aboutsummaryrefslogtreecommitdiff
path: root/libjava/java/lang/Float.java
diff options
context:
space:
mode:
authorTom Tromey <tromey@redhat.com>2002-06-13 18:16:26 +0000
committerTom Tromey <tromey@gcc.gnu.org>2002-06-13 18:16:26 +0000
commit93f7aeea7ac79573748c5f2632059aa6b50d74e2 (patch)
treefbd871ac981d77c90c17e4051a89bbbdb5953005 /libjava/java/lang/Float.java
parenta8fa30f301536452a5840e8f605ff7a568174881 (diff)
downloadgcc-93f7aeea7ac79573748c5f2632059aa6b50d74e2.zip
gcc-93f7aeea7ac79573748c5f2632059aa6b50d74e2.tar.gz
gcc-93f7aeea7ac79573748c5f2632059aa6b50d74e2.tar.bz2
natString.cc (init): Handle case where DONT_COPY is true and OFFSET!=0.
* java/lang/natString.cc (init): Handle case where DONT_COPY is true and OFFSET!=0. * java/lang/String.java (String(char[],int,int,boolean): New constructor. * java/lang/Long.java: Imported new version from Classpath. * java/lang/Number.java: Likewise. * java/lang/Integer.java: Likewise. * java/lang/Long.java: Likewise. * java/lang/Float.java: Likewise. * java/lang/Boolean.java: Likewise. * java/lang/Double.java: Likewise. * java/lang/Void.java: Likewise. From-SVN: r54595
Diffstat (limited to 'libjava/java/lang/Float.java')
-rw-r--r--libjava/java/lang/Float.java576
1 files changed, 289 insertions, 287 deletions
diff --git a/libjava/java/lang/Float.java b/libjava/java/lang/Float.java
index 7c0d199..930b841 100644
--- a/libjava/java/lang/Float.java
+++ b/libjava/java/lang/Float.java
@@ -1,4 +1,4 @@
-/* java.lang.Float
+/* Float.java -- object wrapper for float
Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
This file is part of GNU Classpath.
@@ -7,7 +7,7 @@ GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
-
+
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
@@ -40,12 +40,6 @@ package java.lang;
import gnu.classpath.Configuration;
-/* Written using "Java Class Libraries", 2nd edition, ISBN 0-201-31002-3
- * "The Java Language Specification", ISBN 0-201-63451-1
- * plus online API docs for JDK 1.2 beta from http://www.javasoft.com.
- * Status: Believed complete and correct.
- */
-
/**
* Instances of class <code>Float</code> represent primitive
* <code>float</code> values.
@@ -55,11 +49,18 @@ import gnu.classpath.Configuration;
*
* @author Paul Fisher
* @author Andrew Haley <aph@cygnus.com>
- * @since JDK 1.0
+ * @author Eric Blake <ebb9@email.byu.edu>
+ * @since 1.0
+ * @status updated to 1.4
*/
public final class Float extends Number implements Comparable
{
/**
+ * Compatible with JDK 1.0+.
+ */
+ private static final long serialVersionUID = -2671257302660747028L;
+
+ /**
* The maximum positive value a <code>double</code> may represent
* is 3.4028235e+38f.
*/
@@ -74,46 +75,50 @@ public final class Float extends Number implements Comparable
/**
* The value of a float representation -1.0/0.0, negative infinity.
*/
- public static final float NEGATIVE_INFINITY = -1.0f/0.0f;
+ public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;
/**
* The value of a float representation 1.0/0.0, positive infinity.
*/
- public static final float POSITIVE_INFINITY = 1.0f/0.0f;
+ public static final float POSITIVE_INFINITY = 1.0f / 0.0f;
/**
* All IEEE 754 values of NaN have the same value in Java.
*/
- public static final float NaN = 0.0f/0.0f;
+ public static final float NaN = 0.0f / 0.0f;
/**
- * The primitive type <code>float</code> is represented by this
+ * The primitive type <code>float</code> is represented by this
* <code>Class</code> object.
