aboutsummaryrefslogtreecommitdiff
path: root/libjava/java/util/Arrays.java
diff options
context:
space:
mode:
authorTom Tromey <tromey@gcc.gnu.org>2000-05-19 17:55:34 +0000
committerTom Tromey <tromey@gcc.gnu.org>2000-05-19 17:55:34 +0000
commit6c80c45e3010bfe992b41dd8800d2c4b65e0d5ef (patch)
tree88cf0d32aea197ea8e8198e1206b04c820308615 /libjava/java/util/Arrays.java
parent021c89ed68c151c45021fccf1bb5338ee817314c (diff)
downloadgcc-6c80c45e3010bfe992b41dd8800d2c4b65e0d5ef.zip
gcc-6c80c45e3010bfe992b41dd8800d2c4b65e0d5ef.tar.gz
gcc-6c80c45e3010bfe992b41dd8800d2c4b65e0d5ef.tar.bz2
Jumbo patch:
* Imported beans and serialization * Updated IA-64 port * Miscellaneous bug fixes From-SVN: r34028
Diffstat (limited to 'libjava/java/util/Arrays.java')
-rw-r--r--libjava/java/util/Arrays.java1757
1 files changed, 1757 insertions, 0 deletions
diff --git a/libjava/java/util/Arrays.java b/libjava/java/util/Arrays.java
new file mode 100644
index 0000000..fc51d38
--- /dev/null
+++ b/libjava/java/util/Arrays.java
@@ -0,0 +1,1757 @@
+/* Arrays.java -- Utility class with methods to operate on arrays
+ Copyright (C) 1998, 1999 Free Software Foundation, Inc.
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+02111-1307 USA.
+
+As a special exception, if you link this library with other files to
+produce an executable, this library does not by itself cause the
+resulting executable to be covered by the GNU General Public License.
+This exception does not however invalidate any other reasons why the
+executable file might be covered by the GNU General Public License. */
+
+
+// TO DO:
+// ~ Fix the behaviour of sort and binarySearch as applied to float and double
+// arrays containing NaN values. See the JDC, bug ID 4143272.
+
+package java.util;
+
+/**
+ * This class contains various static utility methods performing operations on
+ * arrays, and a method to provide a List "view" of an array to facilitate
+ * using arrays with Collection-based APIs.
+ */
+public class Arrays {
+
+ /**
+ * This class is non-instantiable.
+ */
+ private Arrays() {
+ }
+
+ private static Comparator defaultComparator = new Comparator() {
+ public int compare(Object o1, Object o2) {
+ return ((Comparable)o1).compareTo(o2);
+ }
+ };
+
+ /**
+ * Perform a binary search of a byte array for a key. The array must be
+ * sorted (as by the sort() method) - if it is not, the behaviour of this
+ * method is undefined, and may be an infinite loop. If the array contains
+ * the key more than once, any one of them may be found. Note: although the
+ * specification allows for an infinite loop if the array is unsorted, it
+ * will not happen in this implementation.
+ *
+ * @param a the array to search (must be sorted)
+ * @param key the value to search for
+ * @returns the index at which the key was found, or -n-1 if it was not
+ * found, where n is the index of the first value higher than key or
+ * a.length if there is no such value.
+ */
+ public static int binarySearch(byte[] a, byte key) {
+ int low = 0;
+ int hi = a.length - 1;
+ int mid = 0;
+ while (low <= hi) {
+ mid = (low + hi) >> 1;
+ final byte d = a[mid];
+ if (d == key) {
+ return mid;
+ } else if (d > key) {
+ hi = mid - 1;
+ } else {
+ low = ++mid; // This gets the insertion point right on the last loop
+ }
+ }
+ return -mid - 1;
+ }
+
+ /**
+ * Perform a binary search of a char array for a key. The array must be
+ * sorted (as by the sort() method) - if it is not, the behaviour of this
+ * method is undefined, and may be an infinite loop. If the array contains
+ * the key more than once, any one of them may be found. Note: although the
+ * specification allows for an infinite loop if the array is unsorted, it
+ * will not happen in this implementation.
+ *
+ * @param a the array to search (must be sorted)
+ * @param key the value to search for
+ * @returns the index at which the key was found, or -n-1 if it was not
+ * found, where n is the index of the first value higher than key or
+ * a.length if there is no such value.
+ */
+ public static int binarySearch(char[] a, char key) {
+ int low = 0;
+ int hi = a.length - 1;
+ int mid = 0;
+ while (low <= hi) {
+ mid = (low + hi) >> 1;
+ final char d = a[mid];
+ if (d == key) {
+ return mid;
+ } else if (d > key) {
+ hi = mid - 1;
+ } else {
+ low = ++mid; // This gets the insertion point right on the last loop
+ }
+ }
+ return -mid - 1;
+ }
+
+ /**
+ * Perform a binary search of a double array for a key. The array must be
+ * sorted (as by the sort() method) - if it is not, the behaviour of this
+ * method is undefined, and may be an infinite loop. If the array contains
+ * the key more than once, any one of them may be found. Note: although the
+ * specification allows for an infinite loop if the array is unsorted, it
+ * will not happen in this implementation.
+ *
+ * @param a the array to search (must be sorted)
+ * @param key the value to search for
+ * @returns the index at which the key was found, or -n-1 if it was not
+ * found, where n is the index of the first value higher than key or
+ * a.length if there is no such value.
+ */
+ public static int binarySearch(double[] a, double key) {
+ int low = 0;
+ int hi = a.length - 1;
+ int mid = 0;
+ while (low <= hi) {
+ mid = (low + hi) >> 1;
+ final double d = a[mid];
+ if (d == key) {
+ return mid;
+ } else if (d > key) {
+ hi = mid - 1;
+ } else {
+ low = ++mid; // This gets the insertion point right on the last loop
+ }
+ }
+ return -mid - 1;
+ }
+
+ /**
+ * Perform a binary search of a float array for a key. The array must be
+ * sorted (as by the sort() method) - if it is not, the behaviour of this
+ * method is undefined, and may be an infinite loop. If the array contains
+ * the key more than once, any one of them may be found. Note: although the
+ * specification allows for an infinite loop if the array is unsorted, it
+ * will not happen in this implementation.
+ *
+ * @param a the array to search (must be sorted)
+ * @param key the value to search for
+ * @returns the index at which the key was found, or -n-1 if it was not
+ * found, where n is the index of the first value higher than key or
+ * a.length if there is no such value.
+ */
+ public static int binarySearch(float[] a, float key) {
+ int low = 0;
+ int hi = a.length - 1;
+ int mid = 0;
+ while (low <= hi) {
+ mid = (low + hi) >> 1;
+ final float d = a[mid];
+ if (d == key) {
+ return mid;
+ } else if (d > key) {
+ hi = mid - 1;
+ } else {
+ low = ++mid; // This gets the insertion point right on the last loop
+ }
+ }
+ return -mid - 1;
+ }
+
+ /**
+ * Perform a binary search of an int array for a key. The array must be
+ * sorted (as by the sort() method) - if it is not, the behaviour of this
+ * method is undefined, and may be an infinite loop. If the array contains
+ * the key more than once, any one of them may be found. Note: although the
+ * specification allows for an infinite loop if the array is unsorted, it
+ * will not happen in this implementation.
+ *
+ * @param a the array to search (must be sorted)
+ * @param key the value to search for
+ * @returns the index at which the key was found, or -n-1 if it was not
+ * found, where n is the index of the first value higher than key or
+ * a.length if there is no such value.
