diff options
author | Andrew Haley <aph@redhat.com> | 2016-09-30 16:24:48 +0000 |
---|---|---|
committer | Andrew Haley <aph@gcc.gnu.org> | 2016-09-30 16:24:48 +0000 |
commit | 07b78716af6a9d7c9fd1e94d9baf94a52c873947 (patch) | |
tree | 3f22b3241c513ad168c8353805614ae1249410f4 /libjava/verify.cc | |
parent | eae993948bae8b788c53772bcb9217c063716f93 (diff) | |
download | gcc-07b78716af6a9d7c9fd1e94d9baf94a52c873947.zip gcc-07b78716af6a9d7c9fd1e94d9baf94a52c873947.tar.gz gcc-07b78716af6a9d7c9fd1e94d9baf94a52c873947.tar.bz2 |
Makefile.def: Remove libjava.
2016-09-30 Andrew Haley <aph@redhat.com>
* Makefile.def: Remove libjava.
* Makefile.tpl: Likewise.
* Makefile.in: Regenerate.
* configure.ac: Likewise.
* configure: Likewise.
* gcc/java: Remove.
* libjava: Likewise.
From-SVN: r240662
Diffstat (limited to 'libjava/verify.cc')
-rw-r--r-- | libjava/verify.cc | 3236 |
1 files changed, 0 insertions, 3236 deletions
diff --git a/libjava/verify.cc b/libjava/verify.cc deleted file mode 100644 index b002c1c..0000000 --- a/libjava/verify.cc +++ /dev/null @@ -1,3236 +0,0 @@ -// verify.cc - verify bytecode - -/* Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation - - This file is part of libgcj. - -This software is copyrighted work licensed under the terms of the -Libgcj License. Please consult the file "LIBGCJ_LICENSE" for -details. */ - -// Written by Tom Tromey <tromey@redhat.com> - -// Define VERIFY_DEBUG to enable debugging output. - -#include <config.h> - -#include <string.h> - -#include <jvm.h> -#include <gcj/cni.h> -#include <java-insns.h> -#include <java-interp.h> - -// On Solaris 10/x86, <signal.h> indirectly includes <ia32/sys/reg.h>, which -// defines PC since g++ predefines __EXTENSIONS__. Undef here to avoid clash -// with PC member of class _Jv_BytecodeVerifier below. -#undef PC - -#ifdef INTERPRETER - -#include <java/lang/Class.h> -#include <java/lang/VerifyError.h> -#include <java/lang/Throwable.h> -#include <java/lang/reflect/Modifier.h> -#include <java/lang/StringBuffer.h> -#include <java/lang/NoClassDefFoundError.h> - -#ifdef VERIFY_DEBUG -#include <stdio.h> -#endif /* VERIFY_DEBUG */ - - -// This is used to mark states which are not scheduled for -// verification. -#define INVALID_STATE ((state *) -1) - -static void debug_print (const char *fmt, ...) - __attribute__ ((format (printf, 1, 2))); - -static inline void -debug_print (MAYBE_UNUSED const char *fmt, ...) -{ -#ifdef VERIFY_DEBUG - va_list ap; - va_start (ap, fmt); - vfprintf (stderr, fmt, ap); - va_end (ap); -#endif /* VERIFY_DEBUG */ -} - -// This started as a fairly ordinary verifier, and for the most part -// it remains so. It works in the obvious way, by modeling the effect -// of each opcode as it is encountered. For most opcodes, this is a -// straightforward operation. -// -// This verifier does not do type merging. It used to, but this -// results in difficulty verifying some relatively simple code -// involving interfaces, and it pushed some verification work into the -// interpreter. -// -// Instead of merging reference types, when we reach a point where two -// flows of control merge, we simply keep the union of reference types -// from each branch. Then, when we need to verify a fact about a -// reference on the stack (e.g., that it is compatible with the -// argument type of a method), we check to ensure that all possible -// types satisfy the requirement. -// -// Another area this verifier differs from the norm is in its handling -// of subroutines. The JVM specification has some confusing things to -// say about subroutines. For instance, it makes claims about not -// allowing subroutines to merge and it rejects recursive subroutines. -// For the most part these are red herrings; we used to try to follow -// these things but they lead to problems. For example, the notion of -// "being in a subroutine" is not well-defined: is an exception -// handler in a subroutine? If you never execute the `ret' but -// instead `goto 1' do you remain in the subroutine? -// -// For clarity on what is really required for type safety, read -// "Simple Verification Technique for Complex Java Bytecode -// Subroutines" by Alessandro Coglio. Among other things this paper -// shows that recursive subroutines are not harmful to type safety. -// We implement something similar to what he proposes. Note that this -// means that this verifier will accept code that is rejected by some -// other verifiers. -// -// For those not wanting to read the paper, the basic observation is -// that we can maintain split states in subroutines. We maintain one -// state for each calling `jsr'. In other words, we re-verify a -// subroutine once for each caller, using the exact types held by the -// callers (as opposed to the old approach of merging types and -// keeping a bitmap registering what did or did not change). This -// approach lets us continue to verify correctly even when a -// subroutine is exited via `goto' or `athrow' and not `ret'. -// -// In some other areas the JVM specification is (mildly) incorrect, -// so we diverge. For instance, you cannot -// violate type safety by allocating an object with `new' and then -// failing to initialize it, no matter how one branches or where one -// stores the uninitialized reference. See "Improving the official -// specification of Java bytecode verification" by Alessandro Coglio. -// -// Note that there's no real point in enforcing that padding bytes or -// the mystery byte of invokeinterface must be 0, but we do that -// regardless. -// -// The verifier is currently neither completely lazy nor eager when it -// comes to loading classes. It tries to represent types by name when -// possible, and then loads them when it needs to verify a fact about -// the type. Checking types by name is valid because we only use -// names which come from the current class' constant pool. Since all -// such names are looked up using the same class loader, there is no -// danger that we might be fooled into comparing different types with -// the same name. -// -// In the future we plan to allow for a completely lazy mode of -// operation, where the verifier will construct a list of type -// assertions to be checked later. -// -// Some test cases for the verifier live in the "verify" module of the -// Mauve test suite. However, some of these are presently -// (2004-01-20) believed to be incorrect. (More precisely the notion -// of "correct" is not well-defined, and this verifier differs from -// others while remaining type-safe.) Some other tests live in the -// libgcj test suite. -class _Jv_BytecodeVerifier -{ -private: - - static const int FLAG_INSN_START = 1; - static const int FLAG_BRANCH_TARGET = 2; - - struct state; - struct type; - struct linked_utf8; - struct ref_intersection; - - template<typename T> - struct linked - { - T *val; - linked<T> *next; - }; - - // The current PC. - int PC; - // The PC corresponding to the start of the current instruction. - int start_PC; - - // The current state of the stack, locals, etc. - state *current_state; - - // At each branch target we keep a linked list of all the states we - // can process at that point. We'll only have multiple states at a - // given PC if they both have different return-address types in the - // same stack or local slot. This array is indexed by PC and holds - // the list of all such states. - linked<state> **states; - - // We keep a linked list of all the states which we must reverify. - // This is the head of the list. - state *next_verify_state; - - // We keep some flags for each instruction. The values are the - // FLAG_* constants defined above. This is an array indexed by PC. - char *flags; - - // The bytecode itself. - unsigned char *bytecode; - // The exceptions. - _Jv_InterpException *exception; - - // Defining class. - jclass current_class; - // This method. - _Jv_InterpMethod *current_method; - - // A linked list of utf8 objects we allocate. - linked<_Jv_Utf8Const> *utf8_list; - - // A linked list of all ref_intersection objects we allocate. - ref_intersection *isect_list; - - // Create a new Utf-8 constant and return it. We do this to avoid - // having our Utf-8 constants prematurely collected. - _Jv_Utf8Const *make_utf8_const (char *s, int len) - { - linked<_Jv_Utf8Const> *lu = (linked<_Jv_Utf8Const> *) - _Jv_Malloc (sizeof (linked<_Jv_Utf8Const>) - + _Jv_Utf8Const::space_needed(s, len)); - _Jv_Utf8Const *r = (_Jv_Utf8Const *) (lu + 1); - r->init(s, len); - lu->val = r; - lu->next = utf8_list; - utf8_list = lu; - - return r; - } - - __attribute__ ((__noreturn__)) void verify_fail (const char *s, jint pc = -1) - { - using namespace java::lang; - StringBuffer *buf = new StringBuffer (); - - buf->append (JvNewStringLatin1 ("verification failed")); - if (pc == -1) - pc = start_PC; - if (pc != -1) - { - buf->append (JvNewStringLatin1 (" at PC ")); - buf->append (pc); - } - - _Jv_InterpMethod *method = current_method; - buf->append (JvNewStringLatin1 (" in ")); - buf->append (current_class->getName()); - buf->append ((jchar) ':'); - buf->append (method->get_method()->name->toString()); - buf->append ((jchar) '('); - buf->append (method->get_method()->signature->toString()); - buf->append ((jchar) ')'); - - buf->append (JvNewStringLatin1 (": ")); - buf->append (JvNewStringLatin1 (s)); - throw new java::lang::VerifyError (buf->toString ()); - } - - // This enum holds a list of tags for all the different types we - // need to handle. Reference types are treated specially by the - // type class. - enum type_val - { - void_type, - - // The values for primitive types are chosen to correspond to values - // specified to newarray. - boolean_type = 4, - char_type = 5, - float_type = 6, - double_type = 7, - byte_type = 8, - short_type = 9, - int_type = 10, - long_type = 11, - - // Used when overwriting second word of a double or long in the - // local variables. Also used after merging local variable states - // to indicate an unusable value. - unsuitable_type, - return_address_type, - // This is the second word of a two-word value, i.e., a double or - // a long. - continuation_type, - - // Everything after `reference_type' must be a reference type. - reference_type, - null_type, - uninitialized_reference_type - }; - - // This represents a merged class type. Some verifiers (including - // earlier versions of this one) will compute the intersection of - // two class types when merging states. However, this loses - // critical information about interfaces implemented by the various - // classes. So instead we keep track of all the actual classes that - // have been merged. - struct ref_intersection - { - // Whether or not this type has been resolved. - bool is_resolved; - - // Actual type data. - union - { - // For a resolved reference type, this is a pointer to the class. - jclass klass; - // For other reference types, this it the name of the class. - _Jv_Utf8Const *name; - } data; - - // Link to the next reference in the intersection. - ref_intersection *ref_next; - - // This is used to keep track of all the allocated - // ref_intersection objects, so we can free them. - // FIXME: we should allocate these in chunks. - ref_intersection *alloc_next; - - ref_intersection (jclass klass, _Jv_BytecodeVerifier *verifier) - : ref_next (NULL) - { - is_resolved = true; - data.klass = klass; - alloc_next = verifier->isect_list; - verifier->isect_list = this; - } - - ref_intersection (_Jv_Utf8Const *name, _Jv_BytecodeVerifier *verifier) - : ref_next (NULL) - { - is_resolved = false; - data.name = name; - alloc_next = verifier->isect_list; - verifier->isect_list = this; - } - - ref_intersection (ref_intersection *dup, ref_intersection *tail, - _Jv_BytecodeVerifier *verifier) - : ref_next (tail) - { - is_resolved = dup->is_resolved; - data = dup->data; - alloc_next = verifier->isect_list; - verifier->isect_list = this; - } - - bool equals (ref_intersection *other, _Jv_BytecodeVerifier *verifier) - { - if (! is_resolved && ! other->is_resolved - && _Jv_equalUtf8Classnames (data.name, other->data.name)) - return true; - if (! is_resolved) - resolve (verifier); - if (! other->is_resolved) - other->resolve (verifier); - return data.klass == other->data.klass; - } - - // Merge THIS type into OTHER, returning the result. This will - // return OTHER if all the classes in THIS already appear in - // OTHER. - ref_intersection *merge (ref_intersection *other, - _Jv_BytecodeVerifier *verifier) - { - ref_intersection *tail = other; - for (ref_intersection *self = this; self != NULL; self = self->ref_next) - { - bool add = true; - for (ref_intersection *iter = other; iter != NULL; - iter = iter->ref_next) - { - if (iter->equals (self, verifier)) - { - add = false; - break; - } - } - - if (add) - tail = new ref_intersection (self, tail, verifier); - } - return tail; - } - - void resolve (_Jv_BytecodeVerifier *verifier) - { - if (is_resolved) - return; - - // This is useful if you want to see which classes have to be resolved - // while doing the class verification. - debug_print("resolving class: %s\n", data.name->chars()); - - using namespace java::lang; - java::lang::ClassLoader *loader - = verifier->current_class->getClassLoaderInternal(); - - // Due to special handling in to_array() array classes will always - // be of the "L ... ;" kind. The separator char ('.' or '/' may vary - // however. - if (data.name->limit()[-1] == ';') - { - data.klass = _Jv_FindClassFromSignature (data.name->chars(), loader); - if (data.klass == NULL) - throw new java::lang::NoClassDefFoundError(data.name->toString()); - } - else - data.klass = Class::forName (_Jv_NewStringUtf8Const (data.name), - false, loader); - is_resolved = true; - } - - // See if an object of type OTHER can be assigned to an object of - // type *THIS. This might resolve classes in one chain or the - // other. - bool compatible (ref_intersection *other, - _Jv_BytecodeVerifier *verifier) - { - ref_intersection *self = this; - - for (; self != NULL; self = self->ref_next) - { - ref_intersection *other_iter = other; - - for (; other_iter != NULL; other_iter = other_iter->ref_next) - { - // Avoid resolving if possible. - if (! self->is_resolved - && ! other_iter->is_resolved - && _Jv_equalUtf8Classnames (self->data.name, - other_iter->data.name)) - continue; - - if (! self->is_resolved) - self->resolve(verifier); - - // If the LHS of the expression is of type - // java.lang.Object, assignment will succeed, no matter - // what the type of the RHS is. Using this short-cut we - // don't need to resolve the class of the RHS at - // verification time. - if (self->data.klass == &java::lang::Object::class$) - continue; - - if (! other_iter->is_resolved) - other_iter->resolve(verifier); - - if (! is_assignable_from_slow (self->data.klass, - other_iter->data.klass)) - return false; - } - } - - return true; - } - - bool isarray () - { - // assert (ref_next == NULL); - if (is_resolved) - return data.klass->isArray (); - else - return data.name->first() == '['; - } - - bool isinterface (_Jv_BytecodeVerifier *verifier) - { - // assert (ref_next == NULL); - if (! is_resolved) - resolve (verifier); - return data.klass->isInterface (); - } - - bool isabstract (_Jv_BytecodeVerifier *verifier) - { - // assert (ref_next == NULL); - if (! is_resolved) - resolve (verifier); - using namespace java::lang::reflect; - return Modifier::isAbstract (data.klass->getModifiers ()); - } - - jclass getclass (_Jv_BytecodeVerifier *verifier) - { - if (! is_resolved) - resolve (verifier); - return data.klass; - } - - int count_dimensions () - { - int ndims = 0; - if (is_resolved) - { - jclass k = data.klass; - while (k->isArray ()) - { - k = k->getComponentType (); - ++ndims; - } - } - else - { - char *p = data.name->chars(); - while (*p++ == '[') - ++ndims; - } - return ndims; - } - - void *operator new (size_t bytes) - { - return _Jv_Malloc (bytes); - } - - void operator delete (void *mem) - { - _Jv_Free (mem); - } - }; - - // Return the type_val corresponding to a primitive signature - // character. For instance `I' returns `int.class'. - type_val get_type_val_for_signature (jchar sig) - { - type_val rt; - switch (sig) - { - case 'Z': - rt = boolean_type; - break; - case 'B': - rt = byte_type; - break; - case 'C': - rt = char_type; - break; - case 'S': - rt = short_type; - break; - case 'I': - rt = int_type; - break; - case 'J': - rt = long_type; - break; - case 'F': - rt = float_type; - break; - case 'D': - rt = double_type; - break; - case 'V': - rt = void_type; - break; - default: - verify_fail ("invalid signature"); - } - return rt; - } - - // Return the type_val corresponding to a primitive class. - type_val get_type_val_for_signature (jclass k) - { - return get_type_val_for_signature ((jchar) k->method_count); - } - - // This is like _Jv_IsAssignableFrom, but it works even if SOURCE or - // TARGET haven't been prepared. - static bool is_assignable_from_slow (jclass target, jclass source) - { - // First, strip arrays. - while (target->isArray ()) - { - // If target is array, source must be as well. - if (! source->isArray ()) - return false; - target = target->getComponentType (); - source = source->getComponentType (); - } - - // Quick success. - if (target == &java::lang::Object::class$) - return true; - - do - { - if (source == target) - return true; - - if (target->isPrimitive () || source->isPrimitive ()) - return false; - - if (target->isInterface ()) - { - for (int i = 0; i < source->interface_count; ++i) - { - // We use a recursive call because we also need to - // check superinterfaces. - if (is_assignable_from_slow (target, source->getInterface (i))) - return true; - } - } - source = source->getSuperclass (); - } - while (source != NULL); - - return false; - } - - // The `type' class is used to represent a single type in the - // verifier. - struct type - { - // The type key. - type_val key; - - // For reference types, the representation of the type. - ref_intersection *klass; - - // This is used in two situations. - // - // First, when constructing a new object, it is the PC of the - // `new' instruction which created the object. We use the special - // value UNINIT to mean that this is uninitialized. The special - // value SELF is used for the case where the current method is - // itself the <init> method. the special value EITHER is used - // when we may optionally allow either an uninitialized or - // initialized reference to match. - // - // Second, when the key is return_address_type, this holds the PC - // of the instruction following the `jsr'. - int pc; - - static const int UNINIT = -2; - static const int SELF = -1; - static const int EITHER = -3; - - // Basic constructor. - type () - { - key = unsuitable_type; - klass = NULL; - pc = UNINIT; - } - - // Make a new instance given the type tag. We assume a generic - // `reference_type' means Object. - type (type_val k) - { - key = k; - // For reference_type, if KLASS==NULL then that means we are - // looking for a generic object of any kind, including an - // uninitialized reference. - klass = NULL; - pc = UNINIT; - } - - // Make a new instance given a class. - type (jclass k, _Jv_BytecodeVerifier *verifier) - { - key = reference_type; - klass = new ref_intersection (k, verifier); - pc = UNINIT; - } - - // Make a new instance given the name of a class. - type (_Jv_Utf8Const *n, _Jv_BytecodeVerifier *verifier) - { - key = reference_type; - klass = new ref_intersection (n, verifier); - pc = UNINIT; - } - - // Copy constructor. - type (const type &t) - { - key = t.key; - klass = t.klass; - pc = t.pc; - } - - // These operators are required because libgcj can't link in - // -lstdc++. - void *operator new[] (size_t bytes) - { - return _Jv_Malloc (bytes); - } - - void operator delete[] (void *mem) - { - _Jv_Free (mem); - } - - type& operator= (type_val k) - { - key = k; - klass = NULL; - pc = UNINIT; - return *this; - } - - type& operator= (const type& t) - { - key = t.key; - klass = t.klass; - pc = t.pc; - return *this; - } - - // Promote a numeric type. - type &promote () - { - if (key == boolean_type || key == char_type - || key == byte_type || key == short_type) - key = int_type; - return *this; - } - - // Mark this type as the uninitialized result of `new'. - void set_uninitialized (int npc, _Jv_BytecodeVerifier *verifier) - { - if (key == reference_type) - key = uninitialized_reference_type; - else - verifier->verify_fail ("internal error in type::uninitialized"); - pc = npc; - } - - // Mark this