aboutsummaryrefslogtreecommitdiff
path: root/libjava
diff options
context:
space:
mode:
authorMichael Koch <konqueror@gmx.de>2005-04-20 05:58:46 +0000
committerMichael Koch <mkoch@gcc.gnu.org>2005-04-20 05:58:46 +0000
commit47af138fc5dff44f0fcdf0a125fb22d02b7f2008 (patch)
tree72943563de56f62f182644480f98cdf18ba8c996 /libjava
parentbd2865bc6c208b82454d4aa20a26dac6b5736fe2 (diff)
downloadgcc-47af138fc5dff44f0fcdf0a125fb22d02b7f2008.zip
gcc-47af138fc5dff44f0fcdf0a125fb22d02b7f2008.tar.gz
gcc-47af138fc5dff44f0fcdf0a125fb22d02b7f2008.tar.bz2
PlainDatagramSocketImpl.java: Merged copyright header.
2005-04-20 Michael Koch <konqueror@gmx.de> * gnu/java/net/PlainDatagramSocketImpl.java: Merged copyright header. * gnu/java/net/PlainSocketImpl.java: Reorganized import statements. Fixed @author tags. From-SVN: r98443
Diffstat (limited to 'libjava')
-rw-r--r--libjava/ChangeLog7
-rw-r--r--libjava/gnu/java/net/PlainDatagramSocketImpl.java2
-rw-r--r--libjava/gnu/java/net/PlainSocketImpl.java11
3 files changed, 14 insertions, 6 deletions
diff --git a/libjava/ChangeLog b/libjava/ChangeLog
index b424c37..aeca35f 100644
--- a/libjava/ChangeLog
+++ b/libjava/ChangeLog
@@ -1,5 +1,12 @@
2005-04-20 Michael Koch <konqueror@gmx.de>
+ * gnu/java/net/PlainDatagramSocketImpl.java:
+ Merged copyright header.
+ * gnu/java/net/PlainSocketImpl.java:
+ Reorganized import statements. Fixed @author tags.
+
+2005-04-20 Michael Koch <konqueror@gmx.de>
+
* gnu/java/lang/ClassHelper.java,
gnu/java/lang/reflect/TypeSignature.java:
Fixed @author tag.
diff --git a/libjava/gnu/java/net/PlainDatagramSocketImpl.java b/libjava/gnu/java/net/PlainDatagramSocketImpl.java
index 23ac676..7c3a8db 100644
--- a/libjava/gnu/java/net/PlainDatagramSocketImpl.java
+++ b/libjava/gnu/java/net/PlainDatagramSocketImpl.java
@@ -1,5 +1,5 @@
/* PlainDatagramSocketImpl.java -- Default DatagramSocket implementation
- Copyright (C) 1998, 1999, 2001, 2003, 2004 Free Software Foundation, Inc.
+ Copyright (C) 1998, 1999, 2001, 2003, 2004, 2005 Free Software Foundation, Inc.
This file is part of GNU Classpath.
diff --git a/libjava/gnu/java/net/PlainSocketImpl.java b/libjava/gnu/java/net/PlainSocketImpl.java
index f7e6cb8..b6fef08 100644
--- a/libjava/gnu/java/net/PlainSocketImpl.java
+++ b/libjava/gnu/java/net/PlainSocketImpl.java
@@ -39,8 +39,10 @@ exception statement from your version. */
package gnu.java.net;
-import java.io.InputStream;
+import gnu.classpath.Configuration;
+
import java.io.IOException;
+import java.io.InputStream;
import java.io.OutputStream;
import java.net.InetAddress;
import java.net.InetSocketAddress;
@@ -48,7 +50,6 @@ import java.net.SocketAddress;
import java.net.SocketException;
import java.net.SocketImpl;
import java.net.SocketOptions;
-import gnu.classpath.Configuration;
/**
* Written using on-line Java Platform 1.2 API Specification, as well
@@ -62,9 +63,9 @@ import gnu.classpath.Configuration;
* combination of Java and native routines to implement standard BSD
* style sockets of family AF_INET and types SOCK_STREAM and SOCK_DGRAM
*
- * @author Per Bothner <bothner@cygnus.com>
- * @author Nic Ferrier <nferrier@tapsellferrier.co.uk>
- * @author Aaron M. Renn <arenn@urbanophile.com>
+ * @author Per Bothner (bothner@cygnus.com)
+ * @author Nic Ferrier (nferrier@tapsellferrier.co.uk)
+ * @author Aaron M. Renn (arenn@urbanophile.com)
*/
public final class PlainSocketImpl extends SocketImpl
{
ref='#n312'>312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969
/* Pipeline hazard description translator.
   Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.

   Written by Vladimir Makarov <vmakarov@redhat.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */

/* References:

   1. Detecting pipeline structural hazards quickly. T. Proebsting,
      C. Fraser. Proceedings of ACM SIGPLAN-SIGACT Symposium on
      Principles of Programming Languages, pages 280--286, 1994.

      This article is a good start point to understand usage of finite
      state automata for pipeline hazard recognizers.  But I'd
      recommend the 2nd article for more deep understanding.

   2. Efficient Instruction Scheduling Using Finite State Automata:
      V. Bala and N. Rubin, Proceedings of MICRO-28.  This is the best
      article about usage of finite state automata for pipeline hazard
      recognizers.

   The current implementation is different from the 2nd article in the
   following:

   1. New operator `|' (alternative) is permitted in functional unit
      reservation which can be treated deterministically and
      non-deterministically.

   2. Possibility of usage of nondeterministic automata too.

   3. Possibility to query functional unit reservations for given
      automaton state.

   4. Several constructions to describe impossible reservations
      (`exclusion_set', `presence_set', `final_presence_set',
      `absence_set', and `final_absence_set').

   5. No reverse automata are generated.  Trace instruction scheduling
      requires this.  It can be easily added in the future if we
      really need this.

   6. Union of automaton states are not generated yet.  It is planned
      to be implemented.  Such feature is needed to make more accurate
      interlock insn scheduling to get state describing functional
      unit reservation in a joint CFG point.  */

/* This file code processes constructions of machine description file
   which describes automaton used for recognition of processor pipeline
   hazards by insn scheduler and can be used for other tasks (such as
   VLIW insn packing.

   The translator functions `gen_cpu_unit', `gen_query_cpu_unit',
   `gen_bypass', `gen_excl_set', `gen_presence_set',
   `gen_final_presence_set', `gen_absence_set',
   `gen_final_absence_set', `gen_automaton', `gen_automata_option',
   `gen_reserv', `gen_insn_reserv' are called from file
   `genattrtab.c'.  They transform RTL constructions describing
   automata in .md file into internal representation convenient for
   further processing.

   The translator major function `expand_automata' processes the
   description internal representation into finite state automaton.
   It can be divided on:

     o checking correctness of the automaton pipeline description
       (major function is `check_all_description').

     o generating automaton (automata) from the description (major
       function is `make_automaton').

     o optional transformation of nondeterministic finite state
       automata into deterministic ones if the alternative operator
       `|' is treated nondeterministically in the description (major
       function is NDFA_to_DFA).

     o optional minimization of the finite state automata by merging
       equivalent automaton states (major function is `minimize_DFA').

     o forming tables (some as comb vectors) and attributes
       representing the automata (functions output_..._table).

   Function `write_automata' outputs the created finite state
   automaton as different tables and functions which works with the
   automata to inquire automaton state and to change its state.  These
   function are used by gcc instruction scheduler and may be some
   other gcc code.  */

#include "bconfig.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "obstack.h"
#include "errors.h"

#include <math.h>
#include "hashtab.h"
#include "varray.h"

#ifndef CHAR_BIT
#define CHAR_BIT 8
#endif

#include "genattrtab.h"

/* Positions in machine description file.  Now they are not used.  But
   they could be used in the future for better diagnostic messages.  */
typedef int pos_t;

/* The following is element of vector of current (and planned in the
   future) functional unit reservations.  */
typedef unsigned HOST_WIDE_INT set_el_t;

/* Reservations of function units are represented by value of the following
   type.  */
typedef set_el_t *reserv_sets_t;

/* The following structure represents variable length array (vla) of
   pointers and HOST WIDE INTs.  We could be use only varray.  But we
   add new lay because we add elements very frequently and this could
   stress OS allocator when varray is used only.  */
typedef struct {
  size_t length;      /* current size of vla.  */
  varray_type varray; /* container for vla.  */
} vla_ptr_t;

typedef vla_ptr_t vla_hwint_t;

/* The following structure describes a ticker.  */
struct ticker
{
  /* The following member value is time of the ticker creation with
     taking into account time when the ticker is off.  Active time of
     the ticker is current time minus the value.  */
  int modified_creation_time;
  /* The following member value is time (incremented by one) when the
     ticker was off.  Zero value means that now the ticker is on.  */
  int incremented_off_time;
};

/* The ticker is represented by the following type.  */
typedef struct ticker ticker_t;

/* The following type describes elements of output vectors.  */
typedef HOST_WIDE_INT vect_el_t;

/* Forward declaration of structures of internal representation of
   pipeline description based on NDFA.  */

struct unit_decl;
struct bypass_decl;
struct result_decl;
struct automaton_decl;
struct unit_pattern_rel_decl;
struct reserv_decl;
struct insn_reserv_decl;
struct decl;
struct unit_regexp;
struct result_regexp;
struct reserv_regexp;
struct nothing_regexp;
struct sequence_regexp;
struct repeat_regexp;
struct allof_regexp;
struct oneof_regexp;
struct regexp;
struct description;
struct unit_set_el;
struct pattern_set_el;
struct pattern_reserv;
struct state;
struct alt_state;
struct arc;
struct ainsn;
struct automaton;
struct state_ainsn_table;

/* The following typedefs are for brevity.  */
typedef struct unit_decl *unit_decl_t;
typedef struct decl *decl_t;
typedef struct regexp *regexp_t;
typedef struct unit_set_el *unit_set_el_t;
typedef struct pattern_set_el *pattern_set_el_t;
typedef struct pattern_reserv *pattern_reserv_t;
typedef struct alt_state *alt_state_t;
typedef struct state *state_t;
typedef struct arc *arc_t;
typedef struct ainsn *ainsn_t;
typedef struct automaton *automaton_t;
typedef struct automata_list_el *automata_list_el_t;
typedef struct state_ainsn_table *state_ainsn_table_t;


/* Prototypes of functions gen_cpu_unit, gen_query_cpu_unit,
   gen_bypass, gen_excl_set, gen_presence_set, gen_final_presence_set,
   gen_absence_set, gen_final_absence_set, gen_automaton,
   gen_automata_option, gen_reserv, gen_insn_reserv,
   initiate_automaton_gen, expand_automata, write_automata are
   described on the file top because the functions are called from
   function `main'.  */

static void *create_node             (size_t);
static void *copy_node               (const void *, size_t);
static char *check_name              (char *, pos_t);
static char *next_sep_el             (char **, int, int);
static int n_sep_els                 (char *, int, int);
static char **get_str_vect           (char *, int *, int, int);
static void gen_presence_absence_set (rtx, int, int);
static regexp_t gen_regexp_el        (char *);
static regexp_t gen_regexp_repeat    (char *);
static regexp_t gen_regexp_allof     (char *);
static regexp_t gen_regexp_oneof     (char *);
static regexp_t gen_regexp_sequence  (char *);
static regexp_t gen_regexp           (char *);

static unsigned string_hash          (const char *);
static unsigned automaton_decl_hash  (const void *);
static int automaton_decl_eq_p       (const void *,
				      const void *);
static decl_t insert_automaton_decl       (decl_t);
static decl_t find_automaton_decl         (char *);
static void initiate_automaton_decl_table (void);
static void finish_automaton_decl_table   (void);

static hashval_t insn_decl_hash           (const void *);
static int insn_decl_eq_p                 (const void *,
					   const void *);
static decl_t insert_insn_decl            (decl_t);
static decl_t find_insn_decl              (char *);
static void initiate_insn_decl_table      (void);
static void finish_insn_decl_table        (void);

static hashval_t decl_hash                (const void *);
static int decl_eq_p                      (const void *,
					   const void *);
static decl_t insert_decl                 (decl_t);
static decl_t find_decl                   (char *);
static void initiate_decl_table           (void);
static void finish_decl_table             (void);

static unit_set_el_t process_excls       (char **, int, pos_t);
static void add_excls                    (unit_set_el_t, unit_set_el_t,
					  pos_t);
static unit_set_el_t process_presence_absence_names
					 (char **, int, pos_t,
					  int, int);
static pattern_set_el_t process_presence_absence_patterns
					 (char ***, int, pos_t,
					  int, int);
static void add_presence_absence	 (unit_set_el_t,
					  pattern_set_el_t,
					  pos_t, int, int);
static void process_decls                (void);
static struct bypass_decl *find_bypass   (struct bypass_decl *,
					  struct insn_reserv_decl *);
static void check_automaton_usage        (void);
static regexp_t process_regexp           (regexp_t);
static void process_regexp_decls         (void);
static void check_usage                  (void);
static int loop_in_regexp                (regexp_t, decl_t);
static void check_loops_in_regexps       (void);
static void process_regexp_cycles        (regexp_t, int, int,
					  int *, int *);
static void evaluate_max_reserv_cycles   (void);
static void check_all_description        (void);

static ticker_t create_ticker               (void);
static void ticker_off                      (ticker_t *);
static void ticker_on                       (ticker_t *);
static int active_time                      (ticker_t);
static void print_active_time               (FILE *, ticker_t);

static void add_advance_cycle_insn_decl     (void);

static alt_state_t get_free_alt_state (void);
static void free_alt_state              (alt_state_t);
static void free_alt_states             (alt_state_t);
static int alt_state_cmp                (const void *alt_state_ptr_1,
					 const void *alt_state_ptr_2);
static alt_state_t uniq_sort_alt_states (alt_state_t);
static int alt_states_eq                (alt_state_t, alt_state_t);
static void initiate_alt_states         (void);
static void finish_alt_states           (void);

static reserv_sets_t alloc_empty_reserv_sets (void);
static unsigned reserv_sets_hash_value (reserv_sets_t);
static int reserv_sets_cmp             (reserv_sets_t, reserv_sets_t);
static int reserv_sets_eq              (reserv_sets_t, reserv_sets_t);
static void set_unit_reserv            (reserv_sets_t, int, int);
static int test_unit_reserv            (reserv_sets_t, int, int);
static int it_is_empty_reserv_sets     (reserv_sets_t)
                                            ATTRIBUTE_UNUSED;
static int reserv_sets_are_intersected (reserv_sets_t, reserv_sets_t);
static void reserv_sets_shift          (reserv_sets_t, reserv_sets_t);
static void reserv_sets_or             (reserv_sets_t, reserv_sets_t,
					reserv_sets_t);
static void reserv_sets_and            (reserv_sets_t, reserv_sets_t,
					reserv_sets_t)
                                            ATTRIBUTE_UNUSED;
static void output_cycle_reservs       (FILE *, reserv_sets_t,
					int, int);
static void output_reserv_sets         (FILE *, reserv_sets_t);
static state_t get_free_state          (int, automaton_t);
static void free_state                 (state_t);
static hashval_t state_hash            (const void *);
static int state_eq_p                  (const void *, const void *);
static state_t insert_state            (state_t);
static void set_state_reserv           (state_t, int, int);
static int intersected_state_reservs_p (state_t, state_t);
static state_t states_union            (state_t, state_t, reserv_sets_t);
static state_t state_shift             (state_t, reserv_sets_t);
static void initiate_states            (void);
static void finish_states              (void);

static void free_arc           (arc_t);
static void remove_arc         (state_t, arc_t);
static arc_t find_arc          (state_t, state_t, ainsn_t);
static arc_t add_arc           (state_t, state_t, ainsn_t, int);
static arc_t first_out_arc     (state_t);
static arc_t next_out_arc      (arc_t);
static void initiate_arcs      (void);
static void finish_arcs        (void);

static automata_list_el_t get_free_automata_list_el (void);
static void free_automata_list_el (automata_list_el_t);
static void free_automata_list (automata_list_el_t);
static hashval_t automata_list_hash (const void *);
static int automata_list_eq_p (const void *, const void *);
static void initiate_automata_lists (void);
static void automata_list_start (void);
static void automata_list_add (automaton_t);
static automata_list_el_t automata_list_finish (void);
static void finish_automata_lists (void);

static void initiate_excl_sets             (void);
static reserv_sets_t get_excl_set          (reserv_sets_t);

static pattern_reserv_t form_reserv_sets_list (pattern_set_el_t);
static void initiate_presence_absence_pattern_sets     (void);
static int check_presence_pattern_sets     (reserv_sets_t,
					    reserv_sets_t, int);
static int check_absence_pattern_sets  (reserv_sets_t, reserv_sets_t,
					int);

static regexp_t copy_insn_regexp     (regexp_t);
static regexp_t transform_1          (regexp_t);
static regexp_t transform_2          (regexp_t);
static regexp_t transform_3          (regexp_t);
static regexp_t regexp_transform_func
                       (regexp_t, regexp_t (*) (regexp_t));
static regexp_t transform_regexp            (regexp_t);
static void transform_insn_regexps          (void);

static void store_alt_unit_usage (regexp_t, regexp_t, int, int);
static void check_regexp_units_distribution   (const char *, regexp_t);
static void check_unit_distributions_to_automata (void);

static int process_seq_for_forming_states   (regexp_t, automaton_t,
					     int);
static void finish_forming_alt_state        (alt_state_t,
					     automaton_t);
static void process_alts_for_forming_states (regexp_t,
					     automaton_t, int);
static void create_alt_states               (automaton_t);

static void form_ainsn_with_same_reservs    (automaton_t);

static reserv_sets_t form_reservs_matter (automaton_t);
static void make_automaton           (automaton_t);
static void form_arcs_marked_by_insn (state_t);
static int create_composed_state     (state_t, arc_t, vla_ptr_t *);
static void NDFA_to_DFA              (automaton_t);
static void pass_state_graph         (state_t, void (*) (state_t));
static void pass_states              (automaton_t,
				      void (*) (state_t));
static void initiate_pass_states       (void);
static void add_achieved_state         (state_t);
static int set_out_arc_insns_equiv_num (state_t, int);
static void clear_arc_insns_equiv_num  (state_t);
static void copy_equiv_class           (vla_ptr_t *to,
					const vla_ptr_t *from);
static int first_cycle_unit_presence   (state_t, int);
static int state_is_differed           (state_t, state_t, int, int);
static state_t init_equiv_class        (state_t *states, int);
static int partition_equiv_class       (state_t *, int,
					vla_ptr_t *, int *);
static void evaluate_equiv_classes     (automaton_t, vla_ptr_t *);
static void merge_states               (automaton_t, vla_ptr_t *);
static void set_new_cycle_flags        (state_t);
static void minimize_DFA               (automaton_t);
static void incr_states_and_arcs_nums  (state_t);
static void count_states_and_arcs      (automaton_t, int *, int *);
static void build_automaton            (automaton_t);

static void set_order_state_num              (state_t);
static void enumerate_states                 (automaton_t);

static ainsn_t insert_ainsn_into_equiv_class       (ainsn_t, ainsn_t);
static void delete_ainsn_from_equiv_class          (ainsn_t);
static void process_insn_equiv_class               (ainsn_t, arc_t *);
static void process_state_for_insn_equiv_partition (state_t);
static void set_insn_equiv_classes                 (automaton_t);

static double estimate_one_automaton_bound     (void);
static int compare_max_occ_cycle_nums          (const void *,
						const void *);
static void units_to_automata_heuristic_distr  (void);
static ainsn_t create_ainsns                   (void);
static void units_to_automata_distr            (void);
static void create_automata                    (void);

static void form_regexp                      (regexp_t);
static const char *regexp_representation     (regexp_t);
static void finish_regexp_representation     (void);

static void output_range_type            (FILE *, long int, long int);
static int longest_path_length           (state_t);
static void process_state_longest_path_length (state_t);
static void output_dfa_max_issue_rate    (void);
static void output_vect                  (vect_el_t *, int);
static void output_chip_member_name      (FILE *, automaton_t);
static void output_temp_chip_member_name (FILE *, automaton_t);
static void output_translate_vect_name   (FILE *, automaton_t);
static void output_trans_full_vect_name  (FILE *, automaton_t);
static void output_trans_comb_vect_name  (FILE *, automaton_t);
static void output_trans_check_vect_name (FILE *, automaton_t);
static void output_trans_base_vect_name  (FILE *, automaton_t);
static void output_state_alts_full_vect_name    (FILE *, automaton_t);
static void output_state_alts_comb_vect_name    (FILE *, automaton_t);
static void output_state_alts_check_vect_name   (FILE *, automaton_t);
static void output_state_alts_base_vect_name    (FILE *, automaton_t);
static void output_min_issue_delay_vect_name    (FILE *, automaton_t);
static void output_dead_lock_vect_name   (FILE *, automaton_t);
static void output_reserved_units_table_name    (FILE *, automaton_t);
static void output_state_member_type     (FILE *, automaton_t);
static void output_chip_definitions      (void);
static void output_translate_vect        (automaton_t);
static int comb_vect_p                   (state_ainsn_table_t);
static state_ainsn_table_t create_state_ainsn_table (automaton_t);
static void output_state_ainsn_table
   (state_ainsn_table_t, char *, void (*) (FILE *, automaton_t),
    void (*) (FILE *, automaton_t), void (*) (FILE *, automaton_t),
    void (*) (FILE *, automaton_t));
static void add_vect                     (state_ainsn_table_t,
					  int, vect_el_t *, int);
static int out_state_arcs_num            (state_t);
static int compare_transition_els_num    (const void *, const void *);
static void add_vect_el	         (vla_hwint_t *,
					  ainsn_t, int);
static void add_states_vect_el           (state_t);
static void output_trans_table           (automaton_t);
static void output_state_alts_table      (automaton_t);
static int min_issue_delay_pass_states   (state_t, ainsn_t);
static int min_issue_delay               (state_t, ainsn_t);
static void initiate_min_issue_delay_pass_states (void);
static void output_min_issue_delay_table (automaton_t);
static void output_dead_lock_vect        (automaton_t);
static void output_reserved_units_table  (automaton_t);
static void output_tables                (void);
static void output_max_insn_queue_index_def (void);
static void output_insn_code_cases   (void (*) (automata_list_el_t));
static void output_automata_list_min_issue_delay_code (automata_list_el_t);
static void output_internal_min_issue_delay_func (void);
static void output_automata_list_transition_code (automata_list_el_t);
static void output_internal_trans_func   (void);
static void output_internal_insn_code_evaluation (const char *,
						  const char *, int);
static void output_dfa_insn_code_func	        (void);
static void output_trans_func                   (void);
static void output_automata_list_state_alts_code (automata_list_el_t);
static void output_internal_state_alts_func     (void);
static void output_state_alts_func              (void);
static void output_min_issue_delay_func         (void);
static void output_internal_dead_lock_func      (void);
static void output_dead_lock_func               (void);
static void output_internal_reset_func          (void);
static void output_size_func		        (void);
static void output_reset_func                   (void);
static void output_min_insn_conflict_delay_func (void);
static void output_internal_insn_latency_func   (void);
static void output_insn_latency_func            (void);
static void output_print_reservation_func       (void);
static int units_cmp			        (const void *,
						 const void *);
static void output_get_cpu_unit_code_func       (void);
static void output_cpu_unit_reservation_p       (void);
static void output_dfa_clean_insn_cache_func    (void);
static void output_dfa_start_func	        (void);
static void output_dfa_finish_func	        (void);

static void output_regexp                  (regexp_t );
static void output_unit_set_el_list	   (unit_set_el_t);
static void output_pattern_set_el_list	   (pattern_set_el_t);
static void output_description             (void);
static void output_automaton_name          (FILE *, automaton_t);
static void output_automaton_units         (automaton_t);
static void add_state_reservs              (state_t);
static void output_state_arcs              (state_t);
static int state_reservs_cmp               (const void *,
					    const void *);
static void remove_state_duplicate_reservs (void);
static void output_state                   (state_t);
static void output_automaton_descriptions  (void);
static void output_statistics              (FILE *);
static void output_time_statistics         (FILE *);
static void generate                       (void);

static void make_insn_alts_attr                (void);
static void make_internal_dfa_insn_code_attr   (void);
static void make_default_insn_latency_attr     (void);
static void make_bypass_attr                   (void);
static const char *file_name_suffix            (const char *);
static const char *base_file_name              (const char *);
static void check_automata_insn_issues	       (void);
static void add_automaton_state                (state_t);
static void form_important_insn_automata_lists (void);

/* Undefined position.  */
static pos_t no_pos = 0;

/* All IR is stored in the following obstack.  */
static struct obstack irp;



/* This page contains code for work with variable length array (vla)
   of pointers.  We could be use only varray.  But we add new lay
   because we add elements very frequently and this could stress OS
   allocator when varray is used only.  */

/* Start work with vla.  */
#define VLA_PTR_CREATE(vla, allocated_length, name)	 \
  do									 \
    {	 \
      vla_ptr_t *const _vla_ptr = &(vla);                                \
	 \
      VARRAY_GENERIC_PTR_INIT (_vla_ptr->varray, allocated_length, name);\
      _vla_ptr->length = 0;                                              \
    }									 \
  while (0)

/* Finish work with the vla.  */
#define VLA_PTR_DELETE(vla) VARRAY_FREE ((vla).varray)

/* Return start address of the vla.  */
#define VLA_PTR_BEGIN(vla) ((void *) &VARRAY_GENERIC_PTR ((vla).varray, 0))

/* Address of the last element of the vla.  Do not use side effects in
   the macro argument.  */
#define VLA_PTR_LAST(vla) (&VARRAY_GENERIC_PTR ((vla).varray,         \
                                                (vla).length - 1))
/* Nullify the vla.  */
#define VLA_PTR_NULLIFY(vla)  ((vla).length = 0)

/* Shorten the vla on given number bytes.  */
#define VLA_PTR_SHORTEN(vla, n)  ((vla).length -= (n))

/* Expand the vla on N elements.  The values of new elements are
   undefined.  */
#define VLA_PTR_EXPAND(vla, n)                                        \
  do {                                                                \
    vla_ptr_t *const _expand_vla_ptr = &(vla);                        \
    const size_t _new_length = (n) + _expand_vla_ptr->length;         \
                                                                      \
    if (VARRAY_SIZE (_expand_vla_ptr->varray) < _new_length)          \
      VARRAY_GROW (_expand_vla_ptr->varray,                           \
                   (_new_length - _expand_vla_ptr->length < 128       \
                    ? _expand_vla_ptr->length + 128 : _new_length));  \
    _expand_vla_ptr->length = _new_length;                            \
  } while (0)

/* Add element to the end of the vla.  */
#define VLA_PTR_ADD(vla, ptr)                                           \
  do {                                                                  \
    vla_ptr_t *const _vla_ptr = &(vla);                                 \
                                                                        \
    VLA_PTR_EXPAND (*_vla_ptr, 1);                                      \
    VARRAY_GENERIC_PTR (_vla_ptr->varray, _vla_ptr->length - 1) = (ptr);\
  } while (0)

/* Length of the vla in elements.  */
#define VLA_PTR_LENGTH(vla) ((vla).length)

/* N-th element of the vla.  */
#define VLA_PTR(vla, n) VARRAY_GENERIC_PTR ((vla).varray, n)


/* The following macros are analogous to the previous ones but for
   VLAs of HOST WIDE INTs.  */

#define VLA_HWINT_CREATE(vla, allocated_length, name)                 \
  do {                                                                \
    vla_hwint_t *const _vla_ptr = &(vla);                             \
                                                                      \
    VARRAY_WIDE_INT_INIT (_vla_ptr->varray, allocated_length, name);  \
    _vla_ptr->length = 0;                                             \
  } while (0)

#define VLA_HWINT_DELETE(vla) VARRAY_FREE ((vla).varray)

#define VLA_HWINT_BEGIN(vla) (&VARRAY_WIDE_INT ((vla).varray, 0))

#define VLA_HWINT_NULLIFY(vla)  ((vla).length = 0)

#define VLA_HWINT_EXPAND(vla, n)                                      \
  do {                                                                \
    vla_hwint_t *const _expand_vla_ptr = &(vla);                      \
    const size_t _new_length = (n) + _expand_vla_ptr->length;         \
                                                                      \
    if (VARRAY_SIZE (_expand_vla_ptr->varray) < _new_length)          \
      VARRAY_GROW (_expand_vla_ptr->varray,                           \
                   (_new_length - _expand_vla_ptr->length < 128       \
                    ? _expand_vla_ptr->length + 128 : _new_length));  \
    _expand_vla_ptr->length = _new_length;                            \
  } while (0)

#define VLA_HWINT_ADD(vla, ptr)                                       \
  do {                                                                \
    vla_hwint_t *const _vla_ptr = &(vla);                             \
                                                                      \
    VLA_HWINT_EXPAND (*_vla_ptr, 1);                                  \
    VARRAY_WIDE_INT (_vla_ptr->varray, _vla_ptr->length - 1) = (ptr); \
  } while (0)

#define VLA_HWINT_LENGTH(vla) ((vla).length)

#define VLA_HWINT(vla, n) VARRAY_WIDE_INT ((vla).varray, n)



/* Options with the following names can be set up in automata_option
   construction.  Because the strings occur more one time we use the
   macros.  */

#define NO_MINIMIZATION_OPTION "-no-minimization"

#define TIME_OPTION "-time"

#define V_OPTION "-v"

#define W_OPTION "-w"

#define NDFA_OPTION "-ndfa"

#define PROGRESS_OPTION "-progress"

/* The following flags are set up by function `initiate_automaton_gen'.  */

/* Make automata with nondeterministic reservation by insns (`-ndfa').  */
static int ndfa_flag;

/* Do not make minimization of DFA (`-no-minimization').  */
static int no_minimization_flag;

/* Value of this variable is number of automata being generated.  The
   actual number of automata may be less this value if there is not
   sufficient number of units.  This value is defined by argument of
   option `-split' or by constructions automaton if the value is zero
   (it is default value of the argument).  */
static int split_argument;

/* Flag of output time statistics (`-time').  */
static int time_flag;

/* Flag of creation of description file which contains description of
   result automaton and statistics information (`-v').  */
static int v_flag;

/* Flag of output of a progress bar showing how many states were
   generated so far for automaton being processed (`-progress').  */
static int progress_flag;

/* Flag of generating warning instead of error for non-critical errors
   (`-w').  */
static int w_flag;


/* Output file for pipeline hazard recognizer (PHR) being generated.
   The value is NULL if the file is not defined.  */
static FILE *output_file;

/* Description file of PHR.  The value is NULL if the file is not
   created.  */
static FILE *output_description_file;

/* PHR description file name.  */
static char *output_description_file_name;

/* Value of the following variable is node representing description
   being processed.  This is start point of IR.  */
static struct description *description;



/* This page contains description of IR structure (nodes).  */

enum decl_mode
{
  dm_unit,
  dm_bypass,
  dm_automaton,
  dm_excl,
  dm_presence,
  dm_absence,
  dm_reserv,
  dm_insn_reserv
};

/* This describes define_cpu_unit and define_query_cpu_unit (see file
   rtl.def).  */
struct unit_decl
{
  char *name;
  /* NULL if the automaton name is absent.  */
  char *automaton_name;
  /* If the following value is not zero, the cpu unit reservation is
     described in define_query_cpu_unit.  */
  char query_p;

  /* The following fields are defined by checker.  */

  /* The following field value is nonzero if the unit is used in an
     regexp.  */
  char unit_is_used;

  /* The following field value is order number (0, 1, ...) of given
     unit.  */
  int unit_num;
  /* The following field value is corresponding declaration of
     automaton which was given in description.  If the field value is
     NULL then automaton in the unit declaration was absent.  */
  struct automaton_decl *automaton_decl;
  /* The following field value is maximal cycle number (1, ...) on
     which given unit occurs in insns.  Zero value means that given
     unit is not used in insns.  */
  int max_occ_cycle_num;
  /* The following field value is minimal cycle number (0, ...) on
     which given unit occurs in insns.  -1 value means that given
     unit is not used in insns.  */
  int min_occ_cycle_num;
  /* The following list contains units which conflict with given
     unit.  */
  unit_set_el_t excl_list;
  /* The following list contains patterns which are required to
     reservation of given unit.  */
  pattern_set_el_t presence_list;
  pattern_set_el_t final_presence_list;
  /* The following list contains patterns which should be not present
     in reservation for given unit.  */
  pattern_set_el_t absence_list;
  pattern_set_el_t final_absence_list;
  /* The following is used only when `query_p' has nonzero value.
     This is query number for the unit.  */
  int query_num;
  /* The following is the last cycle on which the unit was checked for
     correct distributions of units to automata in a regexp.  */
  int last_distribution_check_cycle;

  /* The following fields are defined by automaton generator.  */

  /* The following field value is number of the automaton to which
     given unit belongs.  */
  int corresponding_automaton_num;
  /* If the following value is not zero, the cpu unit is present in a
     `exclusion_set' or in right part of a `presence_set',
     `final_presence_set', `absence_set', and
     `final_absence_set'define_query_cpu_unit.  */
  char in_set_p;
};

/* This describes define_bypass (see file rtl.def).  */
struct bypass_decl
{
  int latency;
  char *out_insn_name;
  char *in_insn_name;
  char *bypass_guard_name;

  /* The following fields are defined by checker.  */

  /* output and input insns of given bypass.  */
  struct insn_reserv_decl *out_insn_reserv;
  struct insn_reserv_decl *in_insn_reserv;
  /* The next bypass for given output insn.  */
  struct bypass_decl *next;
};

/* This describes define_automaton (see file rtl.def).  */
struct automaton_decl
{
  char *name;

  /* The following fields are defined by automaton generator.  */

  /* The following field value is nonzero if the automaton is used in
     an regexp definition.  */
  char automaton_is_used;

  /* The following fields are defined by checker.  */

  /* The following field value is the corresponding automaton.  This
     field is not NULL only if the automaton is present in unit
     declarations and the automatic partition on automata is not
     used.  */
  automaton_t corresponding_automaton;
};

/* This describes exclusion relations: exclusion_set (see file
   rtl.def).  */
struct excl_rel_decl
{
  int all_names_num;
  int first_list_length;
  char *names [1];
};

/* This describes unit relations: [final_]presence_set or
   [final_]absence_set (see file rtl.def).  */
struct unit_pattern_rel_decl
{
  int final_p;
  int names_num;
  int patterns_num;
  char **names;
  char ***patterns;
};

/* This describes define_reservation (see file rtl.def).  */
struct reserv_decl
{
  char *name;
  regexp_t regexp;

  /* The following fields are defined by checker.  */

  /* The following field value is nonzero if the unit is used in an
     regexp.  */
  char reserv_is_used;
  /* The following field is used to check up cycle in expression
     definition.  */
  int loop_pass_num;
};

/* This describes define_insn_reservation (see file rtl.def).  */
struct insn_reserv_decl
{
  rtx condexp;
  int default_latency;
  regexp_t regexp;
  char *name;

  /* The following fields are defined by checker.  */

  /* The following field value is order number (0, 1, ...) of given
     insn.  */
  int insn_num;
  /* The following field value is list of bypasses in which given insn
     is output insn.  */
  struct bypass_decl *bypass_list;

  /* The following fields are defined by automaton generator.  */

  /* The following field is the insn regexp transformed that
     the regexp has not optional regexp, repetition regexp, and an
     reservation name (i.e. reservation identifiers are changed by the
     corresponding regexp) and all alternations are the topest level
     of the regexp.  The value can be NULL only if it is special
     insn `cycle advancing'.  */
  regexp_t transformed_regexp;
  /* The following field value is list of arcs marked given
     insn.  The field is used in transformation NDFA -> DFA.  */
  arc_t arcs_marked_by_insn;
  /* The two following fields are used during minimization of a finite state
     automaton.  */
  /* The field value is number of equivalence class of state into
     which arc marked by given insn enters from a state (fixed during
     an automaton minimization).  */
  int equiv_class_num;
  /* The field value is state_alts of arc leaving a state (fixed
     during an automaton minimization) and marked by given insn
     enters.  */
  int state_alts;
  /* The following member value is the list to automata which can be
     changed by the insn issue.  */
  automata_list_el_t important_automata_list;
  /* The following member is used to process insn once for output.  */
  int processed_p;
};

/* This contains a declaration mentioned above.  */
struct decl
{
  /* What node in the union? */
  enum decl_mode mode;
  pos_t pos;
  union
  {
    struct unit_decl unit;
    struct bypass_decl bypass;
    struct automaton_decl automaton;
    struct excl_rel_decl excl;
    struct unit_pattern_rel_decl presence;
    struct unit_pattern_rel_decl absence;
    struct reserv_decl reserv;
    struct insn_reserv_decl insn_reserv;
  } decl;
};

/* The following structures represent parsed reservation strings.  */
enum regexp_mode
{
  rm_unit,
  rm_reserv,
  rm_nothing,
  rm_sequence,
  rm_repeat,
  rm_allof,
  rm_oneof
};

/* Cpu unit in reservation.  */
struct unit_regexp
{
  char *name;
  unit_decl_t unit_decl;
};

/* Define_reservation in a reservation.  */
struct reserv_regexp
{
  char *name;
  struct reserv_decl *reserv_decl;
};

/* Absence of reservation (represented by string `nothing').  */
struct nothing_regexp
{
  /* This used to be empty but ISO C doesn't allow that.  */
  char unused;
};

/* Representation of reservations separated by ',' (see file
   rtl.def).  */
struct sequence_regexp
{
  int regexps_num;
  regexp_t regexps [1];
};

/* Representation of construction `repeat' (see file rtl.def).  */
struct repeat_regexp
{
  int repeat_num;
  regexp_t regexp;
};

/* Representation of reservations separated by '+' (see file
   rtl.def).  */
struct allof_regexp
{
  int regexps_num;
  regexp_t regexps [1];
};

/* Representation of reservations separated by '|' (see file
   rtl.def).  */
struct oneof_regexp
{
  int regexps_num;
  regexp_t regexps [1];
};

/* Representation of a reservation string.  */
struct regexp
{
  /* What node in the union? */
  enum regexp_mode mode;
  pos_t pos;
  union
  {
    struct unit_regexp unit;
    struct reserv_regexp reserv;
    struct nothing_regexp nothing;
    struct sequence_regexp sequence;
    struct repeat_regexp repeat;
    struct allof_regexp allof;
    struct oneof_regexp oneof;
  } regexp;
};

/* Represents description of pipeline hazard description based on
   NDFA.  */
struct description
{
  int decls_num;

  /* The following fields are defined by checker.  */

  /* The following fields values are correspondingly number of all
     units, query units, and insns in the description.  */
  int units_num;
  int query_units_num;
  int insns_num;
  /* The following field value is max length (in cycles) of
     reservations of insns.  The field value is defined only for
     correct programs.  */
  int max_insn_reserv_cycles;

  /* The following fields are defined by automaton generator.  */

  /* The following field value is the first automaton.  */
  automaton_t first_automaton;

  /* The following field is created by pipeline hazard parser and
     contains all declarations.  We allocate additional entry for
     special insn "cycle advancing" which is added by the automaton
     generator.  */
  decl_t decls [1];
};


/* The following nodes are created in automaton checker.  */

/* The following nodes represent exclusion set for cpu units.  Each
   element is accessed through only one excl_list.  */
struct unit_set_el
{
  unit_decl_t unit_decl;
  unit_set_el_t next_unit_set_el;
};

/* The following nodes represent presence or absence pattern for cpu
   units.  Each element is accessed through only one presence_list or
   absence_list.  */
struct pattern_set_el
{
  /* The number of units in unit_decls.  */
  int units_num;
  /* The units forming the pattern.  */
  struct unit_decl **unit_decls;
  pattern_set_el_t next_pattern_set_el;
};


/* The following nodes are created in automaton generator.  */


/* The following nodes represent presence or absence pattern for cpu
   units.  Each element is accessed through only one element of
   unit_presence_set_table or unit_absence_set_table.  */
struct pattern_reserv
{
  reserv_sets_t reserv;
  pattern_reserv_t next_pattern_reserv;
};

/* The following node type describes state automaton.  The state may
   be deterministic or non-deterministic.  Non-deterministic state has
   several component states which represent alternative cpu units
   reservations.  The state also is used for describing a
   deterministic reservation of automaton insn.  */
struct state
{
  /* The following member value is nonzero if there is a transition by
     cycle advancing.  */
  int new_cycle_p;
  /* The following field is list of processor unit reservations on
     each cycle.  */
  reserv_sets_t reservs;
  /* The following field is unique number of given state between other
     states.  */
  int unique_num;
  /* The following field value is automaton to which given state
     belongs.  */
  automaton_t automaton;
  /* The following field value is the first arc output from given
     state.  */
  arc_t first_out_arc;
  /* The following field is used to form NDFA.  */
  char it_was_placed_in_stack_for_NDFA_forming;
  /* The following field is used to form DFA.  */
  char it_was_placed_in_stack_for_DFA_forming;
  /* The following field is used to transform NDFA to DFA and DFA
     minimization.  The field value is not NULL if the state is a
     compound state.  In this case the value of field `unit_sets_list'
     is NULL.  All states in the list are in the hash table.  The list
     is formed through field `next_sorted_alt_state'.  We should
     support only one level of nesting state.  */
  alt_state_t component_states;
  /* The following field is used for passing graph of states.  */
  int pass_num;
  /* The list of states belonging to one equivalence class is formed
     with the aid of the following field.  */
  state_t next_equiv_class_state;
  /* The two following fields are used during minimization of a finite
     state automaton.  */
  int equiv_class_num_1, equiv_class_num_2;
  /* The following field is used during minimization of a finite state
     automaton.  The field value is state corresponding to equivalence
     class to which given state belongs.  */
  state_t equiv_class_state;
  /* The following field value is the order number of given state.
     The states in final DFA is enumerated with the aid of the
     following field.  */
  int order_state_num;
  /* This member is used for passing states for searching minimal
     delay time.  */
  int state_pass_num;
  /* The following member is used to evaluate min issue delay of insn
     for a state.  */
  int min_insn_issue_delay;
  /* The following member is used to evaluate max issue rate of the
     processor.  The value of the member is maximal length of the path
     from given state no containing arcs marked by special insn `cycle
     advancing'.  */
  int longest_path_length;
};

/* The following macro is an initial value of member
   `longest_path_length' of a state.  */
#define UNDEFINED_LONGEST_PATH_LENGTH -1

/* Automaton arc.  */
struct arc
{
  /* The following field refers for the state into which given arc
     enters.  */
  state_t to_state;
  /* The following field describes that the insn issue (with cycle
     advancing for special insn `cycle advancing' and without cycle
     advancing for others) makes transition from given state to
     another given state.  */
  ainsn_t insn;
  /* The following field value is the next arc output from the same
     state.  */
  arc_t next_out_arc;
  /* List of arcs marked given insn is formed with the following
     field.  The field is used in transformation NDFA -> DFA.  */
  arc_t next_arc_marked_by_insn;
  /* The following field is defined if NDFA_FLAG is zero.  The member
     value is number of alternative reservations which can be used for
     transition for given state by given insn.  */
  int state_alts;
};

/* The following node type describes a deterministic alternative in
   non-deterministic state which characterizes cpu unit reservations
   of automaton insn or which is part of NDFA.  */
struct alt_state
{
  /* The following field is a deterministic state which characterizes
     unit reservations of the instruction.  */
  state_t state;
  /* The following field refers to the next state which characterizes
     unit reservations of the instruction.  */
  alt_state_t next_alt_state;
  /* The following field refers to the next state in sorted list.  */
  alt_state_t next_sorted_alt_state;
};

/* The following node type describes insn of automaton.  They are
   labels of FA arcs.  */
struct ainsn
{
  /* The following field value is the corresponding insn declaration
     of description.  */
  struct insn_reserv_decl *insn_reserv_decl;
  /* The following field value is the next insn declaration for an
     automaton.  */
  ainsn_t next_ainsn;
  /* The following field is states which characterize automaton unit
     reservations of the instruction.  The value can be NULL only if it
     is special insn `cycle advancing'.  */
  alt_state_t alt_states;
  /* The following field is sorted list of states which characterize
     automaton unit reservations of the instruction.  The value can be
     NULL only if it is special insn `cycle advancing'.  */
  alt_state_t sorted_alt_states;
  /* The following field refers the next automaton insn with
     the same reservations.  */
  ainsn_t next_same_reservs_insn;
  /* The following field is flag of the first automaton insn with the
     same reservations in the declaration list.  Only arcs marked such
     insn is present in the automaton.  This significantly decreases
     memory requirements especially when several automata are
     formed.  */
  char first_insn_with_same_reservs;
  /* The following member has nonzero value if there is arc from state of
     the automaton marked by the ainsn.  */
  char arc_exists_p;
  /* Cyclic list of insns of an equivalence class is formed with the
     aid of the following field.  */
  ainsn_t next_equiv_class_insn;
  /* The following field value is nonzero if the insn declaration is
     the first insn declaration with given equivalence number.  */
  char first_ainsn_with_given_equivalence_num;
  /* The following field is number of class of equivalence of insns.
     It is necessary because many insns may be equivalent with the
     point of view of pipeline hazards.  */
  int insn_equiv_class_num;
  /* The following member value is TRUE if there is an arc in the
     automaton marked by the insn into another state.  In other
     words, the insn can change the state of the automaton.  */
  int important_p;
};

