aboutsummaryrefslogtreecommitdiff
path: root/libjava/verify.cc
diff options
context:
space:
mode:
authorAndrew Haley <aph@redhat.com>2016-09-30 16:24:48 +0000
committerAndrew Haley <aph@gcc.gnu.org>2016-09-30 16:24:48 +0000
commit07b78716af6a9d7c9fd1e94d9baf94a52c873947 (patch)
tree3f22b3241c513ad168c8353805614ae1249410f4 /libjava/verify.cc
parenteae993948bae8b788c53772bcb9217c063716f93 (diff)
downloadgcc-07b78716af6a9d7c9fd1e94d9baf94a52c873947.zip
gcc-07b78716af6a9d7c9fd1e94d9baf94a52c873947.tar.gz
gcc-07b78716af6a9d7c9fd1e94d9baf94a52c873947.tar.bz2
Makefile.def: Remove libjava.
2016-09-30 Andrew Haley <aph@redhat.com> * Makefile.def: Remove libjava. * Makefile.tpl: Likewise. * Makefile.in: Regenerate. * configure.ac: Likewise. * configure: Likewise. * gcc/java: Remove. * libjava: Likewise. From-SVN: r240662
Diffstat (limited to 'libjava/verify.cc')
-rw-r--r--libjava/verify.cc3236
1 files changed, 0 insertions, 3236 deletions
diff --git a/libjava/verify.cc b/libjava/verify.cc
deleted file mode 100644
index b002c1c..0000000
--- a/libjava/verify.cc
+++ /dev/null
@@ -1,3236 +0,0 @@
-// verify.cc - verify bytecode
-
-/* Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation
-
- This file is part of libgcj.
-
-This software is copyrighted work licensed under the terms of the
-Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
-details. */
-
-// Written by Tom Tromey <tromey@redhat.com>
-
-// Define VERIFY_DEBUG to enable debugging output.
-
-#include <config.h>
-
-#include <string.h>
-
-#include <jvm.h>
-#include <gcj/cni.h>
-#include <java-insns.h>
-#include <java-interp.h>
-
-// On Solaris 10/x86, <signal.h> indirectly includes <ia32/sys/reg.h>, which
-// defines PC since g++ predefines __EXTENSIONS__. Undef here to avoid clash
-// with PC member of class _Jv_BytecodeVerifier below.
-#undef PC
-
-#ifdef INTERPRETER
-
-#include <java/lang/Class.h>
-#include <java/lang/VerifyError.h>
-#include <java/lang/Throwable.h>
-#include <java/lang/reflect/Modifier.h>
-#include <java/lang/StringBuffer.h>
-#include <java/lang/NoClassDefFoundError.h>
-
-#ifdef VERIFY_DEBUG
-#include <stdio.h>
-#endif /* VERIFY_DEBUG */
-
-
-// This is used to mark states which are not scheduled for
-// verification.
-#define INVALID_STATE ((state *) -1)
-
-static void debug_print (const char *fmt, ...)
- __attribute__ ((format (printf, 1, 2)));
-
-static inline void
-debug_print (MAYBE_UNUSED const char *fmt, ...)
-{
-#ifdef VERIFY_DEBUG
- va_list ap;
- va_start (ap, fmt);
- vfprintf (stderr, fmt, ap);
- va_end (ap);
-#endif /* VERIFY_DEBUG */
-}
-
-// This started as a fairly ordinary verifier, and for the most part
-// it remains so. It works in the obvious way, by modeling the effect
-// of each opcode as it is encountered. For most opcodes, this is a
-// straightforward operation.
-//
-// This verifier does not do type merging. It used to, but this
-// results in difficulty verifying some relatively simple code
-// involving interfaces, and it pushed some verification work into the
-// interpreter.
-//
-// Instead of merging reference types, when we reach a point where two
-// flows of control merge, we simply keep the union of reference types
-// from each branch. Then, when we need to verify a fact about a
-// reference on the stack (e.g., that it is compatible with the
-// argument type of a method), we check to ensure that all possible
-// types satisfy the requirement.
-//
-// Another area this verifier differs from the norm is in its handling
-// of subroutines. The JVM specification has some confusing things to
-// say about subroutines. For instance, it makes claims about not
-// allowing subroutines to merge and it rejects recursive subroutines.
-// For the most part these are red herrings; we used to try to follow
-// these things but they lead to problems. For example, the notion of
-// "being in a subroutine" is not well-defined: is an exception
-// handler in a subroutine? If you never execute the `ret' but
-// instead `goto 1' do you remain in the subroutine?
-//
-// For clarity on what is really required for type safety, read
-// "Simple Verification Technique for Complex Java Bytecode
-// Subroutines" by Alessandro Coglio. Among other things this paper
-// shows that recursive subroutines are not harmful to type safety.
-// We implement something similar to what he proposes. Note that this
-// means that this verifier will accept code that is rejected by some
-// other verifiers.
-//
-// For those not wanting to read the paper, the basic observation is
-// that we can maintain split states in subroutines. We maintain one
-// state for each calling `jsr'. In other words, we re-verify a
-// subroutine once for each caller, using the exact types held by the
-// callers (as opposed to the old approach of merging types and
-// keeping a bitmap registering what did or did not change). This
-// approach lets us continue to verify correctly even when a
-// subroutine is exited via `goto' or `athrow' and not `ret'.
-//
-// In some other areas the JVM specification is (mildly) incorrect,
-// so we diverge. For instance, you cannot
-// violate type safety by allocating an object with `new' and then
-// failing to initialize it, no matter how one branches or where one
-// stores the uninitialized reference. See "Improving the official
-// specification of Java bytecode verification" by Alessandro Coglio.
-//
-// Note that there's no real point in enforcing that padding bytes or
-// the mystery byte of invokeinterface must be 0, but we do that
-// regardless.
-//
-// The verifier is currently neither completely lazy nor eager when it
-// comes to loading classes. It tries to represent types by name when
-// possible, and then loads them when it needs to verify a fact about
-// the type. Checking types by name is valid because we only use
-// names which come from the current class' constant pool. Since all
-// such names are looked up using the same class loader, there is no
-// danger that we might be fooled into comparing different types with
-// the same name.
-//
-// In the future we plan to allow for a completely lazy mode of
-// operation, where the verifier will construct a list of type
-// assertions to be checked later.
-//
-// Some test cases for the verifier live in the "verify" module of the
-// Mauve test suite. However, some of these are presently
-// (2004-01-20) believed to be incorrect. (More precisely the notion
-// of "correct" is not well-defined, and this verifier differs from
-// others while remaining type-safe.) Some other tests live in the
-// libgcj test suite.
-class _Jv_BytecodeVerifier
-{
-private:
-
- static const int FLAG_INSN_START = 1;
- static const int FLAG_BRANCH_TARGET = 2;
-
- struct state;
- struct type;
- struct linked_utf8;
- struct ref_intersection;
-
- template<typename T>
- struct linked
- {
- T *val;
- linked<T> *next;
- };
-
- // The current PC.
- int PC;
- // The PC corresponding to the start of the current instruction.
- int start_PC;
-
- // The current state of the stack, locals, etc.
- state *current_state;
-
- // At each branch target we keep a linked list of all the states we
- // can process at that point. We'll only have multiple states at a
- // given PC if they both have different return-address types in the
- // same stack or local slot. This array is indexed by PC and holds
- // the list of all such states.
- linked<state> **states;
-
- // We keep a linked list of all the states which we must reverify.
- // This is the head of the list.
- state *next_verify_state;
-
- // We keep some flags for each instruction. The values are the
- // FLAG_* constants defined above. This is an array indexed by PC.
- char *flags;
-
- // The bytecode itself.
- unsigned char *bytecode;
- // The exceptions.
- _Jv_InterpException *exception;
-
- // Defining class.
- jclass current_class;
- // This method.
- _Jv_InterpMethod *current_method;
-
- // A linked list of utf8 objects we allocate.
- linked<_Jv_Utf8Const> *utf8_list;
-
- // A linked list of all ref_intersection objects we allocate.
- ref_intersection *isect_list;
-
- // Create a new Utf-8 constant and return it. We do this to avoid
- // having our Utf-8 constants prematurely collected.
- _Jv_Utf8Const *make_utf8_const (char *s, int len)
- {
- linked<_Jv_Utf8Const> *lu = (linked<_Jv_Utf8Const> *)
- _Jv_Malloc (sizeof (linked<_Jv_Utf8Const>)
- + _Jv_Utf8Const::space_needed(s, len));
- _Jv_Utf8Const *r = (_Jv_Utf8Const *) (lu + 1);
- r->init(s, len);
- lu->val = r;
- lu->next = utf8_list;
- utf8_list = lu;
-
- return r;
- }
-
- __attribute__ ((__noreturn__)) void verify_fail (const char *s, jint pc = -1)
- {
- using namespace java::lang;
- StringBuffer *buf = new StringBuffer ();
-
- buf->append (JvNewStringLatin1 ("verification failed"));
- if (pc == -1)
- pc = start_PC;
- if (pc != -1)
- {
- buf->append (JvNewStringLatin1 (" at PC "));
- buf->append (pc);
- }
-
- _Jv_InterpMethod *method = current_method;
- buf->append (JvNewStringLatin1 (" in "));
- buf->append (current_class->getName());
- buf->append ((jchar) ':');
- buf->append (method->get_method()->name->toString());
- buf->append ((jchar) '(');
- buf->append (method->get_method()->signature->toString());
- buf->append ((jchar) ')');
-
- buf->append (JvNewStringLatin1 (": "));
- buf->append (JvNewStringLatin1 (s));
- throw new java::lang::VerifyError (buf->toString ());
- }
-
- // This enum holds a list of tags for all the different types we
- // need to handle. Reference types are treated specially by the
- // type class.
- enum type_val
- {
- void_type,
-
- // The values for primitive types are chosen to correspond to values
- // specified to newarray.
- boolean_type = 4,
- char_type = 5,
- float_type = 6,
- double_type = 7,
- byte_type = 8,
- short_type = 9,
- int_type = 10,
- long_type = 11,
-
- // Used when overwriting second word of a double or long in the
- // local variables. Also used after merging local variable states
- // to indicate an unusable value.
- unsuitable_type,
- return_address_type,
- // This is the second word of a two-word value, i.e., a double or
- // a long.
- continuation_type,
-
- // Everything after `reference_type' must be a reference type.
- reference_type,
- null_type,
- uninitialized_reference_type
- };
-
- // This represents a merged class type. Some verifiers (including
- // earlier versions of this one) will compute the intersection of
- // two class types when merging states. However, this loses
- // critical information about interfaces implemented by the various
- // classes. So instead we keep track of all the actual classes that
- // have been merged.
- struct ref_intersection
- {
- // Whether or not this type has been resolved.
- bool is_resolved;
-
- // Actual type data.
- union
- {
- // For a resolved reference type, this is a pointer to the class.
- jclass klass;
- // For other reference types, this it the name of the class.
- _Jv_Utf8Const *name;
- } data;
-
- // Link to the next reference in the intersection.
- ref_intersection *ref_next;
-
- // This is used to keep track of all the allocated
- // ref_intersection objects, so we can free them.