+ */
+ public static int binarySearch(int[] a, int key) {
+ int low = 0;
+ int hi = a.length - 1;
+ int mid = 0;
+ while (low <= hi) {
+ mid = (low + hi) >> 1;
+ final int d = a[mid];
+ if (d == key) {
+ return mid;
+ } else if (d > key) {
+ hi = mid - 1;
+ } else {
+ low = ++mid; // This gets the insertion point right on the last loop
+ }
+ }
+ return -mid - 1;
+ }
+
+ /**
+ * Perform a binary search of a long array for a key. The array must be
+ * sorted (as by the sort() method) - if it is not, the behaviour of this
+ * method is undefined, and may be an infinite loop. If the array contains
+ * the key more than once, any one of them may be found. Note: although the
+ * specification allows for an infinite loop if the array is unsorted, it
+ * will not happen in this implementation.
+ *
+ * @param a the array to search (must be sorted)
+ * @param key the value to search for
+ * @returns the index at which the key was found, or -n-1 if it was not
+ * found, where n is the index of the first value higher than key or
+ * a.length if there is no such value.
+ */
+ public static int binarySearch(long[] a, long key) {
+ int low = 0;
+ int hi = a.length - 1;
+ int mid = 0;
+ while (low <= hi) {
+ mid = (low + hi) >> 1;
+ final long d = a[mid];
+ if (d == key) {
+ return mid;
+ } else if (d > key) {
+ hi = mid - 1;
+ } else {
+ low = ++mid; // This gets the insertion point right on the last loop
+ }
+ }
+ return -mid - 1;
+ }
+
+ /**
+ * Perform a binary search of a short array for a key. The array must be
+ * sorted (as by the sort() method) - if it is not, the behaviour of this
+ * method is undefined, and may be an infinite loop. If the array contains
+ * the key more than once, any one of them may be found. Note: although the
+ * specification allows for an infinite loop if the array is unsorted, it
+ * will not happen in this implementation.
+ *
+ * @param a the array to search (must be sorted)
+ * @param key the value to search for
+ * @returns the index at which the key was found, or -n-1 if it was not
+ * found, where n is the index of the first value higher than key or
+ * a.length if there is no such value.
+ */
+ public static int binarySearch(short[] a, short key) {
+ int low = 0;
+ int hi = a.length - 1;
+ int mid = 0;
+ while (low <= hi) {
+ mid = (low + hi) >> 1;
+ final short d = a[mid];
+ if (d == key) {
+ return mid;
+ } else if (d > key) {
+ hi = mid - 1;
+ } else {
+ low = ++mid; // This gets the insertion point right on the last loop
+ }
+ }
+ return -mid - 1;
+ }
+
+ /**
+ * This method does the work for the Object binary search methods.
+ * @exception NullPointerException if the specified comparator is null.
+ * @exception ClassCastException if the objects are not comparable by c.
+ */
+ private static int objectSearch(Object[] a, Object key, final Comparator c) {
+ int low = 0;
+ int hi = a.length - 1;
+ int mid = 0;
+ while (low <= hi) {
+ mid = (low + hi) >> 1;
+ final int d = c.compare(key, a[mid]);
+ if (d == 0) {
+ return mid;
+ } else if (d < 0) {
+ hi = mid - 1;
+ } else {
+ low = ++mid; // This gets the insertion point right on the last loop
+ }
+ }
+ return -mid - 1;
+ }
+
+ /**
+ * Perform a binary search of an Object array for a key, using the natural
+ * ordering of the elements. The array must be sorted (as by the sort()
+ * method) - if it is not, the behaviour of this method is undefined, and may
+ * be an infinite loop. Further, the key must be comparable with every item
+ * in the array. If the array contains the key more than once, any one of
+ * them may be found. Note: although the specification allows for an infinite
+ * loop if the array is unsorted, it will not happen in this (JCL)
+ * implementation.
+ *
+ * @param a the array to search (must be sorted)
+ * @param key the value to search for
+ * @returns the index at which the key was found, or -n-1 if it was not
+ * found, where n is the index of the first value higher than key or
+ * a.length if there is no such value.
+ * @exception ClassCastException if key could not be compared with one of the
+ * elements of a
+ * @exception NullPointerException if a null element has compareTo called
+ */
+ public static int binarySearch(Object[] a, Object key) {
+ return objectSearch(a, key, defaultComparator);
+ }
+
+ /**
+ * Perform a binary search of an Object array for a key, using a supplied
+ * Comparator. The array must be sorted (as by the sort() method with the
+ * same Comparator) - if it is not, the behaviour of this method is
+ * undefined, and may be an infinite loop. Further, the key must be
+ * comparable with every item in the array. If the array contains the key
+ * more than once, any one of them may be found. Note: although the
+ * specification allows for an infinite loop if the array is unsorted, it
+ * will not happen in this (JCL) implementation.
+ *
+ * @param a the array to search (must be sorted)
+ * @param key the value to search for
+ * @param c the comparator by which the array is sorted
+ * @returns the index at which the key was found, or -n-1 if it was not
+ * found, where n is the index of the first value higher than key or
+ * a.length if there is no such value.
+ * @exception ClassCastException if key could not be compared with one of the
+ * elements of a
+ */
+ public static int binarySearch(Object[] a, Object key, Comparator c) {
+ return objectSearch(a, key, c);
+ }
+
+ /**
+ * Compare two byte arrays for equality.
+ *
+ * @param a1 the first array to compare
+ * @param a2 the second array to compare
+ * @returns true if a1 and a2 are both null, or if a2 is of the same length
+ * as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
+ */
+ public static boolean equals(byte[] a1, byte[] a2) {
+
+ // Quick test which saves comparing elements of the same array, and also
+ // catches the case that both are null.
+ if (a1 == a2) {
+ return true;
+ }
+ try {
+
+ // If they're the same length, test each element
+ if (a1.length == a2.length) {
+ for (int i = 0; i < a1.length; i++) {
+ if (a1[i] != a2[i]) {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ // If a1 == null or a2 == null but not both then we will get a NullPointer
+ } catch (NullPointerException e) {
+ }
+
+ return false;
+ }
+
+ /**
+ * Compare two char arrays for equality.
+ *
+ * @param a1 the first array to compare
+ * @param a2 the second array to compare
+ * @returns true if a1 and a2 are both null, or if a2 is of the same length
+ * as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
+ */
+ public static boolean equals(char[] a1, char[] a2) {
+
+ // Quick test which saves comparing elements of the same array, and also
+ // catches the case that both are null.
+ if (a1 == a2) {
+ return true;
+ }
+ try {
+
+ // If they're the same length, test each element
+ if (a1.length == a2.length) {
+ for (int i = 0; i < a1.length; i++) {
+ if (a1[i] != a2[i]) {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ // If a1 == null or a2 == null but not both then we will get a NullPointer
+ } catch (NullPointerException e) {
+ }
+
+ return false;
+ }
+
+ /**
+ * Compare two double arrays for equality.
+ *
+ * @param a1 the first array to compare
+ * @param a2 the second array to compare
+ * @returns true if a1 and a2 are both null, or if a2 is of the same length
+ * as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
+ */
+ public static boolean equals(double[] a1, double[] a2) {
+
+ // Quick test which saves comparing elements of the same array, and also
+ // catches the case that both are null.