/* The following describes an automaton for PHR.  */
struct automaton
{
  /* The following field value is the list of insn declarations for
     given automaton.  */
  ainsn_t ainsn_list;
  /* The following field value is the corresponding automaton
     declaration.  This field is not NULL only if the automatic
     partition on automata is not used.  */
  struct automaton_decl *corresponding_automaton_decl;
  /* The following field value is the next automaton.  */
  automaton_t next_automaton;
  /* The following field is start state of FA.  There are not unit
     reservations in the state.  */
  state_t start_state;
  /* The following field value is number of equivalence classes of
     insns (see field `insn_equiv_class_num' in
     `insn_reserv_decl').  */
  int insn_equiv_classes_num;
  /* The following field value is number of states of final DFA.  */
  int achieved_states_num;
  /* The following field value is the order number (0, 1, ...) of
     given automaton.  */
  int automaton_order_num;
  /* The following fields contain statistics information about
     building automaton.  */
  int NDFA_states_num, DFA_states_num;
  /* The following field value is defined only if minimization of DFA
     is used.  */
  int minimal_DFA_states_num;
  int NDFA_arcs_num, DFA_arcs_num;
  /* The following field value is defined only if minimization of DFA
     is used.  */
  int minimal_DFA_arcs_num;
  /* The following two members refer for two table state x ainsn ->
     int.  */
  state_ainsn_table_t trans_table;
  state_ainsn_table_t state_alts_table;
  /* The following member value is maximal value of min issue delay
     for insns of the automaton.  */
  int max_min_delay;
  /* Usually min issue delay is small and we can place several (2, 4,
     8) elements in one vector element.  So the compression factor can
     be 1 (no compression), 2, 4, 8.  */
  int min_issue_delay_table_compression_factor;
};

/* The following is the element of the list of automata.  */
struct automata_list_el
{
  /* The automaton itself.  */
  automaton_t automaton;
  /* The next automata set element.  */
  automata_list_el_t next_automata_list_el;
};

/* The following structure describes a table state X ainsn -> int(>= 0).  */
struct state_ainsn_table
{
  /* Automaton to which given table belongs.  */
  automaton_t automaton;
  /* The following tree vectors for comb vector implementation of the
     table.  */
  vla_hwint_t comb_vect;
  vla_hwint_t check_vect;
  vla_hwint_t base_vect;
  /* This is simple implementation of the table.  */
  vla_hwint_t full_vect;
  /* Minimal and maximal values of the previous vectors.  */
  int min_comb_vect_el_value, max_comb_vect_el_value;
  int min_base_vect_el_value, max_base_vect_el_value;
};

/* Macros to access members of unions.  Use only them for access to
   union members of declarations and regexps.  */

#if defined ENABLE_CHECKING && (GCC_VERSION >= 2007)

#define DECL_UNIT(d) __extension__					\
(({ struct decl *const _decl = (d);					\
     if (_decl->mode != dm_unit)					\
       decl_mode_check_failed (_decl->mode, "dm_unit",			\
			       __FILE__, __LINE__, __FUNCTION__);	\
     &(_decl)->decl.unit; }))

#define DECL_BYPASS(d) __extension__					\
(({ struct decl *const _decl = (d);					\
     if (_decl->mode != dm_bypass)					\
       decl_mode_check_failed (_decl->mode, "dm_bypass",		\
			       __FILE__, __LINE__, __FUNCTION__);	\
     &(_decl)->decl.bypass; }))

#define DECL_AUTOMATON(d) __extension__					\
(({ struct decl *const _decl = (d);					\
     if (_decl->mode != dm_automaton)					\
       decl_mode_check_failed (_decl->mode, "dm_automaton",		\
			       __FILE__, __LINE__, __FUNCTION__);	\
     &(_decl)->decl.automaton; }))

#define DECL_EXCL(d) __extension__					\
(({ struct decl *const _decl = (d);					\
     if (_decl->mode != dm_excl)					\
       decl_mode_check_failed (_decl->mode, "dm_excl",			\
			       __FILE__, __LINE__, __FUNCTION__);	\
     &(_decl)->decl.excl; }))

#define DECL_PRESENCE(d) __extension__					\
(({ struct decl *const _decl = (d);					\
     if (_decl->mode != dm_presence)					\
       decl_mode_check_failed (_decl->mode, "dm_presence",		\
			       __FILE__, __LINE__, __FUNCTION__);	\
     &(_decl)->decl.presence; }))

#define DECL_ABSENCE(d) __extension__					\
(({ struct decl *const _decl = (d);					\
     if (_decl->mode != dm_absence)					\
       decl_mode_check_failed (_decl->mode, "dm_absence",		\
			       __FILE__, __LINE__, __FUNCTION__);	\
     &(_decl)->decl.absence; }))

#define DECL_RESERV(d) __extension__					\
(({ struct decl *const _decl = (d);					\
     if (_decl->mode != dm_reserv)					\
       decl_mode_check_failed (_decl->mode, "dm_reserv",		\
			       __FILE__, __LINE__, __FUNCTION__);	\
     &(_decl)->decl.reserv; }))

#define DECL_INSN_RESERV(d) __extension__				\
(({ struct decl *const _decl = (d);					\
     if (_decl->mode != dm_insn_reserv)					\
       decl_mode_check_failed (_decl->mode, "dm_insn_reserv",		\
			       __FILE__, __LINE__, __FUNCTION__);	\
     &(_decl)->decl.insn_reserv; }))

static const char *decl_name (enum decl_mode);
static void decl_mode_check_failed (enum decl_mode, const char *,
				    const char *, int, const char *);

/* Return string representation of declaration mode MODE.  */
static const char *
decl_name (enum decl_mode mode)
{
  static char str [100];

  if (mode == dm_unit)
    return "dm_unit";
  else if (mode == dm_bypass)
    return "dm_bypass";
  else if (mode == dm_automaton)
    return "dm_automaton";
  else if (mode == dm_excl)
    return "dm_excl";
  else if (mode == dm_presence)
    return "dm_presence";
  else if (mode == dm_absence)
    return "dm_absence";
  else if (mode == dm_reserv)
    return "dm_reserv";
  else if (mode == dm_insn_reserv)
    return "dm_insn_reserv";
  else
    sprintf (str, "unknown (%d)", (int) mode);
  return str;
}

/* The function prints message about unexpected declaration and finish
   the program.  */
static void
decl_mode_check_failed (enum decl_mode mode, const char *expected_mode_str,
			const char *file, int line, const char *func)
{
  fprintf
    (stderr,
     "\n%s: %d: error in %s: DECL check: expected decl %s, have %s\n",
     file, line, func, expected_mode_str, decl_name (mode));
  exit (1);
}


#define REGEXP_UNIT(r) __extension__					\
(({ struct regexp *const _regexp = (r);					\
     if (_regexp->mode != rm_unit)					\
       regexp_mode_check_failed (_regexp->mode, "rm_unit",		\
			       __FILE__, __LINE__, __FUNCTION__);	\
     &(_regexp)->regexp.unit; }))

#define REGEXP_RESERV(r) __extension__					\
(({ struct regexp *const _regexp = (r);					\
     if (_regexp->mode != rm_reserv)					\
       regexp_mode_check_failed (_regexp->mode, "rm_reserv",		\
			       __FILE__, __LINE__, __FUNCTION__);	\
     &(_regexp)->regexp.reserv; }))

#define REGEXP_SEQUENCE(r) __extension__				\
(({ struct regexp *const _regexp = (r);					\
     if (_regexp->mode != rm_sequence)					\
       regexp_mode_check_failed (_regexp->mode, "rm_sequence",		\
			       __FILE__, __LINE__, __FUNCTION__);	\
     &(_regexp)->regexp.sequence; }))

#define REGEXP_REPEAT(r) __extension__					\
(({ struct regexp *const _regexp = (r);					\
     if (_regexp->mode != rm_repeat)					\
       regexp_mode_check_failed (_regexp->mode, "rm_repeat",		\
			       __FILE__, __LINE__, __FUNCTION__);	\
     &(_regexp)->regexp.repeat; }))

#define REGEXP_ALLOF(r) __extension__					\
(({ struct regexp *const _regexp = (r);					\
     if (_regexp->mode != rm_allof)					\
       regexp_mode_check_failed (_regexp->mode, "rm_allof",		\
			       __FILE__, __LINE__, __FUNCTION__);	\
     &(_regexp)->regexp.allof; }))

#define REGEXP_ONEOF(r) __extension__					\
(({ struct regexp *const _regexp = (r);					\
     if (_regexp->mode != rm_oneof)					\
       regexp_mode_check_failed (_regexp->mode, "rm_oneof",		\
			       __FILE__, __LINE__, __FUNCTION__);	\
     &(_regexp)->regexp.oneof; }))

static const char *regexp_name (enum regexp_mode);
static void regexp_mode_check_failed (enum regexp_mode, const char *,
				      const char *, int,
				      const char *);


/* Return string representation of regexp mode MODE.  */
static const char *
regexp_name (enum regexp_mode mode)
{
  static char str [100];

  if (mode == rm_unit)
    return "rm_unit";
  else if (mode == rm_reserv)
    return "rm_reserv";
  else if (mode == rm_nothing)
    return "rm_nothing";
  else if (mode == rm_sequence)
    return "rm_sequence";
  else if (mode == rm_repeat)
    return "rm_repeat";
  else if (mode == rm_allof)
    return "rm_allof";
  else if (mode == rm_oneof)
    return "rm_oneof";
  else
    sprintf (str, "unknown (%d)", (int) mode);
  return str;
}

/* The function prints message about unexpected regexp and finish the
   program.  */
static void
regexp_mode_check_failed (enum regexp_mode mode,
			  const char *expected_mode_str,
			  const char *file, int line, const char *func)
{
  fprintf
    (stderr,
     "\n%s: %d: error in %s: REGEXP check: expected decl %s, have %s\n",
     file, line, func, expected_mode_str, regexp_name (mode));
  exit (1);
}

#else /* #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007) */

#define DECL_UNIT(d) (&(d)->decl.unit)
#define DECL_BYPASS(d) (&(d)->decl.bypass)
#define DECL_AUTOMATON(d) (&(d)->decl.automaton)
#define DECL_EXCL(d) (&(d)->decl.excl)
#define DECL_PRESENCE(d) (&(d)->decl.presence)
#define DECL_ABSENCE(d) (&(d)->decl.absence)
#define DECL_RESERV(d) (&(d)->decl.reserv)
#define DECL_INSN_RESERV(d) (&(d)->decl.insn_reserv)

#define REGEXP_UNIT(r) (&(r)->regexp.unit)
#define REGEXP_RESERV(r) (&(r)->regexp.reserv)
#define REGEXP_SEQUENCE(r) (&(r)->regexp.sequence)
#define REGEXP_REPEAT(r) (&(r)->regexp.repeat)
#define REGEXP_ALLOF(r) (&(r)->regexp.allof)
#define REGEXP_ONEOF(r) (&(r)->regexp.oneof)

#endif /* #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007) */

/* Create IR structure (node).  */
static void *
create_node (size_t size)
{
  void *result;

  obstack_blank (&irp, size);
  result = obstack_base (&irp);
  obstack_finish (&irp);
  /* Default values of members are NULL and zero.  */
  memset (result, 0, size);
  return result;
}

/* Copy IR structure (node).  */
static void *
copy_node (const void *from, size_t size)
{
  void *const result = create_node (size);
  memcpy (result, from, size);
  return result;
}

/* The function checks that NAME does not contain quotes (`"').  */
static char *
check_name (char * name, pos_t pos ATTRIBUTE_UNUSED)
{
  const char *str;

  for (str = name; *str != '\0'; str++)
    if (*str == '\"')
      error ("Name `%s' contains quotes", name);
  return name;
}

/* Pointers to all declarations during IR generation are stored in the
   following.  */
static vla_ptr_t decls;

/* Given a pointer to a (char *) and a separator, return an alloc'ed
   string containing the next separated element, taking parentheses
   into account if PAR_FLAG has nonzero value.  Advance the pointer to
   after the string scanned, or the end-of-string.  Return NULL if at
   end of string.  */
static char *
next_sep_el (char **pstr, int sep, int par_flag)
{
  char *out_str;
  char *p;
  int pars_num;
  int n_spaces;

  /* Remove leading whitespaces.  */
  while (ISSPACE ((int) **pstr))
    (*pstr)++;

  if (**pstr == '\0')
    return NULL;

  n_spaces = 0;
  for (pars_num = 0, p = *pstr; *p != '\0'; p++)
    {
      if (par_flag && *p == '(')
	pars_num++;
      else if (par_flag && *p == ')')
	pars_num--;
      else if (pars_num == 0 && *p == sep)
	break;
      if (pars_num == 0 && ISSPACE ((int) *p))
	n_spaces++;
      else
	{
	  for (; n_spaces != 0; n_spaces--)
	    obstack_1grow (&irp, p [-n_spaces]);
	  obstack_1grow (&irp, *p);
	}
    }
  obstack_1grow (&irp, '\0');
  out_str = obstack_base (&irp);
  obstack_finish (&irp);

  *pstr = p;
  if (**pstr == sep)
    (*pstr)++;

  return out_str;
}

/* Given a string and a separator, return the number of separated
   elements in it, taking parentheses into account if PAR_FLAG has
   nonzero value.  Return 0 for the null string, -1 if parentheses is
   not balanced.  */
static int
n_sep_els (char *s, int sep, int par_flag)
{
  int n;
  int pars_num;

  if (*s == '\0')
    return 0;

  for (pars_num = 0, n = 1; *s; s++)
    if (par_flag && *s == '(')
      pars_num++;
    else if (par_flag && *s == ')')
      pars_num--;
    else if (pars_num == 0 && *s == sep)
      n++;

  return (pars_num != 0 ? -1 : n);
}

/* Given a string and a separator, return vector of strings which are
   elements in the string and number of elements through els_num.
   Take parentheses into account if PAREN_P has nonzero value.  The
   function also inserts the end marker NULL at the end of vector.
   Return 0 for the null string, -1 if parentheses are not balanced.  */
static char **
get_str_vect (char *str, int *els_num, int sep, int paren_p)
{
  int i;
  char **vect;
  char **pstr;

  *els_num = n_sep_els (str, sep, paren_p);
  if (*els_num <= 0)
    return NULL;
  obstack_blank (&irp, sizeof (char *) * (*els_num + 1));
  vect = (char **) obstack_base (&irp);
  obstack_finish (&irp);
  pstr = &str;
  for (i = 0; i < *els_num; i++)
    vect [i] = next_sep_el (pstr, sep, paren_p);
  if (next_sep_el (pstr, sep, paren_p) != NULL)
    abort ();
  vect [i] = NULL;
  return vect;
}

/* Process a DEFINE_CPU_UNIT.

   This gives information about a unit contained in CPU.  We fill a
   struct unit_decl with information used later by `expand_automata'.  */
void
gen_cpu_unit (rtx def)
{
  decl_t decl;
  char **str_cpu_units;
  int vect_length;
  int i;

  str_cpu_units = get_str_vect ((char *) XSTR (def, 0), &vect_length, ',',
				FALSE);
  if (str_cpu_units == NULL)
    fatal ("invalid string `%s' in define_cpu_unit", XSTR (def, 0));
  for (i = 0; i < vect_length; i++)
    {
      decl = create_node (sizeof (struct decl));
      decl->mode = dm_unit;
      decl->pos = 0;
      DECL_UNIT (decl)->name = check_name (str_cpu_units [i], decl->pos);
      DECL_UNIT (decl)->automaton_name = (char *) XSTR (def, 1);
      DECL_UNIT (decl)->query_p = 0;
      DECL_UNIT (decl)->min_occ_cycle_num = -1;
      DECL_UNIT (decl)->in_set_p = 0;
      VLA_PTR_ADD (decls, decl);
      num_dfa_decls++;
    }
}

/* Process a DEFINE_QUERY_CPU_UNIT.

   This gives information about a unit contained in CPU.  We fill a
   struct unit_decl with information used later by `expand_automata'.  */
void
gen_query_cpu_unit (rtx def)
{
  decl_t decl;
  char **str_cpu_units;
  int vect_length;
  int i;

  str_cpu_units = get_str_vect ((char *) XSTR (def, 0), &vect_length, ',',
				FALSE);
  if (str_cpu_units == NULL)
    fatal ("invalid string `%s' in define_query_cpu_unit", XSTR (def, 0));
  for (i = 0; i < vect_length; i++)
    {
      decl = create_node (sizeof (struct decl));
      decl->mode = dm_unit;
      decl->pos = 0;
      DECL_UNIT (decl)->name = check_name (str_cpu_units [i], decl->pos);
      DECL_UNIT (decl)->automaton_name = (char *) XSTR (def, 1);
      DECL_UNIT (decl)->query_p = 1;
      VLA_PTR_ADD (decls, decl);
      num_dfa_decls++;
    }
}

/* Process a DEFINE_BYPASS.

   This gives information about a unit contained in the CPU.  We fill
   in a struct bypass_decl with information used later by
   `expand_automata'.  */
void
gen_bypass (rtx def)
{
  decl_t decl;
  char **out_insns;
  int out_length;
  char **in_insns;
  int in_length;
  int i, j;

  out_insns = get_str_vect ((char *) XSTR (def, 1), &out_length, ',', FALSE);
  if (out_insns == NULL)
    fatal ("invalid string `%s' in define_bypass", XSTR (def, 1));
  in_insns = get_str_vect ((char *) XSTR (def, 2), &in_length, ',', FALSE);
  if (in_insns == NULL)
    fatal ("invalid string `%s' in define_bypass", XSTR (def, 2));
  for (i = 0; i < out_length; i++)
    for (j = 0; j < in_length; j++)
      {
	decl = create_node (sizeof (struct decl));
	decl->mode = dm_bypass;
	decl->pos = 0;
	DECL_BYPASS (decl)->latency = XINT (def, 0);
	DECL_BYPASS (decl)->out_insn_name = out_insns [i];
	DECL_BYPASS (decl)->in_insn_name = in_insns [j];
	DECL_BYPASS (decl)->bypass_guard_name = (char *) XSTR (def, 3);
	VLA_PTR_ADD (decls, decl);
	num_dfa_decls++;
      }
}

/* Process an EXCLUSION_SET.

   This gives information about a cpu unit conflicts.  We fill a
   struct excl_rel_decl (excl) with information used later by
   `expand_automata'.  */
void
gen_excl_set (rtx def)
{
  decl_t decl;
  char **first_str_cpu_units;
  char **second_str_cpu_units;
  int first_vect_length;
  int length;
  int i;

  first_str_cpu_units
    = get_str_vect ((char *) XSTR (def, 0), &first_vect_length, ',', FALSE);
  if (first_str_cpu_units == NULL)
    fatal ("invalid first string `%s' in exclusion_set", XSTR (def, 0));
  second_str_cpu_units = get_str_vect ((char *) XSTR (def, 1), &length, ',',
				       FALSE);
  if (second_str_cpu_units == NULL)
    fatal ("invalid second string `%s' in exclusion_set", XSTR (def, 1));
  length += first_vect_length;
  decl = create_node (sizeof (struct decl) + (length - 1) * sizeof (char *));
  decl->mode = dm_excl;
  decl->pos = 0;
  DECL_EXCL (decl)->all_names_num = length;
  DECL_EXCL (decl)->first_list_length = first_vect_length;
  for (i = 0; i < length; i++)
    if (i < first_vect_length)
      DECL_EXCL (decl)->names [i] = first_str_cpu_units [i];
    else
      DECL_EXCL (decl)->names [i]
	= second_str_cpu_units [i - first_vect_length];
  VLA_PTR_ADD (decls, decl);
  num_dfa_decls++;
}

/* Process a PRESENCE_SET, a FINAL_PRESENCE_SET, an ABSENCE_SET,
   FINAL_ABSENCE_SET (it is depended on PRESENCE_P and FINAL_P).

   This gives information about a cpu unit reservation requirements.
   We fill a struct unit_pattern_rel_decl with information used later
   by `expand_automata'.  */
static void
gen_presence_absence_set (rtx def, int presence_p, int final_p)
{
  decl_t decl;
  char **str_cpu_units;
  char ***str_patterns;
  int cpu_units_length;
  int length;
  int patterns_length;
  int i;

  str_cpu_units = get_str_vect ((char *) XSTR (def, 0), &cpu_units_length, ',',
				FALSE);
  if (str_cpu_units == NULL)
    fatal ((presence_p
	    ? (final_p
	       ? "invalid first string `%s' in final_presence_set"
	       : "invalid first string `%s' in presence_set")
	    : (final_p
	       ? "invalid first string `%s' in final_absence_set"
	       : "invalid first string `%s' in absence_set")),
	   XSTR (def, 0));
  str_patterns = (char ***) get_str_vect ((char *) XSTR (def, 1),
					  &patterns_length, ',', FALSE);
  if (str_patterns == NULL)
    fatal ((presence_p
	    ? (final_p
	       ? "invalid second string `%s' in final_presence_set"
	       : "invalid second string `%s' in presence_set")
	    : (final_p
	       ? "invalid second string `%s' in final_absence_set"
	       : "invalid second string `%s' in absence_set")), XSTR (def, 1));
  for (i = 0; i < patterns_length; i++)
    {
      str_patterns [i] = get_str_vect ((char *) str_patterns [i], &length, ' ',
				       FALSE);
      if (str_patterns [i] == NULL)
	abort ();
    }
  decl = create_node (sizeof (struct decl));
  decl->pos = 0;
  if (presence_p)
    {
      decl->mode = dm_presence;
      DECL_PRESENCE (decl)->names_num = cpu_units_length;
      DECL_PRESENCE (decl)->names = str_cpu_units;
      DECL_PRESENCE (decl)->patterns = str_patterns;
      DECL_PRESENCE (decl)->patterns_num = patterns_length;
      DECL_PRESENCE (decl)->final_p = final_p;
    }
  else
    {
      decl->mode = dm_absence;
      DECL_ABSENCE (decl)->names_num = cpu_units_length;
      DECL_ABSENCE (decl)->names = str_cpu_units;
      DECL_ABSENCE (decl)->patterns = str_patterns;
      DECL_ABSENCE (decl)->patterns_num = patterns_length;
      DECL_ABSENCE (decl)->final_p = final_p;
    }
  VLA_PTR_ADD (decls, decl);
  num_dfa_decls++;
}

/* Process a PRESENCE_SET.

    This gives information about a cpu unit reservation requirements.
   We fill a struct unit_pattern_rel_decl (presence) with information
   used later by `expand_automata'.  */
void
gen_presence_set (rtx def)
{
  gen_presence_absence_set (def, TRUE, FALSE);
}

/* Process a FINAL_PRESENCE_SET.

   This gives information about a cpu unit reservation requirements.
   We fill a struct unit_pattern_rel_decl (presence) with information
   used later by `expand_automata'.  */
void
gen_final_presence_set (rtx def)
{
  gen_presence_absence_set (def, TRUE, TRUE);
}

/* Process an ABSENCE_SET.

   This gives information about a cpu unit reservation requirements.
   We fill a struct unit_pattern_rel_decl (absence) with information
   used later by `expand_automata'.  */
void
gen_absence_set (rtx def)
{
  gen_presence_absence_set (def, FALSE, FALSE);
}

/* Process a FINAL_ABSENCE_SET.

   This gives information about a cpu unit reservation requirements.
   We fill a struct unit_pattern_rel_decl (absence) with information
   used later by `expand_automata'.  */
void
gen_final_absence_set (rtx def)
{
  gen_presence_absence_set (def, FALSE, TRUE);
}

/* Process a DEFINE_AUTOMATON.

   This gives information about a finite state automaton used for
   recognizing pipeline hazards.  We fill a struct automaton_decl
   with information used later by `expand_automata'.  */
void
gen_automaton (rtx def)
{
  decl_t decl;
  char **str_automata;
  int vect_length;
  int i;

  str_automata = get_str_vect ((char *) XSTR (def, 0), &vect_length, ',',
			       FALSE);
  if (str_automata == NULL)
    fatal ("invalid string `%s' in define_automaton", XSTR (def, 0));
  for (i = 0; i < vect_length; i++)
    {
      decl = create_node (sizeof (struct decl));
      decl->mode = dm_automaton;
      decl->pos = 0;
      DECL_AUTOMATON (decl)->name = check_name (str_automata [i], decl->pos);
      VLA_PTR_ADD (decls, decl);
      num_dfa_decls++;
    }
}

/* Process an AUTOMATA_OPTION.

   This gives information how to generate finite state automaton used
   for recognizing pipeline hazards.  */
void
gen_automata_option (rtx def)
{
  if (strcmp (XSTR (def, 0), NO_MINIMIZATION_OPTION + 1) == 0)
    no_minimization_flag = 1;
  else if (strcmp (XSTR (def, 0), TIME_OPTION + 1) == 0)
    time_flag = 1;
  else if (strcmp (XSTR (def, 0), V_OPTION + 1) == 0)
    v_flag = 1;
  else if (strcmp (XSTR (def, 0), W_OPTION + 1) == 0)
    w_flag = 1;
  else if (strcmp (XSTR (def, 0), NDFA_OPTION + 1) == 0)
    ndfa_flag = 1;
  else if (strcmp (XSTR (def, 0), PROGRESS_OPTION + 1) == 0)
    progress_flag = 1;
  else
    fatal ("invalid option `%s' in automata_option", XSTR (def, 0));
}

/* Name in reservation to denote absence reservation.  */
#define NOTHING_NAME "nothing"

/* The following string contains original reservation string being
   parsed.  */
static char *reserv_str;

/* Parse an element in STR.  */
static regexp_t
gen_regexp_el (char *str)
{
  regexp_t regexp;
  int len;

  if (*str == '(')
    {
      len = strlen (str);
      if (str [len - 1] != ')')
	fatal ("garbage after ) in reservation `%s'", reserv_str);
      str [len - 1] = '\0';
      regexp = gen_regexp_sequence (str + 1);
    }
  else if (strcmp (str, NOTHING_NAME) == 0)
    {
      regexp = create_node (sizeof (struct decl));
      regexp->mode = rm_nothing;
    }
  else
    {
      regexp = create_node (sizeof (struct decl));
      regexp->mode = rm_unit;
      REGEXP_UNIT (regexp)->name = str;
    }
  return regexp;
}

/* Parse construction `repeat' in STR.  */
static regexp_t
gen_regexp_repeat (char *str)
{
  regexp_t regexp;
  regexp_t repeat;
  char **repeat_vect;
  int els_num;
  int i;

  repeat_vect = get_str_vect (str, &els_num, '*', TRUE);
  if (repeat_vect == NULL)
    fatal ("invalid `%s' in reservation `%s'", str, reserv_str);
  if (els_num > 1)
    {
      regexp = gen_regexp_el (repeat_vect [0]);
      for (i = 1; i < els_num; i++)
	{
	  repeat = create_node (sizeof (struct regexp));
	  repeat->mode = rm_repeat;
	  REGEXP_REPEAT (repeat)->regexp = regexp;
	  REGEXP_REPEAT (repeat)->repeat_num = atoi (repeat_vect [i]);
          if (REGEXP_REPEAT (repeat)->repeat_num <= 1)
            fatal ("repetition `%s' <= 1 in reservation `%s'",
                   str, reserv_str);
          regexp = repeat;
	}
      return regexp;
    }
  else
    return gen_regexp_el (str);
}

/* Parse reservation STR which possibly contains separator '+'.  */
static regexp_t
gen_regexp_allof (char *str)
{
  regexp_t allof;
  char **allof_vect;
  int els_num;
  int i;

  allof_vect = get_str_vect (str, &els_num, '+', TRUE);
  if (allof_vect == NULL)
    fatal ("invalid `%s' in reservation `%s'", str, reserv_str);
  if (els_num > 1)
    {
      allof = create_node (sizeof (struct regexp)
			   + sizeof (regexp_t) * (els_num - 1));
      allof->mode = rm_allof;
      REGEXP_ALLOF (allof)->regexps_num = els_num;
      for (i = 0; i < els_num; i++)
	REGEXP_ALLOF (allof)->regexps [i] = gen_regexp_repeat (allof_vect [i]);
      return allof;
    }
  else
    return gen_regexp_repeat (str);
}

/* Parse reservation STR which possibly contains separator '|'.  */
static regexp_t
gen_regexp_oneof (char *str)
{
  regexp_t oneof;
  char **oneof_vect;
  int els_num;
  int i;

  oneof_vect = get_str_vect (str, &els_num, '|', TRUE);
  if (oneof_vect == NULL)
    fatal ("invalid `%s' in reservation `%s'", str, reserv_str);
  if (els_num > 1)
    {
      oneof = create_node (sizeof (struct regexp)
			   + sizeof (regexp_t) * (els_num - 1));
      oneof->mode = rm_oneof;
      REGEXP_ONEOF (oneof)->regexps_num = els_num;
      for (i = 0; i < els_num; i++)
	REGEXP_ONEOF (oneof)->regexps [i] = gen_regexp_allof (oneof_vect [i]);
      return oneof;
    }
  else
    return gen_regexp_allof (str);
}

/* Parse reservation STR which possibly contains separator ','.  */
static regexp_t
gen_regexp_sequence (char *str)
{
  regexp_t sequence;
  char **sequence_vect;
  int els_num;
  int i;

  sequence_vect = get_str_vect (str, &els_num, ',', TRUE);
  if (els_num > 1)
    {
      sequence = create_node (sizeof (struct regexp)
			      + sizeof (regexp_t) * (els_num - 1));
      sequence->mode = rm_sequence;
      REGEXP_SEQUENCE (sequence)->regexps_num = els_num;
      for (i = 0; i < els_num; i++)
	REGEXP_SEQUENCE (sequence)->regexps [i]
          = gen_regexp_oneof (sequence_vect [i]);
      return sequence;
    }
  else
    return gen_regexp_oneof (str);
}

/* Parse construction reservation STR.  */
static regexp_t
gen_regexp (char *str)
{
  reserv_str = str;
  return gen_regexp_sequence (str);;
}

/* Process a DEFINE_RESERVATION.

   This gives information about a reservation of cpu units.  We fill
   in a struct reserv_decl with information used later by
   `expand_automata'.  */
void
gen_reserv (rtx def)
{
  decl_t decl;

  decl = create_node (sizeof (struct decl));
  decl->mode = dm_reserv;
  decl->pos = 0;
  DECL_RESERV (decl)->name = check_name ((char *) XSTR (def, 0), decl->pos);
  DECL_RESERV (decl)->regexp = gen_regexp ((char *) XSTR (def, 1));
  VLA_PTR_ADD (decls, decl);
  num_dfa_decls++;
}

/* Process a DEFINE_INSN_RESERVATION.

   This gives information about the reservation of cpu units by an
   insn.  We fill a struct insn_reserv_decl with information used
   later by `expand_automata'.  */
void
gen_insn_reserv (rtx def)
{
  decl_t decl;

  decl = create_node (sizeof (struct decl));
  decl->mode = dm_insn_reserv;
  decl->pos = 0;
  DECL_INSN_RESERV (decl)->name
    = check_name ((char *) XSTR (def, 0), decl->pos);
  DECL_INSN_RESERV (decl)->default_latency = XINT (def, 1);
  DECL_INSN_RESERV (decl)->condexp = XEXP (def, 2);
  DECL_INSN_RESERV (decl)->regexp = gen_regexp ((char *) XSTR (def, 3));
  VLA_PTR_ADD (decls, decl);
  num_dfa_decls++;
}



/* The function evaluates hash value (0..UINT_MAX) of string.  */
static unsigned
string_hash (const char *string)
{
  unsigned result, i;

  for (result = i = 0;*string++ != '\0'; i++)
    result += ((unsigned char) *string << (i % CHAR_BIT));
  return result;
}



/* This page contains abstract data `table of automaton declarations'.
   Elements of the table is nodes representing automaton declarations.
   Key of the table elements is name of given automaton.  Remember
   that automaton names have own space.  */

/* The function evaluates hash value of an automaton declaration.  The
   function is used by abstract data `hashtab'.  The function returns
   hash value (0..UINT_MAX) of given automaton declaration.  */
static hashval_t
automaton_decl_hash (const void *automaton_decl)
{
  const decl_t decl = (decl_t) automaton_decl;

  if (decl->mode == dm_automaton && DECL_AUTOMATON (decl)->name == NULL)
    abort ();
  return string_hash (DECL_AUTOMATON (decl)->name);
}

/* The function tests automaton declarations on equality of their
   keys.  The function is used by abstract data `hashtab'.  The
   function returns 1 if the declarations have the same key, 0
   otherwise.  */
static int
automaton_decl_eq_p (const void* automaton_decl_1,
		     const void* automaton_decl_2)
{
  const decl_t decl1 = (decl_t) automaton_decl_1;
  const decl_t decl2 = (decl_t) automaton_decl_2;

  if (decl1->mode != dm_automaton || DECL_AUTOMATON (decl1)->name == NULL
      || decl2->mode != dm_automaton || DECL_AUTOMATON (decl2)->name == NULL)
    abort ();
  return strcmp (DECL_AUTOMATON (decl1)->name,
		 DECL_AUTOMATON (decl2)->name) == 0;
}

/* The automaton declaration table itself is represented by the
   following variable.  */
static htab_t automaton_decl_table;

/* The function inserts automaton declaration into the table.  The
   function does nothing if an automaton declaration with the same key
   exists already in the table.  The function returns automaton
   declaration node in the table with the same key as given automaton
   declaration node.  */
static decl_t
insert_automaton_decl (decl_t automaton_decl)
{
  void **entry_ptr;

  entry_ptr = htab_find_slot (automaton_decl_table, automaton_decl, 1);
  if (*entry_ptr == NULL)
    *entry_ptr = (void *) automaton_decl;
  return (decl_t) *entry_ptr;
}

/* The following variable value is node representing automaton
   declaration.  The node used for searching automaton declaration
   with given name.  */
static struct decl work_automaton_decl;

/* The function searches for automaton declaration in the table with
   the same key as node representing name of the automaton
   declaration.  The function returns node found in the table, NULL if
   such node does not exist in the table.  */
static decl_t
find_automaton_decl (char *name)
{
  void *entry;

  work_automaton_decl.mode = dm_automaton;
  DECL_AUTOMATON (&work_automaton_decl)->name = name;
  entry = htab_find (automaton_decl_table, &work_automaton_decl);
  return (decl_t) entry;
}

/* The function creates empty automaton declaration table and node
   representing automaton declaration and used for searching automaton
   declaration with given name.  The function must be called only once
   before any work with the automaton declaration table.  */
static void
initiate_automaton_decl_table (void)
{
  work_automaton_decl.mode = dm_automaton;
  automaton_decl_table = htab_create (10, automaton_decl_hash,
				      automaton_decl_eq_p, (htab_del) 0);
}

/* The function deletes the automaton declaration table.  Only call of
   function `initiate_automaton_decl_table' is possible immediately
   after this function call.  */
static void
finish_automaton_decl_table (void)
{
  htab_delete (automaton_decl_table);
}



/* This page contains abstract data `table of insn declarations'.
   Elements of the table is nodes representing insn declarations.  Key
   of the table elements is name of given insn (in corresponding
   define_insn_reservation).  Remember that insn names have own
   space.  */

/* The function evaluates hash value of an insn declaration.  The
   function is used by abstract data `hashtab'.  The function returns
   hash value (0..UINT_MAX) of given insn declaration.  */
static hashval_t
insn_decl_hash (const void *insn_decl)
{
  const decl_t decl = (decl_t) insn_decl;

  if (decl->mode != dm_insn_reserv || DECL_INSN_RESERV (decl)->name == NULL)
    abort ();
  return string_hash (DECL_INSN_RESERV (decl)->name);
}

/* The function tests insn declarations on equality of their keys.
   The function is used by abstract data `hashtab'.  The function
   returns 1 if declarations have the same key, 0 otherwise.  */
static int
insn_decl_eq_p (const void *insn_decl_1, const void *insn_decl_2)
{
  const decl_t decl1 = (decl_t) insn_decl_1;
  const decl_t decl2 = (decl_t) insn_decl_2;

  if (decl1->mode != dm_insn_reserv || DECL_INSN_RESERV (decl1)->name == NULL
      || decl2->mode != dm_insn_reserv
      || DECL_INSN_RESERV (decl2)->name == NULL)
    abort ();
  return strcmp (DECL_INSN_RESERV (decl1)->name,
                 DECL_INSN_RESERV (decl2)->name) == 0;
}

/* The insn declaration table itself is represented by the following
   variable.  The table does not contain insn reservation
   declarations.  */
static htab_t insn_decl_table;

/* The function inserts insn declaration into the table.  The function
   does nothing if an insn declaration with the same key exists
   already in the table.  The function returns insn declaration node
   in the table with the same key as given insn declaration node.  */
static decl_t
insert_insn_decl (decl_t insn_decl)
{
  void **entry_ptr;

  entry_ptr = htab_find_slot (insn_decl_table, insn_decl, 1);
  if (*entry_ptr == NULL)
    *entry_ptr = (void *) insn_decl;
  return (decl_t) *entry_ptr;
}

/* The following variable value is node representing insn reservation
   declaration.  The node used for searching insn reservation
   declaration with given name.  */
static struct decl work_insn_decl;

/* The function searches for insn reservation declaration in the table
   with the same key as node representing name of the insn reservation
   declaration.  The function returns node found in the table, NULL if
   such node does not exist in the table.  */
static decl_t
find_insn_decl (char *name)
{
  void *entry;

  work_insn_decl.mode = dm_insn_reserv;
  DECL_INSN_RESERV (&work_insn_decl)->name = name;
  entry = htab_find (insn_decl_table, &work_insn_decl);
  return (decl_t) entry;
}

/* The function creates empty insn declaration table and node
   representing insn declaration and used for searching insn
   declaration with given name.  The function must be called only once
   before any work with the insn declaration table.  */
static void
initiate_insn_decl_table (void)
{
  work_insn_decl.mode = dm_insn_reserv;
  insn_decl_table = htab_create (10, insn_decl_hash, insn_decl_eq_p,
				 (htab_del) 0);
}

/* The function deletes the insn declaration table.  Only call of
   function `initiate_insn_decl_table' is possible immediately after
   this function call.  */
static void
finish_insn_decl_table (void)
{
  htab_delete (insn_decl_table);
}



/* This page contains abstract data `table of declarations'.  Elements
   of the table is nodes representing declarations (of units and
   reservations).  Key of the table elements is names of given
   declarations.  */

/* The function evaluates hash value of a declaration.  The function
   is used by abstract data `hashtab'.  The function returns hash
   value (0..UINT_MAX) of given declaration.  */
static hashval_t
decl_hash (const void *decl)
{
  const decl_t d = (const decl_t) decl;

  if ((d->mode != dm_unit || DECL_UNIT (d)->name == NULL)
      && (d->mode != dm_reserv || DECL_RESERV (d)->name == NULL))
    abort ();
  return string_hash (d->mode == dm_unit
		      ? DECL_UNIT (d)->name : DECL_RESERV (d)->name);
}

/* The function tests declarations on equality of their keys.  The
   function is used by abstract data `hashtab'.  The function
   returns 1 if the declarations have the same key, 0 otherwise.  */
static int
decl_eq_p (const void *decl_1, const void *decl_2)
{
  const decl_t d1 = (const decl_t) decl_1;
  const decl_t d2 = (const decl_t) decl_2;

  if (((d1->mode != dm_unit || DECL_UNIT (d1)->name == NULL)
       && (d1->mode != dm_reserv || DECL_RESERV (d1)->name == NULL))
      || ((d2->mode != dm_unit || DECL_UNIT (d2)->name == NULL)
	  && (d2->mode != dm_reserv || DECL_RESERV (d2)->name == NULL)))
    abort ();
  return strcmp ((d1->mode == dm_unit
                  ? DECL_UNIT (d1)->name : DECL_RESERV (d1)->name),
                 (d2->mode == dm_unit
                  ? DECL_UNIT (d2)->name : DECL_RESERV (d2)->name)) == 0;
}

/* The declaration table itself is represented by the following
   variable.  */
static htab_t decl_table;

/* The function inserts declaration into the table.  The function does
   nothing if a declaration with the same key exists already in the
   table.  The function returns declaration node in the table with the
   same key as given declaration node.  */

static decl_t
insert_decl (decl_t decl)
{
  void **entry_ptr;

  entry_ptr = htab_find_slot (decl_table, decl, 1);
  if (*entry_ptr == NULL)
    *entry_ptr = (void *) decl;
  return (decl_t) *entry_ptr;
}

/* The following variable value is node representing declaration.  The
   node used for searching declaration with given name.  */
static struct decl work_decl;

/* The function searches for declaration in the table with the same
   key as node representing name of the declaration.  The function
   returns node found in the table, NULL if such node does not exist
   in the table.  */
static decl_t
find_decl (char *name)
{
  void *entry;

  work_decl.mode = dm_unit;
  DECL_UNIT (&work_decl)->name = name;
  entry = htab_find (decl_table, &work_decl);
  return (decl_t) entry;
}

/* The function creates empty declaration table and node representing
   declaration and used for searching declaration with given name.
   The function must be called only once before any work with the
   declaration table.  */
static void
initiate_decl_table (void)
{
  work_decl.mode = dm_unit;
  decl_table = htab_create (10, decl_hash, decl_eq_p, (htab_del) 0);
}

/* The function deletes the declaration table.  Only call of function
   `initiate_declaration_table' is possible immediately after this
   function call.  */
static void
finish_decl_table (void)
{
  htab_delete (decl_table);
}



/* This page contains checker of pipeline hazard description.  */

/* Checking NAMES in an exclusion clause vector and returning formed
   unit_set_el_list.  */
static unit_set_el_t
process_excls (char **names, int num, pos_t excl_pos ATTRIBUTE_UNUSED)
{
  unit_set_el_t el_list;
  unit_set_el_t last_el;
  unit_set_el_t new_el;
  decl_t decl_in_table;
  int i;

  el_list = NULL;
  last_el = NULL;
  for (i = 0; i < num; i++)
    {
      decl_in_table = find_decl (names [i]);
      if (decl_in_table == NULL)
	error ("unit `%s' in exclusion is not declared", names [i]);
      else if (decl_in_table->mode != dm_unit)
	error ("`%s' in exclusion is not unit", names [i]);
      else
	{
	  new_el = create_node (sizeof (struct unit_set_el));
	  new_el->unit_decl = DECL_UNIT (decl_in_table);
	  new_el->next_unit_set_el = NULL;
	  if (last_el == NULL)
	    el_list = last_el = new_el;
	  else
	    {
	      last_el->next_unit_set_el = new_el;
	      last_el = last_el->next_unit_set_el;
	    }
	}
    }
  return el_list;
}

/* The function adds each element from SOURCE_LIST to the exclusion
   list of the each element from DEST_LIST.  Checking situation "unit
   excludes itself".  */
static void
add_excls (unit_set_el_t dest_list, unit_set_el_t source_list,
	   pos_t excl_pos ATTRIBUTE_UNUSED)
{
  unit_set_el_t dst;
  unit_set_el_t src;
  unit_set_el_t curr_el;
  unit_set_el_t prev_el;
  unit_set_el_t copy;

  for (dst = dest_list; dst != NULL; dst = dst->next_unit_set_el)
    for (src = source_list; src != NULL; src = src->next_unit_set_el)
      {
	if (dst->unit_decl == src->unit_decl)
	  {
	    error ("unit `%s' excludes itself", src->unit_decl->name);
	    continue;
	  }
	if (dst->unit_decl->automaton_name != NULL
	    && src->unit_decl->automaton_name != NULL
	    && strcmp (dst->unit_decl->automaton_name,
		       src->unit_decl->automaton_name) != 0)
	  {
	    error ("units `%s' and `%s' in exclusion set belong to different automata",
		   src->unit_decl->name, dst->unit_decl->name);
	    continue;
	  }
	for (curr_el = dst->unit_decl->excl_list, prev_el = NULL;
	     curr_el != NULL;
	     prev_el = curr_el, curr_el = curr_el->next_unit_set_el)
	  if (curr_el->unit_decl == src->unit_decl)
	    break;
	if (curr_el == NULL)
	  {
	    /* Element not found - insert.  */
	    copy = copy_node (src, sizeof (*src));
	    copy->next_unit_set_el = NULL;
	    if (prev_el == NULL)
	      dst->unit_decl->excl_list = copy;
	    else
	      prev_el->next_unit_set_el = copy;
	}
    }
}

