aboutsummaryrefslogtreecommitdiff
path: root/libjava/java/net
diff options
context:
space:
mode:
authorEric Botcazou <ebotcazou@adacore.com>2006-08-09 16:38:45 +0000
committerEric Botcazou <ebotcazou@gcc.gnu.org>2006-08-09 16:38:45 +0000
commitcef6b86c004ea1b65ca4178e569c388fb07a347e (patch)
treecbfcedff7be2fe615e69736cecd53aaf551a0dd8 /libjava/java/net
parent9e7ef3a8817b56393718469bc2f82d7855f684a3 (diff)
downloadgcc-cef6b86c004ea1b65ca4178e569c388fb07a347e.zip
gcc-cef6b86c004ea1b65ca4178e569c388fb07a347e.tar.gz
gcc-cef6b86c004ea1b65ca4178e569c388fb07a347e.tar.bz2
rs6000.c (print_operand): Fix comment and adjust.
* config/rs6000/rs6000.c (print_operand) <D>: Fix comment and adjust. (rs6000_generate_compare): Tweak comments. * config/rs6000/rs6000.md (UNSPEC_MV_CR_GT): Fix comment. From-SVN: r116041
Diffstat (limited to 'libjava/java/net')
0 files changed, 0 insertions, 0 deletions
213'>213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
/*
 *  Physical memory access templates
 *
 *  Copyright (c) 2003 Fabrice Bellard
 *  Copyright (c) 2015 Linaro, Inc.
 *  Copyright (c) 2016 Red Hat, Inc.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

/* warning: addr must be aligned */
static inline uint32_t glue(address_space_ldl_internal, SUFFIX)(ARG1_DECL,
    hwaddr addr, MemTxAttrs attrs, MemTxResult *result,
    enum device_endian endian)
{
    uint8_t *ptr;
    uint64_t val;
    MemoryRegion *mr;
    hwaddr l = 4;
    hwaddr addr1;
    MemTxResult r;
    bool release_lock = false;

    RCU_READ_LOCK();
    mr = TRANSLATE(addr, &addr1, &l, false, attrs);
    if (l < 4 || !memory_access_is_direct(mr, false)) {
        release_lock |= prepare_mmio_access(mr);

        /* I/O case */
        r = memory_region_dispatch_read(mr, addr1, &val,
                                        MO_32 | devend_memop(endian), attrs);
    } else {
        /* RAM case */
        fuzz_dma_read_cb(addr, 4, mr);
        ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
        switch (endian) {
        case DEVICE_LITTLE_ENDIAN:
            val = ldl_le_p(ptr);
            break;
        case DEVICE_BIG_ENDIAN:
            val = ldl_be_p(ptr);
            break;
        default:
            val = ldl_p(ptr);
            break;
        }
        r = MEMTX_OK;
    }
    if (result) {
        *result = r;
    }
    if (release_lock) {
        qemu_mutex_unlock_iothread();
    }
    RCU_READ_UNLOCK();
    return val;
}

uint32_t glue(address_space_ldl, SUFFIX)(ARG1_DECL,
    hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
{
    return glue(address_space_ldl_internal, SUFFIX)(ARG1, addr, attrs, result,
                                                    DEVICE_NATIVE_ENDIAN);
}

uint32_t glue(address_space_ldl_le, SUFFIX)(ARG1_DECL,
    hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
{
    return glue(address_space_ldl_internal, SUFFIX)(ARG1, addr, attrs, result,
                                                    DEVICE_LITTLE_ENDIAN);
}

uint32_t glue(address_space_ldl_be, SUFFIX)(ARG1_DECL,
    hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
{
    return glue(address_space_ldl_internal, SUFFIX)(ARG1, addr, attrs, result,
                                                    DEVICE_BIG_ENDIAN);
}

/* warning: addr must be aligned */
static inline uint64_t glue(address_space_ldq_internal, SUFFIX)(ARG1_DECL,
    hwaddr addr, MemTxAttrs attrs, MemTxResult *result,
    enum device_endian endian)
{
    uint8_t *ptr;
    uint64_t val;
    MemoryRegion *mr;
    hwaddr l = 8;
    hwaddr addr1;
    MemTxResult r;
    bool release_lock = false;

    RCU_READ_LOCK();
    mr = TRANSLATE(addr, &addr1, &l, false, attrs);
    if (l < 8 || !memory_access_is_direct(mr, false)) {
        release_lock |= prepare_mmio_access(mr);