+ if (a1 == a2) {
+ return true;
+ }
+ try {
+
+ // If they're the same length, test each element
+ if (a1.length == a2.length) {
+ for (int i = 0; i < a1.length; i++) {
+ if (a1[i] != a2[i]) {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ // If a1 == null or a2 == null but not both then we will get a NullPointer
+ } catch (NullPointerException e) {
+ }
+
+ return false;
+ }
+
+ /**
+ * Compare two float arrays for equality.
+ *
+ * @param a1 the first array to compare
+ * @param a2 the second array to compare
+ * @returns true if a1 and a2 are both null, or if a2 is of the same length
+ * as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
+ */
+ public static boolean equals(float[] a1, float[] a2) {
+
+ // Quick test which saves comparing elements of the same array, and also
+ // catches the case that both are null.
+ if (a1 == a2) {
+ return true;
+ }
+ try {
+
+ // If they're the same length, test each element
+ if (a1.length == a2.length) {
+ for (int i = 0; i < a1.length; i++) {
+ if (a1[i] != a2[i]) {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ // If a1 == null or a2 == null but not both then we will get a NullPointer
+ } catch (NullPointerException e) {
+ }
+
+ return false;
+ }
+
+ /**
+ * Compare two long arrays for equality.
+ *
+ * @param a1 the first array to compare
+ * @param a2 the second array to compare
+ * @returns true if a1 and a2 are both null, or if a2 is of the same length
+ * as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
+ */
+ public static boolean equals(long[] a1, long[] a2) {
+
+ // Quick test which saves comparing elements of the same array, and also
+ // catches the case that both are null.
+ if (a1 == a2) {
+ return true;
+ }
+ try {
+
+ // If they're the same length, test each element
+ if (a1.length == a2.length) {
+ for (int i = 0; i < a1.length; i++) {
+ if (a1[i] != a2[i]) {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ // If a1 == null or a2 == null but not both then we will get a NullPointer
+ } catch (NullPointerException e) {
+ }
+
+ return false;
+ }
+
+ /**
+ * Compare two short arrays for equality.
+ *
+ * @param a1 the first array to compare
+ * @param a2 the second array to compare
+ * @returns true if a1 and a2 are both null, or if a2 is of the same length
+ * as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
+ */
+ public static boolean equals(short[] a1, short[] a2) {
+
+ // Quick test which saves comparing elements of the same array, and also
+ // catches the case that both are null.
+ if (a1 == a2) {
+ return true;
+ }
+ try {
+
+ // If they're the same length, test each element
+ if (a1.length == a2.length) {
+ for (int i = 0; i < a1.length; i++) {
+ if (a1[i] != a2[i]) {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ // If a1 == null or a2 == null but not both then we will get a NullPointer
+ } catch (NullPointerException e) {
+ }
+
+ return false;
+ }
+
+ /**
+ * Compare two boolean arrays for equality.
+ *
+ * @param a1 the first array to compare
+ * @param a2 the second array to compare
+ * @returns true if a1 and a2 are both null, or if a2 is of the same length
+ * as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
+ */
+ public static boolean equals(boolean[] a1, boolean[] a2) {
+
+ // Quick test which saves comparing elements of the same array, and also
+ // catches the case that both are null.
+ if (a1 == a2) {
+ return true;
+ }
+ try {
+
+ // If they're the same length, test each element
+ if (a1.length == a2.length) {
+ for (int i = 0; i < a1.length; i++) {
+ if (a1[i] != a2[i]) {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ // If a1 == null or a2 == null but not both then we will get a NullPointer
+ } catch (NullPointerException e) {
+ }
+
+ return false;
+ }
+
+ /**
+ * Compare two int arrays for equality.
+ *
+ * @param a1 the first array to compare
+ * @param a2 the second array to compare
+ * @returns true if a1 and a2 are both null, or if a2 is of the same length
+ * as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
+ */
+ public static boolean equals(int[] a1, int[] a2) {
+
+ // Quick test which saves comparing elements of the same array, and also
+ // catches the case that both are null.
+ if (a1 == a2) {
+ return true;
+ }
+ try {
+
+ // If they're the same length, test each element
+ if (a1.length == a2.length) {
+ for (int i = 0; i < a1.length; i++) {
+ if (a1[i] != a2[i]) {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ // If a1 == null or a2 == null but not both then we will get a NullPointer
+ } catch (NullPointerException e) {
+ }
+
+ return false;
+ }
+
+ /**
+ * Compare two Object arrays for equality.
+ *
+ * @param a1 the first array to compare
+ * @param a2 the second array to compare
+ * @returns true if a1 and a2 are both null, or if a1 is of the same length
+ * as a2, and for each 0 <= i < a.length, a1[i] == null ? a2[i] == null :
+ * a1[i].equals(a2[i]).
+ */
+ public static boolean equals(Object[] a1, Object[] a2) {
+
+ // Quick test which saves comparing elements of the same array, and also
+ // catches the case that both are null.
+ if (a1 == a2) {
+ return true;
+ }
+ try {
+
+ // If they're the same length, test each element
+ if (a1.length == a2.length) {
+ for (int i = 0; i < a1.length; i++) {
+ if (!(a1[i] == null ? a2[i] == null : a1[i].equals(a2[i]))) {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ // If a1 == null or a2 == null but not both then we will get a NullPointer
+ } catch (NullPointerException e) {
+ }
+
+ return false;
+ }
+
+ /**
+ * Fill an array with a boolean value.
+ *
+ * @param a the array to fill
+ * @param val the value to fill it with
+ */
+ public static void fill(boolean[] a, boolean val) {
+ // This implementation is slightly inefficient timewise, but the extra
+ // effort over inlining it is O(1) and small, and I refuse to repeat code
+ // if it can be helped.
+ fill(a, 0, a.length, val);
+ }
+
+ /**
+ * Fill a range of an array with a boolean value.
+ *
+ * @param a the array to fill
+ * @param fromIndex the index to fill from, inclusive
+ * @param toIndex the index to fill to, exclusive
+ * @param val the value to fill with
+ */
+ public static void fill(boolean[] a, int fromIndex, int toIndex,
+ boolean val) {
+ for (int i = fromIndex; i < toIndex; i++) {
+ a[i] = val;
+ }
+ }
+
+ /**
+ * Fill an array with a byte value.
+ *
+ * @param a the array to fill
+ * @param val the value to fill it with
+ */
+ public static void fill(byte[] a, byte val) {
+ // This implementation is slightly inefficient timewise, but the extra
+ // effort over inlining it is O(1) and small, and I refuse to repeat code
+ // if it can be helped.
+ fill(a, 0, a.length, val);
+ }
+
+ /**
+ * Fill a range of an array with a byte value.
+ *
+ * @param a the array to fill
+ * @param fromIndex the index to fill from, inclusive
+ * @param toIndex the index to fill to, exclusive
+ * @param val the value to fill with
+ */
+ public static void fill(byte[] a, int fromIndex, int toIndex, byte val) {
+ for (int i = fromIndex; i < toIndex; i++) {
+ a[i] = val;
+ }
+ }
+
+ /**
+ * Fill an array with a char value.
+ *
+ * @param a the array to fill
+ * @param val the value to fill it with
+ */
+ public static void fill(char[] a, char val) {
+ // This implementation is slightly inefficient timewise, but the extra
+ // effort over inlining it is O(1) and small, and I refuse to repeat code
+ // if it can be helped.