/* Checking NAMES in presence/absence clause and returning the
   formed unit_set_el_list.  The function is called only after
   processing all exclusion sets.  */
static unit_set_el_t
process_presence_absence_names (char **names, int num,
				pos_t req_pos ATTRIBUTE_UNUSED,
				int presence_p, int final_p)
{
  unit_set_el_t el_list;
  unit_set_el_t last_el;
  unit_set_el_t new_el;
  decl_t decl_in_table;
  int i;

  el_list = NULL;
  last_el = NULL;
  for (i = 0; i < num; i++)
    {
      decl_in_table = find_decl (names [i]);
      if (decl_in_table == NULL)
	error ((presence_p
		? (final_p
		   ? "unit `%s' in final presence set is not declared"
		   : "unit `%s' in presence set is not declared")
		: (final_p
		   ? "unit `%s' in final absence set is not declared"
		   : "unit `%s' in absence set is not declared")), names [i]);
      else if (decl_in_table->mode != dm_unit)
	error ((presence_p
		? (final_p
		   ? "`%s' in final presence set is not unit"
		   : "`%s' in presence set is not unit")
		: (final_p
		   ? "`%s' in final absence set is not unit"
		   : "`%s' in absence set is not unit")), names [i]);
      else
	{
	  new_el = create_node (sizeof (struct unit_set_el));
	  new_el->unit_decl = DECL_UNIT (decl_in_table);
	  new_el->next_unit_set_el = NULL;
	  if (last_el == NULL)
	    el_list = last_el = new_el;
	  else
	    {
	      last_el->next_unit_set_el = new_el;
	      last_el = last_el->next_unit_set_el;
	    }
	}
    }
  return el_list;
}

/* Checking NAMES in patterns of a presence/absence clause and
   returning the formed pattern_set_el_list.  The function is called
   only after processing all exclusion sets.  */
static pattern_set_el_t
process_presence_absence_patterns (char ***patterns, int num,
				   pos_t req_pos ATTRIBUTE_UNUSED,
				   int presence_p, int final_p)
{
  pattern_set_el_t el_list;
  pattern_set_el_t last_el;
  pattern_set_el_t new_el;
  decl_t decl_in_table;
  int i, j;

  el_list = NULL;
  last_el = NULL;
  for (i = 0; i < num; i++)
    {
      for (j = 0; patterns [i] [j] != NULL; j++)
	;
      new_el = create_node (sizeof (struct pattern_set_el)
			    + sizeof (struct unit_decl *) * j);
      new_el->unit_decls
	= (struct unit_decl **) ((char *) new_el
				 + sizeof (struct pattern_set_el));
      new_el->next_pattern_set_el = NULL;
      if (last_el == NULL)
	el_list = last_el = new_el;
      else
	{
	  last_el->next_pattern_set_el = new_el;
	  last_el = last_el->next_pattern_set_el;
	}
      new_el->units_num = 0;
      for (j = 0; patterns [i] [j] != NULL; j++)
	{
	  decl_in_table = find_decl (patterns [i] [j]);
	  if (decl_in_table == NULL)
	    error ((presence_p
		    ? (final_p
		       ? "unit `%s' in final presence set is not declared"
		       : "unit `%s' in presence set is not declared")
		    : (final_p
		       ? "unit `%s' in final absence set is not declared"
		       : "unit `%s' in absence set is not declared")),
		   patterns [i] [j]);
	  else if (decl_in_table->mode != dm_unit)
	    error ((presence_p
		    ? (final_p
		       ? "`%s' in final presence set is not unit"
		       : "`%s' in presence set is not unit")
		    : (final_p
		       ? "`%s' in final absence set is not unit"
		       : "`%s' in absence set is not unit")),
		   patterns [i] [j]);
	  else
	    {
	      new_el->unit_decls [new_el->units_num]
		= DECL_UNIT (decl_in_table);
	      new_el->units_num++;
	    }
	}
    }
  return el_list;
}

/* The function adds each element from PATTERN_LIST to presence (if
   PRESENCE_P) or absence list of the each element from DEST_LIST.
   Checking situations "unit requires own absence", and "unit excludes
   and requires presence of ...", "unit requires absence and presence
   of ...", "units in (final) presence set belong to different
   automata", and "units in (final) absence set belong to different
   automata".  Remember that we process absence sets only after all
   presence sets.  */
static void
add_presence_absence (unit_set_el_t dest_list,
		      pattern_set_el_t pattern_list,
		      pos_t req_pos ATTRIBUTE_UNUSED,
		      int presence_p, int final_p)
{
  unit_set_el_t dst;
  pattern_set_el_t pat;
  struct unit_decl *unit;
  unit_set_el_t curr_excl_el;
  pattern_set_el_t curr_pat_el;
  pattern_set_el_t prev_el;
  pattern_set_el_t copy;
  int i;
  int no_error_flag;

  for (dst = dest_list; dst != NULL; dst = dst->next_unit_set_el)
    for (pat = pattern_list; pat != NULL; pat = pat->next_pattern_set_el)
      {
	for (i = 0; i < pat->units_num; i++)
	  {
	    unit = pat->unit_decls [i];
	    if (dst->unit_decl == unit && pat->units_num == 1 && !presence_p)
	      {
		error ("unit `%s' requires own absence", unit->name);
		continue;
	      }
	    if (dst->unit_decl->automaton_name != NULL
		&& unit->automaton_name != NULL
		&& strcmp (dst->unit_decl->automaton_name,
			   unit->automaton_name) != 0)
	      {
		error ((presence_p
			? (final_p
			   ? "units `%s' and `%s' in final presence set belong to different automata"
			   : "units `%s' and `%s' in presence set belong to different automata")
			: (final_p
			   ? "units `%s' and `%s' in final absence set belong to different automata"
			   : "units `%s' and `%s' in absence set belong to different automata")),
		       unit->name, dst->unit_decl->name);
		continue;
	      }
	    no_error_flag = 1;
	    if (presence_p)
	      for (curr_excl_el = dst->unit_decl->excl_list;
		   curr_excl_el != NULL;
		   curr_excl_el = curr_excl_el->next_unit_set_el)
		{
		  if (unit == curr_excl_el->unit_decl && pat->units_num == 1)
		    {
		      if (!w_flag)
			{
			  error ("unit `%s' excludes and requires presence of `%s'",
				 dst->unit_decl->name, unit->name);
			  no_error_flag = 0;
			}
		      else
			warning
			  ("unit `%s' excludes and requires presence of `%s'",
			   dst->unit_decl->name, unit->name);
		    }
		}
	    else if (pat->units_num == 1)
	      for (curr_pat_el = dst->unit_decl->presence_list;
		   curr_pat_el != NULL;
		   curr_pat_el = curr_pat_el->next_pattern_set_el)
		if (curr_pat_el->units_num == 1
		    && unit == curr_pat_el->unit_decls [0])
		  {
		    if (!w_flag)
		      {
			error
			  ("unit `%s' requires absence and presence of `%s'",
			   dst->unit_decl->name, unit->name);
			no_error_flag = 0;
		      }
		    else
		      warning
			("unit `%s' requires absence and presence of `%s'",
			 dst->unit_decl->name, unit->name);
		  }
	    if (no_error_flag)
	      {
		for (prev_el = (presence_p
				? (final_p
				   ? dst->unit_decl->final_presence_list
				   : dst->unit_decl->final_presence_list)
				: (final_p
				   ? dst->unit_decl->final_absence_list
				   : dst->unit_decl->absence_list));
		     prev_el != NULL && prev_el->next_pattern_set_el != NULL;
		     prev_el = prev_el->next_pattern_set_el)
		  ;
		copy = copy_node (pat, sizeof (*pat));
		copy->next_pattern_set_el = NULL;
		if (prev_el == NULL)
		  {
		    if (presence_p)
		      {
			if (final_p)
			  dst->unit_decl->final_presence_list = copy;
			else
			  dst->unit_decl->presence_list = copy;
		      }
		    else if (final_p)
		      dst->unit_decl->final_absence_list = copy;
		    else
		      dst->unit_decl->absence_list = copy;
		  }
		else
		  prev_el->next_pattern_set_el = copy;
	      }
	  }
      }
}


/* The function searches for bypass with given IN_INSN_RESERV in given
   BYPASS_LIST.  */
static struct bypass_decl *
find_bypass (struct bypass_decl *bypass_list,
	     struct insn_reserv_decl *in_insn_reserv)
{
  struct bypass_decl *bypass;

  for (bypass = bypass_list; bypass != NULL; bypass = bypass->next)
    if (bypass->in_insn_reserv == in_insn_reserv)
      break;
  return bypass;
}

/* The function processes pipeline description declarations, checks
   their correctness, and forms exclusion/presence/absence sets.  */
static void
process_decls (void)
{
  decl_t decl;
  decl_t automaton_decl;
  decl_t decl_in_table;
  decl_t out_insn_reserv;
  decl_t in_insn_reserv;
  struct bypass_decl *bypass;
  int automaton_presence;
  int i;

  /* Checking repeated automata declarations.  */
  automaton_presence = 0;
  for (i = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_automaton)
	{
	  automaton_presence = 1;
	  decl_in_table = insert_automaton_decl (decl);
	  if (decl_in_table != decl)
	    {
	      if (!w_flag)
		error ("repeated declaration of automaton `%s'",
		       DECL_AUTOMATON (decl)->name);
	      else
		warning ("repeated declaration of automaton `%s'",
			 DECL_AUTOMATON (decl)->name);
	    }
	}
    }
  /* Checking undeclared automata, repeated declarations (except for
     automata) and correctness of their attributes (insn latency times
     etc.).  */
  for (i = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_insn_reserv)
	{
          DECL_INSN_RESERV (decl)->condexp
	    = check_attr_test (DECL_INSN_RESERV (decl)->condexp, 0, 0);
	  if (DECL_INSN_RESERV (decl)->default_latency < 0)
	    error ("define_insn_reservation `%s' has negative latency time",
		   DECL_INSN_RESERV (decl)->name);
	  DECL_INSN_RESERV (decl)->insn_num = description->insns_num;
	  description->insns_num++;
	  decl_in_table = insert_insn_decl (decl);
	  if (decl_in_table != decl)
	    error ("`%s' is already used as insn reservation name",
		   DECL_INSN_RESERV (decl)->name);
	}
      else if (decl->mode == dm_bypass)
	{
	  if (DECL_BYPASS (decl)->latency < 0)
	    error ("define_bypass `%s - %s' has negative latency time",
		   DECL_BYPASS (decl)->out_insn_name,
		   DECL_BYPASS (decl)->in_insn_name);
	}
      else if (decl->mode == dm_unit || decl->mode == dm_reserv)
	{
	  if (decl->mode == dm_unit)
	    {
	      DECL_UNIT (decl)->automaton_decl = NULL;
	      if (DECL_UNIT (decl)->automaton_name != NULL)
		{
		  automaton_decl
                    = find_automaton_decl (DECL_UNIT (decl)->automaton_name);
		  if (automaton_decl == NULL)
		    error ("automaton `%s' is not declared",
			   DECL_UNIT (decl)->automaton_name);
		  else
		    {
		      DECL_AUTOMATON (automaton_decl)->automaton_is_used = 1;
		      DECL_UNIT (decl)->automaton_decl
			= DECL_AUTOMATON (automaton_decl);
		    }
		}
	      else if (automaton_presence)
		error ("define_unit `%s' without automaton when one defined",
		       DECL_UNIT (decl)->name);
	      DECL_UNIT (decl)->unit_num = description->units_num;
	      description->units_num++;
	      if (strcmp (DECL_UNIT (decl)->name, NOTHING_NAME) == 0)
		{
		  error ("`%s' is declared as cpu unit", NOTHING_NAME);
		  continue;
		}
	      decl_in_table = find_decl (DECL_UNIT (decl)->name);
	    }
	  else
	    {
	      if (strcmp (DECL_RESERV (decl)->name, NOTHING_NAME) == 0)
		{
		  error ("`%s' is declared as cpu reservation", NOTHING_NAME);
		  continue;
		}
	      decl_in_table = find_decl (DECL_RESERV (decl)->name);
	    }
	  if (decl_in_table == NULL)
	    decl_in_table = insert_decl (decl);
	  else
	    {
	      if (decl->mode == dm_unit)
		error ("repeated declaration of unit `%s'",
		       DECL_UNIT (decl)->name);
	      else
		error ("repeated declaration of reservation `%s'",
		       DECL_RESERV (decl)->name);
	    }
	}
    }
  /* Check bypasses and form list of bypasses for each (output)
     insn.  */
  for (i = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_bypass)
	{
	  out_insn_reserv = find_insn_decl (DECL_BYPASS (decl)->out_insn_name);
	  in_insn_reserv = find_insn_decl (DECL_BYPASS (decl)->in_insn_name);
	  if (out_insn_reserv == NULL)
	    error ("there is no insn reservation `%s'",
		   DECL_BYPASS (decl)->out_insn_name);
	  else if (in_insn_reserv == NULL)
	    error ("there is no insn reservation `%s'",
		   DECL_BYPASS (decl)->in_insn_name);
	  else
	    {
	      DECL_BYPASS (decl)->out_insn_reserv
		= DECL_INSN_RESERV (out_insn_reserv);
	      DECL_BYPASS (decl)->in_insn_reserv
		= DECL_INSN_RESERV (in_insn_reserv);
	      bypass
		= find_bypass (DECL_INSN_RESERV (out_insn_reserv)->bypass_list,
			       DECL_BYPASS (decl)->in_insn_reserv);
	      if (bypass != NULL)
		{
		  if (DECL_BYPASS (decl)->latency == bypass->latency)
		    {
		      if (!w_flag)
			error
			  ("the same bypass `%s - %s' is already defined",
			   DECL_BYPASS (decl)->out_insn_name,
			   DECL_BYPASS (decl)->in_insn_name);
		      else
			warning
			  ("the same bypass `%s - %s' is already defined",
			   DECL_BYPASS (decl)->out_insn_name,
			   DECL_BYPASS (decl)->in_insn_name);
		    }
		  else
		    error ("bypass `%s - %s' is already defined",
			   DECL_BYPASS (decl)->out_insn_name,
			   DECL_BYPASS (decl)->in_insn_name);
		}
	      else
		{
		  DECL_BYPASS (decl)->next
		    = DECL_INSN_RESERV (out_insn_reserv)->bypass_list;
		  DECL_INSN_RESERV (out_insn_reserv)->bypass_list
		    = DECL_BYPASS (decl);
		}
	    }
	}
    }

  /* Check exclusion set declarations and form exclusion sets.  */
  for (i = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_excl)
	{
	  unit_set_el_t unit_set_el_list;
	  unit_set_el_t unit_set_el_list_2;

	  unit_set_el_list
            = process_excls (DECL_EXCL (decl)->names,
			     DECL_EXCL (decl)->first_list_length, decl->pos);
	  unit_set_el_list_2
	    = process_excls (&DECL_EXCL (decl)->names
			     [DECL_EXCL (decl)->first_list_length],
                             DECL_EXCL (decl)->all_names_num
                             - DECL_EXCL (decl)->first_list_length,
                             decl->pos);
	  add_excls (unit_set_el_list, unit_set_el_list_2, decl->pos);
	  add_excls (unit_set_el_list_2, unit_set_el_list, decl->pos);
	}
    }

  /* Check presence set declarations and form presence sets.  */
  for (i = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_presence)
	{
	  unit_set_el_t unit_set_el_list;
	  pattern_set_el_t pattern_set_el_list;

	  unit_set_el_list
            = process_presence_absence_names
	      (DECL_PRESENCE (decl)->names, DECL_PRESENCE (decl)->names_num,
	       decl->pos, TRUE, DECL_PRESENCE (decl)->final_p);
	  pattern_set_el_list
	    = process_presence_absence_patterns
	      (DECL_PRESENCE (decl)->patterns,
	       DECL_PRESENCE (decl)->patterns_num,
	       decl->pos, TRUE, DECL_PRESENCE (decl)->final_p);
	  add_presence_absence (unit_set_el_list, pattern_set_el_list,
				decl->pos, TRUE,
				DECL_PRESENCE (decl)->final_p);
	}
    }

  /* Check absence set declarations and form absence sets.  */
  for (i = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_absence)
	{
	  unit_set_el_t unit_set_el_list;
	  pattern_set_el_t pattern_set_el_list;

	  unit_set_el_list
            = process_presence_absence_names
	      (DECL_ABSENCE (decl)->names, DECL_ABSENCE (decl)->names_num,
	       decl->pos, FALSE, DECL_ABSENCE (decl)->final_p);
	  pattern_set_el_list
	    = process_presence_absence_patterns
	      (DECL_ABSENCE (decl)->patterns,
	       DECL_ABSENCE (decl)->patterns_num,
	       decl->pos, FALSE, DECL_ABSENCE (decl)->final_p);
	  add_presence_absence (unit_set_el_list, pattern_set_el_list,
				decl->pos, FALSE,
				DECL_ABSENCE (decl)->final_p);
	}
    }
}

/* The following function checks that declared automaton is used.  If
   the automaton is not used, the function fixes error/warning.  The
   following function must be called only after `process_decls'.  */
static void
check_automaton_usage (void)
{
  decl_t decl;
  int i;

  for (i = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_automaton
	  && !DECL_AUTOMATON (decl)->automaton_is_used)
	{
	  if (!w_flag)
	    error ("automaton `%s' is not used", DECL_AUTOMATON (decl)->name);
	  else
	    warning ("automaton `%s' is not used",
		     DECL_AUTOMATON (decl)->name);
	}
    }
}

/* The following recursive function processes all regexp in order to
   fix usage of units or reservations and to fix errors of undeclared
   name.  The function may change unit_regexp onto reserv_regexp.
   Remember that reserv_regexp does not exist before the function
   call.  */
static regexp_t
process_regexp (regexp_t regexp)
{
  decl_t decl_in_table;
  regexp_t new_regexp;
  int i;

  if (regexp->mode == rm_unit)
    {
      decl_in_table = find_decl (REGEXP_UNIT (regexp)->name);
      if (decl_in_table == NULL)
        error ("undeclared unit or reservation `%s'",
	       REGEXP_UNIT (regexp)->name);
      else if (decl_in_table->mode == dm_unit)
	{
	  DECL_UNIT (decl_in_table)->unit_is_used = 1;
	  REGEXP_UNIT (regexp)->unit_decl = DECL_UNIT (decl_in_table);
	}
      else if (decl_in_table->mode == dm_reserv)
	{
	  DECL_RESERV (decl_in_table)->reserv_is_used = 1;
	  new_regexp = create_node (sizeof (struct regexp));
	  new_regexp->mode = rm_reserv;
	  new_regexp->pos = regexp->pos;
	  REGEXP_RESERV (new_regexp)->name = REGEXP_UNIT (regexp)->name;
	  REGEXP_RESERV (new_regexp)->reserv_decl
	    = DECL_RESERV (decl_in_table);
	  regexp = new_regexp;
	}
      else
	abort ();
    }
  else if (regexp->mode == rm_sequence)
    for (i = 0; i <REGEXP_SEQUENCE (regexp)->regexps_num; i++)
     REGEXP_SEQUENCE (regexp)->regexps [i]
	= process_regexp (REGEXP_SEQUENCE (regexp)->regexps [i]);
  else if (regexp->mode == rm_allof)
    for (i = 0; i < REGEXP_ALLOF (regexp)->regexps_num; i++)
      REGEXP_ALLOF (regexp)->regexps [i]
        = process_regexp (REGEXP_ALLOF (regexp)->regexps [i]);
  else if (regexp->mode == rm_oneof)
    for (i = 0; i < REGEXP_ONEOF (regexp)->regexps_num; i++)
      REGEXP_ONEOF (regexp)->regexps [i]
	= process_regexp (REGEXP_ONEOF (regexp)->regexps [i]);
  else if (regexp->mode == rm_repeat)
    REGEXP_REPEAT (regexp)->regexp
      = process_regexp (REGEXP_REPEAT (regexp)->regexp);
  else if (regexp->mode != rm_nothing)
    abort ();
  return regexp;
}

/* The following function processes regexp of define_reservation and
   define_insn_reservation with the aid of function
   `process_regexp'.  */
static void
process_regexp_decls (void)
{
  decl_t decl;
  int i;

  for (i = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_reserv)
	DECL_RESERV (decl)->regexp
	  = process_regexp (DECL_RESERV (decl)->regexp);
      else if (decl->mode == dm_insn_reserv)
	DECL_INSN_RESERV (decl)->regexp
	  = process_regexp (DECL_INSN_RESERV (decl)->regexp);
    }
}

/* The following function checks that declared unit is used.  If the
   unit is not used, the function fixes errors/warnings.  The
   following function must be called only after `process_decls',
   `process_regexp_decls'.  */
static void
check_usage (void)
{
  decl_t decl;
  int i;

  for (i = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_unit && !DECL_UNIT (decl)->unit_is_used)
	{
	  if (!w_flag)
	    error ("unit `%s' is not used", DECL_UNIT (decl)->name);
	  else
	    warning ("unit `%s' is not used", DECL_UNIT (decl)->name);
	}
      else if (decl->mode == dm_reserv && !DECL_RESERV (decl)->reserv_is_used)
	{
	  if (!w_flag)
	    error ("reservation `%s' is not used", DECL_RESERV (decl)->name);
	  else
	    warning ("reservation `%s' is not used", DECL_RESERV (decl)->name);
	}
    }
}

/* The following variable value is number of reservation being
   processed on loop recognition.  */
static int curr_loop_pass_num;

/* The following recursive function returns nonzero value if REGEXP
   contains given decl or reservations in given regexp refers for
   given decl.  */
static int
loop_in_regexp (regexp_t regexp, decl_t start_decl)
{
  int i;

  if (regexp == NULL)
    return 0;
  if (regexp->mode == rm_unit)
    return 0;
  else if (regexp->mode == rm_reserv)
    {
      if (start_decl->mode == dm_reserv
          && REGEXP_RESERV (regexp)->reserv_decl == DECL_RESERV (start_decl))
        return 1;
      else if (REGEXP_RESERV (regexp)->reserv_decl->loop_pass_num
	       == curr_loop_pass_num)
        /* declaration has been processed.  */
        return 0;
      else
        {
	  REGEXP_RESERV (regexp)->reserv_decl->loop_pass_num
            = curr_loop_pass_num;
          return loop_in_regexp (REGEXP_RESERV (regexp)->reserv_decl->regexp,
                                 start_decl);
        }
    }
  else if (regexp->mode == rm_sequence)
    {
      for (i = 0; i <REGEXP_SEQUENCE (regexp)->regexps_num; i++)
	if (loop_in_regexp (REGEXP_SEQUENCE (regexp)->regexps [i], start_decl))
	  return 1;
      return 0;
    }
  else if (regexp->mode == rm_allof)
    {
      for (i = 0; i < REGEXP_ALLOF (regexp)->regexps_num; i++)
	if (loop_in_regexp (REGEXP_ALLOF (regexp)->regexps [i], start_decl))
	  return 1;
      return 0;
    }
  else if (regexp->mode == rm_oneof)
    {
      for (i = 0; i < REGEXP_ONEOF (regexp)->regexps_num; i++)
	if (loop_in_regexp (REGEXP_ONEOF (regexp)->regexps [i], start_decl))
	  return 1;
      return 0;
    }
  else if (regexp->mode == rm_repeat)
    return loop_in_regexp (REGEXP_REPEAT (regexp)->regexp, start_decl);
  else
    {
      if (regexp->mode != rm_nothing)
	abort ();
      return 0;
    }
}

/* The following function fixes errors "cycle in definition ...".  The
   function uses function `loop_in_regexp' for that.  */
static void
check_loops_in_regexps (void)
{
  decl_t decl;
  int i;

  for (i = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_reserv)
	DECL_RESERV (decl)->loop_pass_num = 0;
    }
  for (i = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      curr_loop_pass_num = i;

      if (decl->mode == dm_reserv)
	  {
	    DECL_RESERV (decl)->loop_pass_num = curr_loop_pass_num;
	    if (loop_in_regexp (DECL_RESERV (decl)->regexp, decl))
	      {
		if (DECL_RESERV (decl)->regexp == NULL)
		  abort ();
		error ("cycle in definition of reservation `%s'",
		       DECL_RESERV (decl)->name);
	      }
	  }
    }
}

/* The function recursively processes IR of reservation and defines
   max and min cycle for reservation of unit.  */
static void
process_regexp_cycles (regexp_t regexp, int max_start_cycle,
		       int min_start_cycle, int *max_finish_cycle,
		       int *min_finish_cycle)
{
  int i;

  if (regexp->mode == rm_unit)
    {
      if (REGEXP_UNIT (regexp)->unit_decl->max_occ_cycle_num < max_start_cycle)
	REGEXP_UNIT (regexp)->unit_decl->max_occ_cycle_num = max_start_cycle;
      if (REGEXP_UNIT (regexp)->unit_decl->min_occ_cycle_num > min_start_cycle
	  || REGEXP_UNIT (regexp)->unit_decl->min_occ_cycle_num == -1)
	REGEXP_UNIT (regexp)->unit_decl->min_occ_cycle_num = min_start_cycle;
      *max_finish_cycle = max_start_cycle;
      *min_finish_cycle = min_start_cycle;
    }
  else if (regexp->mode == rm_reserv)
   process_regexp_cycles (REGEXP_RESERV (regexp)->reserv_decl->regexp,
			  max_start_cycle, min_start_cycle,
			  max_finish_cycle, min_finish_cycle);
  else if (regexp->mode == rm_repeat)
    {
      for (i = 0; i < REGEXP_REPEAT (regexp)->repeat_num; i++)
	{
	  process_regexp_cycles (REGEXP_REPEAT (regexp)->regexp,
				 max_start_cycle, min_start_cycle,
				 max_finish_cycle, min_finish_cycle);
	  max_start_cycle = *max_finish_cycle + 1;
	  min_start_cycle = *min_finish_cycle + 1;
	}
    }
  else if (regexp->mode == rm_sequence)
    {
      for (i = 0; i <REGEXP_SEQUENCE (regexp)->regexps_num; i++)
	{
	  process_regexp_cycles (REGEXP_SEQUENCE (regexp)->regexps [i],
				 max_start_cycle, min_start_cycle,
				 max_finish_cycle, min_finish_cycle);
	  max_start_cycle = *max_finish_cycle + 1;
	  min_start_cycle = *min_finish_cycle + 1;
	}
    }
  else if (regexp->mode == rm_allof)
    {
      int max_cycle = 0;
      int min_cycle = 0;

      for (i = 0; i < REGEXP_ALLOF (regexp)->regexps_num; i++)
	{
	  process_regexp_cycles (REGEXP_ALLOF (regexp)->regexps [i],
				 max_start_cycle, min_start_cycle,
				 max_finish_cycle, min_finish_cycle);
	  if (max_cycle < *max_finish_cycle)
	    max_cycle = *max_finish_cycle;
	  if (i == 0 || min_cycle > *min_finish_cycle)
	    min_cycle = *min_finish_cycle;
	}
      *max_finish_cycle = max_cycle;
      *min_finish_cycle = min_cycle;
    }
  else if (regexp->mode == rm_oneof)
    {
      int max_cycle = 0;
      int min_cycle = 0;

      for (i = 0; i < REGEXP_ONEOF (regexp)->regexps_num; i++)
	{
	  process_regexp_cycles (REGEXP_ONEOF (regexp)->regexps [i],
				 max_start_cycle, min_start_cycle,
				 max_finish_cycle, min_finish_cycle);
	  if (max_cycle < *max_finish_cycle)
	    max_cycle = *max_finish_cycle;
	  if (i == 0 || min_cycle > *min_finish_cycle)
	    min_cycle = *min_finish_cycle;
	}
      *max_finish_cycle = max_cycle;
      *min_finish_cycle = min_cycle;
    }
  else
    {
      if (regexp->mode != rm_nothing)
	abort ();
      *max_finish_cycle = max_start_cycle;
      *min_finish_cycle = min_start_cycle;
    }
}

/* The following function is called only for correct program.  The
   function defines max reservation of insns in cycles.  */
static void
evaluate_max_reserv_cycles (void)
{
  int max_insn_cycles_num;
  int min_insn_cycles_num;
  decl_t decl;
  int i;

  description->max_insn_reserv_cycles = 0;
  for (i = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_insn_reserv)
      {
        process_regexp_cycles (DECL_INSN_RESERV (decl)->regexp, 0, 0,
			       &max_insn_cycles_num, &min_insn_cycles_num);
        if (description->max_insn_reserv_cycles < max_insn_cycles_num)
	  description->max_insn_reserv_cycles = max_insn_cycles_num;
      }
    }
  description->max_insn_reserv_cycles++;
}

/* The following function calls functions for checking all
   description.  */
static void
check_all_description (void)
{
  process_decls ();
  check_automaton_usage ();
  process_regexp_decls ();
  check_usage ();
  check_loops_in_regexps ();
  if (!have_error)
    evaluate_max_reserv_cycles ();
}



/* The page contains abstract data `ticker'.  This data is used to
   report time of different phases of building automata.  It is
   possibly to write a description for which automata will be built
   during several minutes even on fast machine.  */

/* The following function creates ticker and makes it active.  */
static ticker_t
create_ticker (void)
{
  ticker_t ticker;

  ticker.modified_creation_time = get_run_time ();
  ticker.incremented_off_time = 0;
  return ticker;
}

/* The following function switches off given ticker.  */
static void
ticker_off (ticker_t *ticker)
{
  if (ticker->incremented_off_time == 0)
    ticker->incremented_off_time = get_run_time () + 1;
}

/* The following function switches on given ticker.  */
static void
ticker_on (ticker_t *ticker)
{
  if (ticker->incremented_off_time != 0)
    {
      ticker->modified_creation_time
        += get_run_time () - ticker->incremented_off_time + 1;
      ticker->incremented_off_time = 0;
    }
}

/* The following function returns current time in milliseconds since
   the moment when given ticker was created.  */
static int
active_time (ticker_t ticker)
{
  if (ticker.incremented_off_time != 0)
    return ticker.incremented_off_time - 1 - ticker.modified_creation_time;
  else
    return get_run_time () - ticker.modified_creation_time;
}

/* The following function returns string representation of active time
   of given ticker.  The result is string representation of seconds
   with accuracy of 1/100 second.  Only result of the last call of the
   function exists.  Therefore the following code is not correct

      printf ("parser time: %s\ngeneration time: %s\n",
              active_time_string (parser_ticker),
              active_time_string (generation_ticker));

   Correct code has to be the following

      printf ("parser time: %s\n", active_time_string (parser_ticker));
      printf ("generation time: %s\n",
              active_time_string (generation_ticker));

*/
static void
print_active_time (FILE *f, ticker_t ticker)
{
  int msecs;

  msecs = active_time (ticker);
  fprintf (f, "%d.%06d", msecs / 1000000, msecs % 1000000);
}



/* The following variable value is number of automaton which are
   really being created.  This value is defined on the base of
   argument of option `-split'.  If the variable has zero value the
   number of automata is defined by the constructions `%automaton'.
   This case occurs when option `-split' is absent or has zero
   argument.  If constructions `define_automaton' is absent only one
   automaton is created.  */
static int automata_num;

/* The following variable values are times of
       o transformation of regular expressions
       o building NDFA (DFA if !ndfa_flag)
       o NDFA -> DFA   (simply the same automaton if !ndfa_flag)
       o DFA minimization
       o building insn equivalence classes
       o all previous ones
       o code output */
static ticker_t transform_time;
static ticker_t NDFA_time;
static ticker_t NDFA_to_DFA_time;
static ticker_t minimize_time;
static ticker_t equiv_time;
static ticker_t automaton_generation_time;
static ticker_t output_time;

/* The following variable values are times of
       all checking
       all generation
       all pipeline hazard translator work */
static ticker_t check_time;
static ticker_t generation_time;
static ticker_t all_time;



/* Pseudo insn decl which denotes advancing cycle.  */
static decl_t advance_cycle_insn_decl;
static void
add_advance_cycle_insn_decl (void)
{
  advance_cycle_insn_decl = create_node (sizeof (struct decl));
  advance_cycle_insn_decl->mode = dm_insn_reserv;
  advance_cycle_insn_decl->pos = no_pos;
  DECL_INSN_RESERV (advance_cycle_insn_decl)->regexp = NULL;
  DECL_INSN_RESERV (advance_cycle_insn_decl)->name = (char *) "$advance_cycle";
  DECL_INSN_RESERV (advance_cycle_insn_decl)->insn_num
    = description->insns_num;
  description->decls [description->decls_num] = advance_cycle_insn_decl;
  description->decls_num++;
  description->insns_num++;
  num_dfa_decls++;
}


/* Abstract data `alternative states' which represents
   nondeterministic nature of the description (see comments for
   structures alt_state and state).  */

/* List of free states.  */
static alt_state_t first_free_alt_state;

#ifndef NDEBUG
/* The following variables is maximal number of allocated nodes
   alt_state.  */
static int allocated_alt_states_num = 0;
#endif

/* The following function returns free node alt_state.  It may be new
   allocated node or node freed earlier.  */
static alt_state_t
get_free_alt_state (void)
{
  alt_state_t result;

  if (first_free_alt_state != NULL)
    {
      result = first_free_alt_state;
      first_free_alt_state = first_free_alt_state->next_alt_state;
    }
  else
    {
#ifndef NDEBUG
      allocated_alt_states_num++;
#endif
      result = create_node (sizeof (struct alt_state));
    }
  result->state = NULL;
  result->next_alt_state = NULL;
  result->next_sorted_alt_state = NULL;
  return result;
}

/* The function frees node ALT_STATE.  */
static void
free_alt_state (alt_state_t alt_state)
{
  if (alt_state == NULL)
    return;
  alt_state->next_alt_state = first_free_alt_state;
  first_free_alt_state = alt_state;
}

/* The function frees list started with node ALT_STATE_LIST.  */
static void
free_alt_states (alt_state_t alt_states_list)
{
  alt_state_t curr_alt_state;
  alt_state_t next_alt_state;

  for (curr_alt_state = alt_states_list;
       curr_alt_state != NULL;
       curr_alt_state = next_alt_state)
    {
      next_alt_state = curr_alt_state->next_alt_state;
      free_alt_state (curr_alt_state);
    }
}

/* The function compares unique numbers of alt states.  */
static int
alt_state_cmp (const void *alt_state_ptr_1, const void *alt_state_ptr_2)
{
  if ((*(alt_state_t *) alt_state_ptr_1)->state->unique_num
      == (*(alt_state_t *) alt_state_ptr_2)->state->unique_num)
    return 0;
  else if ((*(alt_state_t *) alt_state_ptr_1)->state->unique_num
	   < (*(alt_state_t *) alt_state_ptr_2)->state->unique_num)
    return -1;
  else
    return 1;
}

/* The function sorts ALT_STATES_LIST and removes duplicated alt
   states from the list.  The comparison key is alt state unique
   number.  */
static alt_state_t
uniq_sort_alt_states (alt_state_t alt_states_list)
{
  alt_state_t curr_alt_state;
  vla_ptr_t alt_states;
  size_t i;
  size_t prev_unique_state_ind;
  alt_state_t result;
  alt_state_t *result_ptr;

  VLA_PTR_CREATE (alt_states, 150, "alt_states");
  for (curr_alt_state = alt_states_list;
       curr_alt_state != NULL;
       curr_alt_state = curr_alt_state->next_alt_state)
    VLA_PTR_ADD (alt_states, curr_alt_state);
  qsort (VLA_PTR_BEGIN (alt_states), VLA_PTR_LENGTH (alt_states),
	 sizeof (alt_state_t), alt_state_cmp);
  if (VLA_PTR_LENGTH (alt_states) == 0)
    result = NULL;
  else
    {
      result_ptr = VLA_PTR_BEGIN (alt_states);
      prev_unique_state_ind = 0;
      for (i = 1; i < VLA_PTR_LENGTH (alt_states); i++)
        if (result_ptr [prev_unique_state_ind]->state != result_ptr [i]->state)
          {
            prev_unique_state_ind++;
            result_ptr [prev_unique_state_ind] = result_ptr [i];
          }
#if 0
      for (i = prev_unique_state_ind + 1; i < VLA_PTR_LENGTH (alt_states); i++)
        free_alt_state (result_ptr [i]);
#endif
      VLA_PTR_SHORTEN (alt_states, i - prev_unique_state_ind - 1);
      result_ptr = VLA_PTR_BEGIN (alt_states);
      for (i = 1; i < VLA_PTR_LENGTH (alt_states); i++)
        result_ptr [i - 1]->next_sorted_alt_state = result_ptr [i];
      result_ptr [i - 1]->next_sorted_alt_state = NULL;
      result = *result_ptr;
    }
  VLA_PTR_DELETE (alt_states);
  return result;
}

/* The function checks equality of alt state lists.  Remember that the
   lists must be already sorted by the previous function.  */
static int
alt_states_eq (alt_state_t alt_states_1, alt_state_t alt_states_2)
{
  while (alt_states_1 != NULL && alt_states_2 != NULL
         && alt_state_cmp (&alt_states_1, &alt_states_2) == 0)
    {
      alt_states_1 = alt_states_1->next_sorted_alt_state;
      alt_states_2 = alt_states_2->next_sorted_alt_state;
    }
  return alt_states_1 == alt_states_2;
}

/* Initialization of the abstract data.  */
static void
initiate_alt_states (void)
{
  first_free_alt_state = NULL;
}

/* Finishing work with the abstract data.  */
static void
finish_alt_states (void)
{
}



/* The page contains macros for work with bits strings.  We could use
   standard gcc bitmap or sbitmap but it would result in difficulties
   of building canadian cross.  */

/* Set bit number bitno in the bit string.  The macro is not side
   effect proof.  */
#define SET_BIT(bitstring, bitno)					  \
  (((char *) (bitstring)) [(bitno) / CHAR_BIT] |= 1 << (bitno) % CHAR_BIT)

#define CLEAR_BIT(bitstring, bitno)					  \
  (((char *) (bitstring)) [(bitno) / CHAR_BIT] &= ~(1 << (bitno) % CHAR_BIT))

/* Test if bit number bitno in the bitstring is set.  The macro is not
   side effect proof.  */
#define TEST_BIT(bitstring, bitno)                                        \
  (((char *) (bitstring)) [(bitno) / CHAR_BIT] >> (bitno) % CHAR_BIT & 1)



/* This page contains abstract data `state'.  */

/* Maximal length of reservations in cycles (>= 1).  */
static int max_cycles_num;

/* Number of set elements (see type set_el_t) needed for
   representation of one cycle reservation.  It is depended on units
   number.  */
static int els_in_cycle_reserv;

/* Number of set elements (see type set_el_t) needed for
   representation of maximal length reservation.  Deterministic
   reservation is stored as set (bit string) of length equal to the
   variable value * number of bits in set_el_t.  */
static int els_in_reservs;

/* VLA for representation of array of pointers to unit
   declarations.  */
static vla_ptr_t units_container;

/* The start address of the array.  */
static unit_decl_t *units_array;

/* Temporary reservation of maximal length.  */
static reserv_sets_t temp_reserv;

/* The state table itself is represented by the following variable.  */
static htab_t state_table;

/* VLA for representation of array of pointers to free nodes
   `state'.  */
static vla_ptr_t free_states;

static int curr_unique_state_num;

#ifndef NDEBUG
/* The following variables is maximal number of allocated nodes
   `state'.  */
static int allocated_states_num = 0;
#endif

/* Allocate new reservation set.  */
static reserv_sets_t
alloc_empty_reserv_sets (void)
{
  reserv_sets_t result;

  obstack_blank (&irp, els_in_reservs * sizeof (set_el_t));
  result = (reserv_sets_t) obstack_base (&irp);
  obstack_finish (&irp);
  memset (result, 0, els_in_reservs * sizeof (set_el_t));
  return result;
}

/* Hash value of reservation set.  */
static unsigned
reserv_sets_hash_value (reserv_sets_t reservs)
{
  set_el_t hash_value;
  unsigned result;
  int reservs_num, i;
  set_el_t *reserv_ptr;

  hash_value = 0;
  reservs_num = els_in_reservs;
  reserv_ptr = reservs;
  i = 0;
  while (reservs_num != 0)
    {
      reservs_num--;
      hash_value += ((*reserv_ptr >> i)
		     | (*reserv_ptr << (sizeof (set_el_t) * CHAR_BIT - i)));
      i++;
      if (i == sizeof (set_el_t) * CHAR_BIT)
	i = 0;
      reserv_ptr++;
    }
  if (sizeof (set_el_t) <= sizeof (unsigned))
    return hash_value;
  result = 0;
  for (i = sizeof (set_el_t); i > 0; i -= sizeof (unsigned) - 1)
    {
      result += (unsigned) hash_value;
      hash_value >>= (sizeof (unsigned) - 1) * CHAR_BIT;
    }
  return result;
}

/* Comparison of given reservation sets.  */
static int
reserv_sets_cmp (reserv_sets_t reservs_1, reserv_sets_t reservs_2)
{
  int reservs_num;
  set_el_t *reserv_ptr_1;
  set_el_t *reserv_ptr_2;

  if (reservs_1 == NULL || reservs_2 == NULL)
    abort ();
  reservs_num = els_in_reservs;
  reserv_ptr_1 = reservs_1;
  reserv_ptr_2 = reservs_2;
  while (reservs_num != 0 && *reserv_ptr_1 == *reserv_ptr_2)
    {
      reservs_num--;
      reserv_ptr_1++;
      reserv_ptr_2++;
    }
  if (reservs_num == 0)
    return 0;
  else if (*reserv_ptr_1 < *reserv_ptr_2)
    return -1;
  else
    return 1;
}

/* The function checks equality of the reservation sets.  */
static int
reserv_sets_eq (reserv_sets_t reservs_1, reserv_sets_t reservs_2)
{
  return reserv_sets_cmp (reservs_1, reservs_2) == 0;
}

/* Set up in the reservation set that unit with UNIT_NUM is used on
   CYCLE_NUM.  */
static void
set_unit_reserv (reserv_sets_t reservs, int cycle_num, int unit_num)
{
  if (cycle_num >= max_cycles_num)
    abort ();
  SET_BIT (reservs, cycle_num * els_in_cycle_reserv
           * sizeof (set_el_t) * CHAR_BIT + unit_num);
}

/* Set up in the reservation set RESERVS that unit with UNIT_NUM is
   used on CYCLE_NUM.  */
static int
test_unit_reserv (reserv_sets_t reservs, int cycle_num, int unit_num)
{
  if (cycle_num >= max_cycles_num)
    abort ();
  return TEST_BIT (reservs, cycle_num * els_in_cycle_reserv
		   * sizeof (set_el_t) * CHAR_BIT + unit_num);
}

/* The function checks that the reservation set represents no one unit
   reservation.  */
static int
it_is_empty_reserv_sets (reserv_sets_t operand)
{
  set_el_t *reserv_ptr;
  int reservs_num;

  if (operand == NULL)
    abort ();
  for (reservs_num = els_in_reservs, reserv_ptr = operand;
       reservs_num != 0;
       reserv_ptr++, reservs_num--)
    if (*reserv_ptr != 0)
      return 0;
  return 1;
}

/* The function checks that the reservation sets are intersected,
   i.e. there is a unit reservation on a cycle in both reservation
   sets.  */
static int
reserv_sets_are_intersected (reserv_sets_t operand_1,
			     reserv_sets_t operand_2)
{
  set_el_t *el_ptr_1;
  set_el_t *el_ptr_2;
  set_el_t *cycle_ptr_1;
  set_el_t *cycle_ptr_2;

  if (operand_1 == NULL || operand_2 == NULL)
    abort ();
  for (el_ptr_1 = operand_1, el_ptr_2 = operand_2;
       el_ptr_1 < operand_1 + els_in_reservs;
       el_ptr_1++, el_ptr_2++)
    if (*el_ptr_1 & *el_ptr_2)
      return 1;
  reserv_sets_or (temp_reserv, operand_1, operand_2);
  for (cycle_ptr_1 = operand_1, cycle_ptr_2 = operand_2;
       cycle_ptr_1 < operand_1 + els_in_reservs;
       cycle_ptr_1 += els_in_cycle_reserv, cycle_ptr_2 += els_in_cycle_reserv)
    {
      for (el_ptr_1 = cycle_ptr_1, el_ptr_2 = get_excl_set (cycle_ptr_2);
	   el_ptr_1 < cycle_ptr_1 + els_in_cycle_reserv;
	   el_ptr_1++, el_ptr_2++)
	if (*el_ptr_1 & *el_ptr_2)
	  return 1;
      if (!check_presence_pattern_sets (cycle_ptr_1, cycle_ptr_2, FALSE))
	return 1;
      if (!check_presence_pattern_sets (temp_reserv + (cycle_ptr_2
						       - operand_2),
					cycle_ptr_2, TRUE))
	return 1;
      if (!check_absence_pattern_sets (cycle_ptr_1, cycle_ptr_2, FALSE))
	return 1;
      if (!check_absence_pattern_sets (temp_reserv + (cycle_ptr_2 - operand_2),
				       cycle_ptr_2, TRUE))
	return 1;
    }
  return 0;
}

/* The function sets up RESULT bits by bits of OPERAND shifted on one
   cpu cycle.  The remaining bits of OPERAND (representing the last
   cycle unit reservations) are not changed.  */
static void
reserv_sets_shift (reserv_sets_t result, reserv_sets_t operand)
{
  int i;

  if (result == NULL || operand == NULL || result == operand)
    abort ();
  for (i = els_in_cycle_reserv; i < els_in_reservs; i++)
    result [i - els_in_cycle_reserv] = operand [i];
}

