diff options
author | Tom Tromey <tromey@gcc.gnu.org> | 2000-05-19 17:55:34 +0000 |
---|---|---|
committer | Tom Tromey <tromey@gcc.gnu.org> | 2000-05-19 17:55:34 +0000 |
commit | 6c80c45e3010bfe992b41dd8800d2c4b65e0d5ef (patch) | |
tree | 88cf0d32aea197ea8e8198e1206b04c820308615 /libjava/java/util/Arrays.java | |
parent | 021c89ed68c151c45021fccf1bb5338ee817314c (diff) | |
download | gcc-6c80c45e3010bfe992b41dd8800d2c4b65e0d5ef.zip gcc-6c80c45e3010bfe992b41dd8800d2c4b65e0d5ef.tar.gz gcc-6c80c45e3010bfe992b41dd8800d2c4b65e0d5ef.tar.bz2 |
Jumbo patch:
* Imported beans and serialization
* Updated IA-64 port
* Miscellaneous bug fixes
From-SVN: r34028
Diffstat (limited to 'libjava/java/util/Arrays.java')
-rw-r--r-- | libjava/java/util/Arrays.java | 1757 |
1 files changed, 1757 insertions, 0 deletions
diff --git a/libjava/java/util/Arrays.java b/libjava/java/util/Arrays.java new file mode 100644 index 0000000..fc51d38 --- /dev/null +++ b/libjava/java/util/Arrays.java @@ -0,0 +1,1757 @@ +/* Arrays.java -- Utility class with methods to operate on arrays + Copyright (C) 1998, 1999 Free Software Foundation, Inc. + +This file is part of GNU Classpath. + +GNU Classpath is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GNU Classpath is distributed in the hope that it will be useful, but +WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU Classpath; see the file COPYING. If not, write to the +Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA +02111-1307 USA. + +As a special exception, if you link this library with other files to +produce an executable, this library does not by itself cause the +resulting executable to be covered by the GNU General Public License. +This exception does not however invalidate any other reasons why the +executable file might be covered by the GNU General Public License. */ + + +// TO DO: +// ~ Fix the behaviour of sort and binarySearch as applied to float and double +// arrays containing NaN values. See the JDC, bug ID 4143272. + +package java.util; + +/** + * This class contains various static utility methods performing operations on + * arrays, and a method to provide a List "view" of an array to facilitate + * using arrays with Collection-based APIs. + */ +public class Arrays { + + /** + * This class is non-instantiable. + */ + private Arrays() { + } + + private static Comparator defaultComparator = new Comparator() { + public int compare(Object o1, Object o2) { + return ((Comparable)o1).compareTo(o2); + } + }; + + /** + * Perform a binary search of a byte array for a key. The array must be + * sorted (as by the sort() method) - if it is not, the behaviour of this + * method is undefined, and may be an infinite loop. If the array contains + * the key more than once, any one of them may be found. Note: although the + * specification allows for an infinite loop if the array is unsorted, it + * will not happen in this implementation. + * + * @param a the array to search (must be sorted) + * @param key the value to search for + * @returns the index at which the key was found, or -n-1 if it was not + * found, where n is the index of the first value higher than key or + * a.length if there is no such value. + */ + public static int binarySearch(byte[] a, byte key) { + int low = 0; + int hi = a.length - 1; + int mid = 0; + while (low <= hi) { + mid = (low + hi) >> 1; + final byte d = a[mid]; + if (d == key) { + return mid; + } else if (d > key) { + hi = mid - 1; + } else { + low = ++mid; // This gets the insertion point right on the last loop + } + } + return -mid - 1; + } + + /** + * Perform a binary search of a char array for a key. The array must be + * sorted (as by the sort() method) - if it is not, the behaviour of this + * method is undefined, and may be an infinite loop. If the array contains + * the key more than once, any one of them may be found. Note: although the + * specification allows for an infinite loop if the array is unsorted, it + * will not happen in this implementation. + * + * @param a the array to search (must be sorted) + * @param key the value to search for + * @returns the index at which the key was found, or -n-1 if it was not + * found, where n is the index of the first value higher than key or + * a.length if there is no such value. + */ + public static int binarySearch(char[] a, char key) { + int low = 0; + int hi = a.length - 1; + int mid = 0; + while (low <= hi) { + mid = (low + hi) >> 1; + final char d = a[mid]; + if (d == key) { + return mid; + } else if (d > key) { + hi = mid - 1; + } else { + low = ++mid; // This gets the insertion point right on the last loop + } + } + return -mid - 1; + } + + /** + * Perform a binary search of a double array for a key. The array must be + * sorted (as by the sort() method) - if it is not, the behaviour of this + * method is undefined, and may be an infinite loop. If the array contains + * the key more than once, any one of them may be found. Note: although the + * specification allows for an infinite loop if the array is unsorted, it + * will not happen in this implementation. + * + * @param a the array to search (must be sorted) + * @param key the value to search for + * @returns the index at which the key was found, or -n-1 if it was not + * found, where n is the index of the first value higher than key or + * a.length if there is no such value. + */ + public static int binarySearch(double[] a, double key) { + int low = 0; + int hi = a.length - 1; + int mid = 0; + while (low <= hi) { + mid = (low + hi) >> 1; + final double d = a[mid]; + if (d == key) { + return mid; + } else if (d > key) { + hi = mid - 1; + } else { + low = ++mid; // This gets the insertion point right on the last loop + } + } + return -mid - 1; + } + + /** + * Perform a binary search of a float array for a key. The array must be + * sorted (as by the sort() method) - if it is not, the behaviour of this + * method is undefined, and may be an infinite loop. If the array contains + * the key more than once, any one of them may be found. Note: although the + * specification allows for an infinite loop if the array is unsorted, it + * will not happen in this implementation. + * + * @param a the array to search (must be sorted) + * @param key the value to search for + * @returns the index at which the key was found, or -n-1 if it was not + * found, where n is the index of the first value higher than key or + * a.length if there is no such value. + */ + public static int binarySearch(float[] a, float key) { + int low = 0; + int hi = a.length - 1; + int mid = 0; + while (low <= hi) { + mid = (low + hi) >> 1; + final float d = a[mid]; + if (d == key) { + return mid; + } else if (d > key) { + hi = mid - 1; + } else { + low = ++mid; // This gets the insertion point right on the last loop + } + } + return -mid - 1; + } + + /** + * Perform a binary search of an int array for a key. The array must be + * sorted (as by the sort() method) - if it is not, the behaviour of this + * method is undefined, and may be an infinite loop. If the array contains + * the key more than once, any one of them may be found. Note: although the + * specification allows for an infinite loop if the array is unsorted, it + * will not happen in this implementation. + * + * @param a the array to search (must be sorted) + * @param key the value to search for + * @returns the index at which the key was found, or -n-1 if it was not + * found, where n is the index of the first value higher than key or + * a.length if there is no such value. + */ + public static int binarySearch(int[] a, int key) { + int low = 0; + int hi = a.length - 1; + int mid = 0; + while (low <= hi) { + mid = (low + hi) >> 1; + final int d = a[mid]; + if (d == key) { + return mid; + } else if (d > key) { + hi = mid - 1; + } else { + low = ++mid; // This gets the insertion point right on the last loop + } + } + return -mid - 1; + } + + /** + * Perform a binary search of a long array for a key. The array must be + * sorted (as by the sort() method) - if it is not, the behaviour of this + * method is undefined, and may be an infinite loop. If the array contains + * the key more than once, any one of them may be found. Note: although the + * specification allows for an infinite loop if the array is unsorted, it + * will not happen in this implementation. + * + * @param a the array to search (must be sorted) + * @param key the value to search for + * @returns the index at which the key was found, or -n-1 if it was not + * found, where n is the index of the first value higher than key or + * a.length if there is no such value. + */ + public static int binarySearch(long[] a, long key) { + int low = 0; + int hi = a.length - 1; + int mid = 0; + while (low <= hi) { + mid = (low + hi) >> 1; + final long d = a[mid]; + if (d == key) { + return mid; + } else if (d > key) { + hi = mid - 1; + } else { + low = ++mid; // This gets the insertion point right on the last loop + } + } + return -mid - 1; + } + + /** + * Perform a binary search of a short array for a key. The array must be + * sorted (as by the sort() method) - if it is not, the behaviour of this + * method is undefined, and may be an infinite loop. If the array contains + * the key more than once, any one of them may be found. Note: although the + * specification allows for an infinite loop if the array is unsorted, it + * will not happen in this implementation. + * + * @param a the array to search (must be sorted) + * @param key the value to search for + * @returns the index at which the key was found, or -n-1 if it was not + * found, where n is the index of the first value higher than key or + * a.length if there is no such value. + */ + public static int binarySearch(short[] a, short key) { + int low = 0; + int hi = a.length - 1; + int mid = 0; + while (low <= hi) { + mid = (low + hi) >> 1; + final short d = a[mid]; + if (d == key) { + return mid; + } else if (d > key) { + hi = mid - 1; + } else { + low = ++mid; // This gets the insertion point right on the last loop + } + } + return -mid - 1; + } + + /** + * This method does the work for the Object binary search methods. + * @exception NullPointerException if the specified comparator is null. + * @exception ClassCastException if the objects are not comparable by c. + */ + private static int objectSearch(Object[] a, Object key, final Comparator c) { + int low = 0; + int hi = a.length - 1; + int mid = 0; + while (low <= hi) { + mid = (low + hi) >> 1; + final int d = c.compare(key, a[mid]); + if (d == 0) { + return mid; + } else if (d < 0) { + hi = mid - 1; + } else { + low = ++mid; // This gets the insertion point right on the last loop + } + } + return -mid - 1; + } + + /** + * Perform a binary search of an Object array for a key, using the natural + * ordering of the elements. The array must be sorted (as by the sort() + * method) - if it is not, the behaviour of this method is undefined, and may + * be an infinite loop. Further, the key must be comparable with every item + * in the array. If the array contains the key more than once, any one of + * them may be found. Note: although the specification allows for an infinite + * loop if the array is unsorted, it will not happen in this (JCL) + * implementation. + * + * @param a the array to search (must be sorted) + * @param key the value to search for + * @returns the index at which the key was found, or -n-1 if it was not + * found, where n is the index of the first value higher than key or + * a.length if there is no such value. + * @exception ClassCastException if key could not be compared with one of the + * elements of a + * @exception NullPointerException if a null element has compareTo called + */ + public static int binarySearch(Object[] a, Object key) { + return objectSearch(a, key, defaultComparator); + } + + /** + * Perform a binary search of an Object array for a key, using a supplied + * Comparator. The array must be sorted (as by the sort() method with the + * same Comparator) - if it is not, the behaviour of this method is + * undefined, and may be an infinite loop. Further, the key must be + * comparable with every item in the array. If the array contains the key + * more than once, any one of them may be found. Note: although the + * specification allows for an infinite loop if the array is unsorted, it + * will not happen in this (JCL) implementation. + * + * @param a the array to search (must be sorted) + * @param key the value to search for + * @param c the comparator by which the array is sorted + * @returns the index at which the key was found, or -n-1 if it was not + * found, where n is the index of the first value higher than key or + * a.length if there is no such value. + * @exception ClassCastException if key could not be compared with one of the + * elements of a + */ + public static int binarySearch(Object[] a, Object key, Comparator c) { + return