        /* I/O case */
        r = memory_region_dispatch_read(mr, addr1, &val,
                                        MO_64 | devend_memop(endian), attrs);
    } else {
        /* RAM case */
        fuzz_dma_read_cb(addr, 8, mr);
        ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
        switch (endian) {
        case DEVICE_LITTLE_ENDIAN:
            val = ldq_le_p(ptr);
            break;
        case DEVICE_BIG_ENDIAN:
            val = ldq_be_p(ptr);
            break;
        default:
            val = ldq_p(ptr);
            break;
        }
        r = MEMTX_OK;
    }
    if (result) {
        *result = r;
    }
    if (release_lock) {
        qemu_mutex_unlock_iothread();
    }
    RCU_READ_UNLOCK();
    return val;
}

uint64_t glue(address_space_ldq, SUFFIX)(ARG1_DECL,
    hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
{
    return glue(address_space_ldq_internal, SUFFIX)(ARG1, addr, attrs, result,
                                                    DEVICE_NATIVE_ENDIAN);
}

uint64_t glue(address_space_ldq_le, SUFFIX)(ARG1_DECL,
    hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
{
    return glue(address_space_ldq_internal, SUFFIX)(ARG1, addr, attrs, result,
                                                    DEVICE_LITTLE_ENDIAN);
}

uint64_t glue(address_space_ldq_be, SUFFIX)(ARG1_DECL,
    hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
{
    return glue(address_space_ldq_internal, SUFFIX)(ARG1, addr, attrs, result,
                                                    DEVICE_BIG_ENDIAN);
}

uint8_t glue(address_space_ldub, SUFFIX)(ARG1_DECL,
    hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
{
    uint8_t *ptr;
    uint64_t val;
    MemoryRegion *mr;
    hwaddr l = 1;
    hwaddr addr1;
    MemTxResult r;
    bool release_lock = false;

    RCU_READ_LOCK();
    mr = TRANSLATE(addr, &addr1, &l, false, attrs);
    if (!memory_access_is_direct(mr, false)) {
        release_lock |= prepare_mmio_access(mr);

        /* I/O case */
        r = memory_region_dispatch_read(mr, addr1, &val, MO_8, attrs);
    } else {
        /* RAM case */
        fuzz_dma_read_cb(addr, 1, mr);
        ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
        val = ldub_p(ptr);
        r = MEMTX_OK;
    }
    if (result) {
        *result = r;
    }
    if (release_lock) {
        qemu_mutex_unlock_iothread();
    }
    RCU_READ_UNLOCK();
    return val;
}

/* warning: addr must be aligned */
static inline uint16_t glue(address_space_lduw_internal, SUFFIX)(ARG1_DECL,
    hwaddr addr, MemTxAttrs attrs, MemTxResult *result,
    enum device_endian endian)
{
    uint8_t *ptr;
    uint64_t val;
    MemoryRegion *mr;
    hwaddr l = 2;
    hwaddr addr1;
    MemTxResult r;
    bool release_lock = false;

    RCU_READ_LOCK();
    mr = TRANSLATE(addr, &addr1, &l, false, attrs);
    if (l < 2 || !memory_access_is_direct(mr, false)) {
        release_lock |= prepare_mmio_access(mr);

        /* I/O case */
        r = memory_region_dispatch_read(mr, addr1, &val,
                                        MO_16 | devend_memop(endian), attrs);
    } else {
        /* RAM case */
        fuzz_dma_read_cb(addr, 2, mr);
        ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
        switch (endian) {
        case DEVICE_LITTLE_ENDIAN:
            val = lduw_le_p(ptr);
            break;
        case DEVICE_BIG_ENDIAN:
            val = lduw_be_p(ptr);
            break;
        default:
            val = lduw_p(ptr);
            break;
        }
        r = MEMTX_OK;
    }
    if (result) {
        *result = r;
    }
    if (release_lock) {
        qemu_mutex_unlock_iothread();
    }
    RCU_READ_UNLOCK();
    return val;
}

uint16_t glue(address_space_lduw, SUFFIX)(ARG1_DECL,
    hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
{
    return glue(address_space_lduw_internal, SUFFIX)(ARG1, addr, attrs, result,
                                                     DEVICE_NATIVE_ENDIAN);
}

uint16_t glue(address_space_lduw_le, SUFFIX)(ARG1_DECL,
    hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
{
    return glue(address_space_lduw_internal, SUFFIX)(ARG1, addr, attrs, result,
                                                     DEVICE_LITTLE_ENDIAN);
}

uint16_t glue(address_space_lduw_be, SUFFIX)(ARG1_DECL,
    hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
{
    return glue(address_space_lduw_internal, SUFFIX)(ARG1, addr, attrs, result,
                                       DEVICE_BIG_ENDIAN);
}