/* OR of the reservation sets.  */
static void
reserv_sets_or (reserv_sets_t result, reserv_sets_t operand_1,
		reserv_sets_t operand_2)
{
  set_el_t *el_ptr_1;
  set_el_t *el_ptr_2;
  set_el_t *result_set_el_ptr;

  if (result == NULL || operand_1 == NULL || operand_2 == NULL)
    abort ();
  for (el_ptr_1 = operand_1, el_ptr_2 = operand_2, result_set_el_ptr = result;
       el_ptr_1 < operand_1 + els_in_reservs;
       el_ptr_1++, el_ptr_2++, result_set_el_ptr++)
    *result_set_el_ptr = *el_ptr_1 | *el_ptr_2;
}

/* AND of the reservation sets.  */
static void
reserv_sets_and (reserv_sets_t result, reserv_sets_t operand_1,
		reserv_sets_t operand_2)
{
  set_el_t *el_ptr_1;
  set_el_t *el_ptr_2;
  set_el_t *result_set_el_ptr;

  if (result == NULL || operand_1 == NULL || operand_2 == NULL)
    abort ();
  for (el_ptr_1 = operand_1, el_ptr_2 = operand_2, result_set_el_ptr = result;
       el_ptr_1 < operand_1 + els_in_reservs;
       el_ptr_1++, el_ptr_2++, result_set_el_ptr++)
    *result_set_el_ptr = *el_ptr_1 & *el_ptr_2;
}

/* The function outputs string representation of units reservation on
   cycle START_CYCLE in the reservation set.  The function uses repeat
   construction if REPETITION_NUM > 1.  */
static void
output_cycle_reservs (FILE *f, reserv_sets_t reservs, int start_cycle,
		      int repetition_num)
{
  int unit_num;
  int reserved_units_num;

  reserved_units_num = 0;
  for (unit_num = 0; unit_num < description->units_num; unit_num++)
    if (TEST_BIT (reservs, start_cycle * els_in_cycle_reserv
                  * sizeof (set_el_t) * CHAR_BIT + unit_num))
      reserved_units_num++;
  if (repetition_num <= 0)
    abort ();
  if (repetition_num != 1 && reserved_units_num > 1)
    fprintf (f, "(");
  reserved_units_num = 0;
  for (unit_num = 0;
       unit_num < description->units_num;
       unit_num++)
    if (TEST_BIT (reservs, start_cycle * els_in_cycle_reserv
		  * sizeof (set_el_t) * CHAR_BIT + unit_num))
      {
        if (reserved_units_num != 0)
          fprintf (f, "+");
        reserved_units_num++;
        fprintf (f, "%s", units_array [unit_num]->name);
      }
  if (reserved_units_num == 0)
    fprintf (f, NOTHING_NAME);
  if (repetition_num <= 0)
    abort ();
  if (repetition_num != 1 && reserved_units_num > 1)
    fprintf (f, ")");
  if (repetition_num != 1)
    fprintf (f, "*%d", repetition_num);
}

/* The function outputs string representation of units reservation in
   the reservation set.  */
static void
output_reserv_sets (FILE *f, reserv_sets_t reservs)
{
  int start_cycle = 0;
  int cycle;
  int repetition_num;

  repetition_num = 0;
  for (cycle = 0; cycle < max_cycles_num; cycle++)
    if (repetition_num == 0)
      {
        repetition_num++;
        start_cycle = cycle;
      }
    else if (memcmp
             ((char *) reservs + start_cycle * els_in_cycle_reserv
	      * sizeof (set_el_t),
              (char *) reservs + cycle * els_in_cycle_reserv
	      * sizeof (set_el_t),
	      els_in_cycle_reserv * sizeof (set_el_t)) == 0)
      repetition_num++;
    else
      {
        if (start_cycle != 0)
          fprintf (f, ", ");
        output_cycle_reservs (f, reservs, start_cycle, repetition_num);
        repetition_num = 1;
        start_cycle = cycle;
      }
  if (start_cycle < max_cycles_num)
    {
      if (start_cycle != 0)
        fprintf (f, ", ");
      output_cycle_reservs (f, reservs, start_cycle, repetition_num);
    }
}

/* The following function returns free node state for AUTOMATON.  It
   may be new allocated node or node freed earlier.  The function also
   allocates reservation set if WITH_RESERVS has nonzero value.  */
static state_t
get_free_state (int with_reservs, automaton_t automaton)
{
  state_t result;

  if (max_cycles_num <= 0 || automaton == NULL)
    abort ();
  if (VLA_PTR_LENGTH (free_states) != 0)
    {
      result = VLA_PTR (free_states, VLA_PTR_LENGTH (free_states) - 1);
      VLA_PTR_SHORTEN (free_states, 1);
      result->automaton = automaton;
      result->first_out_arc = NULL;
      result->it_was_placed_in_stack_for_NDFA_forming = 0;
      result->it_was_placed_in_stack_for_DFA_forming = 0;
      result->component_states = NULL;
      result->longest_path_length = UNDEFINED_LONGEST_PATH_LENGTH;
    }
  else
    {
#ifndef NDEBUG
      allocated_states_num++;
#endif
      result = create_node (sizeof (struct state));
      result->automaton = automaton;
      result->first_out_arc = NULL;
      result->unique_num = curr_unique_state_num;
      result->longest_path_length = UNDEFINED_LONGEST_PATH_LENGTH;
      curr_unique_state_num++;
    }
  if (with_reservs)
    {
      if (result->reservs == NULL)
        result->reservs = alloc_empty_reserv_sets ();
      else
        memset (result->reservs, 0, els_in_reservs * sizeof (set_el_t));
    }
  return result;
}

/* The function frees node STATE.  */
static void
free_state (state_t state)
{
  free_alt_states (state->component_states);
  VLA_PTR_ADD (free_states, state);
}

/* Hash value of STATE.  If STATE represents deterministic state it is
   simply hash value of the corresponding reservation set.  Otherwise
   it is formed from hash values of the component deterministic
   states.  One more key is order number of state automaton.  */
static hashval_t
state_hash (const void *state)
{
  unsigned int hash_value;
  alt_state_t alt_state;

  if (((state_t) state)->component_states == NULL)
    hash_value = reserv_sets_hash_value (((state_t) state)->reservs);
  else
    {
      hash_value = 0;
      for (alt_state = ((state_t) state)->component_states;
           alt_state != NULL;
           alt_state = alt_state->next_sorted_alt_state)
        hash_value = (((hash_value >> (sizeof (unsigned) - 1) * CHAR_BIT)
                       | (hash_value << CHAR_BIT))
                      + alt_state->state->unique_num);
    }
  hash_value = (((hash_value >> (sizeof (unsigned) - 1) * CHAR_BIT)
                 | (hash_value << CHAR_BIT))
                + ((state_t) state)->automaton->automaton_order_num);
  return hash_value;
}

/* Return nonzero value if the states are the same.  */
static int
state_eq_p (const void *state_1, const void *state_2)
{
  alt_state_t alt_state_1;
  alt_state_t alt_state_2;

  if (((state_t) state_1)->automaton != ((state_t) state_2)->automaton)
    return 0;
  else if (((state_t) state_1)->component_states == NULL
           && ((state_t) state_2)->component_states == NULL)
    return reserv_sets_eq (((state_t) state_1)->reservs,
			   ((state_t) state_2)->reservs);
  else if (((state_t) state_1)->component_states != NULL
           && ((state_t) state_2)->component_states != NULL)
    {
      for (alt_state_1 = ((state_t) state_1)->component_states,
           alt_state_2 = ((state_t) state_2)->component_states;
           alt_state_1 != NULL && alt_state_2 != NULL;
           alt_state_1 = alt_state_1->next_sorted_alt_state,
	   alt_state_2 = alt_state_2->next_sorted_alt_state)
        /* All state in the list must be already in the hash table.
           Also the lists must be sorted.  */
        if (alt_state_1->state != alt_state_2->state)
          return 0;
      return alt_state_1 == alt_state_2;
    }
  else
    return 0;
}

/* Insert STATE into the state table.  */
static state_t
insert_state (state_t state)
{
  void **entry_ptr;

  entry_ptr = htab_find_slot (state_table, (void *) state, 1);
  if (*entry_ptr == NULL)
    *entry_ptr = (void *) state;
  return (state_t) *entry_ptr;
}

/* Add reservation of unit with UNIT_NUM on cycle CYCLE_NUM to
   deterministic STATE.  */
static void
set_state_reserv (state_t state, int cycle_num, int unit_num)
{
  set_unit_reserv (state->reservs, cycle_num, unit_num);
}

/* Return nonzero value if the deterministic states contains a
   reservation of the same cpu unit on the same cpu cycle.  */
static int
intersected_state_reservs_p (state_t state1, state_t state2)
{
  if (state1->automaton != state2->automaton)
    abort ();
  return reserv_sets_are_intersected (state1->reservs, state2->reservs);
}

/* Return deterministic state (inserted into the table) which
   representing the automaton state which is union of reservations of
   the deterministic states masked by RESERVS.  */
static state_t
states_union (state_t state1, state_t state2, reserv_sets_t reservs)
{
  state_t result;
  state_t state_in_table;

  if (state1->automaton != state2->automaton)
    abort ();
  result = get_free_state (1, state1->automaton);
  reserv_sets_or (result->reservs, state1->reservs, state2->reservs);
  reserv_sets_and (result->reservs, result->reservs, reservs);
  state_in_table = insert_state (result);
  if (result != state_in_table)
    {
      free_state (result);
      result = state_in_table;
    }
  return result;
}

/* Return deterministic state (inserted into the table) which
   represent the automaton state is obtained from deterministic STATE
   by advancing cpu cycle and masking by RESERVS.  */
static state_t
state_shift (state_t state, reserv_sets_t reservs)
{
  state_t result;
  state_t state_in_table;

  result = get_free_state (1, state->automaton);
  reserv_sets_shift (result->reservs, state->reservs);
  reserv_sets_and (result->reservs, result->reservs, reservs);
  state_in_table = insert_state (result);
  if (result != state_in_table)
    {
      free_state (result);
      result = state_in_table;
    }
  return result;
}

/* Initialization of the abstract data.  */
static void
initiate_states (void)
{
  decl_t decl;
  int i;

  VLA_PTR_CREATE (units_container, description->units_num, "units_container");
  units_array
    = (description->decls_num && description->units_num
       ? VLA_PTR_BEGIN (units_container) : NULL);
  for (i = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_unit)
	units_array [DECL_UNIT (decl)->unit_num] = DECL_UNIT (decl);
    }
  max_cycles_num = description->max_insn_reserv_cycles;
  els_in_cycle_reserv
    = ((description->units_num + sizeof (set_el_t) * CHAR_BIT - 1)
       / (sizeof (set_el_t) * CHAR_BIT));
  els_in_reservs = els_in_cycle_reserv * max_cycles_num;
  curr_unique_state_num = 0;
  initiate_alt_states ();
  VLA_PTR_CREATE (free_states, 1500, "free states");
  state_table = htab_create (1500, state_hash, state_eq_p, (htab_del) 0);
  temp_reserv = alloc_empty_reserv_sets ();
}

/* Finishing work with the abstract data.  */
static void
finish_states (void)
{
  VLA_PTR_DELETE (units_container);
  htab_delete (state_table);
  VLA_PTR_DELETE (free_states);
  finish_alt_states ();
}



/* Abstract data `arcs'.  */

/* List of free arcs.  */
static arc_t first_free_arc;

#ifndef NDEBUG
/* The following variables is maximal number of allocated nodes
   `arc'.  */
static int allocated_arcs_num = 0;
#endif

/* The function frees node ARC.  */
static void
free_arc (arc_t arc)
{
  arc->next_out_arc = first_free_arc;
  first_free_arc = arc;
}

/* The function removes and frees ARC staring from FROM_STATE.  */
static void
remove_arc (state_t from_state, arc_t arc)
{
  arc_t prev_arc;
  arc_t curr_arc;

  if (arc == NULL)
    abort ();
  for (prev_arc = NULL, curr_arc = from_state->first_out_arc;
       curr_arc != NULL;
       prev_arc = curr_arc, curr_arc = curr_arc->next_out_arc)
    if (curr_arc == arc)
      break;
  if (curr_arc == NULL)
    abort ();
  if (prev_arc == NULL)
    from_state->first_out_arc = arc->next_out_arc;
  else
    prev_arc->next_out_arc = arc->next_out_arc;
  free_arc (arc);
}

/* The functions returns arc with given characteristics (or NULL if
   the arc does not exist).  */
static arc_t
find_arc (state_t from_state, state_t to_state, ainsn_t insn)
{
  arc_t arc;

  for (arc = first_out_arc (from_state); arc != NULL; arc = next_out_arc (arc))
    if (arc->to_state == to_state && arc->insn == insn)
      return arc;
  return NULL;
}

/* The function adds arc from FROM_STATE to TO_STATE marked by AINSN
   and with given STATE_ALTS.  The function returns added arc (or
   already existing arc).  */
static arc_t
add_arc (state_t from_state, state_t to_state, ainsn_t ainsn,
	 int state_alts)
{
  arc_t new_arc;

  new_arc = find_arc (from_state, to_state, ainsn);
  if (new_arc != NULL)
    return new_arc;
  if (first_free_arc == NULL)
    {
#ifndef NDEBUG
      allocated_arcs_num++;
#endif
      new_arc = create_node (sizeof (struct arc));
      new_arc->to_state = NULL;
      new_arc->insn = NULL;
      new_arc->next_out_arc = NULL;
    }
  else
    {
      new_arc = first_free_arc;
      first_free_arc =  first_free_arc->next_out_arc;
    }
  new_arc->to_state = to_state;
  new_arc->insn = ainsn;
  ainsn->arc_exists_p = 1;
  new_arc->next_out_arc = from_state->first_out_arc;
  from_state->first_out_arc = new_arc;
  new_arc->next_arc_marked_by_insn = NULL;
  new_arc->state_alts = state_alts;
  return new_arc;
}

/* The function returns the first arc starting from STATE.  */
static arc_t
first_out_arc (state_t state)
{
  return state->first_out_arc;
}

/* The function returns next out arc after ARC.  */
static arc_t
next_out_arc (arc_t arc)
{
  return arc->next_out_arc;
}

/* Initialization of the abstract data.  */
static void
initiate_arcs (void)
{
  first_free_arc = NULL;
}

/* Finishing work with the abstract data.  */
static void
finish_arcs (void)
{
}



/* Abstract data `automata lists'.  */

/* List of free states.  */
static automata_list_el_t first_free_automata_list_el;

/* The list being formed.  */
static automata_list_el_t current_automata_list;

/* Hash table of automata lists.  */
static htab_t automata_list_table;

/* The following function returns free automata list el.  It may be
   new allocated node or node freed earlier.  */
static automata_list_el_t
get_free_automata_list_el (void)
{
  automata_list_el_t result;

  if (first_free_automata_list_el != NULL)
    {
      result = first_free_automata_list_el;
      first_free_automata_list_el
	= first_free_automata_list_el->next_automata_list_el;
    }
  else
    result = create_node (sizeof (struct automata_list_el));
  result->automaton = NULL;
  result->next_automata_list_el = NULL;
  return result;
}

/* The function frees node AUTOMATA_LIST_EL.  */
static void
free_automata_list_el (automata_list_el_t automata_list_el)
{
  if (automata_list_el == NULL)
    return;
  automata_list_el->next_automata_list_el = first_free_automata_list_el;
  first_free_automata_list_el = automata_list_el;
}

/* The function frees list AUTOMATA_LIST.  */
static void
free_automata_list (automata_list_el_t automata_list)
{
  automata_list_el_t curr_automata_list_el;
  automata_list_el_t next_automata_list_el;

  for (curr_automata_list_el = automata_list;
       curr_automata_list_el != NULL;
       curr_automata_list_el = next_automata_list_el)
    {
      next_automata_list_el = curr_automata_list_el->next_automata_list_el;
      free_automata_list_el (curr_automata_list_el);
    }
}

/* Hash value of AUTOMATA_LIST.  */
static hashval_t
automata_list_hash (const void *automata_list)
{
  unsigned int hash_value;
  automata_list_el_t curr_automata_list_el;

  hash_value = 0;
  for (curr_automata_list_el = (automata_list_el_t) automata_list;
       curr_automata_list_el != NULL;
       curr_automata_list_el = curr_automata_list_el->next_automata_list_el)
    hash_value = (((hash_value >> (sizeof (unsigned) - 1) * CHAR_BIT)
		   | (hash_value << CHAR_BIT))
		  + curr_automata_list_el->automaton->automaton_order_num);
  return hash_value;
}

/* Return nonzero value if the automata_lists are the same.  */
static int
automata_list_eq_p (const void *automata_list_1, const void *automata_list_2)
{
  automata_list_el_t automata_list_el_1;
  automata_list_el_t automata_list_el_2;

  for (automata_list_el_1 = (automata_list_el_t) automata_list_1,
	 automata_list_el_2 = (automata_list_el_t) automata_list_2;
       automata_list_el_1 != NULL && automata_list_el_2 != NULL;
       automata_list_el_1 = automata_list_el_1->next_automata_list_el,
	 automata_list_el_2 = automata_list_el_2->next_automata_list_el)
    if (automata_list_el_1->automaton != automata_list_el_2->automaton)
      return 0;
  return automata_list_el_1 == automata_list_el_2;
}

/* Initialization of the abstract data.  */
static void
initiate_automata_lists (void)
{
  first_free_automata_list_el = NULL;
  automata_list_table = htab_create (1500, automata_list_hash,
				     automata_list_eq_p, (htab_del) 0);
}

/* The following function starts new automata list and makes it the
   current one.  */
static void
automata_list_start (void)
{
  current_automata_list = NULL;
}

/* The following function adds AUTOMATON to the current list.  */
static void
automata_list_add (automaton_t automaton)
{
  automata_list_el_t el;

  el = get_free_automata_list_el ();
  el->automaton = automaton;
  el->next_automata_list_el = current_automata_list;
  current_automata_list = el;
}

/* The following function finishes forming the current list, inserts
   it into the table and returns it.  */
static automata_list_el_t
automata_list_finish (void)
{
  void **entry_ptr;

  if (current_automata_list == NULL)
    return NULL;
  entry_ptr = htab_find_slot (automata_list_table,
			      (void *) current_automata_list, 1);
  if (*entry_ptr == NULL)
    *entry_ptr = (void *) current_automata_list;
  else
    free_automata_list (current_automata_list);
  current_automata_list = NULL;
  return (automata_list_el_t) *entry_ptr;
}

/* Finishing work with the abstract data.  */
static void
finish_automata_lists (void)
{
  htab_delete (automata_list_table);
}



/* The page contains abstract data for work with exclusion sets (see
   exclusion_set in file rtl.def).  */

/* The following variable refers to an exclusion set returned by
   get_excl_set.  This is bit string of length equal to cpu units
   number.  If exclusion set for given unit contains 1 for a unit,
   then simultaneous reservation of the units is prohibited.  */
static reserv_sets_t excl_set;

/* The array contains exclusion sets for each unit.  */
static reserv_sets_t *unit_excl_set_table;

/* The following function forms the array containing exclusion sets
   for each unit.  */
static void
initiate_excl_sets (void)
{
  decl_t decl;
  reserv_sets_t unit_excl_set;
  unit_set_el_t el;
  int i;

  obstack_blank (&irp, els_in_cycle_reserv * sizeof (set_el_t));
  excl_set = (reserv_sets_t) obstack_base (&irp);
  obstack_finish (&irp);
  obstack_blank (&irp, description->units_num * sizeof (reserv_sets_t));
  unit_excl_set_table = (reserv_sets_t *) obstack_base (&irp);
  obstack_finish (&irp);
  /* Evaluate unit exclusion sets.  */
  for (i = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_unit)
	{
	  obstack_blank (&irp, els_in_cycle_reserv * sizeof (set_el_t));
	  unit_excl_set = (reserv_sets_t) obstack_base (&irp);
	  obstack_finish (&irp);
	  memset (unit_excl_set, 0, els_in_cycle_reserv * sizeof (set_el_t));
	  for (el = DECL_UNIT (decl)->excl_list;
	       el != NULL;
	       el = el->next_unit_set_el)
	    {
	      SET_BIT (unit_excl_set, el->unit_decl->unit_num);
	      el->unit_decl->in_set_p = TRUE;
	    }
          unit_excl_set_table [DECL_UNIT (decl)->unit_num] = unit_excl_set;
        }
    }
}

/* The function sets up and return EXCL_SET which is union of
   exclusion sets for each unit in IN_SET.  */
static reserv_sets_t
get_excl_set (reserv_sets_t in_set)
{
  int excl_char_num;
  int chars_num;
  int i;
  int start_unit_num;
  int unit_num;

  chars_num = els_in_cycle_reserv * sizeof (set_el_t);
  memset (excl_set, 0, chars_num);
  for (excl_char_num = 0; excl_char_num < chars_num; excl_char_num++)
    if (((unsigned char *) in_set) [excl_char_num])
      for (i = CHAR_BIT - 1; i >= 0; i--)
	if ((((unsigned char *) in_set) [excl_char_num] >> i) & 1)
	  {
	    start_unit_num = excl_char_num * CHAR_BIT + i;
	    if (start_unit_num >= description->units_num)
	      return excl_set;
	    for (unit_num = 0; unit_num < els_in_cycle_reserv; unit_num++)
	      {
		excl_set [unit_num]
		  |= unit_excl_set_table [start_unit_num] [unit_num];
	      }
	  }
  return excl_set;
}



/* The page contains abstract data for work with presence/absence
   pattern sets (see presence_set/absence_set in file rtl.def).  */

/* The following arrays contain correspondingly presence, final
   presence, absence, and final absence patterns for each unit.  */
static pattern_reserv_t *unit_presence_set_table;
static pattern_reserv_t *unit_final_presence_set_table;
static pattern_reserv_t *unit_absence_set_table;
static pattern_reserv_t *unit_final_absence_set_table;

/* The following function forms list of reservation sets for given
   PATTERN_LIST.  */
static pattern_reserv_t
form_reserv_sets_list (pattern_set_el_t pattern_list)
{
  pattern_set_el_t el;
  pattern_reserv_t first, curr, prev;
  int i;

  prev = first = NULL;
  for (el = pattern_list; el != NULL; el = el->next_pattern_set_el)
    {
      curr = create_node (sizeof (struct pattern_reserv));
      curr->reserv = alloc_empty_reserv_sets ();
      curr->next_pattern_reserv = NULL;
      for (i = 0; i < el->units_num; i++)
	{
	  SET_BIT (curr->reserv, el->unit_decls [i]->unit_num);
	  el->unit_decls [i]->in_set_p = TRUE;
	}
      if (prev != NULL)
	prev->next_pattern_reserv = curr;
      else
	first = curr;
      prev = curr;
    }
  return first;
}

 /* The following function forms the array containing presence and
   absence pattern sets for each unit.  */
static void
initiate_presence_absence_pattern_sets (void)
{
  decl_t decl;
  int i;

  obstack_blank (&irp, description->units_num * sizeof (pattern_reserv_t));
  unit_presence_set_table = (pattern_reserv_t *) obstack_base (&irp);
  obstack_finish (&irp);
  obstack_blank (&irp, description->units_num * sizeof (pattern_reserv_t));
  unit_final_presence_set_table = (pattern_reserv_t *) obstack_base (&irp);
  obstack_finish (&irp);
  obstack_blank (&irp, description->units_num * sizeof (pattern_reserv_t));
  unit_absence_set_table = (pattern_reserv_t *) obstack_base (&irp);
  obstack_finish (&irp);
  obstack_blank (&irp, description->units_num * sizeof (pattern_reserv_t));
  unit_final_absence_set_table = (pattern_reserv_t *) obstack_base (&irp);
  obstack_finish (&irp);
  /* Evaluate unit presence/absence sets.  */
  for (i = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_unit)
	{
          unit_presence_set_table [DECL_UNIT (decl)->unit_num]
	    = form_reserv_sets_list (DECL_UNIT (decl)->presence_list);
          unit_final_presence_set_table [DECL_UNIT (decl)->unit_num]
	    = form_reserv_sets_list (DECL_UNIT (decl)->final_presence_list);
          unit_absence_set_table [DECL_UNIT (decl)->unit_num]
	    = form_reserv_sets_list (DECL_UNIT (decl)->absence_list);
          unit_final_absence_set_table [DECL_UNIT (decl)->unit_num]
	    = form_reserv_sets_list (DECL_UNIT (decl)->final_absence_list);
        }
    }
}

/* The function checks that CHECKED_SET satisfies all presence pattern
   sets for units in ORIGIONAL_SET.  The function returns TRUE if it
   is ok.  */
static int
check_presence_pattern_sets (reserv_sets_t checked_set,
			     reserv_sets_t origional_set,
			     int final_p)
{
  int char_num;
  int chars_num;
  int i;
  int start_unit_num;
  int unit_num;
  int presence_p;
  pattern_reserv_t pat_reserv;

  chars_num = els_in_cycle_reserv * sizeof (set_el_t);
  for (char_num = 0; char_num < chars_num; char_num++)
    if (((unsigned char *) origional_set) [char_num])
      for (i = CHAR_BIT - 1; i >= 0; i--)
	if ((((unsigned char *) origional_set) [char_num] >> i) & 1)
	  {
	    start_unit_num = char_num * CHAR_BIT + i;
	    if (start_unit_num >= description->units_num)
	      break;
	    if ((final_p
		 && unit_final_presence_set_table [start_unit_num] == NULL)
		|| (!final_p
		    && unit_presence_set_table [start_unit_num] == NULL))
	      continue;
	    presence_p = FALSE;
	    for (pat_reserv = (final_p
			       ? unit_final_presence_set_table [start_unit_num]
			       : unit_presence_set_table [start_unit_num]);
		 pat_reserv != NULL;
		 pat_reserv = pat_reserv->next_pattern_reserv)
	      {
		for (unit_num = 0; unit_num < els_in_cycle_reserv; unit_num++)
		  if ((checked_set [unit_num] & pat_reserv->reserv [unit_num])
		      != pat_reserv->reserv [unit_num])
		    break;
		presence_p = presence_p || unit_num >= els_in_cycle_reserv;
	      }
	    if (!presence_p)
	      return FALSE;
	  }
  return TRUE;
}

/* The function checks that CHECKED_SET satisfies all absence pattern
   sets for units in ORIGIONAL_SET.  The function returns TRUE if it
   is ok.  */
static int
check_absence_pattern_sets (reserv_sets_t checked_set,
			    reserv_sets_t origional_set,
			    int final_p)
{
  int char_num;
  int chars_num;
  int i;
  int start_unit_num;
  int unit_num;
  pattern_reserv_t pat_reserv;

  chars_num = els_in_cycle_reserv * sizeof (set_el_t);
  for (char_num = 0; char_num < chars_num; char_num++)
    if (((unsigned char *) origional_set) [char_num])
      for (i = CHAR_BIT - 1; i >= 0; i--)
	if ((((unsigned char *) origional_set) [char_num] >> i) & 1)
	  {
	    start_unit_num = char_num * CHAR_BIT + i;
	    if (start_unit_num >= description->units_num)
	      break;
	    for (pat_reserv = (final_p
			       ? unit_final_absence_set_table [start_unit_num]
			       : unit_absence_set_table [start_unit_num]);
		 pat_reserv != NULL;
		 pat_reserv = pat_reserv->next_pattern_reserv)
	      {
		for (unit_num = 0; unit_num < els_in_cycle_reserv; unit_num++)
		  if ((checked_set [unit_num] & pat_reserv->reserv [unit_num])
		      != pat_reserv->reserv [unit_num]
		      && pat_reserv->reserv [unit_num])
		    break;
		if (unit_num >= els_in_cycle_reserv)
		  return FALSE;
	      }
	  }
  return TRUE;
}



/* This page contains code for transformation of original reservations
   described in .md file.  The main goal of transformations is
   simplifying reservation and lifting up all `|' on the top of IR
   reservation representation.  */


/* The following function makes copy of IR representation of
   reservation.  The function also substitutes all reservations
   defined by define_reservation by corresponding value during making
   the copy.  */
static regexp_t
copy_insn_regexp (regexp_t regexp)
{
  regexp_t  result;
  int i;

  if (regexp->mode == rm_reserv)
    result = copy_insn_regexp (REGEXP_RESERV (regexp)->reserv_decl->regexp);
  else if (regexp->mode == rm_unit)
    result = copy_node (regexp, sizeof (struct regexp));
  else if (regexp->mode == rm_repeat)
    {
      result = copy_node (regexp, sizeof (struct regexp));
      REGEXP_REPEAT (result)->regexp
        = copy_insn_regexp (REGEXP_REPEAT (regexp)->regexp);
    }
  else if (regexp->mode == rm_sequence)
    {
      result = copy_node (regexp,
                          sizeof (struct regexp) + sizeof (regexp_t)
			  * (REGEXP_SEQUENCE (regexp)->regexps_num - 1));
      for (i = 0; i <REGEXP_SEQUENCE (regexp)->regexps_num; i++)
	REGEXP_SEQUENCE (result)->regexps [i]
	  = copy_insn_regexp (REGEXP_SEQUENCE (regexp)->regexps [i]);
    }
  else if (regexp->mode == rm_allof)
    {
      result = copy_node (regexp,
                          sizeof (struct regexp) + sizeof (regexp_t)
			  * (REGEXP_ALLOF (regexp)->regexps_num - 1));
      for (i = 0; i < REGEXP_ALLOF (regexp)->regexps_num; i++)
	REGEXP_ALLOF (result)->regexps [i]
	  = copy_insn_regexp (REGEXP_ALLOF (regexp)->regexps [i]);
    }
  else if (regexp->mode == rm_oneof)
    {
      result = copy_node (regexp,
                          sizeof (struct regexp) + sizeof (regexp_t)
			  * (REGEXP_ONEOF (regexp)->regexps_num - 1));
      for (i = 0; i < REGEXP_ONEOF (regexp)->regexps_num; i++)
	REGEXP_ONEOF (result)->regexps [i]
	  = copy_insn_regexp (REGEXP_ONEOF (regexp)->regexps [i]);
    }
  else
    {
      if (regexp->mode != rm_nothing)
	abort ();
      result = copy_node (regexp, sizeof (struct regexp));
    }
  return result;
}

/* The following variable is set up 1 if a transformation has been
   applied.  */
static int regexp_transformed_p;

/* The function makes transformation
   A*N -> A, A, ...  */
static regexp_t
transform_1 (regexp_t regexp)
{
  int i;
  int repeat_num;
  regexp_t operand;
  pos_t pos;

  if (regexp->mode == rm_repeat)
    {
      repeat_num = REGEXP_REPEAT (regexp)->repeat_num;
      if (repeat_num <= 1)
	abort ();
      operand = REGEXP_REPEAT (regexp)->regexp;
      pos = regexp->mode;
      regexp = create_node (sizeof (struct regexp) + sizeof (regexp_t)
			    * (repeat_num - 1));
      regexp->mode = rm_sequence;
      regexp->pos = pos;
      REGEXP_SEQUENCE (regexp)->regexps_num = repeat_num;
      for (i = 0; i < repeat_num; i++)
	REGEXP_SEQUENCE (regexp)->regexps [i] = copy_insn_regexp (operand);
      regexp_transformed_p = 1;
    }
  return regexp;
}

/* The function makes transformations
   ...,(A,B,...),C,... -> ...,A,B,...,C,...
   ...+(A+B+...)+C+... -> ...+A+B+...+C+...
   ...|(A|B|...)|C|... -> ...|A|B|...|C|...  */
static regexp_t
transform_2 (regexp_t regexp)
{
  if (regexp->mode == rm_sequence)
    {
      regexp_t sequence = NULL;
      regexp_t result;
      int sequence_index = 0;
      int i, j;

      for (i = 0; i < REGEXP_SEQUENCE (regexp)->regexps_num; i++)
	if (REGEXP_SEQUENCE (regexp)->regexps [i]->mode == rm_sequence)
	  {
	    sequence_index = i;
	    sequence = REGEXP_SEQUENCE (regexp)->regexps [i];
	    break;
	  }
      if (i < REGEXP_SEQUENCE (regexp)->regexps_num)
	{
	  if ( REGEXP_SEQUENCE (sequence)->regexps_num <= 1
	      || REGEXP_SEQUENCE (regexp)->regexps_num <= 1)
	    abort ();
	  result = create_node (sizeof (struct regexp)
                                + sizeof (regexp_t)
				* (REGEXP_SEQUENCE (regexp)->regexps_num
                                   + REGEXP_SEQUENCE (sequence)->regexps_num
                                   - 2));
	  result->mode = rm_sequence;
	  result->pos = regexp->pos;
	  REGEXP_SEQUENCE (result)->regexps_num
            = (REGEXP_SEQUENCE (regexp)->regexps_num
               + REGEXP_SEQUENCE (sequence)->regexps_num - 1);
	  for (i = 0; i < REGEXP_SEQUENCE (regexp)->regexps_num; i++)
            if (i < sequence_index)
              REGEXP_SEQUENCE (result)->regexps [i]
                = copy_insn_regexp (REGEXP_SEQUENCE (regexp)->regexps [i]);
            else if (i > sequence_index)
              REGEXP_SEQUENCE (result)->regexps
                [i + REGEXP_SEQUENCE (sequence)->regexps_num - 1]
                = copy_insn_regexp (REGEXP_SEQUENCE (regexp)->regexps [i]);
            else
              for (j = 0; j < REGEXP_SEQUENCE (sequence)->regexps_num; j++)
                REGEXP_SEQUENCE (result)->regexps [i + j]
                  = copy_insn_regexp (REGEXP_SEQUENCE (sequence)->regexps [j]);
	  regexp_transformed_p = 1;
	  regexp = result;
	}
    }
  else if (regexp->mode == rm_allof)
    {
      regexp_t allof = NULL;
      regexp_t result;
      int allof_index = 0;
      int i, j;

      for (i = 0; i < REGEXP_ALLOF (regexp)->regexps_num; i++)
	if (REGEXP_ALLOF (regexp)->regexps [i]->mode == rm_allof)
	  {
	    allof_index = i;
	    allof = REGEXP_ALLOF (regexp)->regexps [i];
	    break;
	  }
      if (i < REGEXP_ALLOF (regexp)->regexps_num)
	{
	  if (REGEXP_ALLOF (allof)->regexps_num <= 1
	      || REGEXP_ALLOF (regexp)->regexps_num <= 1)
	    abort ();
	  result = create_node (sizeof (struct regexp)
                                + sizeof (regexp_t)
				* (REGEXP_ALLOF (regexp)->regexps_num
                                   + REGEXP_ALLOF (allof)->regexps_num - 2));
	  result->mode = rm_allof;
	  result->pos = regexp->pos;
	  REGEXP_ALLOF (result)->regexps_num
            = (REGEXP_ALLOF (regexp)->regexps_num
               + REGEXP_ALLOF (allof)->regexps_num - 1);
	  for (i = 0; i < REGEXP_ALLOF (regexp)->regexps_num; i++)
            if (i < allof_index)
              REGEXP_ALLOF (result)->regexps [i]
                = copy_insn_regexp (REGEXP_ALLOF (regexp)->regexps [i]);
            else if (i > allof_index)
              REGEXP_ALLOF (result)->regexps
                [i + REGEXP_ALLOF (allof)->regexps_num - 1]
                = copy_insn_regexp (REGEXP_ALLOF (regexp)->regexps [i]);
            else
              for (j = 0; j < REGEXP_ALLOF (allof)->regexps_num; j++)
                REGEXP_ALLOF (result)->regexps [i + j]
                  = copy_insn_regexp (REGEXP_ALLOF (allof)->regexps [j]);
	  regexp_transformed_p = 1;
	  regexp = result;
	}
    }
  else if (regexp->mode == rm_oneof)
    {
      regexp_t oneof = NULL;
      regexp_t result;
      int oneof_index = 0;
      int i, j;

      for (i = 0; i < REGEXP_ONEOF (regexp)->regexps_num; i++)
	if (REGEXP_ONEOF (regexp)->regexps [i]->mode == rm_oneof)
	  {
	    oneof_index = i;
	    oneof = REGEXP_ONEOF (regexp)->regexps [i];
	    break;
	  }
      if (i < REGEXP_ONEOF (regexp)->regexps_num)
	{
	  if (REGEXP_ONEOF (oneof)->regexps_num <= 1
	      || REGEXP_ONEOF (regexp)->regexps_num <= 1)
	    abort ();
	  result = create_node (sizeof (struct regexp)
				+ sizeof (regexp_t)
				* (REGEXP_ONEOF (regexp)->regexps_num
                                   + REGEXP_ONEOF (oneof)->regexps_num - 2));
	  result->mode = rm_oneof;
	  result->pos = regexp->pos;
	  REGEXP_ONEOF (result)->regexps_num
	    = (REGEXP_ONEOF (regexp)->regexps_num
               + REGEXP_ONEOF (oneof)->regexps_num - 1);
	  for (i = 0; i < REGEXP_ONEOF (regexp)->regexps_num; i++)
            if (i < oneof_index)
              REGEXP_ONEOF (result)->regexps [i]
                = copy_insn_regexp (REGEXP_ONEOF (regexp)->regexps [i]);
            else if (i > oneof_index)
              REGEXP_ONEOF (result)->regexps
                [i + REGEXP_ONEOF (oneof)->regexps_num - 1]
                = copy_insn_regexp (REGEXP_ONEOF (regexp)->regexps [i]);
            else
              for (j = 0; j < REGEXP_ONEOF (oneof)->regexps_num; j++)
                REGEXP_ONEOF (result)->regexps [i + j]
                  = copy_insn_regexp (REGEXP_ONEOF (oneof)->regexps [j]);
	  regexp_transformed_p = 1;
	  regexp = result;
	}
    }
  return regexp;
}

/* The function makes transformations
   ...,A|B|...,C,... -> (...,A,C,...)|(...,B,C,...)|...
   ...+(A|B|...)+C+... -> (...+A+C+...)|(...+B+C+...)|...
   ...+(A,B,...)+C+... -> (...+A+C+...),B,...
   ...+(A,B,...)+(C,D,...) -> (A+C),(B+D),...  */
static regexp_t
transform_3 (regexp_t regexp)
{
  if (regexp->mode == rm_sequence)
    {
      regexp_t oneof = NULL;
      int oneof_index = 0;
      regexp_t result;
      regexp_t sequence;
      int i, j;

      for (i = 0; i <REGEXP_SEQUENCE (regexp)->regexps_num; i++)
	if (REGEXP_SEQUENCE (regexp)->regexps [i]->mode == rm_oneof)
	  {
	    oneof_index = i;
	    oneof = REGEXP_SEQUENCE (regexp)->regexps [i];
	    break;
	  }
      if (i < REGEXP_SEQUENCE (regexp)->regexps_num)
	{
	  if (REGEXP_ONEOF (oneof)->regexps_num <= 1
	      || REGEXP_SEQUENCE (regexp)->regexps_num <= 1)
	    abort ();
	  result = create_node (sizeof (struct regexp)
				+ sizeof (regexp_t)
				* (REGEXP_ONEOF (oneof)->regexps_num - 1));
	  result->mode = rm_oneof;
	  result->pos = regexp->pos;
	  REGEXP_ONEOF (result)->regexps_num
	    = REGEXP_ONEOF (oneof)->regexps_num;
	  for (i = 0; i < REGEXP_ONEOF (result)->regexps_num; i++)
	    {
	      sequence
                = create_node (sizeof (struct regexp)
                               + sizeof (regexp_t)
                               * (REGEXP_SEQUENCE (regexp)->regexps_num - 1));
	      sequence->mode = rm_sequence;
	      sequence->pos = regexp->pos;
	      REGEXP_SEQUENCE (sequence)->regexps_num
                = REGEXP_SEQUENCE (regexp)->regexps_num;
              REGEXP_ONEOF (result)->regexps [i] = sequence;
	      for (j = 0; j < REGEXP_SEQUENCE (sequence)->regexps_num; j++)
		if (j != oneof_index)
		  REGEXP_SEQUENCE (sequence)->regexps [j]
		    = copy_insn_regexp (REGEXP_SEQUENCE (regexp)->regexps [j]);
		else
		  REGEXP_SEQUENCE (sequence)->regexps [j]
		    = copy_insn_regexp (REGEXP_ONEOF (oneof)->regexps [i]);
	    }
	  regexp_transformed_p = 1;
	  regexp = result;
	}
    }
  else if (regexp->mode == rm_allof)
    {
      regexp_t oneof = NULL;
      regexp_t seq;
      int oneof_index = 0;
      int max_seq_length, allof_length;
      regexp_t result;
      regexp_t allof = NULL;
      regexp_t allof_op = NULL;
      int i, j;

      for (i = 0; i < REGEXP_ALLOF (regexp)->regexps_num; i++)
	if (REGEXP_ALLOF (regexp)->regexps [i]->mode == rm_oneof)
	  {
	    oneof_index = i;
	    oneof = REGEXP_ALLOF (regexp)->regexps [i];
	    break;
	  }
      if (i < REGEXP_ALLOF (regexp)->regexps_num)
	{
	  if (REGEXP_ONEOF (oneof)->regexps_num <= 1
	      || REGEXP_ALLOF (regexp)->regexps_num <= 1)
	    abort ();
	  result = create_node (sizeof (struct regexp)
				+ sizeof (regexp_t)
				* (REGEXP_ONEOF (oneof)->regexps_num - 1));
	  result->mode = rm_oneof;
	  result->pos = regexp->pos;
	  REGEXP_ONEOF (result)->regexps_num
	    = REGEXP_ONEOF (oneof)->regexps_num;
	  for (i = 0; i < REGEXP_ONEOF (result)->regexps_num; i++)
	    {
	      allof
		= create_node (sizeof (struct regexp)
                               + sizeof (regexp_t)
			       * (REGEXP_ALLOF (regexp)->regexps_num - 1));
	      allof->mode = rm_allof;
	      allof->pos = regexp->pos;
	      REGEXP_ALLOF (allof)->regexps_num
                = REGEXP_ALLOF (regexp)->regexps_num;
              REGEXP_ONEOF (result)->regexps [i] = allof;
	      for (j = 0; j < REGEXP_ALLOF (allof)->regexps_num; j++)
		if (j != oneof_index)
		  REGEXP_ALLOF (allof)->regexps [j]
		    = copy_insn_regexp (REGEXP_ALLOF (regexp)->regexps [j]);
		else
		  REGEXP_ALLOF (allof)->regexps [j]
		    = copy_insn_regexp (REGEXP_ONEOF (oneof)->regexps [i]);
	    }
	  regexp_transformed_p = 1;
	  regexp = result;
	}
      max_seq_length = 0;
      if (regexp->mode == rm_allof)
	for (i = 0; i < REGEXP_ALLOF (regexp)->regexps_num; i++)
	  {
	    if (REGEXP_ALLOF (regexp)->regexps [i]->mode == rm_sequence)
	      {
		seq = REGEXP_ALLOF (regexp)->regexps [i];
		if (max_seq_length < REGEXP_SEQUENCE (seq)->regexps_num)
		  max_seq_length = REGEXP_SEQUENCE (seq)->regexps_num;
	      }
	    else if (REGEXP_ALLOF (regexp)->regexps [i]->mode != rm_unit
		     && REGEXP_ALLOF (regexp)->regexps [i]->mode != rm_nothing)
	      {
		max_seq_length = 0;
		break;
	      }
	  }
      if (max_seq_length != 0)
	{
	  if (max_seq_length == 1 || REGEXP_ALLOF (regexp)->regexps_num <= 1)
	    abort ();
	  result = create_node (sizeof (struct regexp)
				+ sizeof (regexp_t) * (max_seq_length - 1));
	  result->mode = rm_sequence;
	  result->pos = regexp->pos;
	  REGEXP_SEQUENCE (result)->regexps_num = max_seq_length;
	  for (i = 0; i < max_seq_length; i++)
	    {
	      allof_length = 0;
	      for (j = 0; j < REGEXP_ALLOF (regexp)->regexps_num; j++)
		if (REGEXP_ALLOF (regexp)->regexps [j]->mode == rm_sequence
		    && (i < (REGEXP_SEQUENCE (REGEXP_ALLOF (regexp)
					      ->regexps [j])->regexps_num)))
		  {
		    allof_op
		      = (REGEXP_SEQUENCE (REGEXP_ALLOF (regexp)->regexps [j])
			 ->regexps [i]);
		    allof_length++;
		  }
		else if (i == 0
			 && (REGEXP_ALLOF (regexp)->regexps [j]->mode
			     == rm_unit
			     || (REGEXP_ALLOF (regexp)->regexps [j]->mode
				 == rm_nothing)))
		  {
		    allof_op = REGEXP_ALLOF (regexp)->regexps [j];
		    allof_length++;
		  }
	      if (allof_length == 1)
		REGEXP_SEQUENCE (result)->regexps [i] = allof_op;
	      else
		{
		  allof = create_node (sizeof (struct regexp)
				       + sizeof (regexp_t)
				       * (allof_length - 1));
		  allof->mode = rm_allof;
		  allof->pos = regexp->pos;
		  REGEXP_ALLOF (allof)->regexps_num = allof_length;
		  REGEXP_SEQUENCE (result)->regexps [i] = allof;
		  allof_length = 0;
		  for (j = 0; j < REGEXP_ALLOF (regexp)->regexps_num; j++)
		    if (REGEXP_ALLOF (regexp)->regexps [j]->mode == rm_sequence
			&& (i <
			    (REGEXP_SEQUENCE (REGEXP_ALLOF (regexp)
					      ->regexps [j])->regexps_num)))
		      {
			allof_op = (REGEXP_SEQUENCE (REGEXP_ALLOF (regexp)
						     ->regexps [j])
				    ->regexps [i]);
			REGEXP_ALLOF (allof)->regexps [allof_length]
			  = allof_op;
			allof_length++;
		      }
		    else if (i == 0
			     && (REGEXP_ALLOF (regexp)->regexps [j]->mode
				 == rm_unit
				 || (REGEXP_ALLOF (regexp)->regexps [j]->mode
				     == rm_nothing)))
		      {
			allof_op = REGEXP_ALLOF (regexp)->regexps [j];
			REGEXP_ALLOF (allof)->regexps [allof_length]
			  = allof_op;
			allof_length++;
		      }
		}
	    }
	  regexp_transformed_p = 1;
	  regexp = result;
	}
    }
  return regexp;
}