+ * @since 1.1
*/
public static final Class TYPE = VMClassLoader.getPrimitiveClass('F');
/**
* The immutable value of this Float.
+ *
+ * @serial the wrapped float
*/
private final float value;
- private static final long serialVersionUID = -2671257302660747028L;
-
+ /**
+ * Load native routines necessary for this class.
+ */
static
{
if (Configuration.INIT_LOAD_LIBRARY)
{
- System.loadLibrary ("javalang");
+ System.loadLibrary("javalang");
}
}
/**
- * Create a <code>float</code> from the primitive <code>Float</code>
+ * Create a <code>Float</code> from the primitive <code>float</code>
* specified.
*
- * @param value the <code>Float</code> argument
+ * @param value the <code>float</code> argument
*/
- public Float (float value)
+ public Float(float value)
{
this.value = value;
}
@@ -124,379 +129,395 @@ public final class Float extends Number implements Comparable
*
* @param value the <code>double</code> argument
*/
- public Float (double value)
+ public Float(double value)
{
- this.value = (float)value;
+ this.value = (float) value;
}
/**
* Create a <code>Float</code> from the specified <code>String</code>.
- *
* This method calls <code>Float.parseFloat()</code>.
*
- * @exception NumberFormatException when the <code>String</code> cannot
- * be parsed into a <code>Float</code>.
* @param s the <code>String</code> to convert
- * @see #parseFloat(java.lang.String)
+ * @throws NumberFormatException if <code>s</code> cannot be parsed as a
+ * <code>float</code>
+ * @throws NullPointerException if <code>s</code> is null
+ * @see #parseFloat(String)
+ */
+ public Float(String s)
+ {
+ value = parseFloat(s);
+ }
+
+ /**
+ * Convert the <code>float</code> to a <code>String</code>.
+ * Floating-point string representation is fairly complex: here is a
+ * rundown of the possible values. "<code>[-]</code>" indicates that a
+ * negative sign will be printed if the value (or exponent) is negative.
+ * "<code>&lt;number&gt;</code>" means a string of digits ('0' to '9').
+ * "<code>&lt;digit&gt;</code>" means a single digit ('0' to '9').<br>
+ *
+ * <table border=1>
+ * <tr><th>Value of Float</th><th>String Representation</th></tr>
+ * <tr><td>[+-] 0</td> <td><code>[-]0.0</code></td></tr>
+ * <tr><td>Between [+-] 10<sup>-3</sup> and 10<sup>7</sup>, exclusive</td>
+ * <td><code>[-]number.number</code></td></tr>
+ * <tr><td>Other numeric value</td>
+ * <td><code>[-]&lt;digit&gt;.&lt;number&gt;
+ * E[-]&lt;number&gt;</code></td></tr>
+ * <tr><td>[+-] infinity</td> <td><code>[-]Infinity</code></td></tr>
+ * <tr><td>NaN</td> <td><code>NaN</code></td></tr>
+ * </table>
+ *
+ * Yes, negative zero <em>is</em> a possible value. Note that there is
+ * <em>always</em> a <code>.</code> and at least one digit printed after
+ * it: even if the number is 3, it will be printed as <code>3.0</code>.
+ * After the ".", all digits will be printed except trailing zeros. The
+ * result is rounded to the shortest decimal number which will parse back
+ * to the same float.
+ *
+ * <p>To create other output formats, use {@link java.text.NumberFormat}.
+ *
+ * @XXX specify where we are not in accord with the spec.
+ *
+ * @param f the <code>float</code> to convert
+ * @return the <code>String</code> representing the <code>float</code>
+ */
+ public static String toString(float f)
+ {
+ return Double.toString(f, true);
+ }
+
+ /**
+ * Creates a new <code>Float</code> object using the <code>String</code>.
