diff options
author | James Van Artsdalen <jrv@gnu.org> | 1992-02-09 13:28:48 +0000 |
---|---|---|
committer | James Van Artsdalen <jrv@gnu.org> | 1992-02-09 13:28:48 +0000 |
commit | c98f874233428d7e6ba83def7842fd703ac0ddf1 (patch) | |
tree | 9a738b9ae15919cc022e8df5890e5101f3a67012 /gcc | |
parent | 48c8b6b7b8a33fa8e24c7923c82ad9fea525289d (diff) | |
download | gcc-c98f874233428d7e6ba83def7842fd703ac0ddf1.zip gcc-c98f874233428d7e6ba83def7842fd703ac0ddf1.tar.gz gcc-c98f874233428d7e6ba83def7842fd703ac0ddf1.tar.bz2 |
Initial revision
From-SVN: r295
Diffstat (limited to 'gcc')
-rw-r--r-- | gcc/config/i386/i386.h | 1393 |
1 files changed, 1393 insertions, 0 deletions
diff --git a/gcc/config/i386/i386.h b/gcc/config/i386/i386.h new file mode 100644 index 0000000..c0cd287 --- /dev/null +++ b/gcc/config/i386/i386.h @@ -0,0 +1,1393 @@ +/* Definitions of target machine for GNU compiler for Intel 80386. + Copyright (C) 1988, 1992 Free Software Foundation, Inc. + +This file is part of GNU CC. + +GNU CC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GNU CC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU CC; see the file COPYING. If not, write to +the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ + + +/* The purpose of this file is to define the characteristics of the i386, + independant of assembler syntax or operating system. + + Three other files build on this one to describe a specific assembler syntax: + bsd386.h, att386.h, and sun386.h. + + The actual tm.h file for a particular system should include + this file, and then the file for the appropriate assembler syntax. + + Many macros that specify assembler syntax are omitted entirely from + this file because they really belong in the files for particular + assemblers. These include AS1, AS2, AS3, RP, IP, LPREFIX, L_SIZE, + PUT_OP_SIZE, USE_STAR, ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, + PRINT_B_I_S, and many that start with ASM_ or end in ASM_OP. */ + +/* Names to predefine in the preprocessor for this target machine. */ + +#define I386 1 + +/* Run-time compilation parameters selecting different hardware subsets. */ + +extern int target_flags; + +/* Macros used in the machine description to test the flags. */ + +/* Compile 80387 insns for floating point (not library calls). */ +#define TARGET_80387 (target_flags & 1) +/* Compile code for an i486. */ +#define TARGET_486 (target_flags & 2) +/* Compile using ret insn that pops args. + This will not work unless you use prototypes at least + for all functions that can take varying numbers of args. */ +#define TARGET_RTD (target_flags & 8) +/* Compile passing first two args in regs 0 and 1. + This exists only to test compiler features that will + be needed for RISC chips. It is not usable + and is not intended to be usable on this cpu. */ +#define TARGET_REGPARM (target_flags & 020) + +/* Macro to define tables used to set the flags. + This is a list in braces of pairs in braces, + each pair being { "NAME", VALUE } + where VALUE is the bits to set or minus the bits to clear. + An empty string NAME is used to identify the default VALUE. */ + +#define TARGET_SWITCHES \ + { { "80387", 1}, \ + { "soft-float", -1}, \ + { "486", 2}, \ + { "no486", -2}, \ + { "386", -2}, \ + { "rtd", 8}, \ + { "nortd", -8}, \ + { "regparm", 020}, \ + { "noregparm", -020}, \ + { "", TARGET_DEFAULT}} + +/* target machine storage layout */ + +/* Define this if most significant byte of a word is the lowest numbered. */ +/* That is true on the 80386. */ + +#define BITS_BIG_ENDIAN 0 + +/* Define this if most significant byte of a word is the lowest numbered. */ +/* That is not true on the 80386. */ +#define BYTES_BIG_ENDIAN 0 + +/* Define this if most significant word of a multiword number is the lowest + numbered. */ +/* Not true for 80386 */ +#define WORDS_BIG_ENDIAN 0 + +/* number of bits in an addressible storage unit */ +#define BITS_PER_UNIT 8 + +/* Width in bits of a "word", which is the contents of a machine register. + Note that this is not necessarily the width of data type `int'; + if using 16-bit ints on a 80386, this would still be 32. + But on a machine with 16-bit registers, this would be 16. */ +#define BITS_PER_WORD 32 + +/* Width of a word, in units (bytes). */ +#define UNITS_PER_WORD 4 + +/* Width in bits of a pointer. + See also the macro `Pmode' defined below. */ +#define POINTER_SIZE 32 + +/* Allocation boundary (in *bits*) for storing arguments in argument list. */ +#define PARM_BOUNDARY 32 + +/* Boundary (in *bits*) on which stack pointer should be aligned. */ +#define STACK_BOUNDARY 32 + +/* Allocation boundary (in *bits*) for the code of a function. + For i486, we get better performance by aligning to a cache + line (i.e. 16 byte) boundary. */ +#define FUNCTION_BOUNDARY (TARGET_486 ? 128 : 32) + +/* Alignment of field after `int : 0' in a structure. */ + +#define EMPTY_FIELD_BOUNDARY 32 + +/* Minimum size in bits of the largest boundary to which any + and all fundamental data types supported by the hardware + might need to be aligned. No data type wants to be aligned + rounder than this. The i386 supports 64-bit floating point + quantities, but these can be aligned on any 32-bit boundary. */ +#define BIGGEST_ALIGNMENT 32 + +/* Define this if move instructions will actually fail to work + when given unaligned data. */ +/* #define STRICT_ALIGNMENT */ + +/* If bit field type is int, don't let it cross an int, + and give entire struct the alignment of an int. */ +/* Required on the 386 since it doesn't have bitfield insns. */ +#define PCC_BITFIELD_TYPE_MATTERS 1 + +/* Align loop starts for optimal branching. */ +#define ASM_OUTPUT_LOOP_ALIGN(FILE) \ + ASM_OUTPUT_ALIGN (FILE, 2) + +/* This is how to align an instruction for optimal branching. + On i486 we'll get better performance by aligning on a + cache line (i.e. 16 byte) boundary. */ +#define ASM_OUTPUT_ALIGN_CODE(FILE) \ + ASM_OUTPUT_ALIGN ((FILE), (TARGET_486 ? 