/* The function traverses IR of reservation and applies transformations
   implemented by FUNC.  */
static regexp_t
regexp_transform_func (regexp_t regexp, regexp_t (*func) (regexp_t regexp))
{
  int i;

  if (regexp->mode == rm_sequence)
    for (i = 0; i < REGEXP_SEQUENCE (regexp)->regexps_num; i++)
      REGEXP_SEQUENCE (regexp)->regexps [i]
	= regexp_transform_func (REGEXP_SEQUENCE (regexp)->regexps [i], func);
  else if (regexp->mode == rm_allof)
    for (i = 0; i < REGEXP_ALLOF (regexp)->regexps_num; i++)
      REGEXP_ALLOF (regexp)->regexps [i]
	= regexp_transform_func (REGEXP_ALLOF (regexp)->regexps [i], func);
  else if (regexp->mode == rm_oneof)
    for (i = 0; i < REGEXP_ONEOF (regexp)->regexps_num; i++)
      REGEXP_ONEOF (regexp)->regexps [i]
	= regexp_transform_func (REGEXP_ONEOF (regexp)->regexps [i], func);
  else if (regexp->mode == rm_repeat)
    REGEXP_REPEAT (regexp)->regexp
      = regexp_transform_func (REGEXP_REPEAT (regexp)->regexp, func);
  else if (regexp->mode != rm_nothing && regexp->mode != rm_unit)
    abort ();
  return (*func) (regexp);
}

/* The function applies all transformations for IR representation of
   reservation REGEXP.  */
static regexp_t
transform_regexp (regexp_t regexp)
{
  regexp = regexp_transform_func (regexp, transform_1);
  do
    {
      regexp_transformed_p = 0;
      regexp = regexp_transform_func (regexp, transform_2);
      regexp = regexp_transform_func (regexp, transform_3);
    }
  while (regexp_transformed_p);
  return regexp;
}

/* The function applies all transformations for reservations of all
   insn declarations.  */
static void
transform_insn_regexps (void)
{
  decl_t decl;
  int i;

  transform_time = create_ticker ();
  add_advance_cycle_insn_decl ();
  if (progress_flag)
    fprintf (stderr, "Reservation transformation...");
  for (i = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_insn_reserv && decl != advance_cycle_insn_decl)
	DECL_INSN_RESERV (decl)->transformed_regexp
	  = transform_regexp (copy_insn_regexp
			      (DECL_INSN_RESERV (decl)->regexp));
    }
  if (progress_flag)
    fprintf (stderr, "done\n");
  ticker_off (&transform_time);
}



/* The following variable value is TRUE if the first annotated message
   about units to automata distribution has been output.  */
static int annotation_message_reported_p;

/* The following structure describes usage of a unit in a reservation.  */
struct unit_usage
{
  unit_decl_t unit_decl;
  /* The following forms a list of units used on the same cycle in the
     same alternative.  */
  struct unit_usage *next;
};

/* Obstack for unit_usage structures.  */
static struct obstack unit_usages;

/* VLA for representation of array of pointers to unit usage
   structures.  There is an element for each combination of
   (alternative number, cycle).  Unit usages on given cycle in
   alternative with given number are referred through element with
   index equals to the cycle * number of all alternatives in the regexp
   + the alternative number.  */
static vla_ptr_t cycle_alt_unit_usages;

/* The following function creates the structure unit_usage for UNIT on
   CYCLE in REGEXP alternative with ALT_NUM.  The structure is made
   accessed through cycle_alt_unit_usages.  */
static void
store_alt_unit_usage (regexp_t regexp, regexp_t unit, int cycle,
		      int alt_num)
{
  size_t i, length, old_length;
  unit_decl_t unit_decl;
  struct unit_usage *unit_usage_ptr;
  int index;

  if (regexp == NULL || regexp->mode != rm_oneof
      || alt_num >= REGEXP_ONEOF (regexp)->regexps_num)
    abort ();
  unit_decl = REGEXP_UNIT (unit)->unit_decl;
  old_length = VLA_PTR_LENGTH (cycle_alt_unit_usages);
  length = (cycle + 1) * REGEXP_ONEOF (regexp)->regexps_num;
  if (old_length < length)
    {
      VLA_PTR_EXPAND (cycle_alt_unit_usages, length - old_length);
      for (i = old_length; i < length; i++)
	VLA_PTR (cycle_alt_unit_usages, i) = NULL;
    }
  obstack_blank (&unit_usages, sizeof (struct unit_usage));
  unit_usage_ptr = (struct unit_usage *) obstack_base (&unit_usages);
  obstack_finish (&unit_usages);
  unit_usage_ptr->unit_decl = unit_decl;
  index = cycle * REGEXP_ONEOF (regexp)->regexps_num + alt_num;
  unit_usage_ptr->next = VLA_PTR (cycle_alt_unit_usages, index);
  VLA_PTR (cycle_alt_unit_usages, index) = unit_usage_ptr;
  unit_decl->last_distribution_check_cycle = -1; /* undefined */
}

/* The function processes given REGEXP to find units with the wrong
   distribution.  */
static void
check_regexp_units_distribution (const char *insn_reserv_name,
				 regexp_t regexp)
{
  int i, j, k, cycle;
  regexp_t seq, allof, unit;
  struct unit_usage *unit_usage_ptr, *other_unit_usage_ptr;

  if (regexp == NULL || regexp->mode != rm_oneof)
    return;
  /* Store all unit usages in the regexp:  */
  obstack_init (&unit_usages);
  VLA_PTR_CREATE (cycle_alt_unit_usages, 100, "unit usages on cycles");
  for (i = REGEXP_ONEOF (regexp)->regexps_num - 1; i >= 0; i--)
    {
      seq = REGEXP_ONEOF (regexp)->regexps [i];
      if (seq->mode == rm_sequence)
	for (j = 0; j < REGEXP_SEQUENCE (seq)->regexps_num; j++)
	  {
	    allof = REGEXP_SEQUENCE (seq)->regexps [j];
	    if (allof->mode == rm_allof)
	      for (k = 0; k < REGEXP_ALLOF (allof)->regexps_num; k++)
		{
		  unit = REGEXP_ALLOF (allof)->regexps [k];
		  if (unit->mode == rm_unit)
		    store_alt_unit_usage (regexp, unit, j, i);
		  else if (unit->mode != rm_nothing)
		    abort ();
		}
	    else if (allof->mode == rm_unit)
	      store_alt_unit_usage (regexp, allof, j, i);
	    else if (allof->mode != rm_nothing)
	      abort ();
	  }
      else if (seq->mode == rm_allof)
	for (k = 0; k < REGEXP_ALLOF (seq)->regexps_num; k++)
	  {
	    unit = REGEXP_ALLOF (seq)->regexps [k];
	    if (unit->mode == rm_unit)
	      store_alt_unit_usage (regexp, unit, 0, i);
	    else if (unit->mode != rm_nothing)
	      abort ();
	  }
      else if (seq->mode == rm_unit)
	store_alt_unit_usage (regexp, seq, 0, i);
      else if (seq->mode != rm_nothing)
	abort ();
    }
  /* Check distribution:  */
  for (i = 0; i < (int) VLA_PTR_LENGTH (cycle_alt_unit_usages); i++)
    {
      cycle = i / REGEXP_ONEOF (regexp)->regexps_num;
      for (unit_usage_ptr = VLA_PTR (cycle_alt_unit_usages, i);
	   unit_usage_ptr != NULL;
	   unit_usage_ptr = unit_usage_ptr->next)
	if (cycle != unit_usage_ptr->unit_decl->last_distribution_check_cycle)
	  {
	    unit_usage_ptr->unit_decl->last_distribution_check_cycle = cycle;
	    for (k = cycle * REGEXP_ONEOF (regexp)->regexps_num;
		 k < (int) VLA_PTR_LENGTH (cycle_alt_unit_usages)
		   && k == cycle * REGEXP_ONEOF (regexp)->regexps_num;
		 k++)
	      {
		for (other_unit_usage_ptr = VLA_PTR (cycle_alt_unit_usages, k);
		     other_unit_usage_ptr != NULL;
		     other_unit_usage_ptr = other_unit_usage_ptr->next)
		  if (unit_usage_ptr->unit_decl->automaton_decl
		      == other_unit_usage_ptr->unit_decl->automaton_decl)
		    break;
		if (other_unit_usage_ptr == NULL
		    && VLA_PTR (cycle_alt_unit_usages, k) != NULL)
		  break;
	      }
	    if (k < (int) VLA_PTR_LENGTH (cycle_alt_unit_usages)
		&& k == cycle * REGEXP_ONEOF (regexp)->regexps_num)
	      {
		if (!annotation_message_reported_p)
		  {
		    fprintf (stderr, "\n");
		    error ("The following units do not satisfy units-automata distribution rule");
		    error (" (A unit of given unit automaton should be on each reserv. altern.)");
		    annotation_message_reported_p = TRUE;
		  }
		error ("Unit %s, reserv. %s, cycle %d",
		       unit_usage_ptr->unit_decl->name, insn_reserv_name,
		       cycle);
	      }
	  }
    }
  VLA_PTR_DELETE (cycle_alt_unit_usages);
  obstack_free (&unit_usages, NULL);
}

/* The function finds units which violates units to automata
   distribution rule.  If the units exist, report about them.  */
static void
check_unit_distributions_to_automata (void)
{
  decl_t decl;
  int i;

  if (progress_flag)
    fprintf (stderr, "Check unit distributions to automata...");
  annotation_message_reported_p = FALSE;
  for (i = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_insn_reserv)
	check_regexp_units_distribution
	  (DECL_INSN_RESERV (decl)->name,
	   DECL_INSN_RESERV (decl)->transformed_regexp);
    }
  if (progress_flag)
    fprintf (stderr, "done\n");
}



/* The page contains code for building alt_states (see comments for
   IR) describing all possible insns reservations of an automaton.  */

/* Current state being formed for which the current alt_state
   refers.  */
static state_t state_being_formed;

/* Current alt_state being formed.  */
static alt_state_t alt_state_being_formed;

/* This recursive function processes `,' and units in reservation
   REGEXP for forming alt_states of AUTOMATON.  It is believed that
   CURR_CYCLE is start cycle of all reservation REGEXP.  */
static int
process_seq_for_forming_states (regexp_t regexp, automaton_t automaton,
				int curr_cycle)
{
  int i;

  if (regexp == NULL)
    return curr_cycle;
  else if (regexp->mode == rm_unit)
    {
      if (REGEXP_UNIT (regexp)->unit_decl->corresponding_automaton_num
          == automaton->automaton_order_num)
        set_state_reserv (state_being_formed, curr_cycle,
                          REGEXP_UNIT (regexp)->unit_decl->unit_num);
      return curr_cycle;
    }
  else if (regexp->mode == rm_sequence)
    {
      for (i = 0; i < REGEXP_SEQUENCE (regexp)->regexps_num; i++)
	curr_cycle
	  = process_seq_for_forming_states
	    (REGEXP_SEQUENCE (regexp)->regexps [i], automaton, curr_cycle) + 1;
      return curr_cycle;
    }
  else if (regexp->mode == rm_allof)
    {
      int finish_cycle = 0;
      int cycle;

      for (i = 0; i < REGEXP_ALLOF (regexp)->regexps_num; i++)
	{
	  cycle = process_seq_for_forming_states (REGEXP_ALLOF (regexp)
						  ->regexps [i],
						  automaton, curr_cycle);
	  if (finish_cycle < cycle)
	    finish_cycle = cycle;
	}
      return finish_cycle;
    }
  else
    {
      if (regexp->mode != rm_nothing)
	abort ();
      return curr_cycle;
    }
}

/* This recursive function finishes forming ALT_STATE of AUTOMATON and
   inserts alt_state into the table.  */
static void
finish_forming_alt_state (alt_state_t alt_state,
			  automaton_t automaton ATTRIBUTE_UNUSED)
{
  state_t state_in_table;
  state_t corresponding_state;

  corresponding_state = alt_state->state;
  state_in_table = insert_state (corresponding_state);
  if (state_in_table != corresponding_state)
    {
      free_state (corresponding_state);
      alt_state->state = state_in_table;
    }
}

/* The following variable value is current automaton insn for whose
   reservation the alt states are created.  */
static ainsn_t curr_ainsn;

/* This recursive function processes `|' in reservation REGEXP for
   forming alt_states of AUTOMATON.  List of the alt states should
   have the same order as in the description.  */
static void
process_alts_for_forming_states (regexp_t regexp, automaton_t automaton,
				 int inside_oneof_p)
{
  int i;

  if (regexp->mode != rm_oneof)
    {
      alt_state_being_formed = get_free_alt_state ();
      state_being_formed = get_free_state (1, automaton);
      alt_state_being_formed->state = state_being_formed;
      /* We inserts in reverse order but we process alternatives also
         in reverse order.  So we have the same order of alternative
         as in the description.  */
      alt_state_being_formed->next_alt_state = curr_ainsn->alt_states;
      curr_ainsn->alt_states = alt_state_being_formed;
      (void) process_seq_for_forming_states (regexp, automaton, 0);
      finish_forming_alt_state (alt_state_being_formed, automaton);
    }
  else
    {
      if (inside_oneof_p)
	abort ();
      /* We processes it in reverse order to get list with the same
	 order as in the description.  See also the previous
	 commentary.  */
      for (i = REGEXP_ONEOF (regexp)->regexps_num - 1; i >= 0; i--)
	process_alts_for_forming_states (REGEXP_ONEOF (regexp)->regexps [i],
					 automaton, 1);
    }
}

/* Create nodes alt_state for all AUTOMATON insns.  */
static void
create_alt_states (automaton_t automaton)
{
  struct insn_reserv_decl *reserv_decl;

  for (curr_ainsn = automaton->ainsn_list;
       curr_ainsn != NULL;
       curr_ainsn = curr_ainsn->next_ainsn)
    {
      reserv_decl = curr_ainsn->insn_reserv_decl;
      if (reserv_decl != DECL_INSN_RESERV (advance_cycle_insn_decl))
        {
          curr_ainsn->alt_states = NULL;
          process_alts_for_forming_states (reserv_decl->transformed_regexp,
					   automaton, 0);
          curr_ainsn->sorted_alt_states
	    = uniq_sort_alt_states (curr_ainsn->alt_states);
        }
    }
}



/* The page contains major code for building DFA(s) for fast pipeline
   hazards recognition.  */

/* The function forms list of ainsns of AUTOMATON with the same
   reservation.  */
static void
form_ainsn_with_same_reservs (automaton_t automaton)
{
  ainsn_t curr_ainsn;
  size_t i;
  vla_ptr_t first_insns;
  vla_ptr_t last_insns;

  VLA_PTR_CREATE (first_insns, 150, "first insns with the same reservs");
  VLA_PTR_CREATE (last_insns, 150, "last insns with the same reservs");
  for (curr_ainsn = automaton->ainsn_list;
       curr_ainsn != NULL;
       curr_ainsn = curr_ainsn->next_ainsn)
    if (curr_ainsn->insn_reserv_decl
	== DECL_INSN_RESERV (advance_cycle_insn_decl))
      {
        curr_ainsn->next_same_reservs_insn = NULL;
        curr_ainsn->first_insn_with_same_reservs = 1;
      }
    else
      {
        for (i = 0; i < VLA_PTR_LENGTH (first_insns); i++)
          if (alt_states_eq
              (curr_ainsn->sorted_alt_states,
               ((ainsn_t) VLA_PTR (first_insns, i))->sorted_alt_states))
            break;
        curr_ainsn->next_same_reservs_insn = NULL;
        if (i < VLA_PTR_LENGTH (first_insns))
          {
            curr_ainsn->first_insn_with_same_reservs = 0;
	    ((ainsn_t) VLA_PTR (last_insns, i))->next_same_reservs_insn
	      = curr_ainsn;
            VLA_PTR (last_insns, i) = curr_ainsn;
          }
        else
          {
            VLA_PTR_ADD (first_insns, curr_ainsn);
            VLA_PTR_ADD (last_insns, curr_ainsn);
            curr_ainsn->first_insn_with_same_reservs = 1;
          }
      }
  VLA_PTR_DELETE (first_insns);
  VLA_PTR_DELETE (last_insns);
}

/* Forming unit reservations which can affect creating the automaton
   states achieved from a given state.  It permits to build smaller
   automata in many cases.  We would have the same automata after
   the minimization without such optimization, but the automaton
   right after the building could be huge.  So in other words, usage
   of reservs_matter means some minimization during building the
   automaton.  */
static reserv_sets_t
form_reservs_matter (automaton_t automaton)
{
  int cycle, unit;
  reserv_sets_t reservs_matter = alloc_empty_reserv_sets();

  for (cycle = 0; cycle < max_cycles_num; cycle++)
    for (unit = 0; unit < description->units_num; unit++)
      if (units_array [unit]->automaton_decl
	  == automaton->corresponding_automaton_decl
	  && (cycle >= units_array [unit]->min_occ_cycle_num
	      /* We can not remove queried unit from reservations.  */
	      || units_array [unit]->query_p
	      /* We can not remove units which are used
		 `exclusion_set', `presence_set',
		 `final_presence_set', `absence_set', and
		 `final_absence_set'.  */
	      || units_array [unit]->in_set_p))
	set_unit_reserv (reservs_matter, cycle, unit);
  return reservs_matter;
}

/* The following function creates all states of nondeterministic (if
   NDFA_FLAG has nonzero value) or deterministic AUTOMATON.  */
static void
make_automaton (automaton_t automaton)
{
  ainsn_t ainsn;
  struct insn_reserv_decl *insn_reserv_decl;
  alt_state_t alt_state;
  state_t state;
  state_t start_state;
  state_t state2;
  ainsn_t advance_cycle_ainsn;
  arc_t added_arc;
  vla_ptr_t state_stack;
  int states_n;
  reserv_sets_t reservs_matter = form_reservs_matter (automaton);

  VLA_PTR_CREATE (state_stack, 150, "state stack");
  /* Create the start state (empty state).  */
  start_state = insert_state (get_free_state (1, automaton));
  automaton->start_state = start_state;
  start_state->it_was_placed_in_stack_for_NDFA_forming = 1;
  VLA_PTR_ADD (state_stack, start_state);
  states_n = 1;
  while (VLA_PTR_LENGTH (state_stack) != 0)
    {
      state = VLA_PTR (state_stack, VLA_PTR_LENGTH (state_stack) - 1);
      VLA_PTR_SHORTEN (state_stack, 1);
      advance_cycle_ainsn = NULL;
      for (ainsn = automaton->ainsn_list;
	   ainsn != NULL;
	   ainsn = ainsn->next_ainsn)
        if (ainsn->first_insn_with_same_reservs)
          {
            insn_reserv_decl = ainsn->insn_reserv_decl;
            if (insn_reserv_decl != DECL_INSN_RESERV (advance_cycle_insn_decl))
              {
		/* We process alt_states in the same order as they are
                   present in the description.  */
		added_arc = NULL;
                for (alt_state = ainsn->alt_states;
                     alt_state != NULL;
                     alt_state = alt_state->next_alt_state)
                  {
                    state2 = alt_state->state;
                    if (!intersected_state_reservs_p (state, state2))
                      {
                        state2 = states_union (state, state2, reservs_matter);
                        if (!state2->it_was_placed_in_stack_for_NDFA_forming)
                          {
                            state2->it_was_placed_in_stack_for_NDFA_forming
			      = 1;
                            VLA_PTR_ADD (state_stack, state2);
			    states_n++;
			    if (progress_flag && states_n % 100 == 0)
			      fprintf (stderr, ".");
                          }
			added_arc = add_arc (state, state2, ainsn, 1);
			if (!ndfa_flag)
			  break;
                      }
                  }
		if (!ndfa_flag && added_arc != NULL)
		  {
		    added_arc->state_alts = 0;
		    for (alt_state = ainsn->alt_states;
			 alt_state != NULL;
			 alt_state = alt_state->next_alt_state)
		      {
			state2 = alt_state->state;
			if (!intersected_state_reservs_p (state, state2))
			  added_arc->state_alts++;
		      }
		  }
              }
            else
              advance_cycle_ainsn = ainsn;
          }
      /* Add transition to advance cycle.  */
      state2 = state_shift (state, reservs_matter);
      if (!state2->it_was_placed_in_stack_for_NDFA_forming)
        {
          state2->it_was_placed_in_stack_for_NDFA_forming = 1;
          VLA_PTR_ADD (state_stack, state2);
	  states_n++;
	  if (progress_flag && states_n % 100 == 0)
	    fprintf (stderr, ".");
        }
      if (advance_cycle_ainsn == NULL)
	abort ();
      add_arc (state, state2, advance_cycle_ainsn, 1);
    }
  VLA_PTR_DELETE (state_stack);
}

/* Foms lists of all arcs of STATE marked by the same ainsn.  */
static void
form_arcs_marked_by_insn (state_t state)
{
  decl_t decl;
  arc_t arc;
  int i;

  for (i = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_insn_reserv)
	DECL_INSN_RESERV (decl)->arcs_marked_by_insn = NULL;
    }
  for (arc = first_out_arc (state); arc != NULL; arc = next_out_arc (arc))
    {
      if (arc->insn == NULL)
	abort ();
      arc->next_arc_marked_by_insn
	= arc->insn->insn_reserv_decl->arcs_marked_by_insn;
      arc->insn->insn_reserv_decl->arcs_marked_by_insn = arc;
    }
}

/* The function creates composed state (see comments for IR) from
   ORIGINAL_STATE and list of arcs ARCS_MARKED_BY_INSN marked by the
   same insn.  If the composed state is not in STATE_STACK yet, it is
   pushed into STATE_STACK.  */
static int
create_composed_state (state_t original_state, arc_t arcs_marked_by_insn,
		       vla_ptr_t *state_stack)
{
  state_t state;
  alt_state_t alt_state, curr_alt_state;
  alt_state_t new_alt_state;
  arc_t curr_arc;
  arc_t next_arc;
  state_t state_in_table;
  state_t temp_state;
  alt_state_t canonical_alt_states_list;
  int alts_number;
  int new_state_p = 0;

  if (arcs_marked_by_insn == NULL)
    return new_state_p;
  if (arcs_marked_by_insn->next_arc_marked_by_insn == NULL)
    state = arcs_marked_by_insn->to_state;
  else
    {
      if (!ndfa_flag)
	abort ();
      /* Create composed state.  */
      state = get_free_state (0, arcs_marked_by_insn->to_state->automaton);
      curr_alt_state = NULL;
      for (curr_arc = arcs_marked_by_insn;
           curr_arc != NULL;
           curr_arc = curr_arc->next_arc_marked_by_insn)
	if (curr_arc->to_state->component_states == NULL)
	  {
	    new_alt_state = get_free_alt_state ();
	    new_alt_state->next_alt_state = curr_alt_state;
	    new_alt_state->state = curr_arc->to_state;
	    curr_alt_state = new_alt_state;
	  }
	else
	  for (alt_state = curr_arc->to_state->component_states;
	       alt_state != NULL;
	       alt_state = alt_state->next_sorted_alt_state)
	    {
	      new_alt_state = get_free_alt_state ();
	      new_alt_state->next_alt_state = curr_alt_state;
	      new_alt_state->state = alt_state->state;
	      if (alt_state->state->component_states != NULL)
		abort ();
	      curr_alt_state = new_alt_state;
	    }
      /* There are not identical sets in the alt state list.  */
      canonical_alt_states_list = uniq_sort_alt_states (curr_alt_state);
      if (canonical_alt_states_list->next_sorted_alt_state == NULL)
        {
          temp_state = state;
          state = canonical_alt_states_list->state;
          free_state (temp_state);
        }
      else
        {
          state->component_states = canonical_alt_states_list;
          state_in_table = insert_state (state);
          if (state_in_table != state)
            {
              if (!state_in_table->it_was_placed_in_stack_for_DFA_forming)
		abort ();
              free_state (state);
              state = state_in_table;
            }
          else
            {
              if (state->it_was_placed_in_stack_for_DFA_forming)
		abort ();
	      new_state_p = 1;
              for (curr_alt_state = state->component_states;
                   curr_alt_state != NULL;
                   curr_alt_state = curr_alt_state->next_sorted_alt_state)
                for (curr_arc = first_out_arc (curr_alt_state->state);
                     curr_arc != NULL;
                     curr_arc = next_out_arc (curr_arc))
		  add_arc (state, curr_arc->to_state, curr_arc->insn, 1);
            }
          arcs_marked_by_insn->to_state = state;
          for (alts_number = 0,
	       curr_arc = arcs_marked_by_insn->next_arc_marked_by_insn;
               curr_arc != NULL;
               curr_arc = next_arc)
            {
              next_arc = curr_arc->next_arc_marked_by_insn;
              remove_arc (original_state, curr_arc);
	      alts_number++;
            }
	  arcs_marked_by_insn->state_alts = alts_number;
        }
    }
  if (!state->it_was_placed_in_stack_for_DFA_forming)
    {
      state->it_was_placed_in_stack_for_DFA_forming = 1;
      VLA_PTR_ADD (*state_stack, state);
    }
  return new_state_p;
}

/* The function transforms nondeterministic AUTOMATON into
   deterministic.  */
static void
NDFA_to_DFA (automaton_t automaton)
{
  state_t start_state;
  state_t state;
  decl_t decl;
  vla_ptr_t state_stack;
  int i;
  int states_n;

  VLA_PTR_CREATE (state_stack, 150, "state stack");
  /* Create the start state (empty state).  */
  start_state = automaton->start_state;
  start_state->it_was_placed_in_stack_for_DFA_forming = 1;
  VLA_PTR_ADD (state_stack, start_state);
  states_n = 1;
  while (VLA_PTR_LENGTH (state_stack) != 0)
    {
      state = VLA_PTR (state_stack, VLA_PTR_LENGTH (state_stack) - 1);
      VLA_PTR_SHORTEN (state_stack, 1);
      form_arcs_marked_by_insn (state);
      for (i = 0; i < description->decls_num; i++)
	{
	  decl = description->decls [i];
	  if (decl->mode == dm_insn_reserv
	      && create_composed_state
	         (state, DECL_INSN_RESERV (decl)->arcs_marked_by_insn,
		  &state_stack))
	    {
	      states_n++;
	      if (progress_flag && states_n % 100 == 0)
		fprintf (stderr, ".");
	    }
	}
    }
  VLA_PTR_DELETE (state_stack);
}

/* The following variable value is current number (1, 2, ...) of passing
   graph of states.  */
static int curr_state_graph_pass_num;

/* This recursive function passes all states achieved from START_STATE
   and applies APPLIED_FUNC to them.  */
static void
pass_state_graph (state_t start_state, void (*applied_func) (state_t state))
{
  arc_t arc;

  if (start_state->pass_num == curr_state_graph_pass_num)
    return;
  start_state->pass_num = curr_state_graph_pass_num;
  (*applied_func) (start_state);
  for (arc = first_out_arc (start_state);
       arc != NULL;
       arc = next_out_arc (arc))
    pass_state_graph (arc->to_state, applied_func);
}

/* This recursive function passes all states of AUTOMATON and applies
   APPLIED_FUNC to them.  */
static void
pass_states (automaton_t automaton, void (*applied_func) (state_t state))
{
  curr_state_graph_pass_num++;
  pass_state_graph (automaton->start_state, applied_func);
}

/* The function initializes code for passing of all states.  */
static void
initiate_pass_states (void)
{
  curr_state_graph_pass_num = 0;
}

/* The following vla is used for storing pointers to all achieved
   states.  */
static vla_ptr_t all_achieved_states;

/* This function is called by function pass_states to add an achieved
   STATE.  */
static void
add_achieved_state (state_t state)
{
  VLA_PTR_ADD (all_achieved_states, state);
}

/* The function sets up equivalence numbers of insns which mark all
   out arcs of STATE by equiv_class_num_1 (if ODD_ITERATION_FLAG has
   nonzero value) or by equiv_class_num_2 of the destination state.
   The function returns number of out arcs of STATE.  */
static int
set_out_arc_insns_equiv_num (state_t state, int odd_iteration_flag)
{
  int state_out_arcs_num;
  arc_t arc;

  state_out_arcs_num = 0;
  for (arc = first_out_arc (state); arc != NULL; arc = next_out_arc (arc))
    {
      if (arc->insn->insn_reserv_decl->equiv_class_num != 0
	  || arc->insn->insn_reserv_decl->state_alts != 0)
	abort ();
      state_out_arcs_num++;
      arc->insn->insn_reserv_decl->equiv_class_num
	= (odd_iteration_flag
           ? arc->to_state->equiv_class_num_1
	   : arc->to_state->equiv_class_num_2);
      arc->insn->insn_reserv_decl->state_alts = arc->state_alts;
      if (arc->insn->insn_reserv_decl->equiv_class_num == 0
	  || arc->insn->insn_reserv_decl->state_alts <= 0)
	abort ();
    }
  return state_out_arcs_num;
}

/* The function clears equivalence numbers and alt_states in all insns
   which mark all out arcs of STATE.  */
static void
clear_arc_insns_equiv_num (state_t state)
{
  arc_t arc;

  for (arc = first_out_arc (state); arc != NULL; arc = next_out_arc (arc))
    {
      arc->insn->insn_reserv_decl->equiv_class_num = 0;
      arc->insn->insn_reserv_decl->state_alts = 0;
    }
}

/* The function copies pointers to equivalent states from vla FROM
   into vla TO.  */
static void
copy_equiv_class (vla_ptr_t *to, const vla_ptr_t *from)
{
  state_t *class_ptr;

  VLA_PTR_NULLIFY (*to);
  for (class_ptr = VLA_PTR_BEGIN (*from);
       class_ptr <= (state_t *) VLA_PTR_LAST (*from);
       class_ptr++)
    VLA_PTR_ADD (*to, *class_ptr);
}

/* The following function returns TRUE if STATE reserves the unit with
   UNIT_NUM on the first cycle.  */
static int
first_cycle_unit_presence (state_t state, int unit_num)
{
  int presence_p;

  if (state->component_states == NULL)
    presence_p = test_unit_reserv (state->reservs, 0, unit_num);
  else
    presence_p
      = test_unit_reserv (state->component_states->state->reservs,
			  0, unit_num);
  return presence_p;
}

/* The function returns nonzero value if STATE is not equivalent to
   ANOTHER_STATE from the same current partition on equivalence
   classes.  Another state has ANOTHER_STATE_OUT_ARCS_NUM number of
   output arcs.  Iteration of making equivalence partition is defined
   by ODD_ITERATION_FLAG.  */
static int
state_is_differed (state_t state, state_t another_state,
		   int another_state_out_arcs_num, int odd_iteration_flag)
{
  arc_t arc;
  int state_out_arcs_num;
  int i, presence1_p, presence2_p;

  state_out_arcs_num = 0;
  for (arc = first_out_arc (state); arc != NULL; arc = next_out_arc (arc))
    {
      state_out_arcs_num++;
      if ((odd_iteration_flag
           ? arc->to_state->equiv_class_num_1
	   : arc->to_state->equiv_class_num_2)
          != arc->insn->insn_reserv_decl->equiv_class_num
	  || (arc->insn->insn_reserv_decl->state_alts != arc->state_alts))
        return 1;
    }
  if (state_out_arcs_num != another_state_out_arcs_num)
    return 1;
  /* Now we are looking at the states with the point of view of query
     units.  */
  for (i = 0; i < description->units_num; i++)
    if (units_array [i]->query_p)
      {
	presence1_p = first_cycle_unit_presence (state, i);
	presence2_p = first_cycle_unit_presence (another_state, i);
	if ((presence1_p && !presence2_p) || (!presence1_p && presence2_p))
	  return 1;
      }
  return 0;
}

/* The function makes initial partition of STATES on equivalent
   classes.  */
static state_t
init_equiv_class (state_t *states, int states_num)
{
  state_t *state_ptr;
  state_t result_equiv_class;

  result_equiv_class = NULL;
  for (state_ptr = states; state_ptr < states + states_num; state_ptr++)
    {
      (*state_ptr)->equiv_class_num_1 = 1;
      (*state_ptr)->next_equiv_class_state = result_equiv_class;
      result_equiv_class = *state_ptr;
    }
  return result_equiv_class;
}

/* The function processes equivalence class given by its pointer
   EQUIV_CLASS_PTR on odd iteration if ODD_ITERATION_FLAG.  If there
   are not equivalent states, the function partitions the class
   removing nonequivalent states and placing them in
   *NEXT_ITERATION_CLASSES, increments *NEW_EQUIV_CLASS_NUM_PTR ans
   assigns it to the state equivalence number.  If the class has been
   partitioned, the function returns nonzero value.  */
static int
partition_equiv_class (state_t *equiv_class_ptr, int odd_iteration_flag,
		       vla_ptr_t *next_iteration_classes,
		       int *new_equiv_class_num_ptr)
{
  state_t new_equiv_class;
  int partition_p;
  state_t first_state;
  state_t curr_state;
  state_t prev_state;
  state_t next_state;
  int out_arcs_num;

  partition_p = 0;
  if (*equiv_class_ptr == NULL)
    abort ();
  for (first_state = *equiv_class_ptr;
       first_state != NULL;
       first_state = new_equiv_class)
    {
      new_equiv_class = NULL;
      if (first_state->next_equiv_class_state != NULL)
	{
	  /* There are more one states in the class equivalence.  */
	  out_arcs_num = set_out_arc_insns_equiv_num (first_state,
						      odd_iteration_flag);
	  for (prev_state = first_state,
		 curr_state = first_state->next_equiv_class_state;
	       curr_state != NULL;
	       curr_state = next_state)
	    {
	      next_state = curr_state->next_equiv_class_state;
	      if (state_is_differed (curr_state, first_state, out_arcs_num,
				     odd_iteration_flag))
		{
		  /* Remove curr state from the class equivalence.  */
		  prev_state->next_equiv_class_state = next_state;
		  /* Add curr state to the new class equivalence.  */
		  curr_state->next_equiv_class_state = new_equiv_class;
		  if (new_equiv_class == NULL)
		    (*new_equiv_class_num_ptr)++;
		  if (odd_iteration_flag)
		    curr_state->equiv_class_num_2 = *new_equiv_class_num_ptr;
		  else
		    curr_state->equiv_class_num_1 = *new_equiv_class_num_ptr;
		  new_equiv_class = curr_state;
		  partition_p = 1;
		}
	      else
		prev_state = curr_state;
	    }
	  clear_arc_insns_equiv_num (first_state);
	}
      if (new_equiv_class != NULL)
	VLA_PTR_ADD  (*next_iteration_classes, new_equiv_class);
    }
  return partition_p;
}

/* The function finds equivalent states of AUTOMATON.  */
static void
evaluate_equiv_classes (automaton_t automaton, vla_ptr_t *equiv_classes)
{
  state_t new_equiv_class;
  int new_equiv_class_num;
  int odd_iteration_flag;
  int finish_flag;
  vla_ptr_t next_iteration_classes;
  state_t *equiv_class_ptr;
  state_t *state_ptr;

  VLA_PTR_CREATE (all_achieved_states, 1500, "all achieved states");
  pass_states (automaton, add_achieved_state);
  new_equiv_class = init_equiv_class (VLA_PTR_BEGIN (all_achieved_states),
                                      VLA_PTR_LENGTH (all_achieved_states));
  odd_iteration_flag = 0;
  new_equiv_class_num = 1;
  VLA_PTR_CREATE (next_iteration_classes, 150, "next iteration classes");
  VLA_PTR_ADD (next_iteration_classes, new_equiv_class);
  do
    {
      odd_iteration_flag = !odd_iteration_flag;
      finish_flag = 1;
      copy_equiv_class (equiv_classes, &next_iteration_classes);
      /* Transfer equiv numbers for the next iteration.  */
      for (state_ptr = VLA_PTR_BEGIN (all_achieved_states);
	   state_ptr <= (state_t *) VLA_PTR_LAST (all_achieved_states);
           state_ptr++)
	if (odd_iteration_flag)
	  (*state_ptr)->equiv_class_num_2 = (*state_ptr)->equiv_class_num_1;
	else
	  (*state_ptr)->equiv_class_num_1 = (*state_ptr)->equiv_class_num_2;
      for (equiv_class_ptr = VLA_PTR_BEGIN (*equiv_classes);
           equiv_class_ptr <= (state_t *) VLA_PTR_LAST (*equiv_classes);
           equiv_class_ptr++)
	if (partition_equiv_class (equiv_class_ptr, odd_iteration_flag,
				   &next_iteration_classes,
				   &new_equiv_class_num))
	  finish_flag = 0;
    }
  while (!finish_flag);
  VLA_PTR_DELETE (next_iteration_classes);
  VLA_PTR_DELETE (all_achieved_states);
}

/* The function merges equivalent states of AUTOMATON.  */
static void
merge_states (automaton_t automaton, vla_ptr_t *equiv_classes)
{
  state_t *equiv_class_ptr;
  state_t curr_state;
  state_t new_state;
  state_t first_class_state;
  alt_state_t alt_states;
  alt_state_t alt_state, new_alt_state;
  arc_t curr_arc;
  arc_t next_arc;

  /* Create states corresponding to equivalence classes containing two
     or more states.  */
  for (equiv_class_ptr = VLA_PTR_BEGIN (*equiv_classes);
       equiv_class_ptr <= (state_t *) VLA_PTR_LAST (*equiv_classes);
       equiv_class_ptr++)
    if ((*equiv_class_ptr)->next_equiv_class_state != NULL)
      {
        /* There are more one states in the class equivalence.  */
        /* Create new compound state.  */
        new_state = get_free_state (0, automaton);
        alt_states = NULL;
        first_class_state = *equiv_class_ptr;
        for (curr_state = first_class_state;
             curr_state != NULL;
             curr_state = curr_state->next_equiv_class_state)
          {
            curr_state->equiv_class_state = new_state;
	    if (curr_state->component_states == NULL)
	      {
		new_alt_state = get_free_alt_state ();
		new_alt_state->state = curr_state;
		new_alt_state->next_alt_state = alt_states;
		alt_states = new_alt_state;
	      }
	    else
	      for (alt_state = curr_state->component_states;
		   alt_state != NULL;
		   alt_state = alt_state->next_sorted_alt_state)
		{
		  new_alt_state = get_free_alt_state ();
		  new_alt_state->state = alt_state->state;
		  new_alt_state->next_alt_state = alt_states;
		  alt_states = new_alt_state;
		}
          }
	/* Its is important that alt states were sorted before and
           after merging to have the same querying results.  */
        new_state->component_states = uniq_sort_alt_states (alt_states);
      }
    else
      (*equiv_class_ptr)->equiv_class_state = *equiv_class_ptr;
  for (equiv_class_ptr = VLA_PTR_BEGIN (*equiv_classes);
       equiv_class_ptr <= (state_t *) VLA_PTR_LAST (*equiv_classes);
       equiv_class_ptr++)
    if ((*equiv_class_ptr)->next_equiv_class_state != NULL)
      {
        first_class_state = *equiv_class_ptr;
        /* Create new arcs output from the state corresponding to
           equiv class.  */
        for (curr_arc = first_out_arc (first_class_state);
             curr_arc != NULL;
             curr_arc = next_out_arc (curr_arc))
          add_arc (first_class_state->equiv_class_state,
                   curr_arc->to_state->equiv_class_state,
		   curr_arc->insn, curr_arc->state_alts);
        /* Delete output arcs from states of given class equivalence.  */
        for (curr_state = first_class_state;
             curr_state != NULL;
             curr_state = curr_state->next_equiv_class_state)
          {
            if (automaton->start_state == curr_state)
              automaton->start_state = curr_state->equiv_class_state;
            /* Delete the state and its output arcs.  */
            for (curr_arc = first_out_arc (curr_state);
                 curr_arc != NULL;
                 curr_arc = next_arc)
              {
                next_arc = next_out_arc (curr_arc);
                free_arc (curr_arc);
              }
          }
      }
    else
      {
        /* Change `to_state' of arcs output from the state of given
           equivalence class.  */
        for (curr_arc = first_out_arc (*equiv_class_ptr);
             curr_arc != NULL;
             curr_arc = next_out_arc (curr_arc))
          curr_arc->to_state = curr_arc->to_state->equiv_class_state;
      }
}

/* The function sets up new_cycle_p for states if there is arc to the
   state marked by advance_cycle_insn_decl.  */
static void
set_new_cycle_flags (state_t state)
{
  arc_t arc;

  for (arc = first_out_arc (state); arc != NULL; arc = next_out_arc (arc))
    if (arc->insn->insn_reserv_decl
	== DECL_INSN_RESERV (advance_cycle_insn_decl))
      arc->to_state->new_cycle_p = 1;
}

/* The top level function for minimization of deterministic
   AUTOMATON.  */
static void
minimize_DFA (automaton_t automaton)
{
  vla_ptr_t equiv_classes;

  VLA_PTR_CREATE (equiv_classes, 1500, "equivalence classes");
  evaluate_equiv_classes (automaton, &equiv_classes);
  merge_states (automaton, &equiv_classes);
  pass_states (automaton, set_new_cycle_flags);
  VLA_PTR_DELETE (equiv_classes);
}

/* Values of two variables are counted number of states and arcs in an
   automaton.  */
static int curr_counted_states_num;
static int curr_counted_arcs_num;

/* The function is called by function `pass_states' to count states
   and arcs of an automaton.  */
static void
incr_states_and_arcs_nums (state_t state)
{
  arc_t arc;

  curr_counted_states_num++;
  for (arc = first_out_arc (state); arc != NULL; arc = next_out_arc (arc))
    curr_counted_arcs_num++;
}

/* The function counts states and arcs of AUTOMATON.  */
static void
count_states_and_arcs (automaton_t automaton, int *states_num,
		       int *arcs_num)
{
  curr_counted_states_num = 0;
  curr_counted_arcs_num = 0;
  pass_states (automaton, incr_states_and_arcs_nums);
  *states_num = curr_counted_states_num;
  *arcs_num = curr_counted_arcs_num;
}

/* The function builds one DFA AUTOMATON for fast pipeline hazards
   recognition after checking and simplifying IR of the
   description.  */
static void
build_automaton (automaton_t automaton)
{
  int states_num;
  int arcs_num;

  ticker_on (&NDFA_time);
  if (progress_flag)
    {
      if (automaton->corresponding_automaton_decl == NULL)
	fprintf (stderr, "Create anonymous automaton");
      else
	fprintf (stderr, "Create automaton `%s'",
		 automaton->corresponding_automaton_decl->name);
      fprintf (stderr, " (1 dot is 100 new states):");
    }
  make_automaton (automaton);
  if (progress_flag)
    fprintf (stderr, " done\n");
  ticker_off (&NDFA_time);
  count_states_and_arcs (automaton, &states_num, &arcs_num);
  automaton->NDFA_states_num = states_num;
  automaton->NDFA_arcs_num = arcs_num;
  ticker_on (&NDFA_to_DFA_time);
  if (progress_flag)
    {
      if (automaton->corresponding_automaton_decl == NULL)
	fprintf (stderr, "Make anonymous DFA");
      else
	fprintf (stderr, "Make DFA `%s'",
		 automaton->corresponding_automaton_decl->name);
      fprintf (stderr, " (1 dot is 100 new states):");
    }
  NDFA_to_DFA (automaton);
  if (progress_flag)
    fprintf (stderr, " done\n");
  ticker_off (&NDFA_to_DFA_time);
  count_states_and_arcs (automaton, &states_num, &arcs_num);
  automaton->DFA_states_num = states_num;
  automaton->DFA_arcs_num = arcs_num;
  if (!no_minimization_flag)
    {
      ticker_on (&minimize_time);
      if (progress_flag)
	{
	  if (automaton->corresponding_automaton_decl == NULL)
	    fprintf (stderr, "Minimize anonymous DFA...");
	  else
	    fprintf (stderr, "Minimize DFA `%s'...",
		     automaton->corresponding_automaton_decl->name);
	}
      minimize_DFA (automaton);
      if (progress_flag)
	fprintf (stderr, "done\n");
      ticker_off (&minimize_time);
      count_states_and_arcs (automaton, &states_num, &arcs_num);
      automaton->minimal_DFA_states_num = states_num;
      automaton->minimal_DFA_arcs_num = arcs_num;
    }
}