objectSearch(a, key, c); + } + + /** + * Compare two byte arrays for equality. + * + * @param a1 the first array to compare + * @param a2 the second array to compare + * @returns true if a1 and a2 are both null, or if a2 is of the same length + * as a1, and for each 0 <= i < a1.length, a1[i] == a2[i] + */ + public static boolean equals(byte[] a1, byte[] a2) { + + // Quick test which saves comparing elements of the same array, and also + // catches the case that both are null. + if (a1 == a2) { + return true; + } + try { + + // If they're the same length, test each element + if (a1.length == a2.length) { + for (int i = 0; i < a1.length; i++) { + if (a1[i] != a2[i]) { + return false; + } + } + return true; + } + + // If a1 == null or a2 == null but not both then we will get a NullPointer + } catch (NullPointerException e) { + } + + return false; + } + + /** + * Compare two char arrays for equality. + * + * @param a1 the first array to compare + * @param a2 the second array to compare + * @returns true if a1 and a2 are both null, or if a2 is of the same length + * as a1, and for each 0 <= i < a1.length, a1[i] == a2[i] + */ + public static boolean equals(char[] a1, char[] a2) { + + // Quick test which saves comparing elements of the same array, and also + // catches the case that both are null. + if (a1 == a2) { + return true; + } + try { + + // If they're the same length, test each element + if (a1.length == a2.length) { + for (int i = 0; i < a1.length; i++) { + if (a1[i] != a2[i]) { + return false; + } + } + return true; + } + + // If a1 == null or a2 == null but not both then we will get a NullPointer + } catch (NullPointerException e) { + } + + return false; + } + + /** + * Compare two double arrays for equality. + * + * @param a1 the first array to compare + * @param a2 the second array to compare + * @returns true if a1 and a2 are both null, or if a2 is of the same length + * as a1, and for each 0 <= i < a1.length, a1[i] == a2[i] + */ + public static boolean equals(double[] a1, double[] a2) { + + // Quick test which saves comparing elements of the same array, and also + // catches the case that both are null. + if (a1 == a2) { + return true; + } + try { + + // If they're the same length, test each element + if (a1.length == a2.length) { + for (int i = 0; i < a1.length; i++) { + if (a1[i] != a2[i]) { + return false; + } + } + return true; + } + + // If a1 == null or a2 == null but not both then we will get a NullPointer + } catch (NullPointerException e) { + } + + return false; + } + + /** + * Compare two float arrays for equality. + * + * @param a1 the first array to compare + * @param a2 the second array to compare + * @returns true if a1 and a2 are both null, or if a2 is of the same length + * as a1, and for each 0 <= i < a1.length, a1[i] == a2[i] + */ + public static boolean equals(float[] a1, float[] a2) { + + // Quick test which saves comparing elements of the same array, and also + // catches the case that both are null. + if (a1 == a2) { + return true; + } + try { + + // If they're the same length, test each element + if (a1.length == a2.length) { + for (int i = 0; i < a1.length; i++) { + if (a1[i] != a2[i]) { + return false; + } + } + return true; + } + + // If a1 == null or a2 == null but not both then we will get a NullPointer + } catch (NullPointerException e) { + } + + return false; + } + + /** + * Compare two long arrays for equality. + * + * @param a1 the first array to compare + * @param a2 the second array to compare + * @returns true if a1 and a2 are both null, or if a2 is of the same length + * as a1, and for each 0 <= i < a1.length, a1[i] == a2[i] + */ + public static boolean equals(long[] a1, long[] a2) { + + // Quick test which saves comparing elements of the same array, and also + // catches the case that both are null. + if (a1 == a2) { + return true; + } + try { + + // If they're the same length, test each element + if (a1.length == a2.length) { + for (int i = 0; i < a1.length; i++) { + if (a1[i] != a2[i]) { + return false; + } + } + return true; + } + + // If a1 == null or a2 == null but not both then we will get a NullPointer + } catch (NullPointerException e) { + } + + return false; + } + + /** + * Compare two short arrays for equality. + * + * @param a1 the first array to compare + * @param a2 the second array to compare + * @returns true if a1 and a2 are both null, or if a2 is of the same length + * as a1, and for each 0 <= i < a1.length, a1[i] == a2[i] + */ + public static boolean equals(short[] a1, short[] a2) { + + // Quick test which saves comparing elements of the same array, and also + // catches the case that both are null. + if (a1 == a2) { + return true; + } + try { + + // If they're the same length, test each element + if (a1.length == a2.length) { + for (int i = 0; i < a1.length; i++) { + if (a1[i] != a2[i]) { + return false; + } + } + return true; + } + + // If a1 == null or a2 == null but not both then we will get a NullPointer + } catch (NullPointerException e) { + } + + return false; + } + + /** + * Compare two boolean arrays for equality. + * + * @param a1 the first array to compare + * @param a2 the second array to compare + * @returns true if a1 and a2 are both null, or if a2 is of the same length + * as a1, and for each 0 <= i < a1.length, a1[i] == a2[i] + */ + public static boolean equals(boolean[] a1, boolean[] a2) { + + // Quick test which saves comparing elements of the same array, and also + // catches the case that both are null. + if (a1 == a2) { + return true; + } + try { + + // If they're the same length, test each element + if (a1.length == a2.length) { + for (int i = 0; i < a1.length; i++) { + if (a1[i] != a2[i]) { + return false; + } + } + return true; + } + + // If a1 == null or a2 == null but not both then we will get a NullPointer + } catch (NullPointerException e) { + } + + return false; + } + + /** + * Compare two int arrays for equality. + * + * @param a1 the first array to compare + * @param a2 the second array to compare + * @returns true if a1 and a2 are both null, or if a2 is of the same length + * as a1, and for each 0 <= i < a1.length, a1[i] == a2[i] + */ + public static boolean equals(int[] a1, int[] a2) { + + // Quick test which saves comparing elements of the same array, and also + // catches the case that both are null. + if (a1 == a2) { + return true; + } + try { + + // If they're the same length, test each element + if (a1.length == a2.length) { + for (int i = 0; i < a1.length; i++) { + if (a1[i] != a2[i]) { + return false; + } + } + return true; + } + + // If a1 == null or a2 == null but not both then we will get a NullPointer + } catch (NullPointerException e) { + } + + return false; + } + + /** + * Compare two Object arrays for equality. + * + * @param a1 the first array to compare + * @param a2 the second array to compare + * @returns true if a1 and a2 are both null, or if a1 is of the same length + * as a2, and for each 0 <= i < a.length, a1[i] == null ? a2[i] == null : + * a1[i].equals(a2[i]). + */ + public static boolean equals(Object[] a1, Object[] a2) { + + // Quick test which saves comparing elements of the same array, and also + // catches the case that both are null. + if (a1 == a2) { + return true; + } + try { + + // If they're the same length, test each element + if (a1.length == a2.length) { + for (int i = 0; i < a1.length; i++) { + if (!