- // FIXME: we should allocate these in chunks.
- ref_intersection *alloc_next;
-
- ref_intersection (jclass klass, _Jv_BytecodeVerifier *verifier)
- : ref_next (NULL)
- {
- is_resolved = true;
- data.klass = klass;
- alloc_next = verifier->isect_list;
- verifier->isect_list = this;
- }
-
- ref_intersection (_Jv_Utf8Const *name, _Jv_BytecodeVerifier *verifier)
- : ref_next (NULL)
- {
- is_resolved = false;
- data.name = name;
- alloc_next = verifier->isect_list;
- verifier->isect_list = this;
- }
-
- ref_intersection (ref_intersection *dup, ref_intersection *tail,
- _Jv_BytecodeVerifier *verifier)
- : ref_next (tail)
- {
- is_resolved = dup->is_resolved;
- data = dup->data;
- alloc_next = verifier->isect_list;
- verifier->isect_list = this;
- }
-
- bool equals (ref_intersection *other, _Jv_BytecodeVerifier *verifier)
- {
- if (! is_resolved && ! other->is_resolved
- && _Jv_equalUtf8Classnames (data.name, other->data.name))
- return true;
- if (! is_resolved)
- resolve (verifier);
- if (! other->is_resolved)
- other->resolve (verifier);
- return data.klass == other->data.klass;
- }
-
- // Merge THIS type into OTHER, returning the result. This will
- // return OTHER if all the classes in THIS already appear in
- // OTHER.
- ref_intersection *merge (ref_intersection *other,
- _Jv_BytecodeVerifier *verifier)
- {
- ref_intersection *tail = other;
- for (ref_intersection *self = this; self != NULL; self = self->ref_next)
- {
- bool add = true;
- for (ref_intersection *iter = other; iter != NULL;
- iter = iter->ref_next)
- {
- if (iter->equals (self, verifier))
- {
- add = false;
- break;
- }
- }
-
- if (add)
- tail = new ref_intersection (self, tail, verifier);
- }
- return tail;
- }
-
- void resolve (_Jv_BytecodeVerifier *verifier)
- {
- if (is_resolved)
- return;
-
- // This is useful if you want to see which classes have to be resolved
- // while doing the class verification.
- debug_print("resolving class: %s\n", data.name->chars());
-
- using namespace java::lang;
- java::lang::ClassLoader *loader
- = verifier->current_class->getClassLoaderInternal();
-
- // Due to special handling in to_array() array classes will always
- // be of the "L ... ;" kind. The separator char ('.' or '/' may vary
- // however.
- if (data.name->limit()[-1] == ';')
- {
- data.klass = _Jv_FindClassFromSignature (data.name->chars(), loader);
- if (data.klass == NULL)
- throw new java::lang::NoClassDefFoundError(data.name->toString());
- }
- else
- data.klass = Class::forName (_Jv_NewStringUtf8Const (data.name),
- false, loader);
- is_resolved = true;
- }
-
- // See if an object of type OTHER can be assigned to an object of
- // type *THIS. This might resolve classes in one chain or the
- // other.
- bool compatible (ref_intersection *other,
- _Jv_BytecodeVerifier *verifier)
- {
- ref_intersection *self = this;
-
- for (; self != NULL; self = self->ref_next)
- {
- ref_intersection *other_iter = other;
-
- for (; other_iter != NULL; other_iter = other_iter->ref_next)
- {
- // Avoid resolving if possible.
- if (! self->is_resolved
- && ! other_iter->is_resolved
- && _Jv_equalUtf8Classnames (self->data.name,
- other_iter->data.name))
- continue;
-
- if (! self->is_resolved)
- self->resolve(verifier);
-
- // If the LHS of the expression is of type
- // java.lang.Object, assignment will succeed, no matter
- // what the type of the RHS is. Using this short-cut we
- // don't need to resolve the class of the RHS at
- // verification time.
- if (self->data.klass == &java::lang::Object::class$)
- continue;
-
- if (! other_iter->is_resolved)
- other_iter->resolve(verifier);
-
- if (! is_assignable_from_slow (self->data.klass,
- other_iter->data.klass))
- return false;
- }
- }
-
- return true;
- }
-
- bool isarray ()
- {
- // assert (ref_next == NULL);
- if (is_resolved)
- return data.klass->isArray ();
- else
- return data.name->first() == '[';
- }
-
- bool isinterface (_Jv_BytecodeVerifier *verifier)
- {
- // assert (ref_next == NULL);
- if (! is_resolved)
- resolve (verifier);
- return data.klass->isInterface ();
- }
-
- bool isabstract (_Jv_BytecodeVerifier *verifier)
- {
- // assert (ref_next == NULL);
- if (! is_resolved)
- resolve (verifier);
- using namespace java::lang::reflect;
- return Modifier::isAbstract (data.klass->getModifiers ());
- }
-
- jclass getclass (_Jv_BytecodeVerifier *verifier)
- {
- if (! is_resolved)
- resolve (verifier);
- return data.klass;
- }
-
- int count_dimensions ()
- {
- int ndims = 0;
- if (is_resolved)
- {
- jclass k = data.klass;
- while (k->isArray ())
- {
- k = k->getComponentType ();
- ++ndims;
- }
- }
- else
- {
- char *p = data.name->chars();
- while (*p++ == '[')
- ++ndims;
- }
- return ndims;
- }
-
- void *operator new (size_t bytes)
- {
- return _Jv_Malloc (bytes);
- }
-
- void operator delete (void *mem)
- {
- _Jv_Free (mem);
- }
- };
-
- // Return the type_val corresponding to a primitive signature
- // character. For instance `I' returns `int.class'.
- type_val get_type_val_for_signature (jchar sig)
- {
- type_val rt;
- switch (sig)
- {
- case 'Z':
- rt = boolean_type;
- break;
- case 'B':
- rt = byte_type;
- break;
- case 'C':
- rt = char_type;
- break;
- case 'S':
- rt = short_type;
- break;
- case 'I':
- rt = int_type;
- break;
- case 'J':
- rt = long_type;
- break;
- case 'F':
- rt = float_type;
- break;
- case 'D':
- rt = double_type;
- break;
- case 'V':
- rt = void_type;
- break;
- default:
- verify_fail ("invalid signature");
- }
- return rt;
- }
-
- // Return the type_val corresponding to a primitive class.
- type_val get_type_val_for_signature (jclass k)
- {
- return get_type_val_for_signature ((jchar) k->method_count);
- }
-
- // This is like _Jv_IsAssignableFrom, but it works even if SOURCE or
- // TARGET haven't been prepared.
- static bool is_assignable_from_slow (jclass target, jclass source)
- {
- // First, strip arrays.
- while (target->isArray ())
- {
- // If target is array, source must be as well.
- if (! source->isArray ())
- return false;
- target = target->getComponentType ();
- source = source->getComponentType ();
- }
-
- // Quick success.
- if (target == &java::lang::Object::class$)
- return true;
-
- do
- {
- if (source == target)
- return true;
-
- if (target->isPrimitive () || source->isPrimitive ())
- return false;
-
- if (target->isInterface ())
- {
- for (int i = 0; i < source->interface_count; ++i)
- {
- // We use a recursive call because we also need to
- // check superinterfaces.
- if (is_assignable_from_slow (target, source->getInterface (i)))
- return true;
- }
- }
- source = source->getSuperclass ();
- }
- while (source != NULL);
-
- return false;
- }
-
- // The `type' class is used to represent a single type in the
- // verifier.
- struct type
- {
- // The type key.
- type_val key;
-
- // For reference types, the representation of the type.
- ref_intersection *klass;
-
- // This is used in two situations.
- //
- // First, when constructing a new object, it is the PC of the
- // `new' instruction which created the object. We use the special
- // value UNINIT to mean that this is uninitialized. The special
- // value SELF is used for the case where the current method is
- // itself the <init> method. the special value EITHER is used
- // when we may optionally allow either an uninitialized or
- // initialized reference to match.
- //
- // Second, when the key is return_address_type, this holds the PC
- // of the instruction following the `jsr'.
- int pc;
-
- static const int UNINIT = -2;
- static const int SELF = -1;
- static const int EITHER = -3;
-
- // Basic constructor.
- type ()
- {
- key = unsuitable_type;
- klass = NULL;
- pc = UNINIT;
- }
-
- // Make a new instance given the type tag. We assume a generic
- // `reference_type' means Object.
- type (type_val k)
- {
- key = k;
- // For reference_type, if KLASS==NULL then that means we are
- // looking for a generic object of any kind, including an
- // uninitialized reference.
- klass = NULL;
- pc = UNINIT;
- }
-
- // Make a new instance given a class.
- type (jclass k, _Jv_BytecodeVerifier *verifier)
- {
- key = reference_type;
- klass = new ref_intersection (k, verifier);
- pc = UNINIT;
- }
-
- // Make a new instance given the name of a class.
- type (_Jv_Utf8Const *n, _Jv_BytecodeVerifier *verifier)
- {
- key = reference_type;
- klass = new ref_intersection (n, verifier);
- pc = UNINIT;
- }
-
- // Copy constructor.
- type (const type &t)
- {
- key = t.key;
- klass = t.klass;
- pc = t.pc;
- }
-
- // These operators are required because libgcj can't link in
- // -lstdc++.
- void *operator new[] (size_t bytes)
- {
- return _Jv_Malloc (bytes);
- }
-
- void operator delete[] (void *mem)
- {
- _Jv_Free (mem);
- }
-
- type& operator= (type_val k)
- {
- key = k;
- klass = NULL;
- pc = UNINIT;
- return *this;
- }
-
- type& operator= (const type& t)
- {
- key = t.key;
- klass = t.klass;
- pc = t.pc;
- return *this;
- }
-
- // Promote a numeric type.
- type &promote ()
- {
- if (key == boolean_type || key == char_type
- || key == byte_type || key == short_type)
- key = int_type;
- return *this;
- }
-
- // Mark this type as the uninitialized result of `new'.
- void set_uninitialized (int npc, _Jv_BytecodeVerifier *verifier)
- {
- if (key == reference_type)
- key = uninitialized_reference_type;
- else
- verifier->verify_fail ("internal error in type::uninitialized");
- pc = npc;
- }
-
- // Mark this type as now initialized.
- void set_initialized (int npc)
- {
- if (npc != UNINIT && pc == npc && key == uninitialized_reference_type)
- {
- key = reference_type;
- pc = UNINIT;
- }
- }
-
- // Mark this type as a particular return address.
- void set_return_address (int npc)
- {
- pc = npc;
- }
-
- // Return true if this type and type OTHER are considered
- // mergeable for the purposes of state merging. This is related
- // to subroutine handling. For this purpose two types are
- // considered unmergeable if they are both return-addresses but
- // have different PCs.
- bool state_mergeable_p (const type &other) const
- {
- return (key != return_address_type
- || other.key != return_address_type
- || pc == other.pc);
- }
-
- // Return true if an object of type K can be assigned to a variable
- // of type *THIS. Handle various special cases too. Might modify
- // *THIS or K. Note however that this does not perform numeric
- // promotion.