+ fill(a, 0, a.length, val);
+ }
+
+ /**
+ * Fill a range of an array with a char value.
+ *
+ * @param a the array to fill
+ * @param fromIndex the index to fill from, inclusive
+ * @param toIndex the index to fill to, exclusive
+ * @param val the value to fill with
+ */
+ public static void fill(char[] a, int fromIndex, int toIndex, char val) {
+ for (int i = fromIndex; i < toIndex; i++) {
+ a[i] = val;
+ }
+ }
+
+ /**
+ * Fill an array with a double value.
+ *
+ * @param a the array to fill
+ * @param val the value to fill it with
+ */
+ public static void fill(double[] a, double val) {
+ // This implementation is slightly inefficient timewise, but the extra
+ // effort over inlining it is O(1) and small, and I refuse to repeat code
+ // if it can be helped.
+ fill(a, 0, a.length, val);
+ }
+
+ /**
+ * Fill a range of an array with a double value.
+ *
+ * @param a the array to fill
+ * @param fromIndex the index to fill from, inclusive
+ * @param toIndex the index to fill to, exclusive
+ * @param val the value to fill with
+ */
+ public static void fill(double[] a, int fromIndex, int toIndex, double val) {
+ for (int i = fromIndex; i < toIndex; i++) {
+ a[i] = val;
+ }
+ }
+
+ /**
+ * Fill an array with a float value.
+ *
+ * @param a the array to fill
+ * @param val the value to fill it with
+ */
+ public static void fill(float[] a, float val) {
+ // This implementation is slightly inefficient timewise, but the extra
+ // effort over inlining it is O(1) and small, and I refuse to repeat code
+ // if it can be helped.
+ fill(a, 0, a.length, val);
+ }
+
+ /**
+ * Fill a range of an array with a float value.
+ *
+ * @param a the array to fill
+ * @param fromIndex the index to fill from, inclusive
+ * @param toIndex the index to fill to, exclusive
+ * @param val the value to fill with
+ */
+ public static void fill(float[] a, int fromIndex, int toIndex, float val) {
+ for (int i = fromIndex; i < toIndex; i++) {
+ a[i] = val;
+ }
+ }
+
+ /**
+ * Fill an array with an int value.
+ *
+ * @param a the array to fill
+ * @param val the value to fill it with
+ */
+ public static void fill(int[] a, int val) {
+ // This implementation is slightly inefficient timewise, but the extra
+ // effort over inlining it is O(1) and small, and I refuse to repeat code
+ // if it can be helped.
+ fill(a, 0, a.length, val);
+ }
+
+ /**
+ * Fill a range of an array with an int value.
+ *
+ * @param a the array to fill
+ * @param fromIndex the index to fill from, inclusive
+ * @param toIndex the index to fill to, exclusive
+ * @param val the value to fill with
+ */
+ public static void fill(int[] a, int fromIndex, int toIndex, int val) {
+ for (int i = fromIndex; i < toIndex; i++) {
+ a[i] = val;
+ }
+ }
+
+ /**
+ * Fill an array with a long value.
+ *
+ * @param a the array to fill
+ * @param val the value to fill it with
+ */
+ public static void fill(long[] a, long val) {
+ // This implementation is slightly inefficient timewise, but the extra
+ // effort over inlining it is O(1) and small, and I refuse to repeat code
+ // if it can be helped.
+ fill(a, 0, a.length, val);
+ }
+
+ /**
+ * Fill a range of an array with a long value.
+ *
+ * @param a the array to fill
+ * @param fromIndex the index to fill from, inclusive
+ * @param toIndex the index to fill to, exclusive
+ * @param val the value to fill with
+ */
+ public static void fill(long[] a, int fromIndex, int toIndex, long val) {
+ for (int i = fromIndex; i < toIndex; i++) {
+ a[i] = val;
+ }
+ }
+
+ /**
+ * Fill an array with a short value.
+ *
+ * @param a the array to fill
+ * @param val the value to fill it with
+ */
+ public static void fill(short[] a, short val) {
+ // This implementation is slightly inefficient timewise, but the extra
+ // effort over inlining it is O(1) and small, and I refuse to repeat code
+ // if it can be helped.
+ fill(a, 0, a.length, val);
+ }
+
+ /**
+ * Fill a range of an array with a short value.
+ *
+ * @param a the array to fill
+ * @param fromIndex the index to fill from, inclusive
+ * @param toIndex the index to fill to, exclusive
+ * @param val the value to fill with
+ */
+ public static void fill(short[] a, int fromIndex, int toIndex, short val) {
+ for (int i = fromIndex; i < toIndex; i++) {
+ a[i] = val;
+ }
+ }
+
+ /**
+ * Fill an array with an Object value.
+ *
+ * @param a the array to fill
+ * @param val the value to fill it with
+ * @exception ClassCastException if val is not an instance of the element
+ * type of a.
+ */
+ public static void fill(Object[] a, Object val) {
+ // This implementation is slightly inefficient timewise, but the extra
+ // effort over inlining it is O(1) and small, and I refuse to repeat code
+ // if it can be helped.
+ fill(a, 0, a.length, val);
+ }
+
+ /**
+ * Fill a range of an array with an Object value.
+ *
+ * @param a the array to fill
+ * @param fromIndex the index to fill from, inclusive
+ * @param toIndex the index to fill to, exclusive
+ * @param val the value to fill with
+ * @exception ClassCastException if val is not an instance of the element
+ * type of a.
+ */
+ public static void fill(Object[] a, int fromIndex, int toIndex, Object val) {
+ for (int i = fromIndex; i < toIndex; i++) {
+ a[i] = val;
+ }
+ }
+
+ // Thanks to Paul Fisher <rao@gnu.org> for finding this quicksort algorithm
+ // as specified by Sun and porting it to Java.
+
+ /**
+ * Sort a byte array into ascending order. The sort algorithm is an optimised
+ * quicksort, as described in Jon L. Bentley and M. Douglas McIlroy's
+ * "Engineering a Sort Function", Software-Practice and Experience, Vol.
+ * 23(11) P. 1249-1265 (November 1993). This algorithm gives nlog(n)
+ * performance on many arrays that would take quadratic time with a standard
+ * quicksort.
+ *
+ * @param a the array to sort
+ */
+ public static void sort(byte[] a) {
+ qsort(a, 0, a.length);
+ }
+
+ private static short cmp(byte i, byte j) {
+ return (short)(i-j);
+ }
+
+ private static int med3(int a, int b, int c, byte[] d) {
+ return cmp(d[a], d[b]) < 0 ?