/* warning: addr must be aligned. The ram page is not masked as dirty
   and the code inside is not invalidated. It is useful if the dirty
   bits are used to track modified PTEs */
void glue(address_space_stl_notdirty, SUFFIX)(ARG1_DECL,
    hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result)
{
    uint8_t *ptr;
    MemoryRegion *mr;
    hwaddr l = 4;
    hwaddr addr1;
    MemTxResult r;
    uint8_t dirty_log_mask;
    bool release_lock = false;

    RCU_READ_LOCK();
    mr = TRANSLATE(addr, &addr1, &l, true, attrs);
    if (l < 4 || !memory_access_is_direct(mr, true)) {
        release_lock |= prepare_mmio_access(mr);

        r = memory_region_dispatch_write(mr, addr1, val, MO_32, attrs);
    } else {
        ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
        stl_p(ptr, val);

        dirty_log_mask = memory_region_get_dirty_log_mask(mr);
        dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
        cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
                                            4, dirty_log_mask);
        r = MEMTX_OK;
    }
    if (result) {
        *result = r;
    }
    if (release_lock) {
        qemu_mutex_unlock_iothread();
    }
    RCU_READ_UNLOCK();
}

/* warning: addr must be aligned */
static inline void glue(address_space_stl_internal, SUFFIX)(ARG1_DECL,
    hwaddr addr, uint32_t val, MemTxAttrs attrs,
    MemTxResult *result, enum device_endian endian)
{
    uint8_t *ptr;
    MemoryRegion *mr;
    hwaddr l = 4;
    hwaddr addr1;
    MemTxResult r;
    bool release_lock = false;

    RCU_READ_LOCK();
    mr = TRANSLATE(addr, &addr1, &l, true, attrs);
    if (l < 4 || !memory_access_is_direct(mr, true)) {
        release_lock |= prepare_mmio_access(mr);
        r = memory_region_dispatch_write(mr, addr1, val,
                                         MO_32 | devend_memop(endian), attrs);
    } else {
        /* RAM case */
        ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
        switch (endian) {
        case DEVICE_LITTLE_ENDIAN:
            stl_le_p(ptr, val);
            break;
        case DEVICE_BIG_ENDIAN:
            stl_be_p(ptr, val);
            break;
        default:
            stl_p(ptr, val);
            break;
        }
        invalidate_and_set_dirty(mr, addr1, 4);
        r = MEMTX_OK;
    }
    if (result) {
        *result = r;
    }
    if (release_lock) {
        qemu_mutex_unlock_iothread();
    }
    RCU_READ_UNLOCK();
}

void glue(address_space_stl, SUFFIX)(ARG1_DECL,
    hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result)
{
    glue(address_space_stl_internal, SUFFIX)(ARG1, addr, val, attrs,
                                             result, DEVICE_NATIVE_ENDIAN);
}

void glue(address_space_stl_le, SUFFIX)(ARG1_DECL,
    hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result)
{
    glue(address_space_stl_internal, SUFFIX)(ARG1, addr, val, attrs,
                                             result, DEVICE_LITTLE_ENDIAN);
}

void glue(address_space_stl_be, SUFFIX)(ARG1_DECL,
    hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result)
{
    glue(address_space_stl_internal, SUFFIX)(ARG1, addr, val, attrs,
                                             result, DEVICE_BIG_ENDIAN);
}

void glue(address_space_stb, SUFFIX)(ARG1_DECL,
    hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
{
    uint8_t *ptr;
    MemoryRegion *mr;
    hwaddr l = 1;
    hwaddr addr1;
    MemTxResult r;
    bool release_lock = false;

    RCU_READ_LOCK();
    mr = TRANSLATE(addr, &addr1, &l, true, attrs);
    if (!memory_access_is_direct(mr, true)) {
        release_lock |= prepare_mmio_access(mr);
        r = memory_region_dispatch_write(mr, addr1, val, MO_8, attrs);
    } else {
        /* RAM case */
        ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
        stb_p(ptr, val);
        invalidate_and_set_dirty(mr, addr1, 1);
        r = MEMTX_OK;
    }
    if (result) {
        *result = r;
    }
    if (release_lock) {
        qemu_mutex_unlock_iothread();
    }
    RCU_READ_UNLOCK();
}

/* warning: addr must be aligned */
static inline void glue(address_space_stw_internal, SUFFIX)(ARG1_DECL,
    hwaddr addr, uint16_t val, MemTxAttrs attrs,
    MemTxResult *result, enum device_endian endian)
{
    uint8_t *ptr;
    MemoryRegion *mr;
    hwaddr l = 2;
    hwaddr addr1;
    MemTxResult r;
    bool release_lock = false;