+ *
+ * @param s the <code>String</code> to convert
+ * @return the new <code>Float</code>
+ * @throws NumberFormatException if <code>s</code> cannot be parsed as a
+ * <code>float</code>
+ * @throws NullPointerException if <code>s</code> is null
+ * @see #parseFloat(String)
*/
- public Float (String s) throws NumberFormatException
+ public static Float valueOf(String s)
{
- this.value = parseFloat (s);
+ return new Float(parseFloat(s));
}
/**
- * Parse the specified <code>String</code> as a <code>float</code>.
- *
- * The number is really read as <em>n * 10<sup>exponent</sup></em>. The
- * first number is <em>n</em>, and if there is an "<code>E</code>"
- * ("<code>e</code>" is also acceptable), then the integer after that is
- * the exponent.
- * <P>
- * Here are the possible forms the number can take:
- * <BR>
- * <TABLE BORDER=1>
- * <TR><TH>Form</TH><TH>Examples</TH></TR>
- * <TR><TD><CODE>[+-]&lt;number&gt;[.]</CODE></TD><TD>345., -10, 12</TD></TR>
- * <TR><TD><CODE>[+-]&lt;number&gt;.&lt;number&gt;</CODE></TD><TD>40.2, 80.00, -12.30</TD></TR>
- * <TR><TD><CODE>[+-]&lt;number&gt;[.]E[+-]&lt;number&gt;</CODE></TD><TD>80E12, -12e+7, 4.E-123</TD></TR>
- * <TR><TD><CODE>[+-]&lt;number&gt;.&lt;number&gt;E[+-]&lt;number&gt;</CODE></TD><TD>6.02e-22, -40.2E+6, 12.3e9</TD></TR>
- * </TABLE>
- *
- * "<code>[+-]</code>" means either a plus or minus sign may go there, or
- * neither, in which case + is assumed.
- * <BR>
- * "<code>[.]</code>" means a dot may be placed here, but is optional.
- * <BR>
- * "<code>&lt;number&gt;</code>" means a string of digits (0-9), basically
- * an integer. "<code>&lt;number&gt;.&lt;number&gt;</code>" is basically
- * a real number, a floating-point value.
- * <P>
- * Remember that a <code>float</code> has a limited range. If the
- * number you specify is greater than <code>Float.MAX_VALUE</code> or less
- * than <code>-Float.MAX_VALUE</code>, it will be set at
- * <code>Float.POSITIVE_INFINITY</code> or
- * <code>Float.NEGATIVE_INFINITY</code>, respectively.
- * <P>
- *
- * Note also that <code>float</code> does not have perfect precision. Many
- * numbers cannot be precisely represented. The number you specify
- * will be rounded to the nearest representable value.
- * <code>Float.MIN_VALUE</code> is the margin of error for <code>float</code>
- * values.
- * <P>
- * If an unexpected character is found in the <code>String</code>, a
- * <code>NumberFormatException</code> will be thrown. Spaces are not
- * allowed and will cause this exception to be thrown.
+ * Parse the specified <code>String</code> as a <code>float</code>. The
+ * extended BNF grammar is as follows:<br>
+ * <pre>
+ * <em>DecodableString</em>:
+ * ( [ <code>-</code> | <code>+</code> ] <code>NaN</code> )
+ * | ( [ <code>-</code> | <code>+</code> ] <code>Infinity</code> )
+ * | ( [ <code>-</code> | <code>+</code> ] <em>FloatingPoint</em>
+ * [ <code>f</code> | <code>F</code> | <code>d</code>
+ * | <code>D</code>] )
+ * <em>FloatingPoint</em>:
+ * ( { <em>Digit</em> }+ [ <code>.</code> { <em>Digit</em> } ]
+ * [ <em>Exponent</em> ] )
+ * | ( <code>.</code> { <em>Digit</em> }+ [ <em>Exponent</em> ] )
+ * <em>Exponent</em>:
+ * ( ( <code>e</code> | <code>E</code> )
+ * [ <code>-</code> | <code>+</code> ] { <em>Digit</em> }+ )
+ * <em>Digit</em>: <em><code>'0'</code> through <code>'9'</code></em>
+ * </pre>
+ *
+ * <p>NaN and infinity are special cases, to allow parsing of the output
+ * of toString. Otherwise, the result is determined by calculating
+ * <em>n * 10<sup>exponent</sup></em> to infinite precision, then rounding
+ * to the nearest float. Remember that many numbers cannot be precisely
+ * represented in floating point. In case of overflow, infinity is used,
+ * and in case of underflow, signed zero is used. Unlike Integer.parseInt,
+ * this does not accept Unicode digits outside the ASCII range.