(a1[i] == null ? a2[i] == null : a1[i].equals(a2[i]))) { + return false; + } + } + return true; + } + + // If a1 == null or a2 == null but not both then we will get a NullPointer + } catch (NullPointerException e) { + } + + return false; + } + + /** + * Fill an array with a boolean value. + * + * @param a the array to fill + * @param val the value to fill it with + */ + public static void fill(boolean[] a, boolean val) { + // This implementation is slightly inefficient timewise, but the extra + // effort over inlining it is O(1) and small, and I refuse to repeat code + // if it can be helped. + fill(a, 0, a.length, val); + } + + /** + * Fill a range of an array with a boolean value. + * + * @param a the array to fill + * @param fromIndex the index to fill from, inclusive + * @param toIndex the index to fill to, exclusive + * @param val the value to fill with + */ + public static void fill(boolean[] a, int fromIndex, int toIndex, + boolean val) { + for (int i = fromIndex; i < toIndex; i++) { + a[i] = val; + } + } + + /** + * Fill an array with a byte value. + * + * @param a the array to fill + * @param val the value to fill it with + */ + public static void fill(byte[] a, byte val) { + // This implementation is slightly inefficient timewise, but the extra + // effort over inlining it is O(1) and small, and I refuse to repeat code + // if it can be helped. + fill(a, 0, a.length, val); + } + + /** + * Fill a range of an array with a byte value. + * + * @param a the array to fill + * @param fromIndex the index to fill from, inclusive + * @param toIndex the index to fill to, exclusive + * @param val the value to fill with + */ + public static void fill(byte[] a, int fromIndex, int toIndex, byte val) { + for (int i = fromIndex; i < toIndex; i++) { + a[i] = val; + } + } + + /** + * Fill an array with a char value. + * + * @param a the array to fill + * @param val the value to fill it with + */ + public static void fill(char[] a, char val) { + // This implementation is slightly inefficient timewise, but the extra + // effort over inlining it is O(1) and small, and I refuse to repeat code + // if it can be helped. + fill(a, 0, a.length, val); + } + + /** + * Fill a range of an array with a char value. + * + * @param a the array to fill + * @param fromIndex the index to fill from, inclusive + * @param toIndex the index to fill to, exclusive + * @param val the value to fill with + */ + public static void fill(char[] a, int fromIndex, int toIndex, char val) { + for (int i = fromIndex; i < toIndex; i++) { + a[i] = val; + } + } + + /** + * Fill an array with a double value. + * + * @param a the array to fill + * @param val the value to fill it with + */ + public static void fill(double[] a, double val) { + // This implementation is slightly inefficient timewise, but the extra + // effort over inlining it is O(1) and small, and I refuse to repeat code + // if it can be helped. + fill(a, 0, a.length, val); + } + + /** + * Fill a range of an array with a double value. + * + * @param a the array to fill + * @param fromIndex the index to fill from, inclusive + * @param toIndex the index to fill to, exclusive + * @param val the value to fill with + */ + public static void fill(double[] a, int fromIndex, int toIndex, double val) { + for (int i = fromIndex; i < toIndex; i++) { + a[i] = val; + } + } + + /** + * Fill an array with a float value. + * + * @param a the array to fill + * @param val the value to fill it with + */ + public static void fill(float[] a, float val) { + // This implementation is slightly inefficient timewise, but the extra + // effort over inlining it is O(1) and small, and I refuse to repeat code + // if it can be helped. + fill(a, 0, a.length, val); + } + + /** + * Fill a range of an array with a float value. + * + * @param a the array to fill + * @param fromIndex the index to fill from, inclusive + * @param toIndex the index to fill to, exclusive + * @param val the value to fill with + */ + public static void fill(float[] a, int fromIndex, int toIndex, float val) { + for (int i = fromIndex; i < toIndex; i++) { + a[i] = val; + } + } + + /** + * Fill an array with an int value. + * + * @param a the array to fill + * @param val the value to fill it with + */ + public static void fill(int[] a, int val) { + // This implementation is slightly inefficient timewise, but the extra + // effort over inlining it is O(1) and small, and I refuse to repeat code + // if it can be helped. + fill(a, 0, a.length, val); + } + + /** + * Fill a range of an array with an int value. + * + * @param a the array to fill + * @param fromIndex the index to fill from, inclusive + * @param toIndex the index to fill to, exclusive + * @param val the value to fill with + */ + public static void fill(int[] a, int fromIndex, int toIndex, int val) { + for (int i = fromIndex; i < toIndex; i++) { + a[i] = val; + } + } + + /** + * Fill an array with a long value. + * + * @param a the array to fill + * @param val the value to fill it with + */ + public static void fill(long[] a, long val) { + // This implementation is slightly inefficient timewise, but the extra + // effort over inlining it is O(1) and small, and I refuse to repeat code + // if it can be helped. + fill(a, 0, a.length, val); + } + + /** + * Fill a range of an array with a long value. + * + * @param a the array to fill + * @param fromIndex the index to fill from, inclusive + * @param toIndex the index to fill to, exclusive + * @param val the value to fill with + */ + public static void