.
+ *
+ * This function only makes sense with multimaps.
+ */
+ const_iterator
+ upper_bound(const key_type& __x) const
+ { return _M_t.upper_bound(__x); }
+
+ /**
+ * @brief Finds a subsequence matching given key.
+ * @param x Key of (key, value) pairs to be located.
+ * @return Pair of iterators that possibly points to the subsequence
+ * matching given key.
+ *
+ * This function returns a pair of which the first
+ * element possibly points to the first element matching the given key
+ * and the second element possibly points to the last element matching the
+ * given key. If unsuccessful the first element of the returned pair will
+ * contain an iterator pointing to the next greatest element or, if no such
+ * greater element exists, to end().
+ *
+ * This function only makes sense for multimaps.
+ */
+ pair<iterator,iterator>
+ equal_range(const key_type& __x)
+ { return _M_t.equal_range(__x); }
+
+ /**
+ * @brief Finds a subsequence matching given key.
+ * @param x Key of (key, value) pairs to be located.
+ * @return Pair of read-only (constant) iterators that possibly points to
+ * the subsequence matching given key.
+ *
+ * This function returns a pair of which the first
+ * element possibly points to the first element matching the given key
+ * and the second element possibly points to the last element matching the
+ * given key. If unsuccessful the first element of the returned pair will
+ * contain an iterator pointing to the next greatest element or, if no such
+ * a greater element exists, to end().
+ *
+ * This function only makes sense for multimaps.
+ */
+ pair<const_iterator,const_iterator>
+ equal_range(const key_type& __x) const
+ { return _M_t.equal_range(__x); }
+
+ template <typename _K1, typename _T1, typename _C1, typename _A1>
+ friend bool operator== (const map<_K1,_T1,_C1,_A1>&,
+ const map<_K1,_T1,_C1,_A1>&);
+ template <typename _K1, typename _T1, typename _C1, typename _A1>
+ friend bool operator< (const map<_K1,_T1,_C1,_A1>&,
+ const map<_K1,_T1,_C1,_A1>&);
+ };
+
+
+ /**
+ * @brief Map equality comparison.
+ * @param x A %map.
+ * @param y A %map of the same type as @a x.
+ * @return True iff the size and elements of the maps are equal.
*
- * This function only makes sense for multimaps.
- */
- pair<iterator,iterator>
- equal_range(const key_type& __x)
- { return _M_t.equal_range(__x); }
-
- /**
- * @brief Finds a subsequence matching given key.
- * @param x Key of (key, value) pairs to be located.
- * @return Pair of read-only (constant) iterators that possibly points to
- * the subsequence matching given key.
+ * This is an equivalence relation. It is linear in the size of the
+ * maps. Maps are considered equivalent if their sizes are equal,
+ * and if corresponding elements compare equal.
+ */
+ template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
+ inline bool
+ operator==(const map<_Key,_Tp,_Compare,_Alloc>& __x,
+ const map<_Key,_Tp,_Compare,_Alloc>& __y)
+ { return __x._M_t == __y._M_t; }
+
+ /**
+ * @brief Map ordering relation.
+ * @param x A %map.
+ * @param y A %map of the same type as @a x.
+ * @return True iff @a x is lexographically less than @a y.
*
- * This function returns a pair of which the first
- * element possibly points to the first element matching the given key
- * and the second element possibly points to the last element matching the
- * given key. If unsuccessful the first element of the returned pair will
- * contain an iterator pointing to the next greatest element or, if no such
- * a greater element exists, to end().
+ * This is a total ordering relation. It is linear in the size of the
+ * maps. The elements must be comparable with @c <.
*
- * This function only makes sense for multimaps.