+ *
+ * <p>If an unexpected character is found in the <code>String</code>, a
+ * <code>NumberFormatException</code> will be thrown. Leading and trailing
+ * 'whitespace' is ignored via <code>String.trim()</code>, but spaces
+ * internal to the actual number are not allowed.
+ *
+ * <p>To parse numbers according to another format, consider using
+ * {@link java.text.NumberFormat}.
*
* @XXX specify where/how we are not in accord with the spec.
*
* @param str the <code>String</code> to convert
- * @return the value of the <code>String</code> as a <code>float</code>.
- * @exception NumberFormatException when the string cannot be parsed to a
- * <code>float</code>.
- * @since JDK 1.2
+ * @return the <code>float</code> value of <code>s</code>
+ * @throws NumberFormatException if <code>s</code> cannot be parsed as a
+ * <code>float</code>
+ * @throws NullPointerException if <code>s</code> is null
* @see #MIN_VALUE
* @see #MAX_VALUE
* @see #POSITIVE_INFINITY
* @see #NEGATIVE_INFINITY
+ * @since 1.2
*/
- public static float parseFloat (String s) throws NumberFormatException
+ public static float parseFloat(String s)
{
- // The spec says that parseFloat() should work like
- // Double.valueOf(). This is equivalent, in our implementation,
- // but more efficient.
- return (float) Double.parseDouble (s);
+ // XXX Rounding parseDouble() causes some errors greater than 1 ulp from
+ // the infinitely precise decimal.
+ return (float) Double.parseDouble(s);
}
/**
- * Convert the <code>float</code> value of this <code>Float</code>
- * to a <code>String</code>. This method calls
- * <code>Float.toString(float)</code> to do its dirty work.
+ * Return <code>true</code> if the <code>float</code> has the same
+ * value as <code>NaN</code>, otherwise return <code>false</code>.
*
- * @return the <code>String</code> representation of this <code>Float</code>.
- * @see #toString(float)
+ * @param v the <code>float</code> to compare
+ * @return whether the argument is <code>NaN</code>
*/
- public String toString ()
+ public static boolean isNaN(float v)
{
- return toString (value);
+ // This works since NaN != NaN is the only reflexive inequality
+ // comparison which returns true.
+ return v != v;
}
/**
- * If the <code>Object</code> is not <code>null</code>, is an
- * <code>instanceof</code> <code>Float</code>, and represents
- * the same primitive <code>float</code> value return
- * <code>true</code>. Otherwise <code>false</code> is returned.
- * <p>
- * Note that there are two differences between <code>==</code> and
- * <code>equals()</code>. <code>0.0f == -0.0f</code> returns <code>true</code>
- * but <code>new Float(0.0f).equals(new Float(-0.0f))</code> returns
- * <code>false</code>. And <code>Float.NaN == Float.NaN</code> returns
- * <code>false</code>, but
- * <code>new Float(Float.NaN).equals(new Float(Float.NaN))</code> returns
- * <code>true</code>.
+ * Return <code>true</code> if the <code>float</code> has a value
+ * equal to either <code>NEGATIVE_INFINITY</code> or
+ * <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
*
- * @param obj the object to compare to
- * @return whether the objects are semantically equal.