fill(long[] a, int fromIndex, int toIndex, long val) { + for (int i = fromIndex; i < toIndex; i++) { + a[i] = val; + } + } + + /** + * Fill an array with a short value. + * + * @param a the array to fill + * @param val the value to fill it with + */ + public static void fill(short[] a, short val) { + // This implementation is slightly inefficient timewise, but the extra + // effort over inlining it is O(1) and small, and I refuse to repeat code + // if it can be helped. + fill(a, 0, a.length, val); + } + + /** + * Fill a range of an array with a short value. + * + * @param a the array to fill + * @param fromIndex the index to fill from, inclusive + * @param toIndex the index to fill to, exclusive + * @param val the value to fill with + */ + public static void fill(short[] a, int fromIndex, int toIndex, short val) { + for (int i = fromIndex; i < toIndex; i++) { + a[i] = val; + } + } + + /** + * Fill an array with an Object value. + * + * @param a the array to fill + * @param val the value to fill it with + * @exception ClassCastException if val is not an instance of the element + * type of a. + */ + public static void fill(Object[] a, Object val) { + // This implementation is slightly inefficient timewise, but the extra + // effort over inlining it is O(1) and small, and I refuse to repeat code + // if it can be helped. + fill(a, 0, a.length, val); + } + + /** + * Fill a range of an array with an Object value. + * + * @param a the array to fill + * @param fromIndex the index to fill from, inclusive + * @param toIndex the index to fill to, exclusive + * @param val the value to fill with + * @exception ClassCastException if val is not an instance of the element + * type of a. + */ + public static void fill(Object[] a, int fromIndex, int toIndex, Object val) { + for (int i = fromIndex; i < toIndex; i++) { + a[i] = val; + } + } + + // Thanks to Paul Fisher <rao@gnu.org> for finding this quicksort algorithm + // as specified by Sun and porting it to Java. + + /** + * Sort a byte array into ascending order. The sort algorithm is an optimised + * quicksort, as described in Jon L. Bentley and M. Douglas McIlroy's + * "Engineering a Sort Function", Software-Practice and Experience, Vol. + * 23(11) P. 1249-1265 (November 1993). This algorithm gives nlog(n) + * performance on many arrays that would take quadratic time with a standard + * quicksort. + * + * @param a the array to sort + */ + public static void sort(byte[] a) { + qsort(a, 0, a.length); + } + + private static short cmp(byte i, byte j) { + return (short)(i-j); + } + + private static int med3(int a, int b, int c, byte[] d) { + return cmp(d[a], d[b]) < 0 ? + (cmp(d[b], d[c]) < 0 ? b : cmp(d[a], d[c]) < 0 ? c : a) + : (cmp(d[b], d[c]) > 0 ? b : cmp(d[a], d[c]) > 0 ? c : a); + } + + private static void swap(int i, int j, byte[] a) { + byte c = a[i]; + a[i] = a[j]; + a[j] = c; + } + + private static void qsort(byte[] a, int start, int n) { + // use an insertion sort on small arrays + if (n < 7) { + for (int i = start + 1; i < start + n; i++) + for (int j = i; j > 0 && cmp(a[j-1], a[j]) > 0; j--) + swap(j, j-1, a); + return; + } + + int pm = n/2; // small arrays, middle element + if (n > 7) { + int pl = start; + int pn = start + n-1; + + if (n > 40) { // big arrays, pseudomedian of 9 + int s = n/8; + pl = med3(pl, pl+s, pl+2*s, a); + pm = med3(pm-s, pm, pm+s, a); + pn = med3(pn-2*s, pn-s, pn, a); + } + pm = med3(pl, pm, pn, a); // mid-size, med of 3 + } + + int pa, pb, pc, pd, pv; + short r; + + pv = start; swap(pv, pm, a); + pa = pb = start; + pc = pd = start + n-1; + + for (;;) { + while (pb <= pc && (r = cmp(a[pb], a[pv])) <= 0) { + if (r == 0) { swap(pa, pb, a); pa++; } + pb++; + } + while (pc >= pb && (r = cmp(a[pc], a[pv])) >= 0) { + if (r == 0) { swap(pc, pd, a); pd--; } + pc--; + } + if (pb > pc) break; + swap(pb, pc, a); + pb++; + pc--; + } + int pn = start + n; + int s; + s = Math.min(pa-start, pb-pa); vecswap(start, pb-s, s, a); + s = Math.min(pd-pc, pn-pd-1); vecswap(pb, pn-s, s, a); + if ((s = pb-pa) > 1) qsort(a, start, s); + if ((s = pd-pc) > 1) qsort(a, pn-s, s); + } + + private static void vecswap(int i, int j, int n, byte[] a) { + for (; n > 0; i++, j++, n--) + swap(i, j, a); + } + + /** + * Sort a char array into ascending order. The sort algorithm is an optimised + * quicksort, as described in Jon L. Bentley and M. Douglas McIlroy's + * "Engineering a Sort Function", Software-Practice and Experience, Vol. + * 23(11) P. 1249-1265 (November 1993). This algorithm gives nlog(n) + * performance on many arrays that would take quadratic time with a standard + * quicksort. + * + * @param a the array to sort + */ + public static void sort(char[] a) { + qsort(a, 0, a.length); + } + + private static int cmp(char i, char j) { + return i-j; + } + + private static int med3(int a, int b, int c, char[] d) { + return cmp(d[a], d[b]) < 0 ? + (cmp(d[b], d[c]) < 0 ? b : cmp(d[a], d[c]) < 0 ? c : a) + : (cmp(d[b], d[c]) > 0 ? b : cmp(d[a], d[c]) > 0 ? c : a); + } + + private static void swap(int i, int j, char[] a) { + char c = a[i]; + a[i] = a[j]; + a[j] = c; + } + + private static void qsort(char[] a, int start, int n) { + // use an insertion sort on small arrays + if (n < 7) { + for (int i = start + 1; i < start + n; i++) + for (int j = i; j > 0 && cmp(a[j-1], a[j]) > 0; j--) + swap(j, j-1, a); + return; + } + + int pm = n/2; // small arrays, middle element + if (n > 7) { + int pl = start; + int pn = start + n-1; + + if (n > 40) { // big arrays, pseudomedian of 9 + int s = n/8; + pl = med3(pl, pl+s, pl+2*s, a); + pm = med3(pm-s, pm, pm+s, a); + pn = med3(pn-2*s, pn-s, pn, a); + } + pm = med3(pl, pm, pn, a); // mid-size, med of 3 + } + + int pa, pb, pc, pd, pv; + int r; + + pv = start; swap(pv, pm, a); + pa = pb = start; + pc = pd = start + n-1; + + for (;;) { + while (pb <= pc && (r = cmp(a[pb], a[pv])) <= 0) { + if (r == 0) { swap(pa, pb, a); pa++; } + pb++; + } + while (pc >= pb && (r = cmp(a[pc], a[pv])) >= 0) { + if (r == 0) { swap(pc, pd, a); pd--; } + pc--; + } + if (pb > pc) break; + swap(pb, pc, a); + pb++; + pc--; + } + int pn = start + n; + int s; + s = Math.min(pa-start, pb-pa); vecswap(start, pb-s, s, a); + s = Math.min(pd-pc, pn-pd-1); vecswap(pb, pn-s, s, a); + if ((s = pb-pa) > 1) qsort(a, start, s); + if ((s = pd-pc) > 1) qsort(a, pn-s, s); + } + + private static void vecswap(int i, int j, int n, char[] a) { + for (; n > 0; i++, j++, n--) + swap(i, j, a); + } + + /** + * Sort