/* The page contains code for enumeration  of all states of an automaton.  */

/* Variable used for enumeration of all states of an automaton.  Its
   value is current number of automaton states.  */
static int curr_state_order_num;

/* The function is called by function `pass_states' for enumerating
   states.  */
static void
set_order_state_num (state_t state)
{
  state->order_state_num = curr_state_order_num;
  curr_state_order_num++;
}

/* The function enumerates all states of AUTOMATON.  */
static void
enumerate_states (automaton_t automaton)
{
  curr_state_order_num = 0;
  pass_states (automaton, set_order_state_num);
  automaton->achieved_states_num = curr_state_order_num;
}



/* The page contains code for finding equivalent automaton insns
   (ainsns).  */

/* The function inserts AINSN into cyclic list
   CYCLIC_EQUIV_CLASS_INSN_LIST of ainsns.  */
static ainsn_t
insert_ainsn_into_equiv_class (ainsn_t ainsn,
			       ainsn_t cyclic_equiv_class_insn_list)
{
  if (cyclic_equiv_class_insn_list == NULL)
    ainsn->next_equiv_class_insn = ainsn;
  else
    {
      ainsn->next_equiv_class_insn
        = cyclic_equiv_class_insn_list->next_equiv_class_insn;
      cyclic_equiv_class_insn_list->next_equiv_class_insn = ainsn;
    }
  return ainsn;
}

/* The function deletes equiv_class_insn into cyclic list of
   equivalent ainsns.  */
static void
delete_ainsn_from_equiv_class (ainsn_t equiv_class_insn)
{
  ainsn_t curr_equiv_class_insn;
  ainsn_t prev_equiv_class_insn;

  prev_equiv_class_insn = equiv_class_insn;
  for (curr_equiv_class_insn = equiv_class_insn->next_equiv_class_insn;
       curr_equiv_class_insn != equiv_class_insn;
       curr_equiv_class_insn = curr_equiv_class_insn->next_equiv_class_insn)
    prev_equiv_class_insn = curr_equiv_class_insn;
  if (prev_equiv_class_insn != equiv_class_insn)
    prev_equiv_class_insn->next_equiv_class_insn
      = equiv_class_insn->next_equiv_class_insn;
}

/* The function processes AINSN of a state in order to find equivalent
   ainsns.  INSN_ARCS_ARRAY is table: code of insn -> out arc of the
   state.  */
static void
process_insn_equiv_class (ainsn_t ainsn, arc_t *insn_arcs_array)
{
  ainsn_t next_insn;
  ainsn_t curr_insn;
  ainsn_t cyclic_insn_list;
  arc_t arc;

  if (insn_arcs_array [ainsn->insn_reserv_decl->insn_num] == NULL)
    abort ();
  curr_insn = ainsn;
  /* New class of ainsns which are not equivalent to given ainsn.  */
  cyclic_insn_list = NULL;
  do
    {
      next_insn = curr_insn->next_equiv_class_insn;
      arc = insn_arcs_array [curr_insn->insn_reserv_decl->insn_num];
      if (arc == NULL
          || (insn_arcs_array [ainsn->insn_reserv_decl->insn_num]->to_state
              != arc->to_state))
        {
          delete_ainsn_from_equiv_class (curr_insn);
          cyclic_insn_list = insert_ainsn_into_equiv_class (curr_insn,
							    cyclic_insn_list);
        }
      curr_insn = next_insn;
    }
  while (curr_insn != ainsn);
}

/* The function processes STATE in order to find equivalent ainsns.  */
static void
process_state_for_insn_equiv_partition (state_t state)
{
  arc_t arc;
  arc_t *insn_arcs_array;
  int i;
  vla_ptr_t insn_arcs_vect;

  VLA_PTR_CREATE (insn_arcs_vect, 500, "insn arcs vector");
  VLA_PTR_EXPAND (insn_arcs_vect, description->insns_num);
  insn_arcs_array = VLA_PTR_BEGIN (insn_arcs_vect);
  /* Process insns of the arcs.  */
  for (i = 0; i < description->insns_num; i++)
    insn_arcs_array [i] = NULL;
  for (arc = first_out_arc (state); arc != NULL; arc = next_out_arc (arc))
    insn_arcs_array [arc->insn->insn_reserv_decl->insn_num] = arc;
  for (arc = first_out_arc (state); arc != NULL; arc = next_out_arc (arc))
    process_insn_equiv_class (arc->insn, insn_arcs_array);
  VLA_PTR_DELETE (insn_arcs_vect);
}

/* The function searches for equivalent ainsns of AUTOMATON.  */
static void
set_insn_equiv_classes (automaton_t automaton)
{
  ainsn_t ainsn;
  ainsn_t first_insn;
  ainsn_t curr_insn;
  ainsn_t cyclic_insn_list;
  ainsn_t insn_with_same_reservs;
  int equiv_classes_num;

  /* All insns are included in one equivalence class.  */
  cyclic_insn_list = NULL;
  for (ainsn = automaton->ainsn_list; ainsn != NULL; ainsn = ainsn->next_ainsn)
    if (ainsn->first_insn_with_same_reservs)
      cyclic_insn_list = insert_ainsn_into_equiv_class (ainsn,
							cyclic_insn_list);
  /* Process insns in order to make equivalence partition.  */
  pass_states (automaton, process_state_for_insn_equiv_partition);
  /* Enumerate equiv classes.  */
  for (ainsn = automaton->ainsn_list; ainsn != NULL; ainsn = ainsn->next_ainsn)
    /* Set undefined value.  */
    ainsn->insn_equiv_class_num = -1;
  equiv_classes_num = 0;
  for (ainsn = automaton->ainsn_list; ainsn != NULL; ainsn = ainsn->next_ainsn)
    if (ainsn->insn_equiv_class_num < 0)
      {
        first_insn = ainsn;
        if (!first_insn->first_insn_with_same_reservs)
	  abort ();
        first_insn->first_ainsn_with_given_equivalence_num = 1;
        curr_insn = first_insn;
        do
          {
            for (insn_with_same_reservs = curr_insn;
                 insn_with_same_reservs != NULL;
                 insn_with_same_reservs
		   = insn_with_same_reservs->next_same_reservs_insn)
              insn_with_same_reservs->insn_equiv_class_num = equiv_classes_num;
            curr_insn = curr_insn->next_equiv_class_insn;
          }
        while (curr_insn != first_insn);
        equiv_classes_num++;
      }
  automaton->insn_equiv_classes_num = equiv_classes_num;
}



/* This page contains code for creating DFA(s) and calls functions
   building them.  */


/* The following value is used to prevent floating point overflow for
   estimating an automaton bound.  The value should be less DBL_MAX on
   the host machine.  We use here approximate minimum of maximal
   double floating point value required by ANSI C standard.  It
   will work for non ANSI sun compiler too.  */

#define MAX_FLOATING_POINT_VALUE_FOR_AUTOMATON_BOUND  1.0E37

/* The function estimate size of the single DFA used by PHR (pipeline
   hazards recognizer).  */
static double
estimate_one_automaton_bound (void)
{
  decl_t decl;
  double one_automaton_estimation_bound;
  double root_value;
  int i;

  one_automaton_estimation_bound = 1.0;
  for (i = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_unit)
	{
	  root_value = exp (log (DECL_UNIT (decl)->max_occ_cycle_num
				 - DECL_UNIT (decl)->min_occ_cycle_num + 1.0)
                            / automata_num);
	  if (MAX_FLOATING_POINT_VALUE_FOR_AUTOMATON_BOUND / root_value
	      > one_automaton_estimation_bound)
	    one_automaton_estimation_bound *= root_value;
	}
    }
  return one_automaton_estimation_bound;
}

/* The function compares unit declarations according to their maximal
   cycle in reservations.  */
static int
compare_max_occ_cycle_nums (const void *unit_decl_1,
			    const void *unit_decl_2)
{
  if ((DECL_UNIT (*(decl_t *) unit_decl_1)->max_occ_cycle_num)
      < (DECL_UNIT (*(decl_t *) unit_decl_2)->max_occ_cycle_num))
    return 1;
  else if ((DECL_UNIT (*(decl_t *) unit_decl_1)->max_occ_cycle_num)
	   == (DECL_UNIT (*(decl_t *) unit_decl_2)->max_occ_cycle_num))
    return 0;
  else
    return -1;
}

/* The function makes heuristic assigning automata to units.  Actually
   efficacy of the algorithm has been checked yet??? */
static void
units_to_automata_heuristic_distr (void)
{
  double estimation_bound;
  decl_t decl;
  decl_t *unit_decl_ptr;
  int automaton_num;
  int rest_units_num;
  double bound_value;
  vla_ptr_t unit_decls;
  int i;

  if (description->units_num == 0)
    return;
  estimation_bound = estimate_one_automaton_bound ();
  VLA_PTR_CREATE (unit_decls, 150, "unit decls");
  for (i = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_unit)
	VLA_PTR_ADD (unit_decls, decl);
    }
  qsort (VLA_PTR_BEGIN (unit_decls), VLA_PTR_LENGTH (unit_decls),
         sizeof (decl_t), compare_max_occ_cycle_nums);
  automaton_num = 0;
  unit_decl_ptr = VLA_PTR_BEGIN (unit_decls);
  bound_value = DECL_UNIT (*unit_decl_ptr)->max_occ_cycle_num;
  DECL_UNIT (*unit_decl_ptr)->corresponding_automaton_num = automaton_num;
  for (unit_decl_ptr++;
       unit_decl_ptr <= (decl_t *) VLA_PTR_LAST (unit_decls);
       unit_decl_ptr++)
    {
      rest_units_num
	= ((decl_t *) VLA_PTR_LAST (unit_decls) - unit_decl_ptr + 1);
      if (automata_num - automaton_num - 1 > rest_units_num)
	abort ();
      if (automaton_num < automata_num - 1
          && ((automata_num - automaton_num - 1 == rest_units_num)
              || (bound_value
                  > (estimation_bound
		     / (DECL_UNIT (*unit_decl_ptr)->max_occ_cycle_num)))))
        {
          bound_value = DECL_UNIT (*unit_decl_ptr)->max_occ_cycle_num;
          automaton_num++;
        }
      else
        bound_value *= DECL_UNIT (*unit_decl_ptr)->max_occ_cycle_num;
      DECL_UNIT (*unit_decl_ptr)->corresponding_automaton_num = automaton_num;
    }
  if (automaton_num != automata_num - 1)
    abort ();
  VLA_PTR_DELETE (unit_decls);
}

/* The functions creates automaton insns for each automata.  Automaton
   insn is simply insn for given automaton which makes reservation
   only of units of the automaton.  */
static ainsn_t
create_ainsns (void)
{
  decl_t decl;
  ainsn_t first_ainsn;
  ainsn_t curr_ainsn;
  ainsn_t prev_ainsn;
  int i;

  first_ainsn = NULL;
  prev_ainsn = NULL;
  for (i = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_insn_reserv)
	{
	  curr_ainsn = create_node (sizeof (struct ainsn));
	  curr_ainsn->insn_reserv_decl = DECL_INSN_RESERV (decl);
	  curr_ainsn->important_p = FALSE;
	  curr_ainsn->next_ainsn = NULL;
	  if (prev_ainsn == NULL)
	    first_ainsn = curr_ainsn;
	  else
	    prev_ainsn->next_ainsn = curr_ainsn;
	  prev_ainsn = curr_ainsn;
	}
    }
  return first_ainsn;
}

/* The function assigns automata to units according to constructions
   `define_automaton' in the description.  */
static void
units_to_automata_distr (void)
{
  decl_t decl;
  int i;

  for (i = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_unit)
	{
	  if (DECL_UNIT (decl)->automaton_decl == NULL
	      || (DECL_UNIT (decl)->automaton_decl->corresponding_automaton
		  == NULL))
	    /* Distribute to the first automaton.  */
	    DECL_UNIT (decl)->corresponding_automaton_num = 0;
	  else
	    DECL_UNIT (decl)->corresponding_automaton_num
	      = (DECL_UNIT (decl)->automaton_decl
                 ->corresponding_automaton->automaton_order_num);
	}
    }
}

/* The function creates DFA(s) for fast pipeline hazards recognition
   after checking and simplifying IR of the description.  */
static void
create_automata (void)
{
  automaton_t curr_automaton;
  automaton_t prev_automaton;
  decl_t decl;
  int curr_automaton_num;
  int i;

  if (automata_num != 0)
    {
      units_to_automata_heuristic_distr ();
      for (prev_automaton = NULL, curr_automaton_num = 0;
           curr_automaton_num < automata_num;
           curr_automaton_num++, prev_automaton = curr_automaton)
        {
	  curr_automaton = create_node (sizeof (struct automaton));
	  curr_automaton->ainsn_list = create_ainsns ();
	  curr_automaton->corresponding_automaton_decl = NULL;
	  curr_automaton->next_automaton = NULL;
          curr_automaton->automaton_order_num = curr_automaton_num;
          if (prev_automaton == NULL)
            description->first_automaton = curr_automaton;
          else
            prev_automaton->next_automaton = curr_automaton;
        }
    }
  else
    {
      curr_automaton_num = 0;
      prev_automaton = NULL;
      for (i = 0; i < description->decls_num; i++)
	{
	  decl = description->decls [i];
	  if (decl->mode == dm_automaton
	      && DECL_AUTOMATON (decl)->automaton_is_used)
	    {
	      curr_automaton = create_node (sizeof (struct automaton));
	      curr_automaton->ainsn_list = create_ainsns ();
	      curr_automaton->corresponding_automaton_decl
		= DECL_AUTOMATON (decl);
	      curr_automaton->next_automaton = NULL;
	      DECL_AUTOMATON (decl)->corresponding_automaton = curr_automaton;
	      curr_automaton->automaton_order_num = curr_automaton_num;
	      if (prev_automaton == NULL)
		description->first_automaton = curr_automaton;
	      else
		prev_automaton->next_automaton = curr_automaton;
	      curr_automaton_num++;
	      prev_automaton = curr_automaton;
	    }
	}
      if (curr_automaton_num == 0)
	{
	  curr_automaton = create_node (sizeof (struct automaton));
	  curr_automaton->ainsn_list = create_ainsns ();
	  curr_automaton->corresponding_automaton_decl = NULL;
	  curr_automaton->next_automaton = NULL;
	  description->first_automaton = curr_automaton;
	}
      units_to_automata_distr ();
    }
  NDFA_time = create_ticker ();
  ticker_off (&NDFA_time);
  NDFA_to_DFA_time = create_ticker ();
  ticker_off (&NDFA_to_DFA_time);
  minimize_time = create_ticker ();
  ticker_off (&minimize_time);
  equiv_time = create_ticker ();
  ticker_off (&equiv_time);
  for (curr_automaton = description->first_automaton;
       curr_automaton != NULL;
       curr_automaton = curr_automaton->next_automaton)
    {
      if (progress_flag)
	{
	  if (curr_automaton->corresponding_automaton_decl == NULL)
	    fprintf (stderr, "Prepare anonymous automaton creation ... ");
	  else
	    fprintf (stderr, "Prepare automaton `%s' creation...",
		     curr_automaton->corresponding_automaton_decl->name);
	}
      create_alt_states (curr_automaton);
      form_ainsn_with_same_reservs (curr_automaton);
      if (progress_flag)
	fprintf (stderr, "done\n");
      build_automaton (curr_automaton);
      enumerate_states (curr_automaton);
      ticker_on (&equiv_time);
      set_insn_equiv_classes (curr_automaton);
      ticker_off (&equiv_time);
    }
}



/* This page contains code for forming string representation of
   regexp.  The representation is formed on IR obstack.  So you should
   not work with IR obstack between regexp_representation and
   finish_regexp_representation calls.  */

/* This recursive function forms string representation of regexp
   (without tailing '\0').  */
static void
form_regexp (regexp_t regexp)
{
  int i;

  if (regexp->mode == rm_unit || regexp->mode == rm_reserv)
    {
      const char *name = (regexp->mode == rm_unit
                          ? REGEXP_UNIT (regexp)->name
			  : REGEXP_RESERV (regexp)->name);

      obstack_grow (&irp, name, strlen (name));
    }
  else if (regexp->mode == rm_sequence)
    for (i = 0; i < REGEXP_SEQUENCE (regexp)->regexps_num; i++)
      {
	if (i != 0)
          obstack_1grow (&irp, ',');
	form_regexp (REGEXP_SEQUENCE (regexp)->regexps [i]);
      }
  else if (regexp->mode == rm_allof)
    {
      obstack_1grow (&irp, '(');
      for (i = 0; i < REGEXP_ALLOF (regexp)->regexps_num; i++)
	{
	  if (i != 0)
            obstack_1grow (&irp, '+');
	  if (REGEXP_ALLOF (regexp)->regexps[i]->mode == rm_sequence
              || REGEXP_ALLOF (regexp)->regexps[i]->mode == rm_oneof)
            obstack_1grow (&irp, '(');
	  form_regexp (REGEXP_ALLOF (regexp)->regexps [i]);
	  if (REGEXP_ALLOF (regexp)->regexps[i]->mode == rm_sequence
              || REGEXP_ALLOF (regexp)->regexps[i]->mode == rm_oneof)
            obstack_1grow (&irp, ')');
        }
      obstack_1grow (&irp, ')');
    }
  else if (regexp->mode == rm_oneof)
    for (i = 0; i < REGEXP_ONEOF (regexp)->regexps_num; i++)
      {
	if (i != 0)
          obstack_1grow (&irp, '|');
	if (REGEXP_ONEOF (regexp)->regexps[i]->mode == rm_sequence)
          obstack_1grow (&irp, '(');
        form_regexp (REGEXP_ONEOF (regexp)->regexps [i]);
	if (REGEXP_ONEOF (regexp)->regexps[i]->mode == rm_sequence)
          obstack_1grow (&irp, ')');
      }
  else if (regexp->mode == rm_repeat)
    {
      char digits [30];

      if (REGEXP_REPEAT (regexp)->regexp->mode == rm_sequence
	  || REGEXP_REPEAT (regexp)->regexp->mode == rm_allof
	  || REGEXP_REPEAT (regexp)->regexp->mode == rm_oneof)
        obstack_1grow (&irp, '(');
      form_regexp (REGEXP_REPEAT (regexp)->regexp);
      if (REGEXP_REPEAT (regexp)->regexp->mode == rm_sequence
	  || REGEXP_REPEAT (regexp)->regexp->mode == rm_allof
	  || REGEXP_REPEAT (regexp)->regexp->mode == rm_oneof)
        obstack_1grow (&irp, ')');
      sprintf (digits, "*%d", REGEXP_REPEAT (regexp)->repeat_num);
      obstack_grow (&irp, digits, strlen (digits));
    }
  else if (regexp->mode == rm_nothing)
    obstack_grow (&irp, NOTHING_NAME, strlen (NOTHING_NAME));
  else
    abort ();
}

/* The function returns string representation of REGEXP on IR
   obstack.  */
static const char *
regexp_representation (regexp_t regexp)
{
  form_regexp (regexp);
  obstack_1grow (&irp, '\0');
  return obstack_base (&irp);
}

/* The function frees memory allocated for last formed string
   representation of regexp.  */
static void
finish_regexp_representation (void)
{
  int length = obstack_object_size (&irp);

  obstack_blank_fast (&irp, -length);
}



/* This page contains code for output PHR (pipeline hazards recognizer).  */

/* The function outputs minimal C type which is sufficient for
   representation numbers in range min_range_value and
   max_range_value.  Because host machine and build machine may be
   different, we use here minimal values required by ANSI C standard
   instead of UCHAR_MAX, SHRT_MAX, SHRT_MIN, etc.  This is a good
   approximation.  */

static void
output_range_type (FILE *f, long int min_range_value,
		   long int max_range_value)
{
  if (min_range_value >= 0 && max_range_value <= 255)
    fprintf (f, "unsigned char");
  else if (min_range_value >= -127 && max_range_value <= 127)
    fprintf (f, "signed char");
  else if (min_range_value >= 0 && max_range_value <= 65535)
    fprintf (f, "unsigned short");
  else if (min_range_value >= -32767 && max_range_value <= 32767)
    fprintf (f, "short");
  else
    fprintf (f, "int");
}

/* The following macro value is used as value of member
   `longest_path_length' of state when we are processing path and the
   state on the path.  */

#define ON_THE_PATH -2

/* The following recursive function searches for the length of the
   longest path starting from STATE which does not contain cycles and
   `cycle advance' arcs.  */

static int
longest_path_length (state_t state)
{
  arc_t arc;
  int length, result;

  if (state->longest_path_length == ON_THE_PATH)
    /* We don't expect the path cycle here.  Our graph may contain
       only cycles with one state on the path not containing `cycle
       advance' arcs -- see comment below.  */
    abort ();
  else if (state->longest_path_length != UNDEFINED_LONGEST_PATH_LENGTH)
    /* We already visited the state.  */
    return state->longest_path_length;

  result = 0;
  for (arc = first_out_arc (state); arc != NULL; arc = next_out_arc (arc))
    /* Ignore cycles containing one state and `cycle advance' arcs.  */
    if (arc->to_state != state
	&& (arc->insn->insn_reserv_decl
	    != DECL_INSN_RESERV (advance_cycle_insn_decl)))
    {
      length = longest_path_length (arc->to_state);
      if (length > result)
	result = length;
    }
  state->longest_path_length = result + 1;
  return result;
}

/* The following variable value is value of the corresponding global
   variable in the automaton based pipeline interface.  */

static int max_dfa_issue_rate;

/* The following function processes the longest path length staring
   from STATE to find MAX_DFA_ISSUE_RATE.  */

static void
process_state_longest_path_length (state_t state)
{
  int value;

  value = longest_path_length (state);
  if (value > max_dfa_issue_rate)
    max_dfa_issue_rate = value;
}

/* The following macro value is name of the corresponding global
   variable in the automaton based pipeline interface.  */

#define MAX_DFA_ISSUE_RATE_VAR_NAME "max_dfa_issue_rate"

/* The following function calculates value of the corresponding
   global variable and outputs its declaration.  */

static void
output_dfa_max_issue_rate (void)
{
  automaton_t automaton;

  if (UNDEFINED_LONGEST_PATH_LENGTH == ON_THE_PATH || ON_THE_PATH >= 0)
    abort ();
  max_dfa_issue_rate = 0;
  for (automaton = description->first_automaton;
       automaton != NULL;
       automaton = automaton->next_automaton)
    pass_states (automaton, process_state_longest_path_length);
  fprintf (output_file, "\nint %s = %d;\n",
	   MAX_DFA_ISSUE_RATE_VAR_NAME, max_dfa_issue_rate);
}

/* The function outputs all initialization values of VECT with length
   vect_length.  */
static void
output_vect (vect_el_t *vect, int vect_length)
{
  int els_on_line;

  els_on_line = 1;
  if (vect_length == 0)
    fprintf (output_file,
             "0 /* This is dummy el because the vect is empty */");
  else
    {
      do
        {
          fprintf (output_file, "%5ld", (long) *vect);
          vect_length--;
          if (els_on_line == 10)
	    {
	      els_on_line = 0;
	      fprintf (output_file, ",\n");
	    }
          else if (vect_length != 0)
            fprintf (output_file, ", ");
          els_on_line++;
          vect++;
        }
      while (vect_length != 0);
    }
}

/* The following is name of the structure which represents DFA(s) for
   PHR.  */
#define CHIP_NAME "DFA_chip"

/* The following is name of member which represents state of a DFA for
   PHR.  */
static void
output_chip_member_name (FILE *f, automaton_t automaton)
{
  if (automaton->corresponding_automaton_decl == NULL)
    fprintf (f, "automaton_state_%d", automaton->automaton_order_num);
  else
    fprintf (f, "%s_automaton_state",
             automaton->corresponding_automaton_decl->name);
}

/* The following is name of temporary variable which stores state of a
   DFA for PHR.  */
static void
output_temp_chip_member_name (FILE *f, automaton_t automaton)
{
  fprintf (f, "_");
  output_chip_member_name (f, automaton);
}

/* This is name of macro value which is code of pseudo_insn
   representing advancing cpu cycle.  Its value is used as internal
   code unknown insn.  */
#define ADVANCE_CYCLE_VALUE_NAME "DFA__ADVANCE_CYCLE"

/* Output name of translate vector for given automaton.  */
static void
output_translate_vect_name (FILE *f, automaton_t automaton)
{
  if (automaton->corresponding_automaton_decl == NULL)
    fprintf (f, "translate_%d", automaton->automaton_order_num);
  else
    fprintf (f, "%s_translate", automaton->corresponding_automaton_decl->name);
}

/* Output name for simple transition table representation.  */
static void
output_trans_full_vect_name (FILE *f, automaton_t automaton)
{
  if (automaton->corresponding_automaton_decl == NULL)
    fprintf (f, "transitions_%d", automaton->automaton_order_num);
  else
    fprintf (f, "%s_transitions",
	     automaton->corresponding_automaton_decl->name);
}

/* Output name of comb vector of the transition table for given
   automaton.  */
static void
output_trans_comb_vect_name (FILE *f, automaton_t automaton)
{
  if (automaton->corresponding_automaton_decl == NULL)
    fprintf (f, "transitions_%d", automaton->automaton_order_num);
  else
    fprintf (f, "%s_transitions",
             automaton->corresponding_automaton_decl->name);
}

/* Output name of check vector of the transition table for given
   automaton.  */
static void
output_trans_check_vect_name (FILE *f, automaton_t automaton)
{
  if (automaton->corresponding_automaton_decl == NULL)
    fprintf (f, "check_%d", automaton->automaton_order_num);
  else
    fprintf (f, "%s_check", automaton->corresponding_automaton_decl->name);
}

/* Output name of base vector of the transition table for given
   automaton.  */
static void
output_trans_base_vect_name (FILE *f, automaton_t automaton)
{
  if (automaton->corresponding_automaton_decl == NULL)
    fprintf (f, "base_%d", automaton->automaton_order_num);
  else
    fprintf (f, "%s_base", automaton->corresponding_automaton_decl->name);
}

/* Output name for simple alternatives number representation.  */
static void
output_state_alts_full_vect_name (FILE *f, automaton_t automaton)
{
  if (automaton->corresponding_automaton_decl == NULL)
    fprintf (f, "state_alts_%d", automaton->automaton_order_num);
  else
    fprintf (f, "%s_state_alts",
             automaton->corresponding_automaton_decl->name);
}

/* Output name of comb vector of the alternatives number table for given
   automaton.  */
static void
output_state_alts_comb_vect_name (FILE *f, automaton_t automaton)
{
  if (automaton->corresponding_automaton_decl == NULL)
    fprintf (f, "state_alts_%d", automaton->automaton_order_num);
  else
    fprintf (f, "%s_state_alts",
             automaton->corresponding_automaton_decl->name);
}

/* Output name of check vector of the alternatives number table for given
   automaton.  */
static void
output_state_alts_check_vect_name (FILE *f, automaton_t automaton)
{
  if (automaton->corresponding_automaton_decl == NULL)
    fprintf (f, "check_state_alts_%d", automaton->automaton_order_num);
  else
    fprintf (f, "%s_check_state_alts",
	     automaton->corresponding_automaton_decl->name);
}

/* Output name of base vector of the alternatives number table for given
   automaton.  */
static void
output_state_alts_base_vect_name (FILE *f, automaton_t automaton)
{
  if (automaton->corresponding_automaton_decl == NULL)
    fprintf (f, "base_state_alts_%d", automaton->automaton_order_num);
  else
    fprintf (f, "%s_base_state_alts",
	     automaton->corresponding_automaton_decl->name);
}

/* Output name of simple min issue delay table representation.  */
static void
output_min_issue_delay_vect_name (FILE *f, automaton_t automaton)
{
  if (automaton->corresponding_automaton_decl == NULL)
    fprintf (f, "min_issue_delay_%d", automaton->automaton_order_num);
  else
    fprintf (f, "%s_min_issue_delay",
             automaton->corresponding_automaton_decl->name);
}

/* Output name of deadlock vector for given automaton.  */
static void
output_dead_lock_vect_name (FILE *f, automaton_t automaton)
{
  if (automaton->corresponding_automaton_decl == NULL)
    fprintf (f, "dead_lock_%d", automaton->automaton_order_num);
  else
    fprintf (f, "%s_dead_lock", automaton->corresponding_automaton_decl->name);
}

/* Output name of reserved units table for AUTOMATON into file F.  */
static void
output_reserved_units_table_name (FILE *f, automaton_t automaton)
{
  if (automaton->corresponding_automaton_decl == NULL)
    fprintf (f, "reserved_units_%d", automaton->automaton_order_num);
  else
    fprintf (f, "%s_reserved_units",
	     automaton->corresponding_automaton_decl->name);
}

/* Name of the PHR interface macro.  */
#define AUTOMATON_STATE_ALTS_MACRO_NAME "AUTOMATON_STATE_ALTS"

/* Name of the PHR interface macro.  */
#define CPU_UNITS_QUERY_MACRO_NAME "CPU_UNITS_QUERY"

/* Names of an internal functions: */
#define INTERNAL_MIN_ISSUE_DELAY_FUNC_NAME "internal_min_issue_delay"

/* This is external type of DFA(s) state.  */
#define STATE_TYPE_NAME "state_t"

#define INTERNAL_TRANSITION_FUNC_NAME "internal_state_transition"

#define INTERNAL_STATE_ALTS_FUNC_NAME "internal_state_alts"

#define INTERNAL_RESET_FUNC_NAME "internal_reset"

#define INTERNAL_DEAD_LOCK_FUNC_NAME "internal_state_dead_lock_p"

#define INTERNAL_INSN_LATENCY_FUNC_NAME "internal_insn_latency"

/* Name of cache of insn dfa codes.  */
#define DFA_INSN_CODES_VARIABLE_NAME "dfa_insn_codes"

/* Name of length of cache of insn dfa codes.  */
#define DFA_INSN_CODES_LENGTH_VARIABLE_NAME "dfa_insn_codes_length"

/* Names of the PHR interface functions: */
#define SIZE_FUNC_NAME "state_size"

#define TRANSITION_FUNC_NAME "state_transition"

#define STATE_ALTS_FUNC_NAME "state_alts"

#define MIN_ISSUE_DELAY_FUNC_NAME "min_issue_delay"

#define MIN_INSN_CONFLICT_DELAY_FUNC_NAME "min_insn_conflict_delay"

#define DEAD_LOCK_FUNC_NAME "state_dead_lock_p"

#define RESET_FUNC_NAME "state_reset"

#define INSN_LATENCY_FUNC_NAME "insn_latency"

#define PRINT_RESERVATION_FUNC_NAME "print_reservation"

#define GET_CPU_UNIT_CODE_FUNC_NAME "get_cpu_unit_code"

#define CPU_UNIT_RESERVATION_P_FUNC_NAME "cpu_unit_reservation_p"

#define DFA_CLEAN_INSN_CACHE_FUNC_NAME  "dfa_clean_insn_cache"

#define DFA_START_FUNC_NAME  "dfa_start"

#define DFA_FINISH_FUNC_NAME "dfa_finish"

/* Names of parameters of the PHR interface functions.  */
#define STATE_NAME "state"

#define INSN_PARAMETER_NAME "insn"

#define INSN2_PARAMETER_NAME "insn2"

#define CHIP_PARAMETER_NAME "chip"

#define FILE_PARAMETER_NAME "f"

#define CPU_UNIT_NAME_PARAMETER_NAME "cpu_unit_name"

#define CPU_CODE_PARAMETER_NAME "cpu_unit_code"

/* Names of the variables whose values are internal insn code of rtx
   insn.  */
#define INTERNAL_INSN_CODE_NAME "insn_code"

#define INTERNAL_INSN2_CODE_NAME "insn2_code"

/* Names of temporary variables in some functions.  */
#define TEMPORARY_VARIABLE_NAME "temp"

#define I_VARIABLE_NAME "i"

/* Name of result variable in some functions.  */
#define RESULT_VARIABLE_NAME "res"

/* Name of function (attribute) to translate insn into internal insn
   code.  */
#define INTERNAL_DFA_INSN_CODE_FUNC_NAME "internal_dfa_insn_code"

/* Name of function (attribute) to translate insn into internal insn
   code with caching.  */
#define DFA_INSN_CODE_FUNC_NAME "dfa_insn_code"

/* Name of function (attribute) to translate insn into internal insn
   code.  */
#define INSN_DEFAULT_LATENCY_FUNC_NAME "insn_default_latency"

/* Name of function (attribute) to translate insn into internal insn
   code.  */
#define BYPASS_P_FUNC_NAME "bypass_p"

/* Output C type which is used for representation of codes of states
   of AUTOMATON.  */
static void
output_state_member_type (FILE *f, automaton_t automaton)
{
  output_range_type (f, 0, automaton->achieved_states_num);
}

/* Output definition of the structure representing current DFA(s)
   state(s).  */
static void
output_chip_definitions (void)
{
  automaton_t automaton;

  fprintf (output_file, "struct %s\n{\n", CHIP_NAME);
  for (automaton = description->first_automaton;
       automaton != NULL;
       automaton = automaton->next_automaton)
    {
      fprintf (output_file, "  ");
      output_state_member_type (output_file, automaton);
      fprintf (output_file, " ");
      output_chip_member_name (output_file, automaton);
      fprintf (output_file, ";\n");
    }
  fprintf (output_file, "};\n\n");
#if 0
  fprintf (output_file, "static struct %s %s;\n\n", CHIP_NAME, CHIP_NAME);
#endif
}


/* The function outputs translate vector of internal insn code into
   insn equivalence class number.  The equivalence class number is
   used to access to table and vectors representing DFA(s).  */
static void
output_translate_vect (automaton_t automaton)
{
  ainsn_t ainsn;
  int insn_value;
  vla_hwint_t translate_vect;

  VLA_HWINT_CREATE (translate_vect, 250, "translate vector");
  VLA_HWINT_EXPAND (translate_vect, description->insns_num);
  for (insn_value = 0; insn_value < description->insns_num; insn_value++)
    /* Undefined value */
    VLA_HWINT (translate_vect, insn_value) = automaton->insn_equiv_classes_num;
  for (ainsn = automaton->ainsn_list; ainsn != NULL; ainsn = ainsn->next_ainsn)
    VLA_HWINT (translate_vect, ainsn->insn_reserv_decl->insn_num)
      = ainsn->insn_equiv_class_num;
  fprintf (output_file,
           "/* Vector translating external insn codes to internal ones.*/\n");
  fprintf (output_file, "static const ");
  output_range_type (output_file, 0, automaton->insn_equiv_classes_num);
  fprintf (output_file, " ");
  output_translate_vect_name (output_file, automaton);
  fprintf (output_file, "[] ATTRIBUTE_UNUSED = {\n");
  output_vect (VLA_HWINT_BEGIN (translate_vect),
	       VLA_HWINT_LENGTH (translate_vect));
  fprintf (output_file, "};\n\n");
  VLA_HWINT_DELETE (translate_vect);
}

/* The value in a table state x ainsn -> something which represents
   undefined value.  */
static int undefined_vect_el_value;

/* The following function returns nonzero value if the best
   representation of the table is comb vector.  */
static int
comb_vect_p (state_ainsn_table_t tab)
{
  return  (2 * VLA_HWINT_LENGTH (tab->full_vect)
           > 5 * VLA_HWINT_LENGTH (tab->comb_vect));
}

/* The following function creates new table for AUTOMATON.  */
static state_ainsn_table_t
create_state_ainsn_table (automaton_t automaton)
{
  state_ainsn_table_t tab;
  int full_vect_length;
  int i;

  tab = create_node (sizeof (struct state_ainsn_table));
  tab->automaton = automaton;
  VLA_HWINT_CREATE (tab->comb_vect, 10000, "comb vector");
  VLA_HWINT_CREATE (tab->check_vect, 10000, "check vector");
  VLA_HWINT_CREATE (tab->base_vect, 1000, "base vector");
  VLA_HWINT_EXPAND (tab->base_vect, automaton->achieved_states_num);
  VLA_HWINT_CREATE (tab->full_vect, 10000, "full vector");
  full_vect_length = (automaton->insn_equiv_classes_num
                      * automaton->achieved_states_num);
  VLA_HWINT_EXPAND (tab->full_vect, full_vect_length);
  for (i = 0; i < full_vect_length; i++)
    VLA_HWINT (tab->full_vect, i) = undefined_vect_el_value;
  tab->min_base_vect_el_value = 0;
  tab->max_base_vect_el_value = 0;
  tab->min_comb_vect_el_value = 0;
  tab->max_comb_vect_el_value = 0;
  return tab;
}

/* The following function outputs the best C representation of the
   table TAB of given TABLE_NAME.  */
static void
output_state_ainsn_table (state_ainsn_table_t tab, char *table_name,
			  void (*output_full_vect_name_func) (FILE *, automaton_t),
			  void (*output_comb_vect_name_func) (FILE *, automaton_t),
			  void (*output_check_vect_name_func) (FILE *, automaton_t),
			  void (*output_base_vect_name_func) (FILE *, automaton_t))
{
  if (!comb_vect_p (tab))
    {
      fprintf (output_file, "/* Vector for %s.  */\n", table_name);
      fprintf (output_file, "static const ");
      output_range_type (output_file, tab->min_comb_vect_el_value,
                         tab->max_comb_vect_el_value);
      fprintf (output_file, " ");
      (*output_full_vect_name_func) (output_file, tab->automaton);
      fprintf (output_file, "[] ATTRIBUTE_UNUSED = {\n");
      output_vect (VLA_HWINT_BEGIN (tab->full_vect),
                   VLA_HWINT_LENGTH (tab->full_vect));
      fprintf (output_file, "};\n\n");
    }
  else
    {
      fprintf (output_file, "/* Comb vector for %s.  */\n", table_name);
      fprintf (output_file, "static const ");
      output_range_type (output_file, tab->min_comb_vect_el_value,
                         tab->max_comb_vect_el_value);
      fprintf (output_file, " ");
      (*output_comb_vect_name_func) (output_file, tab->automaton);
      fprintf (output_file, "[] ATTRIBUTE_UNUSED = {\n");
      output_vect (VLA_HWINT_BEGIN (tab->comb_vect),
                   VLA_HWINT_LENGTH (tab->comb_vect));
      fprintf (output_file, "};\n\n");
      fprintf (output_file, "/* Check vector for %s.  */\n", table_name);
      fprintf (output_file, "static const ");
      output_range_type (output_file, 0, tab->automaton->achieved_states_num);
      fprintf (output_file, " ");
      (*output_check_vect_name_func) (output_file, tab->automaton);
      fprintf (output_file, "[] = {\n");
      output_vect (VLA_HWINT_BEGIN (tab->check_vect),
                   VLA_HWINT_LENGTH (tab->check_vect));
      fprintf (output_file, "};\n\n");
      fprintf (output_file, "/* Base vector for %s.  */\n", table_name);
      fprintf (output_file, "static const ");
      output_range_type (output_file, tab->min_base_vect_el_value,
                         tab->max_base_vect_el_value);
      fprintf (output_file, " ");
      (*output_base_vect_name_func) (output_file, tab->automaton);
      fprintf (output_file, "[] = {\n");
      output_vect (VLA_HWINT_BEGIN (tab->base_vect),
                   VLA_HWINT_LENGTH (tab->base_vect));
      fprintf (output_file, "};\n\n");
    }
}

/* The following function adds vector with length VECT_LENGTH and
   elements pointed by VECT to table TAB as its line with number
   VECT_NUM.  */
static void
add_vect (state_ainsn_table_t tab, int vect_num, vect_el_t *vect,
	  int vect_length)
{
  int real_vect_length;
  vect_el_t *comb_vect_start;
  vect_el_t *check_vect_start;
  int comb_vect_index;
  int comb_vect_els_num;
  int vect_index;
  int first_unempty_vect_index;
  int additional_els_num;
  int no_state_value;
  vect_el_t vect_el;
  int i;

  if (vect_length == 0)
    abort ();
  real_vect_length = tab->automaton->insn_equiv_classes_num;
  if (vect [vect_length - 1] == undefined_vect_el_value)
    abort ();
  /* Form full vector in the table: */
  for (i = 0; i < vect_length; i++)
    VLA_HWINT (tab->full_vect,
               i + tab->automaton->insn_equiv_classes_num * vect_num)
      = vect [i];
  /* Form comb vector in the table: */
  if (VLA_HWINT_LENGTH (tab->comb_vect) != VLA_HWINT_LENGTH (tab->check_vect))
    abort ();
  comb_vect_start = VLA_HWINT_BEGIN (tab->comb_vect);
  comb_vect_els_num = VLA_HWINT_LENGTH (tab->comb_vect);
  for (first_unempty_vect_index = 0;
       first_unempty_vect_index < vect_length;
       first_unempty_vect_index++)
    if (vect [first_unempty_vect_index] != undefined_vect_el_value)
      break;
  /* Search for the place in comb vect for the inserted vect.  */
  for (comb_vect_index = 0;
       comb_vect_index < comb_vect_els_num;
       comb_vect_index++)
    {
      for (vect_index = first_unempty_vect_index;
           vect_index < vect_length
             && vect_index + comb_vect_index < comb_vect_els_num;
           vect_index++)
        if (vect [vect_index] != undefined_vect_el_value
            && (comb_vect_start [vect_index + comb_vect_index]
		!= undefined_vect_el_value))
          break;
      if (vect_index >= vect_length
          || vect_index + comb_vect_index >= comb_vect_els_num)
        break;
    }
  /* Slot was found.  */
  additional_els_num = comb_vect_index + real_vect_length - comb_vect_els_num;
  if (additional_els_num < 0)
    additional_els_num = 0;
  /* Expand comb and check vectors.  */
  vect_el = undefined_vect_el_value;
  no_state_value = tab->automaton->achieved_states_num;
  while (additional_els_num > 0)
    {
      VLA_HWINT_ADD (tab->comb_vect, vect_el);
      VLA_HWINT_ADD (tab->check_vect, no_state_value);
      additional_els_num--;
    }
  comb_vect_start = VLA_HWINT_BEGIN (tab->comb_vect);
  check_vect_start = VLA_HWINT_BEGIN (tab->check_vect);
  if (VLA_HWINT_LENGTH (tab->comb_vect)
      < (size_t) (comb_vect_index + real_vect_length))
    abort ();
  /* Fill comb and check vectors.  */
  for (vect_index = 0; vect_index < vect_length; vect_index++)
    if (vect [vect_index] != undefined_vect_el_value)
      {
        if (comb_vect_start [comb_vect_index + vect_index]
	    != undefined_vect_el_value)
	  abort ();
        comb_vect_start [comb_vect_index + vect_index] = vect [vect_index];
        if (vect [vect_index] < 0)
	  abort ();
        if (tab->max_comb_vect_el_value < vect [vect_index])
          tab->max_comb_vect_el_value = vect [vect_index];
        if (tab->min_comb_vect_el_value > vect [vect_index])
          tab->min_comb_vect_el_value = vect [vect_index];
        check_vect_start [comb_vect_index + vect_index] = vect_num;
      }
  if (tab->max_comb_vect_el_value < undefined_vect_el_value)
    tab->max_comb_vect_el_value = undefined_vect_el_value;
  if (tab->min_comb_vect_el_value > undefined_vect_el_value)
    tab->min_comb_vect_el_value = undefined_vect_el_value;
  if (tab->max_base_vect_el_value < comb_vect_index)
    tab->max_base_vect_el_value = comb_vect_index;
  if (tab->min_base_vect_el_value > comb_vect_index)
    tab->min_base_vect_el_value = comb_vect_index;
  VLA_HWINT (tab->base_vect, vect_num) = comb_vect_index;
}

/* Return number of out arcs of STATE.  */
static int
out_state_arcs_num (state_t state)
{
  int result;
  arc_t arc;

  result = 0;
  for (arc = first_out_arc (state); arc != NULL; arc = next_out_arc (arc))
    {
      if (arc->insn == NULL)
	abort ();
      if (arc->insn->first_ainsn_with_given_equivalence_num)
        result++;
    }
  return result;
}

/* Compare number of possible transitions from the states.  */
static int
compare_transition_els_num (const void *state_ptr_1,
			    const void *state_ptr_2)
{
  int transition_els_num_1;
  int transition_els_num_2;

  transition_els_num_1 = out_state_arcs_num (*(state_t *) state_ptr_1);
  transition_els_num_2 = out_state_arcs_num (*(state_t *) state_ptr_2);
  if (transition_els_num_1 < transition_els_num_2)
    return 1;
  else if (transition_els_num_1 == transition_els_num_2)
    return 0;
  else
    return -1;
}