- bool compatible (type &k, _Jv_BytecodeVerifier *verifier)
- {
- // Any type is compatible with the unsuitable type.
- if (key == unsuitable_type)
- return true;
-
- if (key < reference_type || k.key < reference_type)
- return key == k.key;
-
- // The `null' type is convertible to any initialized reference
- // type.
- if (key == null_type)
- return k.key != uninitialized_reference_type;
- if (k.key == null_type)
- return key != uninitialized_reference_type;
-
- // A special case for a generic reference.
- if (klass == NULL)
- return true;
- if (k.klass == NULL)
- verifier->verify_fail ("programmer error in type::compatible");
-
- // Handle the special 'EITHER' case, which is only used in a
- // special case of 'putfield'. Note that we only need to handle
- // this on the LHS of a check.
- if (! isinitialized () && pc == EITHER)
- {
- // If the RHS is uninitialized, it must be an uninitialized
- // 'this'.
- if (! k.isinitialized () && k.pc != SELF)
- return false;
- }
- else if (isinitialized () != k.isinitialized ())
- {
- // An initialized type and an uninitialized type are not
- // otherwise compatible.
- return false;
- }
- else
- {
- // Two uninitialized objects are compatible if either:
- // * The PCs are identical, or
- // * One PC is UNINIT.
- if (! isinitialized ())
- {
- if (pc != k.pc && pc != UNINIT && k.pc != UNINIT)
- return false;
- }
- }
-
- return klass->compatible(k.klass, verifier);
- }
-
- bool equals (const type &other, _Jv_BytecodeVerifier *vfy)
- {
- // Only works for reference types.
- if ((key != reference_type
- && key != uninitialized_reference_type)
- || (other.key != reference_type
- && other.key != uninitialized_reference_type))
- return false;
- // Only for single-valued types.
- if (klass->ref_next || other.klass->ref_next)
- return false;
- return klass->equals (other.klass, vfy);
- }
-
- bool isvoid () const
- {
- return key == void_type;
- }
-
- bool iswide () const
- {
- return key == long_type || key == double_type;
- }
-
- // Return number of stack or local variable slots taken by this
- // type.
- int depth () const
- {
- return iswide () ? 2 : 1;
- }
-
- bool isarray () const
- {
- // We treat null_type as not an array. This is ok based on the
- // current uses of this method.
- if (key == reference_type)
- return klass->isarray ();
- return false;
- }
-
- bool isnull () const
- {
- return key == null_type;
- }
-
- bool isinterface (_Jv_BytecodeVerifier *verifier)
- {
- if (key != reference_type)
- return false;
- return klass->isinterface (verifier);
- }
-
- bool isabstract (_Jv_BytecodeVerifier *verifier)
- {
- if (key != reference_type)
- return false;
- return klass->isabstract (verifier);
- }
-
- // Return the element type of an array.
- type element_type (_Jv_BytecodeVerifier *verifier)
- {
- if (key != reference_type)
- verifier->verify_fail ("programmer error in type::element_type()", -1);
-
- jclass k = klass->getclass (verifier)->getComponentType ();
- if (k->isPrimitive ())
- return type (verifier->get_type_val_for_signature (k));
- return type (k, verifier);
- }
-
- // Return the array type corresponding to an initialized
- // reference. We could expand this to work for other kinds of
- // types, but currently we don't need to.
- type to_array (_Jv_BytecodeVerifier *verifier)
- {
- if (key != reference_type)
- verifier->verify_fail ("internal error in type::to_array()");
-
- // In case the class is already resolved we can simply ask the runtime
- // to give us the array version.
- // If it is not resolved we prepend "[" to the classname to make the
- // array usage verification more lazy. In other words: makes new Foo[300]
- // pass the verifier if Foo.class is missing.
- if (klass->is_resolved)
- {
- jclass k = klass->getclass (verifier);
-
- return type (_Jv_GetArrayClass (k, k->getClassLoaderInternal()),
- verifier);
- }
- else
- {
- int len = klass->data.name->len();
-
- // If the classname is given in the Lp1/p2/cn; format we only need
- // to add a leading '['. The same procedure has to be done for
- // primitive arrays (ie. provided "[I", the result should be "[[I".
- // If the classname is given as p1.p2.cn we have to embed it into
- // "[L" and ';'.
- if (klass->data.name->limit()[-1] == ';' ||
- _Jv_isPrimitiveOrDerived(klass->data.name))
- {
- // Reserves space for leading '[' and trailing '\0' .
- char arrayName[len + 2];
-
- arrayName[0] = '[';
- strcpy(&arrayName[1], klass->data.name->chars());
-
-#ifdef VERIFY_DEBUG
- // This is only needed when we want to print the string to the
- // screen while debugging.
- arrayName[len + 1] = '\0';
-
- debug_print("len: %d - old: '%s' - new: '%s'\n", len, klass->data.name->chars(), arrayName);
-#endif
-
- return type (verifier->make_utf8_const( arrayName, len + 1 ),
- verifier);
- }
- else
- {
- // Reserves space for leading "[L" and trailing ';' and '\0' .
- char arrayName[len + 4];
-
- arrayName[0] = '[';
- arrayName[1] = 'L';
- strcpy(&arrayName[2], klass->data.name->chars());
- arrayName[len + 2] = ';';
-
-#ifdef VERIFY_DEBUG
- // This is only needed when we want to print the string to the
- // screen while debugging.
- arrayName[len + 3] = '\0';
-
- debug_print("len: %d - old: '%s' - new: '%s'\n", len, klass->data.name->chars(), arrayName);
-#endif
-
- return type (verifier->make_utf8_const( arrayName, len + 3 ),
- verifier);
- }
- }
-
- }
-
- bool isreference () const
- {
- return key >= reference_type;
- }
-
- int get_pc () const
- {
- return pc;
- }
-
- bool isinitialized () const
- {
- return key == reference_type || key == null_type;
- }
-
- bool isresolved () const
- {
- return (key == reference_type
- || key == null_type
- || key == uninitialized_reference_type);
- }
-
- void verify_dimensions (int ndims, _Jv_BytecodeVerifier *verifier)
- {
- // The way this is written, we don't need to check isarray().
- if (key != reference_type)
- verifier->verify_fail ("internal error in verify_dimensions:"
- " not a reference type");
-
- if (klass->count_dimensions () < ndims)
- verifier->verify_fail ("array type has fewer dimensions"
- " than required");
- }
-
- // Merge OLD_TYPE into this. On error throw exception. Return
- // true if the merge caused a type change.
- bool merge (type& old_type, bool local_semantics,
- _Jv_BytecodeVerifier *verifier)
- {
- bool changed = false;
- bool refo = old_type.isreference ();
- bool refn = isreference ();
- if (refo && refn)
- {
- if (old_type.key == null_type)
- ;
- else if (key == null_type)
- {
- *this = old_type;
- changed = true;
- }
- else if (isinitialized () != old_type.isinitialized ())
- verifier->verify_fail ("merging initialized and uninitialized types");
- else
- {
- if (! isinitialized ())
- {
- if (pc == UNINIT)
- pc = old_type.pc;
- else if (old_type.pc == UNINIT)
- ;
- else if (pc != old_type.pc)
- verifier->verify_fail ("merging different uninitialized types");
- }
-
- ref_intersection *merged = old_type.klass->merge (klass,
- verifier);
- if (merged != klass)
- {
- klass = merged;
- changed = true;
- }
- }
- }
- else if (refo || refn || key != old_type.key)
- {
- if (local_semantics)
- {
- // If we already have an `unsuitable' type, then we
- // don't need to change again.
- if (key != unsuitable_type)
- {
- key = unsuitable_type;
- changed = true;
- }
- }
- else
- verifier->verify_fail ("unmergeable type");
- }
- return changed;
- }
-
-#ifdef VERIFY_DEBUG
- void print (void) const
- {
- char c = '?';
- switch (key)
- {
- case boolean_type: c = 'Z'; break;
- case byte_type: c = 'B'; break;
- case char_type: c = 'C'; break;
- case short_type: c = 'S'; break;
- case int_type: c = 'I'; break;
- case long_type: c = 'J'; break;
- case float_type: c = 'F'; break;
- case double_type: c = 'D'; break;
- case void_type: c = 'V'; break;
- case unsuitable_type: c = '-'; break;
- case return_address_type: c = 'r'; break;
- case continuation_type: c = '+'; break;
- case reference_type: c = 'L'; break;
- case null_type: c = '@'; break;
- case uninitialized_reference_type: c = 'U'; break;
- }
- debug_print ("%c", c);
- }
-#endif /* VERIFY_DEBUG */
- };
-
- // This class holds all the state information we need for a given
- // location.
- struct state
- {
- // The current top of the stack, in terms of slots.
- int stacktop;
- // The current depth of the stack. This will be larger than
- // STACKTOP when wide types are on the stack.
- int stackdepth;
- // The stack.
- type *stack;
- // The local variables.
- type *locals;
- // We keep track of the type of `this' specially. This is used to
- // ensure that an instance initializer invokes another initializer
- // on `this' before returning. We must keep track of this
- // specially because otherwise we might be confused by code which
- // assigns to locals[0] (overwriting `this') and then returns
- // without really initializing.
- type this_type;
-
- // The PC for this state. This is only valid on states which are
- // permanently attached to a given PC. For an object like
- // `current_state', which is used transiently, this has no
- // meaning.
- int pc;
- // We keep a linked list of all states requiring reverification.
- // If this is the special value INVALID_STATE then this state is
- // not on the list. NULL marks the end of the linked list.
- state *next;
-
- // NO_NEXT is the PC value meaning that a new state must be
- // acquired from the verification list.
- static const int NO_NEXT = -1;
-
- state ()
- : this_type ()
- {
- stack = NULL;
- locals = NULL;
- next = INVALID_STATE;
- }
-
- state (int max_stack, int max_locals)
- : this_type ()
- {
- stacktop = 0;
- stackdepth = 0;
- stack = new type[max_stack];
- for (int i = 0; i < max_stack; ++i)
- stack[i] = unsuitable_type;
- locals = new type[max_locals];
- for (int i = 0; i < max_locals; ++i)
- locals[i] = unsuitable_type;
- pc = NO_NEXT;
- next = INVALID_STATE;
- }
-
- state (const state *orig, int max_stack, int max_locals)
- {
- stack = new type[max_stack];
- locals = new type[max_locals];
- copy (orig, max_stack, max_locals);
- pc = NO_NEXT;
- next = INVALID_STATE;
- }
-
- ~state ()
- {
- if (stack)
- delete[] stack;
- if (locals)
- delete[] locals;
- }
-
- void *operator new[] (size_t bytes)
- {
- return _Jv_Malloc (bytes);
- }
-
- void operator delete[] (void *mem)
- {
- _Jv_Free (mem);
- }
-
- void *operator new (size_t bytes)
- {
- return _Jv_Malloc (bytes);
- }
-
- void operator delete (void *mem)
- {
- _Jv_Free (mem);
- }
-
- void copy (const state *copy, int max_stack, int max_locals)
- {
- stacktop = copy->stacktop;
- stackdepth = copy->stackdepth;
- for (int i = 0; i < max_stack; ++i)
- stack[i] = copy->stack[i];
- for (int i = 0; i < max_locals; ++i)
- locals[i] = copy->locals[i];
-
- this_type = copy->this_type;
- // Don't modify `next' or `pc'.