4 : 2)) + +/* Standard register usage. */ + +/* This processor has special stack-like registers. See reg-stack.c + for details. */ + +#define STACK_REGS + +/* Number of actual hardware registers. + The hardware registers are assigned numbers for the compiler + from 0 to just below FIRST_PSEUDO_REGISTER. + All registers that the compiler knows about must be given numbers, + even those that are not normally considered general registers. + + In the 80386 we give the 8 general purpose registers the numbers 0-7. + We number the floating point registers 8-15. + Note that registers 0-7 can be accessed as a short or int, + while only 0-3 may be used with byte `mov' instructions. + + Reg 16 does not correspond to any hardware register, but instead + appears in the RTL as an argument pointer prior to reload, and is + eliminated during reloading in favor of either the stack or frame + pointer. */ + +#define FIRST_PSEUDO_REGISTER 17 + +/* 1 for registers that have pervasive standard uses + and are not available for the register allocator. + On the 80386, the stack pointer is such, as is the arg pointer. */ +#define FIXED_REGISTERS \ +/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \ +{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 } + +/* 1 for registers not available across function calls. + These must include the FIXED_REGISTERS and also any + registers that can be used without being saved. + The latter must include the registers where values are returned + and the register where structure-value addresses are passed. + Aside from that, you can include as many other registers as you like. */ + +#define CALL_USED_REGISTERS \ +/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \ +{ 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 } + +/* Macro to conditionally modify fixed_regs/call_used_regs. */ +#define CONDITIONAL_REGISTER_USAGE \ + { \ + if (flag_pic) \ + { \ + fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ + call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ + } \ + } + +/* Return number of consecutive hard regs needed starting at reg REGNO + to hold something of mode MODE. + This is ordinarily the length in words of a value of mode MODE + but can be less for certain modes in special long registers. + + Actually there are no two word move instructions for consecutive + registers. And only registers 0-3 may have mov byte instructions + applied to them. + */ + +#define HARD_REGNO_NREGS(REGNO, MODE) \ + (FP_REGNO_P (REGNO) ? 1 \ + : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) + +/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. + On the 80386, the first 4 cpu registers can hold any mode + while the floating point registers may hold only floating point. + Make it clear that the fp regs could not hold a 16-byte float. */ + +#define HARD_REGNO_MODE_OK(REGNO, MODE) \ + ((REGNO) < 2 ? 1 \ + : (REGNO) < 4 ? 1 \ + : (REGNO) >= 8 ? ((GET_MODE_CLASS (MODE) == MODE_FLOAT \ + || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \ + && GET_MODE_UNIT_SIZE (MODE) <= 8) \ + : (MODE) != QImode) + +/* Value is 1 if it is a good idea to tie two pseudo registers + when one has mode MODE1 and one has mode MODE2. + If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, + for any hard reg, then this must be 0 for correct output. */ + +#define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2)) + +/* A C expression returning the cost of moving data from a register of class + CLASS1 to one of CLASS2. + + On the i386, copying between floating-point and fixed-point + registers is expensive. */ + +#define REGISTER_MOVE_COST(CLASS1, CLASS2) \ + ((((CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS) \ + || ((CLASS2) == FLOAT_REGS && (CLASS1) != FLOAT_REGS)) \ + ? 10 : 2) + +/* Specify the registers used for certain standard purposes. + The values of these macros are register numbers. */ + +/* on the 386 the pc register is %eip, and is not usable as a general + register. The ordinary mov instructions won't work */ +/* #define PC_REGNUM */ + +/* Register to use for pushing function arguments. */ +#define STACK_POINTER_REGNUM 7 + +/* Base register for access to local variables of the function. */ +#define FRAME_POINTER_REGNUM 6 + +/* First floating point reg */ +#define FIRST_FLOAT_REG 8 + +/* First & last stack-like regs */ +#define FIRST_STACK_REG FIRST_FLOAT_REG +#define LAST_STACK_REG (FIRST_FLOAT_REG + 7) + +/* Value should be nonzero if functions must have frame pointers. + Zero means the frame pointer need not be set up (and parms + may be accessed via the stack pointer) in functions that seem suitable. + This is computed in `reload', in reload1.c. */ +#define FRAME_POINTER_REQUIRED 0 + +/* Base register for access to arguments of the function. */ +#define ARG_POINTER_REGNUM 16 + +/* Register in which static-chain is passed to a function. */ +#define STATIC_CHAIN_REGNUM 2 + +/* Register to hold the addressing base for position independent + code access to data items. */ +#define PIC_OFFSET_TABLE_REGNUM 3 + +/* Register in which address to store a structure value + arrives in the function. On the 386, the prologue + copies this from the stack to register %eax. */ +#define STRUCT_VALUE_INCOMING 0 + +/* Place in which caller passes the structure value address. + 0 means push the value on the stack like an argument. */ +#define STRUCT_VALUE 0 + +/* Define the classes of registers for register constraints in the + machine description. Also define ranges of constants. + + One of the classes must always be named ALL_REGS and include all hard regs. + If there is more than one class, another class must be named NO_REGS + and contain no registers. + + The name GENERAL_REGS must be the name of a class (or an alias for + another name such as ALL_REGS). This is the class of registers + that is allowed by "g" or "r" in a register constraint. + Also, registers outside this class are allocated only when + instructions express preferences for them. + + The classes must be numbered in nondecreasing order; that is, + a larger-numbered class must never be contained completely + in a smaller-numbered class. + + For any two classes, it is very desirable that there be another + class that represents their union. */ + + +enum reg_class +{ + NO_REGS, + AREG, DREG, CREG, + Q_REGS, /* %eax %ebx %ecx %edx */ + SIREG, DIREG, + INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */ + GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */ + FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */ + FLOAT_REGS, + ALL_REGS, LIM_REG_CLASSES +}; + +#define N_REG_CLASSES (int) LIM_REG_CLASSES + +/* Give names of register classes as strings for dump file. */ + +#define REG_CLASS_NAMES \ +{ "NO_REGS", \ + "AREG", "DREG", "CREG", \ + "Q_REGS", \ + "SIREG", "DIREG", \ + "INDEX_REGS", \ + "GENERAL_REGS", \ + "FP_TOP_REG", "FP_SECOND_REG", \ + "FLOAT_REGS", \ + "ALL_REGS" } + +/* Define which registers fit in which classes. + This is an initializer for a vector of HARD_REG_SET + of length N_REG_CLASSES. */ + +#define REG_CLASS_CONTENTS \ +{ 0, \ + 0x1, 0x2, 0x4, /* AREG, DREG, CREG */ \ + 0xf, /* Q_REGS */ \ + 0x10, 0x20, /* SIREG, DIREG */ \ + 0x1007f, /* INDEX_REGS */ \ + 0x100ff, /* GENERAL_REGS */ \ + 0x0100, 0x0200, /* FP_TOP_REG, FP_SECOND_REG */ \ + 0xff00, /* FLOAT_REGS */ \ + 0x1ffff } + +/* The same information, inverted: + Return the class number of the smallest class containing + reg number REGNO. This could be a conditional expression + or could index an array. */ + +extern enum reg_class regclass_map[FIRST_PSEUDO_REGISTER]; +#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO]) + +/* When defined, the compiler allows registers explicitly used in the + rtl to be used as spill registers but prevents the compiler from + extending the lifetime of these registers. */ + +#define SMALL_REGISTER_CLASSES + +#define QI_REG_P(X) \ + (REG_P (X) && REGNO (X) < 4) +#define NON_QI_REG_P(X) \ + (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER) + +#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X))) +#define FP_REGNO_P(n) ((n) >= FIRST_STACK_REG && (n) <= LAST_STACK_REG) + +#define STACK_REG_P(xop) (REG_P (xop) && \ + REGNO (xop) >= FIRST_STACK_REG && \ + REGNO (xop) <= LAST_STACK_REG) + +#define NON_STACK_REG_P(xop) (REG_P (xop) && ! STACK_REG_P (xop)) + +#define STACK_TOP_P(xop) (REG_P (xop) && REGNO (xop) == FIRST_STACK_REG) + +/* Try to maintain the accuracy of the death notes for regs satisfying the + following. Important for stack like regs, to know when to pop. */ + +/* #define PRESERVE_DEATH_INFO_REGNO_P(x) FP_REGNO_P(x) */ + +/* 1 if register REGNO can magically overlap other regs. + Note that nonzero values work only in very special circumstances. */ + +/* #define OVERLAPPING_REGNO_P(REGNO) FP_REGNO_P (REGNO) */ + +/* The class value for index registers, and the one for base regs. */ + +#define INDEX_REG_CLASS INDEX_REGS +#define BASE_REG_CLASS GENERAL_REGS + +/* Get reg_class from a letter such as appears in the machine description. */ + +#define REG_CLASS_FROM_LETTER(C) \ + ((C) == 'r' ? GENERAL_REGS : \ + (C) == 'q' ? Q_REGS : \ + (C) == 'f' ? FLOAT_REGS : \ + (C) == 't' ? FP_TOP_REG : \ + (C) == 'u' ? FP_SECOND_REG : \ + (C) == 'a' ? AREG : \ + (C) == 'c' ? CREG : \ + (C) == 'd' ? DREG : \ + (C) == 'D' ? DIREG : \ + (C) == 'S' ? SIREG : NO_REGS) + +/* The letters I, J, K, L and M in a register constraint string + can be used to stand for particular ranges of immediate operands. + This macro defines what the ranges are. + C is the letter, and VALUE is a constant value. + Return 1 if VALUE is in the range specified by C. + + I is for non-DImode shifts. + J is for DImode shifts. + K and L are for an `andsi' optimization. + M is for shifts that can be executed by the "lea" opcode. + */ + +#define CONST_OK_FOR_LETTER_P(VALUE, C) \ + ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 : \ + (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 : \ + (C) == 'K' ? (VALUE) == 0xff : \ + (C) == 'L' ? (VALUE) == 0xffff : \ + (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 : \ + 0) + +/* Similar, but for floating constants, and defining letters G and H. + Here VALUE is the CONST_DOUBLE rtx itself. */ + +#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \ + ((C) == 'G' ? (TARGET_80387 && standard_80387_constant_p (VALUE)) : 0) + +/* Place additional restrictions on the register class to use when it + is necessary to be able to hold a value of mode @var{mode} in a reload + register for which class @var{class} would ordinarily be used. */ + +#define LIMIT_RELOAD_CLASS(MODE, CLASS) \ + ((MODE) == QImode && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS) \ + ? Q_REGS : (CLASS)) + +/* Given an rtx X being reloaded into a reg required to be + in class CLASS, return the class of reg to actually use. + In general this is just CLASS; but on some machines + in some cases it is preferable to use a more restrictive class. + On the 80386 series, we prevent floating constants from being + reloaded into floating registers (since no move-insn can do that) + and we ensure that QImodes aren't reloaded into the esi or edi reg. */ + +/* Don't put CONST_DOUBLE into FLOAT_REGS. + QImode must go into class Q_REGS. + MODE_INT must not go into FLOAT_REGS. */ + +#define PREFERRED_RELOAD_CLASS(X,CLASS) \ + (GET_CODE (X) == CONST_DOUBLE \ + ? (reg_class_subset_p ((CLASS), GENERAL_REGS) || (CLASS) == ALL_REGS \ + ? (CLASS) : NO_REGS) \ + : GET_MODE (X) == QImode \ + ? (! reg_class_subset_p ((CLASS), Q_REGS) ? Q_REGS : (CLASS)) \ + : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT && (CLASS) == FLOAT_REGS ? \ + GENERAL_REGS : (CLASS))) + +/* Return the maximum number of consecutive registers + needed to represent mode MODE in a register of class CLASS. */ +/* On the 80386, this is the size of MODE in words, + except in the FP regs, where a single reg is always enough. */ +#define CLASS_MAX_NREGS(CLASS, MODE) \ + ((CLASS) == FLOAT_REGS ? 1 : \ + (CLASS) == FP_TOP_REG ? 1 : \ + (CLASS) == FP_SECOND_REG ? 1 : \ + ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) + +/* Stack layout; function entry, exit and calling. */ + +/* Define this if pushing a word on the stack + makes the stack pointer a smaller address. */ +#define STACK_GROWS_DOWNWARD + +/* Define this if the nominal address of the stack frame + is at the high-address end of the local variables; + that is, each additional local variable allocated + goes at a more negative offset in the frame. */ +#define FRAME_GROWS_DOWNWARD + +/* Offset within stack frame to start allocating local variables at. + If FRAME_GROWS_DOWNWARD, this is the offset to the END of the + first local allocated. Otherwise, it is the offset to the BEGINNING + of the first local allocated. */ +#define STARTING_FRAME_OFFSET 0 + +/* If we generate an insn to push BYTES bytes, + this says how many the stack pointer really advances by. + On 386 pushw decrements by exactly 2 no matter what the position was. + On the 386 there is no pushb; we use pushw instead, and this + has the effect of rounding up to 2. */ + +#define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & (-2)) + +/* Offset of first parameter from the argument pointer register value. */ +#define FIRST_PARM_OFFSET(FNDECL) 0 + +/* Value is the number of bytes of arguments automatically + popped when returning from a subroutine call. + FUNTYPE is the data type of the function (as a tree), + or for a library call it is an identifier node for the subroutine name. + SIZE is the number of bytes of arguments passed on the stack. + + On the 80386, the RTD insn may be used to pop them if the number + of args is fixed, but if the number is variable then the caller + must pop them all. RTD can't be used for library calls now + because the library is compiled with the Unix compiler. + Use of RTD is a selectable option, since it is incompatible with + standard Unix calling sequences. If the option is not selected, + the caller must always pop the args. */ + +#define RETURN_POPS_ARGS(FUNTYPE,SIZE) \ + (TREE_CODE (FUNTYPE) == IDENTIFIER_NODE ? 0 \ + : (TARGET_RTD \ + && (TYPE_ARG_TYPES (FUNTYPE) == 0 \ + || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE))) \ + == void_type_node))) ? (SIZE) \ + : (aggregate_value_p (FUNTYPE)) ? GET_MODE_SIZE (Pmode) : 0) + +#define FUNCTION_VALUE(VALTYPE, FUNC) \ + gen_rtx (REG, TYPE_MODE (VALTYPE), \ + VALUE_REGNO (TYPE_MODE (VALTYPE))) + +/* Define how to find the value returned by a library function + assuming the value has mode MODE. */ + +#define LIBCALL_VALUE(MODE) \ + gen_rtx (REG, MODE, VALUE_REGNO (MODE)) + +/* 1 if N is a possible register number for function argument passing. + On the 80386, no registers are used in this way. + *NOTE* -mregparm does not work. + It exists only to test register calling conventions. */ + +#define FUNCTION_ARG_REGNO_P(N) 0 + +/* Define a data type for recording info about an argument list + during the scan of that argument list. This data type should + hold all necessary information about the function itself + and about the args processed so far, enough to enable macros + such as FUNCTION_ARG to determine where the next arg should go. + + On the 80386, this is a single integer, which is a number of bytes + of arguments scanned so far. */ + +#define CUMULATIVE_ARGS int + +/* Initialize a variable CUM of type CUMULATIVE_ARGS + for a call to a function whose data type is FNTYPE. + For a library call, FNTYPE is 0. + + On the 80386, the offset starts at 0. */ + +#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \ + ((CUM) = 0) + +/* Update the data in CUM to advance over an argument + of mode MODE and data type TYPE. + (TYPE is null for libcalls where that information may not be available.) */ + +#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ + ((CUM) += ((MODE) != BLKmode \ + ? (GET_MODE_SIZE (MODE) + 3) & ~3 \ + : (int_size_in_bytes (TYPE) + 3) & ~3)) + +/* Define where to put the arguments to a function. + Value is zero to push the argument on the stack, + or a hard register in which to store the argument. + + MODE is the argument's machine mode. + TYPE is the data type of the argument (as a tree). + This is null for libcalls where that information may + not be available. + CUM is a variable of type CUMULATIVE_ARGS which gives info about + the preceding args and about the function being called. + NAMED is nonzero if this argument is a named parameter + (otherwise it is an extra parameter matching an ellipsis). */ + + +/* On the 80386 all args are pushed, except if -mregparm is specified + then the first two words of arguments are passed in EAX, EDX. + *NOTE* -mregparm does not work. + It exists only to test register calling conventions. */ + +#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ +((TARGET_REGPARM && (CUM) < 8) ? gen_rtx (REG, (MODE), (CUM) / 4) : 0) + +/* For an arg passed partly in registers and partly in memory, + this is the number of registers used. + For args passed entirely in registers or entirely in memory, zero. */ + + +#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \ +((TARGET_REGPARM && (CUM) < 8 \ + && 8 < ((CUM) + ((MODE) == BLKmode \ + ? int_size_in_bytes (TYPE) \ + : GET_MODE_SIZE (MODE)))) \ + ? 2 - (CUM) / 4 : 0) + +/* This macro generates the assembly code for function entry. + FILE is a stdio stream to output the code to. + SIZE is an int: how many units of temporary storage to allocate. + Refer to the array `regs_ever_live' to determine which registers + to save; `regs_ever_live[I]' is nonzero if register number I + is ever used in the function. This macro is responsible for + knowing which registers should not be saved even if used. */ + +#define FUNCTION_PROLOGUE(FILE, SIZE) \ + function_prologue (FILE, SIZE) + +/* Output assembler code to FILE to increment profiler label # LABELNO + for profiling a function entry. */ + +#define FUNCTION_PROFILER(FILE, LABELNO) \ +{ \ + if (flag_pic) \ + { \ + fprintf (FILE, "\tleal %sP%d@GOTOFF(%%ebx),%%edx\n", \ + LPREFIX, (LABELNO)); \ + fprintf (FILE, "\tcall *_mcount@GOT(%%ebx)\n"); \ + } \ + else \ + { \ + fprintf (FILE, "\tmovl $%sP%d,%%edx\n", LPREFIX, (LABELNO)); \ + fprintf (FILE, "\tcall _mcount\n"); \ + } \ +} + +/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, + the stack pointer does not matter. The value is tested only in + functions that have frame pointers. + No definition is equivalent to always zero. */ +/* Note on the 386 it might be more efficient not to define this since + we have to restore it ourselves from the frame pointer, in order to + use pop */ + +#define EXIT_IGNORE_STACK 1 + +/* This macro generates the assembly code for function exit, + on machines that need it. If FUNCTION_EPILOGUE is not defined + then individual return instructions are generated for each + return statement. Args are same as for FUNCTION_PROLOGUE. + + The function epilogue should not depend on the current stack pointer! + It should use the frame pointer only. This is mandatory because + of alloca; we also take advantage of it to omit stack adjustments + before returning. + + If the last non-note insn in the function is a BARRIER, then there + is no need to emit a function prologue, because control does not fall + off the end. This happens if the function ends in an "exit" call, or + if a `return' insn is emitted directly into the function. */ + +#define FUNCTION_EPILOGUE(FILE, SIZE) \ +do { \ + rtx last = get_last_insn (); \ + if (last && GET_CODE (last) == NOTE) \ + last = prev_nonnote_insn (last); \ + if (! last || GET_CODE (last) != BARRIER) \ + function_epilogue (FILE, SIZE); \ +} while (0) + +/* Output assembler code for a block containing the constant parts + of a trampoline, leaving space for the variable parts. */ + +/* On the 386, the trampoline contains three instructions: + mov #STATIC,ecx + mov #FUNCTION,eax + jmp @eax */ +#define TRAMPOLINE_TEMPLATE(FILE) \ +{ \ + ASM_OUTPUT_CHAR (FILE, gen_rtx (CONST_INT, VOIDmode, 0xb9)); \ + ASM_OUTPUT_SHORT (FILE, const0_rtx); \ + ASM_OUTPUT_SHORT (FILE, const0_rtx); \ + ASM_OUTPUT_CHAR (FILE, gen_rtx (CONST_INT, VOIDmode, 0xb8)); \ + ASM_OUTPUT_SHORT (FILE, const0_rtx); \ + ASM_OUTPUT_SHORT (FILE, const0_rtx); \ + ASM_OUTPUT_CHAR (FILE, gen_rtx (CONST_INT, VOIDmode, 0xff)); \ + ASM_OUTPUT_CHAR (FILE, gen_rtx (CONST_INT, VOIDmode, 0xe0)); \ +} + +/* Length in units of the trampoline for entering a nested function. */ + +#define TRAMPOLINE_SIZE 12 + +/* Emit RTL insns to initialize the variable parts of a trampoline. + FNADDR is an RTX for the address of the function's pure code. + CXT is an RTX for the static chain value for the function. */ + +#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \ +{ \ + emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 1)), CXT); \ + emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 6)), FNADDR); \ +} + +/* Definitions for register eliminations. + + This is an array of structures. Each structure initializes one pair + of eliminable registers. The "from" register number is given first, + followed by "to". Eliminations of the same "from" register are listed + in order of preference. + + We have two registers that can be eliminated on the i386. First, the + frame pointer register can often be eliminated in favor of the stack + pointer register. Secondly, the argument pointer register can always be + eliminated; it is replaced with either the stack or frame pointer. */ + +#define ELIMINABLE_REGS \ +{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ + { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \ + { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}} + +/* Given FROM and TO register numbers, say whether this elimination is allowed. + Frame pointer elimination is automatically handled. + + For the i386, if frame pointer elimination is being done, we would like to + convert ap into sp, not fp. + + All other eliminations are valid. */ + +#define CAN_ELIMINATE(FROM, TO) \ + ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \ + ? ! frame_pointer_needed \ + : 1) + +/* Define the offset between two registers, one to be eliminated, and the other + its replacement, at the start of a routine. */ + +#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ +{ \ + if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \ + (OFFSET) = 8; /* Skip saved PC and previous frame pointer */ \ + else \ + { \ + int regno; \ + int offset = 0; \ + \ + for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \ + if ((regs_ever_live[regno] && ! call_used_regs[regno]) \ + || (current_function_uses_pic_offset_table \ + && regno == PIC_OFFSET_TABLE_REGNUM)) \ + offset += 4; \ + \ + (OFFSET) = offset + get_frame_size (); \ + \ + if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \ + (OFFSET) += 4; /* Skip saved PC */ \ + } \ +} + +/* Addressing modes, and classification of registers for them. */ + +/* #define HAVE_POST_INCREMENT */ +/* #define HAVE_POST_DECREMENT */ + +/* #define HAVE_PRE_DECREMENT */ +/* #define HAVE_PRE_INCREMENT */ + +/* Macros to check register numbers against specific register classes. */ + +/* These assume that REGNO is a hard or pseudo reg number. + They give nonzero only if REGNO is a hard reg of the suitable class + or a pseudo reg currently allocated to a suitable hard reg. + Since they use reg_renumber, they are safe only once reg_renumber + has been allocated, which happens in local-alloc.c. */ + +#define REGNO_OK_FOR_INDEX_P(REGNO) \ + ((REGNO) < STACK_POINTER_REGNUM \ + || (unsigned) reg_renumber[REGNO] < STACK_POINTER_REGNUM) + +#define REGNO_OK_FOR_BASE_P(REGNO) \ + ((REGNO) <= STACK_POINTER_REGNUM \ + || (REGNO) == ARG_POINTER_REGNUM \ + || (unsigned) reg_renumber[REGNO] <= STACK_POINTER_REGNUM) + +#define REGNO_OK_FOR_SIREG_P(REGNO) ((REGNO) == 4 || reg_renumber[REGNO] == 4) +#define REGNO_OK_FOR_DIREG_P(REGNO) ((REGNO) == 5 || reg_renumber[REGNO] == 5) + +/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx + and check its validity for a certain class. + We have two alternate definitions for each of them. + The usual definition accepts all pseudo regs; the other rejects + them unless they have been allocated suitable hard regs. + The symbol REG_OK_STRICT causes the latter definition to be used. + + Most source files want to accept pseudo regs in the hope that + they will get allocated to the class that the insn wants them to be in. + Source files for reload pass need to be strict. + After reload, it makes no difference, since pseudo regs have + been eliminated by then. */ + +#ifndef REG_OK_STRICT + +/* Nonzero if X is a hard reg that can be used as an index or if + it is a pseudo reg. */ + +#define REG_OK_FOR_INDEX_P(X) \ + (REGNO (X) < STACK_POINTER_REGNUM \ + || REGNO (X) >= FIRST_PSEUDO_REGISTER) + +/* Nonzero if X is a hard reg that can be used as a base reg + of if it is a pseudo reg. */ + /* ?wfs */ + +#define REG_OK_FOR_BASE_P(X) \ + (REGNO (X) <= STACK_POINTER_REGNUM \ + || REGNO (X) == ARG_POINTER_REGNUM \ + || REGNO(X) >= FIRST_PSEUDO_REGISTER) + +#define REG_OK_FOR_STRREG_P(X) \ + (REGNO (X) == 4 || REGNO (X) == 5 || REGNO (X) >= FIRST_PSEUDO_REGISTER) + +#else + +/* Nonzero if X is a hard reg that can be used as an index. */ +#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) +/* Nonzero if X is a hard reg that can be used as a base reg. */ +#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) +#define REG_OK_FOR_STRREG_P(X) \ + (REGNO_OK_FOR_DIREG_P (REGNO (X)) || REGNO_OK_FOR_SIREG_P (REGNO (X))) + +#endif + +/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression + that is a valid memory address for an instruction. + The MODE argument is the machine mode for the MEM expression + that wants to use this address. + + The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS, + except