type as now initialized. - void set_initialized (int npc) - { - if (npc != UNINIT && pc == npc && key == uninitialized_reference_type) - { - key = reference_type; - pc = UNINIT; - } - } - - // Mark this type as a particular return address. - void set_return_address (int npc) - { - pc = npc; - } - - // Return true if this type and type OTHER are considered - // mergeable for the purposes of state merging. This is related - // to subroutine handling. For this purpose two types are - // considered unmergeable if they are both return-addresses but - // have different PCs. - bool state_mergeable_p (const type &other) const - { - return (key != return_address_type - || other.key != return_address_type - || pc == other.pc); - } - - // Return true if an object of type K can be assigned to a variable - // of type *THIS. Handle various special cases too. Might modify - // *THIS or K. Note however that this does not perform numeric - // promotion. - bool compatible (type &k, _Jv_BytecodeVerifier *verifier) - { - // Any type is compatible with the unsuitable type. - if (key == unsuitable_type) - return true; - - if (key < reference_type || k.key < reference_type) - return key == k.key; - - // The `null' type is convertible to any initialized reference - // type. - if (key == null_type) - return k.key != uninitialized_reference_type; - if (k.key == null_type) - return key != uninitialized_reference_type; - - // A special case for a generic reference. - if (klass == NULL) - return true; - if (k.klass == NULL) - verifier->verify_fail ("programmer error in type::compatible"); - - // Handle the special 'EITHER' case, which is only used in a - // special case of 'putfield'. Note that we only need to handle - // this on the LHS of a check. - if (! isinitialized () && pc == EITHER) - { - // If the RHS is uninitialized, it must be an uninitialized - // 'this'. - if (! k.isinitialized () && k.pc != SELF) - return false; - } - else if (isinitialized () != k.isinitialized ()) - { - // An initialized type and an uninitialized type are not - // otherwise compatible. - return false; - } - else - { - // Two uninitialized objects are compatible if either: - // * The PCs are identical, or - // * One PC is UNINIT. - if (! isinitialized ()) - { - if (pc != k.pc && pc != UNINIT && k.pc != UNINIT) - return false; - } - } - - return klass->compatible(k.klass, verifier); - } - - bool equals (const type &other, _Jv_BytecodeVerifier *vfy) - { - // Only works for reference types. - if ((key != reference_type - && key != uninitialized_reference_type) - || (other.key != reference_type - && other.key != uninitialized_reference_type)) - return false; - // Only for single-valued types. - if (klass->ref_next || other.klass->ref_next) - return false; - return klass->equals (other.klass, vfy); - } - - bool isvoid () const - { - return key == void_type; - } - - bool iswide () const - { - return key == long_type || key == double_type; - } - - // Return number of stack or local variable slots taken by this - // type. - int depth () const - { - return iswide () ? 2 : 1; - } - - bool isarray () const - { - // We treat null_type as not an array. This is ok based on the - // current uses of this method. - if (key == reference_type) - return klass->isarray (); - return false; - } - - bool isnull () const - { - return key == null_type; - } - - bool isinterface (_Jv_BytecodeVerifier *verifier) - { - if (key != reference_type) - return false; - return klass->isinterface (verifier); - } - - bool isabstract (_Jv_BytecodeVerifier *verifier) - { - if (key != reference_type) - return false; - return klass->isabstract (verifier); - } - - // Return the element type of an array. - type element_type (_Jv_BytecodeVerifier *verifier) - { - if (key != reference_type) - verifier->verify_fail ("programmer error in type::element_type()", -1); - - jclass k = klass->getclass (verifier)->getComponentType (); - if (k->isPrimitive ()) - return type (verifier->get_type_val_for_signature (k)); - return type (k, verifier); - } - - // Return the array type corresponding to an initialized - // reference. We could expand this to work for other kinds of - // types, but currently we don't need to. - type to_array (_Jv_BytecodeVerifier *verifier) - { - if (key != reference_type) - verifier->verify_fail ("internal error in type::to_array()"); - - // In case the class is already resolved we can simply ask the runtime - // to give us the array version. - // If it is not resolved we prepend "[" to the classname to make the - // array usage verification more lazy. In other words: makes new Foo[300] - // pass the verifier if Foo.class is missing. - if (klass->is_resolved) - { - jclass k = klass->getclass (verifier); - - return type (_Jv_GetArrayClass (k, k->getClassLoaderInternal()), - verifier); - } - else - { - int len = klass->data.name->len(); - - // If the classname is given in the Lp1/p2/cn; format we only need - // to add a leading '['. The same procedure has to be done for - // primitive arrays (ie. provided "[I", the result should be "[[I". - // If the classname is given as p1.p2.cn we have to embed it into - // "[L" and ';'. - if (klass->data.name->limit()[-1] == ';' || - _Jv_isPrimitiveOrDerived(klass->data.name)) - { - // Reserves space for leading '[' and trailing '\0' . - char arrayName[len + 2]; - - arrayName[0] = '['; - strcpy(&arrayName[1], klass->data.name->chars()); - -#ifdef VERIFY_DEBUG - // This is only needed when we want to print the string to the - // screen while debugging. - arrayName[len + 1] = '\0'; - - debug_print("len: %d - old: '%s' - new: '%s'\n", len, klass->data.name->chars(), arrayName); -#endif - - return type (verifier->make_utf8_const( arrayName, len + 1 ), - verifier); - } - else - { - // Reserves space for leading "[L" and trailing ';' and '\0' . - char arrayName[len + 4]; - - arrayName[0] = '['; - arrayName[1] = 'L'; - strcpy(&arrayName[2], klass->data.name->chars()); - arrayName[len + 2] = ';'; - -#ifdef VERIFY_DEBUG - // This is only needed when we want to print the string to the - // screen while debugging. - arrayName[len + 3] = '\0'; - - debug_print("len: %d - old: '%s' - new: '%s'\n", len, klass->data.name->chars(), arrayName); -#endif - - return type (verifier->make_utf8_const( arrayName, len + 3 ), - verifier); - } - } - - } - - bool isreference () const - { - return key >= reference_type; - } - - int get_pc () const - { - return pc; - } - - bool isinitialized () const - { - return key == reference_type || key == null_type; - } - - bool isresolved () const - { - return (key == reference_type - || key == null_type - || key == uninitialized_reference_type); - } - - void verify_dimensions (int ndims, _Jv_BytecodeVerifier *verifier) - { - // The way this is written, we don't need to check isarray(). - if (key != reference_type) - verifier->verify_fail ("internal error in verify_dimensions:" - " not a reference type"); - - if (klass->count_dimensions () < ndims) - verifier->verify_fail ("array type has fewer dimensions" - " than required"); - } - - // Merge OLD_TYPE into this. On error throw exception. Return - // true if the merge caused a type change. - bool merge (type& old_type, bool local_semantics, - _Jv_BytecodeVerifier *verifier) - { - bool changed = false; - bool refo = old_type.isreference (); - bool refn = isreference (); - if (refo && refn) - { - if (old_type.key == null_type) - ; - else if (key == null_type) - { - *this = old_type; - changed = true; - } - else if (isinitialized () != old_type.isinitialized ()) - verifier->verify_fail ("merging initialized and uninitialized types"); - else - { - if (! isinitialized ()) - { - if (pc == UNINIT) - pc = old_type.pc; - else if (old_type.pc == UNINIT) - ; - else if (pc != old_type.pc) - verifier->verify_fail ("merging different uninitialized types"); - } - - ref_intersection *merged = old_type.klass->merge (klass, - verifier); - if (merged != klass) - { - klass = merged; - changed = true; - } - } - } - else if (refo || refn || key != old_type.key) - { - if (local_semantics) - { - // If we already have an `unsuitable' type, then we - // don't need to change again. - if (key != unsuitable_type) - { - key = unsuitable_type; - changed = true; - } - } - else - verifier->verify_fail ("unmergeable type"); - } - return changed; - } - -#ifdef VERIFY_DEBUG - void print (void) const - { - char c = '?'; - switch (key) - { - case boolean_type: c = 'Z'; break; - case byte_type: c = 'B'; break; - case char_type: c = 'C'; break; - case short_type: c = 'S'; break; - case int_type: c = 'I'; break; - case long_type: c = 'J'; break; - case float_type: c = 'F'; break; - case double_type: c = 'D'; break; - case void_type: c = 'V'; break; - case unsuitable_type: c = '-'; break; - case return_address_type: c = 'r'; break; - case continuation_type: c = '+'; break; - case reference_type: c = 'L'; break; - case null_type: c = '@'; break; - case uninitialized_reference_type: c = 'U'; break; - } - debug_print ("%c", c); - } -#endif /* VERIFY_DEBUG */ - }; - - // This class holds all the state information we need for a given - // location. - struct state - { - // The current top of the stack, in terms of slots. - int stacktop; - // The current depth of the stack. This will be larger than - // STACKTOP when wide types are on the stack. - int stackdepth; - // The stack. - type *stack; - // The local variables. - type *locals; - // We keep track of the type of `this' specially. This is used to - // ensure that an instance initializer invokes another initializer - // on `this' before returning. We must keep track of this - // specially because otherwise we might be confused by code which - // assigns to locals[0] (overwriting `this') and then returns - // without really initializing. - type this_type; - - // The PC for this state. This is only valid on states which are - // permanently attached to a given PC. For an object like - // `current_state', which is used transiently, this has no - // meaning. - int pc; - // We keep a linked list of all states requiring reverification. - // If this is the special value INVALID_STATE then this state is - // not on the list. NULL marks the end of the linked list. - state *next; - - // NO_NEXT is the PC value meaning that a new state