    RCU_READ_LOCK();
    mr = TRANSLATE(addr, &addr1, &l, true, attrs);
    if (l < 2 || !memory_access_is_direct(mr, true)) {
        release_lock |= prepare_mmio_access(mr);
        r = memory_region_dispatch_write(mr, addr1, val,
                                         MO_16 | devend_memop(endian), attrs);
    } else {
        /* RAM case */
        ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
        switch (endian) {
        case DEVICE_LITTLE_ENDIAN:
            stw_le_p(ptr, val);
            break;
        case DEVICE_BIG_ENDIAN:
            stw_be_p(ptr, val);
            break;
        default:
            stw_p(ptr, val);
            break;
        }
        invalidate_and_set_dirty(mr, addr1, 2);
        r = MEMTX_OK;
    }
    if (result) {
        *result = r;
    }
    if (release_lock) {
        qemu_mutex_unlock_iothread();
    }
    RCU_READ_UNLOCK();
}

void glue(address_space_stw, SUFFIX)(ARG1_DECL,
    hwaddr addr, uint16_t val, MemTxAttrs attrs, MemTxResult *result)
{
    glue(address_space_stw_internal, SUFFIX)(ARG1, addr, val, attrs, result,
                                             DEVICE_NATIVE_ENDIAN);
}

void glue(address_space_stw_le, SUFFIX)(ARG1_DECL,
    hwaddr addr, uint16_t val, MemTxAttrs attrs, MemTxResult *result)
{
    glue(address_space_stw_internal, SUFFIX)(ARG1, addr, val, attrs, result,
                                             DEVICE_LITTLE_ENDIAN);
}

void glue(address_space_stw_be, SUFFIX)(ARG1_DECL,
    hwaddr addr, uint16_t val, MemTxAttrs attrs, MemTxResult *result)
{
    glue(address_space_stw_internal, SUFFIX)(ARG1, addr, val, attrs, result,
                               DEVICE_BIG_ENDIAN);
}

static void glue(address_space_stq_internal, SUFFIX)(ARG1_DECL,
    hwaddr addr, uint64_t val, MemTxAttrs attrs,
    MemTxResult *result, enum device_endian endian)
{
    uint8_t *ptr;
    MemoryRegion *mr;
    hwaddr l = 8;
    hwaddr addr1;
    MemTxResult r;
    bool release_lock = false;

    RCU_READ_LOCK();
    mr = TRANSLATE(addr, &addr1, &l, true, attrs);
    if (l < 8 || !memory_access_is_direct(mr, true)) {
        release_lock |= prepare_mmio_access(mr);
        r = memory_region_dispatch_write(mr, addr1, val,
                                         MO_64 | devend_memop(endian), attrs);
    } else {
        /* RAM case */
        ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
        switch (endian) {
        case DEVICE_LITTLE_ENDIAN:
            stq_le_p(ptr, val);
            break;
        case DEVICE_BIG_ENDIAN:
            stq_be_p(ptr, val);
            break;
        default:
            stq_p(ptr, val);
            break;
        }
        invalidate_and_set_dirty(mr, addr1, 8);
        r = MEMTX_OK;
    }
    if (result) {
        *result = r;
    }
    if (release_lock) {
        qemu_mutex_unlock_iothread();
    }
    RCU_READ_UNLOCK();
}

void glue(address_space_stq, SUFFIX)(ARG1_DECL,
    hwaddr addr, uint64_t val, MemTxAttrs attrs, MemTxResult *result)
{
    glue(address_space_stq_internal, SUFFIX)(ARG1, addr, val, attrs, result,
                                             DEVICE_NATIVE_ENDIAN);
}

void glue(address_space_stq_le, SUFFIX)(ARG1_DECL,
    hwaddr addr, uint64_t val, MemTxAttrs attrs, MemTxResult *result)
{
    glue(address_space_stq_internal, SUFFIX)(ARG1, addr, val, attrs, result,
                                             DEVICE_LITTLE_ENDIAN);
}

void glue(address_space_stq_be, SUFFIX)(ARG1_DECL,
    hwaddr addr, uint64_t val, MemTxAttrs attrs, MemTxResult *result)
{
    glue(address_space_stq_internal, SUFFIX)(ARG1, addr, val, attrs, result,
                                             DEVICE_BIG_ENDIAN);
}

#undef ARG1_DECL
#undef ARG1
#undef SUFFIX
#undef TRANSLATE
#undef RCU_READ_LOCK
#undef RCU_READ_UNLOCK