+ * @param v the <code>float</code> to compare
+ * @return whether the argument is (-/+) infinity
*/
- public boolean equals (Object obj)
+ public static boolean isInfinite(float v)
{
- if (!(obj instanceof Float))
- return false;
-
- float f = ((Float) obj).value;
-
- // GCJ LOCAL: this implementation is probably faster than
- // Classpath's, especially once we inline floatToIntBits.
- return floatToIntBits (value) == floatToIntBits (f);
- // END GCJ LOCAL
+ return v == POSITIVE_INFINITY || v == NEGATIVE_INFINITY;
}
/**
- * Return a hashcode representing this Object.
- * <code>Float</code>'s hash code is calculated by calling the
- * <code>floatToIntBits()</code> function.
- * @return this Object's hash code.
- * @see java.lang.Float.floatToIntBits(float)
+ * Return <code>true</code> if the value of this <code>Float</code>
+ * is the same as <code>NaN</code>, otherwise return <code>false</code>.
+ *
+ * @return whether this <code>Float</code> is <code>NaN</code>
*/
- public int hashCode ()
+ public boolean isNaN()
{
- return floatToIntBits (value);
+ return isNaN(value);
}
/**
- * Return the value of this <code>Double</code> when cast to an
- * <code>int</code>.
+ * Return <code>true</code> if the value of this <code>Float</code>
+ * is the same as <code>NEGATIVE_INFINITY</code> or
+ * <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
+ *
+ * @return whether this <code>Float</code> is (-/+) infinity
*/
- public int intValue ()
+ public boolean isInfinite()
{
- return (int) value;
+ return isInfinite(value);
}
/**
- * Return the value of this <code>Double</code> when cast to a
- * <code>long</code>.
+ * Convert the <code>float</code> value of this <code>Float</code>
+ * to a <code>String</code>. This method calls
+ * <code>Float.toString(float)</code> to do its dirty work.
+ *
+ * @return the <code>String</code> representation
+ * @see #toString(float)
*/
- public long longValue ()
+ public String toString()
{
- return (long) value;
+ return toString(value);
}
/**
- * Return the value of this <code>Double</code> when cast to a
- * <code>float</code>.
+ * Return the value of this <code>Float</code> as a <code>byte</code>.
+ *
+ * @return the byte value
+ * @since 1.1
*/
- public float floatValue ()
+ public byte byteValue()
{
- return (float) value;
+ return (byte) value;
}
/**
- * Return the primitive <code>double</code> value represented by this
- * <code>Double</code>.
+ * Return the value of this <code>Float</code> as a <code>short</code>.
+ *
+ * @return the short value
+ * @since 1.1
*/
- public double doubleValue ()
+ public short shortValue()
{
- return (double) value;
+ return (short) value;
}
/**
- * Convert the <code>float</code> to a <code>String</code>.
- * <P>
+ * Return the value of this <code>Integer</code> as an <code>int</code>.
*
- * Floating-point string representation is fairly complex: here is a
- * rundown of the possible values. "<CODE>[-]</CODE>" indicates that a
- * negative sign will be printed if the value (or exponent) is negative.
- * "<CODE>&lt;number&gt;</CODE>" means a string of digits (0-9).
- * "<CODE>&lt;digit&gt;</CODE>" means a single digit (0-9).