/* The function adds element EL_VALUE to vector VECT for a table state
   x AINSN.  */
static void
add_vect_el (vla_hwint_t *vect, ainsn_t ainsn, int el_value)
{
  int equiv_class_num;
  int vect_index;

  if (ainsn == NULL)
    abort ();
  equiv_class_num = ainsn->insn_equiv_class_num;
  for (vect_index = VLA_HWINT_LENGTH (*vect);
       vect_index <= equiv_class_num;
       vect_index++)
    VLA_HWINT_ADD (*vect, undefined_vect_el_value);
  VLA_HWINT (*vect, equiv_class_num) = el_value;
}

/* This is for forming vector of states of an automaton.  */
static vla_ptr_t output_states_vect;

/* The function is called by function pass_states.  The function adds
   STATE to `output_states_vect'.  */
static void
add_states_vect_el (state_t state)
{
  VLA_PTR_ADD (output_states_vect, state);
}

/* Form and output vectors (comb, check, base or full vector)
   representing transition table of AUTOMATON.  */
static void
output_trans_table (automaton_t automaton)
{
  state_t *state_ptr;
  arc_t arc;
  vla_hwint_t transition_vect;

  undefined_vect_el_value = automaton->achieved_states_num;
  automaton->trans_table = create_state_ainsn_table (automaton);
  /* Create vect of pointers to states ordered by num of transitions
     from the state (state with the maximum num is the first).  */
  VLA_PTR_CREATE (output_states_vect, 1500, "output states vector");
  pass_states (automaton, add_states_vect_el);
  qsort (VLA_PTR_BEGIN (output_states_vect),
         VLA_PTR_LENGTH (output_states_vect),
         sizeof (state_t), compare_transition_els_num);
  VLA_HWINT_CREATE (transition_vect, 500, "transition vector");
  for (state_ptr = VLA_PTR_BEGIN (output_states_vect);
       state_ptr <= (state_t *) VLA_PTR_LAST (output_states_vect);
       state_ptr++)
    {
      VLA_HWINT_NULLIFY (transition_vect);
      for (arc = first_out_arc (*state_ptr);
	   arc != NULL;
	   arc = next_out_arc (arc))
        {
          if (arc->insn == NULL)
	    abort ();
          if (arc->insn->first_ainsn_with_given_equivalence_num)
            add_vect_el (&transition_vect, arc->insn,
                         arc->to_state->order_state_num);
        }
      add_vect (automaton->trans_table, (*state_ptr)->order_state_num,
                VLA_HWINT_BEGIN (transition_vect),
                VLA_HWINT_LENGTH (transition_vect));
    }
  output_state_ainsn_table
    (automaton->trans_table, (char *) "state transitions",
     output_trans_full_vect_name, output_trans_comb_vect_name,
     output_trans_check_vect_name, output_trans_base_vect_name);
  VLA_PTR_DELETE (output_states_vect);
  VLA_HWINT_DELETE (transition_vect);
}

/* Form and output vectors (comb, check, base or simple vect)
   representing alts number table of AUTOMATON.  The table is state x
   ainsn -> number of possible alternative reservations by the
   ainsn.  */
static void
output_state_alts_table (automaton_t automaton)
{
  state_t *state_ptr;
  arc_t arc;
  vla_hwint_t state_alts_vect;

  undefined_vect_el_value = 0; /* no alts when transition is not possible */
  automaton->state_alts_table = create_state_ainsn_table (automaton);
  /* Create vect of pointers to states ordered by num of transitions
     from the state (state with the maximum num is the first).  */
  VLA_PTR_CREATE (output_states_vect, 1500, "output states vector");
  pass_states (automaton, add_states_vect_el);
  qsort (VLA_PTR_BEGIN (output_states_vect),
         VLA_PTR_LENGTH (output_states_vect),
         sizeof (state_t), compare_transition_els_num);
  /* Create base, comb, and check vectors.  */
  VLA_HWINT_CREATE (state_alts_vect, 500, "state alts vector");
  for (state_ptr = VLA_PTR_BEGIN (output_states_vect);
       state_ptr <= (state_t *) VLA_PTR_LAST (output_states_vect);
       state_ptr++)
    {
      VLA_HWINT_NULLIFY (state_alts_vect);
      for (arc = first_out_arc (*state_ptr);
	   arc != NULL;
	   arc = next_out_arc (arc))
        {
          if (arc->insn == NULL)
	    abort ();
          if (arc->insn->first_ainsn_with_given_equivalence_num)
            add_vect_el (&state_alts_vect, arc->insn, arc->state_alts);
        }
      add_vect (automaton->state_alts_table, (*state_ptr)->order_state_num,
                VLA_HWINT_BEGIN (state_alts_vect),
                VLA_HWINT_LENGTH (state_alts_vect));
    }
  output_state_ainsn_table
    (automaton->state_alts_table, (char *) "state insn alternatives",
     output_state_alts_full_vect_name, output_state_alts_comb_vect_name,
     output_state_alts_check_vect_name, output_state_alts_base_vect_name);
  VLA_PTR_DELETE (output_states_vect);
  VLA_HWINT_DELETE (state_alts_vect);
}

/* The current number of passing states to find minimal issue delay
   value for an ainsn and state.  */
static int curr_state_pass_num;

/* This recursive function passes states to find minimal issue delay
   value for AINSN.  The state being visited is STATE.  The function
   returns minimal issue delay value for AINSN in STATE or -1 if we
   enter into a loop.  */
static int
min_issue_delay_pass_states (state_t state, ainsn_t ainsn)
{
  arc_t arc;
  int min_insn_issue_delay, insn_issue_delay;

  if (state->state_pass_num == curr_state_pass_num
      || state->min_insn_issue_delay != -1)
    /* We've entered into a loop or already have the correct value for
       given state and ainsn.  */
    return state->min_insn_issue_delay;
  state->state_pass_num = curr_state_pass_num;
  min_insn_issue_delay = -1;
  for (arc = first_out_arc (state); arc != NULL; arc = next_out_arc (arc))
    if (arc->insn == ainsn)
      {
	min_insn_issue_delay = 0;
	break;
      }
    else
      {
        insn_issue_delay = min_issue_delay_pass_states (arc->to_state, ainsn);
	if (insn_issue_delay != -1)
	  {
	    if (arc->insn->insn_reserv_decl
		== DECL_INSN_RESERV (advance_cycle_insn_decl))
	      insn_issue_delay++;
	    if (min_insn_issue_delay == -1
		|| min_insn_issue_delay > insn_issue_delay)
	      {
		min_insn_issue_delay = insn_issue_delay;
		if (insn_issue_delay == 0)
		  break;
	      }
	  }
      }
  return min_insn_issue_delay;
}

/* The function searches minimal issue delay value for AINSN in STATE.
   The function can return negative value if we can not issue AINSN.  We
   will report about it later.  */
static int
min_issue_delay (state_t state, ainsn_t ainsn)
{
  curr_state_pass_num++;
  state->min_insn_issue_delay = min_issue_delay_pass_states (state, ainsn);
  return state->min_insn_issue_delay;
}

/* The function initiates code for finding minimal issue delay values.
   It should be called only once.  */
static void
initiate_min_issue_delay_pass_states (void)
{
  curr_state_pass_num = 0;
}

/* Form and output vectors representing minimal issue delay table of
   AUTOMATON.  The table is state x ainsn -> minimal issue delay of
   the ainsn.  */
static void
output_min_issue_delay_table (automaton_t automaton)
{
  vla_hwint_t min_issue_delay_vect;
  vla_hwint_t compressed_min_issue_delay_vect;
  vect_el_t min_delay;
  ainsn_t ainsn;
  state_t *state_ptr;
  int i;

  /* Create vect of pointers to states ordered by num of transitions
     from the state (state with the maximum num is the first).  */
  VLA_PTR_CREATE (output_states_vect, 1500, "output states vector");
  pass_states (automaton, add_states_vect_el);
  VLA_HWINT_CREATE (min_issue_delay_vect, 1500, "min issue delay vector");
  VLA_HWINT_EXPAND (min_issue_delay_vect,
		    VLA_HWINT_LENGTH (output_states_vect)
		    * automaton->insn_equiv_classes_num);
  for (i = 0;
       i < ((int) VLA_HWINT_LENGTH (output_states_vect)
	    * automaton->insn_equiv_classes_num);
       i++)
    VLA_HWINT (min_issue_delay_vect, i) = 0;
  automaton->max_min_delay = 0;
  for (ainsn = automaton->ainsn_list; ainsn != NULL; ainsn = ainsn->next_ainsn)
    if (ainsn->first_ainsn_with_given_equivalence_num)
      {
	for (state_ptr = VLA_PTR_BEGIN (output_states_vect);
	     state_ptr <= (state_t *) VLA_PTR_LAST (output_states_vect);
	     state_ptr++)
	  (*state_ptr)->min_insn_issue_delay = -1;
	for (state_ptr = VLA_PTR_BEGIN (output_states_vect);
	     state_ptr <= (state_t *) VLA_PTR_LAST (output_states_vect);
	     state_ptr++)
	  {
            min_delay = min_issue_delay (*state_ptr, ainsn);
	    if (automaton->max_min_delay < min_delay)
	      automaton->max_min_delay = min_delay;
	    VLA_HWINT (min_issue_delay_vect,
		       (*state_ptr)->order_state_num
		       * automaton->insn_equiv_classes_num
		       + ainsn->insn_equiv_class_num) = min_delay;
	  }
      }
  fprintf (output_file, "/* Vector of min issue delay of insns.  */\n");
  fprintf (output_file, "static const ");
  output_range_type (output_file, 0, automaton->max_min_delay);
  fprintf (output_file, " ");
  output_min_issue_delay_vect_name (output_file, automaton);
  fprintf (output_file, "[] ATTRIBUTE_UNUSED = {\n");
  /* Compress the vector.  */
  if (automaton->max_min_delay < 2)
    automaton->min_issue_delay_table_compression_factor = 8;
  else if (automaton->max_min_delay < 4)
    automaton->min_issue_delay_table_compression_factor = 4;
  else if (automaton->max_min_delay < 16)
    automaton->min_issue_delay_table_compression_factor = 2;
  else
    automaton->min_issue_delay_table_compression_factor = 1;
  VLA_HWINT_CREATE (compressed_min_issue_delay_vect, 1500,
		    "compressed min issue delay vector");
  VLA_HWINT_EXPAND (compressed_min_issue_delay_vect,
		    (VLA_HWINT_LENGTH (min_issue_delay_vect)
		     + automaton->min_issue_delay_table_compression_factor
		     - 1)
		    / automaton->min_issue_delay_table_compression_factor);
  for (i = 0;
       i < (int) VLA_HWINT_LENGTH (compressed_min_issue_delay_vect);
       i++)
    VLA_HWINT (compressed_min_issue_delay_vect, i) = 0;
  for (i = 0; i < (int) VLA_HWINT_LENGTH (min_issue_delay_vect); i++)
    VLA_HWINT (compressed_min_issue_delay_vect,
	       i / automaton->min_issue_delay_table_compression_factor)
      |= (VLA_HWINT (min_issue_delay_vect, i)
	  << (8 - (i % automaton->min_issue_delay_table_compression_factor
		   + 1)
	      * (8 / automaton->min_issue_delay_table_compression_factor)));
  output_vect (VLA_HWINT_BEGIN (compressed_min_issue_delay_vect),
               VLA_HWINT_LENGTH (compressed_min_issue_delay_vect));
  fprintf (output_file, "};\n\n");
  VLA_PTR_DELETE (output_states_vect);
  VLA_HWINT_DELETE (min_issue_delay_vect);
  VLA_HWINT_DELETE (compressed_min_issue_delay_vect);
}

#ifndef NDEBUG
/* Number of states which contains transition only by advancing cpu
   cycle.  */
static int locked_states_num;
#endif

/* Form and output vector representing the locked states of
   AUTOMATON.  */
static void
output_dead_lock_vect (automaton_t automaton)
{
  state_t *state_ptr;
  arc_t arc;
  vla_hwint_t dead_lock_vect;

  /* Create vect of pointers to states ordered by num of
     transitions from the state (state with the maximum num is the
     first).  */
  VLA_PTR_CREATE (output_states_vect, 1500, "output states vector");
  pass_states (automaton, add_states_vect_el);
  VLA_HWINT_CREATE (dead_lock_vect, 1500, "is dead locked vector");
  VLA_HWINT_EXPAND (dead_lock_vect, VLA_HWINT_LENGTH (output_states_vect));
  for (state_ptr = VLA_PTR_BEGIN (output_states_vect);
       state_ptr <= (state_t *) VLA_PTR_LAST (output_states_vect);
       state_ptr++)
    {
      arc = first_out_arc (*state_ptr);
      if (arc == NULL)
	abort ();
      VLA_HWINT (dead_lock_vect, (*state_ptr)->order_state_num)
        = (next_out_arc (arc) == NULL
           && (arc->insn->insn_reserv_decl
               == DECL_INSN_RESERV (advance_cycle_insn_decl)) ? 1 : 0);
#ifndef NDEBUG
      if (VLA_HWINT (dead_lock_vect, (*state_ptr)->order_state_num))
        locked_states_num++;
#endif
    }
  fprintf (output_file, "/* Vector for locked state flags.  */\n");
  fprintf (output_file, "static const ");
  output_range_type (output_file, 0, 1);
  fprintf (output_file, " ");
  output_dead_lock_vect_name (output_file, automaton);
  fprintf (output_file, "[] = {\n");
  output_vect (VLA_HWINT_BEGIN (dead_lock_vect),
	       VLA_HWINT_LENGTH (dead_lock_vect));
  fprintf (output_file, "};\n\n");
  VLA_HWINT_DELETE (dead_lock_vect);
  VLA_PTR_DELETE (output_states_vect);
}

/* Form and output vector representing reserved units of the states of
   AUTOMATON.  */
static void
output_reserved_units_table (automaton_t automaton)
{
  state_t *curr_state_ptr;
  vla_hwint_t reserved_units_table;
  size_t state_byte_size;
  int i;

  /* Create vect of pointers to states.  */
  VLA_PTR_CREATE (output_states_vect, 1500, "output states vector");
  pass_states (automaton, add_states_vect_el);
  /* Create vector.  */
  VLA_HWINT_CREATE (reserved_units_table, 1500, "reserved units vector");
  state_byte_size = (description->query_units_num + 7) / 8;
  VLA_HWINT_EXPAND (reserved_units_table,
		    VLA_HWINT_LENGTH (output_states_vect) * state_byte_size);
  for (i = 0;
       i < (int) (VLA_HWINT_LENGTH (output_states_vect) * state_byte_size);
       i++)
    VLA_HWINT (reserved_units_table, i) = 0;
  for (curr_state_ptr = VLA_PTR_BEGIN (output_states_vect);
       curr_state_ptr <= (state_t *) VLA_PTR_LAST (output_states_vect);
       curr_state_ptr++)
    {
      for (i = 0; i < description->units_num; i++)
	if (units_array [i]->query_p
	    && first_cycle_unit_presence (*curr_state_ptr, i))
	  VLA_HWINT (reserved_units_table,
		     (*curr_state_ptr)->order_state_num * state_byte_size
		     + units_array [i]->query_num / 8)
	    += (1 << (units_array [i]->query_num % 8));
    }
  fprintf (output_file, "/* Vector for reserved units of states.  */\n");
  fprintf (output_file, "static const ");
  output_range_type (output_file, 0, 255);
  fprintf (output_file, " ");
  output_reserved_units_table_name (output_file, automaton);
  fprintf (output_file, "[] = {\n");
  output_vect (VLA_HWINT_BEGIN (reserved_units_table),
               VLA_HWINT_LENGTH (reserved_units_table));
  fprintf (output_file, "};\n\n");
  VLA_HWINT_DELETE (reserved_units_table);
  VLA_PTR_DELETE (output_states_vect);
}

/* The function outputs all tables representing DFA(s) used for fast
   pipeline hazards recognition.  */
static void
output_tables (void)
{
  automaton_t automaton;

#ifndef NDEBUG
  locked_states_num = 0;
#endif
  initiate_min_issue_delay_pass_states ();
  for (automaton = description->first_automaton;
       automaton != NULL;
       automaton = automaton->next_automaton)
    {
      output_translate_vect (automaton);
      output_trans_table (automaton);
      fprintf (output_file, "\n#if %s\n", AUTOMATON_STATE_ALTS_MACRO_NAME);
      output_state_alts_table (automaton);
      fprintf (output_file, "\n#endif /* #if %s */\n\n",
	       AUTOMATON_STATE_ALTS_MACRO_NAME);
      output_min_issue_delay_table (automaton);
      output_dead_lock_vect (automaton);
      fprintf (output_file, "\n#if %s\n\n", CPU_UNITS_QUERY_MACRO_NAME);
      output_reserved_units_table (automaton);
      fprintf (output_file, "\n#endif /* #if %s */\n\n",
	       CPU_UNITS_QUERY_MACRO_NAME);
    }
  fprintf (output_file, "\n#define %s %d\n\n", ADVANCE_CYCLE_VALUE_NAME,
           DECL_INSN_RESERV (advance_cycle_insn_decl)->insn_num);
}

/* The function outputs definition and value of PHR interface variable
   `max_insn_queue_index'.  Its value is not less than maximal queue
   length needed for the insn scheduler.  */
static void
output_max_insn_queue_index_def (void)
{
  int i, max, latency;
  decl_t decl;

  max = description->max_insn_reserv_cycles;
  for (i = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_insn_reserv && decl != advance_cycle_insn_decl)
	{
	  latency = DECL_INSN_RESERV (decl)->default_latency;
	  if (latency > max)
	    max = latency;
	}
      else if (decl->mode == dm_bypass)
	{
	  latency = DECL_BYPASS (decl)->latency;
	  if (latency > max)
	    max = latency;
	}
    }
  for (i = 0; (1 << i) <= max; i++)
    ;
  if (i < 0)
    abort ();
  fprintf (output_file, "\nint max_insn_queue_index = %d;\n\n", (1 << i) - 1);
}


/* The function outputs switch cases for insn reservations using
   function *output_automata_list_code.  */
static void
output_insn_code_cases (void (*output_automata_list_code)
			(automata_list_el_t))
{
  decl_t decl, decl2;
  int i, j;

  for (i = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_insn_reserv)
	DECL_INSN_RESERV (decl)->processed_p = FALSE;
    }
  for (i = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_insn_reserv
	  && !DECL_INSN_RESERV (decl)->processed_p)
	{
	  for (j = i; j < description->decls_num; j++)
	    {
	      decl2 = description->decls [j];
	      if (decl2->mode == dm_insn_reserv
		  && (DECL_INSN_RESERV (decl2)->important_automata_list
		      == DECL_INSN_RESERV (decl)->important_automata_list))
		{
		  DECL_INSN_RESERV (decl2)->processed_p = TRUE;
		  fprintf (output_file, "    case %d: /* %s */\n",
			   DECL_INSN_RESERV (decl2)->insn_num,
			   DECL_INSN_RESERV (decl2)->name);
		}
	    }
	  (*output_automata_list_code)
	    (DECL_INSN_RESERV (decl)->important_automata_list);
	}
    }
}


/* The function outputs a code for evaluation of a minimal delay of
   issue of insns which have reservations in given AUTOMATA_LIST.  */
static void
output_automata_list_min_issue_delay_code (automata_list_el_t automata_list)
{
  automata_list_el_t el;
  automaton_t automaton;

  for (el = automata_list; el != NULL; el = el->next_automata_list_el)
    {
      automaton = el->automaton;
      fprintf (output_file, "\n      %s = ", TEMPORARY_VARIABLE_NAME);
      output_min_issue_delay_vect_name (output_file, automaton);
      fprintf (output_file,
	       (automaton->min_issue_delay_table_compression_factor != 1
		? " [(" : " ["));
      output_translate_vect_name (output_file, automaton);
      fprintf (output_file, " [%s] + ", INTERNAL_INSN_CODE_NAME);
      fprintf (output_file, "%s->", CHIP_PARAMETER_NAME);
      output_chip_member_name (output_file, automaton);
      fprintf (output_file, " * %d", automaton->insn_equiv_classes_num);
      if (automaton->min_issue_delay_table_compression_factor == 1)
	fprintf (output_file, "];\n");
      else
	{
	  fprintf (output_file, ") / %d];\n",
		   automaton->min_issue_delay_table_compression_factor);
	  fprintf (output_file, "      %s = (%s >> (8 - (",
		   TEMPORARY_VARIABLE_NAME, TEMPORARY_VARIABLE_NAME);
	  output_translate_vect_name (output_file, automaton);
	  fprintf
	    (output_file, " [%s] %% %d + 1) * %d)) & %d;\n",
	     INTERNAL_INSN_CODE_NAME,
	     automaton->min_issue_delay_table_compression_factor,
	     8 / automaton->min_issue_delay_table_compression_factor,
	     (1 << (8 / automaton->min_issue_delay_table_compression_factor))
	     - 1);
	}
      if (el == automata_list)
	fprintf (output_file, "      %s = %s;\n",
		 RESULT_VARIABLE_NAME, TEMPORARY_VARIABLE_NAME);
      else
	{
	  fprintf (output_file, "      if (%s > %s)\n",
		   TEMPORARY_VARIABLE_NAME, RESULT_VARIABLE_NAME);
	  fprintf (output_file, "        %s = %s;\n",
		   RESULT_VARIABLE_NAME, TEMPORARY_VARIABLE_NAME);
	}
    }
  fprintf (output_file, "      break;\n\n");
}

/* Output function `internal_min_issue_delay'.  */
static void
output_internal_min_issue_delay_func (void)
{
  fprintf (output_file,
	   "static int\n%s (int %s, struct %s *%s ATTRIBUTE_UNUSED)\n",
	   INTERNAL_MIN_ISSUE_DELAY_FUNC_NAME, INTERNAL_INSN_CODE_NAME,
	   CHIP_NAME, CHIP_PARAMETER_NAME);
  fprintf (output_file, "{\n  int %s ATTRIBUTE_UNUSED;\n  int %s = -1;\n",
	   TEMPORARY_VARIABLE_NAME, RESULT_VARIABLE_NAME);
  fprintf (output_file, "\n  switch (%s)\n    {\n", INTERNAL_INSN_CODE_NAME);
  output_insn_code_cases (output_automata_list_min_issue_delay_code);
  fprintf (output_file,
	   "\n    default:\n      %s = -1;\n      break;\n    }\n",
	   RESULT_VARIABLE_NAME);
  fprintf (output_file, "  return %s;\n", RESULT_VARIABLE_NAME);
  fprintf (output_file, "}\n\n");
}

/* The function outputs a code changing state after issue of insns
   which have reservations in given AUTOMATA_LIST.  */
static void
output_automata_list_transition_code (automata_list_el_t automata_list)
{
  automata_list_el_t el, next_el;

  fprintf (output_file, "      {\n");
  if (automata_list != NULL && automata_list->next_automata_list_el != NULL)
    for (el = automata_list;; el = next_el)
      {
        next_el = el->next_automata_list_el;
        if (next_el == NULL)
          break;
        fprintf (output_file, "        ");
        output_state_member_type (output_file, el->automaton);
	fprintf (output_file, " ");
        output_temp_chip_member_name (output_file, el->automaton);
        fprintf (output_file, ";\n");
      }
  for (el = automata_list; el != NULL; el = el->next_automata_list_el)
    if (comb_vect_p (el->automaton->trans_table))
      {
	fprintf (output_file, "\n        %s = ", TEMPORARY_VARIABLE_NAME);
	output_trans_base_vect_name (output_file, el->automaton);
	fprintf (output_file, " [%s->", CHIP_PARAMETER_NAME);
	output_chip_member_name (output_file, el->automaton);
	fprintf (output_file, "] + ");
	output_translate_vect_name (output_file, el->automaton);
	fprintf (output_file, " [%s];\n", INTERNAL_INSN_CODE_NAME);
	fprintf (output_file, "        if (");
	output_trans_check_vect_name (output_file, el->automaton);
	fprintf (output_file, " [%s] != %s->",
		 TEMPORARY_VARIABLE_NAME, CHIP_PARAMETER_NAME);
	output_chip_member_name (output_file, el->automaton);
	fprintf (output_file, ")\n");
	fprintf (output_file, "          return %s (%s, %s);\n",
		 INTERNAL_MIN_ISSUE_DELAY_FUNC_NAME, INTERNAL_INSN_CODE_NAME,
		 CHIP_PARAMETER_NAME);
	fprintf (output_file, "        else\n");
	fprintf (output_file, "          ");
	if (el->next_automata_list_el != NULL)
	  output_temp_chip_member_name (output_file, el->automaton);
	else
	  {
	    fprintf (output_file, "%s->", CHIP_PARAMETER_NAME);
	    output_chip_member_name (output_file, el->automaton);
	  }
	fprintf (output_file, " = ");
	output_trans_comb_vect_name (output_file, el->automaton);
	fprintf (output_file, " [%s];\n", TEMPORARY_VARIABLE_NAME);
      }
    else
      {
	fprintf (output_file, "\n        %s = ", TEMPORARY_VARIABLE_NAME);
	output_trans_full_vect_name (output_file, el->automaton);
	fprintf (output_file, " [");
	output_translate_vect_name (output_file, el->automaton);
	fprintf (output_file, " [%s] + ", INTERNAL_INSN_CODE_NAME);
	fprintf (output_file, "%s->", CHIP_PARAMETER_NAME);
	output_chip_member_name (output_file, el->automaton);
	fprintf (output_file, " * %d];\n",
		 el->automaton->insn_equiv_classes_num);
	fprintf (output_file, "        if (%s >= %d)\n",
		 TEMPORARY_VARIABLE_NAME, el->automaton->achieved_states_num);
	fprintf (output_file, "          return %s (%s, %s);\n",
		 INTERNAL_MIN_ISSUE_DELAY_FUNC_NAME, INTERNAL_INSN_CODE_NAME,
		 CHIP_PARAMETER_NAME);
	fprintf (output_file, "        else\n          ");
	if (el->next_automata_list_el != NULL)
	  output_temp_chip_member_name (output_file, el->automaton);
	else
	  {
	    fprintf (output_file, "%s->", CHIP_PARAMETER_NAME);
	    output_chip_member_name (output_file, el->automaton);
	  }
	fprintf (output_file, " = %s;\n", TEMPORARY_VARIABLE_NAME);
      }
  if (automata_list != NULL && automata_list->next_automata_list_el != NULL)
    for (el = automata_list;; el = next_el)
      {
        next_el = el->next_automata_list_el;
        if (next_el == NULL)
          break;
        fprintf (output_file, "        %s->", CHIP_PARAMETER_NAME);
        output_chip_member_name (output_file, el->automaton);
        fprintf (output_file, " = ");
        output_temp_chip_member_name (output_file, el->automaton);
        fprintf (output_file, ";\n");
      }
  fprintf (output_file, "        return -1;\n");
  fprintf (output_file, "      }\n");
}

/* Output function `internal_state_transition'.  */
static void
output_internal_trans_func (void)
{
  fprintf (output_file,
	   "static int\n%s (int %s, struct %s *%s ATTRIBUTE_UNUSED)\n",
	   INTERNAL_TRANSITION_FUNC_NAME, INTERNAL_INSN_CODE_NAME,
	   CHIP_NAME, CHIP_PARAMETER_NAME);
  fprintf (output_file, "{\n  int %s ATTRIBUTE_UNUSED;\n", TEMPORARY_VARIABLE_NAME);
  fprintf (output_file, "\n  switch (%s)\n    {\n", INTERNAL_INSN_CODE_NAME);
  output_insn_code_cases (output_automata_list_transition_code);
  fprintf (output_file, "\n    default:\n      return -1;\n    }\n");
  fprintf (output_file, "}\n\n");
}

/* Output code

  if (insn != 0)
    {
      insn_code = dfa_insn_code (insn);
      if (insn_code > DFA__ADVANCE_CYCLE)
        return code;
    }
  else
    insn_code = DFA__ADVANCE_CYCLE;

  where insn denotes INSN_NAME, insn_code denotes INSN_CODE_NAME, and
  code denotes CODE.  */
static void
output_internal_insn_code_evaluation (const char *insn_name,
				      const char *insn_code_name,
				      int code)
{
  fprintf (output_file, "\n  if (%s != 0)\n    {\n", insn_name);
  fprintf (output_file, "      %s = %s (%s);\n", insn_code_name,
	   DFA_INSN_CODE_FUNC_NAME, insn_name);
  fprintf (output_file, "      if (%s > %s)\n        return %d;\n",
	   insn_code_name, ADVANCE_CYCLE_VALUE_NAME, code);
  fprintf (output_file, "    }\n  else\n    %s = %s;\n\n",
	   insn_code_name, ADVANCE_CYCLE_VALUE_NAME);
}


/* This function outputs `dfa_insn_code' and its helper function
   `dfa_insn_code_enlarge'.  */
static void
output_dfa_insn_code_func (void)
{
  /* Emacs c-mode gets really confused if there's a { or } in column 0
     inside a string, so don't do that.  */
  fprintf (output_file, "\
static void\n\
dfa_insn_code_enlarge (int uid)\n\
{\n\
  int i = %s;\n\
  %s = 2 * uid;\n\
  %s = xrealloc (%s,\n\
                 %s * sizeof(int));\n\
  for (; i < %s; i++)\n\
    %s[i] = -1;\n}\n\n",
	   DFA_INSN_CODES_LENGTH_VARIABLE_NAME,
	   DFA_INSN_CODES_LENGTH_VARIABLE_NAME,
	   DFA_INSN_CODES_VARIABLE_NAME, DFA_INSN_CODES_VARIABLE_NAME,
	   DFA_INSN_CODES_LENGTH_VARIABLE_NAME,
	   DFA_INSN_CODES_LENGTH_VARIABLE_NAME,
	   DFA_INSN_CODES_VARIABLE_NAME);
  fprintf (output_file, "\
static inline int\n%s (rtx %s)\n\
{\n\
  int uid = INSN_UID (%s);\n\
  int %s;\n\n",
	   DFA_INSN_CODE_FUNC_NAME, INSN_PARAMETER_NAME,
	   INSN_PARAMETER_NAME, INTERNAL_INSN_CODE_NAME);

  fprintf (output_file,
	   "  if (uid >= %s)\n    dfa_insn_code_enlarge (uid);\n\n",
	   DFA_INSN_CODES_LENGTH_VARIABLE_NAME);
  fprintf (output_file, "  %s = %s[uid];\n",
	   INTERNAL_INSN_CODE_NAME, DFA_INSN_CODES_VARIABLE_NAME);
  fprintf (output_file, "\
  if (%s < 0)\n\
    {\n\
      %s = %s (%s);\n\
      %s[uid] = %s;\n\
    }\n",
	   INTERNAL_INSN_CODE_NAME,
	   INTERNAL_INSN_CODE_NAME,
	   INTERNAL_DFA_INSN_CODE_FUNC_NAME, INSN_PARAMETER_NAME,
	   DFA_INSN_CODES_VARIABLE_NAME, INTERNAL_INSN_CODE_NAME);
  fprintf (output_file, "  return %s;\n}\n\n", INTERNAL_INSN_CODE_NAME);
}

/* The function outputs PHR interface function `state_transition'.  */
static void
output_trans_func (void)
{
  fprintf (output_file, "int\n%s (%s %s, rtx %s)\n",
	   TRANSITION_FUNC_NAME, STATE_TYPE_NAME, STATE_NAME,
	   INSN_PARAMETER_NAME);
  fprintf (output_file, "{\n  int %s;\n", INTERNAL_INSN_CODE_NAME);
  output_internal_insn_code_evaluation (INSN_PARAMETER_NAME,
					INTERNAL_INSN_CODE_NAME, -1);
  fprintf (output_file, "  return %s (%s, %s);\n}\n\n",
	   INTERNAL_TRANSITION_FUNC_NAME, INTERNAL_INSN_CODE_NAME, STATE_NAME);
}

/* The function outputs a code for evaluation of alternative states
   number for insns which have reservations in given AUTOMATA_LIST.  */
static void
output_automata_list_state_alts_code (automata_list_el_t automata_list)
{
  automata_list_el_t el;
  automaton_t automaton;

  fprintf (output_file, "      {\n");
  for (el = automata_list; el != NULL; el = el->next_automata_list_el)
    if (comb_vect_p (el->automaton->state_alts_table))
      {
	fprintf (output_file, "        int %s;\n", TEMPORARY_VARIABLE_NAME);
	break;
      }
  for (el = automata_list; el != NULL; el = el->next_automata_list_el)
    {
      automaton = el->automaton;
      if (comb_vect_p (automaton->state_alts_table))
	{
	  fprintf (output_file, "\n        %s = ", TEMPORARY_VARIABLE_NAME);
	  output_state_alts_base_vect_name (output_file, automaton);
	  fprintf (output_file, " [%s->", CHIP_PARAMETER_NAME);
	  output_chip_member_name (output_file, automaton);
	  fprintf (output_file, "] + ");
	  output_translate_vect_name (output_file, automaton);
	  fprintf (output_file, " [%s];\n", INTERNAL_INSN_CODE_NAME);
	  fprintf (output_file, "        if (");
	  output_state_alts_check_vect_name (output_file, automaton);
	  fprintf (output_file, " [%s] != %s->",
		   TEMPORARY_VARIABLE_NAME, CHIP_PARAMETER_NAME);
	  output_chip_member_name (output_file, automaton);
	  fprintf (output_file, ")\n");
	  fprintf (output_file, "          return 0;\n");
	  fprintf (output_file, "        else\n");
	  fprintf (output_file,
		   (el == automata_list
		    ? "          %s = " : "          %s += "),
		   RESULT_VARIABLE_NAME);
	  output_state_alts_comb_vect_name (output_file, automaton);
	  fprintf (output_file, " [%s];\n", TEMPORARY_VARIABLE_NAME);
	}
      else
	{
	  fprintf (output_file,
		   (el == automata_list
		    ? "\n        %s = " : "        %s += "),
		   RESULT_VARIABLE_NAME);
	  output_state_alts_full_vect_name (output_file, automaton);
	  fprintf (output_file, " [");
	  output_translate_vect_name (output_file, automaton);
	  fprintf (output_file, " [%s] + ", INTERNAL_INSN_CODE_NAME);
	  fprintf (output_file, "%s->", CHIP_PARAMETER_NAME);
	  output_chip_member_name (output_file, automaton);
	  fprintf (output_file, " * %d];\n",
		   automaton->insn_equiv_classes_num);
	}
    }
  fprintf (output_file, "        break;\n      }\n\n");
}

/* Output function `internal_state_alts'.  */
static void
output_internal_state_alts_func (void)
{
  fprintf (output_file,
	   "static int\n%s (int %s, struct %s *%s)\n",
	   INTERNAL_STATE_ALTS_FUNC_NAME, INTERNAL_INSN_CODE_NAME,
	   CHIP_NAME, CHIP_PARAMETER_NAME);
  fprintf (output_file, "{\n  int %s;\n", RESULT_VARIABLE_NAME);
  fprintf (output_file, "\n  switch (%s)\n    {\n", INTERNAL_INSN_CODE_NAME);
  output_insn_code_cases (output_automata_list_state_alts_code);
  fprintf (output_file,
	   "\n    default:\n      %s = 0;\n      break;\n    }\n",
	   RESULT_VARIABLE_NAME);
  fprintf (output_file, "  return %s;\n", RESULT_VARIABLE_NAME);
  fprintf (output_file, "}\n\n");
}

/* The function outputs PHR interface function `state_alts'.  */
static void
output_state_alts_func (void)
{
  fprintf (output_file, "int\n%s (%s, %s)\n\t%s %s;\n\trtx %s;\n",
	   STATE_ALTS_FUNC_NAME, STATE_NAME, INSN_PARAMETER_NAME,
	   STATE_TYPE_NAME, STATE_NAME, INSN_PARAMETER_NAME);
  fprintf (output_file, "{\n  int %s;\n", INTERNAL_INSN_CODE_NAME);
  output_internal_insn_code_evaluation (INSN_PARAMETER_NAME,
					INTERNAL_INSN_CODE_NAME, 0);
  fprintf (output_file, "  return %s (%s, %s);\n}\n\n",
	   INTERNAL_STATE_ALTS_FUNC_NAME, INTERNAL_INSN_CODE_NAME, STATE_NAME);
}

/* Output function `min_issue_delay'.  */
static void
output_min_issue_delay_func (void)
{
  fprintf (output_file, "int\n%s (%s %s, rtx %s)\n",
	   MIN_ISSUE_DELAY_FUNC_NAME, STATE_TYPE_NAME, STATE_NAME,
	   INSN_PARAMETER_NAME);
  fprintf (output_file, "{\n  int %s;\n", INTERNAL_INSN_CODE_NAME);
  fprintf (output_file, "\n  if (%s != 0)\n    {\n", INSN_PARAMETER_NAME);
  fprintf (output_file, "      %s = %s (%s);\n", INTERNAL_INSN_CODE_NAME,
	   DFA_INSN_CODE_FUNC_NAME, INSN_PARAMETER_NAME);
  fprintf (output_file, "      if (%s > %s)\n        return 0;\n",
	   INTERNAL_INSN_CODE_NAME, ADVANCE_CYCLE_VALUE_NAME);
  fprintf (output_file, "    }\n  else\n    %s = %s;\n",
	   INTERNAL_INSN_CODE_NAME, ADVANCE_CYCLE_VALUE_NAME);
  fprintf (output_file, "\n  return %s (%s, %s);\n",
	   INTERNAL_MIN_ISSUE_DELAY_FUNC_NAME, INTERNAL_INSN_CODE_NAME,
	   STATE_NAME);
  fprintf (output_file, "}\n\n");
}

/* Output function `internal_dead_lock'.  */
static void
output_internal_dead_lock_func (void)
{
  automaton_t automaton;

  fprintf (output_file, "static int\n%s (struct %s *%s)\n",
	   INTERNAL_DEAD_LOCK_FUNC_NAME, CHIP_NAME, CHIP_PARAMETER_NAME);
  fprintf (output_file, "{\n");
  for (automaton = description->first_automaton;
       automaton != NULL;
       automaton = automaton->next_automaton)
    {
      fprintf (output_file, "  if (");
      output_dead_lock_vect_name (output_file, automaton);
      fprintf (output_file, " [%s->", CHIP_PARAMETER_NAME);
      output_chip_member_name (output_file, automaton);
      fprintf (output_file, "])\n    return 1/* TRUE */;\n");
    }
  fprintf (output_file, "  return 0/* FALSE */;\n}\n\n");
}

/* The function outputs PHR interface function `state_dead_lock_p'.  */
static void
output_dead_lock_func (void)
{
  fprintf (output_file, "int\n%s (%s %s)\n",
	   DEAD_LOCK_FUNC_NAME, STATE_TYPE_NAME, STATE_NAME);
  fprintf (output_file, "{\n  return %s (%s);\n}\n\n",
	   INTERNAL_DEAD_LOCK_FUNC_NAME, STATE_NAME);
}

/* Output function `internal_reset'.  */
static void
output_internal_reset_func (void)
{
  fprintf (output_file, "static inline void\n%s (struct %s *%s)\n",
	   INTERNAL_RESET_FUNC_NAME, CHIP_NAME, CHIP_PARAMETER_NAME);
  fprintf (output_file, "{\n  memset (%s, 0, sizeof (struct %s));\n}\n\n",
	   CHIP_PARAMETER_NAME, CHIP_NAME);
}

/* The function outputs PHR interface function `state_size'.  */
static void
output_size_func (void)
{
  fprintf (output_file, "int\n%s (void)\n", SIZE_FUNC_NAME);
  fprintf (output_file, "{\n  return sizeof (struct %s);\n}\n\n", CHIP_NAME);
}

/* The function outputs PHR interface function `state_reset'.  */
static void
output_reset_func (void)
{
  fprintf (output_file, "void\n%s (%s %s)\n",
	   RESET_FUNC_NAME, STATE_TYPE_NAME, STATE_NAME);
  fprintf (output_file, "{\n  %s (%s);\n}\n\n", INTERNAL_RESET_FUNC_NAME,
	   STATE_NAME);
}

/* Output function `min_insn_conflict_delay'.  */
static void
output_min_insn_conflict_delay_func (void)
{
  fprintf (output_file,
	   "int\n%s (%s %s, rtx %s, rtx %s)\n",
	   MIN_INSN_CONFLICT_DELAY_FUNC_NAME, STATE_TYPE_NAME,
	   STATE_NAME, INSN_PARAMETER_NAME, INSN2_PARAMETER_NAME);
  fprintf (output_file, "{\n  struct %s %s;\n  int %s, %s;\n",
	   CHIP_NAME, CHIP_NAME, INTERNAL_INSN_CODE_NAME,
	   INTERNAL_INSN2_CODE_NAME);
  output_internal_insn_code_evaluation (INSN_PARAMETER_NAME,
					INTERNAL_INSN_CODE_NAME, 0);
  output_internal_insn_code_evaluation (INSN2_PARAMETER_NAME,
					INTERNAL_INSN2_CODE_NAME, 0);
  fprintf (output_file, "  memcpy (&%s, %s, sizeof (%s));\n",
	   CHIP_NAME, STATE_NAME, CHIP_NAME);
  fprintf (output_file, "  %s (&%s);\n", INTERNAL_RESET_FUNC_NAME, CHIP_NAME);
  fprintf (output_file, "  if (%s (%s, &%s) > 0)\n    abort ();\n",
	   INTERNAL_TRANSITION_FUNC_NAME, INTERNAL_INSN_CODE_NAME, CHIP_NAME);
  fprintf (output_file, "  return %s (%s, &%s);\n",
	   INTERNAL_MIN_ISSUE_DELAY_FUNC_NAME, INTERNAL_INSN2_CODE_NAME,
	   CHIP_NAME);
  fprintf (output_file, "}\n\n");
}

/* Output function `internal_insn_latency'.  */
static void
output_internal_insn_latency_func (void)
{
  decl_t decl;
  struct bypass_decl *bypass;
  int i, j, col;
  const char *tabletype = "unsigned char";

  /* Find the smallest integer type that can hold all the default
     latency values.  */
  for (i = 0; i < description->decls_num; i++)
    if (description->decls[i]->mode == dm_insn_reserv)
      {
	decl = description->decls[i];
	if (DECL_INSN_RESERV (decl)->default_latency > UCHAR_MAX
	    && tabletype[0] != 'i')  /* Don't shrink it.  */
	  tabletype = "unsigned short";
	if (DECL_INSN_RESERV (decl)->default_latency > USHRT_MAX)
	  tabletype = "int";
      }

  fprintf (output_file, "static int\n%s (int %s ATTRIBUTE_UNUSED,\n\tint %s ATTRIBUTE_UNUSED,\n\trtx %s ATTRIBUTE_UNUSED,\n\trtx %s ATTRIBUTE_UNUSED)\n",
	   INTERNAL_INSN_LATENCY_FUNC_NAME, INTERNAL_INSN_CODE_NAME,
	   INTERNAL_INSN2_CODE_NAME, INSN_PARAMETER_NAME,
	   INSN2_PARAMETER_NAME);
  fprintf (output_file, "{\n");

  if (DECL_INSN_RESERV (advance_cycle_insn_decl)->insn_num == 0)
    {
      fputs ("  return 0;\n}\n\n", output_file);
      return;
    }

  fprintf (output_file, "  static const %s default_latencies[] =\n    {",
	   tabletype);

  for (i = 0, j = 0, col = 7; i < description->decls_num; i++)
    if (description->decls[i]->mode == dm_insn_reserv
	&& description->decls[i] != advance_cycle_insn_decl)
      {
	if ((col = (col+1) % 8) == 0)
	  fputs ("\n     ", output_file);
	decl = description->decls[i];
	if (j++ != DECL_INSN_RESERV (decl)->insn_num)
	  abort ();
	fprintf (output_file, "% 4d,",
		 DECL_INSN_RESERV (decl)->default_latency);
      }
  if (j != DECL_INSN_RESERV (advance_cycle_insn_decl)->insn_num)
    abort ();
  fputs ("\n    };\n", output_file);

  fprintf (output_file, "  if (%s >= %s || %s >= %s)\n    return 0;\n",
	   INTERNAL_INSN_CODE_NAME, ADVANCE_CYCLE_VALUE_NAME,
	   INTERNAL_INSN2_CODE_NAME, ADVANCE_CYCLE_VALUE_NAME);

  fprintf (output_file, "  switch (%s)\n    {\n", INTERNAL_INSN_CODE_NAME);
  for (i = 0; i < description->decls_num; i++)
    if (description->decls[i]->mode == dm_insn_reserv
	&& DECL_INSN_RESERV (description->decls[i])->bypass_list)
      {
	decl = description->decls [i];
	fprintf (output_file,
		 "    case %d:\n      switch (%s)\n        {\n",
		 DECL_INSN_RESERV (decl)->insn_num,
		 INTERNAL_INSN2_CODE_NAME);
	for (bypass = DECL_INSN_RESERV (decl)->bypass_list;
	     bypass != NULL;
	     bypass = bypass->next)
	  {
	    if (bypass->in_insn_reserv->insn_num
		== DECL_INSN_RESERV (advance_cycle_insn_decl)->insn_num)
	      abort ();
	    fprintf (output_file, "        case %d:\n",
		     bypass->in_insn_reserv->insn_num);
	    if (bypass->bypass_guard_name == NULL)
	      fprintf (output_file, "          return %d;\n",
		       bypass->latency);
	    else
	      {
		fprintf (output_file,
			 "          if (%s (%s, %s))\n",
			 bypass->bypass_guard_name, INSN_PARAMETER_NAME,
			 INSN2_PARAMETER_NAME);
		fprintf (output_file,
			 "            return %d;\n          break;\n",
			 bypass->latency);
	      }
	  }
	fputs ("        }\n      break;\n", output_file);
      }

  fprintf (output_file, "    }\n  return default_latencies[%s];\n}\n\n",
	   INTERNAL_INSN_CODE_NAME);
}