must be - // acquired from the verification list. - static const int NO_NEXT = -1; - - state () - : this_type () - { - stack = NULL; - locals = NULL; - next = INVALID_STATE; - } - - state (int max_stack, int max_locals) - : this_type () - { - stacktop = 0; - stackdepth = 0; - stack = new type[max_stack]; - for (int i = 0; i < max_stack; ++i) - stack[i] = unsuitable_type; - locals = new type[max_locals]; - for (int i = 0; i < max_locals; ++i) - locals[i] = unsuitable_type; - pc = NO_NEXT; - next = INVALID_STATE; - } - - state (const state *orig, int max_stack, int max_locals) - { - stack = new type[max_stack]; - locals = new type[max_locals]; - copy (orig, max_stack, max_locals); - pc = NO_NEXT; - next = INVALID_STATE; - } - - ~state () - { - if (stack) - delete[] stack; - if (locals) - delete[] locals; - } - - void *operator new[] (size_t bytes) - { - return _Jv_Malloc (bytes); - } - - void operator delete[] (void *mem) - { - _Jv_Free (mem); - } - - void *operator new (size_t bytes) - { - return _Jv_Malloc (bytes); - } - - void operator delete (void *mem) - { - _Jv_Free (mem); - } - - void copy (const state *copy, int max_stack, int max_locals) - { - stacktop = copy->stacktop; - stackdepth = copy->stackdepth; - for (int i = 0; i < max_stack; ++i) - stack[i] = copy->stack[i]; - for (int i = 0; i < max_locals; ++i) - locals[i] = copy->locals[i]; - - this_type = copy->this_type; - // Don't modify `next' or `pc'. - } - - // Modify this state to reflect entry to an exception handler. - void set_exception (type t, int max_stack) - { - stackdepth = 1; - stacktop = 1; - stack[0] = t; - for (int i = stacktop; i < max_stack; ++i) - stack[i] = unsuitable_type; - } - - inline int get_pc () const - { - return pc; - } - - void set_pc (int npc) - { - pc = npc; - } - - // Merge STATE_OLD into this state. Destructively modifies this - // state. Returns true if the new state was in fact changed. - // Will throw an exception if the states are not mergeable. - bool merge (state *state_old, int max_locals, - _Jv_BytecodeVerifier *verifier) - { - bool changed = false; - - // Special handling for `this'. If one or the other is - // uninitialized, then the merge is uninitialized. - if (this_type.isinitialized ()) - this_type = state_old->this_type; - - // Merge stacks. - if (state_old->stacktop != stacktop) // FIXME stackdepth instead? - verifier->verify_fail ("stack sizes differ"); - for (int i = 0; i < state_old->stacktop; ++i) - { - if (stack[i].merge (state_old->stack[i], false, verifier)) - changed = true; - } - - // Merge local variables. - for (int i = 0; i < max_locals; ++i) - { - if (locals[i].merge (state_old->locals[i], true, verifier)) - changed = true; - } - - return changed; - } - - // Ensure that `this' has been initialized. - void check_this_initialized (_Jv_BytecodeVerifier *verifier) - { - if (this_type.isreference () && ! this_type.isinitialized ()) - verifier->verify_fail ("`this' is uninitialized"); - } - - // Set type of `this'. - void set_this_type (const type &k) - { - this_type = k; - } - - // Mark each `new'd object we know of that was allocated at PC as - // initialized. - void set_initialized (int pc, int max_locals) - { - for (int i = 0; i < stacktop; ++i) - stack[i].set_initialized (pc); - for (int i = 0; i < max_locals; ++i) - locals[i].set_initialized (pc); - this_type.set_initialized (pc); - } - - // This tests to see whether two states can be considered "merge - // compatible". If both states have a return-address in the same - // slot, and the return addresses are different, then they are not - // compatible and we must not try to merge them. - bool state_mergeable_p (state *other, int max_locals, - _Jv_BytecodeVerifier *verifier) - { - // This is tricky: if the stack sizes differ, then not only are - // these not mergeable, but in fact we should give an error, as - // we've found two execution paths that reach a branch target - // with different stack depths. FIXME stackdepth instead? - if (stacktop != other->stacktop) - verifier->verify_fail ("stack sizes differ"); - - for (int i = 0; i < stacktop; ++i) - if (! stack[i].state_mergeable_p (other->stack[i])) - return false; - for (int i = 0; i < max_locals; ++i) - if (! locals[i].state_mergeable_p (other->locals[i])) - return false; - return true; - } - - void reverify (_Jv_BytecodeVerifier *verifier) - { - if (next == INVALID_STATE) - { - next = verifier->next_verify_state; - verifier->next_verify_state = this; - } - } - -#ifdef VERIFY_DEBUG - void print (const char *leader, int pc, - int max_stack, int max_locals) const - { - debug_print ("%s [%4d]: [stack] ", leader, pc); - int i; - for (i = 0; i < stacktop; ++i) - stack[i].print (); - for (; i < max_stack; ++i) - debug_print ("."); - debug_print (" [local] "); - for (i = 0; i < max_locals; ++i) - locals[i].print (); - debug_print (" | %p\n", this); - } -#else - inline void print (const char *, int, int, int) const - { - } -#endif /* VERIFY_DEBUG */ - }; - - type pop_raw () - { - if (current_state->stacktop <= 0) - verify_fail ("stack empty"); - type r = current_state->stack[--current_state->stacktop]; - current_state->stackdepth -= r.depth (); - if (current_state->stackdepth < 0) - verify_fail ("stack empty", start_PC); - return r; - } - - type pop32 () - { - type r = pop_raw (); - if (r.iswide ()) - verify_fail ("narrow pop of wide type"); - return r; - } - - type pop_type (type match) - { - match.promote (); - type t = pop_raw (); - if (! match.compatible (t, this)) - verify_fail ("incompatible type on stack"); - return t; - } - - // Pop a reference which is guaranteed to be initialized. MATCH - // doesn't have to be a reference type; in this case this acts like - // pop_type. - type pop_init_ref (type match) - { - type t = pop_raw (); - if (t.isreference () && ! t.isinitialized ()) - verify_fail ("initialized reference required"); - else if (! match.compatible (t, this)) - verify_fail ("incompatible type on stack"); - return t; - } - - // Pop a reference type or a return address. - type pop_ref_or_return () - { - type t = pop_raw (); - if (! t.isreference () && t.key != return_address_type) - verify_fail ("expected reference or return address on stack"); - return t; - } - - void push_type (type t) - { - // If T is a numeric type like short, promote it to int. - t.promote (); - - int depth = t.depth (); - if (current_state->stackdepth + depth > current_method->max_stack) - verify_fail ("stack overflow"); - current_state->stack[current_state->stacktop++] = t; - current_state->stackdepth += depth; - } - - void set_variable (int index, type t) - { - // If T is a numeric type like short, promote it to int. - t.promote (); - - int depth = t.depth (); - if (index > current_method->max_locals - depth) - verify_fail ("invalid local variable"); - current_state->locals[index] = t; - - if (depth == 2) - current_state->locals[index + 1] = continuation_type; - if (index > 0 && current_state->locals[index - 1].iswide ()) - current_state->locals[index - 1] = unsuitable_type; - } - - type get_variable (int index, type t) - { - int depth = t.depth (); - if (index > current_method->max_locals - depth) - verify_fail ("invalid local variable"); - if (! t.compatible (current_state->locals[index], this)) - verify_fail ("incompatible type in local variable"); - if (depth == 2) - { - type t (continuation_type); - if (! current_state->locals[index + 1].compatible (t, this)) - verify_fail ("invalid local variable"); - } - return current_state->locals[index]; - } - - // Make sure ARRAY is an array type and that its elements are - // compatible with type ELEMENT. Returns the actual element type. - type require_array_type (type array, type element) - { - // An odd case. Here we just pretend that everything went ok. If - // the requested element type is some kind of reference, return - // the null type instead. - if (array.isnull ()) - return element.isreference () ? type (null_type) : element; - - if (! array.isarray ()) - verify_fail ("array required"); - - type t = array.element_type (this); - if (! element.compatible (t, this)) - { - // Special case for byte arrays, which must also be boolean - // arrays. - bool ok = true; - if (element.key == byte_type) - { - type e2 (boolean_type); - ok = e2.compatible (t, this); - } - if (! ok) - verify_fail ("incompatible array element type"); - } - - // Return T and not ELEMENT, because T might be specialized. - return t; - } - - jint get_byte () - { - if (PC >= current_method->code_length) - verify_fail ("premature end of bytecode"); - return (jint) bytecode[PC++] & 0xff; - } - - jint get_ushort () - { - jint b1 = get_byte (); - jint b2 = get_byte (); - return (jint) ((b1 << 8) | b2) & 0xffff; - } - - jint get_short () - { - jint b1 = get_byte (); - jint b2 = get_byte (); - jshort s = (b1 << 8) | b2; - return (jint) s; - } - - jint get_int () - { - jint b1 = get_byte (); - jint b2 = get_byte (); - jint b3 = get_byte (); - jint b4 = get_byte (); - return (b1 << 24) | (b2 << 16) | (b3 << 8) | b4; - } - - int compute_jump (int offset) - { - int npc = start_PC + offset; - if (npc < 0 || npc >= current_method->code_length) - verify_fail ("branch out of range", start_PC); - return npc; - } - - // Add a new state to the state list at NPC. - state *add_new_state (int npc, state *old_state) - { - state *new_state = new state (old_state, current_method->max_stack, - current_method->max_locals); - debug_print ("== New state in add_new_state\n"); - new_state->print ("New", npc, current_method->max_stack, - current_method->max_locals); - linked<state> *nlink - = (linked<state> *) _Jv_Malloc (sizeof (linked<state>)); - nlink->val = new_state; - nlink->next = states[npc]; - states[npc] = nlink; - new_state->set_pc (npc); - return new_state; - } - - // Merge the indicated state into the state at the branch target and - // schedule a new PC if there is a change. NPC is the PC of the - // branch target, and FROM_STATE is the state at the source of the - // branch. This method returns true if the destination state - // changed and requires reverification, false otherwise. - void merge_into (int npc, state *from_state) - { - // Iterate over all target states and merge our state into each, - // if applicable. FIXME one improvement we could