a double array into ascending order. The sort algorithm is an + * optimised quicksort, as described in Jon L. Bentley and M. Douglas + * McIlroy's "Engineering a Sort Function", Software-Practice and Experience, + * Vol. 23(11) P. 1249-1265 (November 1993). This algorithm gives nlog(n) + * performance on many arrays that would take quadratic time with a standard + * quicksort. Note that this implementation, like Sun's, has undefined + * behaviour if the array contains any NaN values. + * + * @param a the array to sort + */ + public static void sort(double[] a) { + qsort(a, 0, a.length); + } + + private static double cmp(double i, double j) { + return i-j; + } + + private static int med3(int a, int b, int c, double[] d) { + return cmp(d[a], d[b]) < 0 ? + (cmp(d[b], d[c]) < 0 ? b : cmp(d[a], d[c]) < 0 ? c : a) + : (cmp(d[b], d[c]) > 0 ? b : cmp(d[a], d[c]) > 0 ? c : a); + } + + private static void swap(int i, int j, double[] a) { + double c = a[i]; + a[i] = a[j]; + a[j] = c; + } + + private static void qsort(double[] a, int start, int n) { + // use an insertion sort on small arrays + if (n < 7) { + for (int i = start + 1; i < start + n; i++) + for (int j = i; j > 0 && cmp(a[j-1], a[j]) > 0; j--) + swap(j, j-1, a); + return; + } + + int pm = n/2; // small arrays, middle element + if (n > 7) { + int pl = start; + int pn = start + n-1; + + if (n > 40) { // big arrays, pseudomedian of 9 + int s = n/8; + pl = med3(pl, pl+s, pl+2*s, a); + pm = med3(pm-s, pm, pm+s, a); + pn = med3(pn-2*s, pn-s, pn, a); + } + pm = med3(pl, pm, pn, a); // mid-size, med of 3 + } + + int pa, pb, pc, pd, pv; + double r; + + pv = start; swap(pv, pm, a); + pa = pb = start; + pc = pd = start + n-1; + + for (;;) { + while (pb <= pc && (r = cmp(a[pb], a[pv])) <= 0) { + if (r == 0) { swap(pa, pb, a); pa++; } + pb++; + } + while (pc >= pb && (r = cmp(a[pc], a[pv])) >= 0) { + if (r == 0) { swap(pc, pd, a); pd--; } + pc--; + } + if (pb > pc) break; + swap(pb, pc, a); + pb++; + pc--; + } + int pn = start + n; + int s; + s = Math.min(pa-start, pb-pa); vecswap(start, pb-s, s, a); + s = Math.min(pd-pc, pn-pd-1); vecswap(pb, pn-s, s, a); + if ((s = pb-pa) > 1) qsort(a, start, s); + if ((s = pd-pc) > 1) qsort(a, pn-s, s); + } + + private static void vecswap(int i, int j, int n, double[] a) { + for (; n > 0; i++, j++, n--) + swap(i, j, a); + } + + /** + * Sort a float array into ascending order. The sort algorithm is an + * optimised quicksort, as described in Jon L. Bentley and M. Douglas + * McIlroy's "Engineering a Sort Function", Software-Practice and Experience, + * Vol. 23(11) P. 1249-1265 (November 1993). This algorithm gives nlog(n) + * performance on many arrays that would take quadratic time with a standard + * quicksort. Note that this implementation, like Sun's, has undefined + * behaviour if the array contains any NaN values. + * + * @param a the array to sort + */ + public static void sort(float[] a) { + qsort(a, 0, a.length); + } + + private static float cmp(float i, float j) { + return i-j; + } + + private static int med3(int a, int b, int c, float[] d) { + return cmp(d[a], d[b]) < 0 ? + (cmp(d[b], d[c]) < 0 ? b : cmp(d[a], d[c]) < 0 ? c : a) + : (cmp(d[b], d[c]) > 0 ? b : cmp(d[a], d[c]) > 0 ? c : a); + } + + private static void swap(int i, int j, float[] a) { + float c = a[i]; + a[i] = a[j]; + a[j] = c; + } + + private static void qsort(float[] a, int start, int n) { + // use an insertion sort on small arrays + if (n < 7) { + for (int i = start + 1; i < start + n; i++) + for (int j = i; j > 0 && cmp(a[j-1], a[j]) > 0; j--) + swap(j, j-1, a); + return; + } + + int pm = n/2; // small arrays, middle element + if (n > 7) { + int pl = start; + int pn = start + n-1; + + if (n > 40) { // big arrays, pseudomedian of 9 + int s = n/8; + pl = med3(pl, pl+s, pl+2*s, a); + pm = med3(pm-s, pm, pm+s, a); + pn = med3(pn-2*s, pn-s, pn, a); + } + pm = med3(pl, pm, pn, a); // mid-size, med of 3 + } + + int pa, pb, pc, pd, pv; + float r; + + pv = start; swap(pv, pm, a); + pa = pb = start; + pc = pd = start + n-1; + + for (;;) { + while (pb <= pc && (r = cmp(a[pb], a[pv])) <= 0) { + if (r == 0) { swap(pa, pb, a); pa++; } + pb++; + } + while (pc >= pb && (r = cmp(a[pc], a[pv])) >= 0) { + if (r == 0) { swap(pc, pd, a); pd--; } + pc--; + } + if (pb > pc) break; + swap(pb, pc, a); + pb++; + pc--; + } + int pn = start + n; + int s; + s = Math.min(pa-start, pb-pa); vecswap(start, pb-s, s, a); + s = Math.min(pd-pc, pn-pd-1); vecswap(pb, pn-s, s, a); + if ((s = pb-pa) > 1) qsort(a, start, s); + if ((s = pd-pc) > 1) qsort(a, pn-s, s); + } + + private static void vecswap(int i, int j, int n, float[] a) { + for (; n > 0; i++, j++, n--) + swap(i, j, a); + } + + /** + * Sort an int array into ascending order. The sort algorithm is an optimised + * quicksort, as described in Jon L. Bentley and M. Douglas McIlroy's + * "Engineering a Sort Function", Software-Practice and Experience, Vol. + * 23(11) P. 1249-1265 (November 1993). This algorithm gives nlog(n) + * performance on many arrays that would take quadratic time with a standard + * quicksort. + * + * @param a the array to sort + */ + public static void sort(int[] a) { + qsort(a, 0, a.length); + } + + private static long cmp(int i, int j) { + return (long)i-(long)j; + } + + private static int med3(int a, int b, int c, int[] d) { + return cmp(d[a], d[b]) < 0 ? + (cmp(d[b], d[c]) < 0 ? b : cmp(d[a], d[c]) < 0 ? c : a) + : (cmp(d[b], d[c]) > 0 ? b : cmp(d[a], d[c]) > 0 ? c : a); + } + + private static void swap(int i, int j, int[] a) { + int c = a[i]; + a[i] = a[j]; + a[j] = c; + } + + private static void qsort(int[] a, int start, int n) { + // use an insertion sort on small arrays + if (n < 7) { + for (int i = start + 1; i < start + n; i++) + for (int j = i; j > 0 && cmp(a[j-1], a[j]) > 0; j--) + swap(j, j-1, a); + return; + } + + int pm = n/2; // small arrays, middle element + if (n > 7) { + int pl = start; + int pn = start + n-1; + + if (n > 40) { // big arrays, pseudomedian of 9 + int s = n/8; + pl = med3(pl, pl+s, pl+2*s, a); + pm = med3(pm-s, pm, pm+s, a); + pn = med3(pn-2*s, pn-s, pn, a); + } + pm = med3(pl, pm, pn, a); // mid-size, med of 3 + } + + int pa, pb, pc, pd, pv; + long r; + + pv = start; swap(pv, pm, a); + pa = pb = start; + pc = pd = start + n-1; + + for (;;) { + while (pb <= pc && (r = cmp(a[pb], a[pv])) <= 0) { + if (r == 0) { swap(pa, pb, a); pa++; } + pb++; + } + while (pc >= pb && (r = cmp(a[pc], a[pv])) >= 0) { + if (r == 0) { swap(pc, pd, a); pd--; } + pc--; + } + if (pb > pc) break; + swap(pb, pc, a); + pb++; + pc--; + } + int pn = start + n; + int s; + s = Math.min(pa-start, pb-pa); vecswap(start, pb-s, s, a); + s = Math.min(pd-pc, pn-pd-1); vecswap(pb, pn-s, s, a); + if ((s = pb-pa) > 1) qsort(a, start, s); + if ((s = pd-pc) > 1) qsort(a, pn-s, s); + } + + private static void vecswap(int i, int j, int n, int[] a) { + for (; n > 0; i++, j++, n--) + swap(i, j, a); + } + + /** + * Sort a long array into ascending order. The sort algorithm is an optimised + * quicksort, as described in Jon L. Bentley and M. Douglas McIlroy's + * "Engineering a Sort Function", Software-Practice and Experience, Vol. + * 23(11) P. 1249-1265 (November 1993). This algorithm gives nlog(n) + * performance on many arrays that would take quadratic time with a standard + * quicksort. + * + * @param a the array to sort + */ + public static void sort(long[] a) { + qsort(a, 0, a.length); + } + + // The "cmp" method has been removed from here and replaced with direct + // compares in situ, to avoid problems with overflow if the difference + // between two numbers is bigger than a long will hold. + // One particular change as a result is the use of r1 and r2 in qsort + + private static int med3(int a, int b, int c, long[] d) { + return d[a] < d[b] ? + (d[b] < d[c] ? b : d[a] < d[c] ? c : a) + : (d[b] > d[c] ? b : d[a] > d[c] ? c : a); + } + + private static void swap(int i, int j, long[] a) { + long c = a[i]; + a[i] = a[j]; + a[j] = c; + } + + private static void qsort(long[] a, int start, int n) { + // use an insertion sort on small arrays + if (n < 7) { + for (int i = start + 1; i < start + n; i++) + for (int j = i; j > 0 && a[j-1] > a[j]; j--) + swap(j, j-1, a); + return; + } + + int pm = n/2; // small arrays, middle element + if (n > 7) { + int pl = start; + int pn = start + n-1; + + if (n > 40) { // big arrays, pseudomedian of 9 + int s = n/8; + pl = med3(pl, pl+s, pl+2*s, a); + pm = med3(pm-s, pm, pm+s, a); + pn = med3(pn-2*s, pn-s, pn, a); + } + pm = med3(pl, pm, pn, a); // mid-size, med of 3 + } + + int pa, pb, pc, pd, pv; + long r1, r2; + + pv = start; swap(pv, pm, a); + pa = pb = start; + pc = pd = start + n-1; + + for (;;) { + while (pb <= pc && (r1 = a[pb]) <= (r2 = a[pv])) { + if (r1 == r2) { swap(pa, pb, a); pa++; } + pb++; + } + while (pc >= pb && (r1 = a[pc]) >= (r2 = a[pv])) { + if (r1 == r2) { swap(pc, pd, a); pd--; } + pc--; + } + if (pb > pc) break; + swap(pb, pc, a); + pb++; + pc--; + } + int pn = start + n; + int s; + s = Math.min(pa-start, pb-pa); vecswap(start, pb-s, s, a); + s = Math.min(pd-pc, pn-pd-1); vecswap(pb, pn-s, s, a); + if ((s = pb-pa) > 1) qsort(a, start, s); + if ((s = pd-pc) > 1) qsort(a, pn-s, s); + } + + private static void vecswap(int i, int j, int n, long[] a) { + for (; n > 0; i++, j++, n--) + swap(i, j, a); + } + + /** + * Sort a short array into ascending order. The sort algorithm is an + * optimised quicksort, as described in Jon L. Bentley and M. Douglas + * McIlroy's "Engineering a Sort Function", Software-Practice and Experience, + * Vol. 23(11) P. 1249-1265 (November 1993). This algorithm gives nlog(n) + * performance on many arrays that would take quadratic time with a standard + * quicksort. + * + * @param a the array to sort + */ + public static void sort(short[] a) { + qsort(a, 0, a.length); + } + + private static int cmp(short i, short j) { + return i-j; + } + + private static int med3(int a, int b, int c, short[] d) { + return cmp(d[a], d[b]) < 0 ? + (cmp(d[b], d[c]) < 0 ? b : cmp(d[a], d[c]) < 0 ? c : a) + : (cmp(d[b], d[c]) > 0 ? b : cmp(d[a], d[c]) > 0 ? c : a); + } + + private static void swap(int i, int j, short[] a) { + short c = a[i]; + a[i] = a[j]; + a[j] = c; + } + + private static void qsort(short[] a, int start, int n) { + // use an insertion sort on small arrays + if (n < 7) { + for (int i = start + 1; i < start + n; i++) + for (int j = i; j > 0 && cmp(a[j-1], a[j]) > 0; j--) + swap(j, j-1, a); + return; + } + + int pm = n/2; // small arrays, middle element + if (n > 7) { + int pl = start; + int pn = start + n-1; + + if (n > 40) { // big arrays, pseudomedian of 9 + int s = n/8; + pl = med3(pl, pl+s, pl+2*s, a); + pm = med3(pm-s, pm, pm+s, a); + pn = med3(pn-2*s, pn-s, pn, a); + } + pm = med3(pl, pm, pn, a); // mid-size, med of 3 + } + + int pa, pb, pc, pd, pv; + int r; + + pv = start; swap(pv, pm, a); + pa = pb = start; + pc = pd = start + n-1; + + for (;;) { + while (pb <= pc && (r = cmp(a[pb], a[pv])) <= 0) { + if (r == 0) { swap(pa, pb, a); pa++; } + pb++; + } + while (pc >= pb && (r = cmp(a[pc], a[pv])) >= 0) { + if (r == 0) { swap(pc, pd, a); pd--; } + pc--; + } + if (pb > pc) break; + swap(pb, pc, a); + pb++; + pc--; + } + int pn = start + n; + int s; + s = Math.min(pa-start, pb-pa); vecswap(start, pb-s, s, a); + s = Math.min(pd-pc, pn-pd-1); vecswap(pb, pn-s, s, a); + if ((s = pb-pa) > 1) qsort(a, start, s); + if ((s = pd-pc) > 1) qsort(a, pn-s, s); + } + + private static void vecswap(int i, int j, int n, short[] a) { + for (; n > 0; i++, j++, n--) + swap(i, j, a); + } + + /** + * The bulk of the work for the object sort routines. In general, + * the code attempts to be simple rather than fast, the idea being + * that a good optimising JIT will be able to optimise it better + * than I can, and if I try it will make it more confusing for the + * JIT. + */ + private static void mergeSort(Object[] a, int from, int to, Comparator c) + { + // First presort the array in chunks of length 6 with insertion sort. + // mergesort would give too much overhead for this length. + for (int chunk = from; chunk < to; chunk += 6) + { + int end = Math.min(chunk+6, to); + for (int i = chunk + 1; i < end; i++) + { + if (c.compare(a[i-1], a[i]) > 0) + { + // not already sorted + int j=i; + Object elem = a[j]; + do + { + a[j] = a[j-1]; + j--; + } + while (j>chunk && c.compare(a[j-1], elem) > 0); + a[j] = elem; + } + } + } + + int len = to - from; + // If length is smaller or equal 6 we are done. + if (len <= 6) + return; + + Object[] src = a; + Object[] dest = new Object[len]; + Object[] t = null; // t is used for swapping src and dest + + // The difference of the fromIndex of the src and dest array. + int srcDestDiff = -from; + + // The merges are done in this loop + for (int size = 6; size < len; size <<= 1) + { + for (int start = from; start < to; start += size << 