- * <P>
- *
- * <TABLE BORDER=1>
- * <TR><TH>Value of Float</TH><TH>String Representation</TH></TR>
- * <TR>
- * <TD>[+-] 0</TD>
- * <TD>[<CODE>-</CODE>]<CODE>0.0</CODE></TD>
- * </TR>
- * <TR>
- * <TD>Between [+-] 10<SUP>-3</SUP> and 10<SUP>7</SUP></TD>
- * <TD><CODE>[-]number.number</CODE></TD>
- * </TR>
- * <TR>
- * <TD>Other numeric value</TD>
- * <TD><CODE>[-]&lt;digit&gt;.&lt;number&gt;E[-]&lt;number&gt;</CODE></TD>
- * </TR>
- * <TR>
- * <TD>[+-] infinity</TD>
- * <TD><CODE>[-]Infinity</CODE></TD>
- * </TR>
- * <TR>
- * <TD>NaN</TD>
- * <TD><CODE>NaN</CODE></TD>
- * </TR>
- * </TABLE>
- *
- * Yes, negative zero <EM>is</EM> a possible value. Note that there is
- * <EM>always</EM> a <CODE>.</CODE> and at least one digit printed after
- * it: even if the number is 3, it will be printed as <CODE>3.0</CODE>.
- * After the ".", all digits will be printed except trailing zeros. No
- * truncation or rounding is done by this function.
- *
- * @XXX specify where we are not in accord with the spec.
- *
- * @param f the <code>float</code> to convert
- * @return the <code>String</code> representing the <code>float</code>.
+ * @return the int value
*/
- public static String toString (float f)
+ public int intValue()
{
- return Double.toString ((double) f, true);
+ return (int) value;
}
/**
- * Return the result of calling <code>new Float(java.lang.String)</code>.
- *
- * @param s the <code>String</code> to convert to a <code>Float</code>.
- * @return a new <code>Float</code> representing the <code>String</code>'s
- * numeric value.
+ * Return the value of this <code>Integer</code> as a <code>long</code>.
*
- * @exception NumberFormatException thrown if <code>String</code> cannot
- * be parsed as a <code>double</code>.
- * @see #Float(java.lang.String)
- * @see #parseFloat(java.lang.String)
+ * @return the long value
*/
- public static Float valueOf (String s) throws NumberFormatException
+ public long longValue()
{
- return new Float (s);
+ return (long) value;
}
/**
- * Return <code>true</code> if the value of this <code>Float</code>
- * is the same as <code>NaN</code>, otherwise return <code>false</code>.
- * @return whether this <code>Float</code> is <code>NaN</code>.
+ * Return the value of this <code>Float</code>.
+ *
+ * @return the float value
*/
- public boolean isNaN ()
+ public float floatValue()
{
- return isNaN (value);
+ return value;
}
/**
- * Return <code>true</code> if the <code>float</code> has the same
- * value as <code>NaN</code>, otherwise return <code>false</code>.
+ * Return the value of this <code>Float</code> as a <code>double</code>
*
- * @param v the <code>float</code> to compare
- * @return whether the argument is <code>NaN</code>.
+ * @return the double value
*/
- public static boolean isNaN (float v)
+ public double doubleValue()
{
- // This works since NaN != NaN is the only reflexive inequality
- // comparison which returns true.
- return v != v;
+ return value;
}
/**
- * Return <code>true</code> if the value of this <code>Float</code>
- * is the same as <code>NEGATIVE_INFINITY</code> or
- * <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
+ * Return a hashcode representing this Object. <code>Float</code>'s hash
+ * code is calculated by calling <code>floatToIntBits(floatValue())</code>.
*
- * @return whether this <code>Float</code> is (-/+) infinity.
+ * @return this Object's hash code
+ * @see #floatToIntBits(float)
*/
- public boolean isInfinite ()
+ public int hashCode()
{
- return isInfinite (value);
+ return floatToIntBits(value);
}
/**
- * Return <code>true</code> if the <code>float</code> has a value
- * equal to either <code>NEGATIVE_INFINITY</code> or
- * <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
+ * Returns <code>true</code> if <code>obj</code> is an instance of
+ * <code>Float</code> and represents the same float value. Unlike comparing
+ * two floats with <code>==</code>, this treats two instances of
+ * <code>Float.NaN</code> as equal, but treats <code>0.0</code> and
+ * <code>-0.0</code> as unequal.
*
- * @param v the <code>float</code> to compare
- * @return whether the argument is (-/+) infinity.