- }
-
- // Modify this state to reflect entry to an exception handler.
- void set_exception (type t, int max_stack)
- {
- stackdepth = 1;
- stacktop = 1;
- stack[0] = t;
- for (int i = stacktop; i < max_stack; ++i)
- stack[i] = unsuitable_type;
- }
-
- inline int get_pc () const
- {
- return pc;
- }
-
- void set_pc (int npc)
- {
- pc = npc;
- }
-
- // Merge STATE_OLD into this state. Destructively modifies this
- // state. Returns true if the new state was in fact changed.
- // Will throw an exception if the states are not mergeable.
- bool merge (state *state_old, int max_locals,
- _Jv_BytecodeVerifier *verifier)
- {
- bool changed = false;
-
- // Special handling for `this'. If one or the other is
- // uninitialized, then the merge is uninitialized.
- if (this_type.isinitialized ())
- this_type = state_old->this_type;
-
- // Merge stacks.
- if (state_old->stacktop != stacktop) // FIXME stackdepth instead?
- verifier->verify_fail ("stack sizes differ");
- for (int i = 0; i < state_old->stacktop; ++i)
- {
- if (stack[i].merge (state_old->stack[i], false, verifier))
- changed = true;
- }
-
- // Merge local variables.
- for (int i = 0; i < max_locals; ++i)
- {
- if (locals[i].merge (state_old->locals[i], true, verifier))
- changed = true;
- }
-
- return changed;
- }
-
- // Ensure that `this' has been initialized.
- void check_this_initialized (_Jv_BytecodeVerifier *verifier)
- {
- if (this_type.isreference () && ! this_type.isinitialized ())
- verifier->verify_fail ("`this' is uninitialized");
- }
-
- // Set type of `this'.
- void set_this_type (const type &k)
- {
- this_type = k;
- }
-
- // Mark each `new'd object we know of that was allocated at PC as
- // initialized.
- void set_initialized (int pc, int max_locals)
- {
- for (int i = 0; i < stacktop; ++i)
- stack[i].set_initialized (pc);
- for (int i = 0; i < max_locals; ++i)
- locals[i].set_initialized (pc);
- this_type.set_initialized (pc);
- }
-
- // This tests to see whether two states can be considered "merge
- // compatible". If both states have a return-address in the same
- // slot, and the return addresses are different, then they are not
- // compatible and we must not try to merge them.
- bool state_mergeable_p (state *other, int max_locals,
- _Jv_BytecodeVerifier *verifier)
- {
- // This is tricky: if the stack sizes differ, then not only are
- // these not mergeable, but in fact we should give an error, as
- // we've found two execution paths that reach a branch target
- // with different stack depths. FIXME stackdepth instead?
- if (stacktop != other->stacktop)
- verifier->verify_fail ("stack sizes differ");
-
- for (int i = 0; i < stacktop; ++i)
- if (! stack[i].state_mergeable_p (other->stack[i]))
- return false;
- for (int i = 0; i < max_locals; ++i)
- if (! locals[i].state_mergeable_p (other->locals[i]))
- return false;
- return true;
- }
-
- void reverify (_Jv_BytecodeVerifier *verifier)
- {
- if (next == INVALID_STATE)
- {
- next = verifier->next_verify_state;
- verifier->next_verify_state = this;
- }
- }
-
-#ifdef VERIFY_DEBUG
- void print (const char *leader, int pc,
- int max_stack, int max_locals) const
- {
- debug_print ("%s [%4d]: [stack] ", leader, pc);
- int i;
- for (i = 0; i < stacktop; ++i)
- stack[i].print ();
- for (; i < max_stack; ++i)
- debug_print (".");
- debug_print (" [local] ");
- for (i = 0; i < max_locals; ++i)
- locals[i].print ();
- debug_print (" | %p\n", this);
- }
-#else
- inline void print (const char *, int, int, int) const
- {
- }
-#endif /* VERIFY_DEBUG */
- };
-
- type pop_raw ()
- {
- if (current_state->stacktop <= 0)
- verify_fail ("stack empty");
- type r = current_state->stack[--current_state->stacktop];
- current_state->stackdepth -= r.depth ();
- if (current_state->stackdepth < 0)
- verify_fail ("stack empty", start_PC);
- return r;
- }
-
- type pop32 ()
- {
- type r = pop_raw ();
- if (r.iswide ())
- verify_fail ("narrow pop of wide type");
- return r;
- }
-
- type pop_type (type match)
- {
- match.promote ();
- type t = pop_raw ();
- if (! match.compatible (t, this))
- verify_fail ("incompatible type on stack");
- return t;
- }
-
- // Pop a reference which is guaranteed to be initialized. MATCH
- // doesn't have to be a reference type; in this case this acts like
- // pop_type.
- type pop_init_ref (type match)
- {
- type t = pop_raw ();
- if (t.isreference () && ! t.isinitialized ())
- verify_fail ("initialized reference required");
- else if (! match.compatible (t, this))
- verify_fail ("incompatible type on stack");
- return t;
- }
-
- // Pop a reference type or a return address.
- type pop_ref_or_return ()
- {
- type t = pop_raw ();
- if (! t.isreference () && t.key != return_address_type)
- verify_fail ("expected reference or return address on stack");
- return t;
- }
-
- void push_type (type t)
- {
- // If T is a numeric type like short, promote it to int.
- t.promote ();
-
- int depth = t.depth ();
- if (current_state->stackdepth + depth > current_method->max_stack)
- verify_fail ("stack overflow");
- current_state->stack[current_state->stacktop++] = t;
- current_state->stackdepth += depth;
- }
-
- void set_variable (int index, type t)
- {
- // If T is a numeric type like short, promote it to int.
- t.promote ();
-
- int depth = t.depth ();
- if (index > current_method->max_locals - depth)
- verify_fail ("invalid local variable");
- current_state->locals[index] = t;
-
- if (depth == 2)
- current_state->locals[index + 1] = continuation_type;
- if (index > 0 && current_state->locals[index - 1].iswide ())
- current_state->locals[index - 1] = unsuitable_type;
- }
-
- type get_variable (int index, type t)
- {
- int depth = t.depth ();
- if (index > current_method->max_locals - depth)
- verify_fail ("invalid local variable");
- if (! t.compatible (current_state->locals[index], this))
- verify_fail ("incompatible type in local variable");
- if (depth == 2)
- {
- type t (continuation_type);
- if (! current_state->locals[index + 1].compatible (t, this))
- verify_fail ("invalid local variable");
- }
- return current_state->locals[index];
- }
-
- // Make sure ARRAY is an array type and that its elements are
- // compatible with type ELEMENT. Returns the actual element type.
- type require_array_type (type array, type element)
- {
- // An odd case. Here we just pretend that everything went ok. If
- // the requested element type is some kind of reference, return
- // the null type instead.
- if (array.isnull ())
- return element.isreference () ? type (null_type) : element;
-
- if (! array.isarray ())
- verify_fail ("array required");
-
- type t = array.element_type (this);
- if (! element.compatible (t, this))
- {
- // Special case for byte arrays, which must also be boolean
- // arrays.
- bool ok = true;
- if (element.key == byte_type)
- {
- type e2 (boolean_type);
- ok = e2.compatible (t, this);
- }
- if (! ok)
- verify_fail ("incompatible array element type");
- }
-
- // Return T and not ELEMENT, because T might be specialized.
- return t;
- }
-
- jint get_byte ()
- {
- if (PC >= current_method->code_length)
- verify_fail ("premature end of bytecode");
- return (jint) bytecode[PC++] & 0xff;
- }
-
- jint get_ushort ()
- {
- jint b1 = get_byte ();
- jint b2 = get_byte ();
- return (jint) ((b1 << 8) | b2) & 0xffff;
- }
-
- jint get_short ()
- {
- jint b1 = get_byte ();
- jint b2 = get_byte ();
- jshort s = (b1 << 8) | b2;
- return (jint) s;
- }
-
- jint get_int ()
- {
- jint b1 = get_byte ();
- jint b2 = get_byte ();
- jint b3 = get_byte ();
- jint b4 = get_byte ();
- return (b1 << 24) | (b2 << 16) | (b3 << 8) | b4;
- }
-
- int compute_jump (int offset)
- {
- int npc = start_PC + offset;
- if (npc < 0 || npc >= current_method->code_length)
- verify_fail ("branch out of range", start_PC);
- return npc;
- }
-
- // Add a new state to the state list at NPC.
- state *add_new_state (int npc, state *old_state)
- {
- state *new_state = new state (old_state, current_method->max_stack,
- current_method->max_locals);
- debug_print ("== New state in add_new_state\n");
- new_state->print ("New", npc, current_method->max_stack,
- current_method->max_locals);
- linked<state> *nlink
- = (linked<state> *) _Jv_Malloc (sizeof (linked<state>));
- nlink->val = new_state;
- nlink->next = states[npc];
- states[npc] = nlink;
- new_state->set_pc (npc);
- return new_state;
- }
-
- // Merge the indicated state into the state at the branch target and
- // schedule a new PC if there is a change. NPC is the PC of the
- // branch target, and FROM_STATE is the state at the source of the
- // branch. This method returns true if the destination state
- // changed and requires reverification, false otherwise.
- void merge_into (int npc, state *from_state)
- {
- // Iterate over all target states and merge our state into each,
- // if applicable. FIXME one improvement we could make here is
- // "state destruction". Merging a new state into an existing one
- // might cause a return_address_type to be merged to
- // unsuitable_type. In this case the resulting state may now be
- // mergeable with other states currently held in parallel at this
- // location. So in this situation we could pairwise compare and
- // reduce the number of parallel states.
- bool applicable = false;
- for (linked<state> *iter = states[npc]; iter != NULL; iter = iter->next)
- {
- state *new_state = iter->val;
- if (new_state->state_mergeable_p (from_state,
- current_method->max_locals, this))
- {
- applicable = true;
-
- debug_print ("== Merge states in merge_into\n");
- from_state->print ("Frm", start_PC, current_method->max_stack,
- current_method->max_locals);
- new_state->print (" To", npc, current_method->max_stack,
- current_method->max_locals);
- bool changed = new_state->merge (from_state,
- current_method->max_locals,
- this);
- new_state->print ("New", npc, current_method->max_stack,
- current_method->max_locals);
-
- if (changed)
- new_state->reverify (this);
- }
- }
-
- if (! applicable)
- {
- // Either we don't yet have a state at NPC, or we have a
- // return-address type that is in conflict with all existing
- // state. So, we need to create a new entry.
- state *new_state = add_new_state (npc, from_state);
- // A new state added in this way must always be reverified.
- new_state->reverify (this);
- }
- }
-
- void push_jump (int offset)
- {
- int npc = compute_jump (offset);
- // According to the JVM Spec, we need to check for uninitialized
- // objects here. However, this does not actually affect type
- // safety, and the Eclipse java compiler generates code that
- // violates this constraint.