make here is - // "state destruction". Merging a new state into an existing one - // might cause a return_address_type to be merged to - // unsuitable_type. In this case the resulting state may now be - // mergeable with other states currently held in parallel at this - // location. So in this situation we could pairwise compare and - // reduce the number of parallel states. - bool applicable = false; - for (linked<state> *iter = states[npc]; iter != NULL; iter = iter->next) - { - state *new_state = iter->val; - if (new_state->state_mergeable_p (from_state, - current_method->max_locals, this)) - { - applicable = true; - - debug_print ("== Merge states in merge_into\n"); - from_state->print ("Frm", start_PC, current_method->max_stack, - current_method->max_locals); - new_state->print (" To", npc, current_method->max_stack, - current_method->max_locals); - bool changed = new_state->merge (from_state, - current_method->max_locals, - this); - new_state->print ("New", npc, current_method->max_stack, - current_method->max_locals); - - if (changed) - new_state->reverify (this); - } - } - - if (! applicable) - { - // Either we don't yet have a state at NPC, or we have a - // return-address type that is in conflict with all existing - // state. So, we need to create a new entry. - state *new_state = add_new_state (npc, from_state); - // A new state added in this way must always be reverified. - new_state->reverify (this); - } - } - - void push_jump (int offset) - { - int npc = compute_jump (offset); - // According to the JVM Spec, we need to check for uninitialized - // objects here. However, this does not actually affect type - // safety, and the Eclipse java compiler generates code that - // violates this constraint. - merge_into (npc, current_state); - } - - void push_exception_jump (type t, int pc) - { - // According to the JVM Spec, we need to check for uninitialized - // objects here. However, this does not actually affect type - // safety, and the Eclipse java compiler generates code that - // violates this constraint. - state s (current_state, current_method->max_stack, - current_method->max_locals); - if (current_method->max_stack < 1) - verify_fail ("stack overflow at exception handler"); - s.set_exception (t, current_method->max_stack); - merge_into (pc, &s); - } - - state *pop_jump () - { - state *new_state = next_verify_state; - if (new_state == INVALID_STATE) - verify_fail ("programmer error in pop_jump"); - if (new_state != NULL) - { - next_verify_state = new_state->next; - new_state->next = INVALID_STATE; - } - return new_state; - } - - void invalidate_pc () - { - PC = state::NO_NEXT; - } - - void note_branch_target (int pc) - { - // Don't check `pc <= PC', because we've advanced PC after - // fetching the target and we haven't yet checked the next - // instruction. - if (pc < PC && ! (flags[pc] & FLAG_INSN_START)) - verify_fail ("branch not to instruction start", start_PC); - flags[pc] |= FLAG_BRANCH_TARGET; - } - - void skip_padding () - { - while ((PC % 4) > 0) - if (get_byte () != 0) - verify_fail ("found nonzero padding byte"); - } - - // Do the work for a `ret' instruction. INDEX is the index into the - // local variables. - void handle_ret_insn (int index) - { - type ret_addr = get_variable (index, return_address_type); - // It would be nice if we could do this. However, the JVM Spec - // doesn't say that this is what happens. It is implied that - // reusing a return address is invalid, but there's no actual - // prohibition against it. - // set_variable (index, unsuitable_type); - - int npc = ret_addr.get_pc (); - // We might be returning to a `jsr' that is at the end of the - // bytecode. This is ok if we never return from the called - // subroutine, but if we see this here it is an error. - if (npc >= current_method->code_length) - verify_fail ("fell off end"); - - // According to the JVM Spec, we need to check for uninitialized - // objects here. However, this does not actually affect type - // safety, and the Eclipse java compiler generates code that - // violates this constraint. - merge_into (npc, current_state); - invalidate_pc (); - } - - void handle_jsr_insn (int offset) - { - int npc = compute_jump (offset); - - // According to the JVM Spec, we need to check for uninitialized - // objects here. However, this does not actually affect type - // safety, and the Eclipse java compiler generates code that - // violates this constraint. - - // Modify our state as appropriate for entry into a subroutine. - type ret_addr (return_address_type); - ret_addr.set_return_address (PC); - push_type (ret_addr); - merge_into (npc, current_state); - invalidate_pc (); - } - - jclass construct_primitive_array_type (type_val prim) - { - jclass k = NULL; - switch (prim) - { - case boolean_type: - k = JvPrimClass (boolean); - break; - case char_type: - k = JvPrimClass (char); - break; - case float_type: - k = JvPrimClass (float); - break; - case double_type: - k = JvPrimClass (double); - break; - case byte_type: - k = JvPrimClass (byte); - break; - case short_type: - k = JvPrimClass (short); - break; - case int_type: - k = JvPrimClass (int); - break; - case long_type: - k = JvPrimClass (long); - break; - - // These aren't used here but we call them out to avoid - // warnings. - case void_type: - case unsuitable_type: - case return_address_type: - case continuation_type: - case reference_type: - case null_type: - case uninitialized_reference_type: - default: - verify_fail ("unknown type in construct_primitive_array_type"); - } - k = _Jv_GetArrayClass (k, NULL); - return k; - } - - // This pass computes the location of branch targets and also - // instruction starts. - void branch_prepass () - { - flags = (char *) _Jv_Malloc (current_method->code_length); - - for (int i = 0; i < current_method->code_length; ++i) - flags[i] = 0; - - PC = 0; - while (PC < current_method->code_length) - { - // Set `start_PC' early so that error checking can have the - // correct value. - start_PC = PC; - flags[PC] |= FLAG_INSN_START; - - java_opcode opcode = (java_opcode) bytecode[PC++]; - switch (opcode) - { - case op_nop: - case op_aconst_null: - case op_iconst_m1: - case op_iconst_0: - case op_iconst_1: - case op_iconst_2: - case op_iconst_3: - case op_iconst_4: - case op_iconst_5: - case op_lconst_0: - case op_lconst_1: - case op_fconst_0: - case op_fconst_1: - case op_fconst_2: - case op_dconst_0: - case op_dconst_1: - case op_iload_0: - case op_iload_1: - case op_iload_2: - case op_iload_3: - case op_lload_0: - case op_lload_1: - case op_lload_2: - case op_lload_3: - case op_fload_0: - case op_fload_1: - case op_fload_2: - case op_fload_3: - case op_dload_0: - case op_dload_1: - case op_dload_2: - case op_dload_3: - case op_aload_0: - case op_aload_1: - case op_aload_2: - case op_aload_3: - case op_iaload: - case op_laload: - case op_faload: - case op_daload: - case op_aaload: - case op_baload: - case op_caload: - case op_saload: - case op_istore_0: - case op_istore_1: - case op_istore_2: - case op_istore_3: - case op_lstore_0: - case op_lstore_1: - case op_lstore_2: - case op_lstore_3: - case op_fstore_0: - case op_fstore_1: - case op_fstore_2: - case op_fstore_3: - case op_dstore_0: - case op_dstore_1: - case op_dstore_2: - case op_dstore_3: - case op_astore_0: - case op_astore_1: - case op_astore_2: - case op_astore_3: - case op_iastore: - case op_lastore: - case op_fastore: - case op_dastore: - case op_aastore: - case op_bastore: - case op_castore: - case op_sastore: - case op_pop: - case op_pop2: - case op_dup: - case op_dup_x1: - case op_dup_x2: - case op_dup2: - case op_dup2_x1: - case op_dup2_x2: - case op_swap: - case op_iadd: - case op_isub: - case op_imul: - case op_idiv: - case op_irem: - case op_ishl: - case op_ishr: - case op_iushr: - case op_iand: - case op_ior: - case op_ixor: - case op_ladd: - case op_lsub: - case op_lmul: - case op_ldiv: - case op_lrem: - case op_lshl: - case op_lshr: - case op_lushr: - case op_land: - case op_lor: - case op_lxor: - case op_fadd: - case op_fsub: - case op_fmul: - case op_fdiv: - case op_frem: - case op_dadd: - case op_dsub: - case op_dmul: - case op_ddiv: - case op_drem: - case op_ineg: - case op_i2b: - case op_i2c: - case op_i2s: - case op_lneg: - case op_fneg: - case op_dneg: - case op_i2l: - case op_i2f: - case op_i2d: - case op_l2i: - case op_l2f: - case op_l2d: - case op_f2i: - case op_f2l: - case op_f2d: - case op_d2i: - case op_d2l: - case op_d2f: - case op_lcmp: - case op_fcmpl: - case op_fcmpg: - case op_dcmpl: - case op_dcmpg: - case op_monitorenter: - case op_monitorexit: - case op_ireturn: - case op_lreturn: - case op_freturn: - case op_dreturn: - case op_areturn: - case op_return: - case op_athrow: - case op_arraylength: - break; - - case op_bipush: - case op_ldc: - case op_iload: - case op_lload: - case op_fload: - case op_dload: - case op_aload: - case op_istore: - case op_lstore: - case op_fstore: - case op_dstore: - case op_astore: - case op_ret: - case op_newarray: - get_byte (); - break; - - case op_iinc: - case op_sipush: - case op_ldc_w: - case op_ldc2_w: - case op_getstatic: - case op_getfield: - case op_putfield: - case op_putstatic: - case op_new: - case op_anewarray: - case op_instanceof: - case op_checkcast: - case op_invokespecial: - case op_invokestatic: - case op_invokevirtual: - get_short (); - break; - - case op_multianewarray: - get_short (); - get_byte (); - break; - - case op_jsr: - case op_ifeq: - case op_ifne: - case op_iflt: - case op_ifge: - case op_ifgt: - case op_ifle: - case op_if_icmpeq: - case op_if_icmpne: - case op_if_icmplt: - case op_if_icmpge: - case op_if_icmpgt: - case op_if_icmple: - case op_if_acmpeq: - case op_if_acmpne: - case op_ifnull: - case op_ifnonnull: - case op_goto: - note_branch_target (compute_jump (get_short ())); - break; - - case op_tableswitch: - { - skip_padding (); - note_branch_target (compute_jump (get_int ())); - jint low = get_int (); - jint hi = get_int (); - if (low > hi) - verify_fail ("invalid tableswitch", start_PC); - for (int i = low; i <= hi; ++i) - note_branch_target (compute_jump (get_int ())); - } - break; - - case op_lookupswitch: - { - skip_padding (); - note_branch_target (compute_jump (get_int ())); - int npairs = get_int (); - if (npairs < 0) - verify_fail ("too few pairs in lookupswitch", start_PC); - while (npairs-- > 0) - { - get_int (); - note_branch_target (compute_jump (get_int ())); - } - } - break; - - case op_invokeinterface: - get_short (); - get_byte (); - get_byte (); - break; - - case op_wide: - { - opcode = (java_opcode) get_byte (); - get_short (); - if (opcode == op_iinc) - get_short (); - } - break; - - case op_jsr_w: - case op_goto_w: - note_branch_target (compute_jump (get_int ())); - break; - - // These are unused here, but we call them out explicitly - // so that -Wswitch-enum doesn't complain. - case op_putfield_1: - case op_putfield_2: - case op_putfield_4: - case op_putfield_8: - case op_putfield_a: - case op_putstatic_1: - case op_putstatic_2: - case op_putstatic_4: - case op_putstatic_8: - case op_putstatic_a: - case op_getfield_1: - case op_getfield_2s: - case op_getfield_2u: - case op_getfield_4: - case op_getfield_8: - case op_getfield_a: - case op_getstatic_1: - case op_getstatic_2s: - case op_getstatic_2u: - case op_getstatic_4: - case op_getstatic_8: - case op_getstatic_a: - case op_breakpoint: - default: - verify_fail ("unrecognized instruction in branch_prepass", - start_PC); - } - - // See if any previous branch tried to branch to the middle of - // this instruction. - for (int pc = start_PC + 1; pc < PC; ++pc) - { - if ((flags[pc] & FLAG_BRANCH_TARGET)) - verify_fail ("branch to middle of instruction", pc); - } - } - - // Verify exception handlers. - for (int i = 0; i < current_method->exc_count; ++i) - { - if (! (flags[exception[i].handler_pc.i] & FLAG_INSN_START)) - verify_fail ("exception handler not at instruction start", - exception[i].handler_pc.i); - if (! (flags[exception[i].start_pc.i] & FLAG_INSN_START)) - verify_fail ("exception start not at instruction start", - exception[i].start_pc.i); - if (exception[i].end_pc.i != current_method->code_length - && ! (flags[exception[i].end_pc.i] & FLAG_INSN_START)) - verify_fail ("exception end not at instruction start", - exception[i].end_pc.i); - - flags[exception[i].handler_pc.i] |= FLAG_BRANCH_TARGET; - } - } - - void check_pool_index (int index) - { - if (index < 0 || index >= current_class->constants.size) - verify_fail ("constant pool index out of range", start_PC); - } - - type check_class_constant (int index) - { - check_pool_index (index); - _Jv_Constants *pool = ¤t_class->constants; - if (pool->tags[index] == JV_CONSTANT_ResolvedClass) - return type (pool->data[index].clazz, this); - else if (pool->tags[index] == JV_CONSTANT_Class) - return type (pool->data[index].utf8, this); - verify_fail ("expected class constant", start_PC); - } - - type check_constant (int index) - { - check_pool_index (index); - _Jv_Constants *pool = ¤t_class->constants; - int tag = pool->tags[index]; - if (tag == JV_CONSTANT_ResolvedString || tag == JV_CONSTANT_String) - return type (&java::lang::String::class$, this); - else if (tag == JV_CONSTANT_Integer) - return type (int_type); - else if (tag == JV_CONSTANT_Float) - return type (float_type); - else if (current_method->is_15 - && (tag == JV_CONSTANT_ResolvedClass || tag == JV_CONSTANT_Class)) - return type (&java::lang::Class::class$, this); - verify_fail ("String, int, or float constant expected", start_PC); - } - - type check_wide_constant (int index) - { - check_pool_index (index); - _Jv_Constants *pool = ¤t_class->constants; - if (pool->tags[index] == JV_CONSTANT_Long) - return type (long_type); - else if (pool->tags[index] == JV_CONSTANT_Double) - return type (double_type); - verify_fail ("long or double constant expected", start_PC); - } - - // Helper for both field and method. These are laid out the same in - // the constant pool. - type handle_field_or_method (int index, int expected, - _Jv_Utf8Const **name, - _Jv_Utf8Const **fmtype) - { - check_pool_index (index); - _Jv_Constants *pool = ¤t_class->constants; - if (pool->tags[index] != expected) - verify_fail ("didn't see expected constant", start_PC); - // Once we know we have a Fieldref or Methodref we assume that it - // is correctly laid out in the constant pool. I think the code - // in defineclass.cc guarantees this. - _Jv_ushort class_index, name_and_type_index; - _Jv_loadIndexes (&pool->data[index], - class_index, - name_and_type_index); - _Jv_ushort name_index, desc_index; - _Jv_loadIndexes (&pool->data[name_and_type_index], - name_index, desc_index); - - *name = pool->data[name_index].utf8; - *fmtype = pool->data[desc_index].utf8; - - return check_class_constant (class_index); - } - - // Return field's type, compute class' type if requested. - // If PUTFIELD is true, use the special 'putfield' semantics. - type check_field_constant (int index, type *class_type = NULL, - bool putfield = false) - { - _Jv_Utf8Const *name, *field_type; - type ct = handle_field_or_method (index, - JV_CONSTANT_Fieldref, - &name, &field_type); - if (class_type) - *class_type = ct; - type result; - if (field_type->first() == '[' || field_type->first() == 'L') - result = type (field_type, this); - else - result = get_type_val_for_signature (field_type->first()); - - // We have an obscure special case here: we can use `putfield' on - // a field declared in this class, even if `this' has not yet been - // initialized. - if (putfield - && ! current_state->this_type.isinitialized () - && current_state->this_type.pc == type::SELF - && current_state->this_type.equals (ct, this) - // We don't look at the signature, figuring that if it is - // wrong we will fail during linking. FIXME? - && _Jv_Linker::has_field_p (current_class, name)) - // Note that we don't actually know whether we're going to match - // against 'this' or some other object of the same type. So, - // here we set things up so that it doesn't matter. This relies - // on knowing what our caller is up to. - class_type->set_uninitialized (type::EITHER, this); - - return result; - } - - type check_method_constant (int index, bool is_interface, - _Jv_Utf8Const **method_name, - _Jv_Utf8Const **method_signature) - { - return handle_field_or_method (index, - (is_interface - ? JV_CONSTANT_InterfaceMethodref - : JV_CONSTANT_Methodref), - method_name, method_signature); - } - - type get_one_type (char *&p) - { - char *start = p; - - int arraycount = 0; - while (*p == '[') - { - ++arraycount; - ++p; - } - - char v = *p++; - - if (v == 'L') - { - while (*p != ';') - ++p; - ++p; - _Jv_Utf8Const *name = make_utf8_const (start, p - start); - return type (name, this); - } - - // Casting to jchar here is ok since we are looking at an ASCII - // character. - type_val rt = get_type_val_for_signature (jchar (v)); - - if (arraycount == 0) - { - // Callers of this function eventually push their arguments on - // the stack. So, promote them here. - return type (rt).promote (); - } - - jclass k = construct_primitive_array_type (rt); - while (--arraycount > 0) - k = _Jv_GetArrayClass (k, NULL); - return type (k, this); - } - - void compute_argument_types (_Jv_Utf8Const *signature, - type *types) - { - char *p = signature->chars(); - - // Skip `('. - ++p; - - int i = 0; - while (*p != ')') - types[i++] = get_one_type (p); - } - - type compute_return_type (_Jv_Utf8Const *signature) - { - char *p = signature->chars(); - while (*p != ')') - ++p; - ++p; - return get_one_type (p); - } - - void check_return_type (type onstack) - { - type rt = compute_return_type (current_method->self->signature); - if (! rt.compatible (onstack, this)) - verify_fail ("incompatible return type"); - } - - // Initialize the stack for the new method. Returns true if this - // method is an instance initializer. - bool initialize_stack () - { - int var = 0; - bool is_init = _Jv_equalUtf8Consts (current_method->self->name, - gcj::init_name); - bool is_clinit = _Jv_equalUtf8Consts (current_method->self->name, - gcj::clinit_name); - - using namespace java::lang::reflect; - if (! Modifier::isStatic (current_method->self->accflags)) - { - type kurr (current_class, this); - if (is_init) - { - kurr.set_uninitialized (type::SELF, this); - is_init = true; - } - else if (is_clinit) - verify_fail ("<clinit> method must be static"); - set_variable (0, kurr); - current_state->set_this_type (kurr); - ++var; - } - else - { - if (is_init) - verify_fail ("<init> method must be non-static"); - } - - // We have to handle wide arguments specially here. - int arg_count = _Jv_count_arguments (current_method->self->signature); - type arg_types[arg_count]; - compute_argument_types (current_method->self->signature, arg_types); - for (int i = 0; i < arg_count; ++i) - { - set_variable (var, arg_types[i]); - ++var; - if (arg_types[i].iswide ()) - ++var; - } - - return is_init; - } - - void verify_instructions_0 () - { - current_state = new state (current_method->max_stack, - current_method->max_locals); - - PC = 0; - start_PC = 0; - - // True if we are verifying an instance initializer. - bool this_is_init = initialize_stack (); - - states = (linked<state> **) _Jv_Malloc (sizeof (linked<state> *) - * current_method->code_length); - for (int i = 0; i < current_method->code_length; ++i) - states[i] = NULL; - - next_verify_state = NULL; - - while (true) - { - // If the PC was invalidated, get a new one from the work list. - if (PC == state::NO_NEXT) - { - state *new_state = pop_jump (); - // If it is null, we're done. - if (new_state == NULL) - break; - - PC = new_state->get_pc (); - debug_print ("== State pop from pending list\n"); - // Set up the current state. - current_state->copy (new_state, current_method->max_stack, - current_method->max_locals); - } - else - { - // We only have to do this checking in the situation where - // control flow falls through from the previous - // instruction. Otherwise merging is done at the time we - // push the branch. Note that we'll catch the - // off-the-end problem just below. - if (PC < current_method->code_length && states[PC] != NULL) - { - // We've already visited this instruction. So merge - // the states together. It is simplest, but not most - // efficient, to just always invalidate the PC here. - merge_into (PC, current_state); - invalidate_pc (); - continue; - } - } - - // Control can't fall off the end of the bytecode. We need to - // check this in both cases, not just the