/* The function outputs PHR interface function `insn_latency'.  */
static void
output_insn_latency_func (void)
{
  fprintf (output_file, "int\n%s (rtx %s, rtx %s)\n",
	   INSN_LATENCY_FUNC_NAME, INSN_PARAMETER_NAME, INSN2_PARAMETER_NAME);
  fprintf (output_file, "{\n  int %s, %s;\n",
	   INTERNAL_INSN_CODE_NAME, INTERNAL_INSN2_CODE_NAME);
  output_internal_insn_code_evaluation (INSN_PARAMETER_NAME,
					INTERNAL_INSN_CODE_NAME, 0);
  output_internal_insn_code_evaluation (INSN2_PARAMETER_NAME,
					INTERNAL_INSN2_CODE_NAME, 0);
  fprintf (output_file, "  return %s (%s, %s, %s, %s);\n}\n\n",
	   INTERNAL_INSN_LATENCY_FUNC_NAME,
	   INTERNAL_INSN_CODE_NAME, INTERNAL_INSN2_CODE_NAME,
	   INSN_PARAMETER_NAME, INSN2_PARAMETER_NAME);
}

/* The function outputs PHR interface function `print_reservation'.  */
static void
output_print_reservation_func (void)
{
  decl_t decl;
  int i, j;

  fprintf (output_file,
	   "void\n%s (FILE *%s, rtx %s ATTRIBUTE_UNUSED)\n{\n",
           PRINT_RESERVATION_FUNC_NAME, FILE_PARAMETER_NAME,
           INSN_PARAMETER_NAME);

  if (DECL_INSN_RESERV (advance_cycle_insn_decl)->insn_num == 0)
    {
      fprintf (output_file, "  fputs (\"%s\", %s);\n}\n\n",
	       NOTHING_NAME, FILE_PARAMETER_NAME);
      return;
    }


  fputs ("  static const char *const reservation_names[] =\n    {",
	 output_file);

  for (i = 0, j = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_insn_reserv && decl != advance_cycle_insn_decl)
	{
	  if (j++ != DECL_INSN_RESERV (decl)->insn_num)
	    abort ();
	  fprintf (output_file, "\n      \"%s\",",
		   regexp_representation (DECL_INSN_RESERV (decl)->regexp));
	  finish_regexp_representation ();
	}
    }
  if (j != DECL_INSN_RESERV (advance_cycle_insn_decl)->insn_num)
    abort ();

  fprintf (output_file, "\n      \"%s\"\n    };\n  int %s;\n\n",
	   NOTHING_NAME, INTERNAL_INSN_CODE_NAME);

  fprintf (output_file, "  if (%s == 0)\n    %s = %s;\n",
	   INSN_PARAMETER_NAME,
	   INTERNAL_INSN_CODE_NAME, ADVANCE_CYCLE_VALUE_NAME);
  fprintf (output_file, "  else\n\
    {\n\
      %s = %s (%s);\n\
      if (%s > %s)\n\
        %s = %s;\n\
    }\n",
	   INTERNAL_INSN_CODE_NAME, DFA_INSN_CODE_FUNC_NAME,
	       INSN_PARAMETER_NAME,
	   INTERNAL_INSN_CODE_NAME, ADVANCE_CYCLE_VALUE_NAME,
	   INTERNAL_INSN_CODE_NAME, ADVANCE_CYCLE_VALUE_NAME);

  fprintf (output_file, "  fputs (reservation_names[%s], %s);\n}\n\n",
	   INTERNAL_INSN_CODE_NAME, FILE_PARAMETER_NAME);
}

/* The following function is used to sort unit declaration by their
   names.  */
static int
units_cmp (const void *unit1, const void *unit2)
{
  const unit_decl_t u1 = *(unit_decl_t *) unit1;
  const unit_decl_t u2 = *(unit_decl_t *) unit2;

  return strcmp (u1->name, u2->name);
}

/* The following macro value is name of struct containing unit name
   and unit code.  */
#define NAME_CODE_STRUCT_NAME  "name_code"

/* The following macro value is name of table of struct name_code.  */
#define NAME_CODE_TABLE_NAME   "name_code_table"

/* The following macro values are member names for struct name_code.  */
#define NAME_MEMBER_NAME       "name"
#define CODE_MEMBER_NAME       "code"

/* The following macro values are local variable names for function
   `get_cpu_unit_code'.  */
#define CMP_VARIABLE_NAME      "cmp"
#define LOW_VARIABLE_NAME      "l"
#define MIDDLE_VARIABLE_NAME   "m"
#define HIGH_VARIABLE_NAME     "h"

/* The following function outputs function to obtain internal cpu unit
   code by the cpu unit name.  */
static void
output_get_cpu_unit_code_func (void)
{
  int i;
  unit_decl_t *units;

  fprintf (output_file, "int\n%s (%s)\n\tconst char *%s;\n",
	   GET_CPU_UNIT_CODE_FUNC_NAME, CPU_UNIT_NAME_PARAMETER_NAME,
	   CPU_UNIT_NAME_PARAMETER_NAME);
  fprintf (output_file, "{\n  struct %s {const char *%s; int %s;};\n",
	   NAME_CODE_STRUCT_NAME, NAME_MEMBER_NAME, CODE_MEMBER_NAME);
  fprintf (output_file, "  int %s, %s, %s, %s;\n", CMP_VARIABLE_NAME,
	   LOW_VARIABLE_NAME, MIDDLE_VARIABLE_NAME, HIGH_VARIABLE_NAME);
  fprintf (output_file, "  static struct %s %s [] =\n    {\n",
	   NAME_CODE_STRUCT_NAME, NAME_CODE_TABLE_NAME);
  units = xmalloc (sizeof (unit_decl_t) * description->units_num);
  memcpy (units, units_array, sizeof (unit_decl_t) * description->units_num);
  qsort (units, description->units_num, sizeof (unit_decl_t), units_cmp);
  for (i = 0; i < description->units_num; i++)
    if (units [i]->query_p)
      fprintf (output_file, "      {\"%s\", %d},\n",
	       units[i]->name, units[i]->query_num);
  fprintf (output_file, "    };\n\n");
  fprintf (output_file, "  /* The following is binary search: */\n");
  fprintf (output_file, "  %s = 0;\n", LOW_VARIABLE_NAME);
  fprintf (output_file, "  %s = sizeof (%s) / sizeof (struct %s) - 1;\n",
	   HIGH_VARIABLE_NAME, NAME_CODE_TABLE_NAME, NAME_CODE_STRUCT_NAME);
  fprintf (output_file, "  while (%s <= %s)\n    {\n",
	   LOW_VARIABLE_NAME, HIGH_VARIABLE_NAME);
  fprintf (output_file, "      %s = (%s + %s) / 2;\n",
	   MIDDLE_VARIABLE_NAME, LOW_VARIABLE_NAME, HIGH_VARIABLE_NAME);
  fprintf (output_file, "      %s = strcmp (%s, %s [%s].%s);\n",
	   CMP_VARIABLE_NAME, CPU_UNIT_NAME_PARAMETER_NAME,
	   NAME_CODE_TABLE_NAME, MIDDLE_VARIABLE_NAME, NAME_MEMBER_NAME);
  fprintf (output_file, "      if (%s < 0)\n", CMP_VARIABLE_NAME);
  fprintf (output_file, "        %s = %s - 1;\n",
	   HIGH_VARIABLE_NAME, MIDDLE_VARIABLE_NAME);
  fprintf (output_file, "      else if (%s > 0)\n", CMP_VARIABLE_NAME);
  fprintf (output_file, "        %s = %s + 1;\n",
	   LOW_VARIABLE_NAME, MIDDLE_VARIABLE_NAME);
  fprintf (output_file, "      else\n");
  fprintf (output_file, "        return %s [%s].%s;\n    }\n",
	   NAME_CODE_TABLE_NAME, MIDDLE_VARIABLE_NAME, CODE_MEMBER_NAME);
  fprintf (output_file, "  return -1;\n}\n\n");
  free (units);
}

/* The following function outputs function to check reservation of cpu
   unit (its internal code will be passed as the function argument) in
   given cpu state.  */
static void
output_cpu_unit_reservation_p (void)
{
  automaton_t automaton;

  fprintf (output_file, "int\n%s (%s, %s)\n\t%s %s;\n\tint %s;\n",
	   CPU_UNIT_RESERVATION_P_FUNC_NAME, STATE_NAME,
	   CPU_CODE_PARAMETER_NAME, STATE_TYPE_NAME, STATE_NAME,
	   CPU_CODE_PARAMETER_NAME);
  fprintf (output_file, "{\n  if (%s < 0 || %s >= %d)\n    abort ();\n",
	   CPU_CODE_PARAMETER_NAME, CPU_CODE_PARAMETER_NAME,
	   description->query_units_num);
  for (automaton = description->first_automaton;
       automaton != NULL;
       automaton = automaton->next_automaton)
    {
      fprintf (output_file, "  if ((");
      output_reserved_units_table_name (output_file, automaton);
      fprintf (output_file, " [((struct %s *) %s)->", CHIP_NAME, STATE_NAME);
      output_chip_member_name (output_file, automaton);
      fprintf (output_file, " * %d + %s / 8] >> (%s %% 8)) & 1)\n",
	       (description->query_units_num + 7) / 8,
	       CPU_CODE_PARAMETER_NAME, CPU_CODE_PARAMETER_NAME);
      fprintf (output_file, "    return 1;\n");
    }
  fprintf (output_file, "  return 0;\n}\n\n");
}

/* The function outputs PHR interface function `dfa_clean_insn_cache'.  */
static void
output_dfa_clean_insn_cache_func (void)
{
  fprintf (output_file,
	   "void\n%s (void)\n{\n  int %s;\n\n",
	   DFA_CLEAN_INSN_CACHE_FUNC_NAME, I_VARIABLE_NAME);
  fprintf (output_file,
	   "  for (%s = 0; %s < %s; %s++)\n    %s [%s] = -1;\n}\n\n",
	   I_VARIABLE_NAME, I_VARIABLE_NAME,
	   DFA_INSN_CODES_LENGTH_VARIABLE_NAME, I_VARIABLE_NAME,
	   DFA_INSN_CODES_VARIABLE_NAME, I_VARIABLE_NAME);
}

/* The function outputs PHR interface function `dfa_start'.  */
static void
output_dfa_start_func (void)
{
  fprintf (output_file,
	   "void\n%s (void)\n{\n  %s = get_max_uid ();\n",
	   DFA_START_FUNC_NAME, DFA_INSN_CODES_LENGTH_VARIABLE_NAME);
  fprintf (output_file, "  %s = xmalloc (%s * sizeof (int));\n",
	   DFA_INSN_CODES_VARIABLE_NAME, DFA_INSN_CODES_LENGTH_VARIABLE_NAME);
  fprintf (output_file, "  %s ();\n}\n\n", DFA_CLEAN_INSN_CACHE_FUNC_NAME);
}

/* The function outputs PHR interface function `dfa_finish'.  */
static void
output_dfa_finish_func (void)
{
  fprintf (output_file, "void\n%s (void)\n{\n  free (%s);\n}\n\n",
	   DFA_FINISH_FUNC_NAME, DFA_INSN_CODES_VARIABLE_NAME);
}



/* The page contains code for output description file (readable
   representation of original description and generated DFA(s).  */

/* The function outputs string representation of IR reservation.  */
static void
output_regexp (regexp_t regexp)
{
  fprintf (output_description_file, "%s", regexp_representation (regexp));
  finish_regexp_representation ();
}

/* Output names of units in LIST separated by comma.  */
static void
output_unit_set_el_list (unit_set_el_t list)
{
  unit_set_el_t el;

  for (el = list; el != NULL; el = el->next_unit_set_el)
    {
      if (el != list)
	fprintf (output_description_file, ", ");
      fprintf (output_description_file, "%s", el->unit_decl->name);
    }
}

/* Output patterns in LIST separated by comma.  */
static void
output_pattern_set_el_list (pattern_set_el_t list)
{
  pattern_set_el_t el;
  int i;

  for (el = list; el != NULL; el = el->next_pattern_set_el)
    {
      if (el != list)
	fprintf (output_description_file, ", ");
      for (i = 0; i < el->units_num; i++)
	fprintf (output_description_file, (i == 0 ? "%s" : " %s"),
		 el->unit_decls [i]->name);
    }
}

/* The function outputs string representation of IR define_reservation
   and define_insn_reservation.  */
static void
output_description (void)
{
  decl_t decl;
  int i;

  for (i = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_unit)
	{
	  if (DECL_UNIT (decl)->excl_list != NULL)
	    {
	      fprintf (output_description_file, "unit %s exlusion_set: ",
		       DECL_UNIT (decl)->name);
	      output_unit_set_el_list (DECL_UNIT (decl)->excl_list);
	      fprintf (output_description_file, "\n");
	    }
	  if (DECL_UNIT (decl)->presence_list != NULL)
	    {
	      fprintf (output_description_file, "unit %s presence_set: ",
		       DECL_UNIT (decl)->name);
	      output_pattern_set_el_list (DECL_UNIT (decl)->presence_list);
	      fprintf (output_description_file, "\n");
	    }
	  if (DECL_UNIT (decl)->final_presence_list != NULL)
	    {
	      fprintf (output_description_file, "unit %s final_presence_set: ",
		       DECL_UNIT (decl)->name);
	      output_pattern_set_el_list
		(DECL_UNIT (decl)->final_presence_list);
	      fprintf (output_description_file, "\n");
	    }
	  if (DECL_UNIT (decl)->absence_list != NULL)
	    {
	      fprintf (output_description_file, "unit %s absence_set: ",
		       DECL_UNIT (decl)->name);
	      output_pattern_set_el_list (DECL_UNIT (decl)->absence_list);
	      fprintf (output_description_file, "\n");
	    }
	  if (DECL_UNIT (decl)->final_absence_list != NULL)
	    {
	      fprintf (output_description_file, "unit %s final_absence_set: ",
		       DECL_UNIT (decl)->name);
	      output_pattern_set_el_list
		(DECL_UNIT (decl)->final_absence_list);
	      fprintf (output_description_file, "\n");
	    }
	}
    }
  fprintf (output_description_file, "\n");
  for (i = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_reserv)
	{
          fprintf (output_description_file, "reservation %s: ",
		   DECL_RESERV (decl)->name);
          output_regexp (DECL_RESERV (decl)->regexp);
          fprintf (output_description_file, "\n");
        }
      else if (decl->mode == dm_insn_reserv && decl != advance_cycle_insn_decl)
        {
          fprintf (output_description_file, "insn reservation %s ",
		   DECL_INSN_RESERV (decl)->name);
          print_rtl (output_description_file,
		     DECL_INSN_RESERV (decl)->condexp);
          fprintf (output_description_file, ": ");
          output_regexp (DECL_INSN_RESERV (decl)->regexp);
          fprintf (output_description_file, "\n");
        }
      else if (decl->mode == dm_bypass)
	fprintf (output_description_file, "bypass %d %s %s\n",
		 DECL_BYPASS (decl)->latency,
		 DECL_BYPASS (decl)->out_insn_name,
		 DECL_BYPASS (decl)->in_insn_name);
    }
  fprintf (output_description_file, "\n\f\n");
}

/* The function outputs name of AUTOMATON.  */
static void
output_automaton_name (FILE *f, automaton_t automaton)
{
  if (automaton->corresponding_automaton_decl == NULL)
    fprintf (f, "#%d", automaton->automaton_order_num);
  else
    fprintf (f, "`%s'", automaton->corresponding_automaton_decl->name);
}

/* Maximal length of line for pretty printing into description
   file.  */
#define MAX_LINE_LENGTH 70

/* The function outputs units name belonging to AUTOMATON.  */
static void
output_automaton_units (automaton_t automaton)
{
  decl_t decl;
  char *name;
  int curr_line_length;
  int there_is_an_automaton_unit;
  int i;

  fprintf (output_description_file, "\n  Corresponding units:\n");
  fprintf (output_description_file, "    ");
  curr_line_length = 4;
  there_is_an_automaton_unit = 0;
  for (i = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_unit
          && (DECL_UNIT (decl)->corresponding_automaton_num
	      == automaton->automaton_order_num))
	{
	  there_is_an_automaton_unit = 1;
	  name = DECL_UNIT (decl)->name;
	  if (curr_line_length + strlen (name) + 1 > MAX_LINE_LENGTH )
	    {
	      curr_line_length = strlen (name) + 4;
	      fprintf (output_description_file, "\n    ");
	    }
	  else
	    {
	      curr_line_length += strlen (name) + 1;
	      fprintf (output_description_file, " ");
	    }
	  fprintf (output_description_file, "%s", name);
	}
    }
  if (!there_is_an_automaton_unit)
    fprintf (output_description_file, "<None>");
  fprintf (output_description_file, "\n\n");
}

/* The following variable is used for forming array of all possible cpu unit
   reservations described by the current DFA state.  */
static vla_ptr_t state_reservs;

/* The function forms `state_reservs' for STATE.  */
static void
add_state_reservs (state_t state)
{
  alt_state_t curr_alt_state;
  reserv_sets_t reservs;

  if (state->component_states != NULL)
    for (curr_alt_state = state->component_states;
         curr_alt_state != NULL;
         curr_alt_state = curr_alt_state->next_sorted_alt_state)
      add_state_reservs (curr_alt_state->state);
  else
    {
      reservs = state->reservs;
      VLA_PTR_ADD (state_reservs, reservs);
    }
}

/* The function outputs readable representation of all out arcs of
   STATE.  */
static void
output_state_arcs (state_t state)
{
  arc_t arc;
  ainsn_t ainsn;
  char *insn_name;
  int curr_line_length;

  for (arc = first_out_arc (state); arc != NULL; arc = next_out_arc (arc))
    {
      ainsn = arc->insn;
      if (!ainsn->first_insn_with_same_reservs)
	abort ();
      fprintf (output_description_file, "    ");
      curr_line_length = 7;
      fprintf (output_description_file, "%2d: ", ainsn->insn_equiv_class_num);
      do
        {
          insn_name = ainsn->insn_reserv_decl->name;
          if (curr_line_length + strlen (insn_name) > MAX_LINE_LENGTH)
            {
              if (ainsn != arc->insn)
                {
                  fprintf (output_description_file, ",\n      ");
                  curr_line_length = strlen (insn_name) + 6;
                }
              else
                curr_line_length += strlen (insn_name);
            }
          else
            {
              curr_line_length += strlen (insn_name);
              if (ainsn != arc->insn)
                {
                  curr_line_length += 2;
                  fprintf (output_description_file, ", ");
                }
            }
          fprintf (output_description_file, "%s", insn_name);
          ainsn = ainsn->next_same_reservs_insn;
        }
      while (ainsn != NULL);
      fprintf (output_description_file, "    %d (%d)\n",
	       arc->to_state->order_state_num, arc->state_alts);
    }
  fprintf (output_description_file, "\n");
}

/* The following function is used for sorting possible cpu unit
   reservation of a DFA state.  */
static int
state_reservs_cmp (const void *reservs_ptr_1, const void *reservs_ptr_2)
{
  return reserv_sets_cmp (*(reserv_sets_t *) reservs_ptr_1,
                          *(reserv_sets_t *) reservs_ptr_2);
}

/* The following function is used for sorting possible cpu unit
   reservation of a DFA state.  */
static void
remove_state_duplicate_reservs (void)
{
  reserv_sets_t *reservs_ptr;
  reserv_sets_t *last_formed_reservs_ptr;

  last_formed_reservs_ptr = NULL;
  for (reservs_ptr = VLA_PTR_BEGIN (state_reservs);
       reservs_ptr <= (reserv_sets_t *) VLA_PTR_LAST (state_reservs);
       reservs_ptr++)
    if (last_formed_reservs_ptr == NULL)
      last_formed_reservs_ptr = reservs_ptr;
    else if (reserv_sets_cmp (*last_formed_reservs_ptr, *reservs_ptr) != 0)
      {
        ++last_formed_reservs_ptr;
        *last_formed_reservs_ptr = *reservs_ptr;
      }
  VLA_PTR_SHORTEN (state_reservs, reservs_ptr - last_formed_reservs_ptr - 1);
}

/* The following function output readable representation of DFA(s)
   state used for fast recognition of pipeline hazards.  State is
   described by possible (current and scheduled) cpu unit
   reservations.  */
static void
output_state (state_t state)
{
  reserv_sets_t *reservs_ptr;

  VLA_PTR_CREATE (state_reservs, 150, "state reservations");
  fprintf (output_description_file, "  State #%d", state->order_state_num);
  fprintf (output_description_file,
	   state->new_cycle_p ? " (new cycle)\n" : "\n");
  add_state_reservs (state);
  qsort (VLA_PTR_BEGIN (state_reservs), VLA_PTR_LENGTH (state_reservs),
         sizeof (reserv_sets_t), state_reservs_cmp);
  remove_state_duplicate_reservs ();
  for (reservs_ptr = VLA_PTR_BEGIN (state_reservs);
       reservs_ptr <= (reserv_sets_t *) VLA_PTR_LAST (state_reservs);
       reservs_ptr++)
    {
      fprintf (output_description_file, "    ");
      output_reserv_sets (output_description_file, *reservs_ptr);
      fprintf (output_description_file, "\n");
    }
  fprintf (output_description_file, "\n");
  output_state_arcs (state);
  VLA_PTR_DELETE (state_reservs);
}

/* The following function output readable representation of
   DFAs used for fast recognition of pipeline hazards.  */
static void
output_automaton_descriptions (void)
{
  automaton_t automaton;

  for (automaton = description->first_automaton;
       automaton != NULL;
       automaton = automaton->next_automaton)
    {
      fprintf (output_description_file, "\nAutomaton ");
      output_automaton_name (output_description_file, automaton);
      fprintf (output_description_file, "\n");
      output_automaton_units (automaton);
      pass_states (automaton, output_state);
    }
}



/* The page contains top level function for generation DFA(s) used for
   PHR.  */

/* The function outputs statistics about work of different phases of
   DFA generator.  */
static void
output_statistics (FILE *f)
{
  automaton_t automaton;
  int states_num;
#ifndef NDEBUG
  int transition_comb_vect_els = 0;
  int transition_full_vect_els = 0;
  int state_alts_comb_vect_els = 0;
  int state_alts_full_vect_els = 0;
  int min_issue_delay_vect_els = 0;
#endif

  for (automaton = description->first_automaton;
       automaton != NULL;
       automaton = automaton->next_automaton)
    {
      fprintf (f, "\nAutomaton ");
      output_automaton_name (f, automaton);
      fprintf (f, "\n    %5d NDFA states,          %5d NDFA arcs\n",
	       automaton->NDFA_states_num, automaton->NDFA_arcs_num);
      fprintf (f, "    %5d DFA states,           %5d DFA arcs\n",
	       automaton->DFA_states_num, automaton->DFA_arcs_num);
      states_num = automaton->DFA_states_num;
      if (!no_minimization_flag)
	{
	  fprintf (f, "    %5d minimal DFA states,   %5d minimal DFA arcs\n",
		   automaton->minimal_DFA_states_num,
		   automaton->minimal_DFA_arcs_num);
	  states_num = automaton->minimal_DFA_states_num;
	}
      fprintf (f, "    %5d all insns      %5d insn equivalence classes\n",
	       description->insns_num, automaton->insn_equiv_classes_num);
#ifndef NDEBUG
      fprintf
	(f, "%5ld transition comb vector els, %5ld trans table els: %s\n",
	 (long) VLA_HWINT_LENGTH (automaton->trans_table->comb_vect),
	 (long) VLA_HWINT_LENGTH (automaton->trans_table->full_vect),
	 (comb_vect_p (automaton->trans_table)
	  ? "use comb vect" : "use simple vect"));
      fprintf
        (f, "%5ld state alts comb vector els, %5ld state alts table els: %s\n",
         (long) VLA_HWINT_LENGTH (automaton->state_alts_table->comb_vect),
         (long) VLA_HWINT_LENGTH (automaton->state_alts_table->full_vect),
         (comb_vect_p (automaton->state_alts_table)
          ? "use comb vect" : "use simple vect"));
      fprintf
        (f, "%5ld min delay table els, compression factor %d\n",
         (long) states_num * automaton->insn_equiv_classes_num,
	 automaton->min_issue_delay_table_compression_factor);
      transition_comb_vect_els
	+= VLA_HWINT_LENGTH (automaton->trans_table->comb_vect);
      transition_full_vect_els
        += VLA_HWINT_LENGTH (automaton->trans_table->full_vect);
      state_alts_comb_vect_els
        += VLA_HWINT_LENGTH (automaton->state_alts_table->comb_vect);
      state_alts_full_vect_els
        += VLA_HWINT_LENGTH (automaton->state_alts_table->full_vect);
      min_issue_delay_vect_els
	+= states_num * automaton->insn_equiv_classes_num;
#endif
    }
#ifndef NDEBUG
  fprintf (f, "\n%5d all allocated states,     %5d all allocated arcs\n",
	   allocated_states_num, allocated_arcs_num);
  fprintf (f, "%5d all allocated alternative states\n",
	   allocated_alt_states_num);
  fprintf (f, "%5d all transition comb vector els, %5d all trans table els\n",
	   transition_comb_vect_els, transition_full_vect_els);
  fprintf
    (f, "%5d all state alts comb vector els, %5d all state alts table els\n",
     state_alts_comb_vect_els, state_alts_full_vect_els);
  fprintf (f, "%5d all min delay table els\n", min_issue_delay_vect_els);
  fprintf (f, "%5d locked states num\n", locked_states_num);
#endif
}

/* The function output times of work of different phases of DFA
   generator.  */
static void
output_time_statistics (FILE *f)
{
  fprintf (f, "\n  transformation: ");
  print_active_time (f, transform_time);
  fprintf (f, (!ndfa_flag ? ", building DFA: " : ", building NDFA: "));
  print_active_time (f, NDFA_time);
  if (ndfa_flag)
    {
      fprintf (f, ", NDFA -> DFA: ");
      print_active_time (f, NDFA_to_DFA_time);
    }
  fprintf (f, "\n  DFA minimization: ");
  print_active_time (f, minimize_time);
  fprintf (f, ", making insn equivalence: ");
  print_active_time (f, equiv_time);
  fprintf (f, "\n all automaton generation: ");
  print_active_time (f, automaton_generation_time);
  fprintf (f, ", output: ");
  print_active_time (f, output_time);
  fprintf (f, "\n");
}

/* The function generates DFA (deterministic finite state automaton)
   for fast recognition of pipeline hazards.  No errors during
   checking must be fixed before this function call.  */
static void
generate (void)
{
  automata_num = split_argument;
  if (description->units_num < automata_num)
    automata_num = description->units_num;
  initiate_states ();
  initiate_arcs ();
  initiate_automata_lists ();
  initiate_pass_states ();
  initiate_excl_sets ();
  initiate_presence_absence_pattern_sets ();
  automaton_generation_time = create_ticker ();
  create_automata ();
  ticker_off (&automaton_generation_time);
}



/* The following function creates insn attribute whose values are
   number alternatives in insn reservations.  */
static void
make_insn_alts_attr (void)
{
  int i, insn_num;
  decl_t decl;
  rtx condexp;

  condexp = rtx_alloc (COND);
  XVEC (condexp, 0) = rtvec_alloc ((description->insns_num - 1) * 2);
  XEXP (condexp, 1) = make_numeric_value (0);
  for (i = insn_num = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_insn_reserv && decl != advance_cycle_insn_decl)
	{
          XVECEXP (condexp, 0, 2 * insn_num)
	    = DECL_INSN_RESERV (decl)->condexp;
          XVECEXP (condexp, 0, 2 * insn_num + 1)
            = make_numeric_value
	      (DECL_INSN_RESERV (decl)->transformed_regexp->mode != rm_oneof
	       ? 1 : REGEXP_ONEOF (DECL_INSN_RESERV (decl)
				   ->transformed_regexp)->regexps_num);
          insn_num++;
        }
    }
  if (description->insns_num != insn_num + 1)
    abort ();
  make_internal_attr (attr_printf (sizeof ("*")
				   + strlen (INSN_ALTS_FUNC_NAME) + 1,
				   "*%s", INSN_ALTS_FUNC_NAME),
		      condexp, ATTR_NONE);
}



/* The following function creates attribute which is order number of
   insn in pipeline hazard description translator.  */
static void
make_internal_dfa_insn_code_attr (void)
{
  int i, insn_num;
  decl_t decl;
  rtx condexp;

  condexp = rtx_alloc (COND);
  XVEC (condexp, 0) = rtvec_alloc ((description->insns_num - 1) * 2);
  XEXP (condexp, 1)
    = make_numeric_value (DECL_INSN_RESERV (advance_cycle_insn_decl)
			  ->insn_num + 1);
  for (i = insn_num = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_insn_reserv && decl != advance_cycle_insn_decl)
	{
          XVECEXP (condexp, 0, 2 * insn_num)
	    = DECL_INSN_RESERV (decl)->condexp;
          XVECEXP (condexp, 0, 2 * insn_num + 1)
            = make_numeric_value (DECL_INSN_RESERV (decl)->insn_num);
          insn_num++;
        }
    }
  if (description->insns_num != insn_num + 1)
    abort ();
  make_internal_attr
    (attr_printf (sizeof ("*")
		  + strlen (INTERNAL_DFA_INSN_CODE_FUNC_NAME) + 1,
		  "*%s", INTERNAL_DFA_INSN_CODE_FUNC_NAME),
     condexp, ATTR_STATIC);
}



/* The following function creates attribute which order number of insn
   in pipeline hazard description translator.  */
static void
make_default_insn_latency_attr (void)
{
  int i, insn_num;
  decl_t decl;
  rtx condexp;

  condexp = rtx_alloc (COND);
  XVEC (condexp, 0) = rtvec_alloc ((description->insns_num - 1) * 2);
  XEXP (condexp, 1) = make_numeric_value (0);
  for (i = insn_num = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_insn_reserv && decl != advance_cycle_insn_decl)
	{
          XVECEXP (condexp, 0, 2 * insn_num)
	    = DECL_INSN_RESERV (decl)->condexp;
          XVECEXP (condexp, 0, 2 * insn_num + 1)
            = make_numeric_value (DECL_INSN_RESERV (decl)->default_latency);
          insn_num++;
        }
    }
  if (description->insns_num != insn_num + 1)
    abort ();
  make_internal_attr (attr_printf (sizeof ("*")
				   + strlen (INSN_DEFAULT_LATENCY_FUNC_NAME)
				   + 1, "*%s", INSN_DEFAULT_LATENCY_FUNC_NAME),
		      condexp, ATTR_NONE);
}



/* The following function creates attribute which returns 1 if given
   output insn has bypassing and 0 otherwise.  */
static void
make_bypass_attr (void)
{
  int i, bypass_insn;
  int bypass_insns_num = 0;
  decl_t decl;
  rtx result_rtx;

  for (i = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_insn_reserv
	  && DECL_INSN_RESERV (decl)->condexp != NULL
	  && DECL_INSN_RESERV (decl)->bypass_list != NULL)
	bypass_insns_num++;
    }
  if (bypass_insns_num == 0)
    result_rtx = make_numeric_value (0);
  else
    {
      result_rtx = rtx_alloc (COND);
      XVEC (result_rtx, 0) = rtvec_alloc (bypass_insns_num * 2);
      XEXP (result_rtx, 1) = make_numeric_value (0);

      for (i = bypass_insn = 0; i < description->decls_num; i++)
        {
          decl = description->decls [i];
          if (decl->mode == dm_insn_reserv
	      && DECL_INSN_RESERV (decl)->condexp != NULL
	      && DECL_INSN_RESERV (decl)->bypass_list != NULL)
	    {
              XVECEXP (result_rtx, 0, 2 * bypass_insn)
		= DECL_INSN_RESERV (decl)->condexp;
              XVECEXP (result_rtx, 0, 2 * bypass_insn + 1)
	        = make_numeric_value (1);
              bypass_insn++;
            }
        }
    }
  make_internal_attr (attr_printf (sizeof ("*")
				   + strlen (BYPASS_P_FUNC_NAME) + 1,
				   "*%s", BYPASS_P_FUNC_NAME),
		      result_rtx, ATTR_NONE);
}



/* This page mainly contains top level functions of pipeline hazards
   description translator.  */

/* The following macro value is suffix of name of description file of
   pipeline hazards description translator.  */
#define STANDARD_OUTPUT_DESCRIPTION_FILE_SUFFIX ".dfa"

/* The function returns suffix of given file name.  The returned
   string can not be changed.  */
static const char *
file_name_suffix (const char *file_name)
{
  const char *last_period;

  for (last_period = NULL; *file_name != '\0'; file_name++)
    if (*file_name == '.')
      last_period = file_name;
  return (last_period == NULL ? file_name : last_period);
}

/* The function returns base name of given file name, i.e. pointer to
   first char after last `/' (or `\' for WIN32) in given file name,
   given file name itself if the directory name is absent.  The
   returned string can not be changed.  */
static const char *
base_file_name (const char *file_name)
{
  int directory_name_length;

  directory_name_length = strlen (file_name);
#ifdef WIN32
  while (directory_name_length >= 0 && file_name[directory_name_length] != '/'
         && file_name[directory_name_length] != '\\')
#else
  while (directory_name_length >= 0 && file_name[directory_name_length] != '/')
#endif
    directory_name_length--;
  return file_name + directory_name_length + 1;
}

/* The following is top level function to initialize the work of
   pipeline hazards description translator.  */
void
initiate_automaton_gen (int argc, char **argv)
{
  const char *base_name;
  int i;

  ndfa_flag = 0;
  split_argument = 0;  /* default value */
  no_minimization_flag = 0;
  time_flag = 0;
  v_flag = 0;
  w_flag = 0;
  progress_flag = 0;
  for (i = 2; i < argc; i++)
    if (strcmp (argv [i], NO_MINIMIZATION_OPTION) == 0)
      no_minimization_flag = 1;
    else if (strcmp (argv [i], TIME_OPTION) == 0)
      time_flag = 1;
    else if (strcmp (argv [i], V_OPTION) == 0)
      v_flag = 1;
    else if (strcmp (argv [i], W_OPTION) == 0)
      w_flag = 1;
    else if (strcmp (argv [i], NDFA_OPTION) == 0)
      ndfa_flag = 1;
    else if (strcmp (argv [i], PROGRESS_OPTION) == 0)
      progress_flag = 1;
    else if (strcmp (argv [i], "-split") == 0)
      {
	if (i + 1 >= argc)
	  fatal ("-split has no argument.");
	fatal ("option `-split' has not been implemented yet\n");
	/* split_argument = atoi (argument_vect [i + 1]); */
      }
  VLA_PTR_CREATE (decls, 150, "decls");
  /* Initialize IR storage.  */
  obstack_init (&irp);
  initiate_automaton_decl_table ();
  initiate_insn_decl_table ();
  initiate_decl_table ();
  output_file = stdout;
  output_description_file = NULL;
  base_name = base_file_name (argv[1]);
  obstack_grow (&irp, base_name,
		strlen (base_name) - strlen (file_name_suffix (base_name)));
  obstack_grow (&irp, STANDARD_OUTPUT_DESCRIPTION_FILE_SUFFIX,
		strlen (STANDARD_OUTPUT_DESCRIPTION_FILE_SUFFIX) + 1);
  obstack_1grow (&irp, '\0');
  output_description_file_name = obstack_base (&irp);
  obstack_finish (&irp);
}

/* The following function checks existence at least one arc marked by
   each insn.  */
static void
check_automata_insn_issues (void)
{
  automaton_t automaton;
  ainsn_t ainsn, reserv_ainsn;

  for (automaton = description->first_automaton;
       automaton != NULL;
       automaton = automaton->next_automaton)
    {
      for (ainsn = automaton->ainsn_list;
	   ainsn != NULL;
	   ainsn = ainsn->next_ainsn)
	if (ainsn->first_insn_with_same_reservs && !ainsn->arc_exists_p)
	  {
	    for (reserv_ainsn = ainsn;
		 reserv_ainsn != NULL;
		 reserv_ainsn = reserv_ainsn->next_same_reservs_insn)
	      if (automaton->corresponding_automaton_decl != NULL)
		{
		  if (!w_flag)
		    error ("Automaton `%s': Insn `%s' will never be issued",
			   automaton->corresponding_automaton_decl->name,
			   reserv_ainsn->insn_reserv_decl->name);
		  else
		    warning
		      ("Automaton `%s': Insn `%s' will never be issued",
		       automaton->corresponding_automaton_decl->name,
		       reserv_ainsn->insn_reserv_decl->name);
		}
	      else
		{
		  if (!w_flag)
		    error ("Insn `%s' will never be issued",
			   reserv_ainsn->insn_reserv_decl->name);
		  else
		    warning ("Insn `%s' will never be issued",
			     reserv_ainsn->insn_reserv_decl->name);
		}
	  }
    }
}

/* The following vla is used for storing pointers to all achieved
   states.  */
static vla_ptr_t automaton_states;

/* This function is called by function pass_states to add an achieved
   STATE.  */
static void
add_automaton_state (state_t state)
{
  VLA_PTR_ADD (automaton_states, state);
}

/* The following function forms list of important automata (whose
   states may be changed after the insn issue) for each insn.  */
static void
form_important_insn_automata_lists (void)
{
  automaton_t automaton;
  state_t *state_ptr;
  decl_t decl;
  ainsn_t ainsn;
  arc_t arc;
  int i;

  VLA_PTR_CREATE (automaton_states, 1500,
		  "automaton states for forming important insn automata sets");
  /* Mark important ainsns.  */
  for (automaton = description->first_automaton;
       automaton != NULL;
       automaton = automaton->next_automaton)
    {
      VLA_PTR_NULLIFY (automaton_states);
      pass_states (automaton, add_automaton_state);
      for (state_ptr = VLA_PTR_BEGIN (automaton_states);
	   state_ptr <= (state_t *) VLA_PTR_LAST (automaton_states);
	   state_ptr++)
	{
	  for (arc = first_out_arc (*state_ptr);
	       arc != NULL;
	       arc = next_out_arc (arc))
	    if (arc->to_state != *state_ptr)
	      {
		if (!arc->insn->first_insn_with_same_reservs)
		  abort ();
		for (ainsn = arc->insn;
		     ainsn != NULL;
		     ainsn = ainsn->next_same_reservs_insn)
		  ainsn->important_p = TRUE;
	      }
	}
    }
  VLA_PTR_DELETE (automaton_states);
  /* Create automata sets for the insns.  */
  for (i = 0; i < description->decls_num; i++)
    {
      decl = description->decls [i];
      if (decl->mode == dm_insn_reserv)
	{
	  automata_list_start ();
	  for (automaton = description->first_automaton;
	       automaton != NULL;
	       automaton = automaton->next_automaton)
	    for (ainsn = automaton->ainsn_list;
		 ainsn != NULL;
		 ainsn = ainsn->next_ainsn)
	      if (ainsn->important_p
		  && ainsn->insn_reserv_decl == DECL_INSN_RESERV (decl))
		{
		  automata_list_add (automaton);
		  break;
		}
	  DECL_INSN_RESERV (decl)->important_automata_list
	    = automata_list_finish ();
	}
    }
}


/* The following is top level function to generate automat(a,on) for
   fast recognition of pipeline hazards.  */
void
expand_automata (void)
{
  int i;

  description = create_node (sizeof (struct description)
			     /* One entry for cycle advancing insn.  */
			     + sizeof (decl_t) * VLA_PTR_LENGTH (decls));
  description->decls_num = VLA_PTR_LENGTH (decls);
  description->query_units_num = 0;
  for (i = 0; i < description->decls_num; i++)
    {
      description->decls [i] = VLA_PTR (decls, i);
      if (description->decls [i]->mode == dm_unit
	  && DECL_UNIT (description->decls [i])->query_p)
        DECL_UNIT (description->decls [i])->query_num
	  = description->query_units_num++;
    }
  all_time = create_ticker ();
  check_time = create_ticker ();
  if (progress_flag)
    fprintf (stderr, "Check description...");
  check_all_description ();
  if (progress_flag)
    fprintf (stderr, "done\n");
  ticker_off (&check_time);
  generation_time = create_ticker ();
  if (!have_error)
    {
      transform_insn_regexps ();
      check_unit_distributions_to_automata ();
    }
  if (!have_error)
    {
      generate ();
      check_automata_insn_issues ();
    }
  if (!have_error)
    {
      form_important_insn_automata_lists ();
      if (progress_flag)
	fprintf (stderr, "Generation of attributes...");
      make_internal_dfa_insn_code_attr ();
      make_insn_alts_attr ();
      make_default_insn_latency_attr ();
      make_bypass_attr ();
      if (progress_flag)
	fprintf (stderr, "done\n");
    }
  ticker_off (&generation_time);
  ticker_off (&all_time);
  if (progress_flag)
    fprintf (stderr, "All other genattrtab stuff...");
}

/* The following is top level function to output PHR and to finish
   work with pipeline description translator.  */
void
write_automata (void)
{
  if (progress_flag)
    fprintf (stderr, "done\n");
  if (have_error)
    fatal ("Errors in DFA description");
  ticker_on (&all_time);
  output_time = create_ticker ();
  if (progress_flag)
    fprintf (stderr, "Forming and outputting automata tables...");
  output_dfa_max_issue_rate ();
  output_tables ();
  if (progress_flag)
    {
      fprintf (stderr, "done\n");
      fprintf (stderr, "Output functions to work with automata...");
    }
  output_chip_definitions ();
  output_max_insn_queue_index_def ();
  output_internal_min_issue_delay_func ();
  output_internal_trans_func ();
  /* Cache of insn dfa codes: */
  fprintf (output_file, "\nstatic int *%s;\n", DFA_INSN_CODES_VARIABLE_NAME);
  fprintf (output_file, "\nstatic int %s;\n\n",
	   DFA_INSN_CODES_LENGTH_VARIABLE_NAME);
  output_dfa_insn_code_func ();
  output_trans_func ();
  fprintf (output_file, "\n#if %s\n\n", AUTOMATON_STATE_ALTS_MACRO_NAME);
  output_internal_state_alts_func ();
  output_state_alts_func ();
  fprintf (output_file, "\n#endif /* #if %s */\n\n",
	   AUTOMATON_STATE_ALTS_MACRO_NAME);
  output_min_issue_delay_func ();
  output_internal_dead_lock_func ();
  output_dead_lock_func ();
  output_size_func ();
  output_internal_reset_func ();
  output_reset_func ();
  output_min_insn_conflict_delay_func ();
  output_internal_insn_latency_func ();
  output_insn_latency_func ();
  output_print_reservation_func ();
  /* Output function get_cpu_unit_code.  */
  fprintf (output_file, "\n#if %s\n\n", CPU_UNITS_QUERY_MACRO_NAME);
  output_get_cpu_unit_code_func ();
  output_cpu_unit_reservation_p ();
  fprintf (output_file, "\n#endif /* #if %s */\n\n",
	   CPU_UNITS_QUERY_MACRO_NAME);
  output_dfa_clean_insn_cache_func ();
  output_dfa_start_func ();
  output_dfa_finish_func ();
  if (progress_flag)
    fprintf (stderr, "done\n");
  if (v_flag)
    {
      output_description_file = fopen (output_description_file_name, "w");
      if (output_description_file == NULL)
	{
	  perror (output_description_file_name);
	  exit (FATAL_EXIT_CODE);
	}
      if (progress_flag)
	fprintf (stderr, "Output automata description...");
      output_description ();
      output_automaton_descriptions ();
      if (progress_flag)
	fprintf (stderr, "done\n");
      output_statistics (output_description_file);
    }
  output_statistics (stderr);
  ticker_off (&output_time);
  output_time_statistics (stderr);
  finish_states ();
  finish_arcs ();
  finish_automata_lists ();
  if (time_flag)
    {
      fprintf (stderr, "Summary:\n");
      fprintf (stderr, "  check time ");
      print_active_time (stderr, check_time);
      fprintf (stderr, ", generation time ");
      print_active_time (stderr, generation_time);
      fprintf (stderr, ", all time ");
      print_active_time (stderr, all_time);
      fprintf (stderr, "\n");
    }
  /* Finish all work.  */
  if (output_description_file != NULL)
    {
      fflush (output_description_file);
      if (ferror (stdout) != 0)
	fatal ("Error in writing DFA description file %s",
               output_description_file_name);
      fclose (output_description_file);
    }
  finish_automaton_decl_table ();
  finish_insn_decl_table ();
  finish_decl_table ();
  obstack_free (&irp, NULL);
  if (have_error && output_description_file != NULL)
    remove (output_description_file_name);
}