- merge_into (npc, current_state);
- }
-
- void push_exception_jump (type t, int pc)
- {
- // According to the JVM Spec, we need to check for uninitialized
- // objects here. However, this does not actually affect type
- // safety, and the Eclipse java compiler generates code that
- // violates this constraint.
- state s (current_state, current_method->max_stack,
- current_method->max_locals);
- if (current_method->max_stack < 1)
- verify_fail ("stack overflow at exception handler");
- s.set_exception (t, current_method->max_stack);
- merge_into (pc, &s);
- }
-
- state *pop_jump ()
- {
- state *new_state = next_verify_state;
- if (new_state == INVALID_STATE)
- verify_fail ("programmer error in pop_jump");
- if (new_state != NULL)
- {
- next_verify_state = new_state->next;
- new_state->next = INVALID_STATE;
- }
- return new_state;
- }
-
- void invalidate_pc ()
- {
- PC = state::NO_NEXT;
- }
-
- void note_branch_target (int pc)
- {
- // Don't check `pc <= PC', because we've advanced PC after
- // fetching the target and we haven't yet checked the next
- // instruction.
- if (pc < PC && ! (flags[pc] & FLAG_INSN_START))
- verify_fail ("branch not to instruction start", start_PC);
- flags[pc] |= FLAG_BRANCH_TARGET;
- }
-
- void skip_padding ()
- {
- while ((PC % 4) > 0)
- if (get_byte () != 0)
- verify_fail ("found nonzero padding byte");
- }
-
- // Do the work for a `ret' instruction. INDEX is the index into the
- // local variables.
- void handle_ret_insn (int index)
- {
- type ret_addr = get_variable (index, return_address_type);
- // It would be nice if we could do this. However, the JVM Spec
- // doesn't say that this is what happens. It is implied that
- // reusing a return address is invalid, but there's no actual
- // prohibition against it.
- // set_variable (index, unsuitable_type);
-
- int npc = ret_addr.get_pc ();
- // We might be returning to a `jsr' that is at the end of the
- // bytecode. This is ok if we never return from the called
- // subroutine, but if we see this here it is an error.
- if (npc >= current_method->code_length)
- verify_fail ("fell off end");
-
- // According to the JVM Spec, we need to check for uninitialized
- // objects here. However, this does not actually affect type
- // safety, and the Eclipse java compiler generates code that
- // violates this constraint.
- merge_into (npc, current_state);
- invalidate_pc ();
- }
-
- void handle_jsr_insn (int offset)
- {
- int npc = compute_jump (offset);
-
- // According to the JVM Spec, we need to check for uninitialized
- // objects here. However, this does not actually affect type
- // safety, and the Eclipse java compiler generates code that
- // violates this constraint.
-
- // Modify our state as appropriate for entry into a subroutine.
- type ret_addr (return_address_type);
- ret_addr.set_return_address (PC);
- push_type (ret_addr);
- merge_into (npc, current_state);
- invalidate_pc ();
- }
-
- jclass construct_primitive_array_type (type_val prim)
- {
- jclass k = NULL;
- switch (prim)
- {
- case boolean_type:
- k = JvPrimClass (boolean);
- break;
- case char_type:
- k = JvPrimClass (char);
- break;
- case float_type:
- k = JvPrimClass (float);
- break;
- case double_type:
- k = JvPrimClass (double);
- break;
- case byte_type:
- k = JvPrimClass (byte);
- break;
- case short_type:
- k = JvPrimClass (short);
- break;
- case int_type:
- k = JvPrimClass (int);
- break;
- case long_type:
- k = JvPrimClass (long);
- break;
-
- // These aren't used here but we call them out to avoid
- // warnings.
- case void_type:
- case unsuitable_type:
- case return_address_type:
- case continuation_type:
- case reference_type:
- case null_type:
- case uninitialized_reference_type:
- default:
- verify_fail ("unknown type in construct_primitive_array_type");
- }
- k = _Jv_GetArrayClass (k, NULL);
- return k;
- }
-
- // This pass computes the location of branch targets and also
- // instruction starts.
- void branch_prepass ()
- {
- flags = (char *) _Jv_Malloc (current_method->code_length);
-
- for (int i = 0; i < current_method->code_length; ++i)
- flags[i] = 0;
-
- PC = 0;
- while (PC < current_method->code_length)
- {
- // Set `start_PC' early so that error checking can have the
- // correct value.
- start_PC = PC;
- flags[PC] |= FLAG_INSN_START;
-
- java_opcode opcode = (java_opcode) bytecode[PC++];
- switch (opcode)
- {
- case op_nop:
- case op_aconst_null:
- case op_iconst_m1:
- case op_iconst_0:
- case op_iconst_1:
- case op_iconst_2:
- case op_iconst_3:
- case op_iconst_4:
- case op_iconst_5:
- case op_lconst_0:
- case op_lconst_1:
- case op_fconst_0:
- case op_fconst_1:
- case op_fconst_2:
- case op_dconst_0:
- case op_dconst_1:
- case op_iload_0:
- case op_iload_1:
- case op_iload_2:
- case op_iload_3:
- case op_lload_0:
- case op_lload_1:
- case op_lload_2:
- case op_lload_3:
- case op_fload_0:
- case op_fload_1:
- case op_fload_2:
- case op_fload_3:
- case op_dload_0:
- case op_dload_1:
- case op_dload_2:
- case op_dload_3:
- case op_aload_0:
- case op_aload_1:
- case op_aload_2:
- case op_aload_3:
- case op_iaload:
- case op_laload:
- case op_faload:
- case op_daload:
- case op_aaload:
- case op_baload:
- case op_caload:
- case op_saload:
- case op_istore_0:
- case op_istore_1:
- case op_istore_2:
- case op_istore_3:
- case op_lstore_0:
- case op_lstore_1:
- case op_lstore_2:
- case op_lstore_3:
- case op_fstore_0:
- case op_fstore_1:
- case op_fstore_2:
- case op_fstore_3:
- case op_dstore_0:
- case op_dstore_1:
- case op_dstore_2:
- case op_dstore_3:
- case op_astore_0:
- case op_astore_1:
- case op_astore_2:
- case op_astore_3:
- case op_iastore:
- case op_lastore:
- case op_fastore:
- case op_dastore:
- case op_aastore:
- case op_bastore:
- case op_castore:
- case op_sastore:
- case op_pop:
- case op_pop2:
- case op_dup:
- case op_dup_x1:
- case op_dup_x2:
- case op_dup2:
- case op_dup2_x1:
- case op_dup2_x2:
- case op_swap:
- case op_iadd:
- case op_isub:
- case op_imul:
- case op_idiv:
- case op_irem:
- case op_ishl:
- case op_ishr:
- case op_iushr:
- case op_iand:
- case op_ior:
- case op_ixor:
- case op_ladd:
- case op_lsub:
- case op_lmul:
- case op_ldiv:
- case op_lrem:
- case op_lshl:
- case op_lshr:
- case op_lushr:
- case op_land:
- case op_lor:
- case op_lxor:
- case op_fadd:
- case op_fsub:
- case op_fmul:
- case op_fdiv:
- case op_frem:
- case op_dadd:
- case op_dsub:
- case op_dmul:
- case op_ddiv:
- case op_drem:
- case op_ineg:
- case op_i2b:
- case op_i2c:
- case op_i2s:
- case op_lneg:
- case op_fneg:
- case op_dneg:
- case op_i2l:
- case op_i2f:
- case op_i2d:
- case op_l2i:
- case op_l2f:
- case op_l2d:
- case op_f2i:
- case op_f2l:
- case op_f2d:
- case op_d2i:
- case op_d2l:
- case op_d2f:
- case op_lcmp:
- case op_fcmpl:
- case op_fcmpg:
- case op_dcmpl:
- case op_dcmpg:
- case op_monitorenter:
- case op_monitorexit:
- case op_ireturn:
- case op_lreturn:
- case op_freturn:
- case op_dreturn:
- case op_areturn:
- case op_return:
- case op_athrow:
- case op_arraylength:
- break;
-
- case op_bipush:
- case op_ldc:
- case op_iload:
- case op_lload:
- case op_fload:
- case op_dload:
- case op_aload:
- case op_istore:
- case op_lstore:
- case op_fstore:
- case op_dstore:
- case op_astore:
- case op_ret:
- case op_newarray:
- get_byte ();
- break;
-
- case op_iinc:
- case op_sipush:
- case op_ldc_w:
- case op_ldc2_w:
- case op_getstatic:
- case op_getfield:
- case op_putfield:
- case op_putstatic:
- case op_new:
- case op_anewarray:
- case op_instanceof:
- case op_checkcast:
- case op_invokespecial:
- case op_invokestatic:
- case op_invokevirtual:
- get_short ();
- break;
-
- case op_multianewarray:
- get_short ();
- get_byte ();
- break;
-
- case op_jsr:
- case op_ifeq:
- case op_ifne:
- case op_iflt:
- case op_ifge:
- case op_ifgt:
- case op_ifle:
- case op_if_icmpeq:
- case op_if_icmpne:
- case op_if_icmplt:
- case op_if_icmpge:
- case op_if_icmpgt:
- case op_if_icmple:
- case op_if_acmpeq:
- case op_if_acmpne:
- case op_ifnull:
- case op_ifnonnull:
- case op_goto:
- note_branch_target (compute_jump (get_short ()));
- break;
-
- case op_tableswitch:
- {
- skip_padding ();
- note_branch_target (compute_jump (get_int ()));
- jint low = get_int ();
- jint hi = get_int ();
- if (low > hi)
- verify_fail ("invalid tableswitch", start_PC);
- for (int i = low; i <= hi; ++i)
- note_branch_target (compute_jump (get_int ()));
- }
- break;
-
- case op_lookupswitch:
- {
- skip_padding ();
- note_branch_target (compute_jump (get_int ()));
- int npairs = get_int ();
- if (npairs < 0)
- verify_fail ("too few pairs in lookupswitch", start_PC);
- while (npairs-- > 0)
- {
- get_int ();
- note_branch_target (compute_jump (get_int ()));
- }
- }
- break;
-
- case op_invokeinterface:
- get_short ();
- get_byte ();
- get_byte ();
- break;
-
- case op_wide:
- {
- opcode = (java_opcode) get_byte ();
- get_short ();
- if (opcode == op_iinc)
- get_short ();
- }
- break;
-
- case op_jsr_w:
- case op_goto_w:
- note_branch_target (compute_jump (get_int ()));
- break;
-
- // These are unused here, but we call them out explicitly
- // so that -Wswitch-enum doesn't complain.
- case op_putfield_1:
- case op_putfield_2:
- case op_putfield_4:
- case op_putfield_8:
- case op_putfield_a:
- case op_putstatic_1:
- case op_putstatic_2:
- case op_putstatic_4:
- case op_putstatic_8:
- case op_putstatic_a:
- case op_getfield_1:
- case op_getfield_2s:
- case op_getfield_2u:
- case op_getfield_4:
- case op_getfield_8:
- case op_getfield_a:
- case op_getstatic_1:
- case op_getstatic_2s:
- case op_getstatic_2u:
- case op_getstatic_4:
- case op_getstatic_8:
- case op_getstatic_a:
- case op_breakpoint:
- default:
- verify_fail ("unrecognized instruction in branch_prepass",
- start_PC);
- }
-
- // See if any previous branch tried to branch to the middle of
- // this instruction.
