diff options
author | Yannick Moy <moy@adacore.com> | 2022-04-08 15:24:49 +0000 |
---|---|---|
committer | Pierre-Marie de Rodat <derodat@adacore.com> | 2022-05-18 08:41:08 +0000 |
commit | c6c9b82bc17e957c621bfb58e33801f956c7c31c (patch) | |
tree | ea0dac41b2513219767f914c701fda45f064dfb6 /gcc | |
parent | 6f8f9d1bcf55187cb81ef7b0ef1e23db1bc0d440 (diff) | |
download | gcc-c6c9b82bc17e957c621bfb58e33801f956c7c31c.zip gcc-c6c9b82bc17e957c621bfb58e33801f956c7c31c.tar.gz gcc-c6c9b82bc17e957c621bfb58e33801f956c7c31c.tar.bz2 |
[Ada] Adapt proof of double arithmetic runtime unit
After changes in Why3 and generation of VCs, ghost code needs to be
adapted for proofs to remain automatic.
gcc/ada/
* libgnat/s-aridou.adb (Big3): Change return type.
(Lemma_Mult_Non_Negative, Lemma_Mult_Non_Positive): Reorder
alphabetically.
(Lemma_Concat_Definition, Lemma_Double_Big_2xxsingle): New
lemmas.
(Double_Divide, Scaled_Divide): Add assertions.
Diffstat (limited to 'gcc')
-rw-r--r-- | gcc/ada/libgnat/s-aridou.adb | 83 |
1 files changed, 67 insertions, 16 deletions
diff --git a/gcc/ada/libgnat/s-aridou.adb b/gcc/ada/libgnat/s-aridou.adb index 08cbed7..e2afd52 100644 --- a/gcc/ada/libgnat/s-aridou.adb +++ b/gcc/ada/libgnat/s-aridou.adb @@ -133,7 +133,7 @@ is Post => Big_2xx'Result > 0; -- 2**N as a big integer - function Big3 (X1, X2, X3 : Single_Uns) return Big_Integer is + function Big3 (X1, X2, X3 : Single_Uns) return Big_Natural is (Big_2xxSingle * Big_2xxSingle * Big (Double_Uns (X1)) + Big_2xxSingle * Big (Double_Uns (X2)) + Big (Double_Uns (X3))) @@ -208,20 +208,6 @@ is Ghost, Post => abs (X * Y) = abs X * abs Y; - procedure Lemma_Mult_Non_Negative (X, Y : Big_Integer) - with - Ghost, - Pre => (X >= Big_0 and then Y >= Big_0) - or else (X <= Big_0 and then Y <= Big_0), - Post => X * Y >= Big_0; - - procedure Lemma_Mult_Non_Positive (X, Y : Big_Integer) - with - Ghost, - Pre => (X <= Big_0 and then Y >= Big_0) - or else (X >= Big_0 and then Y <= Big_0), - Post => X * Y <= Big_0; - procedure Lemma_Abs_Rem_Commutation (X, Y : Big_Integer) with Ghost, @@ -246,6 +232,12 @@ is Pre => M < N and then N < Double_Size, Post => Double_Uns'(2)**M < Double_Uns'(2)**N; + procedure Lemma_Concat_Definition (X, Y : Single_Uns) + with + Ghost, + Post => Big (X & Y) = Big_2xxSingle * Big (Double_Uns (X)) + + Big (Double_Uns (Y)); + procedure Lemma_Deep_Mult_Commutation (Factor : Big_Integer; X, Y : Single_Uns) @@ -289,6 +281,11 @@ is Pre => A * S = B * S + R and then S /= 0, Post => A = B + R / S; + procedure Lemma_Double_Big_2xxSingle + with + Ghost, + Post => Big_2xxSingle * Big_2xxSingle = Big_2xxDouble; + procedure Lemma_Double_Shift (X : Double_Uns; S, S1 : Double_Uns) with Ghost, @@ -419,6 +416,20 @@ is Ghost, Post => X * (Y + Z) = X * Y + X * Z; + procedure Lemma_Mult_Non_Negative (X, Y : Big_Integer) + with + Ghost, + Pre => (X >= Big_0 and then Y >= Big_0) + or else (X <= Big_0 and then Y <= Big_0), + Post => X * Y >= Big_0; + + procedure Lemma_Mult_Non_Positive (X, Y : Big_Integer) + with + Ghost, + Pre => (X <= Big_0 and then Y >= Big_0) + or else (X >= Big_0 and then Y <= Big_0), + Post => X * Y <= Big_0; + procedure Lemma_Neg_Div (X, Y : Big_Integer) with Ghost, @@ -552,6 +563,7 @@ is procedure Lemma_Add_Commutation (X : Double_Uns; Y : Single_Uns) is null; procedure Lemma_Add_One (X : Double_Uns) is null; procedure Lemma_Bounded_Powers_Of_2_Increasing (M, N : Natural) is null; + procedure Lemma_Concat_Definition (X, Y : Single_Uns) is null; procedure Lemma_Deep_Mult_Commutation (Factor : Big_Integer; X, Y : Single_Uns) @@ -566,6 +578,7 @@ is procedure Lemma_Div_Ge (X, Y, Z : Big_Integer) is null; procedure Lemma_Div_Lt (X, Y, Z : Big_Natural) is