for CONSTANT_ADDRESS_P which is usually machine-independent. + + See legitimize_pic_address in i386.c for details as to what + constitutes a legitimate address when -fpic is used. */ + +#define MAX_REGS_PER_ADDRESS 2 + +#define CONSTANT_ADDRESS_P(X) CONSTANT_P (X) + +/* Nonzero if the constant value X is a legitimate general operand. + It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ + +#define LEGITIMATE_CONSTANT_P(X) 1 + +#define GO_IF_INDEXABLE_BASE(X, ADDR) \ + if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) goto ADDR + +#define LEGITIMATE_INDEX_REG_P(X) \ + (GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) + +/* Return 1 if X is an index or an index times a scale. */ + +#define LEGITIMATE_INDEX_P(X) \ + (LEGITIMATE_INDEX_REG_P (X) \ + || (GET_CODE (X) == MULT \ + && LEGITIMATE_INDEX_REG_P (XEXP (X, 0)) \ + && GET_CODE (XEXP (X, 1)) == CONST_INT \ + && (INTVAL (XEXP (X, 1)) == 2 \ + || INTVAL (XEXP (X, 1)) == 4 \ + || INTVAL (XEXP (X, 1)) == 8))) + +/* Go to ADDR if X is an index term, a base reg, or a sum of those. */ + +#define GO_IF_INDEXING(X, ADDR) \ +{ if (LEGITIMATE_INDEX_P (X)) goto ADDR; \ + GO_IF_INDEXABLE_BASE (X, ADDR); \ + if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0))) \ + { GO_IF_INDEXABLE_BASE (XEXP (X, 1), ADDR); } \ + if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1))) \ + { GO_IF_INDEXABLE_BASE (XEXP (X, 0), ADDR); } } + +/* We used to allow this, but it isn't ever used. + || ((GET_CODE (X) == POST_DEC || GET_CODE (X) == POST_INC) \ + && REG_P (XEXP (X, 0)) \ + && REG_OK_FOR_STRREG_P (XEXP (X, 0))) \ +*/ + +#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ +{ \ + if (CONSTANT_ADDRESS_P (X) \ + && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (X))) \ + goto ADDR; \ + GO_IF_INDEXING (X, ADDR); \ + if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \ + { \ + rtx x0 = XEXP (X, 0); \ + if (! flag_pic || ! SYMBOLIC_CONST (XEXP (X, 1))) \ + { GO_IF_INDEXING (x0, ADDR); } \ + else if (x0 == pic_offset_table_rtx) \ + goto ADDR; \ + else if (GET_CODE (x0) == PLUS) \ + { \ + if (XEXP (x0, 0) == pic_offset_table_rtx) \ + { GO_IF_INDEXABLE_BASE (XEXP (x0, 1), ADDR); } \ + if (XEXP (x0, 1) == pic_offset_table_rtx) \ + { GO_IF_INDEXABLE_BASE (XEXP (x0, 0), ADDR); } \ + } \ + } \ +} + +/* Try machine-dependent ways of modifying an illegitimate address + to be legitimate. If we find one, return the new, valid address. + This macro is used in only one place: `memory_address' in explow.c. + + OLDX is the address as it was before break_out_memory_refs was called. + In some cases it is useful to look at this to decide what needs to be done. + + MODE and WIN are passed so that this macro can use + GO_IF_LEGITIMATE_ADDRESS. + + It is always safe for this macro to do nothing. It exists to recognize + opportunities to optimize the output. + + For the 80386, we handle X+REG by loading X into a register R and + using R+REG. R will go in a general reg and indexing will be used. + However, if REG is a broken-out memory address or multiplication, + nothing needs to be done because REG can certainly go in a general reg. + + When -fpic is used, special handling is needed for symbolic references. + See comments by legitimize_pic_address in i386.c for details. */ + +#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \ +{ extern rtx legitimize_pic_address (); \ + int ch = (X) != (OLDX); \ + if (flag_pic && SYMBOLIC_CONST (X)) \ + { \ + (X) = legitimize_pic_address (X, 0); \ + if (memory_address_p (MODE, X)) \ + goto WIN; \ + } \ + if (GET_CODE (X) == PLUS) \ + { if (GET_CODE (XEXP (X, 0)) == MULT) \ + ch = 1, XEXP (X, 0) = force_operand (XEXP (X, 0), 0); \ + if (GET_CODE (XEXP (X, 1)) == MULT) \ + ch = 1, XEXP (X, 1) = force_operand (XEXP (X, 1), 0); \ + if (ch && GET_CODE (XEXP (X, 1)) == REG \ + && GET_CODE (XEXP (X, 0)) == REG) \ + goto WIN; \ + if (flag_pic && SYMBOLIC_CONST (XEXP (X, 1))) \ + ch = 1, (X) = legitimize_pic_address (X, 0); \ + if (ch) { GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); } \ + if (GET_CODE (XEXP (X, 0)) == REG) \ + { register rtx temp = gen_reg_rtx (Pmode); \ + register rtx val = force_operand (XEXP (X, 1), temp); \ + if (val != temp) emit_move_insn (temp, val, 0); \ + XEXP (X, 1) = temp; \ + goto WIN; } \ + else if (GET_CODE (XEXP (X, 1)) == REG) \ + { register rtx temp = gen_reg_rtx (Pmode); \ + register rtx val = force_operand (XEXP (X, 0), temp); \ + if (val != temp) emit_move_insn (temp, val, 0); \ + XEXP (X, 0) = temp; \ + goto WIN; }}} + +/* Nonzero if the constant value X is a legitimate general operand + when generating PIC code. It is given that flag_pic is on and + that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ + +#define LEGITIMATE_PIC_OPERAND_P(X) \ + (! SYMBOLIC_CONST (X) \ + || (GET_CODE (X) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (X))) + +#define SYMBOLIC_CONST(X) \ +(GET_CODE (X) == SYMBOL_REF \ + || GET_CODE (X) == LABEL_REF \ + || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X))) + +/* Go to LABEL if ADDR (a legitimate address expression) + has an effect that depends on the machine mode it is used for. + On the 80386, only postdecrement and postincrement address depend thus + (the amount of decrement or increment being the length of the operand). */ +#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \ + if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == POST_DEC) goto LABEL + +/* Define this macro if references to a symbol must be treated + differently depending on something about the variable or + function named by the symbol (such as what section it is in). + + On i386, if using PIC, mark a SYMBOL_REF for a static declaration + so that we may access it directly in the GOT. */ + +#define ENCODE_SECTION_INFO(DECL) \ +do \ + { \ + if (flag_pic) \ + { \ + rtx decl_rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) == 'c' \ + ? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \ + SYMBOL_REF_FLAG (XEXP (decl_rtl, 0)) = ! TREE_PUBLIC (DECL); \ + } \ + } \ +while (0) + +/* Specify the machine mode that this machine uses + for the index in the tablejump instruction. */ +#define CASE_VECTOR_MODE Pmode + +/* Define this if the tablejump instruction expects the table + to contain offsets from the address of the table. + Do not define this if the table should contain absolute addresses. */ +/* #define CASE_VECTOR_PC_RELATIVE */ + +/* Specify the tree operation to be used to convert reals to integers. + This should be changed to take advantage of fist --wfs ?? + */ +#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR + +/* This is the kind of divide that is easiest to do in the general case. */ +#define EASY_DIV_EXPR TRUNC_DIV_EXPR + +/* Define this as 1 if `char' should by default be signed; else as 0. */ +#define DEFAULT_SIGNED_CHAR 1 + +/* Max number of bytes we can move from memory to memory + in one reasonably fast instruction. */ +#define MOVE_MAX 4 + +/* MOVE_RATIO is the number of move instructions that is better than a + block move. Make this large on i386, since the block move is very + inefficient with small blocks, and the hard register needs of the + block move require much reload work. */ +#define MOVE_RATIO 5 + +/* Define this if zero-extension is slow (more than one real instruction). */ +/* #define SLOW_ZERO_EXTEND */ + +/* Nonzero if access to memory by bytes is slow and undesirable. */ +#define SLOW_BYTE_ACCESS 0 + +/* Define if shifts truncate the shift count + which implies one can omit a sign-extension or zero-extension + of a shift count. */ +/* One i386, shifts do truncate the count. But bit opcodes don't. */ + +/* #define SHIFT_COUNT_TRUNCATED */ + +/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits + is done just by pretending it is already truncated. */ +#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 + +/* We assume that the store-condition-codes instructions store 0 for false + and some other value for true. This is the value stored for true. */ + +#define STORE_FLAG_VALUE 1 + +/* When a prototype says `char' or `short', really pass an `int'. + (The 386 can't easily push less than an int.) */ + +#define PROMOTE_PROTOTYPES + +/* Specify the machine mode that pointers have. + After generation of rtl, the compiler makes no further distinction + between pointers and any other objects of this machine mode. */ +#define Pmode SImode + +/* A function address in a call instruction + is a byte address (for indexing purposes) + so give the MEM rtx a byte's mode. */ +#define FUNCTION_MODE QImode + +/* Define this if addresses of constant functions + shouldn't be put through pseudo regs where they can be cse'd. + Desirable on the 386 because a CALL with a constant address is + not much slower than one with a register address. */ +#define NO_FUNCTION_CSE + +/* Provide the costs of a rtl expression. This is in the body of a + switch on CODE. */ + +#define RTX_COSTS(X,CODE) \ + case MULT: \ + return COSTS_N_INSNS (10); \ + case DIV: \ + case UDIV: \ + case MOD: \ + case UMOD: \ + return COSTS_N_INSNS (40); + + +/* Compute the cost of computing a constant rtl expression RTX + whose rtx-code is CODE. The body of this macro is a portion + of a switch statement. If the code is computed here, + return it with a return statement. Otherwise, break from the switch. */ + +#define CONST_COSTS(RTX,CODE) \ + case CONST_INT: \ + case CONST: \ + case LABEL_REF: \ + case SYMBOL_REF: \ + return flag_pic && SYMBOLIC_CONST (RTX) ? 2 : 0; \ + case CONST_DOUBLE: \ + { \ + int code = standard_80387_constant_p (RTX); \ + return code == 1 ? 0 : \ + code == 2 ? 1 : \ + 2; \ + } \ + case PLUS: \ + if (GET_CODE (XEXP (RTX, 0)) == REG \ + && GET_CODE (XEXP (RTX, 1)) == CONST_INT) \ + return 1; + +/* Compute the cost of an address. This is meant to approximate the size + and/or execution delay of an insn using that address. If the cost is + approximated by the RTL complexity, including CONST_COSTS above, as + is usually the case for CISC machines, this macro should not be defined. + For aggressively RISCy machines, only one insn format is allowed, so + this macro should be a constant. The value of this macro only matters + for valid addresses. + + For i386, it is better to use a complex address than let gcc copy + the address into a reg and make a new pseudo. But not if the address + requires to two regs - that would mean more pseudos with longer + lifetimes. */ + +#define ADDRESS_COST(RTX) \ + ((CONSTANT_P (RTX) \ + || (GET_CODE (RTX) == PLUS && CONSTANT_P (XEXP (RTX, 1)) \ + && REG_P (XEXP (RTX, 0)))) ? 0 \ + : REG_P (RTX) ? 1 \ + : 2) + +/* Tell final.c how to eliminate redundant test instructions. */ + +/* Here we define machine-dependent flags and fields in cc_status + (see `conditions.h'). */ + +/* Set if the cc value is actually in the 80387, so a floating point + conditional branch must be output. */ +#define CC_IN_80387 04000 + +/* Set if the CC value was stored in a nonstandard way, so that + the state of equality is indicated by zero in the carry bit. */ +#define CC_Z_IN_NOT_C 010000 + +/* Store in cc_status the expressions + that the condition codes will describe + after execution of an instruction whose pattern is EXP. + Do not alter them if the instruction would not alter the cc's. */ + +#define NOTICE_UPDATE_CC(EXP, INSN) \ + notice_update_cc((EXP)) + +/* Output a signed jump insn. Use template NORMAL ordinarily, or + FLOAT following a floating point comparison. + Use NO_OV following an arithmetic insn that set the cc's + before a test insn that was deleted. + NO_OV may be zero, meaning final should reinsert the test insn + because the jump cannot be handled properly without it. */ + +#define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \ +{ \ + if (cc_prev_status.flags & CC_IN_80387) \ + return FLOAT; \ + if (cc_prev_status.flags & CC_NO_OVERFLOW) \ + return NO_OV; \ + return NORMAL; \ +} + +/* Control the assembler format that we output, to the extent + this does not vary between assemblers. */ + +/* How to refer to registers in assembler output. + This sequence is indexed by compiler's hard-register-number (see above). */ + +/* In order to refer to the first 8 regs as 32 bit regs prefix an "e" + For non floating point regs, the following are the HImode names. + + For float regs, the stack top is sometimes referred to as "%st(0)" + instead of just "%st". PRINT_REG in i386.c handles with with the + "y" code. */ + +#define HI_REGISTER_NAMES \ +{"ax","dx","cx","bx","si","di","bp","sp", \ + "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","" } + +#define REGISTER_NAMES HI_REGISTER_NAMES + +/* Table of additional register names to use in user input. */ + +#define ADDITIONAL_REGISTER_NAMES \ +{ "eax", 0, "edx", 1, "ecx", 2, "ebx", 3, \ + "esi", 4, "edi", 5, "ebp", 6, "esp", 7, \ + "al", 0, "dl", 1, "cl", 2, "bl", 3, \ + "ah", 0, "dh", 1, "ch", 2, "bh", 3 } + +/* Note we are omitting these since currently I don't know how +to get gcc to use these, since they want the same but different +number as al, and ax. +*/ + +/* note the last four are not really qi_registsers, but + the md will have to never output movb into one of them + only a movw . There is no movb into the last four regs */ + +#define QI_REGISTER_NAMES \ +{"al", "dl", "cl", "bl", "si", "di", "bp", "sp",} + +/* These parallel the array above, and can be used to access bits 8:15 + of regs 0 through 3. */ + +#define QI_HIGH_REGISTER_NAMES \ +{"ah", "dh", "ch", "bh", } + +/* How to renumber registers for dbx and gdb. */ + +/* {0,2,1,3,6,7,4,5,12,13,14,15,16,17} */ +#define DBX_REGISTER_NUMBER(n) \ +((n) == 0 ? 