+ (cmp(d[b], d[c]) < 0 ? b : cmp(d[a], d[c]) < 0 ? c : a)
+ : (cmp(d[b], d[c]) > 0 ? b : cmp(d[a], d[c]) > 0 ? c : a);
+ }
+
+ private static void swap(int i, int j, byte[] a) {
+ byte c = a[i];
+ a[i] = a[j];
+ a[j] = c;
+ }
+
+ private static void qsort(byte[] a, int start, int n) {
+ // use an insertion sort on small arrays
+ if (n < 7) {
+ for (int i = start + 1; i < start + n; i++)
+ for (int j = i; j > 0 && cmp(a[j-1], a[j]) > 0; j--)
+ swap(j, j-1, a);
+ return;
+ }
+
+ int pm = n/2; // small arrays, middle element
+ if (n > 7) {
+ int pl = start;
+ int pn = start + n-1;
+
+ if (n > 40) { // big arrays, pseudomedian of 9
+ int s = n/8;
+ pl = med3(pl, pl+s, pl+2*s, a);
+ pm = med3(pm-s, pm, pm+s, a);
+ pn = med3(pn-2*s, pn-s, pn, a);
+ }
+ pm = med3(pl, pm, pn, a); // mid-size, med of 3
+ }
+
+ int pa, pb, pc, pd, pv;
+ short r;
+
+ pv = start; swap(pv, pm, a);
+ pa = pb = start;
+ pc = pd = start + n-1;
+
+ for (;;) {
+ while (pb <= pc && (r = cmp(a[pb], a[pv])) <= 0) {
+ if (r == 0) { swap(pa, pb, a); pa++; }
+ pb++;
+ }
+ while (pc >= pb && (r = cmp(a[pc], a[pv])) >= 0) {
+ if (r == 0) { swap(pc, pd, a); pd--; }
+ pc--;
+ }
+ if (pb > pc) break;
+ swap(pb, pc, a);
+ pb++;
+ pc--;
+ }
+ int pn = start + n;
+ int s;
+ s = Math.min(pa-start, pb-pa); vecswap(start, pb-s, s, a);
+ s = Math.min(pd-pc, pn-pd-1); vecswap(pb, pn-s, s, a);
+ if ((s = pb-pa) > 1) qsort(a, start, s);
+ if ((s = pd-pc) > 1) qsort(a, pn-s, s);
+ }
+
+ private static void vecswap(int i, int j, int n, byte[] a) {
+ for (; n > 0; i++, j++, n--)
+ swap(i, j, a);
+ }
+
+ /**
+ * Sort a char array into ascending order. The sort algorithm is an optimised
+ * quicksort, as described in Jon L. Bentley and M. Douglas McIlroy's
+ * "Engineering a Sort Function", Software-Practice and Experience, Vol.
+ * 23(11) P. 1249-1265 (November 1993). This algorithm gives nlog(n)
+ * performance on many arrays that would take quadratic time with a standard
+ * quicksort.
+ *
+ * @param a the array to sort
+ */
+ public static void sort(char[] a) {
+ qsort(a, 0, a.length);
+ }
+
+ private static int cmp(char i, char j) {
+ return i-j;
+ }
+
+ private static int med3(int a, int b, int c, char[] d) {
+ return cmp(d[a], d[b]) < 0 ?
+ (cmp(d[b], d[c]) < 0 ? b : cmp(d[a], d[c]) < 0 ? c : a)
+ : (cmp(d[b], d[c]) > 0 ? b : cmp(d[a], d[c]) > 0 ? c : a);
+ }
+
+ private static void swap(int i, int j, char[] a) {
+ char c = a[i];
+ a[i] = a[j];
+ a[j] = c;
+ }
+
+ private static void qsort(char[] a, int start, int n) {
+ // use an insertion sort on small arrays
+ if (n < 7) {
+ for (int i = start + 1; i < start + n; i++)
+ for (int j = i; j > 0 && cmp(a[j-1], a[j]) > 0; j--)
+ swap(j, j-1, a);
+ return;
+ }
+
+ int pm = n/2; // small arrays, middle element
+ if (n > 7) {
+ int pl = start;
+ int pn = start + n-1;
+
+ if (n > 40) { // big arrays, pseudomedian of 9
+ int s = n/8;
+ pl = med3(pl, pl+s, pl+2*s, a);
+ pm = med3(pm-s, pm, pm+s, a);
+ pn = med3(pn-2*s, pn-s, pn, a);
+ }
+ pm = med3(pl, pm, pn, a); // mid-size, med of 3
+ }
+
+ int pa, pb, pc, pd, pv;
+ int r;
+
+ pv = start; swap(pv, pm, a);
+ pa = pb = start;
+ pc = pd = start + n-1;
+
+ for (;;) {
+ while (pb <= pc && (r = cmp(a[pb], a[pv])) <= 0) {
+ if (r == 0) { swap(pa, pb, a); pa++; }
+ pb++;
+ }
+ while (pc >= pb && (r = cmp(a[pc], a[pv])) >= 0) {
+ if (r == 0) { swap(pc, pd, a); pd--; }
+ pc--;
+ }
+ if (pb > pc) break;
+ swap(pb, pc, a);
+ pb++;
+ pc--;
+ }
+ int pn = start + n;
+ int s;
+ s = Math.min(pa-start, pb-pa); vecswap(start, pb-s, s, a);
+ s = Math.min(pd-pc, pn-pd-1); vecswap(pb, pn-s, s, a);
+ if ((s = pb-pa) > 1) qsort(a, start, s);
+ if ((s = pd-pc) > 1) qsort(a, pn-s, s);
+ }
+
+ private static void vecswap(int i, int j, int n, char[] a) {
+ for (; n > 0; i++, j++, n--)
+ swap(i, j, a);
+ }
+
+ /**
+ * Sort a double array into ascending order. The sort algorithm is an
+ * optimised quicksort, as described in Jon L. Bentley and M. Douglas
+ * McIlroy's "Engineering a Sort Function", Software-Practice and Experience,
+ * Vol. 23(11) P. 1249-1265 (November 1993). This algorithm gives nlog(n)
+ * performance on many arrays that would take quadratic time with a standard
+ * quicksort. Note that this implementation, like Sun's, has undefined
+ * behaviour if the array contains any NaN values.
+ *
+ * @param a the array to sort
+ */
+ public static void sort(double[] a) {
+ qsort(a, 0, a.length);
+ }
+
+ private static double cmp(double i, double j) {
+ return i-j;
+ }
+
+ private static int med3(int a, int b, int c, double[] d) {
+ return cmp(d[a], d[b]) < 0 ?
+ (cmp(d[b], d[c]) < 0 ? b : cmp(d[a], d[c]) < 0 ? c : a)
+ : (cmp(d[b], d[c]) > 0 ? b : cmp(d[a], d[c]) > 0 ? c : a);
+ }
+
+ private static void swap(int i, int j, double[] a) {
+ double c = a[i];
+ a[i] = a[j];
+ a[j] = c;
+ }
+
+ private static void qsort(double[] a, int start, int n) {
+ // use an insertion sort on small arrays
+ if (n < 7) {
+ for (int i = start + 1; i < start + n; i++)
+ for (int j = i; j > 0 && cmp(a[j-1], a[j]) > 0; j--)
+ swap(j, j-1, a);
+ return;
+ }
+
+ int pm = n/2; // small arrays, middle element
+ if (n > 7) {
+ int pl = start;
+ int pn = start + n-1;
+
+ if (n > 40) { // big arrays, pseudomedian of 9
+ int s = n/8;
+ pl = med3(pl, pl+s, pl+2*s, a);
+ pm = med3(pm-s, pm, pm+s, a);
+ pn = med3(pn-2*s, pn-s, pn, a);
+ }
+ pm = med3(pl, pm, pn, a); // mid-size, med of 3
+ }
+
+ int pa, pb, pc, pd, pv;
+ double r;
+
+ pv = start; swap(pv, pm, a);
+ pa = pb = start;
+ pc = pd = start + n-1;
+
+ for (;;) {
+ while (pb <= pc && (r = cmp(a[pb], a[pv])) <= 0) {
+ if (r == 0) { swap(pa, pb, a); pa++; }
+ pb++;
+ }
+ while (pc >= pb && (r = cmp(a[pc], a[pv])) >= 0) {
+ if (r == 0) { swap(pc, pd, a); pd--; }
+ pc--;
+ }
+ if (pb > pc) break;
+ swap(pb, pc, a);
+ pb++;
+ pc--;
+ }
+ int pn = start + n;
+ int s;
+ s = Math.min(pa-start, pb-pa); vecswap(start, pb-s, s, a);
+ s = Math.min(pd-pc, pn-pd-1); vecswap(pb, pn-s, s, a);
+ if ((s = pb-pa) > 1) qsort(a, start, s);
+ if ((s = pd-pc) > 1) qsort(a, pn-s, s);
+ }
+
+ private static void vecswap(int i, int j, int n, double[] a) {
+ for (; n > 0; i++, j++, n--)
+ swap(i, j, a);
+ }
+
+ /**
+ * Sort a float array into ascending order. The sort algorithm is an
+ * optimised quicksort, as described in Jon L. Bentley and M. Douglas
+ * McIlroy's "Engineering a Sort Function", Software-Practice and Experience,
+ * Vol. 23(11) P. 1249-1265 (November 1993). This algorithm gives nlog(n)
+ * performance on many arrays that would take quadratic time with a standard
+ * quicksort. Note that this implementation, like Sun's, has undefined
+ * behaviour if the array contains any NaN values.