null; procedure Lemma_Div_Eq (A, B, S, R : Big_Integer) is null; + procedure Lemma_Double_Big_2xxSingle is null; procedure Lemma_Double_Shift (X : Double_Uns; S, S1 : Double_Uns) is null; procedure Lemma_Double_Shift (X : Single_Uns; S, S1 : Natural) is null; procedure Lemma_Double_Shift_Right (X : Double_Uns; S, S1 : Double_Uns) @@ -929,10 +942,18 @@ is pragma Assert (Big (Double_Uns'(Yhi * Zhi)) >= 1); if Yhi > 1 or else Zhi > 1 then pragma Assert (Big (Double_Uns'(Yhi * Zhi)) > 1); + pragma Assert (if X = Double_Int'First and then Round then + Mult > Big_2xxDouble); elsif Zlo > 0 then pragma Assert (Big (Double_Uns'(Yhi * Zlo)) > 0); + pragma Assert (if X = Double_Int'First and then Round then + Mult > Big_2xxDouble); elsif Ylo > 0 then pragma Assert (Big (Double_Uns'(Ylo * Zhi)) > 0); + pragma Assert (if X = Double_Int'First and then Round then + Mult > Big_2xxDouble); + else + pragma Assert (not (X = Double_Int'First and then Round)); end if; Prove_Quotient_Zero; end if; @@ -976,6 +997,7 @@ is Lemma_Mult_Distribution (Big_2xxSingle, Big (Double_Uns (Hi (T2))), Big (Double_Uns (Lo (T2)))); + Lemma_Double_Big_2xxSingle; pragma Assert (Mult = Big_2xxDouble * Big (Double_Uns (Hi (T2))) + Big_2xxSingle * Big (Double_Uns (Lo (T2))) @@ -1890,7 +1912,14 @@ is Big_2xx (Scale), Big_2xxDouble); Lemma_Lt_Mult (Big (Double_Uns (D (4))), Big_2xxSingle, Big_2xx (Scale), Big_2xxDouble); - Lemma_Mult_Commutation (2 ** Scale, D (1) & D (2), T1); + declare + Two_xx_Scale : constant Double_Uns := Double_Uns'(2 ** Scale); + D12 : constant Double_Uns := D (1) & D (2); + begin + pragma Assert (Big_2xx (Scale) * Big (D12) < Big_2xxDouble); + pragma Assert (Big (Two_xx_Scale) * Big (D12) < Big_2xxDouble); + Lemma_Mult_Commutation (Two_xx_Scale, D12, T1); + end; declare Big_D12 : constant Big_Integer := Big_2xx (Scale) * Big (D (1) & D (2)); @@ -1954,6 +1983,10 @@ is pragma Assert (Big (Double_Uns (Hi (T3))) + Big (Double_Uns (Hi (T2))) = Big (Double_Uns (S1))); + pragma Assert + (Big_2xxSingle * Big_2xxSingle * Big (Double_Uns (Hi (T2))) + + Big_2xxSingle * Big_2xxSingle * Big (Double_Uns (Hi (T3))) + = Big_2xxSingle * Big_2xxSingle * Big (Double_Uns (S1))); end Prove_Multiplication; ----------------------------- @@ -2092,6 +2125,9 @@ is Lemma_Div_Lt (Big (T1), Big_2xxSingle, Big (Double_Uns (Zlo))); Lemma_Div_Commutation (T1, Double_Uns (Zlo)); Lemma_Lo_Is_Ident (T1 / Zlo); + pragma Assert + (Big (T2) <= Big_2xxSingle * (Big (Double_Uns (Zlo)) - 1) + + Big (Double_Uns (D (4)))); Lemma_Div_Lt (Big (T2), Big_2xxSingle, Big (Double_Uns (Zlo))); Lemma_Div_Commutation (T2, Double_Uns (Zlo)); Lemma_Lo_Is_Ident (T2 / Zlo); @@ -2304,6 +2340,9 @@ is -- First normalize the divisor so that it has the leading bit on. -- We do this by finding the appropriate left shift amount. + Lemma_Lt_Commutation (D (1) & D (2), Zu); + pragma Assert (Mult < Big_2xxDouble * Big (Zu)); + Shift := Single_Size; Mask := Single_Uns'Last; Scale := 0; @@ -2376,6 +2415,8 @@ is procedure Prove_Shift_Progress is null; begin + pragma Assert (Mask = Shift_Left (Single_Uns'Last, + Single_Size - Shift_Prev)); Prove_Power; Shift := Shift / 2; @@ -2470,6 +2511,16 @@ is + Big (Double_Uns (D (3))), Big3 (D (1), D (2), D (3)), Big (Double_Uns (D (4)))); + Lemma_Concat_Definition (D (1), D (2)); + Lemma_Double_Big_2xxSingle; + Lemma_Substitution + (Mult * Big_2xx (Scale), Big_2xxSingle * Big_2xxSingle, + Big_2xxSingle * Big (Double_Uns (D (1))) + + Big (Double_Uns (D (2))), + Big (D (1) & D (2)), + Big_2xxSingle * Big (Double_Uns (D (3))) + + Big (Double_Uns (D (4)))); + pragma Assert (Big (D (1) & D (2)) < Big (Zu)); -- Loop to compute quotient digits, runs twice for Qd (1) and Qd (2) |