- */
- pair<const_iterator,const_iterator>
- equal_range(const key_type& __x) const
- { return _M_t.equal_range(__x); }
-
- template <typename _K1, typename _T1, typename _C1, typename _A1>
- friend bool operator== (const map<_K1,_T1,_C1,_A1>&,
- const map<_K1,_T1,_C1,_A1>&);
- template <typename _K1, typename _T1, typename _C1, typename _A1>
- friend bool operator< (const map<_K1,_T1,_C1,_A1>&,
- const map<_K1,_T1,_C1,_A1>&);
-};
-
-
-/**
- * @brief Map equality comparison.
- * @param x A %map.
- * @param y A %map of the same type as @a x.
- * @return True iff the size and elements of the maps are equal.
- *
- * This is an equivalence relation. It is linear in the size of the
- * maps. Maps are considered equivalent if their sizes are equal,
- * and if corresponding elements compare equal.
-*/
-template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
- inline bool
- operator==(const map<_Key,_Tp,_Compare,_Alloc>& __x,
- const map<_Key,_Tp,_Compare,_Alloc>& __y)
- { return __x._M_t == __y._M_t; }
-
-/**
- * @brief Map ordering relation.
- * @param x A %map.
- * @param y A %map of the same type as @a x.
- * @return True iff @a x is lexographically less than @a y.
- *
- * This is a total ordering relation. It is linear in the size of the
- * maps. The elements must be comparable with @c <.
- *
- * See std::lexographical_compare() for how the determination is made.
-*/
-template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
- inline bool
- operator<(const map<_Key,_Tp,_Compare,_Alloc>& __x,
- const map<_Key,_Tp,_Compare,_Alloc>& __y)
- { return __x._M_t < __y._M_t; }
-
-/// Based on operator==
-template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
- inline bool
- operator!=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
- const map<_Key,_Tp,_Compare,_Alloc>& __y)
- { return !(__x == __y); }
-
-/// Based on operator<
-template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
- inline bool
- operator>(const map<_Key,_Tp,_Compare,_Alloc>& __x,
- const map<_Key,_Tp,_Compare,_Alloc>& __y)
- { return __y < __x; }
-
-/// Based on operator<
-template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
- inline bool
- operator<=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
- const map<_Key,_Tp,_Compare,_Alloc>& __y)
- { return !(__y < __x); }
-
-/// Based on operator<
-template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
- inline bool
- operator>=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
- const map<_Key,_Tp,_Compare,_Alloc>& __y)
- { return !(__x < __y); }
-
-/// See std::map::swap().
-template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
- inline void
- swap(map<_Key,_Tp,_Compare,_Alloc>& __x, map<_Key,_Tp,_Compare,_Alloc>& __y)
- { __x.swap(__y); }
-
+ * See std::lexographical_compare() for how the determination is made.
+ */
+ template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
+ inline bool
+ operator<(const map<_Key,_Tp,_Compare,_Alloc>& __x,
+ const map<_Key,_Tp,_Compare,_Alloc>& __y)
+ { return __x._M_t < __y._M_t; }
+
+ /// Based on operator==
+ template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
+ inline bool
+ operator!=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
+ const map<_Key,_Tp,_Compare,_Alloc>& __y)
+ { return !(__x == __y); }
+
+ /// Based on operator<
+ template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
+ inline bool
+ operator>(const map<_Key,_Tp,_Compare,_Alloc>& __x,
+ const map<_Key,_Tp,_Compare,_Alloc>& __y)
+ { return __y < __x; }
+
+ /// Based on operator<
+ template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
+ inline bool
+ operator<=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
+ const map<_Key,_Tp,_Compare,_Alloc>& __y)
+ { return !(__y < __x); }
+
+ /// Based on operator<
+ template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
+ inline bool
+ operator>=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
+ const map<_Key,_Tp,_Compare,_Alloc>& __y)
+ { return !(__x < __y); }
+
+ /// See std::map::swap().
+ template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
+ inline void
+ swap(map<_Key,_Tp,_Compare,_Alloc>& __x, map<_Key,_Tp,_Compare,_Alloc>& __y)
+ { __x.swap(__y); }
} // namespace std
#endif /* __GLIBCPP_INTERNAL_MAP_H */
-