+ *
+ * @param a the array to sort
+ */
+ public static void sort(float[] a) {
+ qsort(a, 0, a.length);
+ }
+
+ private static float cmp(float i, float j) {
+ return i-j;
+ }
+
+ private static int med3(int a, int b, int c, float[] d) {
+ return cmp(d[a], d[b]) < 0 ?
+ (cmp(d[b], d[c]) < 0 ? b : cmp(d[a], d[c]) < 0 ? c : a)
+ : (cmp(d[b], d[c]) > 0 ? b : cmp(d[a], d[c]) > 0 ? c : a);
+ }
+
+ private static void swap(int i, int j, float[] a) {
+ float c = a[i];
+ a[i] = a[j];
+ a[j] = c;
+ }
+
+ private static void qsort(float[] a, int start, int n) {
+ // use an insertion sort on small arrays
+ if (n < 7) {
+ for (int i = start + 1; i < start + n; i++)
+ for (int j = i; j > 0 && cmp(a[j-1], a[j]) > 0; j--)
+ swap(j, j-1, a);
+ return;
+ }
+
+ int pm = n/2; // small arrays, middle element
+ if (n > 7) {
+ int pl = start;
+ int pn = start + n-1;
+
+ if (n > 40) { // big arrays, pseudomedian of 9
+ int s = n/8;
+ pl = med3(pl, pl+s, pl+2*s, a);
+ pm = med3(pm-s, pm, pm+s, a);
+ pn = med3(pn-2*s, pn-s, pn, a);
+ }
+ pm = med3(pl, pm, pn, a); // mid-size, med of 3
+ }
+
+ int pa, pb, pc, pd, pv;
+ float r;
+
+ pv = start; swap(pv, pm, a);
+ pa = pb = start;
+ pc = pd = start + n-1;
+
+ for (;;) {
+ while (pb <= pc && (r = cmp(a[pb], a[pv])) <= 0) {
+ if (r == 0) { swap(pa, pb, a); pa++; }
+ pb++;
+ }
+ while (pc >= pb && (r = cmp(a[pc], a[pv])) >= 0) {
+ if (r == 0) { swap(pc, pd, a); pd--; }
+ pc--;
+ }
+ if (pb > pc) break;
+ swap(pb, pc, a);
+ pb++;
+ pc--;
+ }
+ int pn = start + n;
+ int s;
+ s = Math.min(pa-start, pb-pa); vecswap(start, pb-s, s, a);
+ s = Math.min(pd-pc, pn-pd-1); vecswap(pb, pn-s, s, a);
+ if ((s = pb-pa) > 1) qsort(a, start, s);
+ if ((s = pd-pc) > 1) qsort(a, pn-s, s);
+ }
+
+ private static void vecswap(int i, int j, int n, float[] a) {
+ for (; n > 0; i++, j++, n--)
+ swap(i, j, a);
+ }
+
+ /**
+ * Sort an int array into ascending order. The sort algorithm is an optimised
+ * quicksort, as described in Jon L. Bentley and M. Douglas McIlroy's
+ * "Engineering a Sort Function", Software-Practice and Experience, Vol.
+ * 23(11) P. 1249-1265 (November 1993). This algorithm gives nlog(n)
+ * performance on many arrays that would take quadratic time with a standard
+ * quicksort.
+ *
+ * @param a the array to sort
+ */
+ public static void sort(int[] a) {
+ qsort(a, 0, a.length);
+ }
+
+ private static long cmp(int i, int j) {
+ return (long)i-(long)j;
+ }
+
+ private static int med3(int a, int b, int c, int[] d) {
+ return cmp(d[a], d[b]) < 0 ?
+ (cmp(d[b], d[c]) < 0 ? b : cmp(d[a], d[c]) < 0 ? c : a)
+ : (cmp(d[b], d[c]) > 0 ? b : cmp(d[a], d[c]) > 0 ? c : a);
+ }
+
+ private static void swap(int i, int j, int[] a) {
+ int c = a[i];
+ a[i] = a[j];
+ a[j] = c;
+ }
+
+ private static void qsort(int[] a, int start, int n) {
+ // use an insertion sort on small arrays
+ if (n < 7) {
+ for (int i = start + 1; i < start + n; i++)
+ for (int j = i; j > 0 && cmp(a[j-1], a[j]) > 0; j--)
+ swap(j, j-1, a);
+ return;
+ }
+
+ int pm = n/2; // small arrays, middle element
+ if (n > 7) {
+ int pl = start;
+ int pn = start + n-1;
+
+ if (n > 40) { // big arrays, pseudomedian of 9
+ int s = n/8;
+ pl = med3(pl, pl+s, pl+2*s, a);
+ pm = med3(pm-s, pm, pm+s, a);
+ pn = med3(pn-2*s, pn-s, pn, a);
+ }
+ pm = med3(pl, pm, pn, a); // mid-size, med of 3
+ }
+
+ int pa, pb, pc, pd, pv;
+ long r;
+
+ pv = start; swap(pv, pm, a);
+ pa = pb = start;
+ pc = pd = start + n-1;
+
+ for (;;) {
+ while (pb <= pc && (r = cmp(a[pb], a[pv])) <= 0) {
+ if (r == 0) { swap(pa, pb, a); pa++; }
+ pb++;
+ }
+ while (pc >= pb && (r = cmp(a[pc], a[pv])) >= 0) {
+ if (r == 0) { swap(pc, pd, a); pd--; }
+ pc--;
+ }
+ if (pb > pc) break;
+ swap(pb, pc, a);
+ pb++;
+ pc--;
+ }
+ int pn = start + n;
+ int s;
+ s = Math.min(pa-start, pb-pa); vecswap(start, pb-s, s, a);
+ s = Math.min(pd-pc, pn-pd-1); vecswap(pb, pn-s, s, a);
+ if ((s = pb-pa) > 1) qsort(a, start, s);
+ if ((s = pd-pc) > 1) qsort(a, pn-s, s);
+ }
+
+ private static void vecswap(int i, int j, int n, int[] a) {
+ for (; n > 0; i++, j++, n--)
+ swap(i, j, a);
+ }
+
+ /**
+ * Sort a long array into ascending order. The sort algorithm is an optimised
+ * quicksort, as described in Jon L. Bentley and M. Douglas McIlroy's
+ * "Engineering a Sort Function", Software-Practice and Experience, Vol.