- for (int pc = start_PC + 1; pc < PC; ++pc)
- {
- if ((flags[pc] & FLAG_BRANCH_TARGET))
- verify_fail ("branch to middle of instruction", pc);
- }
- }
-
- // Verify exception handlers.
- for (int i = 0; i < current_method->exc_count; ++i)
- {
- if (! (flags[exception[i].handler_pc.i] & FLAG_INSN_START))
- verify_fail ("exception handler not at instruction start",
- exception[i].handler_pc.i);
- if (! (flags[exception[i].start_pc.i] & FLAG_INSN_START))
- verify_fail ("exception start not at instruction start",
- exception[i].start_pc.i);
- if (exception[i].end_pc.i != current_method->code_length
- && ! (flags[exception[i].end_pc.i] & FLAG_INSN_START))
- verify_fail ("exception end not at instruction start",
- exception[i].end_pc.i);
-
- flags[exception[i].handler_pc.i] |= FLAG_BRANCH_TARGET;
- }
- }
-
- void check_pool_index (int index)
- {
- if (index < 0 || index >= current_class->constants.size)
- verify_fail ("constant pool index out of range", start_PC);
- }
-
- type check_class_constant (int index)
- {
- check_pool_index (index);
- _Jv_Constants *pool = &current_class->constants;
- if (pool->tags[index] == JV_CONSTANT_ResolvedClass)
- return type (pool->data[index].clazz, this);
- else if (pool->tags[index] == JV_CONSTANT_Class)
- return type (pool->data[index].utf8, this);
- verify_fail ("expected class constant", start_PC);
- }
-
- type check_constant (int index)
- {
- check_pool_index (index);
- _Jv_Constants *pool = &current_class->constants;
- int tag = pool->tags[index];
- if (tag == JV_CONSTANT_ResolvedString || tag == JV_CONSTANT_String)
- return type (&java::lang::String::class$, this);
- else if (tag == JV_CONSTANT_Integer)
- return type (int_type);
- else if (tag == JV_CONSTANT_Float)
- return type (float_type);
- else if (current_method->is_15
- && (tag == JV_CONSTANT_ResolvedClass || tag == JV_CONSTANT_Class))
- return type (&java::lang::Class::class$, this);
- verify_fail ("String, int, or float constant expected", start_PC);
- }
-
- type check_wide_constant (int index)
- {
- check_pool_index (index);
- _Jv_Constants *pool = &current_class->constants;
- if (pool->tags[index] == JV_CONSTANT_Long)
- return type (long_type);
- else if (pool->tags[index] == JV_CONSTANT_Double)
- return type (double_type);
- verify_fail ("long or double constant expected", start_PC);
- }
-
- // Helper for both field and method. These are laid out the same in
- // the constant pool.
- type handle_field_or_method (int index, int expected,
- _Jv_Utf8Const **name,
- _Jv_Utf8Const **fmtype)
- {
- check_pool_index (index);
- _Jv_Constants *pool = &current_class->constants;
- if (pool->tags[index] != expected)
- verify_fail ("didn't see expected constant", start_PC);
- // Once we know we have a Fieldref or Methodref we assume that it
- // is correctly laid out in the constant pool. I think the code
- // in defineclass.cc guarantees this.
- _Jv_ushort class_index, name_and_type_index;
- _Jv_loadIndexes (&pool->data[index],
- class_index,
- name_and_type_index);
- _Jv_ushort name_index, desc_index;
- _Jv_loadIndexes (&pool->data[name_and_type_index],
- name_index, desc_index);
-
- *name = pool->data[name_index].utf8;
- *fmtype = pool->data[desc_index].utf8;
-
- return check_class_constant (class_index);
- }
-
- // Return field's type, compute class' type if requested.
- // If PUTFIELD is true, use the special 'putfield' semantics.
- type check_field_constant (int index, type *class_type = NULL,
- bool putfield = false)
- {
- _Jv_Utf8Const *name, *field_type;
- type ct = handle_field_or_method (index,
- JV_CONSTANT_Fieldref,
- &name, &field_type);
- if (class_type)
- *class_type = ct;
- type result;
- if (field_type->first() == '[' || field_type->first() == 'L')
- result = type (field_type, this);
- else
- result = get_type_val_for_signature (field_type->first());
-
- // We have an obscure special case here: we can use `putfield' on
- // a field declared in this class, even if `this' has not yet been
- // initialized.
- if (putfield
- && ! current_state->this_type.isinitialized ()
- && current_state->this_type.pc == type::SELF
- && current_state->this_type.equals (ct, this)
- // We don't look at the signature, figuring that if it is
- // wrong we will fail during linking. FIXME?
- && _Jv_Linker::has_field_p (current_class, name))
- // Note that we don't actually know whether we're going to match
- // against 'this' or some other object of the same type. So,
- // here we set things up so that it doesn't matter. This relies
- // on knowing what our caller is up to.
- class_type->set_uninitialized (type::EITHER, this);
-
- return result;
- }
-
- type check_method_constant (int index, bool is_interface,
- _Jv_Utf8Const **method_name,
- _Jv_Utf8Const **method_signature)
- {
- return handle_field_or_method (index,
- (is_interface
- ? JV_CONSTANT_InterfaceMethodref
- : JV_CONSTANT_Methodref),
- method_name, method_signature);
- }
-
- type get_one_type (char *&p)
- {
- char *start = p;
-
- int arraycount = 0;
- while (*p == '[')
- {
- ++arraycount;
- ++p;
- }
-
- char v = *p++;
-
- if (v == 'L')
- {
- while (*p != ';')
- ++p;
- ++p;
- _Jv_Utf8Const *name = make_utf8_const (start, p - start);
- return type (name, this);
- }
-
- // Casting to jchar here is ok since we are looking at an ASCII
- // character.
- type_val rt = get_type_val_for_signature (jchar (v));
-
- if (arraycount == 0)
- {
- // Callers of this function eventually push their arguments on
- // the stack. So, promote them here.
- return type (rt).promote ();
- }
-
- jclass k = construct_primitive_array_type (rt);
- while (--arraycount > 0)
- k = _Jv_GetArrayClass (k, NULL);
- return type (k, this);
- }
-
- void compute_argument_types (_Jv_Utf8Const *signature,
- type *types)
- {
- char *p = signature->chars();
-
- // Skip `('.
- ++p;
-
- int i = 0;
- while (*p != ')')
- types[i++] = get_one_type (p);
- }
-
- type compute_return_type (_Jv_Utf8Const *signature)
- {
- char *p = signature->chars();
- while (*p != ')')
- ++p;
- ++p;
- return get_one_type (p);
- }
-
- void check_return_type (type onstack)
- {
- type rt = compute_return_type (current_method->self->signature);
- if (! rt.compatible (onstack, this))
- verify_fail ("incompatible return type");
- }
-
- // Initialize the stack for the new method. Returns true if this
- // method is an instance initializer.
- bool initialize_stack ()
- {
- int var = 0;
- bool is_init = _Jv_equalUtf8Consts (current_method->self->name,
- gcj::init_name);
- bool is_clinit = _Jv_equalUtf8Consts (current_method->self->name,
- gcj::clinit_name);
-
- using namespace java::lang::reflect;
- if (! Modifier::isStatic (current_method->self->accflags))
- {
- type kurr (current_class, this);
- if (is_init)
- {
- kurr.set_uninitialized (type::SELF, this);
- is_init = true;
- }
- else if (is_clinit)
- verify_fail ("<clinit> method must be static");
- set_variable (0, kurr);
- current_state->set_this_type (kurr);
- ++var;
- }
- else
- {
- if (is_init)
- verify_fail ("<init> method must be non-static");
- }
-
- // We have to handle wide arguments specially here.
- int arg_count = _Jv_count_arguments (current_method->self->signature);
- type arg_types[arg_count];
- compute_argument_types (current_method->self->signature, arg_types);
- for (int i = 0; i < arg_count; ++i)
- {
- set_variable (var, arg_types[i]);
- ++var;
- if (arg_types[i].iswide ())
- ++var;
- }
-
- return is_init;
- }
-
- void verify_instructions_0 ()
- {
- current_state = new state (current_method->max_stack,
- current_method->max_locals);
-
- PC = 0;
- start_PC = 0;
-
- // True if we are verifying an instance initializer.
- bool this_is_init = initialize_stack ();
-
- states = (linked<state> **) _Jv_Malloc (sizeof (linked<state> *)
- * current_method->code_length);
- for (int i = 0; i < current_method->code_length; ++i)
- states[i] = NULL;
-
- next_verify_state = NULL;
-
- while (true)
- {
- // If the PC was invalidated, get a new one from the work list.
- if (PC == state::NO_NEXT)
- {
- state *new_state = pop_jump ();
- // If it is null, we're done.
- if (new_state == NULL)
- break;
-
- PC = new_state->get_pc ();
- debug_print ("== State pop from pending list\n");
- // Set up the current state.
- current_state->copy (new_state, current_method->max_stack,
- current_method->max_locals);
- }
- else
- {
- // We only have to do this checking in the situation where
- // control flow falls through from the previous
- // instruction. Otherwise merging is done at the time we
- // push the branch. Note that we'll catch the
- // off-the-end problem just below.
- if (PC < current_method->code_length && states[PC] != NULL)
- {
- // We've already visited this instruction. So merge
- // the states together. It is simplest, but not most
- // efficient, to just always invalidate the PC here.
- merge_into (PC, current_state);
- invalidate_pc ();
- continue;
- }
- }
-
- // Control can't fall off the end of the bytecode. We need to
- // check this in both cases, not just the fall-through case,
- // because we don't check to see whether a `jsr' appears at
- // the end of the bytecode until we process a `ret'.
- if (PC >= current_method->code_length)
- verify_fail ("fell off end");
-
- // We only have to keep saved state at branch targets. If
- // we're at a branch target and the state here hasn't been set
- // yet, we set it now. You might notice that `ret' targets
- // won't necessarily have FLAG_BRANCH_TARGET set. This
- // doesn't matter, since those states will be filled in by
- // merge_into.
- if (states[PC] == NULL && (flags[PC] & FLAG_BRANCH_TARGET))
- add_new_state (PC, current_state);
-
- // Set this before handling exceptions so that debug output is
- // sane.
- start_PC = PC;
-
- // Update states for all active exception handlers. Ordinarily
- // there are not many exception handlers. So we simply run
- // through them all.