0 : \ + (n) == 1 ? 2 : \ + (n) == 2 ? 1 : \ + (n) == 3 ? 3 : \ + (n) == 4 ? 6 : \ + (n) == 5 ? 7 : \ + (n) == 6 ? 4 : \ + (n) == 7 ? 5 : \ + (n) + 4) + +/* This is how to output the definition of a user-level label named NAME, + such as the label on a static function or variable NAME. */ + +#define ASM_OUTPUT_LABEL(FILE,NAME) \ + (assemble_name (FILE, NAME), fputs (":\n", FILE)) + +/* This is how to output an assembler line defining a `double' constant. */ + +#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \ + fprintf (FILE, "%s %.22e\n", ASM_DOUBLE, (VALUE)) + + +/* This is how to output an assembler line defining a `float' constant. */ + +#define ASM_OUTPUT_FLOAT(FILE,VALUE) \ +do { union { float f; long l;} tem; \ + tem.f = (VALUE); \ + fprintf((FILE), "%s 0x%x\n", ASM_LONG, tem.l); \ + } while (0) + + +/* Store in OUTPUT a string (made with alloca) containing + an assembler-name for a local static variable named NAME. + LABELNO is an integer which is different for each call. */ + +#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ +( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \ + sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO))) + + + +/* This is how to output an assembler line defining an `int' constant. */ + +#define ASM_OUTPUT_INT(FILE,VALUE) \ +( fprintf (FILE, "%s ", ASM_LONG), \ + output_addr_const (FILE,(VALUE)), \ + putc('\n',FILE)) + +/* Likewise for `char' and `short' constants. */ +/* is this supposed to do align too?? */ + +#define ASM_OUTPUT_SHORT(FILE,VALUE) \ +( fprintf (FILE, "%s ", ASM_SHORT), \ + output_addr_const (FILE,(VALUE)), \ + putc('\n',FILE)) + +/* +#define ASM_OUTPUT_SHORT(FILE,VALUE) \ +( fprintf (FILE, "%s ", ASM_BYTE_OP), \ + output_addr_const (FILE,(VALUE)), \ + fputs (",", FILE), \ + output_addr_const (FILE,(VALUE)), \ + fputs (" >> 8\n",FILE)) +*/ + + +#define ASM_OUTPUT_CHAR(FILE,VALUE) \ +( fprintf (FILE, "%s ", ASM_BYTE_OP), \ + output_addr_const (FILE, (VALUE)), \ + putc ('\n', FILE)) + +/* This is how to output an assembler line for a numeric constant byte. */ + +#define ASM_OUTPUT_BYTE(FILE,VALUE) \ + fprintf ((FILE), "%s 0x%x\n", ASM_BYTE_OP, (VALUE)) + +/* This is how to output an insn to push a register on the stack. + It need not be very fast code. */ + +#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \ + fprintf (FILE, "\tpushl e%s\n", reg_names[REGNO]) + +/* This is how to output an insn to pop a register from the stack. + It need not be very fast code. */ + +#define ASM_OUTPUT_REG_POP(FILE,REGNO) \ + fprintf (FILE, "\tpopl e%s\n", reg_names[REGNO]) + +/* This is how to output an element of a case-vector that is absolute. + */ + +#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ + fprintf (FILE, "%s %s%d\n", ASM_LONG, LPREFIX, VALUE) + +/* This is how to output an element of a case-vector that is relative. + We don't use these on the 386 yet, because the ATT assembler can't do + forward reference the differences. + */ + +#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \ + fprintf (FILE, "\t.word %s%d-%s%d\n",LPREFIX, VALUE,LPREFIX, REL) + +/* Define the parentheses used to group arithmetic operations + in assembler code. */ + +#define ASM_OPEN_PAREN "" +#define ASM_CLOSE_PAREN "" + +/* Define results of standard character escape sequences. */ +#define TARGET_BELL 007 +#define TARGET_BS 010 +#define TARGET_TAB 011 +#define TARGET_NEWLINE 012 +#define TARGET_VT 013 +#define TARGET_FF 014 +#define TARGET_CR 015 + +/* Print operand X (an rtx) in assembler syntax to file FILE. + CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. + The CODE z takes the size of operand from the following digit, and + outputs b,w,or l respectively. + + On the 80386, we use several such letters: + f -- float insn (print a CONST_DOUBLE as a float rather than in hex). + L,W,B,Q,S -- print the opcode suffix for specified size of operand. + R -- print the prefix for register names. + z -- print the opcode suffix for the size of the current operand. + * -- print a star (in certain assembler syntax) + w -- print the operand as if it's a "word" (HImode) even if it isn't. + b -- print the operand as if it's a byte (QImode) even if it isn't. + c -- don't print special prefixes before constant operands. */ + +#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \ + ((CODE) == '*') + +#define PRINT_OPERAND(FILE, X, CODE) \ + print_operand (FILE, X, CODE) + + +#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \ + print_operand_address (FILE, ADDR) + +/* Output the prefix for an immediate operand, or for an offset operand. */ +#define PRINT_IMMED_PREFIX(FILE) fputs (IP, (FILE)) +#define PRINT_OFFSET_PREFIX(FILE) fputs (IP, (FILE)) + +/* Routines in libgcc that return floats must return them in an fp reg, + just as other functions do which return such values. + These macros make that happen. */ + +#define FLOAT_VALUE_TYPE float +#define INTIFY(FLOATVAL) FLOATVAL + +/* Nonzero if INSN magically clobbers register REGNO. */ + +/* #define INSN_CLOBBERS_REGNO_P(INSN, REGNO) \ + (FP_REGNO_P (REGNO) \ + && (GET_CODE (INSN) == JUMP_INSN || GET_CODE (INSN) == BARRIER)) +*/ + +/* a letter which is not needed by the normal asm syntax, which + we can use for operand syntax in the extended asm */ + +#define ASM_OPERAND_LETTER '#' + +#define RET return "" +#define AT_SP(mode) (gen_rtx (MEM, (mode), stack_pointer_rtx)) + +/* +Local variables: +version-control: t +End: +*/ |