+ * 23(11) P. 1249-1265 (November 1993). This algorithm gives nlog(n)
+ * performance on many arrays that would take quadratic time with a standard
+ * quicksort.
+ *
+ * @param a the array to sort
+ */
+ public static void sort(long[] a) {
+ qsort(a, 0, a.length);
+ }
+
+ // The "cmp" method has been removed from here and replaced with direct
+ // compares in situ, to avoid problems with overflow if the difference
+ // between two numbers is bigger than a long will hold.
+ // One particular change as a result is the use of r1 and r2 in qsort
+
+ private static int med3(int a, int b, int c, long[] d) {
+ return d[a] < d[b] ?
+ (d[b] < d[c] ? b : d[a] < d[c] ? c : a)
+ : (d[b] > d[c] ? b : d[a] > d[c] ? c : a);
+ }
+
+ private static void swap(int i, int j, long[] a) {
+ long c = a[i];
+ a[i] = a[j];
+ a[j] = c;
+ }
+
+ private static void qsort(long[] a, int start, int n) {
+ // use an insertion sort on small arrays
+ if (n < 7) {
+ for (int i = start + 1; i < start + n; i++)
+ for (int j = i; j > 0 && a[j-1] > a[j]; j--)
+ swap(j, j-1, a);
+ return;
+ }
+
+ int pm = n/2; // small arrays, middle element
+ if (n > 7) {
+ int pl = start;
+ int pn = start + n-1;
+
+ if (n > 40) { // big arrays, pseudomedian of 9
+ int s = n/8;
+ pl = med3(pl, pl+s, pl+2*s, a);
+ pm = med3(pm-s, pm, pm+s, a);
+ pn = med3(pn-2*s, pn-s, pn, a);
+ }
+ pm = med3(pl, pm, pn, a); // mid-size, med of 3
+ }
+
+ int pa, pb, pc, pd, pv;
+ long r1, r2;
+
+ pv = start; swap(pv, pm, a);
+ pa = pb = start;
+ pc = pd = start + n-1;
+
+ for (;;) {
+ while (pb <= pc && (r1 = a[pb]) <= (r2 = a[pv])) {
+ if (r1 == r2) { swap(pa, pb, a); pa++; }
+ pb++;
+ }
+ while (pc >= pb && (r1 = a[pc]) >= (r2 = a[pv])) {
+ if (r1 == r2) { swap(pc, pd, a); pd--; }
+ pc--;
+ }
+ if (pb > pc) break;
+ swap(pb, pc, a);
+ pb++;
+ pc--;
+ }
+ int pn = start + n;
+ int s;
+ s = Math.min(pa-start, pb-pa); vecswap(start, pb-s, s, a);
+ s = Math.min(pd-pc, pn-pd-1); vecswap(pb, pn-s, s, a);
+ if ((s = pb-pa) > 1) qsort(a, start, s);
+ if ((s = pd-pc) > 1) qsort(a, pn-s, s);
+ }
+
+ private static void vecswap(int i, int j, int n, long[] a) {
+ for (; n > 0; i++, j++, n--)
+ swap(i, j, a);
+ }
+
+ /**
+ * Sort a short array into ascending order. The sort algorithm is an
+ * optimised quicksort, as described in Jon L. Bentley and M. Douglas
+ * McIlroy's "Engineering a Sort Function", Software-Practice and Experience,
+ * Vol. 23(11) P. 1249-1265 (November 1993). This algorithm gives nlog(n)
+ * performance on many arrays that would take quadratic time with a standard
+ * quicksort.
+ *
+ * @param a the array to sort
+ */
+ public static void sort(short[] a) {
+ qsort(a, 0, a.length);
+ }
+
+ private static int cmp(short i, short j) {
+ return i-j;
+ }
+
+ private static int med3(int a, int b, int c, short[] d) {
+ return cmp(d[a], d[b]) < 0 ?
+ (cmp(d[b], d[c]) < 0 ? b : cmp(d[a], d[c]) < 0 ? c : a)
+ : (cmp(d[b], d[c]) > 0 ? b : cmp(d[a], d[c]) > 0 ? c : a);
+ }
+
+ private static void swap(int i, int j, short[] a) {
+ short c = a[i];
+ a[i] = a[j];
+ a[j] = c;
+ }
+
+ private static void qsort(short[] a, int start, int n) {
+ // use an insertion sort on small arrays
+ if (n < 7) {
+ for (int i = start + 1; i < start + n; i++)
+ for (int j = i; j > 0 && cmp(a[j-1], a[j]) > 0; j--)
+ swap(j, j-1, a);
+ return;
+ }
+
+ int pm = n/2; // small arrays, middle element
+ if (n > 7) {
+ int pl = start;
+ int pn = start + n-1;
+
+ if (n > 40) { // big arrays, pseudomedian of 9
+ int s = n/8;
+ pl = med3(pl, pl+s, pl+2*s, a);
+ pm = med3(pm-s, pm, pm+s, a);
+ pn = med3(pn-2*s, pn-s, pn, a);
+ }
+ pm = med3(pl, pm, pn, a); // mid-size, med of 3
+ }
+
+ int pa, pb, pc, pd, pv;
+ int r;
+
+ pv = start; swap(pv, pm, a);
+ pa = pb = start;
+ pc = pd = start + n-1;
+
+ for (;;) {
+ while (pb <= pc && (r = cmp(a[pb], a[pv])) <= 0) {
+ if (r == 0) { swap(pa, pb, a); pa++; }
+ pb++;
+ }
+ while (pc >= pb && (r = cmp(a[pc], a[pv])) >= 0) {
+ if (r == 0) { swap(pc, pd, a); pd--; }
+ pc--;
+ }
+ if (pb > pc) break;
+ swap(pb, pc, a);
+ pb++;
+ pc--;
+ }
+ int pn = start + n;
+ int s;
+ s = Math.min(pa-start, pb-pa); vecswap(start, pb-s, s, a);
+ s = Math.min(pd-pc, pn-pd-1); vecswap(pb, pn-s, s, a);
+ if ((s = pb-pa) > 1) qsort(a, start, s);
+ if ((s = pd-pc) > 1) qsort(a, pn-s, s);
+ }
+
+ private static void vecswap(int i, int j, int n, short[] a) {
+ for (; n > 0; i++, j++, n--)
+ swap(i, j, a);
+ }
+
+ /**
+ * The bulk of the work for the object sort routines. In general,
+ * the code attempts to be simple rather than fast, the idea being
+ * that a good optimising JIT will be able to optimise it better
+ * than I can, and if I try it will make it more confusing for the
+ * JIT.
+ */
+ private static void mergeSort(Object[] a, int from, int to, Comparator c)
+ {
+ // First presort the array in chunks of length 6 with insertion sort.
+ // mergesort would give too much overhead for this length.
+ for (int chunk = from; chunk < to; chunk += 6)
+ {
+ int end = Math.min(chunk+6, to);
+ for (int i = chunk + 1; i < end; i++)
+ {
+ if (c.compare(a[i-1], a[i]) > 0)
+ {
+ // not already sorted
+ int j=i;
+ Object elem = a[j];
+ do
+ {
+ a[j] = a[j-1];
+ j--;
+ }
+ while (j>chunk && c.compare(a[j-1], elem) > 0);
+ a[j] = elem;
+ }
+ }
+ }
+
+ int len = to - from;
+ // If length is smaller or equal 6 we are done.