- for (int i = 0; i < current_method->exc_count; ++i)
- {
- if (PC >= exception[i].start_pc.i && PC < exception[i].end_pc.i)
- {
- type handler (&java::lang::Throwable::class$, this);
- if (exception[i].handler_type.i != 0)
- handler = check_class_constant (exception[i].handler_type.i);
- push_exception_jump (handler, exception[i].handler_pc.i);
- }
- }
-
- current_state->print (" ", PC, current_method->max_stack,
- current_method->max_locals);
- java_opcode opcode = (java_opcode) bytecode[PC++];
- switch (opcode)
- {
- case op_nop:
- break;
-
- case op_aconst_null:
- push_type (null_type);
- break;
-
- case op_iconst_m1:
- case op_iconst_0:
- case op_iconst_1:
- case op_iconst_2:
- case op_iconst_3:
- case op_iconst_4:
- case op_iconst_5:
- push_type (int_type);
- break;
-
- case op_lconst_0:
- case op_lconst_1:
- push_type (long_type);
- break;
-
- case op_fconst_0:
- case op_fconst_1:
- case op_fconst_2:
- push_type (float_type);
- break;
-
- case op_dconst_0:
- case op_dconst_1:
- push_type (double_type);
- break;
-
- case op_bipush:
- get_byte ();
- push_type (int_type);
- break;
-
- case op_sipush:
- get_short ();
- push_type (int_type);
- break;
-
- case op_ldc:
- push_type (check_constant (get_byte ()));
- break;
- case op_ldc_w:
- push_type (check_constant (get_ushort ()));
- break;
- case op_ldc2_w:
- push_type (check_wide_constant (get_ushort ()));
- break;
-
- case op_iload:
- push_type (get_variable (get_byte (), int_type));
- break;
- case op_lload:
- push_type (get_variable (get_byte (), long_type));
- break;
- case op_fload:
- push_type (get_variable (get_byte (), float_type));
- break;
- case op_dload:
- push_type (get_variable (get_byte (), double_type));
- break;
- case op_aload:
- push_type (get_variable (get_byte (), reference_type));
- break;
-
- case op_iload_0:
- case op_iload_1:
- case op_iload_2:
- case op_iload_3:
- push_type (get_variable (opcode - op_iload_0, int_type));
- break;
- case op_lload_0:
- case op_lload_1:
- case op_lload_2:
- case op_lload_3:
- push_type (get_variable (opcode - op_lload_0, long_type));
- break;
- case op_fload_0:
- case op_fload_1:
- case op_fload_2:
- case op_fload_3:
- push_type (get_variable (opcode - op_fload_0, float_type));
- break;
- case op_dload_0:
- case op_dload_1:
- case op_dload_2:
- case op_dload_3:
- push_type (get_variable (opcode - op_dload_0, double_type));
- break;
- case op_aload_0:
- case op_aload_1:
- case op_aload_2:
- case op_aload_3:
- push_type (get_variable (opcode - op_aload_0, reference_type));
- break;
- case op_iaload:
- pop_type (int_type);
- push_type (require_array_type (pop_init_ref (reference_type),
- int_type));
- break;
- case op_laload:
- pop_type (int_type);
- push_type (require_array_type (pop_init_ref (reference_type),
- long_type));
- break;
- case op_faload:
- pop_type (int_type);
- push_type (require_array_type (pop_init_ref (reference_type),
- float_type));
- break;
- case op_daload:
- pop_type (int_type);
- push_type (require_array_type (pop_init_ref (reference_type),
- double_type));
- break;
- case op_aaload:
- pop_type (int_type);
- push_type (require_array_type (pop_init_ref (reference_type),
- reference_type));
- break;
- case op_baload:
- pop_type (int_type);
- require_array_type (pop_init_ref (reference_type), byte_type);
- push_type (int_type);
- break;
- case op_caload:
- pop_type (int_type);
- require_array_type (pop_init_ref (reference_type), char_type);
- push_type (int_type);
- break;
- case op_saload:
- pop_type (int_type);
- require_array_type (pop_init_ref (reference_type), short_type);
- push_type (int_type);
- break;
- case op_istore:
- set_variable (get_byte (), pop_type (int_type));
- break;
- case op_lstore:
- set_variable (get_byte (), pop_type (long_type));
- break;
- case op_fstore:
- set_variable (get_byte (), pop_type (float_type));
- break;
- case op_dstore:
- set_variable (get_byte (), pop_type (double_type));
- break;
- case op_astore:
- set_variable (get_byte (), pop_ref_or_return ());
- break;
- case op_istore_0:
- case op_istore_1:
- case op_istore_2:
- case op_istore_3:
- set_variable (opcode - op_istore_0, pop_type (int_type));
- break;
- case op_lstore_0:
- case op_lstore_1:
- case op_lstore_2:
- case op_lstore_3:
- set_variable (opcode - op_lstore_0, pop_type (long_type));
- break;
- case op_fstore_0:
- case op_fstore_1:
- case op_fstore_2:
- case op_fstore_3:
- set_variable (opcode - op_fstore_0, pop_type (float_type));
- break;
- case op_dstore_0:
- case op_dstore_1:
- case op_dstore_2:
- case op_dstore_3:
- set_variable (opcode - op_dstore_0, pop_type (double_type));
- break;
- case op_astore_0:
- case op_astore_1:
- case op_astore_2:
- case op_astore_3:
- set_variable (opcode - op_astore_0, pop_ref_or_return ());
- break;
- case op_iastore:
- pop_type (int_type);
- pop_type (int_type);
- require_array_type (pop_init_ref (reference_type), int_type);
- break;
- case op_lastore:
- pop_type (long_type);
- pop_type (int_type);
- require_array_type (pop_init_ref (reference_type), long_type);
- break;
- case op_fastore:
- pop_type (float_type);
- pop_type (int_type);
- require_array_type (pop_init_ref (reference_type), float_type);
- break;
- case op_dastore:
- pop_type (double_type);
- pop_type (int_type);
- require_array_type (pop_init_ref (reference_type), double_type);
- break;
- case op_aastore:
- pop_type (reference_type);
- pop_type (int_type);
- require_array_type (pop_init_ref (reference_type), reference_type);
- break;
- case op_bastore:
- pop_type (int_type);
- pop_type (int_type);
- require_array_type (pop_init_ref (reference_type), byte_type);
- break;
- case op_castore:
- pop_type (int_type);
- pop_type (int_type);
- require_array_type (pop_init_ref (reference_type), char_type);
- break;
- case op_sastore:
- pop_type (int_type);
- pop_type (int_type);
- require_array_type (pop_init_ref (reference_type), short_type);
- break;
- case op_pop:
- pop32 ();
- break;
- case op_pop2:
- {
- type t = pop_raw ();
- if (! t.iswide ())
- pop32 ();
- }
- break;
- case op_dup:
- {
- type t = pop32 ();
- push_type (t);
- push_type (t);
- }
- break;
- case op_dup_x1:
- {
- type t1 = pop32 ();
- type t2 = pop32 ();
- push_type (t1);
- push_type (t2);
- push_type (t1);
- }
- break;
- case op_dup_x2:
- {
- type t1 = pop32 ();
- type t2 = pop_raw ();
- if (! t2.iswide ())
- {
- type t3 = pop32 ();
- push_type (t1);
- push_type (t3);
- }
- else
- push_type (t1);
- push_type (t2);
- push_type (t1);
- }
- break;
- case op_dup2:
- {
- type t = pop_raw ();
- if (! t.iswide ())
- {
- type t2 = pop32 ();
- push_type (t2);
- push_type (t);
- push_type (t2);
- }
- else
- push_type (t);
- push_type (t);
- }
- break;
- case op_dup2_x1:
- {
- type t1 = pop_raw ();
- type t2 = pop32 ();
- if (! t1.iswide ())
- {
- type t3 = pop32 ();
- push_type (t2);
- push_type (t1);
- push_type (t3);
- }
- else
- push_type (t1);
- push_type (t2);
- push_type (t1);
- }
- break;
- case op_dup2_x2:
- {
- type t1 = pop_raw ();
- if (t1.iswide ())
- {
- type t2 = pop_raw ();
- if (t2.iswide ())
- {
- push_type (t1);
- push_type (t2);
- }
- else
- {
- type t3 = pop32 ();
- push_type (t1);
- push_type (t3);
- push_type (t2);
- }
- push_type (t1);
- }
- else
- {
- type t2 = pop32 ();
- type t3 = pop_raw ();
- if (t3.iswide ())
- {
- push_type (t2);
- push_type (t1);
- }
- else
- {
- type t4 = pop32 ();
- push_type (t2);
- push_type (t1);
- push_type (t4);
- }
- push_type (t3);
- push_type (t2);
- push_type (t1);
- }
- }
- break;
- case op_swap:
- {
- type t1 = pop32 ();
- type t2 = pop32 ();
- push_type (t1);
- push_type (t2);
- }
- break;
- case op_iadd:
- case op_isub:
- case op_imul:
- case op_idiv:
- case op_irem:
- case op_ishl:
- case op_ishr:
- case op_iushr:
- case op_iand:
- case op_ior:
- case op_ixor:
- pop_type (int_type);
- push_type (pop_type (int_type));
- break;
- case op_ladd:
- case op_lsub:
- case op_lmul:
- case op_ldiv:
- case op_lrem:
- case op_land:
- case op_lor:
- case op_lxor:
- pop_type (long_type);
- push_type (pop_type (long_type));
- break;
- case op_lshl:
- case op_lshr:
- case op_lushr:
- pop_type (int_type);
- push_type (pop_type (long_type));
- break;
- case op_fadd:
- case op_fsub:
- case op_fmul:
- case op_fdiv:
- case op_frem:
- pop_type (float_type);
- push_type (pop_type (float_type));
- break;
- case op_dadd:
- case op_dsub:
- case op_dmul:
- case op_ddiv:
- case op_drem:
- pop_type (double_type);
- push_type (pop_type (double_type));
- break;
- case op_ineg:
- case op_i2b:
- case op_i2c:
- case op_i2s:
- push_type (pop_type (int_type));
- break;
- case op_lneg:
- push_type (pop_type (long_type));
- break;
- case op_fneg:
- push_type (pop_type (float_type));
- break;
- case op_dneg:
- push_type (pop_type (double_type));
- break;
- case op_iinc:
- get_variable (get_byte (), int_type);
- get_byte ();
- break;
- case op_i2l:
- pop_type (int_type);
- push_type (long_type);
- break;
- case op_i2f:
- pop_type (int_type);
- push_type (float_type);
- break;
- case op_i2d:
- pop_type (int_type);
- push_type (double_type);
- break;
- case op_l2i:
- pop_type (long_type);
- push_type (int_type);
- break;
- case op_l2f:
- pop_type (long_type);
- push_type (float_type);
- break;
- case op_l2d:
- pop_type (long_type);
- push_type (double_type);
- break;
- case op_f2i:
- pop_type (float_type);
- push_type (int_type);
- break;
- case op_f2l:
- pop_type (float_type);
- push_type (long_type);
- break;
- case op_f2d:
- pop_type (float_type);
- push_type (double_type);
- break;
- case op_d2i:
- pop_type (double_type);
- push_type (int_type);
- break;
- case op_d2l:
- pop_type (double_type);
- push_type (long_type);
- break;
- case op_d2f:
- pop_type (double_type);
- push_type (float_type);
- break;
- case op_lcmp:
- pop_type (long_type);
- pop_type (long_type);
- push_type (int_type);
- break;
- case op_fcmpl:
- case op_fcmpg:
- pop_type (float_type);
- pop_type (float_type);
- push_type (int_type);
- break;
- case op_dcmpl:
- case op_dcmpg:
- pop_type (double_type);
- pop_type (double_type);
- push_type (int_type);
- break;
- case op_ifeq:
- case op_ifne:
- case op_iflt:
- case op_ifge:
- case op_ifgt:
- case op_ifle:
- pop_type (int_type);
- push_jump (get_short ());
- break;
- case op_if_icmpeq:
- case op_if_icmpne:
- case op_if_icmplt:
- case op_if_icmpge:
- case op_if_icmpgt:
- case op_if_icmple:
- pop_type (int_type);
- pop_type (int_type);
- push_jump (get_short ());
- break;
- case op_if_acmpeq:
- case op_if_acmpne:
- pop_type (reference_type);
- pop_type (reference_type);
- push_jump (get_short ());
- break;
- case op_goto:
- push_jump (get_short ());
- invalidate_pc ();
- break;
- case op_jsr:
- handle_jsr_insn (get_short ());
- break;
- case op_ret:
- handle_ret_insn (get_byte ());
- break;
- case op_tableswitch:
- {
- pop_type (int_type);
- skip_padding ();
- push_jump (get_int ());
- jint low = get_int ();
- jint high = get_int ();
- // Already checked LOW -vs- HIGH.