+ * <p>Note that <code>f1.equals(f2)<code> is identical to
+ * <code>floatToIntBits(f1.floatValue()) ==
+ * floatToIntBits(f2.floatValue())<code>.
+ *
+ * @param obj the object to compare
+ * @return whether the objects are semantically equal
*/
- public static boolean isInfinite (float v)
+ public boolean equals(Object obj)
{
- return (v == POSITIVE_INFINITY || v == NEGATIVE_INFINITY);
+ if (! (obj instanceof Float))
+ return false;
+
+ float f = ((Float) obj).value;
+
+ // Avoid call to native method. However, some implementations, like gcj,
+ // are better off using floatToIntBits(value) == floatToIntBits(f).
+ // Check common case first, then check NaN and 0.
+ if (value == f)
+ return (value != 0) || (1 / value == 1 / f);
+ return isNaN(value) && isNaN(f);
}
/**
- * Return the int bits of the specified <code>float</code>.
- * The result of this function can be used as the argument to
- * <code>Float.intBitsToFloat(long)</code> to obtain the
+ * Convert the float to the IEEE 754 floating-point "single format" bit
+ * layout. Bit 31 (the most significant) is the sign bit, bits 30-23
+ * (masked by 0x7f800000) represent the exponent, and bits 22-0
+ * (masked by 0x007fffff) are the mantissa. This function collapses all
+ * versions of NaN to 0x7fc00000. The result of this function can be used
+ * as the argument to <code>Float.intBitsToFloat(int)</code> to obtain the
* original <code>float</code> value.
*
* @param value the <code>float</code> to convert
- * @return the bits of the <code>float</code>.
+ * @return the bits of the <code>float</code>
+ * @see #intBitsToFloat(int)
*/
- public static native int floatToIntBits (float value);
+ public static native int floatToIntBits(float value);
/**
- * Return the int bits of the specified <code>float</code>.
- * The result of this function can be used as the argument to
- * <code>Float.intBitsToFloat(long)</code> to obtain the
- * original <code>float</code> value. The difference between
- * this function and <code>floatToIntBits</code> is that this
- * function does not collapse NaN values.
+ * Convert the float to the IEEE 754 floating-point "single format" bit
+ * layout. Bit 31 (the most significant) is the sign bit, bits 30-23
+ * (masked by 0x7f800000) represent the exponent, and bits 22-0
+ * (masked by 0x007fffff) are the mantissa. This function leaves NaN alone,
+ * rather than collapsing to a canonical value. The result of this function
+ * can be used as the argument to <code>Float.intBitsToFloat(int)</code> to
+ * obtain the original <code>float</code> value.
*
* @param value the <code>float</code> to convert
- * @return the bits of the <code>float</code>.
+ * @return the bits of the <code>float</code>
+ * @see #intBitsToFloat(int)
*/
- public static native int floatToRawIntBits (float value);
+ public static native int floatToRawIntBits(float value);
/**
- * Return the <code>float</code> represented by the long
- * bits specified.
+ * Convert the argument in IEEE 754 floating-point "single format" bit
+ * layout to the corresponding float. Bit 31 (the most significant) is the
+ * sign bit, bits 30-23 (masked by 0x7f800000) represent the exponent, and
+ * bits 22-0 (masked by 0x007fffff) are the mantissa. This function leaves
+ * NaN alone, so that you can recover the bit pattern with
+ * <code>Float.floatToRawIntBits(float)</code>.
*
- * @param bits the long bits representing a <code>double</code>
- * @return the <code>float</code> represented by the bits.
+ * @param bits the bits to convert
+ * @return the <code>float</code> represented by the bits
+ * @see #floatToIntBits(float)
+ * @see #floatToRawIntBits(float)
*/
- public static native float intBitsToFloat (int bits);
+ public static native float intBitsToFloat(int bits);
/**
- * Returns 0 if the <code>float</code> value of the argument is
- * equal to the value of this <code>Float</code>. Returns a number
- * less than zero if the value of this <code>Float</code> is less
- * than the <code>Float</code> value of the argument, and returns a
- * number greater than zero if the value of this <code>Float</code>
- * is greater than the <code>float</code> value of the argument.