+ if (len <= 6)
+ return;
+
+ Object[] src = a;
+ Object[] dest = new Object[len];
+ Object[] t = null; // t is used for swapping src and dest
+
+ // The difference of the fromIndex of the src and dest array.
+ int srcDestDiff = -from;
+
+ // The merges are done in this loop
+ for (int size = 6; size < len; size <<= 1)
+ {
+ for (int start = from; start < to; start += size << 1)
+ {
+ // mid ist the start of the second sublist;
+ // end the start of the next sublist (or end of array).
+ int mid = start + size;
+ int end = Math.min(to, mid + size);
+
+ // The second list is empty or the elements are already in
+ // order - no need to merge
+ if (mid >= end || c.compare(src[mid - 1], src[mid]) <= 0) {
+ System.arraycopy(src, start,
+ dest, start + srcDestDiff, end - start);
+
+ // The two halves just need swapping - no need to merge
+ } else if (c.compare(src[start], src[end - 1]) > 0) {
+ System.arraycopy(src, start,
+ dest, end - size + srcDestDiff, size);
+ System.arraycopy(src, mid,
+ dest, start + srcDestDiff, end - mid);
+
+ } else {
+ // Declare a lot of variables to save repeating
+ // calculations. Hopefully a decent JIT will put these
+ // in registers and make this fast
+ int p1 = start;
+ int p2 = mid;
+ int i = start + srcDestDiff;
+
+ // The main merge loop; terminates as soon as either
+ // half is ended
+ while (p1 < mid && p2 < end)
+ {
+ dest[i++] =
+ src[c.compare(src[p1], src[p2]) <= 0 ? p1++ : p2++];
+ }
+
+ // Finish up by copying the remainder of whichever half
+ // wasn't finished.
+ if (p1 < mid)
+ System.arraycopy(src, p1, dest, i, mid - p1);
+ else
+ System.arraycopy(src, p2, dest, i, end - p2);
+ }
+ }
+ // swap src and dest ready for the next merge
+ t = src; src = dest; dest = t;
+ from += srcDestDiff;
+ to += srcDestDiff;
+ srcDestDiff = -srcDestDiff;
+ }
+
+ // make sure the result ends up back in the right place. Note
+ // that src and dest may have been swapped above, so src
+ // contains the sorted array.
+ if (src != a)
+ {
+ // Note that from == 0.
+ System.arraycopy(src, 0, a, srcDestDiff, to);
+ }
+ }
+
+ /**
+ * Sort an array of Objects according to their natural ordering. The sort is
+ * guaranteed to be stable, that is, equal elements will not be reordered.
+ * The sort algorithm is a mergesort with the merge omitted if the last
+ * element of one half comes before the first element of the other half. This
+ * algorithm gives guaranteed O(nlog(n)) time, at the expense of making a
+ * copy of the array.
+ *
+ * @param a the array to be sorted
+ * @exception ClassCastException if any two elements are not mutually
+ * comparable
+ * @exception NullPointerException if an element is null (since
+ * null.compareTo cannot work)
+ */
+ public static void sort(Object[] a) {
+ mergeSort(a, 0, a.length, defaultComparator);
+ }
+
+ /**
+ * Sort an array of Objects according to a Comparator. The sort is
+ * guaranteed to be stable, that is, equal elements will not be reordered.
+ * The sort algorithm is a mergesort with the merge omitted if the last
+ * element of one half comes before the first element of the other half. This
+ * algorithm gives guaranteed O(nlog(n)) time, at the expense of making a
+ * copy of the array.
+ *
+ * @param a the array to be sorted
+ * @param c a Comparator to use in sorting the array
+ * @exception ClassCastException if any two elements are not mutually
+ * comparable by the Comparator provided
+ */
+ public static void sort(Object[] a, Comparator c) {
+ mergeSort(a, 0, a.length, c);
+ }
+
+ /**
+ * Sort an array of Objects according to their natural ordering. The sort is
+ * guaranteed to be stable, that is, equal elements will not be reordered.
+ * The sort algorithm is a mergesort with the merge omitted if the last
+ * element of one half comes before the first element of the other half. This
+ * algorithm gives guaranteed O(nlog(n)) time, at the expense of making a
+ * copy of the array.
+ *
+ * @param a the array to be sorted
+ * @param fromIndex the index of the first element to be sorted.
+ * @param toIndex the index of the last element to be sorted plus one.
+ * @exception ClassCastException if any two elements are not mutually
+ * comparable by the Comparator provided
+ * @exception ArrayIndexOutOfBoundsException, if fromIndex and toIndex
+ * are not in range.
+ * @exception IllegalArgumentException if fromIndex > toIndex
+ */
+ public static void sort(Object[] a, int fromIndex,
+ int toIndex) {
+ if (fromIndex > toIndex)
+ throw new IllegalArgumentException("fromIndex "+fromIndex
+ +" > toIndex "+toIndex);
+ mergeSort(a, fromIndex, toIndex, defaultComparator);
+ }
+
+ /**
+ * Sort an array of Objects according to a Comparator. The sort is
+ * guaranteed to be stable, that is, equal elements will not be reordered.
+ * The sort algorithm is a mergesort with the merge omitted if the last
+ * element of one half comes before the first element of the other half. This
+ * algorithm gives guaranteed O(nlog(n)) time, at the expense of making a
+ * copy of the array.
+ *
+ * @param a the array to be sorted
+ * @param fromIndex the index of the first element to be sorted.
+ * @param toIndex the index of the last element to be sorted plus one.
+ * @param c a Comparator to use in sorting the array
+ * @exception ClassCastException if any two elements are not mutually
+ * comparable by the Comparator provided
+ * @exception ArrayIndexOutOfBoundsException, if fromIndex and toIndex
+ * are not in range.
+ * @exception IllegalArgumentException if fromIndex > toIndex
+ */
+ public static void sort(Object[] a, int fromIndex,
+ int toIndex, Comparator c) {
+ if (fromIndex > toIndex)
+ throw new IllegalArgumentException("fromIndex "+fromIndex
+ +" > toIndex "+toIndex);
+ mergeSort(a, fromIndex, toIndex, c);
+ }
+
+ /**
+ * Returns a list "view" of the specified array. This method is intended to
+ * make it easy to use the Collections API with existing array-based APIs and
+ * programs.
+ *
+ * @param a the array to return a view of
+ * @returns a fixed-size list, changes to which "write through" to the array
+ */
+ public static List asList(final Object[] a) {
+
+ if (a == null) {
+ throw new NullPointerException();
+ }
+
+ return new ListImpl( a );
+ }
+
+
+ /**
+ * Inner class used by asList(Object[]) to provide a list interface
+ * to an array. The methods are all simple enough to be self documenting.
+ * Note: When Sun fully specify serialized forms, this class will have to
+ * be renamed.
+ */
+ private static class ListImpl extends AbstractList {
+
+ ListImpl(Object[] a) {
+ this.a = a;
+ }
+
+ public Object get(int index) {
+ return a[index];
+ }
+
+ public int size() {
+ return a.length;
+ }
+
+ public Object set(int index, Object element) {
+ Object old = a[index];
+ a[index] = element;
+ return old;
+ }
+
+ private Object[] a;
+ }
+
+}