- for (int i = low; i <= high; ++i)
- push_jump (get_int ());
- invalidate_pc ();
- }
- break;
-
- case op_lookupswitch:
- {
- pop_type (int_type);
- skip_padding ();
- push_jump (get_int ());
- jint npairs = get_int ();
- // Already checked NPAIRS >= 0.
- jint lastkey = 0;
- for (int i = 0; i < npairs; ++i)
- {
- jint key = get_int ();
- if (i > 0 && key <= lastkey)
- verify_fail ("lookupswitch pairs unsorted", start_PC);
- lastkey = key;
- push_jump (get_int ());
- }
- invalidate_pc ();
- }
- break;
- case op_ireturn:
- check_return_type (pop_type (int_type));
- invalidate_pc ();
- break;
- case op_lreturn:
- check_return_type (pop_type (long_type));
- invalidate_pc ();
- break;
- case op_freturn:
- check_return_type (pop_type (float_type));
- invalidate_pc ();
- break;
- case op_dreturn:
- check_return_type (pop_type (double_type));
- invalidate_pc ();
- break;
- case op_areturn:
- check_return_type (pop_init_ref (reference_type));
- invalidate_pc ();
- break;
- case op_return:
- // We only need to check this when the return type is
- // void, because all instance initializers return void.
- if (this_is_init)
- current_state->check_this_initialized (this);
- check_return_type (void_type);
- invalidate_pc ();
- break;
- case op_getstatic:
- push_type (check_field_constant (get_ushort ()));
- break;
- case op_putstatic:
- pop_type (check_field_constant (get_ushort ()));
- break;
- case op_getfield:
- {
- type klass;
- type field = check_field_constant (get_ushort (), &klass);
- pop_type (klass);
- push_type (field);
- }
- break;
- case op_putfield:
- {
- type klass;
- type field = check_field_constant (get_ushort (), &klass, true);
- pop_type (field);
- pop_type (klass);
- }
- break;
-
- case op_invokevirtual:
- case op_invokespecial:
- case op_invokestatic:
- case op_invokeinterface:
- {
- _Jv_Utf8Const *method_name, *method_signature;
- type class_type
- = check_method_constant (get_ushort (),
- opcode == op_invokeinterface,
- &method_name,
- &method_signature);
- // NARGS is only used when we're processing
- // invokeinterface. It is simplest for us to compute it
- // here and then verify it later.
- int nargs = 0;
- if (opcode == op_invokeinterface)
- {
- nargs = get_byte ();
- if (get_byte () != 0)
- verify_fail ("invokeinterface dummy byte is wrong");
- }
-
- bool is_init = false;
- if (_Jv_equalUtf8Consts (method_name, gcj::init_name))
- {
- is_init = true;
- if (opcode != op_invokespecial)
- verify_fail ("can't invoke <init>");
- }
- else if (method_name->first() == '<')
- verify_fail ("can't invoke method starting with `<'");
-
- // Pop arguments and check types.
- int arg_count = _Jv_count_arguments (method_signature);
- type arg_types[arg_count];
- compute_argument_types (method_signature, arg_types);
- for (int i = arg_count - 1; i >= 0; --i)
- {
- // This is only used for verifying the byte for
- // invokeinterface.
- nargs -= arg_types[i].depth ();
- pop_init_ref (arg_types[i]);
- }
-
- if (opcode == op_invokeinterface
- && nargs != 1)
- verify_fail ("wrong argument count for invokeinterface");
-
- if (opcode != op_invokestatic)
- {
- type t = class_type;
- if (is_init)
- {
- // In this case the PC doesn't matter.
- t.set_uninitialized (type::UNINIT, this);
- // FIXME: check to make sure that the <init>
- // call is to the right class.
- // It must either be super or an exact class
- // match.
- }
- type raw = pop_raw ();
- if (! t.compatible (raw, this))
- verify_fail ("incompatible type on stack");
-
- if (is_init)
- current_state->set_initialized (raw.get_pc (),
- current_method->max_locals);
- }
-
- type rt = compute_return_type (method_signature);
- if (! rt.isvoid ())
- push_type (rt);
- }
- break;
-
- case op_new:
- {
- type t = check_class_constant (get_ushort ());
- if (t.isarray ())
- verify_fail ("type is array");
- t.set_uninitialized (start_PC, this);
- push_type (t);
- }
- break;
-
- case op_newarray:
- {
- int atype = get_byte ();
- // We intentionally have chosen constants to make this
- // valid.
- if (atype < boolean_type || atype > long_type)
- verify_fail ("type not primitive", start_PC);
- pop_type (int_type);
- type t (construct_primitive_array_type (type_val (atype)), this);
- push_type (t);
- }
- break;
- case op_anewarray:
- pop_type (int_type);
- push_type (check_class_constant (get_ushort ()).to_array (this));
- break;
- case op_arraylength:
- {
- type t = pop_init_ref (reference_type);
- if (! t.isarray () && ! t.isnull ())
- verify_fail ("array type expected");
- push_type (int_type);
- }
- break;
- case op_athrow:
- pop_type (type (&java::lang::Throwable::class$, this));
- invalidate_pc ();
- break;
- case op_checkcast:
- pop_init_ref (reference_type);
- push_type (check_class_constant (get_ushort ()));
- break;
- case op_instanceof:
- pop_init_ref (reference_type);
- check_class_constant (get_ushort ());
- push_type (int_type);
- break;
- case op_monitorenter:
- pop_init_ref (reference_type);
- break;
- case op_monitorexit:
- pop_init_ref (reference_type);
- break;
- case op_wide:
- {
- switch (get_byte ())
- {
- case op_iload:
- push_type (get_variable (get_ushort (), int_type));
- break;
- case op_lload:
- push_type (get_variable (get_ushort (), long_type));
- break;
- case op_fload:
- push_type (get_variable (get_ushort (), float_type));
- break;
- case op_dload:
- push_type (get_variable (get_ushort (), double_type));
- break;
- case op_aload:
- push_type (get_variable (get_ushort (), reference_type));
- break;
- case op_istore:
- set_variable (get_ushort (), pop_type (int_type));
- break;
- case op_lstore:
- set_variable (get_ushort (), pop_type (long_type));
- break;
- case op_fstore:
- set_variable (get_ushort (), pop_type (float_type));
- break;
- case op_dstore:
- set_variable (get_ushort (), pop_type (double_type));
- break;
- case op_astore:
- set_variable (get_ushort (), pop_init_ref (reference_type));
- break;
- case op_ret:
- handle_ret_insn (get_short ());
- break;
- case op_iinc:
- get_variable (get_ushort (), int_type);
- get_short ();
- break;
- default:
- verify_fail ("unrecognized wide instruction", start_PC);
- }
- }
- break;
- case op_multianewarray:
- {
- type atype = check_class_constant (get_ushort ());
- int dim = get_byte ();
- if (dim < 1)
- verify_fail ("too few dimensions to multianewarray", start_PC);
- atype.verify_dimensions (dim, this);
- for (int i = 0; i < dim; ++i)
- pop_type (int_type);
- push_type (atype);
- }
- break;
- case op_ifnull:
- case op_ifnonnull:
- pop_type (reference_type);
- push_jump (get_short ());
- break;
- case op_goto_w:
- push_jump (get_int ());
- invalidate_pc ();
- break;
- case op_jsr_w:
- handle_jsr_insn (get_int ());
- break;
-
- // These are unused here, but we call them out explicitly
- // so that -Wswitch-enum doesn't complain.
- case op_putfield_1:
- case op_putfield_2:
- case op_putfield_4:
- case op_putfield_8:
- case op_putfield_a:
- case op_putstatic_1:
- case op_putstatic_2:
- case op_putstatic_4:
- case op_putstatic_8:
- case op_putstatic_a:
- case op_getfield_1:
- case op_getfield_2s:
- case op_getfield_2u:
- case op_getfield_4:
- case op_getfield_8:
- case op_getfield_a:
- case op_getstatic_1:
- case op_getstatic_2s:
- case op_getstatic_2u:
- case op_getstatic_4:
- case op_getstatic_8:
- case op_getstatic_a:
- case op_breakpoint:
- default:
- // Unrecognized opcode.
- verify_fail ("unrecognized instruction in verify_instructions_0",
- start_PC);
- }
- }
- }
-
-public:
-
- void verify_instructions ()
- {
- branch_prepass ();
- verify_instructions_0 ();
- }
-
- _Jv_BytecodeVerifier (_Jv_InterpMethod *m)
- {
- // We just print the text as utf-8. This is just for debugging
- // anyway.
- debug_print ("--------------------------------\n");
- debug_print ("-- Verifying method `%s'\n", m->self->name->chars());
-
- current_method = m;
- bytecode = m->bytecode ();
- exception = m->exceptions ();
- current_class = m->defining_class;
-
- states = NULL;
- flags = NULL;
- utf8_list = NULL;
- isect_list = NULL;
- }
-
- ~_Jv_BytecodeVerifier ()
- {
- if (flags)
- _Jv_Free (flags);
-
- while (utf8_list != NULL)
- {
- linked<_Jv_Utf8Const> *n = utf8_list->next;
- _Jv_Free (utf8_list);
- utf8_list = n;
- }
-
- while (isect_list != NULL)
- {
- ref_intersection *next = isect_list->alloc_next;
- delete isect_list;
- isect_list = next;
- }
-
- if (states)
- {
- for (int i = 0; i < current_method->code_length; ++i)
- {
- linked<state> *iter = states[i];
- while (iter != NULL)
- {
- linked<state> *next = iter->next;
- delete iter->val;
- _Jv_Free (iter);
- iter = next;
- }
- }
- _Jv_Free (states);
- }
- }
-};
-
-void
-_Jv_VerifyMethod (_Jv_InterpMethod *meth)
-{
- _Jv_BytecodeVerifier v (meth);
- v.verify_instructions ();
-}
-
-#endif /* INTERPRETER */