1) + { + // mid ist the start of the second sublist; + // end the start of the next sublist (or end of array). + int mid = start + size; + int end = Math.min(to, mid + size); + + // The second list is empty or the elements are already in + // order - no need to merge + if (mid >= end || c.compare(src[mid - 1], src[mid]) <= 0) { + System.arraycopy(src, start, + dest, start + srcDestDiff, end - start); + + // The two halves just need swapping - no need to merge + } else if (c.compare(src[start], src[end - 1]) > 0) { + System.arraycopy(src, start, + dest, end - size + srcDestDiff, size); + System.arraycopy(src, mid, + dest, start + srcDestDiff, end - mid); + + } else { + // Declare a lot of variables to save repeating + // calculations. Hopefully a decent JIT will put these + // in registers and make this fast + int p1 = start; + int p2 = mid; + int i = start + srcDestDiff; + + // The main merge loop; terminates as soon as either + // half is ended + while (p1 < mid && p2 < end) + { + dest[i++] = + src[c.compare(src[p1], src[p2]) <= 0 ? p1++ : p2++]; + } + + // Finish up by copying the remainder of whichever half + // wasn't finished. + if (p1 < mid) + System.arraycopy(src, p1, dest, i, mid - p1); + else + System.arraycopy(src, p2, dest, i, end - p2); + } + } + // swap src and dest ready for the next merge + t = src; src = dest; dest = t; + from += srcDestDiff; + to += srcDestDiff; + srcDestDiff = -srcDestDiff; + } + + // make sure the result ends up back in the right place. Note + // that src and dest may have been swapped above, so src + // contains the sorted array. + if (src != a) + { + // Note that from == 0. + System.arraycopy(src, 0, a, srcDestDiff, to); + } + } + + /** + * Sort an array of Objects according to their natural ordering. The sort is + * guaranteed to be stable, that is, equal elements will not be reordered. + * The sort algorithm is a mergesort with the merge omitted if the last + * element of one half comes before the first element of the other half. This + * algorithm gives guaranteed O(nlog(n)) time, at the expense of making a + * copy of the array. + * + * @param a the array to be sorted + * @exception ClassCastException if any two elements are not mutually + * comparable + * @exception NullPointerException if an element is null (since + * null.compareTo cannot work) + */ + public static void sort(Object[] a) { + mergeSort(a, 0, a.length, defaultComparator); + } + + /** + * Sort an array of Objects according to a Comparator. The sort is + * guaranteed to be stable, that is, equal elements will not be reordered. + * The sort algorithm is a mergesort with the merge omitted if the last + * element of one half comes before the first element of the other half. This + * algorithm gives guaranteed O(nlog(n)) time, at the expense of making a + * copy of the array. + * + * @param a the array to be sorted + * @param c a Comparator to use in sorting the array + * @exception ClassCastException if any two elements are not mutually + * comparable by the Comparator provided + */ + public static void sort(Object[] a, Comparator c) { + mergeSort(a, 0, a.length, c); + } + + /** + * Sort an array of Objects according to their natural ordering. The sort is + * guaranteed to be stable, that is, equal elements will not be reordered. + * The sort algorithm is a mergesort with the merge omitted if the last + * element of one half comes before the first element of the other half. This + * algorithm gives guaranteed O(nlog(n)) time, at the expense of making a + * copy of the array. + * + * @param a the array to be sorted + * @param fromIndex the index of the first element to be sorted. + * @param toIndex the index of the last element to be sorted plus one. + * @exception ClassCastException if any two elements are not mutually + * comparable by the Comparator provided + * @exception ArrayIndexOutOfBoundsException, if fromIndex and toIndex + * are not in range. + * @exception IllegalArgumentException if fromIndex > toIndex + */ + public static void sort(Object[] a, int fromIndex, + int toIndex) { + if (fromIndex > toIndex) + throw new IllegalArgumentException("fromIndex "+fromIndex + +" > toIndex "+toIndex); + mergeSort(a, fromIndex, toIndex, defaultComparator); + } + + /** + * Sort an array of Objects according to a Comparator. The sort is + * guaranteed to be stable, that is, equal elements will not be reordered. + * The sort algorithm is a mergesort with the merge omitted if the last + * element of one half comes before the first element of the other half. This + * algorithm gives guaranteed O(nlog(n)) time, at the expense of making a + * copy of the array. + * + * @param a the array to be sorted + * @param fromIndex the index of the first element to be sorted. + * @param toIndex the index of the last element to be sorted plus one. + * @param c a Comparator to use in sorting the array + * @exception ClassCastException if any two elements are not mutually + * comparable by the Comparator provided + * @exception ArrayIndexOutOfBoundsException, if fromIndex and toIndex + * are not in range. + * @exception IllegalArgumentException if fromIndex > toIndex + */ + public static void sort(Object[] a, int fromIndex, + int toIndex, Comparator c) { + if (fromIndex > toIndex) + throw new IllegalArgumentException("fromIndex "+fromIndex + +" > toIndex "+toIndex); + mergeSort(a, fromIndex, toIndex, c); + } + + /** + * Returns a list "view" of the specified array. This method is intended to + * make it easy to use the Collections API with existing array-based APIs and + * programs. + * + * @param a the array to return a view of + * @returns a fixed-size list, changes to which "write through" to the array + */ + public static List asList(final Object[] a) { + + if (a == null) { + throw new NullPointerException(); + } + + return new ListImpl( a ); + } + + + /** + * Inner class used by asList(Object[]) to provide a list interface + * to an array. The methods are all simple enough to be self documenting. + * Note: When Sun fully specify serialized forms, this class will have to + * be renamed. + */ + private static class ListImpl extends AbstractList { + + ListImpl(Object[] a) { + this.a = a; + } + + public Object get(int index) { + return a[index]; + } + + public int size() { + return a.length; + } + + public Object set(int index, Object element) { + Object old = a[index]; + a[index] = element; + return old; + } + + private Object[] a; + } + +} |