- * <br>
- * <code>Float.NaN</code> is greater than any number other than itself,
- * even <code>Float.POSITIVE_INFINITY</code>.
- * <br>
- * <code>0.0</code> is greater than <code>-0.0</code>.
+ * Compare two Floats numerically by comparing their <code>float</code>
+ * values. The result is positive if the first is greater, negative if the
+ * second is greater, and 0 if the two are equal. However, this special
+ * cases NaN and signed zero as follows: NaN is considered greater than
+ * all other floats, including <code>POSITIVE_INFINITY</code>, and positive
+ * zero is considered greater than negative zero.
*
- * @param f the Float to compare to.
- * @return 0 if the <code>Float</code>s are the same, &lt; 0 if this
- * <code>Float</code> is less than the <code>Float</code> in
- * in question, or &gt; 0 if it is greater.
+ * @param f the Float to compare
+ * @return the comparison
+ * @since 1.2
+ */
+ public int compareTo(Float f)
+ {
+ return compare(value, f.value);
+ }
+
+ /**
+ * Behaves like <code>compareTo(Float)</code> unless the Object
+ * is not an <code>Float</code>.
*
+ * @param o the object to compare
+ * @return the comparison
+ * @throws ClassCastException if the argument is not a <code>Float</code>
+ * @see #compareTo(Float)
+ * @see Comparable
* @since 1.2
*/
- public int compareTo (Float f)
+ public int compareTo(Object o)
{
- return compare (value, f.value);
+ return compare(value, ((Float) o).value);
}
/**
- * Returns 0 if the first argument is equal to the second argument.
- * Returns a number less than zero if the first argument is less than the
- * second argument, and returns a number greater than zero if the first
- * argument is greater than the second argument.
- * <br>
- * <code>Float.NaN</code> is greater than any number other than itself,
- * even <code>Float.POSITIVE_INFINITY</code>.
- * <br>
- * <code>0.0</code> is greater than <code>-0.0</code>.
- *
- * @param x the first float to compare.
- * @param y the second float to compare.
- * @return 0 if the arguments are the same, &lt; 0 if the
- * first argument is less than the second argument in
- * in question, or &gt; 0 if it is greater.
+ * Behaves like <code>new Float(x).compareTo(new Float(y))</code>; in
+ * other words this compares two floats, special casing NaN and zero,
+ * without the overhead of objects.
+ *
+ * @param x the first float to compare
+ * @param y the second float to compare
+ * @return the comparison
* @since 1.4
*/
- public static int compare (float x, float y)
+ public static int compare(float x, float y)
{
- if (isNaN (x))
- return isNaN (y) ? 0 : 1;
- if (isNaN (y))
+ if (isNaN(x))
+ return isNaN(y) ? 0 : 1;
+ if (isNaN(y))
return -1;
// recall that 0.0 == -0.0, so we convert to infinities and try again
if (x == 0 && y == 0)
@@ -506,23 +527,4 @@ public final class Float extends Number implements Comparable
return x > y ? 1 : -1;
}
-
- /**
- * Compares the specified <code>Object</code> to this <code>Float</code>
- * if and only if the <code>Object</code> is an instanceof
- * <code>Float</code>.
- * Otherwise it throws a <code>ClassCastException</code>
- *
- * @param o the Object to compare to.
- * @return 0 if the <code>Float</code>s are the same, &lt; 0 if this
- * <code>Float</code> is less than the <code>Float</code> in
- * in question, or &gt; 0 if it is greater.
- * @throws ClassCastException if the argument is not a <code>Float</code>
- *
- * @since 1.2
- */
- public int compareTo (Object o)
- {
- return compareTo ((Float) o);
- }
}