fall-through case, - // because we don't check to see whether a `jsr' appears at - // the end of the bytecode until we process a `ret'. - if (PC >= current_method->code_length) - verify_fail ("fell off end"); - - // We only have to keep saved state at branch targets. If - // we're at a branch target and the state here hasn't been set - // yet, we set it now. You might notice that `ret' targets - // won't necessarily have FLAG_BRANCH_TARGET set. This - // doesn't matter, since those states will be filled in by - // merge_into. - if (states[PC] == NULL && (flags[PC] & FLAG_BRANCH_TARGET)) - add_new_state (PC, current_state); - - // Set this before handling exceptions so that debug output is - // sane. - start_PC = PC; - - // Update states for all active exception handlers. Ordinarily - // there are not many exception handlers. So we simply run - // through them all. - for (int i = 0; i < current_method->exc_count; ++i) - { - if (PC >= exception[i].start_pc.i && PC < exception[i].end_pc.i) - { - type handler (&java::lang::Throwable::class$, this); - if (exception[i].handler_type.i != 0) - handler = check_class_constant (exception[i].handler_type.i); - push_exception_jump (handler, exception[i].handler_pc.i); - } - } - - current_state->print (" ", PC, current_method->max_stack, - current_method->max_locals); - java_opcode opcode = (java_opcode) bytecode[PC++]; - switch (opcode) - { - case op_nop: - break; - - case op_aconst_null: - push_type (null_type); - break; - - case op_iconst_m1: - case op_iconst_0: - case op_iconst_1: - case op_iconst_2: - case op_iconst_3: - case op_iconst_4: - case op_iconst_5: - push_type (int_type); - break; - - case op_lconst_0: - case op_lconst_1: - push_type (long_type); - break; - - case op_fconst_0: - case op_fconst_1: - case op_fconst_2: - push_type (float_type); - break; - - case op_dconst_0: - case op_dconst_1: - push_type (double_type); - break; - - case op_bipush: - get_byte (); - push_type (int_type); - break; - - case op_sipush: - get_short (); - push_type (int_type); - break; - - case op_ldc: - push_type (check_constant (get_byte ())); - break; - case op_ldc_w: - push_type (check_constant (get_ushort ())); - break; - case op_ldc2_w: - push_type (check_wide_constant (get_ushort ())); - break; - - case op_iload: - push_type (get_variable (get_byte (), int_type)); - break; - case op_lload: - push_type (get_variable (get_byte (), long_type)); - break; - case op_fload: - push_type (get_variable (get_byte (), float_type)); - break; - case op_dload: - push_type (get_variable (get_byte (), double_type)); - break; - case op_aload: - push_type (get_variable (get_byte (), reference_type)); - break; - - case op_iload_0: - case op_iload_1: - case op_iload_2: - case op_iload_3: - push_type (get_variable (opcode - op_iload_0, int_type)); - break; - case op_lload_0: - case op_lload_1: - case op_lload_2: - case op_lload_3: - push_type (get_variable (opcode - op_lload_0, long_type)); - break; - case op_fload_0: - case op_fload_1: - case op_fload_2: - case op_fload_3: - push_type (get_variable (opcode - op_fload_0, float_type)); - break; - case op_dload_0: - case op_dload_1: - case op_dload_2: - case op_dload_3: - push_type (get_variable (opcode - op_dload_0, double_type)); - break; - case op_aload_0: - case op_aload_1: - case op_aload_2: - case op_aload_3: - push_type (get_variable (opcode - op_aload_0, reference_type)); - break; - case op_iaload: - pop_type (int_type); - push_type (require_array_type (pop_init_ref (reference_type), - int_type)); - break; - case op_laload: - pop_type (int_type); - push_type (require_array_type (pop_init_ref (reference_type), - long_type)); - break; - case op_faload: - pop_type (int_type); - push_type (require_array_type (pop_init_ref (reference_type), - float_type)); - break; - case op_daload: - pop_type (int_type); - push_type (require_array_type (pop_init_ref (reference_type), - double_type)); - break; - case op_aaload: - pop_type (int_type); - push_type (require_array_type (pop_init_ref (reference_type), - reference_type)); - break; - case op_baload: - pop_type (int_type); - require_array_type (pop_init_ref (reference_type), byte_type); - push_type (int_type); - break; - case op_caload: - pop_type (int_type); - require_array_type (pop_init_ref (reference_type), char_type); - push_type (int_type); - break; - case op_saload: - pop_type (int_type); - require_array_type (pop_init_ref (reference_type), short_type); - push_type (int_type); - break; - case op_istore: - set_variable (get_byte (), pop_type (int_type)); - break; - case op_lstore: - set_variable (get_byte (), pop_type (long_type)); - break; - case op_fstore: - set_variable (get_byte (), pop_type (float_type)); - break; - case op_dstore: - set_variable (get_byte (), pop_type (double_type)); - break; - case op_astore: - set_variable (get_byte (), pop_ref_or_return ()); - break; - case op_istore_0: - case op_istore_1: - case op_istore_2: - case op_istore_3: - set_variable (opcode - op_istore_0, pop_type (int_type)); - break; - case op_lstore_0: - case op_lstore_1: - case op_lstore_2: - case op_lstore_3: - set_variable (opcode - op_lstore_0, pop_type (long_type)); - break; - case op_fstore_0: - case op_fstore_1: - case op_fstore_2: - case op_fstore_3: - set_variable (opcode - op_fstore_0, pop_type (float_type)); - break; - case op_dstore_0: - case op_dstore_1: - case op_dstore_2: - case op_dstore_3: - set_variable (opcode - op_dstore_0, pop_type (double_type)); - break; - case op_astore_0: - case op_astore_1: - case op_astore_2: - case op_astore_3: - set_variable (opcode - op_astore_0, pop_ref_or_return ()); - break; - case op_iastore: - pop_type (int_type); - pop_type (int_type); - require_array_type (pop_init_ref (reference_type), int_type); - break; - case op_lastore: - pop_type (long_type); - pop_type (int_type); - require_array_type (pop_init_ref (reference_type), long_type); - break; - case op_fastore: - pop_type (float_type); - pop_type (int_type); - require_array_type (pop_init_ref (reference_type), float_type); - break; - case op_dastore: - pop_type (double_type); - pop_type (int_type); - require_array_type (pop_init_ref (reference_type), double_type); - break; - case op_aastore: - pop_type (reference_type); - pop_type (int_type); - require_array_type (pop_init_ref (reference_type), reference_type); - break; - case op_bastore: - pop_type (int_type); - pop_type (int_type); - require_array_type (pop_init_ref (reference_type), byte_type); - break; - case op_castore: - pop_type (int_type); - pop_type (int_type); - require_array_type (pop_init_ref (reference_type), char_type); - break; - case op_sastore: - pop_type (int_type); - pop_type (int_type); - require_array_type (pop_init_ref (reference_type), short_type); - break; - case op_pop: - pop32 (); - break; - case op_pop2: - { - type t = pop_raw (); - if (! t.iswide ()) - pop32 (); - } - break; - case op_dup: - { - type t = pop32 (); - push_type (t); - push_type (t); - } - break; - case op_dup_x1: - { - type t1 = pop32 (); - type t2 = pop32 (); - push_type (t1); - push_type (t2); - push_type (t1); - } - break; - case op_dup_x2: - { - type t1 = pop32 (); - type t2 = pop_raw (); - if (! t2.iswide ()) - { - type t3 = pop32 (); - push_type (t1); - push_type (t3); - } - else - push_type (t1); - push_type (t2); - push_type (t1); - } - break; - case op_dup2: - { - type t = pop_raw (); - if (! t.iswide ()) - { - type t2 = pop32 (); - push_type (t2); - push_type (t); - push_type (t2); - } - else - push_type (t); - push_type (t); - } - break; - case op_dup2_x1: - { - type t1 = pop_raw (); - type t2 = pop32 (); - if (! t1.iswide ()) - { - type t3 = pop32 (); - push_type (t2); - push_type (t1); - push_type (t3); - } - else - push_type (t1); - push_type (t2); - push_type (t1); - } - break; - case op_dup2_x2: - { - type t1 = pop_raw (); - if (t1.iswide ()) - { - type t2 = pop_raw (); - if (t2.iswide ()) - { - push_type (t1); - push_type (t2); - } - else - { - type t3 = pop32 (); - push_type (t1); - push_type (t3); - push_type (t2); - } - push_type (t1); - } - else - { - type t2 = pop32 (); - type t3 = pop_raw (); - if (t3.iswide ()) - { - push_type (t2); - push_type (t1); - } - else - { - type t4 = pop32 (); - push_type (t2); - push_type (t1); - push_type (t4); - } - push_type (t3); - push_type (t2); - push_type (t1); - } - } - break; - case op_swap: - { - type t1 = pop32 (); - type t2 = pop32 (); - push_type (t1); - push_type (t2); - } - break; - case op_iadd: - case op_isub: - case op_imul: - case op_idiv: - case op_irem: - case op_ishl: - case op_ishr: - case op_iushr: - case op_iand: - case op_ior: - case op_ixor: - pop_type (int_type); - push_type (pop_type (int_type)); - break; - case op_ladd: - case op_lsub: - case op_lmul: - case op_ldiv: - case op_lrem: - case op_land: - case op_lor: - case op_lxor: - pop_type (long_type); - push_type (pop_type (long_type)); - break; - case op_lshl: - case op_lshr: - case op_lushr: - pop_type (int_type); - push_type (pop_type (long_type)); - break; - case op_fadd: - case op_fsub: - case op_fmul: - case op_fdiv: - case op_frem: - pop_type (float_type); - push_type (pop_type (float_type)); - break; - case op_dadd: - case op_dsub: - case op_dmul: - case op_ddiv: - case op_drem: - pop_type (double_type); - push_type (pop_type (double_type)); - break; - case op_ineg: - case op_i2b: - case op_i2c: - case op_i2s: - push_type (pop_type (int_type)); - break; - case op_lneg: - push_type (pop_type (long_type)); - break; - case op_fneg: - push_type (pop_type (float_type)); - break; - case op_dneg: - push_type (pop_type (double_type)); - break; - case op_iinc: - get_variable (get_byte (), int_type); - get_byte (); - break; - case op_i2l: - pop_type (int_type); - push_type (long_type); - break; - case op_i2f: - pop_type (int_type); - push_type (float_type); - break; - case op_i2d: - pop_type (int_type); - push_type (double_type); - break; - case op_l2i: - pop_type (long_type); - push_type (int_type); - break; - case op_l2f: - pop_type (long_type); - push_type (float_type); - break; - case op_l2d: - pop_type (long_type); - push_type (double_type); - break; - case op_f2i: - pop_type (float_type); - push_type (int_type); - break; - case op_f2l: - pop_type (float_type); - push_type (long_type); - break; - case op_f2d: - pop_type (float_type); - push_type (double_type); - break; - case op_d2i: - pop_type (double_type); - push_type (int_type); - break; - case op_d2l: - pop_type (double_type); - push_type (long_type); - break; - case op_d2f: - pop_type (double_type); - push_type (float_type); - break; - case op_lcmp: - pop_type (long_type); - pop_type (long_type); - push_type (int_type); - break; - case op_fcmpl: - case op_fcmpg: - pop_type (float_type); - pop_type (float_type); - push_type (int_type); - break; - case op_dcmpl: - case op_dcmpg: - pop_type (double_type); - pop_type (double_type); - push_type (int_type); - break; - case op_ifeq: - case op_ifne: - case op_iflt: - case op_ifge: - case op_ifgt: - case op_ifle: - pop_type (int_type); - push_jump (get_short ()); - break; - case op_if_icmpeq: - case op_if_icmpne: - case op_if_icmplt: - case op_if_icmpge: - case op_if_icmpgt: - case op_if_icmple: - pop_type (int_type); - pop_type (int_type); - push_jump (get_short ()); - break; - case op_if_acmpeq: - case op_if_acmpne: - pop_type (reference_type); - pop_type (reference_type); - push_jump (get_short ()); - break; - case op_goto: - push_jump (get_short ()); - invalidate_pc (); - break; - case op_jsr: - handle_jsr_insn (get_short ()); - break; - case op_ret: - handle_ret_insn (get_byte ()); - break; - case op_tableswitch: - { - pop_type (int_type); - skip_padding (); - push_jump (get_int ()); - jint low = get_int (); - jint high = get_int (); - // Already checked LOW -vs- HIGH. - for (int i = low; i <= high; ++i) - push_jump (get_int ()); - invalidate_pc (); - } - break; - - case op_lookupswitch: - { - pop_type (int_type); - skip_padding (); - push_jump (get_int ()); - jint npairs = get_int (); - // Already checked NPAIRS >= 0. - jint lastkey = 0; - for (int i = 0; i < npairs; ++i) - { - jint key = get_int (); - if (i > 0 && key <= lastkey) - verify_fail ("lookupswitch pairs unsorted", start_PC); - lastkey = key; - push_jump (get_int ()); - } - invalidate_pc (); - } - break; - case op_ireturn: - check_return_type (pop_type (int_type)); - invalidate_pc (); - break; - case op_lreturn: - check_return_type (pop_type (long_type)); - invalidate_pc (); - break; - case op_freturn: - check_return_type (pop_type (float_type)); - invalidate_pc (); - break; - case op_dreturn: - check_return_type (pop_type (double_type)); - invalidate_pc (); - break; - case op_areturn: - check_return_type (pop_init_ref (reference_type)); - invalidate_pc (); - break; - case op_return: - // We only need to check this when the return type is - // void, because all instance initializers return void. - if (this_is_init) - current_state->check_this_initialized (this); - check_return_type (void_type); - invalidate_pc (); - break; - case op_getstatic: - push_type (check_field_constant (get_ushort ())); - break; - case op_putstatic: - pop_type (check_field_constant (get_ushort ())); - break; - case op_getfield: - { - type klass; - type field = check_field_constant (get_ushort (), &klass); - pop_type (klass); - push_type (field); - } - break; - case op_putfield: - { - type klass; - type field = check_field_constant (get_ushort (), &klass, true); - pop_type (field); - pop_type (klass); - } - break; - - case op_invokevirtual: - case op_invokespecial: - case op_invokestatic: - case op_invokeinterface: - { - _Jv_Utf8Const *method_name, *method_signature; - type class_type - = check_method_constant (get_ushort (), - opcode == op_invokeinterface, - &method_name, - &method_signature); - // NARGS is only used when we're processing - // invokeinterface. It is simplest for us to compute it - // here and then verify it later. - int nargs = 0; - if (opcode == op_invokeinterface) - { - nargs = get_byte (); - if (get_byte () != 0) - verify_fail ("invokeinterface dummy byte is wrong"); - } - - bool is_init = false; - if (_Jv_equalUtf8Consts (method_name, gcj::init_name)) - { - is_init = true; - if (opcode != op_invokespecial) - verify_fail ("can't invoke <init>"); - } - else if (method_name->first() == '<') - verify_fail ("can't invoke method starting with `<'"); - - // Pop arguments and check types. - int arg_count = _Jv_count_arguments (method_signature); - type arg_types[arg_count]; - compute_argument_types (method_signature, arg_types); - for (int i = arg_count - 1; i >= 0; --i) - { - // This is only used for verifying the byte for - // invokeinterface. - nargs -= arg_types[i].depth (); - pop_init_ref (arg_types[i]); - } - - if (opcode == op_invokeinterface - && nargs != 1) - verify_fail ("wrong argument count for invokeinterface"); - - if (opcode != op_invokestatic) - { - type t = class_type; - if (is_init) - { - // In this case the PC doesn't matter. - t.set_uninitialized (type::UNINIT, this); - // FIXME: check to make sure that the <init> - // call is to the right class. - // It must either be super or an exact class - // match. - } - type raw = pop_raw (); - if (! t.compatible (raw, this)) - verify_fail ("incompatible type on stack"); - - if (is_init) - current_state->set_initialized (raw.get_pc (), - current_method->max_locals); - } - - type rt = compute_return_type (method_signature); - if (! rt.isvoid ()) - push_type (rt); - } - break; - - case op_new: - { - type t = check_class_constant (get_ushort ()); - if (t.isarray ()) - verify_fail ("type is array"); - t.set_uninitialized (start_PC, this); - push_type (t); - } - break; - - case op_newarray: - { - int atype = get_byte (); - // We intentionally have chosen constants to make this - // valid. - if (atype < boolean_type || atype > long_type) - verify_fail ("type not primitive", start_PC); - pop_type (int_type); - type t (construct_primitive_array_type (type_val (atype)), this); - push_type (t); - } - break; - case op_anewarray: - pop_type (int_type); - push_type (check_class_constant (get_ushort ()).to_array (this)); - break; - case op_arraylength: - { - type t = pop_init_ref (reference_type); - if (! t.isarray () && ! t.isnull ()) - verify_fail ("array type expected"); - push_type (int_type); - } - break; - case op_athrow: - pop_type (type (&java::lang::Throwable::class$, this)); - invalidate_pc (); - break; - case op_checkcast: - pop_init_ref (reference_type); - push_type (check_class_constant (get_ushort ())); - break; - case op_instanceof: - pop_init_ref (reference_type); - check_class_constant (get_ushort ()); - push_type (int_type); - break; - case op_monitorenter: - pop_init_ref (reference_type); - break; - case op_monitorexit: - pop_init_ref (reference_type); - break; - case op_wide: - { - switch (get_byte ()) - { - case op_iload: - push_type (get_variable (get_ushort (), int_type)); - break; - case op_lload: - push_type (get_variable (get_ushort (), long_type)); - break; - case op_fload: - push_type (get_variable (get_ushort (), float_type)); - break; - case op_dload: - push_type (get_variable (get_ushort (), double_type)); - break; - case op_aload: - push_type (get_variable (get_ushort (), reference_type)); - break; - case op_istore: - set_variable (get_ushort (), pop_type (int_type)); - break; - case op_lstore: - set_variable (get_ushort (), pop_type (long_type)); - break; - case op_fstore: - set_variable (get_ushort (), pop_type (float_type)); - break; - case op_dstore: - set_variable (get_ushort (), pop_type (double_type)); - break; - case op_astore: - set_variable (get_ushort (), pop_init_ref (reference_type)); - break; - case op_ret: - handle_ret_insn (get_short ()); - break; - case op_iinc: - get_variable (get_ushort (), int_type); - get_short (); - break; - default: - verify_fail ("unrecognized wide instruction", start_PC); - } - } - break; - case op_multianewarray: - { - type atype = check_class_constant (get_ushort ()); - int dim = get_byte (); - if (dim < 1) - verify_fail ("too few dimensions to multianewarray", start_PC); - atype.verify_dimensions (dim, this); - for (int i = 0; i < dim; ++i) - pop_type (int_type); - push_type (atype); - } - break; - case op_ifnull: - case op_ifnonnull: - pop_type (reference_type); - push_jump (get_short ()); - break; - case op_goto_w: - push_jump (get_int ()); - invalidate_pc (); - break; - case op_jsr_w: - handle_jsr_insn (get_int ()); - break; - - // These are unused here, but we call them out explicitly - // so that -Wswitch-enum doesn't complain. - case op_putfield_1: - case op_putfield_2: - case op_putfield_4: - case op_putfield_8: - case op_putfield_a: - case op_putstatic_1: - case op_putstatic_2: - case op_putstatic_4: - case op_putstatic_8: - case op_putstatic_a: - case op_getfield_1: - case op_getfield_2s: - case op_getfield_2u: - case op_getfield_4: - case op_getfield_8: - case op_getfield_a: - case op_getstatic_1: - case op_getstatic_2s: - case op_getstatic_2u: - case op_getstatic_4: - case op_getstatic_8: - case op_getstatic_a: - case op_breakpoint: - default: - // Unrecognized opcode. - verify_fail ("unrecognized instruction in verify_instructions_0", - start_PC); - } - } - } - -public: - - void verify_instructions () - { - branch_prepass (); - verify_instructions_0 (); - } - - _Jv_BytecodeVerifier (_Jv_InterpMethod *m) - { - // We just print the text as utf-8. This is just for debugging - // anyway. - debug_print ("--------------------------------\n"); - debug_print ("-- Verifying method `%s'\n", m->self->name->chars()); - - current_method = m; - bytecode = m->bytecode (); - exception = m->exceptions (); - current_class = m->defining_class; - - states = NULL; - flags = NULL; - utf8_list = NULL; - isect_list = NULL; - } - - ~_Jv_BytecodeVerifier () - { - if (flags) - _Jv_Free (flags); - - while (utf8_list != NULL) - { - linked<_Jv_Utf8Const> *n = utf8_list->next; - _Jv_Free (utf8_list); - utf8_list = n; - } - - while (isect_list != NULL) - { - ref_intersection *next = isect_list->alloc_next; - delete isect_list; - isect_list = next; - } - - if (states) - { - for (int i = 0; i < current_method->code_length; ++i) - { - linked<state> *iter = states[i]; - while (iter != NULL) - { - linked<state> *next = iter->next; - delete iter->val; - _Jv_Free (iter); - iter = next; - } - } - _Jv_Free (states); - } - } -}; - -void -_Jv_VerifyMethod (_Jv_InterpMethod *meth) -{ - _Jv_BytecodeVerifier v (meth); - v.verify_instructions (); -} - -#endif /* INTERPRETER */ |